1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19
20 #include <asm/sections.h>
21 #include <linux/io.h>
22
23 #include "internal.h"
24
25 #define INIT_MEMBLOCK_REGIONS 128
26 #define INIT_PHYSMEM_REGIONS 4
27
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30 #endif
31
32 /**
33 * DOC: memblock overview
34 *
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
37 * running.
38 *
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
41 *
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
47 * * ``physmem`` - describes the actual physical memory available during
48 * boot regardless of the possible restrictions and memory hot(un)plug;
49 * the ``physmem`` type is only available on some architectures.
50 *
51 * Each region is represented by struct memblock_region that
52 * defines the region extents, its attributes and NUMA node id on NUMA
53 * systems. Every memory type is described by the struct memblock_type
54 * which contains an array of memory regions along with
55 * the allocator metadata. The "memory" and "reserved" types are nicely
56 * wrapped with struct memblock. This structure is statically
57 * initialized at build time. The region arrays are initially sized to
58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59 * for "reserved". The region array for "physmem" is initially sized to
60 * %INIT_PHYSMEM_REGIONS.
61 * The memblock_allow_resize() enables automatic resizing of the region
62 * arrays during addition of new regions. This feature should be used
63 * with care so that memory allocated for the region array will not
64 * overlap with areas that should be reserved, for example initrd.
65 *
66 * The early architecture setup should tell memblock what the physical
67 * memory layout is by using memblock_add() or memblock_add_node()
68 * functions. The first function does not assign the region to a NUMA
69 * node and it is appropriate for UMA systems. Yet, it is possible to
70 * use it on NUMA systems as well and assign the region to a NUMA node
71 * later in the setup process using memblock_set_node(). The
72 * memblock_add_node() performs such an assignment directly.
73 *
74 * Once memblock is setup the memory can be allocated using one of the
75 * API variants:
76 *
77 * * memblock_phys_alloc*() - these functions return the **physical**
78 * address of the allocated memory
79 * * memblock_alloc*() - these functions return the **virtual** address
80 * of the allocated memory.
81 *
82 * Note, that both API variants use implicit assumptions about allowed
83 * memory ranges and the fallback methods. Consult the documentation
84 * of memblock_alloc_internal() and memblock_alloc_range_nid()
85 * functions for more elaborate description.
86 *
87 * As the system boot progresses, the architecture specific mem_init()
88 * function frees all the memory to the buddy page allocator.
89 *
90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
91 * memblock data structures (except "physmem") will be discarded after the
92 * system initialization completes.
93 */
94
95 #ifndef CONFIG_NUMA
96 struct pglist_data __refdata contig_page_data;
97 EXPORT_SYMBOL(contig_page_data);
98 #endif
99
100 unsigned long max_low_pfn;
101 unsigned long min_low_pfn;
102 unsigned long max_pfn;
103 unsigned long long max_possible_pfn;
104
105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
109 #endif
110
111 struct memblock memblock __initdata_memblock = {
112 .memory.regions = memblock_memory_init_regions,
113 .memory.cnt = 1, /* empty dummy entry */
114 .memory.max = INIT_MEMBLOCK_REGIONS,
115 .memory.name = "memory",
116
117 .reserved.regions = memblock_reserved_init_regions,
118 .reserved.cnt = 1, /* empty dummy entry */
119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
120 .reserved.name = "reserved",
121
122 .bottom_up = false,
123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
124 };
125
126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127 struct memblock_type physmem = {
128 .regions = memblock_physmem_init_regions,
129 .cnt = 1, /* empty dummy entry */
130 .max = INIT_PHYSMEM_REGIONS,
131 .name = "physmem",
132 };
133 #endif
134
135 /*
136 * keep a pointer to &memblock.memory in the text section to use it in
137 * __next_mem_range() and its helpers.
138 * For architectures that do not keep memblock data after init, this
139 * pointer will be reset to NULL at memblock_discard()
140 */
141 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
142
143 #define for_each_memblock_type(i, memblock_type, rgn) \
144 for (i = 0, rgn = &memblock_type->regions[0]; \
145 i < memblock_type->cnt; \
146 i++, rgn = &memblock_type->regions[i])
147
148 #define memblock_dbg(fmt, ...) \
149 do { \
150 if (memblock_debug) \
151 pr_info(fmt, ##__VA_ARGS__); \
152 } while (0)
153
154 static int memblock_debug __initdata_memblock;
155 static bool system_has_some_mirror __initdata_memblock = false;
156 static int memblock_can_resize __initdata_memblock;
157 static int memblock_memory_in_slab __initdata_memblock = 0;
158 static int memblock_reserved_in_slab __initdata_memblock = 0;
159
choose_memblock_flags(void)160 static enum memblock_flags __init_memblock choose_memblock_flags(void)
161 {
162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
163 }
164
165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)166 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
167 {
168 return *size = min(*size, PHYS_ADDR_MAX - base);
169 }
170
171 /*
172 * Address comparison utilities
173 */
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)174 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
175 phys_addr_t base2, phys_addr_t size2)
176 {
177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
178 }
179
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)180 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
181 phys_addr_t base, phys_addr_t size)
182 {
183 unsigned long i;
184
185 memblock_cap_size(base, &size);
186
187 for (i = 0; i < type->cnt; i++)
188 if (memblock_addrs_overlap(base, size, type->regions[i].base,
189 type->regions[i].size))
190 break;
191 return i < type->cnt;
192 }
193
194 /**
195 * __memblock_find_range_bottom_up - find free area utility in bottom-up
196 * @start: start of candidate range
197 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
198 * %MEMBLOCK_ALLOC_ACCESSIBLE
199 * @size: size of free area to find
200 * @align: alignment of free area to find
201 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
202 * @flags: pick from blocks based on memory attributes
203 *
204 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
205 *
206 * Return:
207 * Found address on success, 0 on failure.
208 */
209 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)210 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
211 phys_addr_t size, phys_addr_t align, int nid,
212 enum memblock_flags flags)
213 {
214 phys_addr_t this_start, this_end, cand;
215 u64 i;
216
217 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
218 this_start = clamp(this_start, start, end);
219 this_end = clamp(this_end, start, end);
220
221 cand = round_up(this_start, align);
222 if (cand < this_end && this_end - cand >= size)
223 return cand;
224 }
225
226 return 0;
227 }
228
229 /**
230 * __memblock_find_range_top_down - find free area utility, in top-down
231 * @start: start of candidate range
232 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
233 * %MEMBLOCK_ALLOC_ACCESSIBLE
234 * @size: size of free area to find
235 * @align: alignment of free area to find
236 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
237 * @flags: pick from blocks based on memory attributes
238 *
239 * Utility called from memblock_find_in_range_node(), find free area top-down.
240 *
241 * Return:
242 * Found address on success, 0 on failure.
243 */
244 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)245 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
246 phys_addr_t size, phys_addr_t align, int nid,
247 enum memblock_flags flags)
248 {
249 phys_addr_t this_start, this_end, cand;
250 u64 i;
251
252 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
253 NULL) {
254 this_start = clamp(this_start, start, end);
255 this_end = clamp(this_end, start, end);
256
257 if (this_end < size)
258 continue;
259
260 cand = round_down(this_end - size, align);
261 if (cand >= this_start)
262 return cand;
263 }
264
265 return 0;
266 }
267
268 /**
269 * memblock_find_in_range_node - find free area in given range and node
270 * @size: size of free area to find
271 * @align: alignment of free area to find
272 * @start: start of candidate range
273 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
274 * %MEMBLOCK_ALLOC_ACCESSIBLE
275 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
276 * @flags: pick from blocks based on memory attributes
277 *
278 * Find @size free area aligned to @align in the specified range and node.
279 *
280 * Return:
281 * Found address on success, 0 on failure.
