1 /*
2  *  Copyright (C) 2003,2004 Aurelien Alleaume <slts@free.fr>
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License
7  *
8  *  This program is distributed in the hope that it will be useful,
9  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
10  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  *  GNU General Public License for more details.
12  *
13  *  You should have received a copy of the GNU General Public License
14  *  along with this program; if not, write to the Free Software
15  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
16  *
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 
22 #include "prismcompat.h"
23 #include "islpci_dev.h"
24 #include "islpci_mgt.h"
25 #include "isl_oid.h"
26 #include "oid_mgt.h"
27 #include "isl_ioctl.h"
28 
29 /* to convert between channel and freq */
30 static const int frequency_list_bg[] = { 2412, 2417, 2422, 2427, 2432,
31 	2437, 2442, 2447, 2452, 2457, 2462, 2467, 2472, 2484
32 };
33 
34 int
channel_of_freq(int f)35 channel_of_freq(int f)
36 {
37 	int c = 0;
38 
39 	if ((f >= 2412) && (f <= 2484)) {
40 		while ((c < 14) && (f != frequency_list_bg[c]))
41 			c++;
42 		return (c >= 14) ? 0 : ++c;
43 	} else if ((f >= (int) 5000) && (f <= (int) 6000)) {
44 		return ( (f - 5000) / 5 );
45 	} else
46 		return 0;
47 }
48 
49 #define OID_STRUCT(name,oid,s,t) [name] = {oid, 0, sizeof(s), t}
50 #define OID_STRUCT_C(name,oid,s,t) OID_STRUCT(name,oid,s,t | OID_FLAG_CACHED)
51 #define OID_U32(name,oid) OID_STRUCT(name,oid,u32,OID_TYPE_U32)
52 #define OID_U32_C(name,oid) OID_STRUCT_C(name,oid,u32,OID_TYPE_U32)
53 #define OID_STRUCT_MLME(name,oid) OID_STRUCT(name,oid,struct obj_mlme,OID_TYPE_MLME)
54 #define OID_STRUCT_MLMEEX(name,oid) OID_STRUCT(name,oid,struct obj_mlmeex,OID_TYPE_MLMEEX)
55 
56 #define OID_UNKNOWN(name,oid) OID_STRUCT(name,oid,0,0)
57 
58 struct oid_t isl_oid[] = {
59 	OID_STRUCT(GEN_OID_MACADDRESS, 0x00000000, u8[6], OID_TYPE_ADDR),
60 	OID_U32(GEN_OID_LINKSTATE, 0x00000001),
61 	OID_UNKNOWN(GEN_OID_WATCHDOG, 0x00000002),
62 	OID_UNKNOWN(GEN_OID_MIBOP, 0x00000003),
63 	OID_UNKNOWN(GEN_OID_OPTIONS, 0x00000004),
64 	OID_UNKNOWN(GEN_OID_LEDCONFIG, 0x00000005),
65 
66 	/* 802.11 */
67 	OID_U32_C(DOT11_OID_BSSTYPE, 0x10000000),
68 	OID_STRUCT_C(DOT11_OID_BSSID, 0x10000001, u8[6], OID_TYPE_RAW),
69 	OID_STRUCT_C(DOT11_OID_SSID, 0x10000002, struct obj_ssid,
70 		     OID_TYPE_SSID),
71 	OID_U32(DOT11_OID_STATE, 0x10000003),
72 	OID_U32(DOT11_OID_AID, 0x10000004),
73 	OID_STRUCT(DOT11_OID_COUNTRYSTRING, 0x10000005, u8[4], OID_TYPE_RAW),
74 	OID_STRUCT_C(DOT11_OID_SSIDOVERRIDE, 0x10000006, struct obj_ssid,
75 		     OID_TYPE_SSID),
76 
77 	OID_U32(DOT11_OID_MEDIUMLIMIT, 0x11000000),
78 	OID_U32_C(DOT11_OID_BEACONPERIOD, 0x11000001),
79 	OID_U32(DOT11_OID_DTIMPERIOD, 0x11000002),
80 	OID_U32(DOT11_OID_ATIMWINDOW, 0x11000003),
81 	OID_U32(DOT11_OID_LISTENINTERVAL, 0x11000004),
82 	OID_U32(DOT11_OID_CFPPERIOD, 0x11000005),
83 	OID_U32(DOT11_OID_CFPDURATION, 0x11000006),
84 
85 	OID_U32_C(DOT11_OID_AUTHENABLE, 0x12000000),
86 	OID_U32_C(DOT11_OID_PRIVACYINVOKED, 0x12000001),
87 	OID_U32_C(DOT11_OID_EXUNENCRYPTED, 0x12000002),
88 	OID_U32_C(DOT11_OID_DEFKEYID, 0x12000003),
89 	[DOT11_OID_DEFKEYX] = {0x12000004, 3, sizeof (struct obj_key),
