1 /*
2 * Copyright (C) 2001 Troy D. Armstrong IBM Corporation
3 * Copyright (C) 2004-2005 Stephen Rothwell IBM Corporation
4 *
5 * This modules exists as an interface between a Linux secondary partition
6 * running on an iSeries and the primary partition's Virtual Service
7 * Processor (VSP) object. The VSP has final authority over powering on/off
8 * all partitions in the iSeries. It also provides miscellaneous low-level
9 * machine facility type operations.
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 */
26
27 #include <linux/types.h>
28 #include <linux/errno.h>
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/completion.h>
32 #include <linux/delay.h>
33 #include <linux/proc_fs.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bcd.h>
36 #include <linux/rtc.h>
37 #include <linux/slab.h>
38
39 #include <asm/time.h>
40 #include <asm/uaccess.h>
41 #include <asm/paca.h>
42 #include <asm/abs_addr.h>
43 #include <asm/firmware.h>
44 #include <asm/iseries/mf.h>
45 #include <asm/iseries/hv_lp_config.h>
46 #include <asm/iseries/hv_lp_event.h>
47 #include <asm/iseries/it_lp_queue.h>
48
49 #include "setup.h"
50
51 static int mf_initialized;
52
53 /*
54 * This is the structure layout for the Machine Facilities LPAR event
55 * flows.
56 */
57 struct vsp_cmd_data {
58 u64 token;
59 u16 cmd;
60 HvLpIndex lp_index;
61 u8 result_code;
62 u32 reserved;
63 union {
64 u64 state; /* GetStateOut */
65 u64 ipl_type; /* GetIplTypeOut, Function02SelectIplTypeIn */
66 u64 ipl_mode; /* GetIplModeOut, Function02SelectIplModeIn */
67 u64 page[4]; /* GetSrcHistoryIn */
68 u64 flag; /* GetAutoIplWhenPrimaryIplsOut,
69 SetAutoIplWhenPrimaryIplsIn,
70 WhiteButtonPowerOffIn,
71 Function08FastPowerOffIn,
72 IsSpcnRackPowerIncompleteOut */
73 struct {
74 u64 token;
75 u64 address_type;
76 u64 side;
77 u32 length;
78 u32 offset;
79 } kern; /* SetKernelImageIn, GetKernelImageIn,
80 SetKernelCmdLineIn, GetKernelCmdLineIn */
81 u32 length_out; /* GetKernelImageOut, GetKernelCmdLineOut */
82 u8 reserved[80];
83 } sub_data;
84 };
85
86 struct vsp_rsp_data {
87 struct completion com;
88 struct vsp_cmd_data *response;
89 };
90
91 struct alloc_data {
92 u16 size;
93 u16 type;
94 u32 count;
95 u16 reserved1;
96 u8 reserved2;
97 HvLpIndex target_lp;
98 };
99
100 struct ce_msg_data;
101
102 typedef void (*ce_msg_comp_hdlr)(void *token, struct ce_msg_data *vsp_cmd_rsp);
103
104 struct ce_msg_comp_data {
105 ce_msg_comp_hdlr handler;
106 void *token;
107 };
108
109 struct ce_msg_data {
110 u8 ce_msg[12];
111 char reserved[4];
112 struct ce_msg_comp_data *completion;
113 };
114
115 struct io_mf_lp_event {
116 struct HvLpEvent hp_lp_event;
117 u16 subtype_result_code;
118 u16 reserved1;
119 u32 reserved2;
120 union {
121 struct alloc_data alloc;
122 struct ce_msg_data ce_msg;
123 struct vsp_cmd_data vsp_cmd;
124 } data;
125 };
126
127 #define subtype_data(a, b, c, d) \
128 (((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
129
130 /*
131 * All outgoing event traffic is kept on a FIFO queue. The first
132 * pointer points to the one that is outstanding, and all new
133 * requests get stuck on the end. Also, we keep a certain number of
134 * preallocated pending events so that we can operate very early in
135 * the boot up sequence (before kmalloc is ready).
136 */
137 struct pending_event {
138 struct pending_event *next;
139 struct io_mf_lp_event event;
140 MFCompleteHandler hdlr;
141 char dma_data[72];
142 unsigned dma_data_length;
143 unsigned remote_address;
144 };
145 static spinlock_t pending_event_spinlock;
146 static struct pending_event *pending_event_head;
147 static struct pending_event *pending_event_tail;
148 static struct pending_event *pending_event_avail;
149 #define PENDING_EVENT_PREALLOC_LEN 16
150 static struct pending_event pending_event_prealloc[PENDING_EVENT_PREALLOC_LEN];
151
152 /*
153 * Put a pending event onto the available queue, so it can get reused.
154 * Attention! You must have the pending_event_spinlock before calling!
155 */
free_pending_event(struct pending_event * ev)156 static void free_pending_event(struct pending_event *ev)
157 {
158 if (ev != NULL) {
159 ev->next = pending_event_avail;
160 pending_event_avail = ev;
161 }
162 }
163
164 /*
165 * Enqueue the outbound event onto the stack. If the queue was
166 * empty to begin with, we must also issue it via the Hypervisor
167 * interface. There is a section of code below that will touch
168 * the first stack pointer without the protection of the pending_event_spinlock.
169 * This is OK, because we know that nobody else will be modifying
170 * the first pointer when we do this.