282 */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)283 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
284 phys_addr_t align, phys_addr_t start,
285 phys_addr_t end, int nid,
286 enum memblock_flags flags)
287 {
288 /* pump up @end */
289 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
290 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
291 end = memblock.current_limit;
292
293 /* avoid allocating the first page */
294 start = max_t(phys_addr_t, start, PAGE_SIZE);
295 end = max(start, end);
296
297 if (memblock_bottom_up())
298 return __memblock_find_range_bottom_up(start, end, size, align,
299 nid, flags);
300 else
301 return __memblock_find_range_top_down(start, end, size, align,
302 nid, flags);
303 }
304
305 /**
306 * memblock_find_in_range - find free area in given range
307 * @start: start of candidate range
308 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
309 * %MEMBLOCK_ALLOC_ACCESSIBLE
310 * @size: size of free area to find
311 * @align: alignment of free area to find
312 *
313 * Find @size free area aligned to @align in the specified range.
314 *
315 * Return:
316 * Found address on success, 0 on failure.
317 */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)318 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
319 phys_addr_t end, phys_addr_t size,
320 phys_addr_t align)
321 {
322 phys_addr_t ret;
323 enum memblock_flags flags = choose_memblock_flags();
324
325 again:
326 ret = memblock_find_in_range_node(size, align, start, end,
327 NUMA_NO_NODE, flags);
328
329 if (!ret && (flags & MEMBLOCK_MIRROR)) {
330 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
331 &size);
332 flags &= ~MEMBLOCK_MIRROR;
333 goto again;
334 }
335
336 return ret;
337 }
338
memblock_remove_region(struct memblock_type * type,unsigned long r)339 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
340 {
341 type->total_size -= type->regions[r].size;
342 memmove(&type->regions[r], &type->regions[r + 1],
343 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
344 type->cnt--;
345
346 /* Special case for empty arrays */
347 if (type->cnt == 0) {
348 WARN_ON(type->total_size != 0);
349 type->cnt = 1;
350 type->regions[0].base = 0;
351 type->regions[0].size = 0;
352 type->regions[0].flags = 0;
353 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
354 }
355 }
356
357 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
358 /**
359 * memblock_discard - discard memory and reserved arrays if they were allocated
360 */
memblock_discard(void)361 void __init memblock_discard(void)
362 {
363 phys_addr_t addr, size;
364
365 if (memblock.reserved.regions != memblock_reserved_init_regions) {
366 addr = __pa(memblock.reserved.regions);
367 size = PAGE_ALIGN(sizeof(struct memblock_region) *
368 memblock.reserved.max);
369 if (memblock_reserved_in_slab)
370 kfree(memblock.reserved.regions);
371 else
372 memblock_free_late(addr, size);
373 }
374
375 if (memblock.memory.regions != memblock_memory_init_regions) {
376 addr = __pa(memblock.memory.regions);
377 size = PAGE_ALIGN(sizeof(struct memblock_region) *
378 memblock.memory.max);
379 if (memblock_memory_in_slab)
380 kfree(memblock.memory.regions);
381 else
382 memblock_free_late(addr, size);
383 }
384
385 memblock_memory = NULL;
386 }
387 #endif
388
389 /**
390 * memblock_double_array - double the size of the memblock regions array
391 * @type: memblock type of the regions array being doubled
392 * @new_area_start: starting address of memory range to avoid overlap with
393 * @new_area_size: size of memory range to avoid overlap with
394 *
395 * Double the size of the @type regions array. If memblock is being used to
396 * allocate memory for a new reserved regions array and there is a previously
397 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
398 * waiting to be reserved, ensure the memory used by the new array does
399 * not overlap.
400 *
401 * Return:
402 * 0 on success, -1 on failure.
403 */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)404 static int __init_memblock memblock_double_array(struct memblock_type *type,
405 phys_addr_t new_area_start,
406 phys_addr_t new_area_size)
407 {
408 struct memblock_region *new_array, *old_array;
409 phys_addr_t old_alloc_size, new_alloc_size;
410 phys_addr_t old_size, new_size, addr, new_end;
411 int use_slab = slab_is_available();
412 int *in_slab;
413
414 /* We don't allow resizing until we know about the reserved regions
415 * of memory that aren't suitable for allocation
416 */
417 if (!memblock_can_resize)
418 return -1;
419
420 /* Calculate new doubled size */
421 old_size = type->max * sizeof(struct memblock_region);
422 new_size = old_size << 1;
423 /*
424 * We need to allocated new one align to PAGE_SIZE,
425 * so we can free them completely later.
426 */
427 old_alloc_size = PAGE_ALIGN(old_size);
428 new_alloc_size = PAGE_ALIGN(new_size);
429
430 /* Retrieve the slab flag */
431 if (type == &memblock.memory)
432 in_slab = &memblock_memory_in_slab;
433 else
434 in_slab = &memblock_reserved_in_slab;
435
436 /* Try to find some space for it */
437 if (use_slab) {
438 new_array = kmalloc(new_size, GFP_KERNEL);
439 addr = new_array ? __pa(new_array) : 0;
440 } else {
441 /* only exclude range when trying to double reserved.regions */
442 if (type != &memblock.reserved)
443 new_area_start = new_area_size = 0;
444
445 addr = memblock_find_in_range(new_area_start + new_area_size,
446 memblock.current_limit,
447 new_alloc_size, PAGE_SIZE);
448 if (!addr && new_area_size)
449 addr = memblock_find_in_range(0,
450 min(new_area_start, memblock.current_limit),
451 new_alloc_size, PAGE_SIZE);
452
453 new_array = addr ? __va(addr) : NULL;
454 }
455 if (!addr) {
456 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
457 type->name, type->max, type->max * 2);
458 return -1;
459 }
460
461 new_end = addr + new_size - 1;
462 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
463 type->name, type->max * 2, &addr, &new_end);
464
465 /*
466 * Found space, we now need to move the array over before we add the
467 * reserved region since it may be our reserved array itself that is
468 * full.
469 */
470 memcpy(new_array, type->regions, old_size);
471 memset(new_array + type->max, 0, old_size);
472 old_array = type->regions;
473 type->regions = new_array;
474 type->max <<= 1;
475
476 /* Free old array. We needn't free it if the array is the static one */
477 if (*in_slab)
478 kfree(old_array);
479 else if (old_array != memblock_memory_init_regions &&
480 old_array != memblock_reserved_init_regions)
481 memblock_free(old_array, old_alloc_size);
482
483 /*
484 * Reserve the new array if that comes from the memblock. Otherwise, we
485 * needn't do it
486 */
487 if (!use_slab)
488 BUG_ON(memblock_reserve(addr, new_alloc_size));
489
490 /* Update slab flag */
491 *in_slab = use_slab;
492
493 return 0;
494 }
495
496 /**
497 * memblock_merge_regions - merge neighboring compatible regions
498 * @type: memblock type to scan
499 *
500 * Scan @type and merge neighboring compatible regions.
501 */
memblock_merge_regions(struct memblock_type * type)502 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
503 {
504 int i = 0;
505
506 /* cnt never goes below 1 */
507 while (i < type->cnt - 1) {
508 struct memblock_region *this = &type->regions[i];
509 struct memblock_region *next = &type->regions[i + 1];
510
511 if (this->base + this->size != next->base ||
512 memblock_get_region_node(this) !=
513 memblock_get_region_node(next) ||
514 this->flags != next->flags) {
515 BUG_ON(this->base + this->size > next->base);
516 i++;
517 continue;
518 }
519
520 this->size += next->size;
521 /* move forward from next + 1, index of which is i + 2 */
522 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
523 type->cnt--;
524 }
525 }
526
527 /**
528 * memblock_insert_region - insert new memblock region
529 * @type: memblock type to insert into
530 * @idx: index for the insertion point
531 * @base: base address of the new region
532 * @size: size of the new region
533 * @nid: node id of the new region
534 * @flags: flags of the new region
535 *
536 * Insert new memblock region [@base, @base + @size) into @type at @idx.
537 * @type must already have extra room to accommodate the new region.
