1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19
20 #include <asm/sections.h>
21 #include <linux/io.h>
22
23 #include "internal.h"
24
25 #define INIT_MEMBLOCK_REGIONS 128
26 #define INIT_PHYSMEM_REGIONS 4
27
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30 #endif
31
32 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33 #define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS
34 #endif
35
36 /**
37 * DOC: memblock overview
38 *
39 * Memblock is a method of managing memory regions during the early
40 * boot period when the usual kernel memory allocators are not up and
41 * running.
42 *
43 * Memblock views the system memory as collections of contiguous
44 * regions. There are several types of these collections:
45 *
46 * * ``memory`` - describes the physical memory available to the
47 * kernel; this may differ from the actual physical memory installed
48 * in the system, for instance when the memory is restricted with
49 * ``mem=`` command line parameter
50 * * ``reserved`` - describes the regions that were allocated
51 * * ``physmem`` - describes the actual physical memory available during
52 * boot regardless of the possible restrictions and memory hot(un)plug;
53 * the ``physmem`` type is only available on some architectures.
54 *
55 * Each region is represented by struct memblock_region that
56 * defines the region extents, its attributes and NUMA node id on NUMA
57 * systems. Every memory type is described by the struct memblock_type
58 * which contains an array of memory regions along with
59 * the allocator metadata. The "memory" and "reserved" types are nicely
60 * wrapped with struct memblock. This structure is statically
61 * initialized at build time. The region arrays are initially sized to
62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
65 * The memblock_allow_resize() enables automatic resizing of the region
66 * arrays during addition of new regions. This feature should be used
67 * with care so that memory allocated for the region array will not
68 * overlap with areas that should be reserved, for example initrd.
69 *
70 * The early architecture setup should tell memblock what the physical
71 * memory layout is by using memblock_add() or memblock_add_node()
72 * functions. The first function does not assign the region to a NUMA
73 * node and it is appropriate for UMA systems. Yet, it is possible to
74 * use it on NUMA systems as well and assign the region to a NUMA node
75 * later in the setup process using memblock_set_node(). The
76 * memblock_add_node() performs such an assignment directly.
77 *
78 * Once memblock is setup the memory can be allocated using one of the
79 * API variants:
80 *
81 * * memblock_phys_alloc*() - these functions return the **physical**
82 * address of the allocated memory
83 * * memblock_alloc*() - these functions return the **virtual** address
84 * of the allocated memory.
85 *
86 * Note, that both API variants use implicit assumptions about allowed
87 * memory ranges and the fallback methods. Consult the documentation
88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
89 * functions for more elaborate description.
90 *
91 * As the system boot progresses, the architecture specific mem_init()
92 * function frees all the memory to the buddy page allocator.
93 *
94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
95 * memblock data structures (except "physmem") will be discarded after the
96 * system initialization completes.
97 */
98
99 #ifndef CONFIG_NUMA
100 struct pglist_data __refdata contig_page_data;
101 EXPORT_SYMBOL(contig_page_data);
102 #endif
103
104 unsigned long max_low_pfn;
105 unsigned long min_low_pfn;
106 unsigned long max_pfn;
107 unsigned long long max_possible_pfn;
108
109 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
110 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
111 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
113 #endif
114
115 struct memblock memblock __initdata_memblock = {
116 .memory.regions = memblock_memory_init_regions,
117 .memory.cnt = 1, /* empty dummy entry */
118 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
119 .memory.name = "memory",
120
121 .reserved.regions = memblock_reserved_init_regions,
122 .reserved.cnt = 1, /* empty dummy entry */
123 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
124 .reserved.name = "reserved",
125
126 .bottom_up = false,
127 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
128 };
129
130 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
131 struct memblock_type physmem = {
132 .regions = memblock_physmem_init_regions,
133 .cnt = 1, /* empty dummy entry */
134 .max = INIT_PHYSMEM_REGIONS,
135 .name = "physmem",
136 };
137 #endif
138
139 /*
140 * keep a pointer to &memblock.memory in the text section to use it in
141 * __next_mem_range() and its helpers.
142 * For architectures that do not keep memblock data after init, this
143 * pointer will be reset to NULL at memblock_discard()
144 */
145 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
146
147 #define for_each_memblock_type(i, memblock_type, rgn) \
148 for (i = 0, rgn = &memblock_type->regions[0]; \
149 i < memblock_type->cnt; \
150 i++, rgn = &memblock_type->regions[i])
151
152 #define memblock_dbg(fmt, ...) \
153 do { \
154 if (memblock_debug) \
155 pr_info(fmt, ##__VA_ARGS__); \
156 } while (0)
157
158 static int memblock_debug __initdata_memblock;
159 static bool system_has_some_mirror __initdata_memblock;
160 static int memblock_can_resize __initdata_memblock;
161 static int memblock_memory_in_slab __initdata_memblock;
162 static int memblock_reserved_in_slab __initdata_memblock;
163
memblock_has_mirror(void)164 bool __init_memblock memblock_has_mirror(void)
165 {
166 return system_has_some_mirror;
167 }
168
choose_memblock_flags(void)169 static enum memblock_flags __init_memblock choose_memblock_flags(void)
170 {
171 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
172 }
173
174 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)175 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
176 {
177 return *size = min(*size, PHYS_ADDR_MAX - base);
178 }
179
180 /*
181 * Address comparison utilities
182 */
183 unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)184 memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
185 phys_addr_t size2)
186 {
187 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
188 }
189
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)190 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
191 phys_addr_t base, phys_addr_t size)
192 {
193 unsigned long i;
194
195 memblock_cap_size(base, &size);
196
197 for (i = 0; i < type->cnt; i++)
198 if (memblock_addrs_overlap(base, size, type->regions[i].base,
199 type->regions[i].size))
200 break;
201 return i < type->cnt;
202 }
203
204 /**
205 * __memblock_find_range_bottom_up - find free area utility in bottom-up
206 * @start: start of candidate range
207 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
208 * %MEMBLOCK_ALLOC_ACCESSIBLE
209 * @size: size of free area to find
210 * @align: alignment of free area to find
211 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
212 * @flags: pick from blocks based on memory attributes
213 *
214 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
215 *
216 * Return:
217 * Found address on success, 0 on failure.
218 */
219 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)220 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
221 phys_addr_t size, phys_addr_t align, int nid,
222 enum memblock_flags flags)
223 {
224 phys_addr_t this_start, this_end, cand;
225 u64 i;
226
227 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
228 this_start = clamp(this_start, start, end);
229 this_end = clamp(this_end, start, end);
230
231 cand = round_up(this_start, align);
232 if (cand < this_end && this_end - cand >= size)
233 return cand;
234 }
235
236 return 0;
237 }
238
239 /**
240 * __memblock_find_range_top_down - find free area utility, in top-down
241 * @start: start of candidate range
242 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
243 * %MEMBLOCK_ALLOC_ACCESSIBLE
244 * @size: size of free area to find
245 * @align: alignment of free area to find
246 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
247 * @flags: pick from blocks based on memory attributes
248 *
249 * Utility called from memblock_find_in_range_node(), find free area top-down.
250 *
251 * Return:
252 * Found address on success, 0 on failure.
253 */
254 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)255 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
256 phys_addr_t size, phys_addr_t align, int nid,
257 enum memblock_flags flags)
258 {
259 phys_addr_t this_start, this_end, cand;
260 u64 i;
261
262 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
263 NULL) {
264 this_start = clamp(this_start, start, end);
265 this_end = clamp(this_end, start, end);
266
267 if (this_end < size)
268 continue;
269
270 cand = round_down(this_end - size, align);
271 if (cand >= this_start)
272 return cand;
273 }
274
275 return 0;
276 }
277
278 /**
279 * memblock_find_in_range_node - find free area in given range and node
280 * @size: size of free area to find
281 * @align: alignment of free area to find
282 * @start: start of candidate range
283 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
284 * %MEMBLOCK_ALLOC_ACCESSIBLE
285 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
286 * @flags: pick from blocks based on memory attributes
287 *
288 * Find @size free area aligned to @align in the specified range and node.
289 *
290 * Return:
291 * Found address on success, 0 on failure.