171 */
signal_event(struct pending_event * ev)172 static int signal_event(struct pending_event *ev)
173 {
174 int rc = 0;
175 unsigned long flags;
176 int go = 1;
177 struct pending_event *ev1;
178 HvLpEvent_Rc hv_rc;
179
180 /* enqueue the event */
181 if (ev != NULL) {
182 ev->next = NULL;
183 spin_lock_irqsave(&pending_event_spinlock, flags);
184 if (pending_event_head == NULL)
185 pending_event_head = ev;
186 else {
187 go = 0;
188 pending_event_tail->next = ev;
189 }
190 pending_event_tail = ev;
191 spin_unlock_irqrestore(&pending_event_spinlock, flags);
192 }
193
194 /* send the event */
195 while (go) {
196 go = 0;
197
198 /* any DMA data to send beforehand? */
199 if (pending_event_head->dma_data_length > 0)
200 HvCallEvent_dmaToSp(pending_event_head->dma_data,
201 pending_event_head->remote_address,
202 pending_event_head->dma_data_length,
203 HvLpDma_Direction_LocalToRemote);
204
205 hv_rc = HvCallEvent_signalLpEvent(
206 &pending_event_head->event.hp_lp_event);
207 if (hv_rc != HvLpEvent_Rc_Good) {
208 printk(KERN_ERR "mf.c: HvCallEvent_signalLpEvent() "
209 "failed with %d\n", (int)hv_rc);
210
211 spin_lock_irqsave(&pending_event_spinlock, flags);
212 ev1 = pending_event_head;
213 pending_event_head = pending_event_head->next;
214 if (pending_event_head != NULL)
215 go = 1;
216 spin_unlock_irqrestore(&pending_event_spinlock, flags);
217
218 if (ev1 == ev)
219 rc = -EIO;
220 else if (ev1->hdlr != NULL)
221 (*ev1->hdlr)((void *)ev1->event.hp_lp_event.xCorrelationToken, -EIO);
222
223 spin_lock_irqsave(&pending_event_spinlock, flags);
224 free_pending_event(ev1);
225 spin_unlock_irqrestore(&pending_event_spinlock, flags);
226 }
227 }
228
229 return rc;
230 }
231
232 /*
233 * Allocate a new pending_event structure, and initialize it.
234 */
new_pending_event(void)235 static struct pending_event *new_pending_event(void)
236 {
237 struct pending_event *ev = NULL;
238 HvLpIndex primary_lp = HvLpConfig_getPrimaryLpIndex();
239 unsigned long flags;
240 struct HvLpEvent *hev;
241
242 spin_lock_irqsave(&pending_event_spinlock, flags);
243 if (pending_event_avail != NULL) {
244 ev = pending_event_avail;
245 pending_event_avail = pending_event_avail->next;
246 }
247 spin_unlock_irqrestore(&pending_event_spinlock, flags);
248 if (ev == NULL) {
249 ev = kmalloc(sizeof(struct pending_event), GFP_ATOMIC);
250 if (ev == NULL) {
251 printk(KERN_ERR "mf.c: unable to kmalloc %ld bytes\n",
252 sizeof(struct pending_event));
253 return NULL;
254 }
255 }
256 memset(ev, 0, sizeof(struct pending_event));
257 hev = &ev->event.hp_lp_event;
258 hev->flags = HV_LP_EVENT_VALID | HV_LP_EVENT_DO_ACK | HV_LP_EVENT_INT;
259 hev->xType = HvLpEvent_Type_MachineFac;
260 hev->xSourceLp = HvLpConfig_getLpIndex();
261 hev->xTargetLp = primary_lp;
262 hev->xSizeMinus1 = sizeof(ev->event) - 1;
263 hev->xRc = HvLpEvent_Rc_Good;
264 hev->xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primary_lp,
265 HvLpEvent_Type_MachineFac);
266 hev->xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primary_lp,
267 HvLpEvent_Type_MachineFac);
268
269 return ev;
270 }
271
272 static int __maybe_unused
signal_vsp_instruction(struct vsp_cmd_data * vsp_cmd)273 signal_vsp_instruction(struct vsp_cmd_data *vsp_cmd)
274 {
275 struct pending_event *ev = new_pending_event();
276 int rc;
277 struct vsp_rsp_data response;
278
279 if (ev == NULL)
280 return -ENOMEM;
281
282 init_completion(&response.com);
283 response.response = vsp_cmd;
284 ev->event.hp_lp_event.xSubtype = 6;
285 ev->event.hp_lp_event.x.xSubtypeData =
286 subtype_data('M', 'F', 'V', 'I');
287 ev->event.data.vsp_cmd.token = (u64)&response;
288 ev->event.data.vsp_cmd.cmd = vsp_cmd->cmd;
289 ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
290 ev->event.data.vsp_cmd.result_code = 0xFF;
291 ev->event.data.vsp_cmd.reserved = 0;
292 memcpy(&(ev->event.data.vsp_cmd.sub_data),
293 &(vsp_cmd->sub_data), sizeof(vsp_cmd->sub_data));
294 mb();
295
296 rc = signal_event(ev);
297 if (rc == 0)
298 wait_for_completion(&response.com);
299 return rc;
300 }
301
302
303 /*
304 * Send a 12-byte CE message to the primary partition VSP object
305 */
signal_ce_msg(char * ce_msg,struct ce_msg_comp_data * completion)306 static int signal_ce_msg(char *ce_msg, struct ce_msg_comp_data *completion)
307 {
308 struct pending_event *ev = new_pending_event();