538 */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)539 static void __init_memblock memblock_insert_region(struct memblock_type *type,
540 int idx, phys_addr_t base,
541 phys_addr_t size,
542 int nid,
543 enum memblock_flags flags)
544 {
545 struct memblock_region *rgn = &type->regions[idx];
546
547 BUG_ON(type->cnt >= type->max);
548 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
549 rgn->base = base;
550 rgn->size = size;
551 rgn->flags = flags;
552 memblock_set_region_node(rgn, nid);
553 type->cnt++;
554 type->total_size += size;
555 }
556
557 /**
558 * memblock_add_range - add new memblock region
559 * @type: memblock type to add new region into
560 * @base: base address of the new region
561 * @size: size of the new region
562 * @nid: nid of the new region
563 * @flags: flags of the new region
564 *
565 * Add new memblock region [@base, @base + @size) into @type. The new region
566 * is allowed to overlap with existing ones - overlaps don't affect already
567 * existing regions. @type is guaranteed to be minimal (all neighbouring
568 * compatible regions are merged) after the addition.
569 *
570 * Return:
571 * 0 on success, -errno on failure.
572 */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)573 static int __init_memblock memblock_add_range(struct memblock_type *type,
574 phys_addr_t base, phys_addr_t size,
575 int nid, enum memblock_flags flags)
576 {
577 bool insert = false;
578 phys_addr_t obase = base;
579 phys_addr_t end = base + memblock_cap_size(base, &size);
580 int idx, nr_new;
581 struct memblock_region *rgn;
582
583 if (!size)
584 return 0;
585
586 /* special case for empty array */
587 if (type->regions[0].size == 0) {
588 WARN_ON(type->cnt != 1 || type->total_size);
589 type->regions[0].base = base;
590 type->regions[0].size = size;
591 type->regions[0].flags = flags;
592 memblock_set_region_node(&type->regions[0], nid);
593 type->total_size = size;
594 return 0;
595 }
596 repeat:
597 /*
598 * The following is executed twice. Once with %false @insert and
599 * then with %true. The first counts the number of regions needed
600 * to accommodate the new area. The second actually inserts them.
601 */
602 base = obase;
603 nr_new = 0;
604
605 for_each_memblock_type(idx, type, rgn) {
606 phys_addr_t rbase = rgn->base;
607 phys_addr_t rend = rbase + rgn->size;
608
609 if (rbase >= end)
610 break;
611 if (rend <= base)
612 continue;
613 /*
614 * @rgn overlaps. If it separates the lower part of new
615 * area, insert that portion.
616 */
617 if (rbase > base) {
618 #ifdef CONFIG_NUMA
619 WARN_ON(nid != memblock_get_region_node(rgn));
620 #endif
621 WARN_ON(flags != rgn->flags);
622 nr_new++;
623 if (insert)
624 memblock_insert_region(type, idx++, base,
625 rbase - base, nid,
626 flags);
627 }
628 /* area below @rend is dealt with, forget about it */
629 base = min(rend, end);
630 }
631
632 /* insert the remaining portion */
633 if (base < end) {
634 nr_new++;
635 if (insert)
636 memblock_insert_region(type, idx, base, end - base,
637 nid, flags);
638 }
639
640 if (!nr_new)
641 return 0;
642
643 /*
644 * If this was the first round, resize array and repeat for actual
645 * insertions; otherwise, merge and return.
646 */
647 if (!insert) {
648 while (type->cnt + nr_new > type->max)
649 if (memblock_double_array(type, obase, size) < 0)
650 return -ENOMEM;
651 insert = true;
652 goto repeat;
653 } else {
654 memblock_merge_regions(type);
655 return 0;
656 }
657 }
658
659 /**
660 * memblock_add_node - add new memblock region within a NUMA node
661 * @base: base address of the new region
662 * @size: size of the new region
663 * @nid: nid of the new region
664 * @flags: flags of the new region
665 *
666 * Add new memblock region [@base, @base + @size) to the "memory"
667 * type. See memblock_add_range() description for mode details
668 *
669 * Return:
670 * 0 on success, -errno on failure.
671 */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)672 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
673 int nid, enum memblock_flags flags)
674 {
675 phys_addr_t end = base + size - 1;
676
677 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
678 &base, &end, nid, flags, (void *)_RET_IP_);
679
680 return memblock_add_range(&memblock.memory, base, size, nid, flags);
681 }
682
683 /**
684 * memblock_add - add new memblock region
685 * @base: base address of the new region
686 * @size: size of the new region
687 *
688 * Add new memblock region [@base, @base + @size) to the "memory"
689 * type. See memblock_add_range() description for mode details
690 *
691 * Return:
692 * 0 on success, -errno on failure.
693 */
memblock_add(phys_addr_t base,phys_addr_t size)694 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
695 {
696 phys_addr_t end = base + size - 1;
697
698 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
699 &base, &end, (void *)_RET_IP_);
700
701 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
702 }
703
704 /**
705 * memblock_isolate_range - isolate given range into disjoint memblocks
706 * @type: memblock type to isolate range for
707 * @base: base of range to isolate
708 * @size: size of range to isolate
709 * @start_rgn: out parameter for the start of isolated region
710 * @end_rgn: out parameter for the end of isolated region
711 *
712 * Walk @type and ensure that regions don't cross the boundaries defined by
713 * [@base, @base + @size). Crossing regions are split at the boundaries,
714 * which may create at most two more regions. The index of the first
715 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
716 *
717 * Return:
718 * 0 on success, -errno on failure.
719 */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)720 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
721 phys_addr_t base, phys_addr_t size,
722 int *start_rgn, int *end_rgn)
723 {
724 phys_addr_t end = base + memblock_cap_size(base, &size);
725 int idx;
726 struct memblock_region *rgn;
727
728 *start_rgn = *end_rgn = 0;
729
730 if (!size)
731 return 0;
732
733 /* we'll create at most two more regions */
734 while (type->cnt + 2 > type->max)
735 if (memblock_double_array(type, base, size) < 0)
736 return -ENOMEM;
737
738 for_each_memblock_type(idx, type, rgn) {
739 phys_addr_t rbase = rgn->base;
740 phys_addr_t rend = rbase + rgn->size;
741
742 if (rbase >= end)
743 break;
744 if (rend <= base)
745 continue;
746
747 if (rbase < base) {
748 /*
749 * @rgn intersects from below. Split and continue
750 * to process the next region - the new top half.
751 */
752 rgn->base = base;
753 rgn->size -= base - rbase;
754 type->total_size -= base - rbase;
755 memblock_insert_region(type, idx, rbase, base - rbase,
756 memblock_get_region_node(rgn),
757 rgn->flags);
758 } else if (rend > end) {
759 /*
760 * @rgn intersects from above. Split and redo the
761 * current region - the new bottom half.
762 */
763 rgn->base = end;
764 rgn->size -= end - rbase;
765 type->total_size -= end - rbase;
766 memblock_insert_region(type, idx--, rbase, end - rbase,
767 memblock_get_region_node(rgn),
768 rgn->flags);
769 } else {
770 /* @rgn is fully contained, record it */
771 if (!*end_rgn)
772 *start_rgn = idx;
773 *end_rgn = idx + 1;
774 }
775 }
776
777 return 0;
778 }
779
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)780 static int __init_memblock memblock_remove_range(struct memblock_type *type,
781 phys_addr_t base, phys_addr_t size)
782 {
783 int start_rgn, end_rgn;
784 int i, ret;
785
786 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
787 if (ret)
788 return ret;
789
790 for (i = end_rgn - 1; i >= start_rgn; i--)
791 memblock_remove_region(type, i);
792 return 0;
793 }
794
memblock_remove(phys_addr_t base,phys_addr_t size)795 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
796 {
797 phys_addr_t end = base + size - 1;
798
799 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
800 &base, &end, (void *)_RET_IP_);
801
802 return memblock_remove_range(&memblock.memory, base, size);
803 }
804
805 /**
806 * memblock_free - free boot memory allocation
807 * @ptr: starting address of the boot memory allocation
808 * @size: size of the boot memory block in bytes
809 *
810 * Free boot memory block previously allocated by memblock_alloc_xx() API.
811 * The freeing memory will not be released to the buddy allocator.
812 */
memblock_free(void * ptr,size_t size)813 void __init_memblock memblock_free(void *ptr, size_t size)
814 {
815 if (ptr)
816 memblock_phys_free(__pa(ptr), size);
817 }
818
819 /**
820 * memblock_phys_free - free boot memory block
821 * @base: phys starting address of the boot memory block
822 * @size: size of the boot memory block in bytes
823 *
824 * Free boot memory block previously allocated by memblock_alloc_xx() API.
