1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 md.c : Multiple Devices driver for Linux
4 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5
6 completely rewritten, based on the MD driver code from Marc Zyngier
7
8 Changes:
9
10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14 - kmod support by: Cyrus Durgin
15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17
18 - lots of fixes and improvements to the RAID1/RAID5 and generic
19 RAID code (such as request based resynchronization):
20
21 Neil Brown <neilb@cse.unsw.edu.au>.
22
23 - persistent bitmap code
24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25
26
27 Errors, Warnings, etc.
28 Please use:
29 pr_crit() for error conditions that risk data loss
30 pr_err() for error conditions that are unexpected, like an IO error
31 or internal inconsistency
32 pr_warn() for error conditions that could have been predicated, like
33 adding a device to an array when it has incompatible metadata
34 pr_info() for every interesting, very rare events, like an array starting
35 or stopping, or resync starting or stopping
36 pr_debug() for everything else.
37
38 */
39
40 #include <linux/sched/mm.h>
41 #include <linux/sched/signal.h>
42 #include <linux/kthread.h>
43 #include <linux/blkdev.h>
44 #include <linux/blk-integrity.h>
45 #include <linux/badblocks.h>
46 #include <linux/sysctl.h>
47 #include <linux/seq_file.h>
48 #include <linux/fs.h>
49 #include <linux/poll.h>
50 #include <linux/ctype.h>
51 #include <linux/string.h>
52 #include <linux/hdreg.h>
53 #include <linux/proc_fs.h>
54 #include <linux/random.h>
55 #include <linux/major.h>
56 #include <linux/module.h>
57 #include <linux/reboot.h>
58 #include <linux/file.h>
59 #include <linux/compat.h>
60 #include <linux/delay.h>
61 #include <linux/raid/md_p.h>
62 #include <linux/raid/md_u.h>
63 #include <linux/raid/detect.h>
64 #include <linux/slab.h>
65 #include <linux/percpu-refcount.h>
66 #include <linux/part_stat.h>
67
68 #include <trace/events/block.h>
69 #include "md.h"
70 #include "md-bitmap.h"
71 #include "md-cluster.h"
72
73 /* pers_list is a list of registered personalities protected by pers_lock. */
74 static LIST_HEAD(pers_list);
75 static DEFINE_SPINLOCK(pers_lock);
76
77 static const struct kobj_type md_ktype;
78
79 struct md_cluster_operations *md_cluster_ops;
80 EXPORT_SYMBOL(md_cluster_ops);
81 static struct module *md_cluster_mod;
82
83 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
84 static struct workqueue_struct *md_wq;
85 static struct workqueue_struct *md_misc_wq;
86 struct workqueue_struct *md_bitmap_wq;
87
88 static int remove_and_add_spares(struct mddev *mddev,
89 struct md_rdev *this);
90 static void mddev_detach(struct mddev *mddev);
91 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev);
92 static void md_wakeup_thread_directly(struct md_thread __rcu *thread);
93
94 /*
95 * Default number of read corrections we'll attempt on an rdev
96 * before ejecting it from the array. We divide the read error
97 * count by 2 for every hour elapsed between read errors.
98 */
99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
100 /* Default safemode delay: 200 msec */
101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
102 /*
103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
104 * is 1000 KB/sec, so the extra system load does not show up that much.
105 * Increase it if you want to have more _guaranteed_ speed. Note that
106 * the RAID driver will use the maximum available bandwidth if the IO
107 * subsystem is idle. There is also an 'absolute maximum' reconstruction
108 * speed limit - in case reconstruction slows down your system despite
109 * idle IO detection.
110 *
111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
112 * or /sys/block/mdX/md/sync_speed_{min,max}
113 */
114
115 static int sysctl_speed_limit_min = 1000;
116 static int sysctl_speed_limit_max = 200000;
speed_min(struct mddev * mddev)117 static inline int speed_min(struct mddev *mddev)
118 {
119 return mddev->sync_speed_min ?
120 mddev->sync_speed_min : sysctl_speed_limit_min;
121 }
122
speed_max(struct mddev * mddev)123 static inline int speed_max(struct mddev *mddev)
124 {
125 return mddev->sync_speed_max ?
126 mddev->sync_speed_max : sysctl_speed_limit_max;
127 }
128
rdev_uninit_serial(struct md_rdev * rdev)129 static void rdev_uninit_serial(struct md_rdev *rdev)
130 {
131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
132 return;
133
134 kvfree(rdev->serial);
135 rdev->serial = NULL;
136 }
137
rdevs_uninit_serial(struct mddev * mddev)138 static void rdevs_uninit_serial(struct mddev *mddev)
139 {
140 struct md_rdev *rdev;
141
142 rdev_for_each(rdev, mddev)
143 rdev_uninit_serial(rdev);
144 }
145
rdev_init_serial(struct md_rdev * rdev)146 static int rdev_init_serial(struct md_rdev *rdev)
147 {
148 /* serial_nums equals with BARRIER_BUCKETS_NR */
149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
150 struct serial_in_rdev *serial = NULL;
151
152 if (test_bit(CollisionCheck, &rdev->flags))
153 return 0;
154
155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
156 GFP_KERNEL);
157 if (!serial)
158 return -ENOMEM;
159
160 for (i = 0; i < serial_nums; i++) {
161 struct serial_in_rdev *serial_tmp = &serial[i];
162
163 spin_lock_init(&serial_tmp->serial_lock);
164 serial_tmp->serial_rb = RB_ROOT_CACHED;
165 init_waitqueue_head(&serial_tmp->serial_io_wait);
166 }
167
168 rdev->serial = serial;
169 set_bit(CollisionCheck, &rdev->flags);
170
171 return 0;
172 }
173
rdevs_init_serial(struct mddev * mddev)174 static int rdevs_init_serial(struct mddev *mddev)
175 {
176 struct md_rdev *rdev;
177 int ret = 0;
178
179 rdev_for_each(rdev, mddev) {
180 ret = rdev_init_serial(rdev);
181 if (ret)
182 break;
183 }
184
185 /* Free all resources if pool is not existed */
186 if (ret && !mddev->serial_info_pool)
187 rdevs_uninit_serial(mddev);
188
189 return ret;
190 }
191
192 /*
193 * rdev needs to enable serial stuffs if it meets the conditions:
194 * 1. it is multi-queue device flaged with writemostly.
195 * 2. the write-behind mode is enabled.
196 */
rdev_need_serial(struct md_rdev * rdev)197 static int rdev_need_serial(struct md_rdev *rdev)
198 {
199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
201 test_bit(WriteMostly, &rdev->flags));
202 }
203
204 /*
205 * Init resource for rdev(s), then create serial_info_pool if:
206 * 1. rdev is the first device which return true from rdev_enable_serial.
207 * 2. rdev is NULL, means we want to enable serialization for all rdevs.
208 */
mddev_create_serial_pool(struct mddev * mddev,struct md_rdev * rdev,bool is_suspend)209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
210 bool is_suspend)
211 {
212 int ret = 0;
213
214 if (rdev && !rdev_need_serial(rdev) &&
215 !test_bit(CollisionCheck, &rdev->flags))
216 return;
217
218 if (!is_suspend)
219 mddev_suspend(mddev);
220
221 if (!rdev)
222 ret = rdevs_init_serial(mddev);
223 else
224 ret = rdev_init_serial(rdev);
225 if (ret)
226 goto abort;
227
228 if (mddev->serial_info_pool == NULL) {
229 /*
230 * already in memalloc noio context by
231 * mddev_suspend()
232 */
233 mddev->serial_info_pool =
234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
235 sizeof(struct serial_info));
236 if (!mddev->serial_info_pool) {
237 rdevs_uninit_serial(mddev);
238 pr_err("can't alloc memory pool for serialization\n");
239 }
240 }
241
242 abort:
243 if (!is_suspend)
244 mddev_resume(mddev);
245 }
246
247 /*
248 * Free resource from rdev(s), and destroy serial_info_pool under conditions:
249 * 1. rdev is the last device flaged with CollisionCheck.
250 * 2. when bitmap is destroyed while policy is not enabled.
251 * 3. for disable policy, the pool is destroyed only when no rdev needs it.
252 */
mddev_destroy_serial_pool(struct mddev * mddev,struct md_rdev * rdev,bool is_suspend)253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
254 bool is_suspend)
255 {
256 if (rdev && !test_bit(CollisionCheck, &rdev->flags))
257 return;
258
259 if (mddev->serial_info_pool) {
260 struct md_rdev *temp;
261 int num = 0; /* used to track if other rdevs need the pool */
262
263 if (!is_suspend)
264 mddev_suspend(mddev);
265 rdev_for_each(temp, mddev) {
266 if (!rdev) {
267 if (!mddev->serialize_policy ||
268 !rdev_need_serial(temp))
269 rdev_uninit_serial(temp);
270 else
271 num++;
272 } else if (temp != rdev &&
273 test_bit(CollisionCheck, &temp->flags))
274 num++;
275 }
276
277 if (rdev)
278 rdev_uninit_serial(rdev);
279
280 if (num)
281 pr_info("The mempool could be used by other devices\n");
282 else {
283 mempool_destroy(mddev->serial_info_pool);
284 mddev->serial_info_pool = NULL;
285 }
286 if (!is_suspend)
287 mddev_resume(mddev);
288 }
289 }
290
291 static struct ctl_table_header *raid_table_header;
292
293 static struct ctl_table raid_table[] = {
294 {
295 .procname = "speed_limit_min",
296 .data = &sysctl_speed_limit_min,
297 .maxlen = sizeof(int),
298 .mode = S_IRUGO|S_IWUSR,
299 .proc_handler = proc_dointvec,
300 },
301 {
302 .procname = "speed_limit_max",
303 .data = &sysctl_speed_limit_max,
304 .maxlen = sizeof(int),
305 .mode = S_IRUGO|S_IWUSR,
306 .proc_handler = proc_dointvec,
307 },
308 { }
309 };
310
311 static int start_readonly;
312
313 /*
314 * The original mechanism for creating an md device is to create
315 * a device node in /dev and to open it. This causes races with device-close.
316 * The preferred method is to write to the "new_array" module parameter.
317 * This can avoid races.
318 * Setting create_on_open to false disables the original mechanism
319 * so all the races disappear.
320 */
321 static bool create_on_open = true;
322
323 /*
324 * We have a system wide 'event count' that is incremented
325 * on any 'interesting' event, and readers of /proc/mdstat
326 * can use 'poll' or 'select' to find out when the event
327 * count increases.
328 *
329 * Events are:
330 * start array, stop array, error, add device, remove device,
331 * start build, activate spare
332 */
333 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
334 static atomic_t md_event_count;
md_new_event(void)335 void md_new_event(void)
336 {
337 atomic_inc(&md_event_count);
338 wake_up(&md_event_waiters);
339 }
340 EXPORT_SYMBOL_GPL(md_new_event);
341
342 /*
343 * Enables to iterate over all existing md arrays
344 * all_mddevs_lock protects this list.
345 */
346 static LIST_HEAD(all_mddevs);
347 static DEFINE_SPINLOCK(all_mddevs_lock);
348
349 /* Rather than calling directly into the personality make_request function,
350 * IO requests come here first so that we can check if the device is
351 * being suspended pending a reconfiguration.
352 * We hold a refcount over the call to ->make_request. By the time that
353 * call has finished, the bio has been linked into some internal structure
354 * and so is visible to ->quiesce(), so we don't need the refcount any more.
355 */
is_suspended(struct mddev * mddev,struct bio * bio)356 static bool is_suspended(struct mddev *mddev, struct bio *bio)
357 {
358 if (is_md_suspended(mddev))
359 return true;
360 if (bio_data_dir(bio) != WRITE)
361 return false;
362 if (mddev->suspend_lo >= mddev->suspend_hi)
363 return false;
364 if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
365 return false;
366 if (bio_end_sector(bio) < mddev->suspend_lo)
367 return false;
368 return true;
369 }
370
md_handle_request(struct mddev * mddev,struct bio * bio)371 void md_handle_request(struct mddev *mddev, struct bio *bio)
372 {
373 check_suspended:
374 if (is_suspended(mddev, bio)) {
375 DEFINE_WAIT(__wait);
376 /* Bail out if REQ_NOWAIT is set for the bio */
377 if (bio->bi_opf & REQ_NOWAIT) {
378 bio_wouldblock_error(bio);
379 return;
380 }
381 for (;;) {
382 prepare_to_wait(&mddev->sb_wait, &__wait,
383 TASK_UNINTERRUPTIBLE);
384 if (!is_suspended(mddev, bio))
385 break;
386 schedule();
387 }
388 finish_wait(&mddev->sb_wait, &__wait);
389 }
390 if (!percpu_ref_tryget_live(&mddev->active_io))
391 goto check_suspended;
392
393 if (!mddev->pers->make_request(mddev, bio)) {
394 percpu_ref_put(&mddev->active_io);
395 goto check_suspended;
396 }
397
398 percpu_ref_put(&mddev->active_io);
399 }
400 EXPORT_SYMBOL(md_handle_request);
401
md_submit_bio(struct bio * bio)402 static void md_submit_bio(struct bio *bio)
403 {
404 const int rw = bio_data_dir(bio);
405 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data;
406
407 if (mddev == NULL || mddev->pers == NULL) {
408 bio_io_error(bio);
409 return;
410 }
411
412 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
413 bio_io_error(bio);
414 return;
415 }
416
417 bio = bio_split_to_limits(bio);
418 if (!bio)
419 return;
420
421 if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) {
422 if (bio_sectors(bio) != 0)
423 bio->bi_status = BLK_STS_IOERR;
424 bio_endio(bio);
425 return;
426 }
427
428 /* bio could be mergeable after passing to underlayer */
429 bio->bi_opf &= ~REQ_NOMERGE;
430
431 md_handle_request(mddev, bio);
432 }
433
434 /* mddev_suspend makes sure no new requests are submitted
435 * to the device, and that any requests that have been submitted
436 * are completely handled.
437 * Once mddev_detach() is called and completes, the module will be
438 * completely unused.