90 			       OID_FLAG_CACHED | OID_TYPE_KEY},	/* DOT11_OID_DEFKEY1,...DOT11_OID_DEFKEY4 */
91 	OID_UNKNOWN(DOT11_OID_STAKEY, 0x12000008),
92 	OID_U32(DOT11_OID_REKEYTHRESHOLD, 0x12000009),
93 	OID_UNKNOWN(DOT11_OID_STASC, 0x1200000a),
94 
95 	OID_U32(DOT11_OID_PRIVTXREJECTED, 0x1a000000),
96 	OID_U32(DOT11_OID_PRIVRXPLAIN, 0x1a000001),
97 	OID_U32(DOT11_OID_PRIVRXFAILED, 0x1a000002),
98 	OID_U32(DOT11_OID_PRIVRXNOKEY, 0x1a000003),
99 
100 	OID_U32_C(DOT11_OID_RTSTHRESH, 0x13000000),
101 	OID_U32_C(DOT11_OID_FRAGTHRESH, 0x13000001),
102 	OID_U32_C(DOT11_OID_SHORTRETRIES, 0x13000002),
103 	OID_U32_C(DOT11_OID_LONGRETRIES, 0x13000003),
104 	OID_U32_C(DOT11_OID_MAXTXLIFETIME, 0x13000004),
105 	OID_U32(DOT11_OID_MAXRXLIFETIME, 0x13000005),
106 	OID_U32(DOT11_OID_AUTHRESPTIMEOUT, 0x13000006),
107 	OID_U32(DOT11_OID_ASSOCRESPTIMEOUT, 0x13000007),
108 
109 	OID_UNKNOWN(DOT11_OID_ALOFT_TABLE, 0x1d000000),
110 	OID_UNKNOWN(DOT11_OID_ALOFT_CTRL_TABLE, 0x1d000001),
111 	OID_UNKNOWN(DOT11_OID_ALOFT_RETREAT, 0x1d000002),
112 	OID_UNKNOWN(DOT11_OID_ALOFT_PROGRESS, 0x1d000003),
113 	OID_U32(DOT11_OID_ALOFT_FIXEDRATE, 0x1d000004),
114 	OID_UNKNOWN(DOT11_OID_ALOFT_RSSIGRAPH, 0x1d000005),
115 	OID_UNKNOWN(DOT11_OID_ALOFT_CONFIG, 0x1d000006),
116 
117 	[DOT11_OID_VDCFX] = {0x1b000000, 7, 0, 0},
118 	OID_U32(DOT11_OID_MAXFRAMEBURST, 0x1b000008),
119 
120 	OID_U32(DOT11_OID_PSM, 0x14000000),
121 	OID_U32(DOT11_OID_CAMTIMEOUT, 0x14000001),
122 	OID_U32(DOT11_OID_RECEIVEDTIMS, 0x14000002),
123 	OID_U32(DOT11_OID_ROAMPREFERENCE, 0x14000003),
124 
125 	OID_U32(DOT11_OID_BRIDGELOCAL, 0x15000000),
126 	OID_U32(DOT11_OID_CLIENTS, 0x15000001),
127 	OID_U32(DOT11_OID_CLIENTSASSOCIATED, 0x15000002),
128 	[DOT11_OID_CLIENTX] = {0x15000003, 2006, 0, 0},	/* DOT11_OID_CLIENTX,...DOT11_OID_CLIENT2007 */
129 
130 	OID_STRUCT(DOT11_OID_CLIENTFIND, 0x150007DB, u8[6], OID_TYPE_ADDR),
131 	OID_STRUCT(DOT11_OID_WDSLINKADD, 0x150007DC, u8[6], OID_TYPE_ADDR),
132 	OID_STRUCT(DOT11_OID_WDSLINKREMOVE, 0x150007DD, u8[6], OID_TYPE_ADDR),
133 	OID_STRUCT(DOT11_OID_EAPAUTHSTA, 0x150007DE, u8[6], OID_TYPE_ADDR),
134 	OID_STRUCT(DOT11_OID_EAPUNAUTHSTA, 0x150007DF, u8[6], OID_TYPE_ADDR),
135 	OID_U32_C(DOT11_OID_DOT1XENABLE, 0x150007E0),
136 	OID_UNKNOWN(DOT11_OID_MICFAILURE, 0x150007E1),
137 	OID_UNKNOWN(DOT11_OID_REKEYINDICATE, 0x150007E2),
138 
139 	OID_U32(DOT11_OID_MPDUTXSUCCESSFUL, 0x16000000),
140 	OID_U32(DOT11_OID_MPDUTXONERETRY, 0x16000001),
141 	OID_U32(DOT11_OID_MPDUTXMULTIPLERETRIES, 0x16000002),
142 	OID_U32(DOT11_OID_MPDUTXFAILED, 0x16000003),
143 	OID_U32(DOT11_OID_MPDURXSUCCESSFUL, 0x16000004),
144 	OID_U32(DOT11_OID_MPDURXDUPS, 0x16000005),
145 	OID_U32(DOT11_OID_RTSSUCCESSFUL, 0x16000006),
146 	OID_U32(DOT11_OID_RTSFAILED, 0x16000007),
147 	OID_U32(DOT11_OID_ACKFAILED, 0x16000008),
148 	OID_U32(DOT11_OID_FRAMERECEIVES, 0x16000009),
149 	OID_U32(DOT11_OID_FRAMEERRORS, 0x1600000A),
150 	OID_U32(DOT11_OID_FRAMEABORTS, 0x1600000B),
151 	OID_U32(DOT11_OID_FRAMEABORTSPHY, 0x1600000C),
152 
153 	OID_U32(DOT11_OID_SLOTTIME, 0x17000000),
154 	OID_U32(DOT11_OID_CWMIN, 0x17000001),
155 	OID_U32(DOT11_OID_CWMAX, 0x17000002),
156 	OID_U32(DOT11_OID_ACKWINDOW, 0x17000003),
157 	OID_U32(DOT11_OID_ANTENNARX, 0x17000004),