825 * The freeing memory will not be released to the buddy allocator.
826 */
memblock_phys_free(phys_addr_t base,phys_addr_t size)827 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
828 {
829 phys_addr_t end = base + size - 1;
830
831 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
832 &base, &end, (void *)_RET_IP_);
833
834 kmemleak_free_part_phys(base, size);
835 return memblock_remove_range(&memblock.reserved, base, size);
836 }
837
memblock_reserve(phys_addr_t base,phys_addr_t size)838 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
839 {
840 phys_addr_t end = base + size - 1;
841
842 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
843 &base, &end, (void *)_RET_IP_);
844
845 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
846 }
847
848 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
memblock_physmem_add(phys_addr_t base,phys_addr_t size)849 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
850 {
851 phys_addr_t end = base + size - 1;
852
853 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
854 &base, &end, (void *)_RET_IP_);
855
856 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
857 }
858 #endif
859
860 /**
861 * memblock_setclr_flag - set or clear flag for a memory region
862 * @base: base address of the region
863 * @size: size of the region
864 * @set: set or clear the flag
865 * @flag: the flag to update
866 *
867 * This function isolates region [@base, @base + @size), and sets/clears flag
868 *
869 * Return: 0 on success, -errno on failure.
870 */
memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)871 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
872 phys_addr_t size, int set, int flag)
873 {
874 struct memblock_type *type = &memblock.memory;
875 int i, ret, start_rgn, end_rgn;
876
877 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
878 if (ret)
879 return ret;
880
881 for (i = start_rgn; i < end_rgn; i++) {
882 struct memblock_region *r = &type->regions[i];
883
884 if (set)
885 r->flags |= flag;
886 else
887 r->flags &= ~flag;
888 }
889
890 memblock_merge_regions(type);
891 return 0;
892 }
893
894 /**
895 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
896 * @base: the base phys addr of the region
897 * @size: the size of the region
898 *
899 * Return: 0 on success, -errno on failure.
900 */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)901 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
902 {
903 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
904 }
905
906 /**
907 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
908 * @base: the base phys addr of the region
909 * @size: the size of the region
910 *
911 * Return: 0 on success, -errno on failure.
912 */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)913 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
914 {
915 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
916 }
917
918 /**
919 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
920 * @base: the base phys addr of the region
921 * @size: the size of the region
922 *
923 * Return: 0 on success, -errno on failure.
924 */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)925 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
926 {
927 system_has_some_mirror = true;
928
929 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
930 }
931
932 /**
933 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
934 * @base: the base phys addr of the region
935 * @size: the size of the region
936 *
937 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
938 * direct mapping of the physical memory. These regions will still be
939 * covered by the memory map. The struct page representing NOMAP memory
940 * frames in the memory map will be PageReserved()
941 *
942 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
943 * memblock, the caller must inform kmemleak to ignore that memory
944 *
945 * Return: 0 on success, -errno on failure.
946 */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)947 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
948 {
949 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
950 }
951
952 /**
953 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
954 * @base: the base phys addr of the region
955 * @size: the size of the region
956 *
957 * Return: 0 on success, -errno on failure.
958 */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)959 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
960 {
961 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
962 }
963
should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)964 static bool should_skip_region(struct memblock_type *type,
965 struct memblock_region *m,
966 int nid, int flags)
967 {
968 int m_nid = memblock_get_region_node(m);
969
970 /* we never skip regions when iterating memblock.reserved or physmem */
971 if (type != memblock_memory)
972 return false;
973
974 /* only memory regions are associated with nodes, check it */
975 if (nid != NUMA_NO_NODE && nid != m_nid)
976 return true;
977
978 /* skip hotpluggable memory regions if needed */
979 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
980 !(flags & MEMBLOCK_HOTPLUG))
981 return true;
982
983 /* if we want mirror memory skip non-mirror memory regions */
984 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
985 return true;
986
987 /* skip nomap memory unless we were asked for it explicitly */
988 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
989 return true;
990
991 /* skip driver-managed memory unless we were asked for it explicitly */
992 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
993 return true;
994
995 return false;
996 }
997
998 /**
999 * __next_mem_range - next function for for_each_free_mem_range() etc.
1000 * @idx: pointer to u64 loop variable
1001 * @nid: node selector, %NUMA_NO_NODE for all nodes
1002 * @flags: pick from blocks based on memory attributes
1003 * @type_a: pointer to memblock_type from where the range is taken
1004 * @type_b: pointer to memblock_type which excludes memory from being taken
1005 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1006 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1007 * @out_nid: ptr to int for nid of the range, can be %NULL
1008 *
1009 * Find the first area from *@idx which matches @nid, fill the out
1010 * parameters, and update *@idx for the next iteration. The lower 32bit of
1011 * *@idx contains index into type_a and the upper 32bit indexes the
1012 * areas before each region in type_b. For example, if type_b regions
1013 * look like the following,
1014 *
1015 * 0:[0-16), 1:[32-48), 2:[128-130)
1016 *
1017 * The upper 32bit indexes the following regions.
1018 *
1019 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1020 *
1021 * As both region arrays are sorted, the function advances the two indices
1022 * in lockstep and returns each intersection.
1023 */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1024 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1025 struct memblock_type *type_a,
1026 struct memblock_type *type_b, phys_addr_t *out_start,
1027 phys_addr_t *out_end, int *out_nid)
1028 {
1029 int idx_a = *idx & 0xffffffff;
1030 int idx_b = *idx >> 32;
1031
1032 if (WARN_ONCE(nid == MAX_NUMNODES,
1033 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1034 nid = NUMA_NO_NODE;
1035
1036 for (; idx_a < type_a->cnt; idx_a++) {
1037 struct memblock_region *m = &type_a->regions[idx_a];
1038
1039 phys_addr_t m_start = m->base;
1040 phys_addr_t m_end = m->base + m->size;
1041 int m_nid = memblock_get_region_node(m);
1042
1043 if (should_skip_region(type_a, m, nid, flags))
1044 continue;
1045
1046 if (!type_b) {
1047 if (out_start)
1048 *out_start = m_start;
1049 if (out_end)
1050 *out_end = m_end;
1051 if (out_nid)
1052 *out_nid = m_nid;
1053 idx_a++;
1054 *idx = (u32)idx_a | (u64)idx_b << 32;
1055 return;
1056 }
1057
1058 /* scan areas before each reservation */
1059 for (; idx_b < type_b->cnt + 1; idx_b++) {
1060 struct memblock_region *r;
1061 phys_addr_t r_start;
1062 phys_addr_t r_end;
1063
1064 r = &type_b->regions[idx_b];
1065 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1066 r_end = idx_b < type_b->cnt ?
1067 r->base : PHYS_ADDR_MAX;
1068
1069 /*
1070 * if idx_b advanced past idx_a,
1071 * break out to advance idx_a
1072 */
1073 if (r_start >= m_end)
1074 break;
1075 /* if the two regions intersect, we're done */
1076 if (m_start < r_end) {
1077 if (out_start)
1078 *out_start =
1079 max(m_start, r_start);
1080 if (out_end)
1081 *out_end = min(m_end, r_end);
1082 if (out_nid)
1083 *out_nid = m_nid;
1084 /*
1085 * The region which ends first is
1086 * advanced for the next iteration.
1087 */
1088 if (m_end <= r_end)
1089 idx_a++;
1090 else
1091 idx_b++;
1092 *idx = (u32)idx_a | (u64)idx_b << 32;
1093 return;
1094 }
1095 }
1096 }
1097
1098 /* signal end of iteration */
1099 *idx = ULLONG_MAX;
1100 }
1101
1102 /**
1103 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1104 *
1105 * @idx: pointer to u64 loop variable
1106 * @nid: node selector, %NUMA_NO_NODE for all nodes
1107 * @flags: pick from blocks based on memory attributes
1108 * @type_a: pointer to memblock_type from where the range is taken
1109 * @type_b: pointer to memblock_type which excludes memory from being taken
1110 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1111 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1112 * @out_nid: ptr to int for nid of the range, can be %NULL
1113 *
1114 * Finds the next range from type_a which is not marked as unsuitable
1115 * in type_b.