439 */
mddev_suspend(struct mddev * mddev)440 void mddev_suspend(struct mddev *mddev)
441 {
442 struct md_thread *thread = rcu_dereference_protected(mddev->thread,
443 lockdep_is_held(&mddev->reconfig_mutex));
444
445 WARN_ON_ONCE(thread && current == thread->tsk);
446 if (mddev->suspended++)
447 return;
448 wake_up(&mddev->sb_wait);
449 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
450 percpu_ref_kill(&mddev->active_io);
451
452 if (mddev->pers && mddev->pers->prepare_suspend)
453 mddev->pers->prepare_suspend(mddev);
454
455 wait_event(mddev->sb_wait, percpu_ref_is_zero(&mddev->active_io));
456 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
457 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
458
459 del_timer_sync(&mddev->safemode_timer);
460 /* restrict memory reclaim I/O during raid array is suspend */
461 mddev->noio_flag = memalloc_noio_save();
462 }
463 EXPORT_SYMBOL_GPL(mddev_suspend);
464
mddev_resume(struct mddev * mddev)465 void mddev_resume(struct mddev *mddev)
466 {
467 lockdep_assert_held(&mddev->reconfig_mutex);
468 if (--mddev->suspended)
469 return;
470
471 /* entred the memalloc scope from mddev_suspend() */
472 memalloc_noio_restore(mddev->noio_flag);
473
474 percpu_ref_resurrect(&mddev->active_io);
475 wake_up(&mddev->sb_wait);
476
477 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
478 md_wakeup_thread(mddev->thread);
479 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
480 }
481 EXPORT_SYMBOL_GPL(mddev_resume);
482
483 /*
484 * Generic flush handling for md
485 */
486
md_end_flush(struct bio * bio)487 static void md_end_flush(struct bio *bio)
488 {
489 struct md_rdev *rdev = bio->bi_private;
490 struct mddev *mddev = rdev->mddev;
491
492 bio_put(bio);
493
494 rdev_dec_pending(rdev, mddev);
495
496 if (atomic_dec_and_test(&mddev->flush_pending)) {
497 /* The pair is percpu_ref_get() from md_flush_request() */
498 percpu_ref_put(&mddev->active_io);
499
500 /* The pre-request flush has finished */
501 queue_work(md_wq, &mddev->flush_work);
502 }
503 }
504
505 static void md_submit_flush_data(struct work_struct *ws);
506
submit_flushes(struct work_struct * ws)507 static void submit_flushes(struct work_struct *ws)
508 {
509 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
510 struct md_rdev *rdev;
511
512 mddev->start_flush = ktime_get_boottime();
513 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
514 atomic_set(&mddev->flush_pending, 1);
515 rcu_read_lock();
516 rdev_for_each_rcu(rdev, mddev)
517 if (rdev->raid_disk >= 0 &&
518 !test_bit(Faulty, &rdev->flags)) {
519 struct bio *bi;
520
521 atomic_inc(&rdev->nr_pending);
522 rcu_read_unlock();
523 bi = bio_alloc_bioset(rdev->bdev, 0,
524 REQ_OP_WRITE | REQ_PREFLUSH,
525 GFP_NOIO, &mddev->bio_set);
526 bi->bi_end_io = md_end_flush;
527 bi->bi_private = rdev;
528 atomic_inc(&mddev->flush_pending);
529 submit_bio(bi);
530 rcu_read_lock();
531 }
532 rcu_read_unlock();
533 if (atomic_dec_and_test(&mddev->flush_pending)) {
534 /* The pair is percpu_ref_get() from md_flush_request() */
535 percpu_ref_put(&mddev->active_io);
536
537 queue_work(md_wq, &mddev->flush_work);
538 }
539 }
540
md_submit_flush_data(struct work_struct * ws)541 static void md_submit_flush_data(struct work_struct *ws)
542 {
543 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
544 struct bio *bio = mddev->flush_bio;
545
546 /*
547 * must reset flush_bio before calling into md_handle_request to avoid a
548 * deadlock, because other bios passed md_handle_request suspend check
549 * could wait for this and below md_handle_request could wait for those
550 * bios because of suspend check
551 */
552 spin_lock_irq(&mddev->lock);
553 mddev->prev_flush_start = mddev->start_flush;
554 mddev->flush_bio = NULL;
555 spin_unlock_irq(&mddev->lock);
556 wake_up(&mddev->sb_wait);
557
558 if (bio->bi_iter.bi_size == 0) {
559 /* an empty barrier - all done */
560 bio_endio(bio);
561 } else {
562 bio->bi_opf &= ~REQ_PREFLUSH;
563 md_handle_request(mddev, bio);
564 }
565 }
566
567 /*
568 * Manages consolidation of flushes and submitting any flushes needed for
569 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is
570 * being finished in another context. Returns false if the flushing is
571 * complete but still needs the I/O portion of the bio to be processed.
572 */
md_flush_request(struct mddev * mddev,struct bio * bio)573 bool md_flush_request(struct mddev *mddev, struct bio *bio)
574 {
575 ktime_t req_start = ktime_get_boottime();
576 spin_lock_irq(&mddev->lock);
577 /* flush requests wait until ongoing flush completes,
578 * hence coalescing all the pending requests.
579 */
580 wait_event_lock_irq(mddev->sb_wait,
581 !mddev->flush_bio ||
582 ktime_before(req_start, mddev->prev_flush_start),
583 mddev->lock);
584 /* new request after previous flush is completed */
585 if (ktime_after(req_start, mddev->prev_flush_start)) {
586 WARN_ON(mddev->flush_bio);
587 /*
588 * Grab a reference to make sure mddev_suspend() will wait for
589 * this flush to be done.
590 *
591 * md_flush_reqeust() is called under md_handle_request() and
592 * 'active_io' is already grabbed, hence percpu_ref_is_zero()
593 * won't pass, percpu_ref_tryget_live() can't be used because
594 * percpu_ref_kill() can be called by mddev_suspend()
595 * concurrently.
596 */
597 WARN_ON(percpu_ref_is_zero(&mddev->active_io));
598 percpu_ref_get(&mddev->active_io);
599 mddev->flush_bio = bio;
600 bio = NULL;
601 }
602 spin_unlock_irq(&mddev->lock);
603
604 if (!bio) {
605 INIT_WORK(&mddev->flush_work, submit_flushes);
606 queue_work(md_wq, &mddev->flush_work);
607 } else {
608 /* flush was performed for some other bio while we waited. */
609 if (bio->bi_iter.bi_size == 0)
610 /* an empty barrier - all done */
611 bio_endio(bio);
612 else {
613 bio->bi_opf &= ~REQ_PREFLUSH;
614 return false;
615 }
616 }
617 return true;
618 }
619 EXPORT_SYMBOL(md_flush_request);
620
mddev_get(struct mddev * mddev)621 static inline struct mddev *mddev_get(struct mddev *mddev)
622 {
623 lockdep_assert_held(&all_mddevs_lock);
624
625 if (test_bit(MD_DELETED, &mddev->flags))
626 return NULL;
627 atomic_inc(&mddev->active);
628 return mddev;
629 }
630
631 static void mddev_delayed_delete(struct work_struct *ws);
632
mddev_put(struct mddev * mddev)633 void mddev_put(struct mddev *mddev)
634 {
635 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
636 return;
637 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
638 mddev->ctime == 0 && !mddev->hold_active) {
639 /* Array is not configured at all, and not held active,
640 * so destroy it */
641 set_bit(MD_DELETED, &mddev->flags);
642
643 /*
644 * Call queue_work inside the spinlock so that
645 * flush_workqueue() after mddev_find will succeed in waiting
646 * for the work to be done.
647 */
648 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
649 queue_work(md_misc_wq, &mddev->del_work);
650 }
651 spin_unlock(&all_mddevs_lock);
652 }
653
654 static void md_safemode_timeout(struct timer_list *t);
655
mddev_init(struct mddev * mddev)656 void mddev_init(struct mddev *mddev)
657 {
658 mutex_init(&mddev->open_mutex);
659 mutex_init(&mddev->reconfig_mutex);
660 mutex_init(&mddev->sync_mutex);
661 mutex_init(&mddev->bitmap_info.mutex);
662 INIT_LIST_HEAD(&mddev->disks);
663 INIT_LIST_HEAD(&mddev->all_mddevs);
664 INIT_LIST_HEAD(&mddev->deleting);
665 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
666 atomic_set(&mddev->active, 1);
667 atomic_set(&mddev->openers, 0);
668 atomic_set(&mddev->sync_seq, 0);
669 spin_lock_init(&mddev->lock);
670 atomic_set(&mddev->flush_pending, 0);
671 init_waitqueue_head(&mddev->sb_wait);
672 init_waitqueue_head(&mddev->recovery_wait);
673 mddev->reshape_position = MaxSector;
674 mddev->reshape_backwards = 0;
675 mddev->last_sync_action = "none";
676 mddev->resync_min = 0;
677 mddev->resync_max = MaxSector;
678 mddev->level = LEVEL_NONE;
679 }
680 EXPORT_SYMBOL_GPL(mddev_init);
681
mddev_find_locked(dev_t unit)682 static struct mddev *mddev_find_locked(dev_t unit)
683 {
684 struct mddev *mddev;
685
686 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
687 if (mddev->unit == unit)
688 return mddev;
689
690 return NULL;
691 }
692
693 /* find an unused unit number */
mddev_alloc_unit(void)694 static dev_t mddev_alloc_unit(void)
695 {
696 static int next_minor = 512;
697 int start = next_minor;
698 bool is_free = 0;
699 dev_t dev = 0;
700
701 while (!is_free) {
702 dev = MKDEV(MD_MAJOR, next_minor);
703 next_minor++;
704 if (next_minor > MINORMASK)
705 next_minor = 0;
706 if (next_minor == start)
707 return 0; /* Oh dear, all in use. */
708 is_free = !mddev_find_locked(dev);
709 }
710
711 return dev;
712 }
713
mddev_alloc(dev_t unit)714 static struct mddev *mddev_alloc(dev_t unit)
715 {
716 struct mddev *new;
717 int error;
718
719 if (unit && MAJOR(unit) != MD_MAJOR)
720 unit &= ~((1 << MdpMinorShift) - 1);
721
722 new = kzalloc(sizeof(*new), GFP_KERNEL);
723 if (!new)
724 return ERR_PTR(-ENOMEM);
725 mddev_init(new);
726
727 spin_lock(&all_mddevs_lock);
728 if (unit) {
729 error = -EEXIST;
730 if (mddev_find_locked(unit))
731 goto out_free_new;
732 new->unit = unit;
733 if (MAJOR(unit) == MD_MAJOR)
734 new->md_minor = MINOR(unit);
735 else
736 new->md_minor = MINOR(unit) >> MdpMinorShift;
737 new->hold_active = UNTIL_IOCTL;
738 } else {
739 error = -ENODEV;
740 new->unit = mddev_alloc_unit();
741 if (!new->unit)
742 goto out_free_new;
743 new->md_minor = MINOR(new->unit);
744 new->hold_active = UNTIL_STOP;
745 }
746
747 list_add(&new->all_mddevs, &all_mddevs);
748 spin_unlock(&all_mddevs_lock);
749 return new;
750 out_free_new:
751 spin_unlock(&all_mddevs_lock);
752 kfree(new);
753 return ERR_PTR(error);
754 }
755
mddev_free(struct mddev * mddev)756 static void mddev_free(struct mddev *mddev)
757 {
758 spin_lock(&all_mddevs_lock);
759 list_del(&mddev->all_mddevs);
760 spin_unlock(&all_mddevs_lock);
761
762 kfree(mddev);
763 }
764
765 static const struct attribute_group md_redundancy_group;
766
mddev_unlock(struct mddev * mddev)767 void mddev_unlock(struct mddev *mddev)
768 {
769 struct md_rdev *rdev;
770 struct md_rdev *tmp;
771 LIST_HEAD(delete);
772
773 if (!list_empty(&mddev->deleting))
774 list_splice_init(&mddev->deleting, &delete);
775
776 if (mddev->to_remove) {
777 /* These cannot be removed under reconfig_mutex as
778 * an access to the files will try to take reconfig_mutex
779 * while holding the file unremovable, which leads to
780 * a deadlock.
781 * So hold set sysfs_active while the remove in happeing,
782 * and anything else which might set ->to_remove or my
783 * otherwise change the sysfs namespace will fail with
784 * -EBUSY if sysfs_active is still set.
785 * We set sysfs_active under reconfig_mutex and elsewhere
786 * test it under the same mutex to ensure its correct value
787 * is seen.
788 */
789 const struct attribute_group *to_remove = mddev->to_remove;
790 mddev->to_remove = NULL;
791 mddev->sysfs_active = 1;
792 mutex_unlock(&mddev->reconfig_mutex);
793
794 if (mddev->kobj.sd) {
795 if (to_remove != &md_redundancy_group)
796 sysfs_remove_group(&mddev->kobj, to_remove);
797 if (mddev->pers == NULL ||
798 mddev->pers->sync_request == NULL) {
799 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
800 if (mddev->sysfs_action)
801 sysfs_put(mddev->sysfs_action);
802 if (mddev->sysfs_completed)
803 sysfs_put(mddev->sysfs_completed);
804 if (mddev->sysfs_degraded)
805 sysfs_put(mddev->sysfs_degraded);
806 mddev->sysfs_action = NULL;
807 mddev->sysfs_completed = NULL;
808 mddev->sysfs_degraded = NULL;
809 }
810 }
811 mddev->sysfs_active = 0;
812 } else
813 mutex_unlock(&mddev->reconfig_mutex);
814
815 md_wakeup_thread(mddev->thread);
816 wake_up(&mddev->sb_wait);
817
818 list_for_each_entry_safe(rdev, tmp, &delete, same_set) {
819 list_del_init(&rdev->same_set);
820 kobject_del(&rdev->kobj);
821 export_rdev(rdev, mddev);
822 }
823 }
824 EXPORT_SYMBOL_GPL(mddev_unlock);
825
md_find_rdev_nr_rcu(struct mddev * mddev,int nr)826 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
827 {
828 struct md_rdev *rdev;
829
830 rdev_for_each_rcu(rdev, mddev)
831 if (rdev->desc_nr == nr)
832 return rdev;
833
834 return NULL;
835 }
836 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
837
find_rdev(struct mddev * mddev,dev_t dev)838 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
839 {
840 struct md_rdev *rdev;
841
842 rdev_for_each(rdev, mddev)
843 if (rdev->bdev->bd_dev == dev)
844 return rdev;
845
846 return NULL;
847 }
848
md_find_rdev_rcu(struct mddev * mddev,dev_t dev)849 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
850 {
851 struct md_rdev *rdev;
852
853 rdev_for_each_rcu(rdev, mddev)
854 if (rdev->bdev->bd_dev == dev)
855 return rdev;
856
857 return NULL;
858 }
859 EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
860
find_pers(int level,char * clevel)861 static struct md_personality *find_pers(int level, char *clevel)
862 {
863 struct md_personality *pers;
864 list_for_each_entry(pers, &pers_list, list) {
865 if (level != LEVEL_NONE && pers->level == level)
866 return pers;
867 if (strcmp(pers->name, clevel)==0)
868 return pers;
869 }
870 return NULL;
871 }
872
873 /* return the offset of the super block in 512byte sectors */
calc_dev_sboffset(struct md_rdev * rdev)874 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
875 {
876 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev));
877 }
878
alloc_disk_sb(struct md_rdev * rdev)879 static int alloc_disk_sb(struct md_rdev *rdev)
880 {
881 rdev->sb_page = alloc_page(GFP_KERNEL);
882 if (!rdev->sb_page)
883 return -ENOMEM;
884 return 0;
885 }
886
md_rdev_clear(struct md_rdev * rdev)887 void md_rdev_clear(struct md_rdev *rdev)
888 {
889 if (rdev->sb_page) {
890 put_page(rdev->sb_page);
891 rdev->sb_loaded = 0;
892 rdev->sb_page = NULL;
893 rdev->sb_start = 0;
894 rdev->sectors = 0;
895 }
896 if (rdev->bb_page) {
897 put_page(rdev->bb_page);
898 rdev->bb_page = NULL;
899 }
900 badblocks_exit(&rdev->badblocks);
901 }
902 EXPORT_SYMBOL_GPL(md_rdev_clear);
903
super_written(struct bio * bio)904 static void super_written(struct bio *bio)
905 {
906 struct md_rdev *rdev = bio->bi_private;
907 struct mddev *mddev = rdev->mddev;
908
909 if (bio->bi_status) {
910 pr_err("md: %s gets error=%d\n", __func__,
911 blk_status_to_errno(bio->bi_status));
912 md_error(mddev, rdev);
913 if (!test_bit(Faulty, &rdev->flags)
914 && (bio->bi_opf & MD_FAILFAST)) {
915 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
916 set_bit(LastDev, &rdev->flags);
917 }
918 } else
919 clear_bit(LastDev, &rdev->flags);
920
921 bio_put(bio);
922
923 rdev_dec_pending(rdev, mddev);
924
925 if (atomic_dec_and_test(&mddev->pending_writes))
926 wake_up(&mddev->sb_wait);
927 }
928
md_super_write(struct mddev * mddev,struct md_rdev * rdev,sector_t sector,int size,struct page * page)929 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
930 sector_t sector, int size, struct page *page)
931 {
932 /* write first size bytes of page to sector of rdev
933 * Increment mddev->pending_writes before returning
934 * and decrement it on completion, waking up sb_wait
935 * if zero is reached.