158 	OID_U32(DOT11_OID_ANTENNATX, 0x17000005),
159 	OID_U32(DOT11_OID_ANTENNADIVERSITY, 0x17000006),
160 	OID_U32_C(DOT11_OID_CHANNEL, 0x17000007),
161 	OID_U32_C(DOT11_OID_EDTHRESHOLD, 0x17000008),
162 	OID_U32(DOT11_OID_PREAMBLESETTINGS, 0x17000009),
163 	OID_STRUCT(DOT11_OID_RATES, 0x1700000A, u8[IWMAX_BITRATES + 1],
164 		   OID_TYPE_RAW),
165 	OID_U32(DOT11_OID_CCAMODESUPPORTED, 0x1700000B),
166 	OID_U32(DOT11_OID_CCAMODE, 0x1700000C),
167 	OID_UNKNOWN(DOT11_OID_RSSIVECTOR, 0x1700000D),
168 	OID_UNKNOWN(DOT11_OID_OUTPUTPOWERTABLE, 0x1700000E),
169 	OID_U32(DOT11_OID_OUTPUTPOWER, 0x1700000F),
170 	OID_STRUCT(DOT11_OID_SUPPORTEDRATES, 0x17000010,
171 		   u8[IWMAX_BITRATES + 1], OID_TYPE_RAW),
172 	OID_U32_C(DOT11_OID_FREQUENCY, 0x17000011),
173 	[DOT11_OID_SUPPORTEDFREQUENCIES] =
174 	    {0x17000012, 0, sizeof (struct obj_frequencies)
175 	     + sizeof (u16) * IWMAX_FREQ, OID_TYPE_FREQUENCIES},
176 
177 	OID_U32(DOT11_OID_NOISEFLOOR, 0x17000013),
178 	OID_STRUCT(DOT11_OID_FREQUENCYACTIVITY, 0x17000014, u8[IWMAX_FREQ + 1],
179 		   OID_TYPE_RAW),
180 	OID_UNKNOWN(DOT11_OID_IQCALIBRATIONTABLE, 0x17000015),
181 	OID_U32(DOT11_OID_NONERPPROTECTION, 0x17000016),
182 	OID_U32(DOT11_OID_SLOTSETTINGS, 0x17000017),
183 	OID_U32(DOT11_OID_NONERPTIMEOUT, 0x17000018),
184 	OID_U32(DOT11_OID_PROFILES, 0x17000019),
185 	OID_STRUCT(DOT11_OID_EXTENDEDRATES, 0x17000020,
186 		   u8[IWMAX_BITRATES + 1], OID_TYPE_RAW),
187 
188 	OID_STRUCT_MLME(DOT11_OID_DEAUTHENTICATE, 0x18000000),
189 	OID_STRUCT_MLME(DOT11_OID_AUTHENTICATE, 0x18000001),
190 	OID_STRUCT_MLME(DOT11_OID_DISASSOCIATE, 0x18000002),
191 	OID_STRUCT_MLME(DOT11_OID_ASSOCIATE, 0x18000003),
192 	OID_UNKNOWN(DOT11_OID_SCAN, 0x18000004),
193 	OID_STRUCT_MLMEEX(DOT11_OID_BEACON, 0x18000005),
194 	OID_STRUCT_MLMEEX(DOT11_OID_PROBE, 0x18000006),
195 	OID_STRUCT_MLMEEX(DOT11_OID_DEAUTHENTICATEEX, 0x18000007),
196 	OID_STRUCT_MLMEEX(DOT11_OID_AUTHENTICATEEX, 0x18000008),
197 	OID_STRUCT_MLMEEX(DOT11_OID_DISASSOCIATEEX, 0x18000009),
198 	OID_STRUCT_MLMEEX(DOT11_OID_ASSOCIATEEX, 0x1800000A),
199 	OID_STRUCT_MLMEEX(DOT11_OID_REASSOCIATE, 0x1800000B),
200 	OID_STRUCT_MLMEEX(DOT11_OID_REASSOCIATEEX, 0x1800000C),
201 
202 	OID_U32(DOT11_OID_NONERPSTATUS, 0x1E000000),
203 
204 	OID_U32(DOT11_OID_STATIMEOUT, 0x19000000),
205 	OID_U32_C(DOT11_OID_MLMEAUTOLEVEL, 0x19000001),
206 	OID_U32(DOT11_OID_BSSTIMEOUT, 0x19000002),
207 	[DOT11_OID_ATTACHMENT] = {0x19000003, 0,
208 		sizeof(struct obj_attachment), OID_TYPE_ATTACH},
209 	OID_STRUCT_C(DOT11_OID_PSMBUFFER, 0x19000004, struct obj_buffer,
210 		     OID_TYPE_BUFFER),
211 
212 	OID_U32(DOT11_OID_BSSS, 0x1C000000),
213 	[DOT11_OID_BSSX] = {0x1C000001, 63, sizeof (struct obj_bss),
214 			    OID_TYPE_BSS},	/*DOT11_OID_BSS1,...,DOT11_OID_BSS64 */
215 	OID_STRUCT(DOT11_OID_BSSFIND, 0x1C000042, struct obj_bss, OID_TYPE_BSS),
216 	[DOT11_OID_BSSLIST] = {0x1C000043, 0, sizeof (struct
217 						      obj_bsslist) +
218 			       sizeof (struct obj_bss[IWMAX_BSS]),
219 			       OID_TYPE_BSSLIST},
220 
221 	OID_UNKNOWN(OID_INL_TUNNEL, 0xFF020000),
222 	OID_UNKNOWN(OID_INL_MEMADDR, 0xFF020001),
223 	OID_UNKNOWN(OID_INL_MEMORY, 0xFF020002),
224 	OID_U32_C(OID_INL_MODE, 0xFF020003),
225 	OID_UNKNOWN(OID_INL_COMPONENT_NR, 0xFF020004),