292 */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)293 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
294 phys_addr_t align, phys_addr_t start,
295 phys_addr_t end, int nid,
296 enum memblock_flags flags)
297 {
298 /* pump up @end */
299 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
300 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
301 end = memblock.current_limit;
302
303 /* avoid allocating the first page */
304 start = max_t(phys_addr_t, start, PAGE_SIZE);
305 end = max(start, end);
306
307 if (memblock_bottom_up())
308 return __memblock_find_range_bottom_up(start, end, size, align,
309 nid, flags);
310 else
311 return __memblock_find_range_top_down(start, end, size, align,
312 nid, flags);
313 }
314
315 /**
316 * memblock_find_in_range - find free area in given range
317 * @start: start of candidate range
318 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
319 * %MEMBLOCK_ALLOC_ACCESSIBLE
320 * @size: size of free area to find
321 * @align: alignment of free area to find
322 *
323 * Find @size free area aligned to @align in the specified range.
324 *
325 * Return:
326 * Found address on success, 0 on failure.
327 */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)328 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
329 phys_addr_t end, phys_addr_t size,
330 phys_addr_t align)
331 {
332 phys_addr_t ret;
333 enum memblock_flags flags = choose_memblock_flags();
334
335 again:
336 ret = memblock_find_in_range_node(size, align, start, end,
337 NUMA_NO_NODE, flags);
338
339 if (!ret && (flags & MEMBLOCK_MIRROR)) {
340 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
341 &size);
342 flags &= ~MEMBLOCK_MIRROR;
343 goto again;
344 }
345
346 return ret;
347 }
348
memblock_remove_region(struct memblock_type * type,unsigned long r)349 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
350 {
351 type->total_size -= type->regions[r].size;
352 memmove(&type->regions[r], &type->regions[r + 1],
353 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
354 type->cnt--;
355
356 /* Special case for empty arrays */
357 if (type->cnt == 0) {
358 WARN_ON(type->total_size != 0);
359 type->cnt = 1;
360 type->regions[0].base = 0;
361 type->regions[0].size = 0;
362 type->regions[0].flags = 0;
363 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
364 }
365 }
366
367 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
368 /**
369 * memblock_discard - discard memory and reserved arrays if they were allocated
370 */
memblock_discard(void)371 void __init memblock_discard(void)
372 {
373 phys_addr_t addr, size;
374
375 if (memblock.reserved.regions != memblock_reserved_init_regions) {
376 addr = __pa(memblock.reserved.regions);
377 size = PAGE_ALIGN(sizeof(struct memblock_region) *
378 memblock.reserved.max);
379 if (memblock_reserved_in_slab)
380 kfree(memblock.reserved.regions);
381 else
382 memblock_free_late(addr, size);
383 }
384
385 if (memblock.memory.regions != memblock_memory_init_regions) {
386 addr = __pa(memblock.memory.regions);
387 size = PAGE_ALIGN(sizeof(struct memblock_region) *
388 memblock.memory.max);
389 if (memblock_memory_in_slab)
390 kfree(memblock.memory.regions);
391 else
392 memblock_free_late(addr, size);
393 }
394
395 memblock_memory = NULL;
396 }
397 #endif
398
399 /**
400 * memblock_double_array - double the size of the memblock regions array
401 * @type: memblock type of the regions array being doubled
402 * @new_area_start: starting address of memory range to avoid overlap with
403 * @new_area_size: size of memory range to avoid overlap with
404 *
405 * Double the size of the @type regions array. If memblock is being used to
406 * allocate memory for a new reserved regions array and there is a previously
407 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
408 * waiting to be reserved, ensure the memory used by the new array does
409 * not overlap.
410 *
411 * Return:
412 * 0 on success, -1 on failure.
413 */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)414 static int __init_memblock memblock_double_array(struct memblock_type *type,
415 phys_addr_t new_area_start,
416 phys_addr_t new_area_size)
417 {
418 struct memblock_region *new_array, *old_array;
419 phys_addr_t old_alloc_size, new_alloc_size;
420 phys_addr_t old_size, new_size, addr, new_end;
421 int use_slab = slab_is_available();
422 int *in_slab;
423
424 /* We don't allow resizing until we know about the reserved regions
425 * of memory that aren't suitable for allocation
426 */
427 if (!memblock_can_resize)
428 return -1;
429
430 /* Calculate new doubled size */
431 old_size = type->max * sizeof(struct memblock_region);
432 new_size = old_size << 1;
433 /*
434 * We need to allocated new one align to PAGE_SIZE,
435 * so we can free them completely later.
436 */
437 old_alloc_size = PAGE_ALIGN(old_size);
438 new_alloc_size = PAGE_ALIGN(new_size);
439
440 /* Retrieve the slab flag */
441 if (type == &memblock.memory)
442 in_slab = &memblock_memory_in_slab;
443 else
444 in_slab = &memblock_reserved_in_slab;
445
446 /* Try to find some space for it */
447 if (use_slab) {
448 new_array = kmalloc(new_size, GFP_KERNEL);
449 addr = new_array ? __pa(new_array) : 0;
450 } else {
451 /* only exclude range when trying to double reserved.regions */
452 if (type != &memblock.reserved)
453 new_area_start = new_area_size = 0;
454
455 addr = memblock_find_in_range(new_area_start + new_area_size,
456 memblock.current_limit,
457 new_alloc_size, PAGE_SIZE);
458 if (!addr && new_area_size)
459 addr = memblock_find_in_range(0,
460 min(new_area_start, memblock.current_limit),
461 new_alloc_size, PAGE_SIZE);
462
463 new_array = addr ? __va(addr) : NULL;
464 }
465 if (!addr) {
466 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
467 type->name, type->max, type->max * 2);
468 return -1;
469 }
470
471 new_end = addr + new_size - 1;
472 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
473 type->name, type->max * 2, &addr, &new_end);
474
475 /*
476 * Found space, we now need to move the array over before we add the
477 * reserved region since it may be our reserved array itself that is
478 * full.
479 */
480 memcpy(new_array, type->regions, old_size);
481 memset(new_array + type->max, 0, old_size);
482 old_array = type->regions;
483 type->regions = new_array;
484 type->max <<= 1;
485
486 /* Free old array. We needn't free it if the array is the static one */
487 if (*in_slab)
488 kfree(old_array);
489 else if (old_array != memblock_memory_init_regions &&
490 old_array != memblock_reserved_init_regions)
491 memblock_free(old_array, old_alloc_size);
492
493 /*
494 * Reserve the new array if that comes from the memblock. Otherwise, we
495 * needn't do it
496 */
497 if (!use_slab)
498 BUG_ON(memblock_reserve(addr, new_alloc_size));
499
500 /* Update slab flag */
501 *in_slab = use_slab;
502
503 return 0;
504 }
505
506 /**
507 * memblock_merge_regions - merge neighboring compatible regions
508 * @type: memblock type to scan
509 * @start_rgn: start scanning from (@start_rgn - 1)
510 * @end_rgn: end scanning at (@end_rgn - 1)
511 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
512 */
memblock_merge_regions(struct memblock_type * type,unsigned long start_rgn,unsigned long end_rgn)513 static void __init_memblock memblock_merge_regions(struct memblock_type *type,
514 unsigned long start_rgn,
515 unsigned long end_rgn)
516 {
517 int i = 0;
518 if (start_rgn)
519 i = start_rgn - 1;
520 end_rgn = min(end_rgn, type->cnt - 1);
521 while (i < end_rgn) {
522 struct memblock_region *this = &type->regions[i];
523 struct memblock_region *next = &type->regions[i + 1];
524
525 if (this->base + this->size != next->base ||
526 memblock_get_region_node(this) !=
527 memblock_get_region_node(next) ||
528 this->flags != next->flags) {
529 BUG_ON(this->base + this->size > next->base);
530 i++;
531 continue;
532 }
533
534 this->size += next->size;
535 /* move forward from next + 1, index of which is i + 2 */
536 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
537 type->cnt--;
538 end_rgn--;
539 }
540 }
541
542 /**
543 * memblock_insert_region - insert new memblock region
544 * @type: memblock type to insert into
545 * @idx: index for the insertion point
546 * @base: base address of the new region
547 * @size: size of the new region
548 * @nid: node id of the new region
549 * @flags: flags of the new region
550 *
551 * Insert new memblock region [@base, @base + @size) into @type at @idx.
552 * @type must already have extra room to accommodate the new region.
553 */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)554 static void __init_memblock memblock_insert_region(struct memblock_type *type,
555 int idx, phys_addr_t base,
556 phys_addr_t size,
557 int nid,
558 enum memblock_flags flags)
559 {
560 struct memblock_region *rgn = &type->regions[idx];
561
562 BUG_ON(type->cnt >= type->max);
563 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
564 rgn->base = base;
565 rgn->size = size;
566 rgn->flags = flags;
567 memblock_set_region_node(rgn, nid);
568 type->cnt++;
569 type->total_size += size;
570 }
571
572 /**
573 * memblock_add_range - add new memblock region
574 * @type: memblock type to add new region into
575 * @base: base address of the new region
576 * @size: size of the new region
577 * @nid: nid of the new region
578 * @flags: flags of the new region
579 *
580 * Add new memblock region [@base, @base + @size) into @type. The new region
581 * is allowed to overlap with existing ones - overlaps don't affect already
582 * existing regions. @type is guaranteed to be minimal (all neighbouring
583 * compatible regions are merged) after the addition.