1116 *
1117 * Reverse of __next_mem_range().
1118 */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1119 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1120 enum memblock_flags flags,
1121 struct memblock_type *type_a,
1122 struct memblock_type *type_b,
1123 phys_addr_t *out_start,
1124 phys_addr_t *out_end, int *out_nid)
1125 {
1126 int idx_a = *idx & 0xffffffff;
1127 int idx_b = *idx >> 32;
1128
1129 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1130 nid = NUMA_NO_NODE;
1131
1132 if (*idx == (u64)ULLONG_MAX) {
1133 idx_a = type_a->cnt - 1;
1134 if (type_b != NULL)
1135 idx_b = type_b->cnt;
1136 else
1137 idx_b = 0;
1138 }
1139
1140 for (; idx_a >= 0; idx_a--) {
1141 struct memblock_region *m = &type_a->regions[idx_a];
1142
1143 phys_addr_t m_start = m->base;
1144 phys_addr_t m_end = m->base + m->size;
1145 int m_nid = memblock_get_region_node(m);
1146
1147 if (should_skip_region(type_a, m, nid, flags))
1148 continue;
1149
1150 if (!type_b) {
1151 if (out_start)
1152 *out_start = m_start;
1153 if (out_end)
1154 *out_end = m_end;
1155 if (out_nid)
1156 *out_nid = m_nid;
1157 idx_a--;
1158 *idx = (u32)idx_a | (u64)idx_b << 32;
1159 return;
1160 }
1161
1162 /* scan areas before each reservation */
1163 for (; idx_b >= 0; idx_b--) {
1164 struct memblock_region *r;
1165 phys_addr_t r_start;
1166 phys_addr_t r_end;
1167
1168 r = &type_b->regions[idx_b];
1169 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1170 r_end = idx_b < type_b->cnt ?
1171 r->base : PHYS_ADDR_MAX;
1172 /*
1173 * if idx_b advanced past idx_a,
1174 * break out to advance idx_a
1175 */
1176
1177 if (r_end <= m_start)
1178 break;
1179 /* if the two regions intersect, we're done */
1180 if (m_end > r_start) {
1181 if (out_start)
1182 *out_start = max(m_start, r_start);
1183 if (out_end)
1184 *out_end = min(m_end, r_end);
1185 if (out_nid)
1186 *out_nid = m_nid;
1187 if (m_start >= r_start)
1188 idx_a--;
1189 else
1190 idx_b--;
1191 *idx = (u32)idx_a | (u64)idx_b << 32;
1192 return;
1193 }
1194 }
1195 }
1196 /* signal end of iteration */
1197 *idx = ULLONG_MAX;
1198 }
1199
1200 /*
1201 * Common iterator interface used to define for_each_mem_pfn_range().
1202 */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1203 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1204 unsigned long *out_start_pfn,
1205 unsigned long *out_end_pfn, int *out_nid)
1206 {
1207 struct memblock_type *type = &memblock.memory;
1208 struct memblock_region *r;
1209 int r_nid;
1210
1211 while (++*idx < type->cnt) {
1212 r = &type->regions[*idx];
1213 r_nid = memblock_get_region_node(r);
1214
1215 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1216 continue;
1217 if (nid == MAX_NUMNODES || nid == r_nid)
1218 break;
1219 }
1220 if (*idx >= type->cnt) {
1221 *idx = -1;
1222 return;
1223 }
1224
1225 if (out_start_pfn)
1226 *out_start_pfn = PFN_UP(r->base);
1227 if (out_end_pfn)
1228 *out_end_pfn = PFN_DOWN(r->base + r->size);
1229 if (out_nid)
1230 *out_nid = r_nid;
1231 }
1232
1233 /**
1234 * memblock_set_node - set node ID on memblock regions
1235 * @base: base of area to set node ID for
1236 * @size: size of area to set node ID for
1237 * @type: memblock type to set node ID for
1238 * @nid: node ID to set
1239 *
1240 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1241 * Regions which cross the area boundaries are split as necessary.
1242 *
1243 * Return:
1244 * 0 on success, -errno on failure.
1245 */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1246 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1247 struct memblock_type *type, int nid)
1248 {
1249 #ifdef CONFIG_NUMA
1250 int start_rgn, end_rgn;
1251 int i, ret;
1252
1253 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1254 if (ret)
1255 return ret;
1256
1257 for (i = start_rgn; i < end_rgn; i++)
1258 memblock_set_region_node(&type->regions[i], nid);
1259
1260 memblock_merge_regions(type);
1261 #endif
1262 return 0;
1263 }
1264
1265 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1266 /**
1267 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1268 *
1269 * @idx: pointer to u64 loop variable
1270 * @zone: zone in which all of the memory blocks reside
1271 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1272 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1273 *
1274 * This function is meant to be a zone/pfn specific wrapper for the
1275 * for_each_mem_range type iterators. Specifically they are used in the
1276 * deferred memory init routines and as such we were duplicating much of
1277 * this logic throughout the code. So instead of having it in multiple
1278 * locations it seemed like it would make more sense to centralize this to
1279 * one new iterator that does everything they need.
1280 */
1281 void __init_memblock
__next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1282 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1283 unsigned long *out_spfn, unsigned long *out_epfn)
1284 {
1285 int zone_nid = zone_to_nid(zone);
1286 phys_addr_t spa, epa;
1287
1288 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1289 &memblock.memory, &memblock.reserved,
1290 &spa, &epa, NULL);
1291
1292 while (*idx != U64_MAX) {
1293 unsigned long epfn = PFN_DOWN(epa);
1294 unsigned long spfn = PFN_UP(spa);
1295
1296 /*
1297 * Verify the end is at least past the start of the zone and
1298 * that we have at least one PFN to initialize.
1299 */
1300 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1301 /* if we went too far just stop searching */
1302 if (zone_end_pfn(zone) <= spfn) {
1303 *idx = U64_MAX;
1304 break;
1305 }
1306
1307 if (out_spfn)
1308 *out_spfn = max(zone->zone_start_pfn, spfn);
1309 if (out_epfn)
1310 *out_epfn = min(zone_end_pfn(zone), epfn);
1311
1312 return;
1313 }
1314
1315 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1316 &memblock.memory, &memblock.reserved,
1317 &spa, &epa, NULL);
1318 }
1319
1320 /* signal end of iteration */
1321 if (out_spfn)
1322 *out_spfn = ULONG_MAX;
1323 if (out_epfn)
1324 *out_epfn = 0;
1325 }
1326
1327 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1328
1329 /**
1330 * memblock_alloc_range_nid - allocate boot memory block
1331 * @size: size of memory block to be allocated in bytes
1332 * @align: alignment of the region and block's size
1333 * @start: the lower bound of the memory region to allocate (phys address)
1334 * @end: the upper bound of the memory region to allocate (phys address)
1335 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1336 * @exact_nid: control the allocation fall back to other nodes
1337 *
1338 * The allocation is performed from memory region limited by
1339 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1340 *
1341 * If the specified node can not hold the requested memory and @exact_nid
1342 * is false, the allocation falls back to any node in the system.
1343 *
1344 * For systems with memory mirroring, the allocation is attempted first
1345 * from the regions with mirroring enabled and then retried from any
1346 * memory region.
1347 *
1348 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1349 * allocated boot memory block, so that it is never reported as leaks.
1350 *
1351 * Return:
1352 * Physical address of allocated memory block on success, %0 on failure.
1353 */
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1354 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1355 phys_addr_t align, phys_addr_t start,
1356 phys_addr_t end, int nid,
1357 bool exact_nid)
1358 {
1359 enum memblock_flags flags = choose_memblock_flags();
1360 phys_addr_t found;
1361
1362 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1363 nid = NUMA_NO_NODE;
1364
1365 if (!align) {
1366 /* Can't use WARNs this early in boot on powerpc */
1367 dump_stack();
1368 align = SMP_CACHE_BYTES;
1369 }
1370
1371 again:
1372 found = memblock_find_in_range_node(size, align, start, end, nid,
1373 flags);
1374 if (found && !memblock_reserve(found, size))
1375 goto done;
1376
1377 if (nid != NUMA_NO_NODE && !exact_nid) {
1378 found = memblock_find_in_range_node(size, align, start,
1379 end, NUMA_NO_NODE,
1380 flags);
1381 if (found && !memblock_reserve(found, size))
1382 goto done;
1383 }
1384
1385 if (flags & MEMBLOCK_MIRROR) {
1386 flags &= ~MEMBLOCK_MIRROR;
1387 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1388 &size);
1389 goto again;
1390 }
1391
1392 return 0;
1393
1394 done:
1395 /*
1396 * Skip kmemleak for those places like kasan_init() and
1397 * early_pgtable_alloc() due to high volume.