226 	OID_STRUCT(OID_INL_VERSION, 0xFF020005, u8[8], OID_TYPE_RAW),
227 	OID_UNKNOWN(OID_INL_INTERFACE_ID, 0xFF020006),
228 	OID_UNKNOWN(OID_INL_COMPONENT_ID, 0xFF020007),
229 	OID_U32_C(OID_INL_CONFIG, 0xFF020008),
230 	OID_U32_C(OID_INL_DOT11D_CONFORMANCE, 0xFF02000C),
231 	OID_U32(OID_INL_PHYCAPABILITIES, 0xFF02000D),
232 	OID_U32_C(OID_INL_OUTPUTPOWER, 0xFF02000F),
233 
234 };
235 
236 int
mgt_init(islpci_private * priv)237 mgt_init(islpci_private *priv)
238 {
239 	int i;
240 
241 	priv->mib = kcalloc(OID_NUM_LAST, sizeof (void *), GFP_KERNEL);
242 	if (!priv->mib)
243 		return -ENOMEM;
244 
245 	/* Alloc the cache */
246 	for (i = 0; i < OID_NUM_LAST; i++) {
247 		if (isl_oid[i].flags & OID_FLAG_CACHED) {
248 			priv->mib[i] = kzalloc(isl_oid[i].size *
249 					       (isl_oid[i].range + 1),
250 					       GFP_KERNEL);
251 			if (!priv->mib[i])
252 				return -ENOMEM;
253 		} else
254 			priv->mib[i] = NULL;
255 	}
256 
257 	init_rwsem(&priv->mib_sem);
258 	prism54_mib_init(priv);
259 
260 	return 0;
261 }
262 
263 void
mgt_clean(islpci_private * priv)264 mgt_clean(islpci_private *priv)
265 {
266 	int i;
267 
268 	if (!priv->mib)
269 		return;
270 	for (i = 0; i < OID_NUM_LAST; i++) {
271 		kfree(priv->mib[i]);
272 		priv->mib[i] = NULL;
273 	}
274 	kfree(priv->mib);
275 	priv->mib = NULL;
276 }
277 
278 void
mgt_le_to_cpu(int type,void * data)279 mgt_le_to_cpu(int type, void *data)
280 {
281 	switch (type) {
282 	case OID_TYPE_U32:
283 		*(u32 *) data = le32_to_cpu(*(u32 *) data);
284 		break;
285 	case OID_TYPE_BUFFER:{
286 			struct obj_buffer *buff = data;
287 			buff->size = le32_to_cpu(buff->size);
288 			buff->addr = le32_to_cpu(buff->addr);
289 			break;
290 		}
291 	case OID_TYPE_BSS:{
292 			struct obj_bss *bss = data;
293 			bss->age = le16_to_cpu(bss->age);
294 			bss->channel = le16_to_cpu(bss->channel);
295 			bss->capinfo = le16_to_cpu(bss->capinfo);
296 			bss->rates = le16_to_cpu(bss->rates);
297 			bss->basic_rates = le16_to_cpu(bss->basic_rates);
298 			break;
299 		}
300 	case OID_TYPE_BSSLIST:{
301 			struct obj_bsslist *list = data;
302 			int i;
303 			list->nr = le32_to_cpu(list->nr);
304 			for (i = 0; i < list->nr; i++)
305 				mgt_le_to_cpu(OID_TYPE_BSS, &list->bsslist[i]);
306 			break;
307 		}
308 	case OID_TYPE_FREQUENCIES:{
309 			struct obj_frequencies *freq = data;
310 			int i;
311 			freq->nr = le16_to_cpu(freq->nr);
312 			for (i = 0; i < freq->nr; i++)
313 				freq->mhz[i] = le16_to_cpu(freq->mhz[i]);
314 			break;
315 		}
316 	case OID_TYPE_MLME:{
317 			struct obj_mlme *mlme = data;
318 			mlme->id = le16_to_cpu(mlme->id);
319 			mlme->state = le16_to_cpu(mlme->state);
320 			mlme->code = le16_to_cpu(mlme->code);
321 			break;
322 		}
323 	case OID_TYPE_MLMEEX:{
324 			struct obj_mlmeex *mlme = data;
325 			mlme->id = le16_to_cpu(mlme->id);
326 			mlme->state = le16_to_cpu(mlme->state);
327 			mlme->code = le16_to_cpu(mlme->code);
328 			mlme->size = le16_to_cpu(mlme->size);
329 			break;
330 		}
331 	case OID_TYPE_ATTACH:{
332 			struct obj_attachment *attach = data;
333 			attach->id = le16_to_cpu(attach->id);
334 			attach->size = le16_to_cpu(attach->size);
335 			break;
336 	}
337 	case OID_TYPE_SSID:
338 	case OID_TYPE_KEY:
339 	case OID_TYPE_ADDR:
340 	case OID_TYPE_RAW:
341 		break;
342 	default:
343 		BUG();
344 	}
345 }
346 
347 static void
mgt_cpu_to_le(int type,void * data)348 mgt_cpu_to_le(int type, void *data)
349 {
350 	switch (type) {
351 	case OID_TYPE_U32:
352 		*(u32 *) data = cpu_to_le32(*(u32 *) data);
353 		break;
354 	case OID_TYPE_BUFFER:{
355 			struct obj_buffer *buff = data;
356 			buff->size = cpu_to_le32(buff->size);
357 			buff->addr = cpu_to_le32(buff->addr);
358 			break;
359 		}
360 	case OID_TYPE_BSS:{
361 			struct obj_bss *bss = data;
362 			bss->age = cpu_to_le16(bss->age);
363 			bss->channel = cpu_to_le16(bss->channel);
364 			bss->capinfo = cpu_to_le16(bss->capinfo);
365 			bss->rates = cpu_to_le16(bss->rates);
366 			bss->basic_rates = cpu_to_le16(bss->basic_rates);
367 			break;
368 		}
369 	case OID_TYPE_BSSLIST:{
370 			struct obj_bsslist *list = data;
371 			int i;
372 			list->nr = cpu_to_le32(list->nr);
373 			for (i = 0; i < list->nr; i++)
374 				mgt_cpu_to_le(OID_TYPE_BSS, &list->bsslist[i]);
375 			break;
376 		}
377 	case OID_TYPE_FREQUENCIES:{
378 			struct obj_frequencies *freq = data;
379 			int i;
380 			freq->nr = cpu_to_le16(freq->nr);
381 			for (i = 0; i < freq->nr; i++)
382 				freq->mhz[i] = cpu_to_le16(freq->mhz[i]);
383 			break;
384 		}
385 	case OID_TYPE_MLME:{
386 			struct obj_mlme *mlme = data;
387 			mlme->id = cpu_to_le16(mlme->id);
388 			mlme->state = cpu_to_le16(mlme->state);
389 			mlme->code = cpu_to_le16(mlme->code);
390 			break;
391 		}
392 	case OID_TYPE_MLMEEX:{
393 			struct obj_mlmeex *mlme = data;
394 			mlme->id = cpu_to_le16(mlme->id);
395 			mlme->state = cpu_to_le16(mlme->state);
396 			mlme->code = cpu_to_le16(mlme->code);
397 			mlme->size = cpu_to_le16(mlme->size);
398 			break;
399 		}
400 	case OID_TYPE_ATTACH:{
401 			struct obj_attachment *attach = data;
402 			attach->id = cpu_to_le16(attach->id);
403 			attach->size = cpu_to_le16(attach->size);
404 			break;
405 	}
406 	case OID_TYPE_SSID:
407 	case OID_TYPE_KEY:
408 	case OID_TYPE_ADDR:
409 	case OID_TYPE_RAW:
410 		break;
411 	default:
412 		BUG();
413 	}
414 }
415 
416 /* Note : data is modified during this function */
417 
418 int
mgt_set_request(islpci_private * priv,enum oid_num_t n,int extra,void * data)419 mgt_set_request(islpci_private *priv, enum oid_num_t n, int extra, void *data)
420 {
421 	int ret = 0;
422 	struct islpci_mgmtframe *response = NULL;
423 	int response_op = PIMFOR_OP_ERROR;
424 	int dlen;
425 	void *cache, *_data = data;
426 	u32 oid;
427 
428 	BUG_ON(OID_NUM_LAST <= n);
429 	BUG_ON(extra > isl_oid[n].range);
430 
431 	if (!priv->mib)
432 		/* memory has been freed */
433 		return -1;
434 
435 	dlen = isl_oid[n].size;
436 	cache = priv->mib[n];
437 	cache += (cache ? extra * dlen : 0);
438 	oid = isl_oid[n].oid + extra;
439 
440 	if (_data == NULL)
441 		/* we are requested to re-set a cached value */
442 		_data = cache;
443 	else
444 		mgt_cpu_to_le(isl_oid[n].flags & OID_FLAG_TYPE, _data);
445 	/* If we are going to write to the cache, we don't want anyone to read
446 	 * it -> acquire write lock.
447 	 * Else we could acquire a read lock to be sure we don't bother the
448 	 * commit process (which takes a write lock). But I'm not sure if it's
449 	 * needed.