309
310 if (ev == NULL)
311 return -ENOMEM;
312
313 ev->event.hp_lp_event.xSubtype = 0;
314 ev->event.hp_lp_event.x.xSubtypeData =
315 subtype_data('M', 'F', 'C', 'E');
316 memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
317 ev->event.data.ce_msg.completion = completion;
318 return signal_event(ev);
319 }
320
321 /*
322 * Send a 12-byte CE message (with no data) to the primary partition VSP object
323 */
signal_ce_msg_simple(u8 ce_op,struct ce_msg_comp_data * completion)324 static int signal_ce_msg_simple(u8 ce_op, struct ce_msg_comp_data *completion)
325 {
326 u8 ce_msg[12];
327
328 memset(ce_msg, 0, sizeof(ce_msg));
329 ce_msg[3] = ce_op;
330 return signal_ce_msg(ce_msg, completion);
331 }
332
333 /*
334 * Send a 12-byte CE message and DMA data to the primary partition VSP object
335 */
dma_and_signal_ce_msg(char * ce_msg,struct ce_msg_comp_data * completion,void * dma_data,unsigned dma_data_length,unsigned remote_address)336 static int dma_and_signal_ce_msg(char *ce_msg,
337 struct ce_msg_comp_data *completion, void *dma_data,
338 unsigned dma_data_length, unsigned remote_address)
339 {
340 struct pending_event *ev = new_pending_event();
341
342 if (ev == NULL)
343 return -ENOMEM;
344
345 ev->event.hp_lp_event.xSubtype = 0;
346 ev->event.hp_lp_event.x.xSubtypeData =
347 subtype_data('M', 'F', 'C', 'E');
348 memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
349 ev->event.data.ce_msg.completion = completion;
350 memcpy(ev->dma_data, dma_data, dma_data_length);
351 ev->dma_data_length = dma_data_length;
352 ev->remote_address = remote_address;
353 return signal_event(ev);
354 }
355
356 /*
357 * Initiate a nice (hopefully) shutdown of Linux. We simply are
358 * going to try and send the init process a SIGINT signal. If
359 * this fails (why?), we'll simply force it off in a not-so-nice
360 * manner.
361 */
shutdown(void)362 static int shutdown(void)
363 {
364 int rc = kill_cad_pid(SIGINT, 1);
365
366 if (rc) {
367 printk(KERN_ALERT "mf.c: SIGINT to init failed (%d), "
368 "hard shutdown commencing\n", rc);
369 mf_power_off();
370 } else
371 printk(KERN_INFO "mf.c: init has been successfully notified "
372 "to proceed with shutdown\n");
373 return rc;
374 }
375
376 /*
377 * The primary partition VSP object is sending us a new
378 * event flow. Handle it...
379 */
handle_int(struct io_mf_lp_event * event)380 static void handle_int(struct io_mf_lp_event *event)
381 {
382 struct ce_msg_data *ce_msg_data;
383 struct ce_msg_data *pce_msg_data;
384 unsigned long flags;
385 struct pending_event *pev;
386
387 /* ack the interrupt */
388 event->hp_lp_event.xRc = HvLpEvent_Rc_Good;
389 HvCallEvent_ackLpEvent(&event->hp_lp_event);
390
391 /* process interrupt */
392 switch (event->hp_lp_event.xSubtype) {
393 case 0: /* CE message */
394 ce_msg_data = &event->data.ce_msg;
395 switch (ce_msg_data->ce_msg[3]) {
396 case 0x5B: /* power control notification */
397 if ((ce_msg_data->ce_msg[5] & 0x20) != 0) {
398 printk(KERN_INFO "mf.c: Commencing partition shutdown\n");
399 if (shutdown() == 0)
400 signal_ce_msg_simple(0xDB, NULL);
401 }
402 break;
403 case 0xC0: /* get time */
404 spin_lock_irqsave(&pending_event_spinlock, flags);
405 pev = pending_event_head;
406 if (pev != NULL)
407 pending_event_head = pending_event_head->next;
408 spin_unlock_irqrestore(&pending_event_spinlock, flags);
409 if (pev == NULL)
410 break;
411 pce_msg_data = &pev->event.data.ce_msg;
412 if (pce_msg_data->ce_msg[3] != 0x40)
413 break;
414 if (pce_msg_data->completion != NULL) {
415 ce_msg_comp_hdlr handler =
416 pce_msg_data->completion->handler;
417 void *token = pce_msg_data->completion->token;
418
419 if (handler != NULL)
420 (*handler)(token, ce_msg_data);
421 }
422 spin_lock_irqsave(&pending_event_spinlock, flags);
423 free_pending_event(pev);
424 spin_unlock_irqrestore(&pending_event_spinlock, flags);
425 /* send next waiting event */
426 if (pending_event_head != NULL)
427 signal_event(NULL);
428 break;
429 }
430 break;
431 case 1: /* IT sys shutdown */
432 printk(KERN_INFO "mf.c: Commencing system shutdown\n");
433 shutdown();
434 break;
435 }
436 }
437
438 /*
439 * The primary partition VSP object is acknowledging the receipt
440 * of a flow we sent to them. If there are other flows queued
441 * up, we must send another one now...