936 * If an error occurred, call md_error
937 */
938 struct bio *bio;
939
940 if (!page)
941 return;
942
943 if (test_bit(Faulty, &rdev->flags))
944 return;
945
946 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev,
947 1,
948 REQ_OP_WRITE | REQ_SYNC | REQ_IDLE | REQ_META
949 | REQ_PREFLUSH | REQ_FUA,
950 GFP_NOIO, &mddev->sync_set);
951
952 atomic_inc(&rdev->nr_pending);
953
954 bio->bi_iter.bi_sector = sector;
955 __bio_add_page(bio, page, size, 0);
956 bio->bi_private = rdev;
957 bio->bi_end_io = super_written;
958
959 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
960 test_bit(FailFast, &rdev->flags) &&
961 !test_bit(LastDev, &rdev->flags))
962 bio->bi_opf |= MD_FAILFAST;
963
964 atomic_inc(&mddev->pending_writes);
965 submit_bio(bio);
966 }
967
md_super_wait(struct mddev * mddev)968 int md_super_wait(struct mddev *mddev)
969 {
970 /* wait for all superblock writes that were scheduled to complete */
971 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
972 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
973 return -EAGAIN;
974 return 0;
975 }
976
sync_page_io(struct md_rdev * rdev,sector_t sector,int size,struct page * page,blk_opf_t opf,bool metadata_op)977 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
978 struct page *page, blk_opf_t opf, bool metadata_op)
979 {
980 struct bio bio;
981 struct bio_vec bvec;
982
983 if (metadata_op && rdev->meta_bdev)
984 bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf);
985 else
986 bio_init(&bio, rdev->bdev, &bvec, 1, opf);
987
988 if (metadata_op)
989 bio.bi_iter.bi_sector = sector + rdev->sb_start;
990 else if (rdev->mddev->reshape_position != MaxSector &&
991 (rdev->mddev->reshape_backwards ==
992 (sector >= rdev->mddev->reshape_position)))
993 bio.bi_iter.bi_sector = sector + rdev->new_data_offset;
994 else
995 bio.bi_iter.bi_sector = sector + rdev->data_offset;
996 __bio_add_page(&bio, page, size, 0);
997
998 submit_bio_wait(&bio);
999
1000 return !bio.bi_status;
1001 }
1002 EXPORT_SYMBOL_GPL(sync_page_io);
1003
read_disk_sb(struct md_rdev * rdev,int size)1004 static int read_disk_sb(struct md_rdev *rdev, int size)
1005 {
1006 if (rdev->sb_loaded)
1007 return 0;
1008
1009 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true))
1010 goto fail;
1011 rdev->sb_loaded = 1;
1012 return 0;
1013
1014 fail:
1015 pr_err("md: disabled device %pg, could not read superblock.\n",
1016 rdev->bdev);
1017 return -EINVAL;
1018 }
1019
md_uuid_equal(mdp_super_t * sb1,mdp_super_t * sb2)1020 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1021 {
1022 return sb1->set_uuid0 == sb2->set_uuid0 &&
1023 sb1->set_uuid1 == sb2->set_uuid1 &&
1024 sb1->set_uuid2 == sb2->set_uuid2 &&
1025 sb1->set_uuid3 == sb2->set_uuid3;
1026 }
1027
md_sb_equal(mdp_super_t * sb1,mdp_super_t * sb2)1028 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1029 {
1030 int ret;
1031 mdp_super_t *tmp1, *tmp2;
1032
1033 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1034 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1035
1036 if (!tmp1 || !tmp2) {
1037 ret = 0;
1038 goto abort;
1039 }
1040
1041 *tmp1 = *sb1;
1042 *tmp2 = *sb2;
1043
1044 /*
1045 * nr_disks is not constant
1046 */
1047 tmp1->nr_disks = 0;
1048 tmp2->nr_disks = 0;
1049
1050 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1051 abort:
1052 kfree(tmp1);
1053 kfree(tmp2);
1054 return ret;
1055 }
1056
md_csum_fold(u32 csum)1057 static u32 md_csum_fold(u32 csum)
1058 {
1059 csum = (csum & 0xffff) + (csum >> 16);
1060 return (csum & 0xffff) + (csum >> 16);
1061 }
1062
calc_sb_csum(mdp_super_t * sb)1063 static unsigned int calc_sb_csum(mdp_super_t *sb)
1064 {
1065 u64 newcsum = 0;
1066 u32 *sb32 = (u32*)sb;
1067 int i;
1068 unsigned int disk_csum, csum;
1069
1070 disk_csum = sb->sb_csum;
1071 sb->sb_csum = 0;
1072
1073 for (i = 0; i < MD_SB_BYTES/4 ; i++)
1074 newcsum += sb32[i];
1075 csum = (newcsum & 0xffffffff) + (newcsum>>32);
1076
1077 #ifdef CONFIG_ALPHA
1078 /* This used to use csum_partial, which was wrong for several
1079 * reasons including that different results are returned on
1080 * different architectures. It isn't critical that we get exactly
1081 * the same return value as before (we always csum_fold before
1082 * testing, and that removes any differences). However as we
1083 * know that csum_partial always returned a 16bit value on
1084 * alphas, do a fold to maximise conformity to previous behaviour.
1085 */
1086 sb->sb_csum = md_csum_fold(disk_csum);
1087 #else
1088 sb->sb_csum = disk_csum;
1089 #endif
1090 return csum;
1091 }
1092
1093 /*
1094 * Handle superblock details.
1095 * We want to be able to handle multiple superblock formats
1096 * so we have a common interface to them all, and an array of
1097 * different handlers.
1098 * We rely on user-space to write the initial superblock, and support
1099 * reading and updating of superblocks.
1100 * Interface methods are:
1101 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1102 * loads and validates a superblock on dev.
1103 * if refdev != NULL, compare superblocks on both devices
1104 * Return:
1105 * 0 - dev has a superblock that is compatible with refdev
1106 * 1 - dev has a superblock that is compatible and newer than refdev
1107 * so dev should be used as the refdev in future
1108 * -EINVAL superblock incompatible or invalid
1109 * -othererror e.g. -EIO
1110 *
1111 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1112 * Verify that dev is acceptable into mddev.
1113 * The first time, mddev->raid_disks will be 0, and data from
1114 * dev should be merged in. Subsequent calls check that dev
1115 * is new enough. Return 0 or -EINVAL
1116 *
1117 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1118 * Update the superblock for rdev with data in mddev
1119 * This does not write to disc.
1120 *
1121 */
1122
1123 struct super_type {
1124 char *name;
1125 struct module *owner;
1126 int (*load_super)(struct md_rdev *rdev,
1127 struct md_rdev *refdev,
1128 int minor_version);
1129 int (*validate_super)(struct mddev *mddev,
1130 struct md_rdev *freshest,
1131 struct md_rdev *rdev);
1132 void (*sync_super)(struct mddev *mddev,
1133 struct md_rdev *rdev);
1134 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1135 sector_t num_sectors);
1136 int (*allow_new_offset)(struct md_rdev *rdev,
1137 unsigned long long new_offset);
1138 };
1139
1140 /*
1141 * Check that the given mddev has no bitmap.
1142 *
1143 * This function is called from the run method of all personalities that do not
1144 * support bitmaps. It prints an error message and returns non-zero if mddev
1145 * has a bitmap. Otherwise, it returns 0.
1146 *
1147 */
md_check_no_bitmap(struct mddev * mddev)1148 int md_check_no_bitmap(struct mddev *mddev)
1149 {
1150 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1151 return 0;
1152 pr_warn("%s: bitmaps are not supported for %s\n",
1153 mdname(mddev), mddev->pers->name);
1154 return 1;
1155 }
1156 EXPORT_SYMBOL(md_check_no_bitmap);
1157
1158 /*
1159 * load_super for 0.90.0
1160 */
super_90_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1161 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1162 {
1163 mdp_super_t *sb;
1164 int ret;
1165 bool spare_disk = true;
1166
1167 /*
1168 * Calculate the position of the superblock (512byte sectors),
1169 * it's at the end of the disk.
1170 *
1171 * It also happens to be a multiple of 4Kb.
1172 */
1173 rdev->sb_start = calc_dev_sboffset(rdev);
1174
1175 ret = read_disk_sb(rdev, MD_SB_BYTES);
1176 if (ret)
1177 return ret;
1178
1179 ret = -EINVAL;
1180
1181 sb = page_address(rdev->sb_page);
1182
1183 if (sb->md_magic != MD_SB_MAGIC) {
1184 pr_warn("md: invalid raid superblock magic on %pg\n",
1185 rdev->bdev);
1186 goto abort;
1187 }
1188
1189 if (sb->major_version != 0 ||
1190 sb->minor_version < 90 ||
1191 sb->minor_version > 91) {
1192 pr_warn("Bad version number %d.%d on %pg\n",
1193 sb->major_version, sb->minor_version, rdev->bdev);
1194 goto abort;
1195 }
1196
1197 if (sb->raid_disks <= 0)
1198 goto abort;
1199
1200 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1201 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev);
1202 goto abort;
1203 }
1204
1205 rdev->preferred_minor = sb->md_minor;
1206 rdev->data_offset = 0;
1207 rdev->new_data_offset = 0;
1208 rdev->sb_size = MD_SB_BYTES;
1209 rdev->badblocks.shift = -1;
1210
1211 if (sb->level == LEVEL_MULTIPATH)
1212 rdev->desc_nr = -1;
1213 else
1214 rdev->desc_nr = sb->this_disk.number;
1215
1216 /* not spare disk, or LEVEL_MULTIPATH */
1217 if (sb->level == LEVEL_MULTIPATH ||
1218 (rdev->desc_nr >= 0 &&
1219 rdev->desc_nr < MD_SB_DISKS &&
1220 sb->disks[rdev->desc_nr].state &
1221 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
1222 spare_disk = false;
1223
1224 if (!refdev) {
1225 if (!spare_disk)
1226 ret = 1;
1227 else
1228 ret = 0;
1229 } else {
1230 __u64 ev1, ev2;
1231 mdp_super_t *refsb = page_address(refdev->sb_page);
1232 if (!md_uuid_equal(refsb, sb)) {
1233 pr_warn("md: %pg has different UUID to %pg\n",
1234 rdev->bdev, refdev->bdev);
1235 goto abort;
1236 }
1237 if (!md_sb_equal(refsb, sb)) {
1238 pr_warn("md: %pg has same UUID but different superblock to %pg\n",
1239 rdev->bdev, refdev->bdev);
1240 goto abort;
1241 }
1242 ev1 = md_event(sb);
1243 ev2 = md_event(refsb);
1244
1245 if (!spare_disk && ev1 > ev2)
1246 ret = 1;
1247 else
1248 ret = 0;
1249 }
1250 rdev->sectors = rdev->sb_start;
1251 /* Limit to 4TB as metadata cannot record more than that.
1252 * (not needed for Linear and RAID0 as metadata doesn't
1253 * record this size)
1254 */
1255 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1256 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1257
1258 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1259 /* "this cannot possibly happen" ... */
1260 ret = -EINVAL;
1261
1262 abort:
1263 return ret;
1264 }
1265
1266 /*
1267 * validate_super for 0.90.0
1268 * note: we are not using "freshest" for 0.9 superblock
1269 */
super_90_validate(struct mddev * mddev,struct md_rdev * freshest,struct md_rdev * rdev)1270 static int super_90_validate(struct mddev *mddev, struct md_rdev *freshest, struct md_rdev *rdev)
1271 {
1272 mdp_disk_t *desc;
1273 mdp_super_t *sb = page_address(rdev->sb_page);
1274 __u64 ev1 = md_event(sb);
1275
1276 rdev->raid_disk = -1;
1277 clear_bit(Faulty, &rdev->flags);
1278 clear_bit(In_sync, &rdev->flags);
1279 clear_bit(Bitmap_sync, &rdev->flags);
1280 clear_bit(WriteMostly, &rdev->flags);
1281
1282 if (mddev->raid_disks == 0) {
1283 mddev->major_version = 0;
1284 mddev->minor_version = sb->minor_version;
1285 mddev->patch_version = sb->patch_version;
1286 mddev->external = 0;
1287 mddev->chunk_sectors = sb->chunk_size >> 9;
1288 mddev->ctime = sb->ctime;
1289 mddev->utime = sb->utime;
1290 mddev->level = sb->level;
1291 mddev->clevel[0] = 0;
1292 mddev->layout = sb->layout;
1293 mddev->raid_disks = sb->raid_disks;
1294 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1295 mddev->events = ev1;
1296 mddev->bitmap_info.offset = 0;
1297 mddev->bitmap_info.space = 0;
1298 /* bitmap can use 60 K after the 4K superblocks */
1299 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1300 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1301 mddev->reshape_backwards = 0;
1302
1303 if (mddev->minor_version >= 91) {
1304 mddev->reshape_position = sb->reshape_position;
1305 mddev->delta_disks = sb->delta_disks;
1306 mddev->new_level = sb->new_level;
1307 mddev->new_layout = sb->new_layout;
1308 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1309 if (mddev->delta_disks < 0)
1310 mddev->reshape_backwards = 1;
1311 } else {
1312 mddev->reshape_position = MaxSector;
1313 mddev->delta_disks = 0;
1314 mddev->new_level = mddev->level;
1315 mddev->new_layout = mddev->layout;
1316 mddev->new_chunk_sectors = mddev->chunk_sectors;
1317 }
1318 if (mddev->level == 0)
1319 mddev->layout = -1;
1320
1321 if (sb->state & (1<<MD_SB_CLEAN))
1322 mddev->recovery_cp = MaxSector;
1323 else {
1324 if (sb->events_hi == sb->cp_events_hi &&
1325 sb->events_lo == sb->cp_events_lo) {
1326 mddev->recovery_cp = sb->recovery_cp;
1327 } else
1328 mddev->recovery_cp = 0;
1329 }
1330
1331 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1332 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1333 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1334 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1335
1336 mddev->max_disks = MD_SB_DISKS;
1337
1338 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1339 mddev->bitmap_info.file == NULL) {
1340 mddev->bitmap_info.offset =
1341 mddev->bitmap_info.default_offset;
1342 mddev->bitmap_info.space =
1343 mddev->bitmap_info.default_space;
1344 }
1345
1346 } else if (mddev->pers == NULL) {
1347 /* Insist on good event counter while assembling, except
1348 * for spares (which don't need an event count) */
1349 ++ev1;
1350 if (sb->disks[rdev->desc_nr].state & (
1351 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1352 if (ev1 < mddev->events)
1353 return -EINVAL;
1354 } else if (mddev->bitmap) {
1355 /* if adding to array with a bitmap, then we can accept an
1356 * older device ... but not too old.
1357 */
1358 if (ev1 < mddev->bitmap->events_cleared)
1359 return 0;
1360 if (ev1 < mddev->events)
1361 set_bit(Bitmap_sync, &rdev->flags);
1362 } else {
1363 if (ev1 < mddev->events)
1364 /* just a hot-add of a new device, leave raid_disk at -1 */
1365 return 0;
1366 }
1367
1368 if (mddev->level != LEVEL_MULTIPATH) {
1369 desc = sb->disks + rdev->desc_nr;
1370
1371 if (desc->state & (1<<MD_DISK_FAULTY))
1372 set_bit(Faulty, &rdev->flags);
1373 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1374 desc->raid_disk < mddev->raid_disks */) {
1375 set_bit(In_sync, &rdev->flags);
1376 rdev->raid_disk = desc->raid_disk;
1377 rdev->saved_raid_disk = desc->raid_disk;
1378 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1379 /* active but not in sync implies recovery up to
1380 * reshape position. We don't know exactly where
1381 * that is, so set to zero for now */
1382 if (mddev->minor_version >= 91) {
1383 rdev->recovery_offset = 0;
1384 rdev->raid_disk = desc->raid_disk;
1385 }
1386 }
1387 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1388 set_bit(WriteMostly, &rdev->flags);
1389 if (desc->state & (1<<MD_DISK_FAILFAST))
1390 set_bit(FailFast, &rdev->flags);
1391 } else /* MULTIPATH are always insync */
1392 set_bit(In_sync, &rdev->flags);
1393 return 0;
1394 }
1395
1396 /*
1397 * sync_super for 0.90.0
1398 */
super_90_sync(struct mddev * mddev,struct md_rdev * rdev)1399 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1400 {
1401 mdp_super_t *sb;
1402 struct md_rdev *rdev2;
1403 int next_spare = mddev->raid_disks;
1404
1405 /* make rdev->sb match mddev data..
1406 *
1407 * 1/ zero out disks
1408 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1409 * 3/ any empty disks < next_spare become removed
1410 *
1411 * disks[0] gets initialised to REMOVED because
1412 * we cannot be sure from other fields if it has
1413 * been initialised or not.