1398 */
1399 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1400 /*
1401 * The min_count is set to 0 so that memblock allocated
1402 * blocks are never reported as leaks. This is because many
1403 * of these blocks are only referred via the physical
1404 * address which is not looked up by kmemleak.
1405 */
1406 kmemleak_alloc_phys(found, size, 0, 0);
1407
1408 return found;
1409 }
1410
1411 /**
1412 * memblock_phys_alloc_range - allocate a memory block inside specified range
1413 * @size: size of memory block to be allocated in bytes
1414 * @align: alignment of the region and block's size
1415 * @start: the lower bound of the memory region to allocate (physical address)
1416 * @end: the upper bound of the memory region to allocate (physical address)
1417 *
1418 * Allocate @size bytes in the between @start and @end.
1419 *
1420 * Return: physical address of the allocated memory block on success,
1421 * %0 on failure.
1422 */
memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1423 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1424 phys_addr_t align,
1425 phys_addr_t start,
1426 phys_addr_t end)
1427 {
1428 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1429 __func__, (u64)size, (u64)align, &start, &end,
1430 (void *)_RET_IP_);
1431 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1432 false);
1433 }
1434
1435 /**
1436 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1437 * @size: size of memory block to be allocated in bytes
1438 * @align: alignment of the region and block's size
1439 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1440 *
1441 * Allocates memory block from the specified NUMA node. If the node
1442 * has no available memory, attempts to allocated from any node in the
1443 * system.
1444 *
1445 * Return: physical address of the allocated memory block on success,
1446 * %0 on failure.
1447 */
memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1448 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1449 {
1450 return memblock_alloc_range_nid(size, align, 0,
1451 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1452 }
1453
1454 /**
1455 * memblock_alloc_internal - allocate boot memory block
1456 * @size: size of memory block to be allocated in bytes
1457 * @align: alignment of the region and block's size
1458 * @min_addr: the lower bound of the memory region to allocate (phys address)
1459 * @max_addr: the upper bound of the memory region to allocate (phys address)
1460 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1461 * @exact_nid: control the allocation fall back to other nodes
1462 *
1463 * Allocates memory block using memblock_alloc_range_nid() and
1464 * converts the returned physical address to virtual.
1465 *
1466 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1467 * will fall back to memory below @min_addr. Other constraints, such
1468 * as node and mirrored memory will be handled again in
1469 * memblock_alloc_range_nid().
1470 *
1471 * Return:
1472 * Virtual address of allocated memory block on success, NULL on failure.
1473 */
memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1474 static void * __init memblock_alloc_internal(
1475 phys_addr_t size, phys_addr_t align,
1476 phys_addr_t min_addr, phys_addr_t max_addr,
1477 int nid, bool exact_nid)
1478 {
1479 phys_addr_t alloc;
1480
1481 /*
1482 * Detect any accidental use of these APIs after slab is ready, as at
1483 * this moment memblock may be deinitialized already and its
1484 * internal data may be destroyed (after execution of memblock_free_all)
1485 */
1486 if (WARN_ON_ONCE(slab_is_available()))
1487 return kzalloc_node(size, GFP_NOWAIT, nid);
1488
1489 if (max_addr > memblock.current_limit)
1490 max_addr = memblock.current_limit;
1491
1492 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1493 exact_nid);
1494
1495 /* retry allocation without lower limit */
1496 if (!alloc && min_addr)
1497 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1498 exact_nid);
1499
1500 if (!alloc)
1501 return NULL;
1502
1503 return phys_to_virt(alloc);
1504 }
1505
1506 /**
1507 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1508 * without zeroing memory
1509 * @size: size of memory block to be allocated in bytes
1510 * @align: alignment of the region and block's size
1511 * @min_addr: the lower bound of the memory region from where the allocation
1512 * is preferred (phys address)
1513 * @max_addr: the upper bound of the memory region from where the allocation
1514 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1515 * allocate only from memory limited by memblock.current_limit value
1516 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1517 *
1518 * Public function, provides additional debug information (including caller
1519 * info), if enabled. Does not zero allocated memory.
1520 *
1521 * Return:
1522 * Virtual address of allocated memory block on success, NULL on failure.
1523 */
memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1524 void * __init memblock_alloc_exact_nid_raw(
1525 phys_addr_t size, phys_addr_t align,
1526 phys_addr_t min_addr, phys_addr_t max_addr,
1527 int nid)
1528 {
1529 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1530 __func__, (u64)size, (u64)align, nid, &min_addr,
1531 &max_addr, (void *)_RET_IP_);
1532
1533 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1534 true);
1535 }
1536
1537 /**
1538 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1539 * memory and without panicking
1540 * @size: size of memory block to be allocated in bytes
1541 * @align: alignment of the region and block's size
1542 * @min_addr: the lower bound of the memory region from where the allocation
1543 * is preferred (phys address)
1544 * @max_addr: the upper bound of the memory region from where the allocation
1545 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1546 * allocate only from memory limited by memblock.current_limit value
1547 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1548 *
1549 * Public function, provides additional debug information (including caller
1550 * info), if enabled. Does not zero allocated memory, does not panic if request
1551 * cannot be satisfied.
1552 *
1553 * Return:
1554 * Virtual address of allocated memory block on success, NULL on failure.
1555 */
memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1556 void * __init memblock_alloc_try_nid_raw(
1557 phys_addr_t size, phys_addr_t align,
1558 phys_addr_t min_addr, phys_addr_t max_addr,
1559 int nid)
1560 {
1561 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1562 __func__, (u64)size, (u64)align, nid, &min_addr,
1563 &max_addr, (void *)_RET_IP_);
1564
1565 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1566 false);
1567 }
1568
1569 /**
1570 * memblock_alloc_try_nid - allocate boot memory block
1571 * @size: size of memory block to be allocated in bytes
1572 * @align: alignment of the region and block's size
1573 * @min_addr: the lower bound of the memory region from where the allocation
1574 * is preferred (phys address)
1575 * @max_addr: the upper bound of the memory region from where the allocation
1576 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1577 * allocate only from memory limited by memblock.current_limit value
1578 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1579 *
1580 * Public function, provides additional debug information (including caller
1581 * info), if enabled. This function zeroes the allocated memory.
1582 *
1583 * Return:
1584 * Virtual address of allocated memory block on success, NULL on failure.
1585 */
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1586 void * __init memblock_alloc_try_nid(
1587 phys_addr_t size, phys_addr_t align,
1588 phys_addr_t min_addr, phys_addr_t max_addr,
1589 int nid)
1590 {
1591 void *ptr;
1592
1593 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1594 __func__, (u64)size, (u64)align, nid, &min_addr,
1595 &max_addr, (void *)_RET_IP_);
1596 ptr = memblock_alloc_internal(size, align,
1597 min_addr, max_addr, nid, false);
1598 if (ptr)
1599 memset(ptr, 0, size);
1600
1601 return ptr;
1602 }
1603
1604 /**
1605 * memblock_free_late - free pages directly to buddy allocator
1606 * @base: phys starting address of the boot memory block
1607 * @size: size of the boot memory block in bytes
1608 *
1609 * This is only useful when the memblock allocator has already been torn
1610 * down, but we are still initializing the system. Pages are released directly
1611 * to the buddy allocator.