442 */
handle_ack(struct io_mf_lp_event * event)443 static void handle_ack(struct io_mf_lp_event *event)
444 {
445 unsigned long flags;
446 struct pending_event *two = NULL;
447 unsigned long free_it = 0;
448 struct ce_msg_data *ce_msg_data;
449 struct ce_msg_data *pce_msg_data;
450 struct vsp_rsp_data *rsp;
451
452 /* handle current event */
453 if (pending_event_head == NULL) {
454 printk(KERN_ERR "mf.c: stack empty for receiving ack\n");
455 return;
456 }
457
458 switch (event->hp_lp_event.xSubtype) {
459 case 0: /* CE msg */
460 ce_msg_data = &event->data.ce_msg;
461 if (ce_msg_data->ce_msg[3] != 0x40) {
462 free_it = 1;
463 break;
464 }
465 if (ce_msg_data->ce_msg[2] == 0)
466 break;
467 free_it = 1;
468 pce_msg_data = &pending_event_head->event.data.ce_msg;
469 if (pce_msg_data->completion != NULL) {
470 ce_msg_comp_hdlr handler =
471 pce_msg_data->completion->handler;
472 void *token = pce_msg_data->completion->token;
473
474 if (handler != NULL)
475 (*handler)(token, ce_msg_data);
476 }
477 break;
478 case 4: /* allocate */
479 case 5: /* deallocate */
480 if (pending_event_head->hdlr != NULL)
481 (*pending_event_head->hdlr)((void *)event->hp_lp_event.xCorrelationToken, event->data.alloc.count);
482 free_it = 1;
483 break;
484 case 6:
485 free_it = 1;
486 rsp = (struct vsp_rsp_data *)event->data.vsp_cmd.token;
487 if (rsp == NULL) {
488 printk(KERN_ERR "mf.c: no rsp\n");
489 break;
490 }
491 if (rsp->response != NULL)
492 memcpy(rsp->response, &event->data.vsp_cmd,
493 sizeof(event->data.vsp_cmd));
494 complete(&rsp->com);
495 break;
496 }
497
498 /* remove from queue */
499 spin_lock_irqsave(&pending_event_spinlock, flags);
500 if ((pending_event_head != NULL) && (free_it == 1)) {
501 struct pending_event *oldHead = pending_event_head;
502
503 pending_event_head = pending_event_head->next;
504 two = pending_event_head;
505 free_pending_event(oldHead);
506 }
507 spin_unlock_irqrestore(&pending_event_spinlock, flags);
508
509 /* send next waiting event */
510 if (two != NULL)
511 signal_event(NULL);
512 }
513
514 /*
515 * This is the generic event handler we are registering with
516 * the Hypervisor. Ensure the flows are for us, and then
517 * parse it enough to know if it is an interrupt or an
518 * acknowledge.
519 */
hv_handler(struct HvLpEvent * event)520 static void hv_handler(struct HvLpEvent *event)
521 {
522 if ((event != NULL) && (event->xType == HvLpEvent_Type_MachineFac)) {
523 if (hvlpevent_is_ack(event))
524 handle_ack((struct io_mf_lp_event *)event);
525 else
526 handle_int((struct io_mf_lp_event *)event);
527 } else
528 printk(KERN_ERR "mf.c: alien event received\n");
529 }
530
531 /*
532 * Global kernel interface to allocate and seed events into the
533 * Hypervisor.
534 */
mf_allocate_lp_events(HvLpIndex target_lp,HvLpEvent_Type type,unsigned size,unsigned count,MFCompleteHandler hdlr,void * user_token)535 void mf_allocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
536 unsigned size, unsigned count, MFCompleteHandler hdlr,
537 void *user_token)
538 {
539 struct pending_event *ev = new_pending_event();
540 int rc;
541
542 if (ev == NULL) {
543 rc = -ENOMEM;
544 } else {
545 ev->event.hp_lp_event.xSubtype = 4;
546 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
547 ev->event.hp_lp_event.x.xSubtypeData =
548 subtype_data('M', 'F', 'M', 'A');
549 ev->event.data.alloc.target_lp = target_lp;
550 ev->event.data.alloc.type = type;
551 ev->event.data.alloc.size = size;
552 ev->event.data.alloc.count = count;
553 ev->hdlr = hdlr;
554 rc = signal_event(ev);
555 }
556 if ((rc != 0) && (hdlr != NULL))
557 (*hdlr)(user_token, rc);
558 }
559 EXPORT_SYMBOL(mf_allocate_lp_events);
560
561 /*
562 * Global kernel interface to unseed and deallocate events already in
563 * Hypervisor.
564 */
mf_deallocate_lp_events(HvLpIndex target_lp,HvLpEvent_Type type,unsigned count,MFCompleteHandler hdlr,void * user_token)565 void mf_deallocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
566 unsigned count, MFCompleteHandler hdlr, void *user_token)
567 {
568 struct pending_event *ev = new_pending_event();
569 int rc;
570
571 if (ev == NULL)
572 rc = -ENOMEM;
573 else {
574 ev->event.hp_lp_event.xSubtype = 5;
575 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
576 ev->event.hp_lp_event.x.xSubtypeData =
577 subtype_data('M', 'F', 'M', 'D');
578 ev->event.data.alloc.target_lp = target_lp;
579 ev->event.data.alloc.type = type;
580 ev->event.data.alloc.count = count;
581 ev->hdlr = hdlr;
582 rc = signal_event(ev);
583 }
584 if ((rc != 0) && (hdlr != NULL))
585 (*hdlr)(user_token, rc);
586 }
587 EXPORT_SYMBOL(mf_deallocate_lp_events);
588
589 /*
590 * Global kernel interface to tell the VSP object in the primary
591 * partition to power this partition off.
592 */
mf_power_off(void)593 void mf_power_off(void)
594 {
595 printk(KERN_INFO "mf.c: Down it goes...\n");
596 signal_ce_msg_simple(0x4d, NULL);
597 for (;;)
598 ;
599 }
600
601 /*
602 * Global kernel interface to tell the VSP object in the primary
603 * partition to reboot this partition.
604 */
mf_reboot(char * cmd)605 void mf_reboot(char *cmd)
606 {
607 printk(KERN_INFO "mf.c: Preparing to bounce...\n");
608 signal_ce_msg_simple(0x4e, NULL);
609 for (;;)
610 ;
611 }
612
613 /*
614 * Display a single word SRC onto the VSP control panel.