584 *
585 * Return:
586 * 0 on success, -errno on failure.
587 */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)588 static int __init_memblock memblock_add_range(struct memblock_type *type,
589 phys_addr_t base, phys_addr_t size,
590 int nid, enum memblock_flags flags)
591 {
592 bool insert = false;
593 phys_addr_t obase = base;
594 phys_addr_t end = base + memblock_cap_size(base, &size);
595 int idx, nr_new, start_rgn = -1, end_rgn;
596 struct memblock_region *rgn;
597
598 if (!size)
599 return 0;
600
601 /* special case for empty array */
602 if (type->regions[0].size == 0) {
603 WARN_ON(type->cnt != 1 || type->total_size);
604 type->regions[0].base = base;
605 type->regions[0].size = size;
606 type->regions[0].flags = flags;
607 memblock_set_region_node(&type->regions[0], nid);
608 type->total_size = size;
609 return 0;
610 }
611
612 /*
613 * The worst case is when new range overlaps all existing regions,
614 * then we'll need type->cnt + 1 empty regions in @type. So if
615 * type->cnt * 2 + 1 is less than or equal to type->max, we know
616 * that there is enough empty regions in @type, and we can insert
617 * regions directly.
618 */
619 if (type->cnt * 2 + 1 <= type->max)
620 insert = true;
621
622 repeat:
623 /*
624 * The following is executed twice. Once with %false @insert and
625 * then with %true. The first counts the number of regions needed
626 * to accommodate the new area. The second actually inserts them.
627 */
628 base = obase;
629 nr_new = 0;
630
631 for_each_memblock_type(idx, type, rgn) {
632 phys_addr_t rbase = rgn->base;
633 phys_addr_t rend = rbase + rgn->size;
634
635 if (rbase >= end)
636 break;
637 if (rend <= base)
638 continue;
639 /*
640 * @rgn overlaps. If it separates the lower part of new
641 * area, insert that portion.
642 */
643 if (rbase > base) {
644 #ifdef CONFIG_NUMA
645 WARN_ON(nid != memblock_get_region_node(rgn));
646 #endif
647 WARN_ON(flags != rgn->flags);
648 nr_new++;
649 if (insert) {
650 if (start_rgn == -1)
651 start_rgn = idx;
652 end_rgn = idx + 1;
653 memblock_insert_region(type, idx++, base,
654 rbase - base, nid,
655 flags);
656 }
657 }
658 /* area below @rend is dealt with, forget about it */
659 base = min(rend, end);
660 }
661
662 /* insert the remaining portion */
663 if (base < end) {
664 nr_new++;
665 if (insert) {
666 if (start_rgn == -1)
667 start_rgn = idx;
668 end_rgn = idx + 1;
669 memblock_insert_region(type, idx, base, end - base,
670 nid, flags);
671 }
672 }
673
674 if (!nr_new)
675 return 0;
676
677 /*
678 * If this was the first round, resize array and repeat for actual
679 * insertions; otherwise, merge and return.
680 */
681 if (!insert) {
682 while (type->cnt + nr_new > type->max)
683 if (memblock_double_array(type, obase, size) < 0)
684 return -ENOMEM;
685 insert = true;
686 goto repeat;
687 } else {
688 memblock_merge_regions(type, start_rgn, end_rgn);
689 return 0;
690 }
691 }
692
693 /**
694 * memblock_add_node - add new memblock region within a NUMA node
695 * @base: base address of the new region
696 * @size: size of the new region
697 * @nid: nid of the new region
698 * @flags: flags of the new region
699 *
700 * Add new memblock region [@base, @base + @size) to the "memory"
701 * type. See memblock_add_range() description for mode details
702 *
703 * Return:
704 * 0 on success, -errno on failure.
705 */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)706 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
707 int nid, enum memblock_flags flags)
708 {
709 phys_addr_t end = base + size - 1;
710
711 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
712 &base, &end, nid, flags, (void *)_RET_IP_);
713
714 return memblock_add_range(&memblock.memory, base, size, nid, flags);
715 }
716
717 /**
718 * memblock_add - add new memblock region
719 * @base: base address of the new region
720 * @size: size of the new region
721 *
722 * Add new memblock region [@base, @base + @size) to the "memory"
723 * type. See memblock_add_range() description for mode details
724 *
725 * Return:
726 * 0 on success, -errno on failure.
727 */
memblock_add(phys_addr_t base,phys_addr_t size)728 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
729 {
730 phys_addr_t end = base + size - 1;
731
732 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
733 &base, &end, (void *)_RET_IP_);
734
735 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
736 }
737
738 /**
739 * memblock_isolate_range - isolate given range into disjoint memblocks
740 * @type: memblock type to isolate range for
741 * @base: base of range to isolate
742 * @size: size of range to isolate
743 * @start_rgn: out parameter for the start of isolated region
744 * @end_rgn: out parameter for the end of isolated region
745 *
746 * Walk @type and ensure that regions don't cross the boundaries defined by
747 * [@base, @base + @size). Crossing regions are split at the boundaries,
748 * which may create at most two more regions. The index of the first
749 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
750 *
751 * Return:
752 * 0 on success, -errno on failure.
753 */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)754 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
755 phys_addr_t base, phys_addr_t size,
756 int *start_rgn, int *end_rgn)
757 {
758 phys_addr_t end = base + memblock_cap_size(base, &size);
759 int idx;
760 struct memblock_region *rgn;
761
762 *start_rgn = *end_rgn = 0;
763
764 if (!size)
765 return 0;
766
767 /* we'll create at most two more regions */
768 while (type->cnt + 2 > type->max)
769 if (memblock_double_array(type, base, size) < 0)
770 return -ENOMEM;
771
772 for_each_memblock_type(idx, type, rgn) {
773 phys_addr_t rbase = rgn->base;
774 phys_addr_t rend = rbase + rgn->size;
775
776 if (rbase >= end)
777 break;
778 if (rend <= base)
779 continue;
780
781 if (rbase < base) {
782 /*
783 * @rgn intersects from below. Split and continue
784 * to process the next region - the new top half.
785 */
786 rgn->base = base;
787 rgn->size -= base - rbase;
788 type->total_size -= base - rbase;
789 memblock_insert_region(type, idx, rbase, base - rbase,
790 memblock_get_region_node(rgn),
791 rgn->flags);
792 } else if (rend > end) {
793 /*
794 * @rgn intersects from above. Split and redo the
795 * current region - the new bottom half.
796 */
797 rgn->base = end;
798 rgn->size -= end - rbase;
799 type->total_size -= end - rbase;
800 memblock_insert_region(type, idx--, rbase, end - rbase,
801 memblock_get_region_node(rgn),
802 rgn->flags);
803 } else {
804 /* @rgn is fully contained, record it */
805 if (!*end_rgn)
806 *start_rgn = idx;
807 *end_rgn = idx + 1;
808 }
809 }
810
811 return 0;
812 }
813
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)814 static int __init_memblock memblock_remove_range(struct memblock_type *type,
815 phys_addr_t base, phys_addr_t size)
816 {
817 int start_rgn, end_rgn;
818 int i, ret;
819
820 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
821 if (ret)
822 return ret;
823
824 for (i = end_rgn - 1; i >= start_rgn; i--)
825 memblock_remove_region(type, i);
826 return 0;
827 }
828
memblock_remove(phys_addr_t base,phys_addr_t size)829 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
830 {
831 phys_addr_t end = base + size - 1;
832
833 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
834 &base, &end, (void *)_RET_IP_);
835
836 return memblock_remove_range(&memblock.memory, base, size);
837 }
838
839 /**
840 * memblock_free - free boot memory allocation
841 * @ptr: starting address of the boot memory allocation
842 * @size: size of the boot memory block in bytes
843 *
844 * Free boot memory block previously allocated by memblock_alloc_xx() API.
845 * The freeing memory will not be released to the buddy allocator.
846 */
memblock_free(void * ptr,size_t size)847 void __init_memblock memblock_free(void *ptr, size_t size)
848 {
849 if (ptr)
850 memblock_phys_free(__pa(ptr), size);
851 }
852
853 /**
854 * memblock_phys_free - free boot memory block
855 * @base: phys starting address of the boot memory block
856 * @size: size of the boot memory block in bytes
857 *
858 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
859 * The freeing memory will not be released to the buddy allocator.