1414 */
1415 int i;
1416 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1417
1418 rdev->sb_size = MD_SB_BYTES;
1419
1420 sb = page_address(rdev->sb_page);
1421
1422 memset(sb, 0, sizeof(*sb));
1423
1424 sb->md_magic = MD_SB_MAGIC;
1425 sb->major_version = mddev->major_version;
1426 sb->patch_version = mddev->patch_version;
1427 sb->gvalid_words = 0; /* ignored */
1428 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1429 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1430 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1431 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1432
1433 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1434 sb->level = mddev->level;
1435 sb->size = mddev->dev_sectors / 2;
1436 sb->raid_disks = mddev->raid_disks;
1437 sb->md_minor = mddev->md_minor;
1438 sb->not_persistent = 0;
1439 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1440 sb->state = 0;
1441 sb->events_hi = (mddev->events>>32);
1442 sb->events_lo = (u32)mddev->events;
1443
1444 if (mddev->reshape_position == MaxSector)
1445 sb->minor_version = 90;
1446 else {
1447 sb->minor_version = 91;
1448 sb->reshape_position = mddev->reshape_position;
1449 sb->new_level = mddev->new_level;
1450 sb->delta_disks = mddev->delta_disks;
1451 sb->new_layout = mddev->new_layout;
1452 sb->new_chunk = mddev->new_chunk_sectors << 9;
1453 }
1454 mddev->minor_version = sb->minor_version;
1455 if (mddev->in_sync)
1456 {
1457 sb->recovery_cp = mddev->recovery_cp;
1458 sb->cp_events_hi = (mddev->events>>32);
1459 sb->cp_events_lo = (u32)mddev->events;
1460 if (mddev->recovery_cp == MaxSector)
1461 sb->state = (1<< MD_SB_CLEAN);
1462 } else
1463 sb->recovery_cp = 0;
1464
1465 sb->layout = mddev->layout;
1466 sb->chunk_size = mddev->chunk_sectors << 9;
1467
1468 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1469 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1470
1471 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1472 rdev_for_each(rdev2, mddev) {
1473 mdp_disk_t *d;
1474 int desc_nr;
1475 int is_active = test_bit(In_sync, &rdev2->flags);
1476
1477 if (rdev2->raid_disk >= 0 &&
1478 sb->minor_version >= 91)
1479 /* we have nowhere to store the recovery_offset,
1480 * but if it is not below the reshape_position,
1481 * we can piggy-back on that.
1482 */
1483 is_active = 1;
1484 if (rdev2->raid_disk < 0 ||
1485 test_bit(Faulty, &rdev2->flags))
1486 is_active = 0;
1487 if (is_active)
1488 desc_nr = rdev2->raid_disk;
1489 else
1490 desc_nr = next_spare++;
1491 rdev2->desc_nr = desc_nr;
1492 d = &sb->disks[rdev2->desc_nr];
1493 nr_disks++;
1494 d->number = rdev2->desc_nr;
1495 d->major = MAJOR(rdev2->bdev->bd_dev);
1496 d->minor = MINOR(rdev2->bdev->bd_dev);
1497 if (is_active)
1498 d->raid_disk = rdev2->raid_disk;
1499 else
1500 d->raid_disk = rdev2->desc_nr; /* compatibility */
1501 if (test_bit(Faulty, &rdev2->flags))
1502 d->state = (1<<MD_DISK_FAULTY);
1503 else if (is_active) {
1504 d->state = (1<<MD_DISK_ACTIVE);
1505 if (test_bit(In_sync, &rdev2->flags))
1506 d->state |= (1<<MD_DISK_SYNC);
1507 active++;
1508 working++;
1509 } else {
1510 d->state = 0;
1511 spare++;
1512 working++;
1513 }
1514 if (test_bit(WriteMostly, &rdev2->flags))
1515 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1516 if (test_bit(FailFast, &rdev2->flags))
1517 d->state |= (1<<MD_DISK_FAILFAST);
1518 }
1519 /* now set the "removed" and "faulty" bits on any missing devices */
1520 for (i=0 ; i < mddev->raid_disks ; i++) {
1521 mdp_disk_t *d = &sb->disks[i];
1522 if (d->state == 0 && d->number == 0) {
1523 d->number = i;
1524 d->raid_disk = i;
1525 d->state = (1<<MD_DISK_REMOVED);
1526 d->state |= (1<<MD_DISK_FAULTY);
1527 failed++;
1528 }
1529 }
1530 sb->nr_disks = nr_disks;
1531 sb->active_disks = active;
1532 sb->working_disks = working;
1533 sb->failed_disks = failed;
1534 sb->spare_disks = spare;
1535
1536 sb->this_disk = sb->disks[rdev->desc_nr];
1537 sb->sb_csum = calc_sb_csum(sb);
1538 }
1539
1540 /*
1541 * rdev_size_change for 0.90.0
1542 */
1543 static unsigned long long
super_90_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1544 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1545 {
1546 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1547 return 0; /* component must fit device */
1548 if (rdev->mddev->bitmap_info.offset)
1549 return 0; /* can't move bitmap */
1550 rdev->sb_start = calc_dev_sboffset(rdev);
1551 if (!num_sectors || num_sectors > rdev->sb_start)
1552 num_sectors = rdev->sb_start;
1553 /* Limit to 4TB as metadata cannot record more than that.
1554 * 4TB == 2^32 KB, or 2*2^32 sectors.
1555 */
1556 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1557 num_sectors = (sector_t)(2ULL << 32) - 2;
1558 do {
1559 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1560 rdev->sb_page);
1561 } while (md_super_wait(rdev->mddev) < 0);
1562 return num_sectors;
1563 }
1564
1565 static int
super_90_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1566 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1567 {
1568 /* non-zero offset changes not possible with v0.90 */
1569 return new_offset == 0;
1570 }
1571
1572 /*
1573 * version 1 superblock
1574 */
1575
calc_sb_1_csum(struct mdp_superblock_1 * sb)1576 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1577 {
1578 __le32 disk_csum;
1579 u32 csum;
1580 unsigned long long newcsum;
1581 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1582 __le32 *isuper = (__le32*)sb;
1583
1584 disk_csum = sb->sb_csum;
1585 sb->sb_csum = 0;
1586 newcsum = 0;
1587 for (; size >= 4; size -= 4)
1588 newcsum += le32_to_cpu(*isuper++);
1589
1590 if (size == 2)
1591 newcsum += le16_to_cpu(*(__le16*) isuper);
1592
1593 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1594 sb->sb_csum = disk_csum;
1595 return cpu_to_le32(csum);
1596 }
1597
super_1_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1598 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1599 {
1600 struct mdp_superblock_1 *sb;
1601 int ret;
1602 sector_t sb_start;
1603 sector_t sectors;
1604 int bmask;
1605 bool spare_disk = true;
1606
1607 /*
1608 * Calculate the position of the superblock in 512byte sectors.
1609 * It is always aligned to a 4K boundary and
1610 * depeding on minor_version, it can be:
1611 * 0: At least 8K, but less than 12K, from end of device
1612 * 1: At start of device
1613 * 2: 4K from start of device.
1614 */
1615 switch(minor_version) {
1616 case 0:
1617 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2;
1618 sb_start &= ~(sector_t)(4*2-1);
1619 break;
1620 case 1:
1621 sb_start = 0;
1622 break;
1623 case 2:
1624 sb_start = 8;
1625 break;
1626 default:
1627 return -EINVAL;
1628 }
1629 rdev->sb_start = sb_start;
1630
1631 /* superblock is rarely larger than 1K, but it can be larger,
1632 * and it is safe to read 4k, so we do that
1633 */
1634 ret = read_disk_sb(rdev, 4096);
1635 if (ret) return ret;
1636
1637 sb = page_address(rdev->sb_page);
1638
1639 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1640 sb->major_version != cpu_to_le32(1) ||
1641 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1642 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1643 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1644 return -EINVAL;
1645
1646 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1647 pr_warn("md: invalid superblock checksum on %pg\n",
1648 rdev->bdev);
1649 return -EINVAL;
1650 }
1651 if (le64_to_cpu(sb->data_size) < 10) {
1652 pr_warn("md: data_size too small on %pg\n",
1653 rdev->bdev);
1654 return -EINVAL;
1655 }
1656 if (sb->pad0 ||
1657 sb->pad3[0] ||
1658 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1659 /* Some padding is non-zero, might be a new feature */
1660 return -EINVAL;
1661
1662 rdev->preferred_minor = 0xffff;
1663 rdev->data_offset = le64_to_cpu(sb->data_offset);
1664 rdev->new_data_offset = rdev->data_offset;
1665 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1666 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1667 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1668 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1669
1670 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1671 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1672 if (rdev->sb_size & bmask)
1673 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1674
1675 if (minor_version
1676 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1677 return -EINVAL;
1678 if (minor_version
1679 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1680 return -EINVAL;
1681
1682 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1683 rdev->desc_nr = -1;
1684 else
1685 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1686
1687 if (!rdev->bb_page) {
1688 rdev->bb_page = alloc_page(GFP_KERNEL);
1689 if (!rdev->bb_page)
1690 return -ENOMEM;
1691 }
1692 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1693 rdev->badblocks.count == 0) {
1694 /* need to load the bad block list.
1695 * Currently we limit it to one page.
1696 */
1697 s32 offset;
1698 sector_t bb_sector;
1699 __le64 *bbp;
1700 int i;
1701 int sectors = le16_to_cpu(sb->bblog_size);
1702 if (sectors > (PAGE_SIZE / 512))
1703 return -EINVAL;
1704 offset = le32_to_cpu(sb->bblog_offset);
1705 if (offset == 0)
1706 return -EINVAL;
1707 bb_sector = (long long)offset;
1708 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1709 rdev->bb_page, REQ_OP_READ, true))
1710 return -EIO;
1711 bbp = (__le64 *)page_address(rdev->bb_page);
1712 rdev->badblocks.shift = sb->bblog_shift;
1713 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1714 u64 bb = le64_to_cpu(*bbp);
1715 int count = bb & (0x3ff);
1716 u64 sector = bb >> 10;
1717 sector <<= sb->bblog_shift;
1718 count <<= sb->bblog_shift;
1719 if (bb + 1 == 0)
1720 break;
1721 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1722 return -EINVAL;
1723 }
1724 } else if (sb->bblog_offset != 0)
1725 rdev->badblocks.shift = 0;
1726
1727 if ((le32_to_cpu(sb->feature_map) &
1728 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1729 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1730 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1731 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1732 }
1733
1734 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1735 sb->level != 0)
1736 return -EINVAL;
1737
1738 /* not spare disk, or LEVEL_MULTIPATH */
1739 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
1740 (rdev->desc_nr >= 0 &&
1741 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1742 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1743 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
1744 spare_disk = false;
1745
1746 if (!refdev) {
1747 if (!spare_disk)
1748 ret = 1;
1749 else
1750 ret = 0;
1751 } else {
1752 __u64 ev1, ev2;
1753 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1754
1755 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1756 sb->level != refsb->level ||
1757 sb->layout != refsb->layout ||
1758 sb->chunksize != refsb->chunksize) {
1759 pr_warn("md: %pg has strangely different superblock to %pg\n",
1760 rdev->bdev,
1761 refdev->bdev);
1762 return -EINVAL;
1763 }
1764 ev1 = le64_to_cpu(sb->events);
1765 ev2 = le64_to_cpu(refsb->events);
1766
1767 if (!spare_disk && ev1 > ev2)
1768 ret = 1;
1769 else
1770 ret = 0;
1771 }
1772 if (minor_version)
1773 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
1774 else
1775 sectors = rdev->sb_start;
1776 if (sectors < le64_to_cpu(sb->data_size))
1777 return -EINVAL;
1778 rdev->sectors = le64_to_cpu(sb->data_size);
1779 return ret;
1780 }
1781
super_1_validate(struct mddev * mddev,struct md_rdev * freshest,struct md_rdev * rdev)1782 static int super_1_validate(struct mddev *mddev, struct md_rdev *freshest, struct md_rdev *rdev)
1783 {
1784 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1785 __u64 ev1 = le64_to_cpu(sb->events);
1786
1787 rdev->raid_disk = -1;
1788 clear_bit(Faulty, &rdev->flags);
1789 clear_bit(In_sync, &rdev->flags);
1790 clear_bit(Bitmap_sync, &rdev->flags);
1791 clear_bit(WriteMostly, &rdev->flags);
1792
1793 if (mddev->raid_disks == 0) {
1794 mddev->major_version = 1;
1795 mddev->patch_version = 0;
1796 mddev->external = 0;
1797 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1798 mddev->ctime = le64_to_cpu(sb->ctime);
1799 mddev->utime = le64_to_cpu(sb->utime);
1800 mddev->level = le32_to_cpu(sb->level);
1801 mddev->clevel[0] = 0;
1802 mddev->layout = le32_to_cpu(sb->layout);
1803 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1804 mddev->dev_sectors = le64_to_cpu(sb->size);
1805 mddev->events = ev1;
1806 mddev->bitmap_info.offset = 0;
1807 mddev->bitmap_info.space = 0;
1808 /* Default location for bitmap is 1K after superblock
1809 * using 3K - total of 4K
1810 */
1811 mddev->bitmap_info.default_offset = 1024 >> 9;
1812 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1813 mddev->reshape_backwards = 0;
1814
1815 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1816 memcpy(mddev->uuid, sb->set_uuid, 16);
1817
1818 mddev->max_disks = (4096-256)/2;
1819
1820 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1821 mddev->bitmap_info.file == NULL) {
1822 mddev->bitmap_info.offset =
1823 (__s32)le32_to_cpu(sb->bitmap_offset);
1824 /* Metadata doesn't record how much space is available.
1825 * For 1.0, we assume we can use up to the superblock
1826 * if before, else to 4K beyond superblock.
1827 * For others, assume no change is possible.
1828 */
1829 if (mddev->minor_version > 0)
1830 mddev->bitmap_info.space = 0;
1831 else if (mddev->bitmap_info.offset > 0)
1832 mddev->bitmap_info.space =
1833 8 - mddev->bitmap_info.offset;
1834 else
1835 mddev->bitmap_info.space =
1836 -mddev->bitmap_info.offset;
1837 }
1838
1839 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1840 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1841 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1842 mddev->new_level = le32_to_cpu(sb->new_level);
1843 mddev->new_layout = le32_to_cpu(sb->new_layout);
1844 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1845 if (mddev->delta_disks < 0 ||
1846 (mddev->delta_disks == 0 &&
1847 (le32_to_cpu(sb->feature_map)
1848 & MD_FEATURE_RESHAPE_BACKWARDS)))
1849 mddev->reshape_backwards = 1;
1850 } else {
1851 mddev->reshape_position = MaxSector;
1852 mddev->delta_disks = 0;
1853 mddev->new_level = mddev->level;
1854 mddev->new_layout = mddev->layout;
1855 mddev->new_chunk_sectors = mddev->chunk_sectors;
1856 }
1857
1858 if (mddev->level == 0 &&
1859 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1860 mddev->layout = -1;
1861
1862 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1863 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1864
1865 if (le32_to_cpu(sb->feature_map) &
1866 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1867 if (le32_to_cpu(sb->feature_map) &
1868 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1869 return -EINVAL;
1870 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1871 (le32_to_cpu(sb->feature_map) &
1872 MD_FEATURE_MULTIPLE_PPLS))
1873 return -EINVAL;
1874 set_bit(MD_HAS_PPL, &mddev->flags);
1875 }
1876 } else if (mddev->pers == NULL) {
1877 /* Insist of good event counter while assembling, except for
1878 * spares (which don't need an event count).
1879 * Similar to mdadm, we allow event counter difference of 1
1880 * from the freshest device.
1881 */
1882 if (rdev->desc_nr >= 0 &&
1883 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1884 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1885 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1886 if (ev1 + 1 < mddev->events)
1887 return -EINVAL;
1888 } else if (mddev->bitmap) {
1889 /* If adding to array with a bitmap, then we can accept an
1890 * older device, but not too old.
1891 */
1892 if (ev1 < mddev->bitmap->events_cleared)
1893 return 0;
1894 if (ev1 < mddev->events)
1895 set_bit(Bitmap_sync, &rdev->flags);
1896 } else {
1897 if (ev1 < mddev->events)
1898 /* just a hot-add of a new device, leave raid_disk at -1 */
1899 return 0;
1900 }
1901 if (mddev->level != LEVEL_MULTIPATH) {
1902 int role;
1903 if (rdev->desc_nr < 0 ||
1904 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1905 role = MD_DISK_ROLE_SPARE;
1906 rdev->desc_nr = -1;
1907 } else if (mddev->pers == NULL && freshest && ev1 < mddev->events) {
1908 /*
1909 * If we are assembling, and our event counter is smaller than the
1910 * highest event counter, we cannot trust our superblock about the role.
1911 * It could happen that our rdev was marked as Faulty, and all other
1912 * superblocks were updated with +1 event counter.