615 */
mf_display_src(u32 word)616 void mf_display_src(u32 word)
617 {
618 u8 ce[12];
619
620 memset(ce, 0, sizeof(ce));
621 ce[3] = 0x4a;
622 ce[7] = 0x01;
623 ce[8] = word >> 24;
624 ce[9] = word >> 16;
625 ce[10] = word >> 8;
626 ce[11] = word;
627 signal_ce_msg(ce, NULL);
628 }
629
630 /*
631 * Display a single word SRC of the form "PROGXXXX" on the VSP control panel.
632 */
mf_display_progress_src(u16 value)633 static __init void mf_display_progress_src(u16 value)
634 {
635 u8 ce[12];
636 u8 src[72];
637
638 memcpy(ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12);
639 memcpy(src, "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
640 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
641 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
642 "\x00\x00\x00\x00PROGxxxx ",
643 72);
644 src[6] = value >> 8;
645 src[7] = value & 255;
646 src[44] = "0123456789ABCDEF"[(value >> 12) & 15];
647 src[45] = "0123456789ABCDEF"[(value >> 8) & 15];
648 src[46] = "0123456789ABCDEF"[(value >> 4) & 15];
649 src[47] = "0123456789ABCDEF"[value & 15];
650 dma_and_signal_ce_msg(ce, NULL, src, sizeof(src), 9 * 64 * 1024);
651 }
652
653 /*
654 * Clear the VSP control panel. Used to "erase" an SRC that was
655 * previously displayed.
656 */
mf_clear_src(void)657 static void mf_clear_src(void)
658 {
659 signal_ce_msg_simple(0x4b, NULL);
660 }
661
mf_display_progress(u16 value)662 void __init mf_display_progress(u16 value)
663 {
664 if (!mf_initialized)
665 return;
666
667 if (0xFFFF == value)
668 mf_clear_src();
669 else
670 mf_display_progress_src(value);
671 }
672
673 /*
674 * Initialization code here.
675 */
mf_init(void)676 void __init mf_init(void)
677 {
678 int i;
679
680 spin_lock_init(&pending_event_spinlock);
681
682 for (i = 0; i < PENDING_EVENT_PREALLOC_LEN; i++)
683 free_pending_event(&pending_event_prealloc[i]);
684
685 HvLpEvent_registerHandler(HvLpEvent_Type_MachineFac, &hv_handler);
686
687 /* virtual continue ack */
688 signal_ce_msg_simple(0x57, NULL);
689
690 mf_initialized = 1;
691 mb();
692
693 printk(KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities "
694 "initialized\n");
695 }
696
697 struct rtc_time_data {
698 struct completion com;
699 struct ce_msg_data ce_msg;
700 int rc;
701 };
702
get_rtc_time_complete(void * token,struct ce_msg_data * ce_msg)703 static void get_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
704 {
705 struct rtc_time_data *rtc = token;
706
707 memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
708 rtc->rc = 0;
709 complete(&rtc->com);
710 }
711
mf_set_rtc(struct rtc_time * tm)712 static int mf_set_rtc(struct rtc_time *tm)
713 {
714 char ce_time[12];
715 u8 day, mon, hour, min, sec, y1, y2;
716 unsigned year;
717
718 year = 1900 + tm->tm_year;
719 y1 = year / 100;
720 y2 = year % 100;
721
722 sec = tm->tm_sec;
723 min = tm->tm_min;
724 hour = tm->tm_hour;
725 day = tm->tm_mday;
726 mon = tm->tm_mon + 1;
727
728 sec = bin2bcd(sec);
729 min = bin2bcd(min);
730 hour = bin2bcd(hour);
731 mon = bin2bcd(mon);
732 day = bin2bcd(day);
733 y1 = bin2bcd(y1);
734 y2 = bin2bcd(y2);
735
736 memset(ce_time, 0, sizeof(ce_time));
737 ce_time[3] = 0x41;
738 ce_time[4] = y1;
739 ce_time[5] = y2;
740 ce_time[6] = sec;
741 ce_time[7] = min;
742 ce_time[8] = hour;
743 ce_time[10] = day;
744 ce_time[11] = mon;
745
746 return signal_ce_msg(ce_time, NULL);
747 }
748
rtc_set_tm(int rc,u8 * ce_msg,struct rtc_time * tm)749 static int rtc_set_tm(int rc, u8 *ce_msg, struct rtc_time *tm)
750 {
751 tm->tm_wday = 0;
752 tm->tm_yday = 0;
753 tm->tm_isdst = 0;
754 if (rc) {
755 tm->tm_sec = 0;
756 tm->tm_min = 0;
757 tm->tm_hour = 0;
758 tm->tm_mday = 15;
759 tm->tm_mon = 5;
760 tm->tm_year = 52;
761 return rc;
762 }
763
764 if ((ce_msg[2] == 0xa9) ||
765 (ce_msg[2] == 0xaf)) {
766 /* TOD clock is not set */
767 tm->tm_sec = 1;
768 tm->tm_min = 1;
769 tm->tm_hour = 1;
770 tm->tm_mday = 10;
771 tm->tm_mon = 8;
772 tm->tm_year = 71;
773 mf_set_rtc(tm);
774 }
775 {
776 u8 year = ce_msg[5];
777 u8 sec = ce_msg[6];
778 u8 min = ce_msg[7];
779 u8 hour = ce_msg[8];
780 u8 day = ce_msg[10];
781 u8 mon = ce_msg[11];
782
783 sec = bcd2bin(sec);
784 min = bcd2bin(min);
785 hour = bcd2bin(hour);
786 day = bcd2bin(day);
787 mon = bcd2bin(mon);
788 year = bcd2bin(year);
789
790 if (year <= 69)
791 year += 100;
792
793 tm->tm_sec = sec;
794 tm->tm_min = min;