860 */
memblock_phys_free(phys_addr_t base,phys_addr_t size)861 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
862 {
863 phys_addr_t end = base + size - 1;
864
865 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
866 &base, &end, (void *)_RET_IP_);
867
868 kmemleak_free_part_phys(base, size);
869 return memblock_remove_range(&memblock.reserved, base, size);
870 }
871
memblock_reserve(phys_addr_t base,phys_addr_t size)872 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
873 {
874 phys_addr_t end = base + size - 1;
875
876 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
877 &base, &end, (void *)_RET_IP_);
878
879 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
880 }
881
882 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
memblock_physmem_add(phys_addr_t base,phys_addr_t size)883 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
884 {
885 phys_addr_t end = base + size - 1;
886
887 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
888 &base, &end, (void *)_RET_IP_);
889
890 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
891 }
892 #endif
893
894 /**
895 * memblock_setclr_flag - set or clear flag for a memory region
896 * @base: base address of the region
897 * @size: size of the region
898 * @set: set or clear the flag
899 * @flag: the flag to update
900 *
901 * This function isolates region [@base, @base + @size), and sets/clears flag
902 *
903 * Return: 0 on success, -errno on failure.
904 */
memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)905 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
906 phys_addr_t size, int set, int flag)
907 {
908 struct memblock_type *type = &memblock.memory;
909 int i, ret, start_rgn, end_rgn;
910
911 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
912 if (ret)
913 return ret;
914
915 for (i = start_rgn; i < end_rgn; i++) {
916 struct memblock_region *r = &type->regions[i];
917
918 if (set)
919 r->flags |= flag;
920 else
921 r->flags &= ~flag;
922 }
923
924 memblock_merge_regions(type, start_rgn, end_rgn);
925 return 0;
926 }
927
928 /**
929 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
930 * @base: the base phys addr of the region
931 * @size: the size of the region
932 *
933 * Return: 0 on success, -errno on failure.
934 */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)935 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
936 {
937 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
938 }
939
940 /**
941 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
942 * @base: the base phys addr of the region
943 * @size: the size of the region
944 *
945 * Return: 0 on success, -errno on failure.
946 */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)947 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
948 {
949 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
950 }
951
952 /**
953 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
954 * @base: the base phys addr of the region
955 * @size: the size of the region
956 *
957 * Return: 0 on success, -errno on failure.
958 */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)959 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
960 {
961 if (!mirrored_kernelcore)
962 return 0;
963
964 system_has_some_mirror = true;
965
966 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
967 }
968
969 /**
970 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
971 * @base: the base phys addr of the region
972 * @size: the size of the region
973 *
974 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
975 * direct mapping of the physical memory. These regions will still be
976 * covered by the memory map. The struct page representing NOMAP memory
977 * frames in the memory map will be PageReserved()
978 *
979 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
980 * memblock, the caller must inform kmemleak to ignore that memory
981 *
982 * Return: 0 on success, -errno on failure.
983 */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)984 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
985 {
986 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
987 }
988
989 /**
990 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
991 * @base: the base phys addr of the region
992 * @size: the size of the region
993 *
994 * Return: 0 on success, -errno on failure.
995 */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)996 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
997 {
998 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
999 }
1000
should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)1001 static bool should_skip_region(struct memblock_type *type,
1002 struct memblock_region *m,
1003 int nid, int flags)
1004 {
1005 int m_nid = memblock_get_region_node(m);
1006
1007 /* we never skip regions when iterating memblock.reserved or physmem */
1008 if (type != memblock_memory)
1009 return false;
1010
1011 /* only memory regions are associated with nodes, check it */
1012 if (nid != NUMA_NO_NODE && nid != m_nid)
1013 return true;
1014
1015 /* skip hotpluggable memory regions if needed */
1016 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1017 !(flags & MEMBLOCK_HOTPLUG))
1018 return true;
1019
1020 /* if we want mirror memory skip non-mirror memory regions */
1021 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1022 return true;
1023
1024 /* skip nomap memory unless we were asked for it explicitly */
1025 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1026 return true;
1027
1028 /* skip driver-managed memory unless we were asked for it explicitly */
1029 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1030 return true;
1031
1032 return false;
1033 }
1034
1035 /**
1036 * __next_mem_range - next function for for_each_free_mem_range() etc.
1037 * @idx: pointer to u64 loop variable
1038 * @nid: node selector, %NUMA_NO_NODE for all nodes
1039 * @flags: pick from blocks based on memory attributes
1040 * @type_a: pointer to memblock_type from where the range is taken
1041 * @type_b: pointer to memblock_type which excludes memory from being taken
1042 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1043 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1044 * @out_nid: ptr to int for nid of the range, can be %NULL
1045 *
1046 * Find the first area from *@idx which matches @nid, fill the out
1047 * parameters, and update *@idx for the next iteration. The lower 32bit of
1048 * *@idx contains index into type_a and the upper 32bit indexes the
1049 * areas before each region in type_b. For example, if type_b regions
1050 * look like the following,
1051 *
1052 * 0:[0-16), 1:[32-48), 2:[128-130)
1053 *
1054 * The upper 32bit indexes the following regions.
1055 *
1056 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1057 *
1058 * As both region arrays are sorted, the function advances the two indices
1059 * in lockstep and returns each intersection.
1060 */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1061 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1062 struct memblock_type *type_a,
1063 struct memblock_type *type_b, phys_addr_t *out_start,
1064 phys_addr_t *out_end, int *out_nid)
1065 {
1066 int idx_a = *idx & 0xffffffff;
1067 int idx_b = *idx >> 32;
1068
1069 if (WARN_ONCE(nid == MAX_NUMNODES,
1070 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1071 nid = NUMA_NO_NODE;
1072
1073 for (; idx_a < type_a->cnt; idx_a++) {
1074 struct memblock_region *m = &type_a->regions[idx_a];
1075
1076 phys_addr_t m_start = m->base;
1077 phys_addr_t m_end = m->base + m->size;
1078 int m_nid = memblock_get_region_node(m);
1079
1080 if (should_skip_region(type_a, m, nid, flags))
1081 continue;
1082
1083 if (!type_b) {
1084 if (out_start)
1085 *out_start = m_start;
1086 if (out_end)
1087 *out_end = m_end;
1088 if (out_nid)
1089 *out_nid = m_nid;
1090 idx_a++;
1091 *idx = (u32)idx_a | (u64)idx_b << 32;
1092 return;
1093 }
1094
1095 /* scan areas before each reservation */
1096 for (; idx_b < type_b->cnt + 1; idx_b++) {
1097 struct memblock_region *r;
1098 phys_addr_t r_start;
1099 phys_addr_t r_end;
1100
1101 r = &type_b->regions[idx_b];
1102 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1103 r_end = idx_b < type_b->cnt ?
1104 r->base : PHYS_ADDR_MAX;
1105
1106 /*
1107 * if idx_b advanced past idx_a,
1108 * break out to advance idx_a
1109 */
1110 if (r_start >= m_end)
1111 break;
1112 /* if the two regions intersect, we're done */
1113 if (m_start < r_end) {
1114 if (out_start)
1115 *out_start =
1116 max(m_start, r_start);
1117 if (out_end)
1118 *out_end = min(m_end, r_end);
1119 if (out_nid)
1120 *out_nid = m_nid;
1121 /*
1122 * The region which ends first is
1123 * advanced for the next iteration.
1124 */
1125 if (m_end <= r_end)
1126 idx_a++;
1127 else
1128 idx_b++;
1129 *idx = (u32)idx_a | (u64)idx_b << 32;
1130 return;
1131 }
1132 }
1133 }
1134
1135 /* signal end of iteration */
1136 *idx = ULLONG_MAX;
1137 }
1138
1139 /**
1140 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1141 *
1142 * @idx: pointer to u64 loop variable
1143 * @nid: node selector, %NUMA_NO_NODE for all nodes
1144 * @flags: pick from blocks based on memory attributes
1145 * @type_a: pointer to memblock_type from where the range is taken
1146 * @type_b: pointer to memblock_type which excludes memory from being taken
1147 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1148 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1149 * @out_nid: ptr to int for nid of the range, can be %NULL
1150 *
1151 * Finds the next range from type_a which is not marked as unsuitable
1152 * in type_b.
1153 *
1154 * Reverse of __next_mem_range().