450 	 */
451 	if (cache)
452 		down_write(&priv->mib_sem);
453 
454 	if (islpci_get_state(priv) >= PRV_STATE_READY) {
455 		ret = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_SET, oid,
456 					     _data, dlen, &response);
457 		if (!ret) {
458 			response_op = response->header->operation;
459 			islpci_mgt_release(response);
460 		}
461 		if (ret || response_op == PIMFOR_OP_ERROR)
462 			ret = -EIO;
463 	} else if (!cache)
464 		ret = -EIO;
465 
466 	if (cache) {
467 		if (!ret && data)
468 			memcpy(cache, _data, dlen);
469 		up_write(&priv->mib_sem);
470 	}
471 
472 	/* re-set given data to what it was */
473 	if (data)
474 		mgt_le_to_cpu(isl_oid[n].flags & OID_FLAG_TYPE, data);
475 
476 	return ret;
477 }
478 
479 /* None of these are cached */
480 int
mgt_set_varlen(islpci_private * priv,enum oid_num_t n,void * data,int extra_len)481 mgt_set_varlen(islpci_private *priv, enum oid_num_t n, void *data, int extra_len)
482 {
483 	int ret = 0;
484 	struct islpci_mgmtframe *response;
485 	int response_op = PIMFOR_OP_ERROR;
486 	int dlen;
487 	u32 oid;
488 
489 	BUG_ON(OID_NUM_LAST <= n);
490 
491 	dlen = isl_oid[n].size;
492 	oid = isl_oid[n].oid;
493 
494 	mgt_cpu_to_le(isl_oid[n].flags & OID_FLAG_TYPE, data);
495 
496 	if (islpci_get_state(priv) >= PRV_STATE_READY) {
497 		ret = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_SET, oid,
498 					     data, dlen + extra_len, &response);
499 		if (!ret) {
500 			response_op = response->header->operation;
501 			islpci_mgt_release(response);
502 		}
503 		if (ret || response_op == PIMFOR_OP_ERROR)
504 			ret = -EIO;
505 	} else
506 		ret = -EIO;
507 
508 	/* re-set given data to what it was */
509 	if (data)
510 		mgt_le_to_cpu(isl_oid[n].flags & OID_FLAG_TYPE, data);
511 
512 	return ret;
513 }
514 
515 int
mgt_get_request(islpci_private * priv,enum oid_num_t n,int extra,void * data,union oid_res_t * res)516 mgt_get_request(islpci_private *priv, enum oid_num_t n, int extra, void *data,
517 		union oid_res_t *res)
518 {
519 
520 	int ret = -EIO;
521 	int reslen = 0;
522 	struct islpci_mgmtframe *response = NULL;
523 
524 	int dlen;
525 	void *cache, *_res = NULL;
526 	u32 oid;
527 
528 	BUG_ON(OID_NUM_LAST <= n);
529 	BUG_ON(extra > isl_oid[n].range);
530 
531 	res->ptr = NULL;
532 
533 	if (!priv->mib)
534 		/* memory has been freed */
535 		return -1;
536 
537 	dlen = isl_oid[n].size;
538 	cache = priv->mib[n];
539 	cache += cache ? extra * dlen : 0;
540 	oid = isl_oid[n].oid + extra;
541 	reslen = dlen;
542 
543 	if (cache)
544 		down_read(&priv->mib_sem);
545 
546 	if (islpci_get_state(priv) >= PRV_STATE_READY) {
547 		ret = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_GET,
548 					     oid, data, dlen, &response);
549 		if (ret || !response ||
550 		    response->header->operation == PIMFOR_OP_ERROR) {
551 			if (response)
552 				islpci_mgt_release(response);
553 			ret = -EIO;
554 		}
555 		if (!ret) {
556 			_res = response->data;
557 			reslen = response->header->length;
558 		}
559 	} else if (cache) {
560 		_res = cache;
561 		ret = 0;
562 	}
563 	if ((isl_oid[n].flags & OID_FLAG_TYPE) == OID_TYPE_U32)
564 		res->u = ret ? 0 : le32_to_cpu(*(u32 *) _res);
565 	else {
566 		res->ptr = kmalloc(reslen, GFP_KERNEL);
567 		BUG_ON(res->ptr == NULL);
568 		if (ret)
569 			memset(res->ptr, 0, reslen);
570 		else {
571 			memcpy(res->ptr, _res, reslen);
572 			mgt_le_to_cpu(isl_oid[n].flags & OID_FLAG_TYPE,
573 				      res->ptr);
574 		}
575 	}
576 	if (cache)
577 		up_read(&priv->mib_sem);
578 
579 	if (response && !ret)
580 		islpci_mgt_release(response);
581 
582 	if (reslen > isl_oid[n].size)
583 		printk(KERN_DEBUG
584 		       "mgt_get_request(0x%x): received data length was bigger "
585 		       "than expected (%d > %d). Memory is probably corrupted...",
586 		       oid, reslen, isl_oid[n].size);
587 
588 	return ret;
589 }
590 
591 /* lock outside */
592 int
mgt_commit_list(islpci_private * priv,enum oid_num_t * l,int n)593 mgt_commit_list(islpci_private *priv, enum oid_num_t *l, int n)
594 {
595 	int i, ret = 0;
596 	struct islpci_mgmtframe *response;
597 
598 	for (i = 0; i < n; i++) {
599 		struct oid_t *t = &(isl_oid[l[i]]);
600 		void *data = priv->mib[l[i]];
601 		int j = 0;
602 		u32 oid = t->oid;
603 		BUG_ON(data == NULL);
604 		while (j <= t->range) {
605 			int r = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_SET,
606 						      oid, data, t->size,
607 						      &response);
608 			if (response) {
609 				r |= (response->header->operation == PIMFOR_OP_ERROR);