1612 */
memblock_free_late(phys_addr_t base,phys_addr_t size)1613 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1614 {
1615 phys_addr_t cursor, end;
1616
1617 end = base + size - 1;
1618 memblock_dbg("%s: [%pa-%pa] %pS\n",
1619 __func__, &base, &end, (void *)_RET_IP_);
1620 kmemleak_free_part_phys(base, size);
1621 cursor = PFN_UP(base);
1622 end = PFN_DOWN(base + size);
1623
1624 for (; cursor < end; cursor++) {
1625 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1626 totalram_pages_inc();
1627 }
1628 }
1629
1630 /*
1631 * Remaining API functions
1632 */
1633
memblock_phys_mem_size(void)1634 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1635 {
1636 return memblock.memory.total_size;
1637 }
1638
memblock_reserved_size(void)1639 phys_addr_t __init_memblock memblock_reserved_size(void)
1640 {
1641 return memblock.reserved.total_size;
1642 }
1643
1644 /* lowest address */
memblock_start_of_DRAM(void)1645 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1646 {
1647 return memblock.memory.regions[0].base;
1648 }
1649
memblock_end_of_DRAM(void)1650 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1651 {
1652 int idx = memblock.memory.cnt - 1;
1653
1654 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1655 }
1656
__find_max_addr(phys_addr_t limit)1657 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1658 {
1659 phys_addr_t max_addr = PHYS_ADDR_MAX;
1660 struct memblock_region *r;
1661
1662 /*
1663 * translate the memory @limit size into the max address within one of
1664 * the memory memblock regions, if the @limit exceeds the total size
1665 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1666 */
1667 for_each_mem_region(r) {
1668 if (limit <= r->size) {
1669 max_addr = r->base + limit;
1670 break;
1671 }
1672 limit -= r->size;
1673 }
1674
1675 return max_addr;
1676 }
1677
memblock_enforce_memory_limit(phys_addr_t limit)1678 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1679 {
1680 phys_addr_t max_addr;
1681
1682 if (!limit)
1683 return;
1684
1685 max_addr = __find_max_addr(limit);
1686
1687 /* @limit exceeds the total size of the memory, do nothing */
1688 if (max_addr == PHYS_ADDR_MAX)
1689 return;
1690
1691 /* truncate both memory and reserved regions */
1692 memblock_remove_range(&memblock.memory, max_addr,
1693 PHYS_ADDR_MAX);
1694 memblock_remove_range(&memblock.reserved, max_addr,
1695 PHYS_ADDR_MAX);
1696 }
1697
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1698 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1699 {
1700 int start_rgn, end_rgn;
1701 int i, ret;
1702
1703 if (!size)
1704 return;
1705
1706 if (!memblock_memory->total_size) {
1707 pr_warn("%s: No memory registered yet\n", __func__);
1708 return;
1709 }
1710
1711 ret = memblock_isolate_range(&memblock.memory, base, size,
1712 &start_rgn, &end_rgn);
1713 if (ret)
1714 return;
1715
1716 /* remove all the MAP regions */
1717 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1718 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1719 memblock_remove_region(&memblock.memory, i);
1720
1721 for (i = start_rgn - 1; i >= 0; i--)
1722 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1723 memblock_remove_region(&memblock.memory, i);
1724
1725 /* truncate the reserved regions */
1726 memblock_remove_range(&memblock.reserved, 0, base);
1727 memblock_remove_range(&memblock.reserved,
1728 base + size, PHYS_ADDR_MAX);
1729 }
1730
memblock_mem_limit_remove_map(phys_addr_t limit)1731 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1732 {
1733 phys_addr_t max_addr;
1734
1735 if (!limit)
1736 return;
1737
1738 max_addr = __find_max_addr(limit);
1739
1740 /* @limit exceeds the total size of the memory, do nothing */
1741 if (max_addr == PHYS_ADDR_MAX)
1742 return;
1743
1744 memblock_cap_memory_range(0, max_addr);
1745 }
1746
memblock_search(struct memblock_type * type,phys_addr_t addr)1747 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1748 {
1749 unsigned int left = 0, right = type->cnt;
1750
1751 do {
1752 unsigned int mid = (right + left) / 2;
1753
1754 if (addr < type->regions[mid].base)
1755 right = mid;
1756 else if (addr >= (type->regions[mid].base +
1757 type->regions[mid].size))
1758 left = mid + 1;
1759 else
1760 return mid;
1761 } while (left < right);
1762 return -1;
1763 }
1764
memblock_is_reserved(phys_addr_t addr)1765 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1766 {
1767 return memblock_search(&memblock.reserved, addr) != -1;
1768 }
1769
memblock_is_memory(phys_addr_t addr)1770 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1771 {
1772 return memblock_search(&memblock.memory, addr) != -1;
1773 }
1774
memblock_is_map_memory(phys_addr_t addr)1775 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1776 {
1777 int i = memblock_search(&memblock.memory, addr);
1778
1779 if (i == -1)
1780 return false;
1781 return !memblock_is_nomap(&memblock.memory.regions[i]);
1782 }
1783
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1784 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1785 unsigned long *start_pfn, unsigned long *end_pfn)
1786 {
1787 struct memblock_type *type = &memblock.memory;
1788 int mid = memblock_search(type, PFN_PHYS(pfn));
1789
1790 if (mid == -1)
1791 return -1;
1792
1793 *start_pfn = PFN_DOWN(type->regions[mid].base);
1794 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1795
1796 return memblock_get_region_node(&type->regions[mid]);
1797 }
1798
1799 /**
1800 * memblock_is_region_memory - check if a region is a subset of memory
1801 * @base: base of region to check
1802 * @size: size of region to check
1803 *
1804 * Check if the region [@base, @base + @size) is a subset of a memory block.
1805 *
1806 * Return:
1807 * 0 if false, non-zero if true
1808 */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1809 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1810 {
1811 int idx = memblock_search(&memblock.memory, base);
1812 phys_addr_t end = base + memblock_cap_size(base, &size);
1813
1814 if (idx == -1)
1815 return false;
1816 return (memblock.memory.regions[idx].base +
1817 memblock.memory.regions[idx].size) >= end;
1818 }
1819
1820 /**
1821 * memblock_is_region_reserved - check if a region intersects reserved memory
1822 * @base: base of region to check
1823 * @size: size of region to check
1824 *
1825 * Check if the region [@base, @base + @size) intersects a reserved
1826 * memory block.
1827 *
1828 * Return:
1829 * True if they intersect, false if not.
1830 */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1831 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1832 {
1833 return memblock_overlaps_region(&memblock.reserved, base, size);
1834 }
1835
memblock_trim_memory(phys_addr_t align)1836 void __init_memblock memblock_trim_memory(phys_addr_t align)
1837 {
1838 phys_addr_t start, end, orig_start, orig_end;
1839 struct memblock_region *r;
1840
1841 for_each_mem_region(r) {
1842 orig_start = r->base;
1843 orig_end = r->base + r->size;
1844 start = round_up(orig_start, align);
1845 end = round_down(orig_end, align);
1846
1847 if (start == orig_start && end == orig_end)
1848 continue;
1849
1850 if (start < end) {
1851 r->base = start;
1852 r->size = end - start;
1853 } else {
1854 memblock_remove_region(&memblock.memory,
1855 r - memblock.memory.regions);
1856 r--;
1857 }
1858 }
1859 }
1860
memblock_set_current_limit(phys_addr_t limit)1861 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1862 {
1863 memblock.current_limit = limit;
1864 }
1865
memblock_get_current_limit(void)1866 phys_addr_t __init_memblock memblock_get_current_limit(void)
1867 {
1868 return memblock.current_limit;
1869 }
1870
memblock_dump(struct memblock_type * type)1871 static void __init_memblock memblock_dump(struct memblock_type *type)
1872 {
1873 phys_addr_t base, end, size;
1874 enum memblock_flags flags;
1875 int idx;
1876 struct memblock_region *rgn;
1877
1878 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1879
1880 for_each_memblock_type(idx, type, rgn) {
1881 char nid_buf[32] = "";
1882
1883 base = rgn->base;
1884 size = rgn->size;
1885 end = base + size - 1;
1886 flags = rgn->flags;
1887 #ifdef CONFIG_NUMA
1888 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1889 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1890 memblock_get_region_node(rgn));
1891 #endif
1892 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1893 type->name, idx, &base, &end, &size, nid_buf, flags);
1894 }
1895 }
1896
__memblock_dump_all(void)1897 static void __init_memblock __memblock_dump_all(void)
1898 {
1899 pr_info("MEMBLOCK configuration:\n");
1900 pr_info(" memory size = %pa reserved size = %pa\n",
1901 &memblock.memory.total_size,
1902 &memblock.reserved.total_size);
1903
1904 memblock_dump(&memblock.memory);
1905 memblock_dump(&memblock.reserved);
1906 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1907 memblock_dump(&physmem);
1908 #endif
1909 }
1910
memblock_dump_all(void)1911 void __init_memblock memblock_dump_all(void)
1912 {
1913 if (memblock_debug)
1914 __memblock_dump_all();
1915 }
1916
memblock_allow_resize(void)1917 void __init memblock_allow_resize(void)
1918 {
1919 memblock_can_resize = 1;
1920 }
1921
early_memblock(char * p)1922 static int __init early_memblock(char *p)
1923 {
1924 if (p && strstr(p, "debug"))
1925 memblock_debug = 1;
1926 return 0;
1927 }
1928 early_param("memblock", early_memblock);
1929
free_memmap(unsigned long start_pfn,unsigned long end_pfn)1930 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1931 {
1932 struct page *start_pg, *end_pg;
1933 phys_addr_t pg, pgend;
1934
1935 /*
1936 * Convert start_pfn/end_pfn to a struct page pointer.