795 tm->tm_hour = hour;
796 tm->tm_mday = day;
797 tm->tm_mon = mon;
798 tm->tm_year = year;
799 }
800
801 return 0;
802 }
803
mf_get_rtc(struct rtc_time * tm)804 static int mf_get_rtc(struct rtc_time *tm)
805 {
806 struct ce_msg_comp_data ce_complete;
807 struct rtc_time_data rtc_data;
808 int rc;
809
810 memset(&ce_complete, 0, sizeof(ce_complete));
811 memset(&rtc_data, 0, sizeof(rtc_data));
812 init_completion(&rtc_data.com);
813 ce_complete.handler = &get_rtc_time_complete;
814 ce_complete.token = &rtc_data;
815 rc = signal_ce_msg_simple(0x40, &ce_complete);
816 if (rc)
817 return rc;
818 wait_for_completion(&rtc_data.com);
819 return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
820 }
821
822 struct boot_rtc_time_data {
823 int busy;
824 struct ce_msg_data ce_msg;
825 int rc;
826 };
827
get_boot_rtc_time_complete(void * token,struct ce_msg_data * ce_msg)828 static void get_boot_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
829 {
830 struct boot_rtc_time_data *rtc = token;
831
832 memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
833 rtc->rc = 0;
834 rtc->busy = 0;
835 }
836
mf_get_boot_rtc(struct rtc_time * tm)837 static int mf_get_boot_rtc(struct rtc_time *tm)
838 {
839 struct ce_msg_comp_data ce_complete;
840 struct boot_rtc_time_data rtc_data;
841 int rc;
842
843 memset(&ce_complete, 0, sizeof(ce_complete));
844 memset(&rtc_data, 0, sizeof(rtc_data));
845 rtc_data.busy = 1;
846 ce_complete.handler = &get_boot_rtc_time_complete;
847 ce_complete.token = &rtc_data;
848 rc = signal_ce_msg_simple(0x40, &ce_complete);
849 if (rc)
850 return rc;
851 /* We need to poll here as we are not yet taking interrupts */
852 while (rtc_data.busy) {
853 if (hvlpevent_is_pending())
854 process_hvlpevents();
855 }
856 return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
857 }
858
859 #ifdef CONFIG_PROC_FS
mf_cmdline_proc_show(struct seq_file * m,void * v)860 static int mf_cmdline_proc_show(struct seq_file *m, void *v)
861 {
862 char *page, *p;
863 struct vsp_cmd_data vsp_cmd;
864 int rc;
865 dma_addr_t dma_addr;
866
867 /* The HV appears to return no more than 256 bytes of command line */
868 page = kmalloc(256, GFP_KERNEL);
869 if (!page)
870 return -ENOMEM;
871
872 dma_addr = iseries_hv_map(page, 256, DMA_FROM_DEVICE);
873 if (dma_addr == DMA_ERROR_CODE) {
874 kfree(page);
875 return -ENOMEM;
876 }
877 memset(page, 0, 256);
878 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
879 vsp_cmd.cmd = 33;
880 vsp_cmd.sub_data.kern.token = dma_addr;
881 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
882 vsp_cmd.sub_data.kern.side = (u64)m->private;
883 vsp_cmd.sub_data.kern.length = 256;
884 mb();
885 rc = signal_vsp_instruction(&vsp_cmd);
886 iseries_hv_unmap(dma_addr, 256, DMA_FROM_DEVICE);
887 if (rc) {
888 kfree(page);
889 return rc;
890 }
891 if (vsp_cmd.result_code != 0) {
892 kfree(page);
893 return -ENOMEM;
894 }
895 p = page;
896 while (p - page < 256) {
897 if (*p == '\0' || *p == '\n') {
898 *p = '\n';
899 break;
900 }
901 p++;
902
903 }
904 seq_write(m, page, p - page);
905 kfree(page);
906 return 0;
907 }
908
mf_cmdline_proc_open(struct inode * inode,struct file * file)909 static int mf_cmdline_proc_open(struct inode *inode, struct file *file)
910 {
911 return single_open(file, mf_cmdline_proc_show, PDE(inode)->data);
912 }
913
914 #if 0
915 static int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side)
916 {
917 struct vsp_cmd_data vsp_cmd;
918 int rc;
919 int len = *size;
920 dma_addr_t dma_addr;
921
922 dma_addr = iseries_hv_map(buffer, len, DMA_FROM_DEVICE);
923 memset(buffer, 0, len);
924 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
925 vsp_cmd.cmd = 32;
926 vsp_cmd.sub_data.kern.token = dma_addr;
927 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
928 vsp_cmd.sub_data.kern.side = side;
929 vsp_cmd.sub_data.kern.offset = offset;
930 vsp_cmd.sub_data.kern.length = len;
931 mb();
932 rc = signal_vsp_instruction(&vsp_cmd);
933 if (rc == 0) {
934 if (vsp_cmd.result_code == 0)
935 *size = vsp_cmd.sub_data.length_out;
936 else
937 rc = -ENOMEM;
938 }
939
940 iseries_hv_unmap(dma_addr, len, DMA_FROM_DEVICE);
941
942 return rc;
943 }
944
945 static int proc_mf_dump_vmlinux(char *page, char **start, off_t off,
946 int count, int *eof, void *data)
947 {
948 int sizeToGet = count;
949
950 if (!capable(CAP_SYS_ADMIN))