1155 */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1156 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1157 enum memblock_flags flags,
1158 struct memblock_type *type_a,
1159 struct memblock_type *type_b,
1160 phys_addr_t *out_start,
1161 phys_addr_t *out_end, int *out_nid)
1162 {
1163 int idx_a = *idx & 0xffffffff;
1164 int idx_b = *idx >> 32;
1165
1166 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1167 nid = NUMA_NO_NODE;
1168
1169 if (*idx == (u64)ULLONG_MAX) {
1170 idx_a = type_a->cnt - 1;
1171 if (type_b != NULL)
1172 idx_b = type_b->cnt;
1173 else
1174 idx_b = 0;
1175 }
1176
1177 for (; idx_a >= 0; idx_a--) {
1178 struct memblock_region *m = &type_a->regions[idx_a];
1179
1180 phys_addr_t m_start = m->base;
1181 phys_addr_t m_end = m->base + m->size;
1182 int m_nid = memblock_get_region_node(m);
1183
1184 if (should_skip_region(type_a, m, nid, flags))
1185 continue;
1186
1187 if (!type_b) {
1188 if (out_start)
1189 *out_start = m_start;
1190 if (out_end)
1191 *out_end = m_end;
1192 if (out_nid)
1193 *out_nid = m_nid;
1194 idx_a--;
1195 *idx = (u32)idx_a | (u64)idx_b << 32;
1196 return;
1197 }
1198
1199 /* scan areas before each reservation */
1200 for (; idx_b >= 0; idx_b--) {
1201 struct memblock_region *r;
1202 phys_addr_t r_start;
1203 phys_addr_t r_end;
1204
1205 r = &type_b->regions[idx_b];
1206 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1207 r_end = idx_b < type_b->cnt ?
1208 r->base : PHYS_ADDR_MAX;
1209 /*
1210 * if idx_b advanced past idx_a,
1211 * break out to advance idx_a
1212 */
1213
1214 if (r_end <= m_start)
1215 break;
1216 /* if the two regions intersect, we're done */
1217 if (m_end > r_start) {
1218 if (out_start)
1219 *out_start = max(m_start, r_start);
1220 if (out_end)
1221 *out_end = min(m_end, r_end);
1222 if (out_nid)
1223 *out_nid = m_nid;
1224 if (m_start >= r_start)
1225 idx_a--;
1226 else
1227 idx_b--;
1228 *idx = (u32)idx_a | (u64)idx_b << 32;
1229 return;
1230 }
1231 }
1232 }
1233 /* signal end of iteration */
1234 *idx = ULLONG_MAX;
1235 }
1236
1237 /*
1238 * Common iterator interface used to define for_each_mem_pfn_range().
1239 */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1240 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1241 unsigned long *out_start_pfn,
1242 unsigned long *out_end_pfn, int *out_nid)
1243 {
1244 struct memblock_type *type = &memblock.memory;
1245 struct memblock_region *r;
1246 int r_nid;
1247
1248 while (++*idx < type->cnt) {
1249 r = &type->regions[*idx];
1250 r_nid = memblock_get_region_node(r);
1251
1252 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1253 continue;
1254 if (nid == MAX_NUMNODES || nid == r_nid)
1255 break;
1256 }
1257 if (*idx >= type->cnt) {
1258 *idx = -1;
1259 return;
1260 }
1261
1262 if (out_start_pfn)
1263 *out_start_pfn = PFN_UP(r->base);
1264 if (out_end_pfn)
1265 *out_end_pfn = PFN_DOWN(r->base + r->size);
1266 if (out_nid)
1267 *out_nid = r_nid;
1268 }
1269
1270 /**
1271 * memblock_set_node - set node ID on memblock regions
1272 * @base: base of area to set node ID for
1273 * @size: size of area to set node ID for
1274 * @type: memblock type to set node ID for
1275 * @nid: node ID to set
1276 *
1277 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1278 * Regions which cross the area boundaries are split as necessary.
1279 *
1280 * Return:
1281 * 0 on success, -errno on failure.
1282 */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1283 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1284 struct memblock_type *type, int nid)
1285 {
1286 #ifdef CONFIG_NUMA
1287 int start_rgn, end_rgn;
1288 int i, ret;
1289
1290 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1291 if (ret)
1292 return ret;
1293
1294 for (i = start_rgn; i < end_rgn; i++)
1295 memblock_set_region_node(&type->regions[i], nid);
1296
1297 memblock_merge_regions(type, start_rgn, end_rgn);
1298 #endif
1299 return 0;
1300 }
1301
1302 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1303 /**
1304 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1305 *
1306 * @idx: pointer to u64 loop variable
1307 * @zone: zone in which all of the memory blocks reside
1308 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1309 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1310 *
1311 * This function is meant to be a zone/pfn specific wrapper for the
1312 * for_each_mem_range type iterators. Specifically they are used in the
1313 * deferred memory init routines and as such we were duplicating much of
1314 * this logic throughout the code. So instead of having it in multiple
1315 * locations it seemed like it would make more sense to centralize this to
1316 * one new iterator that does everything they need.
1317 */
1318 void __init_memblock
__next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1319 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1320 unsigned long *out_spfn, unsigned long *out_epfn)
1321 {
1322 int zone_nid = zone_to_nid(zone);
1323 phys_addr_t spa, epa;
1324
1325 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1326 &memblock.memory, &memblock.reserved,
1327 &spa, &epa, NULL);
1328
1329 while (*idx != U64_MAX) {
1330 unsigned long epfn = PFN_DOWN(epa);
1331 unsigned long spfn = PFN_UP(spa);
1332
1333 /*
1334 * Verify the end is at least past the start of the zone and
1335 * that we have at least one PFN to initialize.
1336 */
1337 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1338 /* if we went too far just stop searching */
1339 if (zone_end_pfn(zone) <= spfn) {
1340 *idx = U64_MAX;
1341 break;
1342 }
1343
1344 if (out_spfn)
1345 *out_spfn = max(zone->zone_start_pfn, spfn);
1346 if (out_epfn)
1347 *out_epfn = min(zone_end_pfn(zone), epfn);
1348
1349 return;
1350 }
1351
1352 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1353 &memblock.memory, &memblock.reserved,
1354 &spa, &epa, NULL);
1355 }
1356
1357 /* signal end of iteration */
1358 if (out_spfn)
1359 *out_spfn = ULONG_MAX;
1360 if (out_epfn)
1361 *out_epfn = 0;
1362 }
1363
1364 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1365
1366 /**
1367 * memblock_alloc_range_nid - allocate boot memory block
1368 * @size: size of memory block to be allocated in bytes
1369 * @align: alignment of the region and block's size
1370 * @start: the lower bound of the memory region to allocate (phys address)
1371 * @end: the upper bound of the memory region to allocate (phys address)
1372 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1373 * @exact_nid: control the allocation fall back to other nodes
1374 *
1375 * The allocation is performed from memory region limited by
1376 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1377 *
1378 * If the specified node can not hold the requested memory and @exact_nid
1379 * is false, the allocation falls back to any node in the system.
1380 *
1381 * For systems with memory mirroring, the allocation is attempted first
1382 * from the regions with mirroring enabled and then retried from any
1383 * memory region.
1384 *
1385 * In addition, function using kmemleak_alloc_phys for allocated boot
1386 * memory block, it is never reported as leaks.
1387 *
1388 * Return:
1389 * Physical address of allocated memory block on success, %0 on failure.
1390 */
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1391 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1392 phys_addr_t align, phys_addr_t start,
1393 phys_addr_t end, int nid,
1394 bool exact_nid)
1395 {
1396 enum memblock_flags flags = choose_memblock_flags();
1397 phys_addr_t found;
1398
1399 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1400 nid = NUMA_NO_NODE;
1401
1402 if (!align) {
1403 /* Can't use WARNs this early in boot on powerpc */
1404 dump_stack();
1405 align = SMP_CACHE_BYTES;
1406 }
1407
1408 again:
1409 found = memblock_find_in_range_node(size, align, start, end, nid,
1410 flags);
1411 if (found && !memblock_reserve(found, size))
1412 goto done;
1413
1414 if (nid != NUMA_NO_NODE && !exact_nid) {
1415 found = memblock_find_in_range_node(size, align, start,
1416 end, NUMA_NO_NODE,
1417 flags);
1418 if (found && !memblock_reserve(found, size))
1419 goto done;
1420 }
1421
1422 if (flags & MEMBLOCK_MIRROR) {
1423 flags &= ~MEMBLOCK_MIRROR;
1424 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1425 &size);
1426 goto again;
1427 }
1428
1429 return 0;
1430
1431 done:
1432 /*
1433 * Skip kmemleak for those places like kasan_init() and
1434 * early_pgtable_alloc() due to high volume.