1937 */
1938 start_pg = pfn_to_page(start_pfn - 1) + 1;
1939 end_pg = pfn_to_page(end_pfn - 1) + 1;
1940
1941 /*
1942 * Convert to physical addresses, and round start upwards and end
1943 * downwards.
1944 */
1945 pg = PAGE_ALIGN(__pa(start_pg));
1946 pgend = __pa(end_pg) & PAGE_MASK;
1947
1948 /*
1949 * If there are free pages between these, free the section of the
1950 * memmap array.
1951 */
1952 if (pg < pgend)
1953 memblock_phys_free(pg, pgend - pg);
1954 }
1955
1956 /*
1957 * The mem_map array can get very big. Free the unused area of the memory map.
1958 */
free_unused_memmap(void)1959 static void __init free_unused_memmap(void)
1960 {
1961 unsigned long start, end, prev_end = 0;
1962 int i;
1963
1964 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
1965 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
1966 return;
1967
1968 /*
1969 * This relies on each bank being in address order.
1970 * The banks are sorted previously in bootmem_init().
1971 */
1972 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
1973 #ifdef CONFIG_SPARSEMEM
1974 /*
1975 * Take care not to free memmap entries that don't exist
1976 * due to SPARSEMEM sections which aren't present.
1977 */
1978 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
1979 #endif
1980 /*
1981 * Align down here since many operations in VM subsystem
1982 * presume that there are no holes in the memory map inside
1983 * a pageblock
1984 */
1985 start = round_down(start, pageblock_nr_pages);
1986
1987 /*
1988 * If we had a previous bank, and there is a space
1989 * between the current bank and the previous, free it.
1990 */
1991 if (prev_end && prev_end < start)
1992 free_memmap(prev_end, start);
1993
1994 /*
1995 * Align up here since many operations in VM subsystem
1996 * presume that there are no holes in the memory map inside
1997 * a pageblock
1998 */
1999 prev_end = ALIGN(end, pageblock_nr_pages);
2000 }
2001
2002 #ifdef CONFIG_SPARSEMEM
2003 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2004 prev_end = ALIGN(end, pageblock_nr_pages);
2005 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2006 }
2007 #endif
2008 }
2009
__free_pages_memory(unsigned long start,unsigned long end)2010 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2011 {
2012 int order;
2013
2014 while (start < end) {
2015 order = min(MAX_ORDER - 1UL, __ffs(start));
2016
2017 while (start + (1UL << order) > end)
2018 order--;
2019
2020 memblock_free_pages(pfn_to_page(start), start, order);
2021
2022 start += (1UL << order);
2023 }
2024 }
2025
__free_memory_core(phys_addr_t start,phys_addr_t end)2026 static unsigned long __init __free_memory_core(phys_addr_t start,
2027 phys_addr_t end)
2028 {
2029 unsigned long start_pfn = PFN_UP(start);
2030 unsigned long end_pfn = min_t(unsigned long,
2031 PFN_DOWN(end), max_low_pfn);
2032
2033 if (start_pfn >= end_pfn)
2034 return 0;
2035
2036 __free_pages_memory(start_pfn, end_pfn);
2037
2038 return end_pfn - start_pfn;
2039 }
2040
memmap_init_reserved_pages(void)2041 static void __init memmap_init_reserved_pages(void)
2042 {
2043 struct memblock_region *region;
2044 phys_addr_t start, end;
2045 u64 i;
2046
2047 /* initialize struct pages for the reserved regions */
2048 for_each_reserved_mem_range(i, &start, &end)
2049 reserve_bootmem_region(start, end);
2050
2051 /* and also treat struct pages for the NOMAP regions as PageReserved */
2052 for_each_mem_region(region) {
2053 if (memblock_is_nomap(region)) {
2054 start = region->base;
2055 end = start + region->size;
2056 reserve_bootmem_region(start, end);
2057 }
2058 }
2059 }
2060
free_low_memory_core_early(void)2061 static unsigned long __init free_low_memory_core_early(void)
2062 {
2063 unsigned long count = 0;
2064 phys_addr_t start, end;
2065 u64 i;
2066
2067 memblock_clear_hotplug(0, -1);
2068
2069 memmap_init_reserved_pages();
2070
2071 /*
2072 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2073 * because in some case like Node0 doesn't have RAM installed
2074 * low ram will be on Node1
2075 */
2076 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2077 NULL)
2078 count += __free_memory_core(start, end);
2079
2080 return count;
2081 }
2082
2083 static int reset_managed_pages_done __initdata;
2084
reset_node_managed_pages(pg_data_t * pgdat)2085 void reset_node_managed_pages(pg_data_t *pgdat)
2086 {
2087 struct zone *z;
2088
2089 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2090 atomic_long_set(&z->managed_pages, 0);
2091 }
2092
reset_all_zones_managed_pages(void)2093 void __init reset_all_zones_managed_pages(void)
2094 {
2095 struct pglist_data *pgdat;
2096
2097 if (reset_managed_pages_done)
2098 return;
2099
2100 for_each_online_pgdat(pgdat)
2101 reset_node_managed_pages(pgdat);
2102
2103 reset_managed_pages_done = 1;
2104 }
2105
2106 /**
2107 * memblock_free_all - release free pages to the buddy allocator
2108 */
memblock_free_all(void)2109 void __init memblock_free_all(void)
2110 {
2111 unsigned long pages;
2112
2113 free_unused_memmap();
2114 reset_all_zones_managed_pages();
2115
2116 pages = free_low_memory_core_early();
2117 totalram_pages_add(pages);
2118 }
2119
2120 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2121
memblock_debug_show(struct seq_file * m,void * private)2122 static int memblock_debug_show(struct seq_file *m, void *private)
2123 {
2124 struct memblock_type *type = m->private;
2125 struct memblock_region *reg;
2126 int i;
2127 phys_addr_t end;
2128
2129 for (i = 0; i < type->cnt; i++) {
2130 reg = &type->regions[i];
2131 end = reg->base + reg->size - 1;
2132
2133 seq_printf(m, "%4d: ", i);
2134 seq_printf(m, "%pa..%pa\n", ®->base, &end);
2135 }
2136 return 0;
2137 }
2138 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2139
memblock_init_debugfs(void)2140 static int __init memblock_init_debugfs(void)
2141 {
2142 struct dentry *root = debugfs_create_dir("memblock", NULL);
2143
2144 debugfs_create_file("memory", 0444, root,
2145 &memblock.memory, &memblock_debug_fops);
2146 debugfs_create_file("reserved", 0444, root,
2147 &memblock.reserved, &memblock_debug_fops);
2148 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2149 debugfs_create_file("physmem", 0444, root, &physmem,
2150 &memblock_debug_fops);
2151 #endif
2152
2153 return 0;
2154 }
2155 __initcall(memblock_init_debugfs);
2156
2157 #endif /* CONFIG_DEBUG_FS */
2158