951 return -EACCES;
952
953 if (mf_getVmlinuxChunk(page, &sizeToGet, off, (u64)data) == 0) {
954 if (sizeToGet != 0) {
955 *start = page + off;
956 return sizeToGet;
957 }
958 *eof = 1;
959 return 0;
960 }
961 *eof = 1;
962 return 0;
963 }
964 #endif
965
mf_side_proc_show(struct seq_file * m,void * v)966 static int mf_side_proc_show(struct seq_file *m, void *v)
967 {
968 char mf_current_side = ' ';
969 struct vsp_cmd_data vsp_cmd;
970
971 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
972 vsp_cmd.cmd = 2;
973 vsp_cmd.sub_data.ipl_type = 0;
974 mb();
975
976 if (signal_vsp_instruction(&vsp_cmd) == 0) {
977 if (vsp_cmd.result_code == 0) {
978 switch (vsp_cmd.sub_data.ipl_type) {
979 case 0: mf_current_side = 'A';
980 break;
981 case 1: mf_current_side = 'B';
982 break;
983 case 2: mf_current_side = 'C';
984 break;
985 default: mf_current_side = 'D';
986 break;
987 }
988 }
989 }
990
991 seq_printf(m, "%c\n", mf_current_side);
992 return 0;
993 }
994
mf_side_proc_open(struct inode * inode,struct file * file)995 static int mf_side_proc_open(struct inode *inode, struct file *file)
996 {
997 return single_open(file, mf_side_proc_show, NULL);
998 }
999
mf_side_proc_write(struct file * file,const char __user * buffer,size_t count,loff_t * pos)1000 static ssize_t mf_side_proc_write(struct file *file, const char __user *buffer,
1001 size_t count, loff_t *pos)
1002 {
1003 char side;
1004 u64 newSide;
1005 struct vsp_cmd_data vsp_cmd;
1006
1007 if (!capable(CAP_SYS_ADMIN))
1008 return -EACCES;
1009
1010 if (count == 0)
1011 return 0;
1012
1013 if (get_user(side, buffer))
1014 return -EFAULT;
1015
1016 switch (side) {
1017 case 'A': newSide = 0;
1018 break;
1019 case 'B': newSide = 1;
1020 break;
1021 case 'C': newSide = 2;
1022 break;
1023 case 'D': newSide = 3;
1024 break;
1025 default:
1026 printk(KERN_ERR "mf_proc.c: proc_mf_change_side: invalid side\n");
1027 return -EINVAL;
1028 }
1029
1030 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1031 vsp_cmd.sub_data.ipl_type = newSide;
1032 vsp_cmd.cmd = 10;
1033
1034 (void)signal_vsp_instruction(&vsp_cmd);
1035
1036 return count;
1037 }
1038
1039 static const struct file_operations mf_side_proc_fops = {
1040 .owner = THIS_MODULE,
1041 .open = mf_side_proc_open,
1042 .read = seq_read,
1043 .llseek = seq_lseek,
1044 .release = single_release,
1045 .write = mf_side_proc_write,
1046 };
1047
mf_src_proc_show(struct seq_file * m,void * v)1048 static int mf_src_proc_show(struct seq_file *m, void *v)
1049 {
1050 return 0;
1051 }
1052
mf_src_proc_open(struct inode * inode,struct file * file)1053 static int mf_src_proc_open(struct inode *inode, struct file *file)
1054 {
1055 return single_open(file, mf_src_proc_show, NULL);
1056 }
1057
mf_src_proc_write(struct file * file,const char __user * buffer,size_t count,loff_t * pos)1058 static ssize_t mf_src_proc_write(struct file *file, const char __user *buffer,
1059 size_t count, loff_t *pos)
1060 {
1061 char stkbuf[10];
1062
1063 if (!capable(CAP_SYS_ADMIN))
1064 return -EACCES;
1065
1066 if ((count < 4) && (count != 1)) {
1067 printk(KERN_ERR "mf_proc: invalid src\n");
1068 return -EINVAL;
1069 }
1070
1071 if (count > (sizeof(stkbuf) - 1))
1072 count = sizeof(stkbuf) - 1;
1073 if (copy_from_user(stkbuf, buffer, count))
1074 return -EFAULT;
1075
1076 if ((count == 1) && (*stkbuf == '\0'))
1077 mf_clear_src();
1078 else
1079 mf_display_src(*(u32 *)stkbuf);
1080
1081 return count;
1082 }
1083
1084 static const struct file_operations mf_src_proc_fops = {
1085 .owner = THIS_MODULE,
1086 .open = mf_src_proc_open,
1087 .read = seq_read,
1088 .llseek = seq_lseek,
1089 .release = single_release,
1090 .write = mf_src_proc_write,
1091 };
1092
mf_cmdline_proc_write(struct file * file,const char __user * buffer,size_t count,loff_t * pos)1093 static ssize_t mf_cmdline_proc_write(struct file *file, const char __user *buffer,
1094 size_t count, loff_t *pos)
1095 {
1096 void *data = PDE(file->f_path.dentry->d_inode)->data;
1097 struct vsp_cmd_data vsp_cmd;
1098 dma_addr_t dma_addr;
1099 char *page;
1100 int ret = -EACCES;
1101
1102 if (!capable(CAP_SYS_ADMIN))
1103 goto out;
1104
1105 dma_addr = 0;
1106 page = iseries_hv_alloc(count, &dma_addr, GFP_ATOMIC);
1107 ret = -ENOMEM;
1108 if (page == NULL)
1109 goto out;
1110
1111 ret = -EFAULT;
1112 if (copy_from_user(page, buffer, count))
1113 goto out_free;
1114