1435 */
1436 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1437 /*
1438 * Memblock allocated blocks are never reported as
1439 * leaks. This is because many of these blocks are
1440 * only referred via the physical address which is
1441 * not looked up by kmemleak.
1442 */
1443 kmemleak_alloc_phys(found, size, 0);
1444
1445 /*
1446 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1447 * require memory to be accepted before it can be used by the
1448 * guest.
1449 *
1450 * Accept the memory of the allocated buffer.
1451 */
1452 accept_memory(found, found + size);
1453
1454 return found;
1455 }
1456
1457 /**
1458 * memblock_phys_alloc_range - allocate a memory block inside specified range
1459 * @size: size of memory block to be allocated in bytes
1460 * @align: alignment of the region and block's size
1461 * @start: the lower bound of the memory region to allocate (physical address)
1462 * @end: the upper bound of the memory region to allocate (physical address)
1463 *
1464 * Allocate @size bytes in the between @start and @end.
1465 *
1466 * Return: physical address of the allocated memory block on success,
1467 * %0 on failure.
1468 */
memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1469 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1470 phys_addr_t align,
1471 phys_addr_t start,
1472 phys_addr_t end)
1473 {
1474 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1475 __func__, (u64)size, (u64)align, &start, &end,
1476 (void *)_RET_IP_);
1477 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1478 false);
1479 }
1480
1481 /**
1482 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1483 * @size: size of memory block to be allocated in bytes
1484 * @align: alignment of the region and block's size
1485 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1486 *
1487 * Allocates memory block from the specified NUMA node. If the node
1488 * has no available memory, attempts to allocated from any node in the
1489 * system.
1490 *
1491 * Return: physical address of the allocated memory block on success,
1492 * %0 on failure.
1493 */
memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1494 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1495 {
1496 return memblock_alloc_range_nid(size, align, 0,
1497 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1498 }
1499
1500 /**
1501 * memblock_alloc_internal - allocate boot memory block
1502 * @size: size of memory block to be allocated in bytes
1503 * @align: alignment of the region and block's size
1504 * @min_addr: the lower bound of the memory region to allocate (phys address)
1505 * @max_addr: the upper bound of the memory region to allocate (phys address)
1506 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1507 * @exact_nid: control the allocation fall back to other nodes
1508 *
1509 * Allocates memory block using memblock_alloc_range_nid() and
1510 * converts the returned physical address to virtual.
1511 *
1512 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1513 * will fall back to memory below @min_addr. Other constraints, such
1514 * as node and mirrored memory will be handled again in
1515 * memblock_alloc_range_nid().
1516 *
1517 * Return:
1518 * Virtual address of allocated memory block on success, NULL on failure.
1519 */
memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1520 static void * __init memblock_alloc_internal(
1521 phys_addr_t size, phys_addr_t align,
1522 phys_addr_t min_addr, phys_addr_t max_addr,
1523 int nid, bool exact_nid)
1524 {
1525 phys_addr_t alloc;
1526
1527 /*
1528 * Detect any accidental use of these APIs after slab is ready, as at
1529 * this moment memblock may be deinitialized already and its
1530 * internal data may be destroyed (after execution of memblock_free_all)
1531 */
1532 if (WARN_ON_ONCE(slab_is_available()))
1533 return kzalloc_node(size, GFP_NOWAIT, nid);
1534
1535 if (max_addr > memblock.current_limit)
1536 max_addr = memblock.current_limit;
1537
1538 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1539 exact_nid);
1540
1541 /* retry allocation without lower limit */
1542 if (!alloc && min_addr)
1543 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1544 exact_nid);
1545
1546 if (!alloc)
1547 return NULL;
1548
1549 return phys_to_virt(alloc);
1550 }
1551
1552 /**
1553 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1554 * without zeroing memory
1555 * @size: size of memory block to be allocated in bytes
1556 * @align: alignment of the region and block's size
1557 * @min_addr: the lower bound of the memory region from where the allocation
1558 * is preferred (phys address)
1559 * @max_addr: the upper bound of the memory region from where the allocation
1560 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1561 * allocate only from memory limited by memblock.current_limit value
1562 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1563 *
1564 * Public function, provides additional debug information (including caller
1565 * info), if enabled. Does not zero allocated memory.
1566 *
1567 * Return:
1568 * Virtual address of allocated memory block on success, NULL on failure.
1569 */
memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1570 void * __init memblock_alloc_exact_nid_raw(
1571 phys_addr_t size, phys_addr_t align,
1572 phys_addr_t min_addr, phys_addr_t max_addr,
1573 int nid)
1574 {
1575 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1576 __func__, (u64)size, (u64)align, nid, &min_addr,
1577 &max_addr, (void *)_RET_IP_);
1578
1579 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1580 true);
1581 }
1582
1583 /**
1584 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1585 * memory and without panicking
1586 * @size: size of memory block to be allocated in bytes
1587 * @align: alignment of the region and block's size
1588 * @min_addr: the lower bound of the memory region from where the allocation
1589 * is preferred (phys address)
1590 * @max_addr: the upper bound of the memory region from where the allocation
1591 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1592 * allocate only from memory limited by memblock.current_limit value
1593 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1594 *
1595 * Public function, provides additional debug information (including caller
1596 * info), if enabled. Does not zero allocated memory, does not panic if request
1597 * cannot be satisfied.
1598 *
1599 * Return:
1600 * Virtual address of allocated memory block on success, NULL on failure.
1601 */
memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1602 void * __init memblock_alloc_try_nid_raw(
1603 phys_addr_t size, phys_addr_t align,
1604 phys_addr_t min_addr, phys_addr_t max_addr,
1605 int nid)
1606 {
1607 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1608 __func__, (u64)size, (u64)align, nid, &min_addr,
1609 &max_addr, (void *)_RET_IP_);
1610
1611 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1612 false);
1613 }
1614
1615 /**
1616 * memblock_alloc_try_nid - allocate boot memory block
1617 * @size: size of memory block to be allocated in bytes
1618 * @align: alignment of the region and block's size
1619 * @min_addr: the lower bound of the memory region from where the allocation
1620 * is preferred (phys address)
1621 * @max_addr: the upper bound of the memory region from where the allocation
1622 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1623 * allocate only from memory limited by memblock.current_limit value
1624 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1625 *
1626 * Public function, provides additional debug information (including caller
1627 * info), if enabled. This function zeroes the allocated memory.
1628 *
1629 * Return:
1630 * Virtual address of allocated memory block on success, NULL on failure.
1631 */
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1632 void * __init memblock_alloc_try_nid(
1633 phys_addr_t size, phys_addr_t align,
1634 phys_addr_t min_addr, phys_addr_t max_addr,
1635 int nid)
1636 {
1637 void *ptr;
1638
1639 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1640 __func__, (u64)size, (u64)align, nid, &min_addr,
1641 &max_addr, (void *)_RET_IP_);
1642 ptr = memblock_alloc_internal(size, align,
1643 min_addr, max_addr, nid, false);
1644 if (ptr)
1645 memset(ptr, 0, size);
1646
1647 return ptr;
1648 }
1649
1650 /**
1651 * memblock_free_late - free pages directly to buddy allocator
1652 * @base: phys starting address of the boot memory block
1653 * @size: size of the boot memory block in bytes
1654 *
1655 * This is only useful when the memblock allocator has already been torn
1656 * down, but we are still initializing the system. Pages are released directly
1657 * to the buddy allocator.