1913 * Then, before the next superblock update, which typically happens when
1914 * remove_and_add_spares() removes the device from the array, there was
1915 * a crash or reboot.
1916 * If we allow current rdev without consulting the freshest superblock,
1917 * we could cause data corruption.
1918 * Note that in this case our event counter is smaller by 1 than the
1919 * highest, otherwise, this rdev would not be allowed into array;
1920 * both kernel and mdadm allow event counter difference of 1.
1921 */
1922 struct mdp_superblock_1 *freshest_sb = page_address(freshest->sb_page);
1923 u32 freshest_max_dev = le32_to_cpu(freshest_sb->max_dev);
1924
1925 if (rdev->desc_nr >= freshest_max_dev) {
1926 /* this is unexpected, better not proceed */
1927 pr_warn("md: %s: rdev[%pg]: desc_nr(%d) >= freshest(%pg)->sb->max_dev(%u)\n",
1928 mdname(mddev), rdev->bdev, rdev->desc_nr,
1929 freshest->bdev, freshest_max_dev);
1930 return -EUCLEAN;
1931 }
1932
1933 role = le16_to_cpu(freshest_sb->dev_roles[rdev->desc_nr]);
1934 pr_debug("md: %s: rdev[%pg]: role=%d(0x%x) according to freshest %pg\n",
1935 mdname(mddev), rdev->bdev, role, role, freshest->bdev);
1936 } else {
1937 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1938 }
1939 switch(role) {
1940 case MD_DISK_ROLE_SPARE: /* spare */
1941 break;
1942 case MD_DISK_ROLE_FAULTY: /* faulty */
1943 set_bit(Faulty, &rdev->flags);
1944 break;
1945 case MD_DISK_ROLE_JOURNAL: /* journal device */
1946 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1947 /* journal device without journal feature */
1948 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1949 return -EINVAL;
1950 }
1951 set_bit(Journal, &rdev->flags);
1952 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1953 rdev->raid_disk = 0;
1954 break;
1955 default:
1956 rdev->saved_raid_disk = role;
1957 if ((le32_to_cpu(sb->feature_map) &
1958 MD_FEATURE_RECOVERY_OFFSET)) {
1959 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1960 if (!(le32_to_cpu(sb->feature_map) &
1961 MD_FEATURE_RECOVERY_BITMAP))
1962 rdev->saved_raid_disk = -1;
1963 } else {
1964 /*
1965 * If the array is FROZEN, then the device can't
1966 * be in_sync with rest of array.
1967 */
1968 if (!test_bit(MD_RECOVERY_FROZEN,
1969 &mddev->recovery))
1970 set_bit(In_sync, &rdev->flags);
1971 }
1972 rdev->raid_disk = role;
1973 break;
1974 }
1975 if (sb->devflags & WriteMostly1)
1976 set_bit(WriteMostly, &rdev->flags);
1977 if (sb->devflags & FailFast1)
1978 set_bit(FailFast, &rdev->flags);
1979 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1980 set_bit(Replacement, &rdev->flags);
1981 } else /* MULTIPATH are always insync */
1982 set_bit(In_sync, &rdev->flags);
1983
1984 return 0;
1985 }
1986
super_1_sync(struct mddev * mddev,struct md_rdev * rdev)1987 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1988 {
1989 struct mdp_superblock_1 *sb;
1990 struct md_rdev *rdev2;
1991 int max_dev, i;
1992 /* make rdev->sb match mddev and rdev data. */
1993
1994 sb = page_address(rdev->sb_page);
1995
1996 sb->feature_map = 0;
1997 sb->pad0 = 0;
1998 sb->recovery_offset = cpu_to_le64(0);
1999 memset(sb->pad3, 0, sizeof(sb->pad3));
2000
2001 sb->utime = cpu_to_le64((__u64)mddev->utime);
2002 sb->events = cpu_to_le64(mddev->events);
2003 if (mddev->in_sync)
2004 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
2005 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
2006 sb->resync_offset = cpu_to_le64(MaxSector);
2007 else
2008 sb->resync_offset = cpu_to_le64(0);
2009
2010 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
2011
2012 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
2013 sb->size = cpu_to_le64(mddev->dev_sectors);
2014 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
2015 sb->level = cpu_to_le32(mddev->level);
2016 sb->layout = cpu_to_le32(mddev->layout);
2017 if (test_bit(FailFast, &rdev->flags))
2018 sb->devflags |= FailFast1;
2019 else
2020 sb->devflags &= ~FailFast1;
2021
2022 if (test_bit(WriteMostly, &rdev->flags))
2023 sb->devflags |= WriteMostly1;
2024 else
2025 sb->devflags &= ~WriteMostly1;
2026 sb->data_offset = cpu_to_le64(rdev->data_offset);
2027 sb->data_size = cpu_to_le64(rdev->sectors);
2028
2029 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
2030 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
2031 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
2032 }
2033
2034 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
2035 !test_bit(In_sync, &rdev->flags)) {
2036 sb->feature_map |=
2037 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
2038 sb->recovery_offset =
2039 cpu_to_le64(rdev->recovery_offset);
2040 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
2041 sb->feature_map |=
2042 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
2043 }
2044 /* Note: recovery_offset and journal_tail share space */
2045 if (test_bit(Journal, &rdev->flags))
2046 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
2047 if (test_bit(Replacement, &rdev->flags))
2048 sb->feature_map |=
2049 cpu_to_le32(MD_FEATURE_REPLACEMENT);
2050
2051 if (mddev->reshape_position != MaxSector) {
2052 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2053 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2054 sb->new_layout = cpu_to_le32(mddev->new_layout);
2055 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2056 sb->new_level = cpu_to_le32(mddev->new_level);
2057 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2058 if (mddev->delta_disks == 0 &&
2059 mddev->reshape_backwards)
2060 sb->feature_map
2061 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2062 if (rdev->new_data_offset != rdev->data_offset) {
2063 sb->feature_map
2064 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2065 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2066 - rdev->data_offset));
2067 }
2068 }
2069
2070 if (mddev_is_clustered(mddev))
2071 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2072
2073 if (rdev->badblocks.count == 0)
2074 /* Nothing to do for bad blocks*/ ;
2075 else if (sb->bblog_offset == 0)
2076 /* Cannot record bad blocks on this device */
2077 md_error(mddev, rdev);
2078 else {
2079 struct badblocks *bb = &rdev->badblocks;
2080 __le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2081 u64 *p = bb->page;
2082 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2083 if (bb->changed) {
2084 unsigned seq;
2085
2086 retry:
2087 seq = read_seqbegin(&bb->lock);
2088
2089 memset(bbp, 0xff, PAGE_SIZE);
2090
2091 for (i = 0 ; i < bb->count ; i++) {
2092 u64 internal_bb = p[i];
2093 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2094 | BB_LEN(internal_bb));
2095 bbp[i] = cpu_to_le64(store_bb);
2096 }
2097 bb->changed = 0;
2098 if (read_seqretry(&bb->lock, seq))
2099 goto retry;
2100
2101 bb->sector = (rdev->sb_start +
2102 (int)le32_to_cpu(sb->bblog_offset));
2103 bb->size = le16_to_cpu(sb->bblog_size);
2104 }
2105 }
2106
2107 max_dev = 0;
2108 rdev_for_each(rdev2, mddev)
2109 if (rdev2->desc_nr+1 > max_dev)
2110 max_dev = rdev2->desc_nr+1;
2111
2112 if (max_dev > le32_to_cpu(sb->max_dev)) {
2113 int bmask;
2114 sb->max_dev = cpu_to_le32(max_dev);
2115 rdev->sb_size = max_dev * 2 + 256;
2116 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2117 if (rdev->sb_size & bmask)
2118 rdev->sb_size = (rdev->sb_size | bmask) + 1;
2119 } else
2120 max_dev = le32_to_cpu(sb->max_dev);
2121
2122 for (i=0; i<max_dev;i++)
2123 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2124
2125 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2126 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2127
2128 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2129 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2130 sb->feature_map |=
2131 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2132 else
2133 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2134 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2135 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2136 }
2137
2138 rdev_for_each(rdev2, mddev) {
2139 i = rdev2->desc_nr;
2140 if (test_bit(Faulty, &rdev2->flags))
2141 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2142 else if (test_bit(In_sync, &rdev2->flags))
2143 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2144 else if (test_bit(Journal, &rdev2->flags))
2145 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2146 else if (rdev2->raid_disk >= 0)
2147 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2148 else
2149 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2150 }
2151
2152 sb->sb_csum = calc_sb_1_csum(sb);
2153 }
2154
super_1_choose_bm_space(sector_t dev_size)2155 static sector_t super_1_choose_bm_space(sector_t dev_size)
2156 {
2157 sector_t bm_space;
2158
2159 /* if the device is bigger than 8Gig, save 64k for bitmap
2160 * usage, if bigger than 200Gig, save 128k
2161 */
2162 if (dev_size < 64*2)
2163 bm_space = 0;
2164 else if (dev_size - 64*2 >= 200*1024*1024*2)
2165 bm_space = 128*2;
2166 else if (dev_size - 4*2 > 8*1024*1024*2)
2167 bm_space = 64*2;
2168 else
2169 bm_space = 4*2;
2170 return bm_space;
2171 }
2172
2173 static unsigned long long
super_1_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)2174 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2175 {
2176 struct mdp_superblock_1 *sb;
2177 sector_t max_sectors;
2178 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2179 return 0; /* component must fit device */
2180 if (rdev->data_offset != rdev->new_data_offset)
2181 return 0; /* too confusing */
2182 if (rdev->sb_start < rdev->data_offset) {
2183 /* minor versions 1 and 2; superblock before data */
2184 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
2185 if (!num_sectors || num_sectors > max_sectors)
2186 num_sectors = max_sectors;
2187 } else if (rdev->mddev->bitmap_info.offset) {
2188 /* minor version 0 with bitmap we can't move */
2189 return 0;
2190 } else {
2191 /* minor version 0; superblock after data */
2192 sector_t sb_start, bm_space;
2193 sector_t dev_size = bdev_nr_sectors(rdev->bdev);
2194
2195 /* 8K is for superblock */
2196 sb_start = dev_size - 8*2;
2197 sb_start &= ~(sector_t)(4*2 - 1);
2198
2199 bm_space = super_1_choose_bm_space(dev_size);
2200
2201 /* Space that can be used to store date needs to decrease
2202 * superblock bitmap space and bad block space(4K)
2203 */
2204 max_sectors = sb_start - bm_space - 4*2;
2205
2206 if (!num_sectors || num_sectors > max_sectors)
2207 num_sectors = max_sectors;
2208 rdev->sb_start = sb_start;
2209 }
2210 sb = page_address(rdev->sb_page);
2211 sb->data_size = cpu_to_le64(num_sectors);
2212 sb->super_offset = cpu_to_le64(rdev->sb_start);
2213 sb->sb_csum = calc_sb_1_csum(sb);
2214 do {
2215 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2216 rdev->sb_page);
2217 } while (md_super_wait(rdev->mddev) < 0);
2218 return num_sectors;
2219
2220 }
2221
2222 static int
super_1_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)2223 super_1_allow_new_offset(struct md_rdev *rdev,
2224 unsigned long long new_offset)
2225 {
2226 /* All necessary checks on new >= old have been done */
2227 struct bitmap *bitmap;
2228 if (new_offset >= rdev->data_offset)
2229 return 1;
2230
2231 /* with 1.0 metadata, there is no metadata to tread on
2232 * so we can always move back */
2233 if (rdev->mddev->minor_version == 0)
2234 return 1;
2235
2236 /* otherwise we must be sure not to step on
2237 * any metadata, so stay:
2238 * 36K beyond start of superblock
2239 * beyond end of badblocks
2240 * beyond write-intent bitmap
2241 */
2242 if (rdev->sb_start + (32+4)*2 > new_offset)
2243 return 0;
2244 bitmap = rdev->mddev->bitmap;
2245 if (bitmap && !rdev->mddev->bitmap_info.file &&
2246 rdev->sb_start + rdev->mddev->bitmap_info.offset +
2247 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2248 return 0;
2249 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2250 return 0;
2251
2252 return 1;
2253 }
2254
2255 static struct super_type super_types[] = {
2256 [0] = {
2257 .name = "0.90.0",
2258 .owner = THIS_MODULE,
2259 .load_super = super_90_load,
2260 .validate_super = super_90_validate,
2261 .sync_super = super_90_sync,
2262 .rdev_size_change = super_90_rdev_size_change,
2263 .allow_new_offset = super_90_allow_new_offset,
2264 },
2265 [1] = {
2266 .name = "md-1",
2267 .owner = THIS_MODULE,
2268 .load_super = super_1_load,
2269 .validate_super = super_1_validate,
2270 .sync_super = super_1_sync,
2271 .rdev_size_change = super_1_rdev_size_change,
2272 .allow_new_offset = super_1_allow_new_offset,
2273 },
2274 };
2275
sync_super(struct mddev * mddev,struct md_rdev * rdev)2276 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2277 {
2278 if (mddev->sync_super) {
2279 mddev->sync_super(mddev, rdev);
2280 return;
2281 }
2282
2283 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2284
2285 super_types[mddev->major_version].sync_super(mddev, rdev);
2286 }
2287
match_mddev_units(struct mddev * mddev1,struct mddev * mddev2)2288 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2289 {
2290 struct md_rdev *rdev, *rdev2;
2291
2292 rcu_read_lock();
2293 rdev_for_each_rcu(rdev, mddev1) {
2294 if (test_bit(Faulty, &rdev->flags) ||
2295 test_bit(Journal, &rdev->flags) ||
2296 rdev->raid_disk == -1)
2297 continue;
2298 rdev_for_each_rcu(rdev2, mddev2) {
2299 if (test_bit(Faulty, &rdev2->flags) ||
2300 test_bit(Journal, &rdev2->flags) ||
2301 rdev2->raid_disk == -1)
2302 continue;
2303 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
2304 rcu_read_unlock();
2305 return 1;
2306 }
2307 }
2308 }
2309 rcu_read_unlock();
2310 return 0;
2311 }
2312
2313 static LIST_HEAD(pending_raid_disks);
2314
2315 /*
2316 * Try to register data integrity profile for an mddev
2317 *
2318 * This is called when an array is started and after a disk has been kicked
2319 * from the array. It only succeeds if all working and active component devices
2320 * are integrity capable with matching profiles.
2321 */
md_integrity_register(struct mddev * mddev)2322 int md_integrity_register(struct mddev *mddev)
2323 {
2324 struct md_rdev *rdev, *reference = NULL;
2325
2326 if (list_empty(&mddev->disks))
2327 return 0; /* nothing to do */
2328 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2329 return 0; /* shouldn't register, or already is */
2330 rdev_for_each(rdev, mddev) {
2331 /* skip spares and non-functional disks */
2332 if (test_bit(Faulty, &rdev->flags))
2333 continue;
2334 if (rdev->raid_disk < 0)
2335 continue;
2336 if (!reference) {
2337 /* Use the first rdev as the reference */
2338 reference = rdev;
2339 continue;
2340 }
2341 /* does this rdev's profile match the reference profile? */
2342 if (blk_integrity_compare(reference->bdev->bd_disk,
2343 rdev->bdev->bd_disk) < 0)
2344 return -EINVAL;
2345 }
2346 if (!reference || !bdev_get_integrity(reference->bdev))
2347 return 0;
2348 /*
2349 * All component devices are integrity capable and have matching
2350 * profiles, register the common profile for the md device.
2351 */
2352 blk_integrity_register(mddev->gendisk,
2353 bdev_get_integrity(reference->bdev));
2354
2355 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2356 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) ||
2357 (mddev->level != 1 && mddev->level != 10 &&
2358 bioset_integrity_create(&mddev->io_clone_set, BIO_POOL_SIZE))) {
2359 /*
2360 * No need to handle the failure of bioset_integrity_create,
2361 * because the function is called by md_run() -> pers->run(),
2362 * md_run calls bioset_exit -> bioset_integrity_free in case
2363 * of failure case.