610 				islpci_mgt_release(response);
611 			}
612 			if (r)
613 				printk(KERN_ERR "%s: mgt_commit_list: failure. "
614 					"oid=%08x err=%d\n",
615 					priv->ndev->name, oid, r);
616 			ret |= r;
617 			j++;
618 			oid++;
619 			data += t->size;
620 		}
621 	}
622 	return ret;
623 }
624 
625 /* Lock outside */
626 
627 void
mgt_set(islpci_private * priv,enum oid_num_t n,void * data)628 mgt_set(islpci_private *priv, enum oid_num_t n, void *data)
629 {
630 	BUG_ON(OID_NUM_LAST <= n);
631 	BUG_ON(priv->mib[n] == NULL);
632 
633 	memcpy(priv->mib[n], data, isl_oid[n].size);
634 	mgt_cpu_to_le(isl_oid[n].flags & OID_FLAG_TYPE, priv->mib[n]);
635 }
636 
637 void
mgt_get(islpci_private * priv,enum oid_num_t n,void * res)638 mgt_get(islpci_private *priv, enum oid_num_t n, void *res)
639 {
640 	BUG_ON(OID_NUM_LAST <= n);
641 	BUG_ON(priv->mib[n] == NULL);
642 	BUG_ON(res == NULL);
643 
644 	memcpy(res, priv->mib[n], isl_oid[n].size);
645 	mgt_le_to_cpu(isl_oid[n].flags & OID_FLAG_TYPE, res);
646 }
647 
648 /* Commits the cache. Lock outside. */
649 
650 static enum oid_num_t commit_part1[] = {
651 	OID_INL_CONFIG,
652 	OID_INL_MODE,
653 	DOT11_OID_BSSTYPE,
654 	DOT11_OID_CHANNEL,
655 	DOT11_OID_MLMEAUTOLEVEL
656 };
657 
658 static enum oid_num_t commit_part2[] = {
659 	DOT11_OID_SSID,
660 	DOT11_OID_PSMBUFFER,
661 	DOT11_OID_AUTHENABLE,
662 	DOT11_OID_PRIVACYINVOKED,
663 	DOT11_OID_EXUNENCRYPTED,
664 	DOT11_OID_DEFKEYX,	/* MULTIPLE */
665 	DOT11_OID_DEFKEYID,
666 	DOT11_OID_DOT1XENABLE,
667 	OID_INL_DOT11D_CONFORMANCE,
668 	/* Do not initialize this - fw < 1.0.4.3 rejects it
669 	OID_INL_OUTPUTPOWER,
670 	*/
671 };
672 
673 /* update the MAC addr. */
674 static int
mgt_update_addr(islpci_private * priv)675 mgt_update_addr(islpci_private *priv)
676 {
677 	struct islpci_mgmtframe *res;
678 	int ret;
679 
680 	ret = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_GET,
681 				     isl_oid[GEN_OID_MACADDRESS].oid, NULL,
682 				     isl_oid[GEN_OID_MACADDRESS].size, &res);
683 
684 	if ((ret == 0) && res && (res->header->operation != PIMFOR_OP_ERROR))
685 		memcpy(priv->ndev->dev_addr, res->data, 6);
686 	else
687 		ret = -EIO;
688 	if (res)
689 		islpci_mgt_release(res);
690 
691 	if (ret)
692 		printk(KERN_ERR "%s: mgt_update_addr: failure\n", priv->ndev->name);
693 	return ret;
694 }
695 
696 #define VEC_SIZE(a) ARRAY_SIZE(a)
697 
698 int
mgt_commit(islpci_private * priv)699 mgt_commit(islpci_private *priv)
700 {
701 	int rvalue;
702 	enum oid_num_t u;
703 
704 	if (islpci_get_state(priv) < PRV_STATE_INIT)
705 		return 0;
706 
707 	rvalue = mgt_commit_list(priv, commit_part1, VEC_SIZE(commit_part1));
708 
709 	if (priv->iw_mode != IW_MODE_MONITOR)
710 		rvalue |= mgt_commit_list(priv, commit_part2, VEC_SIZE(commit_part2));
711 
712 	u = OID_INL_MODE;
713 	rvalue |= mgt_commit_list(priv, &u, 1);
714 	rvalue |= mgt_update_addr(priv);
715 
716 	if (rvalue) {
717 		/* some request have failed. The device might be in an
718 		   incoherent state. We should reset it ! */
719 		printk(KERN_DEBUG "%s: mgt_commit: failure\n", priv->ndev->name);
720 	}
721 	return rvalue;
722 }
723 
724 /* The following OIDs need to be "unlatched":
725  *
726  * MEDIUMLIMIT,BEACONPERIOD,DTIMPERIOD,ATIMWINDOW,LISTENINTERVAL
727  * FREQUENCY,EXTENDEDRATES.
728  *
729  * The way to do this is to set ESSID. Note though that they may get
730  * unlatch before though by setting another OID. */
731 #if 0
732 void
733 mgt_unlatch_all(islpci_private *priv)
734 {
735 	u32 u;
736 	int rvalue = 0;
737 
738 	if (islpci_get_state(priv) < PRV_STATE_INIT)
739 		return;
740 
741 	u = DOT11_OID_SSID;
742 	rvalue = mgt_commit_list(priv, &u, 1);
743 	/* Necessary if in MANUAL RUN mode? */
744 #if 0
745 	u = OID_INL_MODE;
746 	rvalue |= mgt_commit_list(priv, &u, 1);
747 
748 	u = DOT11_OID_MLMEAUTOLEVEL;
749 	rvalue |= mgt_commit_list(priv, &u, 1);
750 
751 	u = OID_INL_MODE;
752 	rvalue |= mgt_commit_list(priv, &u, 1);
753 #endif
754 
755 	if (rvalue)
756 		printk(KERN_DEBUG "%s: Unlatching OIDs failed\n", priv->ndev->name);
757 }
758 #endif
759 
760 /* This will tell you if you are allowed to answer a mlme(ex) request .*/
761 
762 int
mgt_mlme_answer(islpci_private * priv)763 mgt_mlme_answer(islpci_private *priv)
764 {
765 	u32 mlmeautolevel;
766 	/* Acquire a read lock because if we are in a mode change, it's
767 	 * possible to answer true, while the card is leaving master to managed
768 	 * mode. Answering to a mlme in this situation could hang the card.