1115 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1116 vsp_cmd.cmd = 31;
1117 vsp_cmd.sub_data.kern.token = dma_addr;
1118 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1119 vsp_cmd.sub_data.kern.side = (u64)data;
1120 vsp_cmd.sub_data.kern.length = count;
1121 mb();
1122 (void)signal_vsp_instruction(&vsp_cmd);
1123 ret = count;
1124
1125 out_free:
1126 iseries_hv_free(count, page, dma_addr);
1127 out:
1128 return ret;
1129 }
1130
1131 static const struct file_operations mf_cmdline_proc_fops = {
1132 .owner = THIS_MODULE,
1133 .open = mf_cmdline_proc_open,
1134 .read = seq_read,
1135 .llseek = seq_lseek,
1136 .release = single_release,
1137 .write = mf_cmdline_proc_write,
1138 };
1139
proc_mf_change_vmlinux(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1140 static ssize_t proc_mf_change_vmlinux(struct file *file,
1141 const char __user *buf,
1142 size_t count, loff_t *ppos)
1143 {
1144 struct proc_dir_entry *dp = PDE(file->f_path.dentry->d_inode);
1145 ssize_t rc;
1146 dma_addr_t dma_addr;
1147 char *page;
1148 struct vsp_cmd_data vsp_cmd;
1149
1150 rc = -EACCES;
1151 if (!capable(CAP_SYS_ADMIN))
1152 goto out;
1153
1154 dma_addr = 0;
1155 page = iseries_hv_alloc(count, &dma_addr, GFP_ATOMIC);
1156 rc = -ENOMEM;
1157 if (page == NULL) {
1158 printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n");
1159 goto out;
1160 }
1161 rc = -EFAULT;
1162 if (copy_from_user(page, buf, count))
1163 goto out_free;
1164
1165 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1166 vsp_cmd.cmd = 30;
1167 vsp_cmd.sub_data.kern.token = dma_addr;
1168 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1169 vsp_cmd.sub_data.kern.side = (u64)dp->data;
1170 vsp_cmd.sub_data.kern.offset = *ppos;
1171 vsp_cmd.sub_data.kern.length = count;
1172 mb();
1173 rc = signal_vsp_instruction(&vsp_cmd);
1174 if (rc)
1175 goto out_free;
1176 rc = -ENOMEM;
1177 if (vsp_cmd.result_code != 0)
1178 goto out_free;
1179
1180 *ppos += count;
1181 rc = count;
1182 out_free:
1183 iseries_hv_free(count, page, dma_addr);
1184 out:
1185 return rc;
1186 }
1187
1188 static const struct file_operations proc_vmlinux_operations = {
1189 .write = proc_mf_change_vmlinux,
1190 .llseek = default_llseek,
1191 };
1192
mf_proc_init(void)1193 static int __init mf_proc_init(void)
1194 {
1195 struct proc_dir_entry *mf_proc_root;
1196 struct proc_dir_entry *ent;
1197 struct proc_dir_entry *mf;
1198 char name[2];
1199 int i;
1200
1201 if (!firmware_has_feature(FW_FEATURE_ISERIES))
1202 return 0;
1203
1204 mf_proc_root = proc_mkdir("iSeries/mf", NULL);
1205 if (!mf_proc_root)
1206 return 1;
1207
1208 name[1] = '\0';
1209 for (i = 0; i < 4; i++) {
1210 name[0] = 'A' + i;
1211 mf = proc_mkdir(name, mf_proc_root);
1212 if (!mf)
1213 return 1;
1214
1215 ent = proc_create_data("cmdline", S_IRUSR|S_IWUSR, mf,
1216 &mf_cmdline_proc_fops, (void *)(long)i);
1217 if (!ent)
1218 return 1;
1219
1220 if (i == 3) /* no vmlinux entry for 'D' */
1221 continue;
1222
1223 ent = proc_create_data("vmlinux", S_IFREG|S_IWUSR, mf,
1224 &proc_vmlinux_operations,
1225 (void *)(long)i);
1226 if (!ent)
1227 return 1;
1228 }
1229
1230 ent = proc_create("side", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root,
1231 &mf_side_proc_fops);
1232 if (!ent)
1233 return 1;
1234
1235 ent = proc_create("src", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root,
1236 &mf_src_proc_fops);
1237 if (!ent)
1238 return 1;
1239
1240 return 0;
1241 }
1242
1243 __initcall(mf_proc_init);
1244
1245 #endif /* CONFIG_PROC_FS */
1246
1247 /*
1248 * Get the RTC from the virtual service processor
1249 * This requires flowing LpEvents to the primary partition
1250 */
iSeries_get_rtc_time(struct rtc_time * rtc_tm)1251 void iSeries_get_rtc_time(struct rtc_time *rtc_tm)
1252 {
1253 mf_get_rtc(rtc_tm);
1254 rtc_tm->tm_mon--;
1255 }
1256
1257 /*
1258 * Set the RTC in the virtual service processor
1259 * This requires flowing LpEvents to the primary partition
1260 */
iSeries_set_rtc_time(struct rtc_time * tm)1261 int iSeries_set_rtc_time(struct rtc_time *tm)
1262 {
1263 mf_set_rtc(tm);
1264 return 0;
1265 }
1266
iSeries_get_boot_time(void)1267 unsigned long iSeries_get_boot_time(void)
1268 {
1269 struct rtc_time tm;
1270
1271 mf_get_boot_rtc(&tm);
1272 return mktime(tm.tm_year + 1900, tm.tm_mon, tm.tm_mday,
1273 tm.tm_hour, tm.tm_min, tm.tm_sec);
1274 }
1275