2364 */
2365 pr_err("md: failed to create integrity pool for %s\n",
2366 mdname(mddev));
2367 return -EINVAL;
2368 }
2369 return 0;
2370 }
2371 EXPORT_SYMBOL(md_integrity_register);
2372
2373 /*
2374 * Attempt to add an rdev, but only if it is consistent with the current
2375 * integrity profile
2376 */
md_integrity_add_rdev(struct md_rdev * rdev,struct mddev * mddev)2377 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2378 {
2379 struct blk_integrity *bi_mddev;
2380
2381 if (!mddev->gendisk)
2382 return 0;
2383
2384 bi_mddev = blk_get_integrity(mddev->gendisk);
2385
2386 if (!bi_mddev) /* nothing to do */
2387 return 0;
2388
2389 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2390 pr_err("%s: incompatible integrity profile for %pg\n",
2391 mdname(mddev), rdev->bdev);
2392 return -ENXIO;
2393 }
2394
2395 return 0;
2396 }
2397 EXPORT_SYMBOL(md_integrity_add_rdev);
2398
rdev_read_only(struct md_rdev * rdev)2399 static bool rdev_read_only(struct md_rdev *rdev)
2400 {
2401 return bdev_read_only(rdev->bdev) ||
2402 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev));
2403 }
2404
bind_rdev_to_array(struct md_rdev * rdev,struct mddev * mddev)2405 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2406 {
2407 char b[BDEVNAME_SIZE];
2408 int err;
2409
2410 /* prevent duplicates */
2411 if (find_rdev(mddev, rdev->bdev->bd_dev))
2412 return -EEXIST;
2413
2414 if (rdev_read_only(rdev) && mddev->pers)
2415 return -EROFS;
2416
2417 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2418 if (!test_bit(Journal, &rdev->flags) &&
2419 rdev->sectors &&
2420 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2421 if (mddev->pers) {
2422 /* Cannot change size, so fail
2423 * If mddev->level <= 0, then we don't care
2424 * about aligning sizes (e.g. linear)
2425 */
2426 if (mddev->level > 0)
2427 return -ENOSPC;
2428 } else
2429 mddev->dev_sectors = rdev->sectors;
2430 }
2431
2432 /* Verify rdev->desc_nr is unique.
2433 * If it is -1, assign a free number, else
2434 * check number is not in use
2435 */
2436 rcu_read_lock();
2437 if (rdev->desc_nr < 0) {
2438 int choice = 0;
2439 if (mddev->pers)
2440 choice = mddev->raid_disks;
2441 while (md_find_rdev_nr_rcu(mddev, choice))
2442 choice++;
2443 rdev->desc_nr = choice;
2444 } else {
2445 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2446 rcu_read_unlock();
2447 return -EBUSY;
2448 }
2449 }
2450 rcu_read_unlock();
2451 if (!test_bit(Journal, &rdev->flags) &&
2452 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2453 pr_warn("md: %s: array is limited to %d devices\n",
2454 mdname(mddev), mddev->max_disks);
2455 return -EBUSY;
2456 }
2457 snprintf(b, sizeof(b), "%pg", rdev->bdev);
2458 strreplace(b, '/', '!');
2459
2460 rdev->mddev = mddev;
2461 pr_debug("md: bind<%s>\n", b);
2462
2463 if (mddev->raid_disks)
2464 mddev_create_serial_pool(mddev, rdev, false);
2465
2466 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2467 goto fail;
2468
2469 /* failure here is OK */
2470 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block");
2471 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2472 rdev->sysfs_unack_badblocks =
2473 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2474 rdev->sysfs_badblocks =
2475 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2476
2477 list_add_rcu(&rdev->same_set, &mddev->disks);
2478 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2479
2480 /* May as well allow recovery to be retried once */
2481 mddev->recovery_disabled++;
2482
2483 return 0;
2484
2485 fail:
2486 pr_warn("md: failed to register dev-%s for %s\n",
2487 b, mdname(mddev));
2488 return err;
2489 }
2490
2491 void md_autodetect_dev(dev_t dev);
2492
2493 /* just for claiming the bdev */
2494 static struct md_rdev claim_rdev;
2495
export_rdev(struct md_rdev * rdev,struct mddev * mddev)2496 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev)
2497 {
2498 pr_debug("md: export_rdev(%pg)\n", rdev->bdev);
2499 md_rdev_clear(rdev);
2500 #ifndef MODULE
2501 if (test_bit(AutoDetected, &rdev->flags))
2502 md_autodetect_dev(rdev->bdev->bd_dev);
2503 #endif
2504 blkdev_put(rdev->bdev,
2505 test_bit(Holder, &rdev->flags) ? rdev : &claim_rdev);
2506 rdev->bdev = NULL;
2507 kobject_put(&rdev->kobj);
2508 }
2509
md_kick_rdev_from_array(struct md_rdev * rdev)2510 static void md_kick_rdev_from_array(struct md_rdev *rdev)
2511 {
2512 struct mddev *mddev = rdev->mddev;
2513
2514 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2515 list_del_rcu(&rdev->same_set);
2516 pr_debug("md: unbind<%pg>\n", rdev->bdev);
2517 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2518 rdev->mddev = NULL;
2519 sysfs_remove_link(&rdev->kobj, "block");
2520 sysfs_put(rdev->sysfs_state);
2521 sysfs_put(rdev->sysfs_unack_badblocks);
2522 sysfs_put(rdev->sysfs_badblocks);
2523 rdev->sysfs_state = NULL;
2524 rdev->sysfs_unack_badblocks = NULL;
2525 rdev->sysfs_badblocks = NULL;
2526 rdev->badblocks.count = 0;
2527
2528 synchronize_rcu();
2529
2530 /*
2531 * kobject_del() will wait for all in progress writers to be done, where
2532 * reconfig_mutex is held, hence it can't be called under
2533 * reconfig_mutex and it's delayed to mddev_unlock().
2534 */
2535 list_add(&rdev->same_set, &mddev->deleting);
2536 }
2537
export_array(struct mddev * mddev)2538 static void export_array(struct mddev *mddev)
2539 {
2540 struct md_rdev *rdev;
2541
2542 while (!list_empty(&mddev->disks)) {
2543 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2544 same_set);
2545 md_kick_rdev_from_array(rdev);
2546 }
2547 mddev->raid_disks = 0;
2548 mddev->major_version = 0;
2549 }
2550
set_in_sync(struct mddev * mddev)2551 static bool set_in_sync(struct mddev *mddev)
2552 {
2553 lockdep_assert_held(&mddev->lock);
2554 if (!mddev->in_sync) {
2555 mddev->sync_checkers++;
2556 spin_unlock(&mddev->lock);
2557 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2558 spin_lock(&mddev->lock);
2559 if (!mddev->in_sync &&
2560 percpu_ref_is_zero(&mddev->writes_pending)) {
2561 mddev->in_sync = 1;
2562 /*
2563 * Ensure ->in_sync is visible before we clear
2564 * ->sync_checkers.
2565 */
2566 smp_mb();
2567 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2568 sysfs_notify_dirent_safe(mddev->sysfs_state);
2569 }
2570 if (--mddev->sync_checkers == 0)
2571 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2572 }
2573 if (mddev->safemode == 1)
2574 mddev->safemode = 0;
2575 return mddev->in_sync;
2576 }
2577
sync_sbs(struct mddev * mddev,int nospares)2578 static void sync_sbs(struct mddev *mddev, int nospares)
2579 {
2580 /* Update each superblock (in-memory image), but
2581 * if we are allowed to, skip spares which already
2582 * have the right event counter, or have one earlier
2583 * (which would mean they aren't being marked as dirty
2584 * with the rest of the array)
2585 */
2586 struct md_rdev *rdev;
2587 rdev_for_each(rdev, mddev) {
2588 if (rdev->sb_events == mddev->events ||
2589 (nospares &&
2590 rdev->raid_disk < 0 &&
2591 rdev->sb_events+1 == mddev->events)) {
2592 /* Don't update this superblock */
2593 rdev->sb_loaded = 2;
2594 } else {
2595 sync_super(mddev, rdev);
2596 rdev->sb_loaded = 1;
2597 }
2598 }
2599 }
2600
does_sb_need_changing(struct mddev * mddev)2601 static bool does_sb_need_changing(struct mddev *mddev)
2602 {
2603 struct md_rdev *rdev = NULL, *iter;
2604 struct mdp_superblock_1 *sb;
2605 int role;
2606
2607 /* Find a good rdev */
2608 rdev_for_each(iter, mddev)
2609 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) {
2610 rdev = iter;
2611 break;
2612 }
2613
2614 /* No good device found. */
2615 if (!rdev)
2616 return false;
2617
2618 sb = page_address(rdev->sb_page);
2619 /* Check if a device has become faulty or a spare become active */
2620 rdev_for_each(rdev, mddev) {
2621 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2622 /* Device activated? */
2623 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 &&
2624 !test_bit(Faulty, &rdev->flags))
2625 return true;
2626 /* Device turned faulty? */
2627 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX))
2628 return true;
2629 }
2630
2631 /* Check if any mddev parameters have changed */
2632 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2633 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2634 (mddev->layout != le32_to_cpu(sb->layout)) ||
2635 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2636 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2637 return true;
2638
2639 return false;
2640 }
2641
md_update_sb(struct mddev * mddev,int force_change)2642 void md_update_sb(struct mddev *mddev, int force_change)
2643 {
2644 struct md_rdev *rdev;
2645 int sync_req;
2646 int nospares = 0;
2647 int any_badblocks_changed = 0;
2648 int ret = -1;
2649
2650 if (!md_is_rdwr(mddev)) {
2651 if (force_change)
2652 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2653 return;
2654 }
2655
2656 repeat:
2657 if (mddev_is_clustered(mddev)) {
2658 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2659 force_change = 1;
2660 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2661 nospares = 1;
2662 ret = md_cluster_ops->metadata_update_start(mddev);
2663 /* Has someone else has updated the sb */
2664 if (!does_sb_need_changing(mddev)) {
2665 if (ret == 0)
2666 md_cluster_ops->metadata_update_cancel(mddev);
2667 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2668 BIT(MD_SB_CHANGE_DEVS) |
2669 BIT(MD_SB_CHANGE_CLEAN));
2670 return;
2671 }
2672 }
2673
2674 /*
2675 * First make sure individual recovery_offsets are correct
2676 * curr_resync_completed can only be used during recovery.
2677 * During reshape/resync it might use array-addresses rather
2678 * that device addresses.
2679 */
2680 rdev_for_each(rdev, mddev) {
2681 if (rdev->raid_disk >= 0 &&
2682 mddev->delta_disks >= 0 &&
2683 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2684 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2685 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2686 !test_bit(Journal, &rdev->flags) &&
2687 !test_bit(In_sync, &rdev->flags) &&
2688 mddev->curr_resync_completed > rdev->recovery_offset)
2689 rdev->recovery_offset = mddev->curr_resync_completed;
2690
2691 }
2692 if (!mddev->persistent) {
2693 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2694 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2695 if (!mddev->external) {
2696 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2697 rdev_for_each(rdev, mddev) {
2698 if (rdev->badblocks.changed) {
2699 rdev->badblocks.changed = 0;
2700 ack_all_badblocks(&rdev->badblocks);
2701 md_error(mddev, rdev);
2702 }
2703 clear_bit(Blocked, &rdev->flags);
2704 clear_bit(BlockedBadBlocks, &rdev->flags);
2705 wake_up(&rdev->blocked_wait);
2706 }
2707 }
2708 wake_up(&mddev->sb_wait);
2709 return;
2710 }
2711
2712 spin_lock(&mddev->lock);
2713
2714 mddev->utime = ktime_get_real_seconds();
2715
2716 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2717 force_change = 1;
2718 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2719 /* just a clean<-> dirty transition, possibly leave spares alone,
2720 * though if events isn't the right even/odd, we will have to do
2721 * spares after all
2722 */
2723 nospares = 1;
2724 if (force_change)
2725 nospares = 0;
2726 if (mddev->degraded)
2727 /* If the array is degraded, then skipping spares is both
2728 * dangerous and fairly pointless.
2729 * Dangerous because a device that was removed from the array
2730 * might have a event_count that still looks up-to-date,
2731 * so it can be re-added without a resync.
2732 * Pointless because if there are any spares to skip,
2733 * then a recovery will happen and soon that array won't
2734 * be degraded any more and the spare can go back to sleep then.
2735 */
2736 nospares = 0;
2737
2738 sync_req = mddev->in_sync;
2739
2740 /* If this is just a dirty<->clean transition, and the array is clean
2741 * and 'events' is odd, we can roll back to the previous clean state */
2742 if (nospares
2743 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2744 && mddev->can_decrease_events
2745 && mddev->events != 1) {
2746 mddev->events--;
2747 mddev->can_decrease_events = 0;
2748 } else {
2749 /* otherwise we have to go forward and ... */
2750 mddev->events ++;
2751 mddev->can_decrease_events = nospares;
2752 }
2753
2754 /*
2755 * This 64-bit counter should never wrap.
2756 * Either we are in around ~1 trillion A.C., assuming
2757 * 1 reboot per second, or we have a bug...
2758 */
2759 WARN_ON(mddev->events == 0);
2760
2761 rdev_for_each(rdev, mddev) {
2762 if (rdev->badblocks.changed)
2763 any_badblocks_changed++;
2764 if (test_bit(Faulty, &rdev->flags))
2765 set_bit(FaultRecorded, &rdev->flags);
2766 }
2767
2768 sync_sbs(mddev, nospares);
2769 spin_unlock(&mddev->lock);
2770
2771 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2772 mdname(mddev), mddev->in_sync);
2773
2774 if (mddev->queue)
2775 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2776 rewrite:
2777 md_bitmap_update_sb(mddev->bitmap);
2778 rdev_for_each(rdev, mddev) {
2779 if (rdev->sb_loaded != 1)
2780 continue; /* no noise on spare devices */
2781
2782 if (!test_bit(Faulty, &rdev->flags)) {
2783 md_super_write(mddev,rdev,
2784 rdev->sb_start, rdev->sb_size,
2785 rdev->sb_page);
2786 pr_debug("md: (write) %pg's sb offset: %llu\n",
2787 rdev->bdev,
2788 (unsigned long long)rdev->sb_start);
2789 rdev->sb_events = mddev->events;
2790 if (rdev->badblocks.size) {
2791 md_super_write(mddev, rdev,
2792 rdev->badblocks.sector,
2793 rdev->badblocks.size << 9,
2794 rdev->bb_page);
2795 rdev->badblocks.size = 0;
2796 }
2797
2798 } else
2799 pr_debug("md: %pg (skipping faulty)\n",
2800 rdev->bdev);
2801
2802 if (mddev->level == LEVEL_MULTIPATH)
2803 /* only need to write one superblock... */
2804 break;
2805 }
2806 if (md_super_wait(mddev) < 0)
2807 goto rewrite;
2808 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2809
2810 if (mddev_is_clustered(mddev) && ret == 0)
2811 md_cluster_ops->metadata_update_finish(mddev);
2812
2813 if (mddev->in_sync != sync_req ||
2814 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2815 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2816 /* have to write it out again */
2817 goto repeat;
2818 wake_up(&mddev->sb_wait);
2819 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2820 sysfs_notify_dirent_safe(mddev->sysfs_completed);
2821
2822 rdev_for_each(rdev, mddev) {
2823 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2824 clear_bit(Blocked, &rdev->flags);
2825
2826 if (any_badblocks_changed)
2827 ack_all_badblocks(&rdev->badblocks);
2828 clear_bit(BlockedBadBlocks, &rdev->flags);
2829 wake_up(&rdev->blocked_wait);
2830 }
2831 }
2832 EXPORT_SYMBOL(md_update_sb);
2833
add_bound_rdev(struct md_rdev * rdev)2834 static int add_bound_rdev(struct md_rdev *rdev)
2835 {
2836 struct mddev *mddev = rdev->mddev;
2837 int err = 0;
2838 bool add_journal = test_bit(Journal, &rdev->flags);
2839
2840 if (!mddev->pers->hot_remove_disk || add_journal) {
2841 /* If there is hot_add_disk but no hot_remove_disk
2842 * then added disks for geometry changes,
2843 * and should be added immediately.
2844 */
2845 super_types[mddev->major_version].
2846 validate_super(mddev, NULL/*freshest*/, rdev);
2847 if (add_journal)
2848 mddev_suspend(mddev);
2849 err = mddev->pers->hot_add_disk(mddev, rdev);
2850 if (add_journal)
2851 mddev_resume(mddev);
2852 if (err) {
2853 md_kick_rdev_from_array(rdev);
2854 return err;
2855 }
2856 }
2857 sysfs_notify_dirent_safe(rdev->sysfs_state);
2858
2859 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2860 if (mddev->degraded)
2861 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2862 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2863 md_new_event();
2864 md_wakeup_thread(mddev->thread);
2865 return 0;
2866 }
2867
2868 /* words written to sysfs files may, or may not, be \n terminated.