769 	 */
770 	down_read(&priv->mib_sem);
771 	mlmeautolevel =
772 	    le32_to_cpu(*(u32 *) priv->mib[DOT11_OID_MLMEAUTOLEVEL]);
773 	up_read(&priv->mib_sem);
774 
775 	return ((priv->iw_mode == IW_MODE_MASTER) &&
776 		(mlmeautolevel >= DOT11_MLME_INTERMEDIATE));
777 }
778 
779 enum oid_num_t
mgt_oidtonum(u32 oid)780 mgt_oidtonum(u32 oid)
781 {
782 	int i;
783 
784 	for (i = 0; i < OID_NUM_LAST; i++)
785 		if (isl_oid[i].oid == oid)
786 			return i;
787 
788 	printk(KERN_DEBUG "looking for an unknown oid 0x%x", oid);
789 
790 	return OID_NUM_LAST;
791 }
792 
793 int
mgt_response_to_str(enum oid_num_t n,union oid_res_t * r,char * str)794 mgt_response_to_str(enum oid_num_t n, union oid_res_t *r, char *str)
795 {
796 	switch (isl_oid[n].flags & OID_FLAG_TYPE) {
797 	case OID_TYPE_U32:
798 		return snprintf(str, PRIV_STR_SIZE, "%u\n", r->u);
799 		break;
800 	case OID_TYPE_BUFFER:{
801 			struct obj_buffer *buff = r->ptr;
802 			return snprintf(str, PRIV_STR_SIZE,
803 					"size=%u\naddr=0x%X\n", buff->size,
804 					buff->addr);
805 		}
806 		break;
807 	case OID_TYPE_BSS:{
808 			struct obj_bss *bss = r->ptr;
809 			return snprintf(str, PRIV_STR_SIZE,
810 					"age=%u\nchannel=%u\n"
811 					"capinfo=0x%X\nrates=0x%X\n"
812 					"basic_rates=0x%X\n", bss->age,
813 					bss->channel, bss->capinfo,
814 					bss->rates, bss->basic_rates);
815 		}
816 		break;
817 	case OID_TYPE_BSSLIST:{
818 			struct obj_bsslist *list = r->ptr;
819 			int i, k;
820 			k = snprintf(str, PRIV_STR_SIZE, "nr=%u\n", list->nr);
821 			for (i = 0; i < list->nr; i++)
822 				k += snprintf(str + k, PRIV_STR_SIZE - k,
823 					      "bss[%u] :\nage=%u\nchannel=%u\n"
824 					      "capinfo=0x%X\nrates=0x%X\n"
825 					      "basic_rates=0x%X\n",
826 					      i, list->bsslist[i].age,
827 					      list->bsslist[i].channel,
828 					      list->bsslist[i].capinfo,
829 					      list->bsslist[i].rates,
830 					      list->bsslist[i].basic_rates);
831 			return k;
832 		}
833 		break;
834 	case OID_TYPE_FREQUENCIES:{
835 			struct obj_frequencies *freq = r->ptr;
836 			int i, t;
837 			printk("nr : %u\n", freq->nr);
838 			t = snprintf(str, PRIV_STR_SIZE, "nr=%u\n", freq->nr);
839 			for (i = 0; i < freq->nr; i++)
840 				t += snprintf(str + t, PRIV_STR_SIZE - t,
841 					      "mhz[%u]=%u\n", i, freq->mhz[i]);
842 			return t;
843 		}
844 		break;
845 	case OID_TYPE_MLME:{
846 			struct obj_mlme *mlme = r->ptr;
847 			return snprintf(str, PRIV_STR_SIZE,
848 					"id=0x%X\nstate=0x%X\ncode=0x%X\n",
849 					mlme->id, mlme->state, mlme->code);
850 		}
851 		break;
852 	case OID_TYPE_MLMEEX:{
853 			struct obj_mlmeex *mlme = r->ptr;
854 			return snprintf(str, PRIV_STR_SIZE,
855 					"id=0x%X\nstate=0x%X\n"
856 					"code=0x%X\nsize=0x%X\n", mlme->id,
857 					mlme->state, mlme->code, mlme->size);
858 		}
859 		break;
860 	case OID_TYPE_ATTACH:{
861 			struct obj_attachment *attach = r->ptr;
862 			return snprintf(str, PRIV_STR_SIZE,
863 					"id=%d\nsize=%d\n",
864 					attach->id,
865 					attach->size);
866 		}
867 		break;
868 	case OID_TYPE_SSID:{
869 			struct obj_ssid *ssid = r->ptr;
870 			return snprintf(str, PRIV_STR_SIZE,
871 					"length=%u\noctets=%.*s\n",
872 					ssid->length, ssid->length,
873 					ssid->octets);
874 		}
875 		break;
876 	case OID_TYPE_KEY:{
877 			struct obj_key *key = r->ptr;
878 			int t, i;
879 			t = snprintf(str, PRIV_STR_SIZE,
880 				     "type=0x%X\nlength=0x%X\nkey=0x",
881 				     key->type, key->length);
882 			for (i = 0; i < key->length; i++)
883 				t += snprintf(str + t, PRIV_STR_SIZE - t,
884 					      "%02X:", key->key[i]);
885 			t += snprintf(str + t, PRIV_STR_SIZE - t, "\n");
886 			return t;
887 		}
888 		break;
889 	case OID_TYPE_RAW:
890 	case OID_TYPE_ADDR:{
891 			unsigned char *buff = r->ptr;
892 			int t, i;
893 			t = snprintf(str, PRIV_STR_SIZE, "hex data=");
894 			for (i = 0; i < isl_oid[n].size; i++)
895 				t += snprintf(str + t, PRIV_STR_SIZE - t,
896 					      "%02X:", buff[i]);
897 			t += snprintf(str + t, PRIV_STR_SIZE - t, "\n");
898 			return t;
899 		}
900 		break;
901 	default:
902 		BUG();
903 	}
904 	return 0;
905 }
906