1658 */
memblock_free_late(phys_addr_t base,phys_addr_t size)1659 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1660 {
1661 phys_addr_t cursor, end;
1662
1663 end = base + size - 1;
1664 memblock_dbg("%s: [%pa-%pa] %pS\n",
1665 __func__, &base, &end, (void *)_RET_IP_);
1666 kmemleak_free_part_phys(base, size);
1667 cursor = PFN_UP(base);
1668 end = PFN_DOWN(base + size);
1669
1670 for (; cursor < end; cursor++) {
1671 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1672 totalram_pages_inc();
1673 }
1674 }
1675
1676 /*
1677 * Remaining API functions
1678 */
1679
memblock_phys_mem_size(void)1680 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1681 {
1682 return memblock.memory.total_size;
1683 }
1684
memblock_reserved_size(void)1685 phys_addr_t __init_memblock memblock_reserved_size(void)
1686 {
1687 return memblock.reserved.total_size;
1688 }
1689
1690 /* lowest address */
memblock_start_of_DRAM(void)1691 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1692 {
1693 return memblock.memory.regions[0].base;
1694 }
1695
memblock_end_of_DRAM(void)1696 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1697 {
1698 int idx = memblock.memory.cnt - 1;
1699
1700 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1701 }
1702
__find_max_addr(phys_addr_t limit)1703 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1704 {
1705 phys_addr_t max_addr = PHYS_ADDR_MAX;
1706 struct memblock_region *r;
1707
1708 /*
1709 * translate the memory @limit size into the max address within one of
1710 * the memory memblock regions, if the @limit exceeds the total size
1711 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1712 */
1713 for_each_mem_region(r) {
1714 if (limit <= r->size) {
1715 max_addr = r->base + limit;
1716 break;
1717 }
1718 limit -= r->size;
1719 }
1720
1721 return max_addr;
1722 }
1723
memblock_enforce_memory_limit(phys_addr_t limit)1724 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1725 {
1726 phys_addr_t max_addr;
1727
1728 if (!limit)
1729 return;
1730
1731 max_addr = __find_max_addr(limit);
1732
1733 /* @limit exceeds the total size of the memory, do nothing */
1734 if (max_addr == PHYS_ADDR_MAX)
1735 return;
1736
1737 /* truncate both memory and reserved regions */
1738 memblock_remove_range(&memblock.memory, max_addr,
1739 PHYS_ADDR_MAX);
1740 memblock_remove_range(&memblock.reserved, max_addr,
1741 PHYS_ADDR_MAX);
1742 }
1743
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1744 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1745 {
1746 int start_rgn, end_rgn;
1747 int i, ret;
1748
1749 if (!size)
1750 return;
1751
1752 if (!memblock_memory->total_size) {
1753 pr_warn("%s: No memory registered yet\n", __func__);
1754 return;
1755 }
1756
1757 ret = memblock_isolate_range(&memblock.memory, base, size,
1758 &start_rgn, &end_rgn);
1759 if (ret)
1760 return;
1761
1762 /* remove all the MAP regions */
1763 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1764 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1765 memblock_remove_region(&memblock.memory, i);
1766
1767 for (i = start_rgn - 1; i >= 0; i--)
1768 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1769 memblock_remove_region(&memblock.memory, i);
1770
1771 /* truncate the reserved regions */
1772 memblock_remove_range(&memblock.reserved, 0, base);
1773 memblock_remove_range(&memblock.reserved,
1774 base + size, PHYS_ADDR_MAX);
1775 }
1776
memblock_mem_limit_remove_map(phys_addr_t limit)1777 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1778 {
1779 phys_addr_t max_addr;
1780
1781 if (!limit)
1782 return;
1783
1784 max_addr = __find_max_addr(limit);
1785
1786 /* @limit exceeds the total size of the memory, do nothing */
1787 if (max_addr == PHYS_ADDR_MAX)
1788 return;
1789
1790 memblock_cap_memory_range(0, max_addr);
1791 }
1792
memblock_search(struct memblock_type * type,phys_addr_t addr)1793 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1794 {
1795 unsigned int left = 0, right = type->cnt;
1796
1797 do {
1798 unsigned int mid = (right + left) / 2;
1799
1800 if (addr < type->regions[mid].base)
1801 right = mid;
1802 else if (addr >= (type->regions[mid].base +
1803 type->regions[mid].size))
1804 left = mid + 1;
1805 else
1806 return mid;
1807 } while (left < right);
1808 return -1;
1809 }
1810
memblock_is_reserved(phys_addr_t addr)1811 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1812 {
1813 return memblock_search(&memblock.reserved, addr) != -1;
1814 }
1815
memblock_is_memory(phys_addr_t addr)1816 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1817 {
1818 return memblock_search(&memblock.memory, addr) != -1;
1819 }
1820
memblock_is_map_memory(phys_addr_t addr)1821 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1822 {
1823 int i = memblock_search(&memblock.memory, addr);
1824
1825 if (i == -1)
1826 return false;
1827 return !memblock_is_nomap(&memblock.memory.regions[i]);
1828 }
1829
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1830 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1831 unsigned long *start_pfn, unsigned long *end_pfn)
1832 {
1833 struct memblock_type *type = &memblock.memory;
1834 int mid = memblock_search(type, PFN_PHYS(pfn));
1835
1836 if (mid == -1)
1837 return -1;
1838
1839 *start_pfn = PFN_DOWN(type->regions[mid].base);
1840 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1841
1842 return memblock_get_region_node(&type->regions[mid]);
1843 }
1844
1845 /**
1846 * memblock_is_region_memory - check if a region is a subset of memory
1847 * @base: base of region to check
1848 * @size: size of region to check
1849 *
1850 * Check if the region [@base, @base + @size) is a subset of a memory block.
1851 *
1852 * Return:
1853 * 0 if false, non-zero if true
1854 */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1855 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1856 {
1857 int idx = memblock_search(&memblock.memory, base);
1858 phys_addr_t end = base + memblock_cap_size(base, &size);
1859
1860 if (idx == -1)
1861 return false;
1862 return (memblock.memory.regions[idx].base +
1863 memblock.memory.regions[idx].size) >= end;
1864 }
1865
1866 /**
1867 * memblock_is_region_reserved - check if a region intersects reserved memory
1868 * @base: base of region to check
1869 * @size: size of region to check
1870 *
1871 * Check if the region [@base, @base + @size) intersects a reserved
1872 * memory block.
1873 *
1874 * Return:
1875 * True if they intersect, false if not.
1876 */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1877 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1878 {
1879 return memblock_overlaps_region(&memblock.reserved, base, size);
1880 }
1881
memblock_trim_memory(phys_addr_t align)1882 void __init_memblock memblock_trim_memory(phys_addr_t align)
1883 {
1884 phys_addr_t start, end, orig_start, orig_end;
1885 struct memblock_region *r;
1886
1887 for_each_mem_region(r) {
1888 orig_start = r->base;
1889 orig_end = r->base + r->size;
1890 start = round_up(orig_start, align);
1891 end = round_down(orig_end, align);
1892
1893 if (start == orig_start && end == orig_end)
1894 continue;
1895
1896 if (start < end) {
1897 r->base = start;
1898 r->size = end - start;
1899 } else {
1900 memblock_remove_region(&memblock.memory,
1901 r - memblock.memory.regions);
1902 r--;
1903 }
1904 }
1905 }
1906
memblock_set_current_limit(phys_addr_t limit)1907 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1908 {
1909 memblock.current_limit = limit;
1910 }
1911
memblock_get_current_limit(void)1912 phys_addr_t __init_memblock memblock_get_current_limit(void)
1913 {
1914 return memblock.current_limit;
1915 }
1916
memblock_dump(struct memblock_type * type)1917 static void __init_memblock memblock_dump(struct memblock_type *type)
1918 {
1919 phys_addr_t base, end, size;
1920 enum memblock_flags flags;
1921 int idx;
1922 struct memblock_region *rgn;
1923
1924 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1925
1926 for_each_memblock_type(idx, type, rgn) {
1927 char nid_buf[32] = "";
1928
1929 base = rgn->base;
1930 size = rgn->size;
1931 end = base + size - 1;
1932 flags = rgn->flags;
1933 #ifdef CONFIG_NUMA
1934 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1935 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1936 memblock_get_region_node(rgn));
1937 #endif
1938 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1939 type->name, idx, &base, &end, &size, nid_buf, flags);
1940 }
1941 }
1942
__memblock_dump_all(void)1943 static void __init_memblock __memblock_dump_all(void)
1944 {
1945 pr_info("MEMBLOCK configuration:\n");
1946 pr_info(" memory size = %pa reserved size = %pa\n",
1947 &memblock.memory.total_size,
1948 &memblock.reserved.total_size);
1949
1950 memblock_dump(&memblock.memory);
1951 memblock_dump(&memblock.reserved);
1952 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1953 memblock_dump(&physmem);
1954 #endif
1955 }
1956
memblock_dump_all(void)1957 void __init_memblock memblock_dump_all(void)
1958 {
1959 if (memblock_debug)
1960 __memblock_dump_all();
1961 }
1962
memblock_allow_resize(void)1963 void __init memblock_allow_resize(void)
1964 {
1965 memblock_can_resize = 1;
1966 }
1967
early_memblock(char * p)1968 static int __init early_memblock(char *p)
1969 {
1970 if (p && strstr(p, "debug"))
1971 memblock_debug = 1;
1972 return 0;
1973 }
1974 early_param("memblock", early_memblock);
1975
free_memmap(unsigned long start_pfn,unsigned long end_pfn)1976 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1977 {
1978 struct page *start_pg, *end_pg;
1979 phys_addr_t pg, pgend;
1980
1981 /*
1982 * Convert start_pfn/end_pfn to a struct page pointer.