2869 * We want to accept with case. For this we use cmd_match.
2870 */
cmd_match(const char * cmd,const char * str)2871 static int cmd_match(const char *cmd, const char *str)
2872 {
2873 /* See if cmd, written into a sysfs file, matches
2874 * str. They must either be the same, or cmd can
2875 * have a trailing newline
2876 */
2877 while (*cmd && *str && *cmd == *str) {
2878 cmd++;
2879 str++;
2880 }
2881 if (*cmd == '\n')
2882 cmd++;
2883 if (*str || *cmd)
2884 return 0;
2885 return 1;
2886 }
2887
2888 struct rdev_sysfs_entry {
2889 struct attribute attr;
2890 ssize_t (*show)(struct md_rdev *, char *);
2891 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2892 };
2893
2894 static ssize_t
state_show(struct md_rdev * rdev,char * page)2895 state_show(struct md_rdev *rdev, char *page)
2896 {
2897 char *sep = ",";
2898 size_t len = 0;
2899 unsigned long flags = READ_ONCE(rdev->flags);
2900
2901 if (test_bit(Faulty, &flags) ||
2902 (!test_bit(ExternalBbl, &flags) &&
2903 rdev->badblocks.unacked_exist))
2904 len += sprintf(page+len, "faulty%s", sep);
2905 if (test_bit(In_sync, &flags))
2906 len += sprintf(page+len, "in_sync%s", sep);
2907 if (test_bit(Journal, &flags))
2908 len += sprintf(page+len, "journal%s", sep);
2909 if (test_bit(WriteMostly, &flags))
2910 len += sprintf(page+len, "write_mostly%s", sep);
2911 if (test_bit(Blocked, &flags) ||
2912 (rdev->badblocks.unacked_exist
2913 && !test_bit(Faulty, &flags)))
2914 len += sprintf(page+len, "blocked%s", sep);
2915 if (!test_bit(Faulty, &flags) &&
2916 !test_bit(Journal, &flags) &&
2917 !test_bit(In_sync, &flags))
2918 len += sprintf(page+len, "spare%s", sep);
2919 if (test_bit(WriteErrorSeen, &flags))
2920 len += sprintf(page+len, "write_error%s", sep);
2921 if (test_bit(WantReplacement, &flags))
2922 len += sprintf(page+len, "want_replacement%s", sep);
2923 if (test_bit(Replacement, &flags))
2924 len += sprintf(page+len, "replacement%s", sep);
2925 if (test_bit(ExternalBbl, &flags))
2926 len += sprintf(page+len, "external_bbl%s", sep);
2927 if (test_bit(FailFast, &flags))
2928 len += sprintf(page+len, "failfast%s", sep);
2929
2930 if (len)
2931 len -= strlen(sep);
2932
2933 return len+sprintf(page+len, "\n");
2934 }
2935
2936 static ssize_t
state_store(struct md_rdev * rdev,const char * buf,size_t len)2937 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2938 {
2939 /* can write
2940 * faulty - simulates an error
2941 * remove - disconnects the device
2942 * writemostly - sets write_mostly
2943 * -writemostly - clears write_mostly
2944 * blocked - sets the Blocked flags
2945 * -blocked - clears the Blocked and possibly simulates an error
2946 * insync - sets Insync providing device isn't active
2947 * -insync - clear Insync for a device with a slot assigned,
2948 * so that it gets rebuilt based on bitmap
2949 * write_error - sets WriteErrorSeen
2950 * -write_error - clears WriteErrorSeen
2951 * {,-}failfast - set/clear FailFast
2952 */
2953
2954 struct mddev *mddev = rdev->mddev;
2955 int err = -EINVAL;
2956 bool need_update_sb = false;
2957
2958 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2959 md_error(rdev->mddev, rdev);
2960
2961 if (test_bit(MD_BROKEN, &rdev->mddev->flags))
2962 err = -EBUSY;
2963 else
2964 err = 0;
2965 } else if (cmd_match(buf, "remove")) {
2966 if (rdev->mddev->pers) {
2967 clear_bit(Blocked, &rdev->flags);
2968 remove_and_add_spares(rdev->mddev, rdev);
2969 }
2970 if (rdev->raid_disk >= 0)
2971 err = -EBUSY;
2972 else {
2973 err = 0;
2974 if (mddev_is_clustered(mddev))
2975 err = md_cluster_ops->remove_disk(mddev, rdev);
2976
2977 if (err == 0) {
2978 md_kick_rdev_from_array(rdev);
2979 if (mddev->pers) {
2980 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2981 md_wakeup_thread(mddev->thread);
2982 }
2983 md_new_event();
2984 }
2985 }
2986 } else if (cmd_match(buf, "writemostly")) {
2987 set_bit(WriteMostly, &rdev->flags);
2988 mddev_create_serial_pool(rdev->mddev, rdev, false);
2989 need_update_sb = true;
2990 err = 0;
2991 } else if (cmd_match(buf, "-writemostly")) {
2992 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2993 clear_bit(WriteMostly, &rdev->flags);
2994 need_update_sb = true;
2995 err = 0;
2996 } else if (cmd_match(buf, "blocked")) {
2997 set_bit(Blocked, &rdev->flags);
2998 err = 0;
2999 } else if (cmd_match(buf, "-blocked")) {
3000 if (!test_bit(Faulty, &rdev->flags) &&
3001 !test_bit(ExternalBbl, &rdev->flags) &&
3002 rdev->badblocks.unacked_exist) {
3003 /* metadata handler doesn't understand badblocks,
3004 * so we need to fail the device
3005 */
3006 md_error(rdev->mddev, rdev);
3007 }
3008 clear_bit(Blocked, &rdev->flags);
3009 clear_bit(BlockedBadBlocks, &rdev->flags);
3010 wake_up(&rdev->blocked_wait);
3011 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3012 md_wakeup_thread(rdev->mddev->thread);
3013
3014 err = 0;
3015 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
3016 set_bit(In_sync, &rdev->flags);
3017 err = 0;
3018 } else if (cmd_match(buf, "failfast")) {
3019 set_bit(FailFast, &rdev->flags);
3020 need_update_sb = true;
3021 err = 0;
3022 } else if (cmd_match(buf, "-failfast")) {
3023 clear_bit(FailFast, &rdev->flags);
3024 need_update_sb = true;
3025 err = 0;
3026 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
3027 !test_bit(Journal, &rdev->flags)) {
3028 if (rdev->mddev->pers == NULL) {
3029 clear_bit(In_sync, &rdev->flags);
3030 rdev->saved_raid_disk = rdev->raid_disk;
3031 rdev->raid_disk = -1;
3032 err = 0;
3033 }
3034 } else if (cmd_match(buf, "write_error")) {
3035 set_bit(WriteErrorSeen, &rdev->flags);
3036 err = 0;
3037 } else if (cmd_match(buf, "-write_error")) {
3038 clear_bit(WriteErrorSeen, &rdev->flags);
3039 err = 0;
3040 } else if (cmd_match(buf, "want_replacement")) {
3041 /* Any non-spare device that is not a replacement can
3042 * become want_replacement at any time, but we then need to
3043 * check if recovery is needed.
3044 */
3045 if (rdev->raid_disk >= 0 &&
3046 !test_bit(Journal, &rdev->flags) &&
3047 !test_bit(Replacement, &rdev->flags))
3048 set_bit(WantReplacement, &rdev->flags);
3049 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3050 md_wakeup_thread(rdev->mddev->thread);
3051 err = 0;
3052 } else if (cmd_match(buf, "-want_replacement")) {
3053 /* Clearing 'want_replacement' is always allowed.
3054 * Once replacements starts it is too late though.
3055 */
3056 err = 0;
3057 clear_bit(WantReplacement, &rdev->flags);
3058 } else if (cmd_match(buf, "replacement")) {
3059 /* Can only set a device as a replacement when array has not
3060 * yet been started. Once running, replacement is automatic
3061 * from spares, or by assigning 'slot'.
3062 */
3063 if (rdev->mddev->pers)
3064 err = -EBUSY;
3065 else {
3066 set_bit(Replacement, &rdev->flags);
3067 err = 0;
3068 }
3069 } else if (cmd_match(buf, "-replacement")) {
3070 /* Similarly, can only clear Replacement before start */
3071 if (rdev->mddev->pers)
3072 err = -EBUSY;
3073 else {
3074 clear_bit(Replacement, &rdev->flags);
3075 err = 0;
3076 }
3077 } else if (cmd_match(buf, "re-add")) {
3078 if (!rdev->mddev->pers)
3079 err = -EINVAL;
3080 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3081 rdev->saved_raid_disk >= 0) {
3082 /* clear_bit is performed _after_ all the devices
3083 * have their local Faulty bit cleared. If any writes
3084 * happen in the meantime in the local node, they
3085 * will land in the local bitmap, which will be synced
3086 * by this node eventually
3087 */
3088 if (!mddev_is_clustered(rdev->mddev) ||
3089 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
3090 clear_bit(Faulty, &rdev->flags);
3091 err = add_bound_rdev(rdev);
3092 }
3093 } else
3094 err = -EBUSY;
3095 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3096 set_bit(ExternalBbl, &rdev->flags);
3097 rdev->badblocks.shift = 0;
3098 err = 0;
3099 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3100 clear_bit(ExternalBbl, &rdev->flags);
3101 err = 0;
3102 }
3103 if (need_update_sb)
3104 md_update_sb(mddev, 1);
3105 if (!err)
3106 sysfs_notify_dirent_safe(rdev->sysfs_state);
3107 return err ? err : len;
3108 }
3109 static struct rdev_sysfs_entry rdev_state =
3110 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3111
3112 static ssize_t
errors_show(struct md_rdev * rdev,char * page)3113 errors_show(struct md_rdev *rdev, char *page)
3114 {
3115 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3116 }
3117
3118 static ssize_t
errors_store(struct md_rdev * rdev,const char * buf,size_t len)3119 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3120 {
3121 unsigned int n;
3122 int rv;
3123
3124 rv = kstrtouint(buf, 10, &n);
3125 if (rv < 0)
3126 return rv;
3127 atomic_set(&rdev->corrected_errors, n);
3128 return len;
3129 }
3130 static struct rdev_sysfs_entry rdev_errors =
3131 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3132
3133 static ssize_t
slot_show(struct md_rdev * rdev,char * page)3134 slot_show(struct md_rdev *rdev, char *page)
3135 {
3136 if (test_bit(Journal, &rdev->flags))
3137 return sprintf(page, "journal\n");
3138 else if (rdev->raid_disk < 0)
3139 return sprintf(page, "none\n");
3140 else
3141 return sprintf(page, "%d\n", rdev->raid_disk);
3142 }
3143
3144 static ssize_t
slot_store(struct md_rdev * rdev,const char * buf,size_t len)3145 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3146 {
3147 int slot;
3148 int err;
3149
3150 if (test_bit(Journal, &rdev->flags))
3151 return -EBUSY;
3152 if (strncmp(buf, "none", 4)==0)
3153 slot = -1;
3154 else {
3155 err = kstrtouint(buf, 10, (unsigned int *)&slot);
3156 if (err < 0)
3157 return err;
3158 if (slot < 0)
3159 /* overflow */
3160 return -ENOSPC;
3161 }
3162 if (rdev->mddev->pers && slot == -1) {
3163 /* Setting 'slot' on an active array requires also
3164 * updating the 'rd%d' link, and communicating
3165 * with the personality with ->hot_*_disk.
3166 * For now we only support removing
3167 * failed/spare devices. This normally happens automatically,
3168 * but not when the metadata is externally managed.
3169 */
3170 if (rdev->raid_disk == -1)
3171 return -EEXIST;
3172 /* personality does all needed checks */
3173 if (rdev->mddev->pers->hot_remove_disk == NULL)
3174 return -EINVAL;
3175 clear_bit(Blocked, &rdev->flags);
3176 remove_and_add_spares(rdev->mddev, rdev);
3177 if (rdev->raid_disk >= 0)
3178 return -EBUSY;
3179 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3180 md_wakeup_thread(rdev->mddev->thread);
3181 } else if (rdev->mddev->pers) {
3182 /* Activating a spare .. or possibly reactivating
3183 * if we ever get bitmaps working here.
3184 */
3185 int err;
3186
3187 if (rdev->raid_disk != -1)
3188 return -EBUSY;
3189
3190 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3191 return -EBUSY;
3192
3193 if (rdev->mddev->pers->hot_add_disk == NULL)
3194 return -EINVAL;
3195
3196 if (slot >= rdev->mddev->raid_disks &&
3197 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3198 return -ENOSPC;
3199
3200 rdev->raid_disk = slot;
3201 if (test_bit(In_sync, &rdev->flags))
3202 rdev->saved_raid_disk = slot;
3203 else
3204 rdev->saved_raid_disk = -1;
3205 clear_bit(In_sync, &rdev->flags);
3206 clear_bit(Bitmap_sync, &rdev->flags);
3207 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3208 if (err) {
3209 rdev->raid_disk = -1;
3210 return err;
3211 } else
3212 sysfs_notify_dirent_safe(rdev->sysfs_state);
3213 /* failure here is OK */;
3214 sysfs_link_rdev(rdev->mddev, rdev);
3215 /* don't wakeup anyone, leave that to userspace. */
3216 } else {
3217 if (slot >= rdev->mddev->raid_disks &&
3218 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3219 return -ENOSPC;
3220 rdev->raid_disk = slot;
3221 /* assume it is working */
3222 clear_bit(Faulty, &rdev->flags);
3223 clear_bit(WriteMostly, &rdev->flags);
3224 set_bit(In_sync, &rdev->flags);
3225 sysfs_notify_dirent_safe(rdev->sysfs_state);
3226 }
3227 return len;
3228 }
3229
3230 static struct rdev_sysfs_entry rdev_slot =
3231 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3232
3233 static ssize_t
offset_show(struct md_rdev * rdev,char * page)3234 offset_show(struct md_rdev *rdev, char *page)
3235 {
3236 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3237 }
3238
3239 static ssize_t
offset_store(struct md_rdev * rdev,const char * buf,size_t len)3240 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3241 {
3242 unsigned long long offset;
3243 if (kstrtoull(buf, 10, &offset) < 0)
3244 return -EINVAL;
3245 if (rdev->mddev->pers && rdev->raid_disk >= 0)
3246 return -EBUSY;
3247 if (rdev->sectors && rdev->mddev->external)
3248 /* Must set offset before size, so overlap checks
3249 * can be sane */
3250 return -EBUSY;
3251 rdev->data_offset = offset;
3252 rdev->new_data_offset = offset;
3253 return len;
3254 }
3255
3256 static struct rdev_sysfs_entry rdev_offset =
3257 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3258
new_offset_show(struct md_rdev * rdev,char * page)3259 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3260 {
3261 return sprintf(page, "%llu\n",
3262 (unsigned long long)rdev->new_data_offset);
3263 }
3264
new_offset_store(struct md_rdev * rdev,const char * buf,size_t len)3265 static ssize_t new_offset_store(struct md_rdev *rdev,
3266 const char *buf, size_t len)
3267 {
3268 unsigned long long new_offset;
3269 struct mddev *mddev = rdev->mddev;
3270
3271 if (kstrtoull(buf, 10, &new_offset) < 0)
3272 return -EINVAL;
3273
3274 if (mddev->sync_thread ||
3275 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3276 return -EBUSY;
3277 if (new_offset == rdev->data_offset)
3278 /* reset is always permitted */
3279 ;
3280 else if (new_offset > rdev->data_offset) {
3281 /* must not push array size beyond rdev_sectors */
3282 if (new_offset - rdev->data_offset
3283 + mddev->dev_sectors > rdev->sectors)
3284 return -E2BIG;
3285 }
3286 /* Metadata worries about other space details. */
3287
3288 /* decreasing the offset is inconsistent with a backwards
3289 * reshape.
3290 */
3291 if (new_offset < rdev->data_offset &&
3292 mddev->reshape_backwards)
3293 return -EINVAL;
3294 /* Increasing offset is inconsistent with forwards
3295 * reshape. reshape_direction should be set to
3296 * 'backwards' first.