1983 */
1984 start_pg = pfn_to_page(start_pfn - 1) + 1;
1985 end_pg = pfn_to_page(end_pfn - 1) + 1;
1986
1987 /*
1988 * Convert to physical addresses, and round start upwards and end
1989 * downwards.
1990 */
1991 pg = PAGE_ALIGN(__pa(start_pg));
1992 pgend = __pa(end_pg) & PAGE_MASK;
1993
1994 /*
1995 * If there are free pages between these, free the section of the
1996 * memmap array.
1997 */
1998 if (pg < pgend)
1999 memblock_phys_free(pg, pgend - pg);
2000 }
2001
2002 /*
2003 * The mem_map array can get very big. Free the unused area of the memory map.
2004 */
free_unused_memmap(void)2005 static void __init free_unused_memmap(void)
2006 {
2007 unsigned long start, end, prev_end = 0;
2008 int i;
2009
2010 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2011 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2012 return;
2013
2014 /*
2015 * This relies on each bank being in address order.
2016 * The banks are sorted previously in bootmem_init().
2017 */
2018 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2019 #ifdef CONFIG_SPARSEMEM
2020 /*
2021 * Take care not to free memmap entries that don't exist
2022 * due to SPARSEMEM sections which aren't present.
2023 */
2024 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2025 #endif
2026 /*
2027 * Align down here since many operations in VM subsystem
2028 * presume that there are no holes in the memory map inside
2029 * a pageblock
2030 */
2031 start = pageblock_start_pfn(start);
2032
2033 /*
2034 * If we had a previous bank, and there is a space
2035 * between the current bank and the previous, free it.
2036 */
2037 if (prev_end && prev_end < start)
2038 free_memmap(prev_end, start);
2039
2040 /*
2041 * Align up here since many operations in VM subsystem
2042 * presume that there are no holes in the memory map inside
2043 * a pageblock
2044 */
2045 prev_end = pageblock_align(end);
2046 }
2047
2048 #ifdef CONFIG_SPARSEMEM
2049 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2050 prev_end = pageblock_align(end);
2051 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2052 }
2053 #endif
2054 }
2055
__free_pages_memory(unsigned long start,unsigned long end)2056 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2057 {
2058 int order;
2059
2060 while (start < end) {
2061 /*
2062 * Free the pages in the largest chunks alignment allows.
2063 *
2064 * __ffs() behaviour is undefined for 0. start == 0 is
2065 * MAX_ORDER-aligned, set order to MAX_ORDER for the case.
2066 */
2067 if (start)
2068 order = min_t(int, MAX_ORDER, __ffs(start));
2069 else
2070 order = MAX_ORDER;
2071
2072 while (start + (1UL << order) > end)
2073 order--;
2074
2075 memblock_free_pages(pfn_to_page(start), start, order);
2076
2077 start += (1UL << order);
2078 }
2079 }
2080
__free_memory_core(phys_addr_t start,phys_addr_t end)2081 static unsigned long __init __free_memory_core(phys_addr_t start,
2082 phys_addr_t end)
2083 {
2084 unsigned long start_pfn = PFN_UP(start);
2085 unsigned long end_pfn = min_t(unsigned long,
2086 PFN_DOWN(end), max_low_pfn);
2087
2088 if (start_pfn >= end_pfn)
2089 return 0;
2090
2091 __free_pages_memory(start_pfn, end_pfn);
2092
2093 return end_pfn - start_pfn;
2094 }
2095
memmap_init_reserved_pages(void)2096 static void __init memmap_init_reserved_pages(void)
2097 {
2098 struct memblock_region *region;
2099 phys_addr_t start, end;
2100 int nid;
2101
2102 /*
2103 * set nid on all reserved pages and also treat struct
2104 * pages for the NOMAP regions as PageReserved
2105 */
2106 for_each_mem_region(region) {
2107 nid = memblock_get_region_node(region);
2108 start = region->base;
2109 end = start + region->size;
2110
2111 if (memblock_is_nomap(region))
2112 reserve_bootmem_region(start, end, nid);
2113
2114 memblock_set_node(start, end, &memblock.reserved, nid);
2115 }
2116
2117 /* initialize struct pages for the reserved regions */
2118 for_each_reserved_mem_region(region) {
2119 nid = memblock_get_region_node(region);
2120 start = region->base;
2121 end = start + region->size;
2122
2123 if (nid == NUMA_NO_NODE || nid >= MAX_NUMNODES)
2124 nid = early_pfn_to_nid(PFN_DOWN(start));
2125
2126 reserve_bootmem_region(start, end, nid);
2127 }
2128 }
2129
free_low_memory_core_early(void)2130 static unsigned long __init free_low_memory_core_early(void)
2131 {
2132 unsigned long count = 0;
2133 phys_addr_t start, end;
2134 u64 i;
2135
2136 memblock_clear_hotplug(0, -1);
2137
2138 memmap_init_reserved_pages();
2139
2140 /*
2141 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2142 * because in some case like Node0 doesn't have RAM installed
2143 * low ram will be on Node1
2144 */
2145 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2146 NULL)
2147 count += __free_memory_core(start, end);
2148
2149 return count;
2150 }
2151
2152 static int reset_managed_pages_done __initdata;
2153
reset_node_managed_pages(pg_data_t * pgdat)2154 static void __init reset_node_managed_pages(pg_data_t *pgdat)
2155 {
2156 struct zone *z;
2157
2158 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2159 atomic_long_set(&z->managed_pages, 0);
2160 }
2161
reset_all_zones_managed_pages(void)2162 void __init reset_all_zones_managed_pages(void)
2163 {
2164 struct pglist_data *pgdat;
2165
2166 if (reset_managed_pages_done)
2167 return;
2168
2169 for_each_online_pgdat(pgdat)
2170 reset_node_managed_pages(pgdat);
2171
2172 reset_managed_pages_done = 1;
2173 }
2174
2175 /**
2176 * memblock_free_all - release free pages to the buddy allocator
2177 */
memblock_free_all(void)2178 void __init memblock_free_all(void)
2179 {
2180 unsigned long pages;
2181
2182 free_unused_memmap();
2183 reset_all_zones_managed_pages();
2184
2185 pages = free_low_memory_core_early();
2186 totalram_pages_add(pages);
2187 }
2188
2189 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2190 static const char * const flagname[] = {
2191 [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2192 [ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2193 [ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2194 [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2195 };
2196
memblock_debug_show(struct seq_file * m,void * private)2197 static int memblock_debug_show(struct seq_file *m, void *private)
2198 {
2199 struct memblock_type *type = m->private;
2200 struct memblock_region *reg;
2201 int i, j, nid;
2202 unsigned int count = ARRAY_SIZE(flagname);
2203 phys_addr_t end;
2204
2205 for (i = 0; i < type->cnt; i++) {
2206 reg = &type->regions[i];
2207 end = reg->base + reg->size - 1;
2208 nid = memblock_get_region_node(reg);
2209
2210 seq_printf(m, "%4d: ", i);
2211 seq_printf(m, "%pa..%pa ", ®->base, &end);
2212 if (nid != MAX_NUMNODES)
2213 seq_printf(m, "%4d ", nid);
2214 else
2215 seq_printf(m, "%4c ", 'x');
2216 if (reg->flags) {
2217 for (j = 0; j < count; j++) {
2218 if (reg->flags & (1U << j)) {
2219 seq_printf(m, "%s\n", flagname[j]);
2220 break;
2221 }
2222 }
2223 if (j == count)
2224 seq_printf(m, "%s\n", "UNKNOWN");
2225 } else {
2226 seq_printf(m, "%s\n", "NONE");
2227 }
2228 }
2229 return 0;
2230 }
2231 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2232
memblock_init_debugfs(void)2233 static int __init memblock_init_debugfs(void)
2234 {
2235 struct dentry *root = debugfs_create_dir("memblock", NULL);
2236
2237 debugfs_create_file("memory", 0444, root,
2238 &memblock.memory, &memblock_debug_fops);
2239 debugfs_create_file("reserved", 0444, root,
2240 &memblock.reserved, &memblock_debug_fops);
2241 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2242 debugfs_create_file("physmem", 0444, root, &physmem,
2243 &memblock_debug_fops);
2244 #endif
2245
2246 return 0;
2247 }
2248 __initcall(memblock_init_debugfs);
2249
2250 #endif /* CONFIG_DEBUG_FS */
2251