3297 */
3298 if (new_offset > rdev->data_offset &&
3299 !mddev->reshape_backwards)
3300 return -EINVAL;
3301
3302 if (mddev->pers && mddev->persistent &&
3303 !super_types[mddev->major_version]
3304 .allow_new_offset(rdev, new_offset))
3305 return -E2BIG;
3306 rdev->new_data_offset = new_offset;
3307 if (new_offset > rdev->data_offset)
3308 mddev->reshape_backwards = 1;
3309 else if (new_offset < rdev->data_offset)
3310 mddev->reshape_backwards = 0;
3311
3312 return len;
3313 }
3314 static struct rdev_sysfs_entry rdev_new_offset =
3315 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3316
3317 static ssize_t
rdev_size_show(struct md_rdev * rdev,char * page)3318 rdev_size_show(struct md_rdev *rdev, char *page)
3319 {
3320 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3321 }
3322
md_rdevs_overlap(struct md_rdev * a,struct md_rdev * b)3323 static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b)
3324 {
3325 /* check if two start/length pairs overlap */
3326 if (a->data_offset + a->sectors <= b->data_offset)
3327 return false;
3328 if (b->data_offset + b->sectors <= a->data_offset)
3329 return false;
3330 return true;
3331 }
3332
md_rdev_overlaps(struct md_rdev * rdev)3333 static bool md_rdev_overlaps(struct md_rdev *rdev)
3334 {
3335 struct mddev *mddev;
3336 struct md_rdev *rdev2;
3337
3338 spin_lock(&all_mddevs_lock);
3339 list_for_each_entry(mddev, &all_mddevs, all_mddevs) {
3340 if (test_bit(MD_DELETED, &mddev->flags))
3341 continue;
3342 rdev_for_each(rdev2, mddev) {
3343 if (rdev != rdev2 && rdev->bdev == rdev2->bdev &&
3344 md_rdevs_overlap(rdev, rdev2)) {
3345 spin_unlock(&all_mddevs_lock);
3346 return true;
3347 }
3348 }
3349 }
3350 spin_unlock(&all_mddevs_lock);
3351 return false;
3352 }
3353
strict_blocks_to_sectors(const char * buf,sector_t * sectors)3354 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3355 {
3356 unsigned long long blocks;
3357 sector_t new;
3358
3359 if (kstrtoull(buf, 10, &blocks) < 0)
3360 return -EINVAL;
3361
3362 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3363 return -EINVAL; /* sector conversion overflow */
3364
3365 new = blocks * 2;
3366 if (new != blocks * 2)
3367 return -EINVAL; /* unsigned long long to sector_t overflow */
3368
3369 *sectors = new;
3370 return 0;
3371 }
3372
3373 static ssize_t
rdev_size_store(struct md_rdev * rdev,const char * buf,size_t len)3374 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3375 {
3376 struct mddev *my_mddev = rdev->mddev;
3377 sector_t oldsectors = rdev->sectors;
3378 sector_t sectors;
3379
3380 if (test_bit(Journal, &rdev->flags))
3381 return -EBUSY;
3382 if (strict_blocks_to_sectors(buf, §ors) < 0)
3383 return -EINVAL;
3384 if (rdev->data_offset != rdev->new_data_offset)
3385 return -EINVAL; /* too confusing */
3386 if (my_mddev->pers && rdev->raid_disk >= 0) {
3387 if (my_mddev->persistent) {
3388 sectors = super_types[my_mddev->major_version].
3389 rdev_size_change(rdev, sectors);
3390 if (!sectors)
3391 return -EBUSY;
3392 } else if (!sectors)
3393 sectors = bdev_nr_sectors(rdev->bdev) -
3394 rdev->data_offset;
3395 if (!my_mddev->pers->resize)
3396 /* Cannot change size for RAID0 or Linear etc */
3397 return -EINVAL;
3398 }
3399 if (sectors < my_mddev->dev_sectors)
3400 return -EINVAL; /* component must fit device */
3401
3402 rdev->sectors = sectors;
3403
3404 /*
3405 * Check that all other rdevs with the same bdev do not overlap. This
3406 * check does not provide a hard guarantee, it just helps avoid
3407 * dangerous mistakes.
3408 */
3409 if (sectors > oldsectors && my_mddev->external &&
3410 md_rdev_overlaps(rdev)) {
3411 /*
3412 * Someone else could have slipped in a size change here, but
3413 * doing so is just silly. We put oldsectors back because we
3414 * know it is safe, and trust userspace not to race with itself.
3415 */
3416 rdev->sectors = oldsectors;
3417 return -EBUSY;
3418 }
3419 return len;
3420 }
3421
3422 static struct rdev_sysfs_entry rdev_size =
3423 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3424
recovery_start_show(struct md_rdev * rdev,char * page)3425 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3426 {
3427 unsigned long long recovery_start = rdev->recovery_offset;
3428
3429 if (test_bit(In_sync, &rdev->flags) ||
3430 recovery_start == MaxSector)
3431 return sprintf(page, "none\n");
3432
3433 return sprintf(page, "%llu\n", recovery_start);
3434 }
3435
recovery_start_store(struct md_rdev * rdev,const char * buf,size_t len)3436 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3437 {
3438 unsigned long long recovery_start;
3439
3440 if (cmd_match(buf, "none"))
3441 recovery_start = MaxSector;
3442 else if (kstrtoull(buf, 10, &recovery_start))
3443 return -EINVAL;
3444
3445 if (rdev->mddev->pers &&
3446 rdev->raid_disk >= 0)
3447 return -EBUSY;
3448
3449 rdev->recovery_offset = recovery_start;
3450 if (recovery_start == MaxSector)
3451 set_bit(In_sync, &rdev->flags);
3452 else
3453 clear_bit(In_sync, &rdev->flags);
3454 return len;
3455 }
3456
3457 static struct rdev_sysfs_entry rdev_recovery_start =
3458 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3459
3460 /* sysfs access to bad-blocks list.
3461 * We present two files.
3462 * 'bad-blocks' lists sector numbers and lengths of ranges that
3463 * are recorded as bad. The list is truncated to fit within
3464 * the one-page limit of sysfs.
3465 * Writing "sector length" to this file adds an acknowledged
3466 * bad block list.
3467 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3468 * been acknowledged. Writing to this file adds bad blocks
3469 * without acknowledging them. This is largely for testing.
3470 */
bb_show(struct md_rdev * rdev,char * page)3471 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3472 {
3473 return badblocks_show(&rdev->badblocks, page, 0);
3474 }
bb_store(struct md_rdev * rdev,const char * page,size_t len)3475 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3476 {
3477 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3478 /* Maybe that ack was all we needed */
3479 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3480 wake_up(&rdev->blocked_wait);
3481 return rv;
3482 }
3483 static struct rdev_sysfs_entry rdev_bad_blocks =
3484 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3485
ubb_show(struct md_rdev * rdev,char * page)3486 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3487 {
3488 return badblocks_show(&rdev->badblocks, page, 1);
3489 }
ubb_store(struct md_rdev * rdev,const char * page,size_t len)3490 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3491 {
3492 return badblocks_store(&rdev->badblocks, page, len, 1);
3493 }
3494 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3495 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3496
3497 static ssize_t
ppl_sector_show(struct md_rdev * rdev,char * page)3498 ppl_sector_show(struct md_rdev *rdev, char *page)
3499 {
3500 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3501 }
3502
3503 static ssize_t
ppl_sector_store(struct md_rdev * rdev,const char * buf,size_t len)3504 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3505 {
3506 unsigned long long sector;
3507
3508 if (kstrtoull(buf, 10, §or) < 0)
3509 return -EINVAL;
3510 if (sector != (sector_t)sector)
3511 return -EINVAL;
3512
3513 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3514 rdev->raid_disk >= 0)
3515 return -EBUSY;
3516
3517 if (rdev->mddev->persistent) {
3518 if (rdev->mddev->major_version == 0)
3519 return -EINVAL;
3520 if ((sector > rdev->sb_start &&
3521 sector - rdev->sb_start > S16_MAX) ||
3522 (sector < rdev->sb_start &&
3523 rdev->sb_start - sector > -S16_MIN))
3524 return -EINVAL;
3525 rdev->ppl.offset = sector - rdev->sb_start;
3526 } else if (!rdev->mddev->external) {
3527 return -EBUSY;
3528 }
3529 rdev->ppl.sector = sector;
3530 return len;
3531 }
3532
3533 static struct rdev_sysfs_entry rdev_ppl_sector =
3534 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3535
3536 static ssize_t
ppl_size_show(struct md_rdev * rdev,char * page)3537 ppl_size_show(struct md_rdev *rdev, char *page)
3538 {
3539 return sprintf(page, "%u\n", rdev->ppl.size);
3540 }
3541
3542 static ssize_t
ppl_size_store(struct md_rdev * rdev,const char * buf,size_t len)3543 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3544 {
3545 unsigned int size;
3546
3547 if (kstrtouint(buf, 10, &size) < 0)
3548 return -EINVAL;
3549
3550 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3551 rdev->raid_disk >= 0)
3552 return -EBUSY;
3553
3554 if (rdev->mddev->persistent) {
3555 if (rdev->mddev->major_version == 0)
3556 return -EINVAL;
3557 if (size > U16_MAX)
3558 return -EINVAL;
3559 } else if (!rdev->mddev->external) {
3560 return -EBUSY;
3561 }
3562 rdev->ppl.size = size;
3563 return len;
3564 }
3565
3566 static struct rdev_sysfs_entry rdev_ppl_size =
3567 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3568
3569 static struct attribute *rdev_default_attrs[] = {
3570 &rdev_state.attr,
3571 &rdev_errors.attr,
3572 &rdev_slot.attr,
3573 &rdev_offset.attr,
3574 &rdev_new_offset.attr,
3575 &rdev_size.attr,
3576 &rdev_recovery_start.attr,
3577 &rdev_bad_blocks.attr,
3578 &rdev_unack_bad_blocks.attr,
3579 &rdev_ppl_sector.attr,
3580 &rdev_ppl_size.attr,
3581 NULL,
3582 };
3583 ATTRIBUTE_GROUPS(rdev_default);
3584 static ssize_t
rdev_attr_show(struct kobject * kobj,struct attribute * attr,char * page)3585 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3586 {
3587 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3588 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3589
3590 if (!entry->show)
3591 return -EIO;
3592 if (!rdev->mddev)
3593 return -ENODEV;
3594 return entry->show(rdev, page);
3595 }
3596
3597 static ssize_t
rdev_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)3598 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3599 const char *page, size_t length)
3600 {
3601 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3602 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3603 struct kernfs_node *kn = NULL;
3604 ssize_t rv;
3605 struct mddev *mddev = rdev->mddev;
3606
3607 if (!entry->store)
3608 return -EIO;
3609 if (!capable(CAP_SYS_ADMIN))
3610 return -EACCES;
3611
3612 if (entry->store == state_store && cmd_match(page, "remove"))
3613 kn = sysfs_break_active_protection(kobj, attr);
3614
3615 rv = mddev ? mddev_lock(mddev) : -ENODEV;
3616 if (!rv) {
3617 if (rdev->mddev == NULL)
3618 rv = -ENODEV;
3619 else
3620 rv = entry->store(rdev, page, length);
3621 mddev_unlock(mddev);
3622 }
3623
3624 if (kn)
3625 sysfs_unbreak_active_protection(kn);
3626
3627 return rv;
3628 }
3629
rdev_free(struct kobject * ko)3630 static void rdev_free(struct kobject *ko)
3631 {
3632 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3633 kfree(rdev);
3634 }
3635 static const struct sysfs_ops rdev_sysfs_ops = {
3636 .show = rdev_attr_show,
3637 .store = rdev_attr_store,
3638 };
3639 static const struct kobj_type rdev_ktype = {
3640 .release = rdev_free,
3641 .sysfs_ops = &rdev_sysfs_ops,
3642 .default_groups = rdev_default_groups,
3643 };
3644
md_rdev_init(struct md_rdev * rdev)3645 int md_rdev_init(struct md_rdev *rdev)
3646 {
3647 rdev->desc_nr = -1;
3648 rdev->saved_raid_disk = -1;
3649 rdev->raid_disk = -1;
3650 rdev->flags = 0;
3651 rdev->data_offset = 0;
3652 rdev->new_data_offset = 0;
3653 rdev->sb_events = 0;
3654 rdev->last_read_error = 0;
3655 rdev->sb_loaded = 0;
3656 rdev->bb_page = NULL;
3657 atomic_set(&rdev->nr_pending, 0);
3658 atomic_set(&rdev->read_errors, 0);
3659 atomic_set(&rdev->corrected_errors, 0);
3660
3661 INIT_LIST_HEAD(&rdev->same_set);
3662 init_waitqueue_head(&rdev->blocked_wait);
3663
3664 /* Add space to store bad block list.
3665 * This reserves the space even on arrays where it cannot
3666 * be used - I wonder if that matters
3667 */
3668 return badblocks_init(&rdev->badblocks, 0);
3669 }
3670 EXPORT_SYMBOL_GPL(md_rdev_init);
3671
3672 /*
3673 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3674 *
3675 * mark the device faulty if:
3676 *
3677 * - the device is nonexistent (zero size)
3678 * - the device has no valid superblock
3679 *
3680 * a faulty rdev _never_ has rdev->sb set.
3681 */
md_import_device(dev_t newdev,int super_format,int super_minor)3682 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3683 {
3684 struct md_rdev *rdev;
3685 struct md_rdev *holder;
3686 sector_t size;
3687 int err;
3688
3689 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3690 if (!rdev)
3691 return ERR_PTR(-ENOMEM);
3692
3693 err = md_rdev_init(rdev);
3694 if (err)
3695 goto out_free_rdev;
3696 err = alloc_disk_sb(rdev);
3697 if (err)
3698 goto out_clear_rdev;
3699
3700 if (super_format == -2) {
3701 holder = &claim_rdev;
3702 } else {
3703 holder = rdev;
3704 set_bit(Holder, &rdev->flags);
3705 }
3706
3707 rdev->bdev = blkdev_get_by_dev(newdev, BLK_OPEN_READ | BLK_OPEN_WRITE,
3708 holder, NULL);
3709 if (IS_ERR(rdev->bdev)) {
3710 pr_warn("md: could not open device unknown-block(%u,%u).\n",
3711 MAJOR(newdev), MINOR(newdev));
3712 err = PTR_ERR(rdev->bdev);
3713 goto out_clear_rdev;
3714 }
3715
3716 kobject_init(&rdev->kobj, &rdev_ktype);
3717
3718 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS;
3719 if (!size) {
3720 pr_warn("md: %pg has zero or unknown size, marking faulty!\n",
3721 rdev->bdev);
3722 err = -EINVAL;
3723 goto out_blkdev_put;
3724 }
3725
3726 if (super_format >= 0) {
3727 err = super_types[super_format].
3728 load_super(rdev, NULL, super_minor);
3729 if (err == -EINVAL) {
3730 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n",
3731 rdev->bdev,
3732 super_format, super_minor);
3733 goto out_blkdev_put;
3734 }
3735 if (err < 0) {
3736 pr_warn("md: could not read %pg's sb, not importing!\n",
3737 rdev->bdev);
3738 goto out_blkdev_put;
3739 }
3740 }
3741
3742 return rdev;
3743
3744 out_blkdev_put:
3745 blkdev_put(rdev->bdev, holder);
3746 out_clear_rdev:
3747 md_rdev_clear(rdev);
3748 out_free_rdev:
3749 kfree(rdev);
3750 return ERR_PTR(err);
3751 }
3752
3753 /*
3754 * Check a full RAID array for plausibility
3755 */
3756
analyze_sbs(struct mddev * mddev)3757 static int analyze_sbs(struct mddev *mddev)
3758 {
3759 int i;
3760 struct md_rdev *rdev, *freshest, *tmp;
3761
3762 freshest = NULL;
3763 rdev_for_each_safe(rdev, tmp, mddev)
3764 switch (super_types[mddev->major_version].
3765 load_super(rdev, freshest, mddev->minor_version)) {
3766 case 1:
3767 freshest = rdev;
3768 break;
3769 case 0:
3770 break;
3771 default:
3772 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n",
3773 rdev->bdev);
3774 md_kick_rdev_from_array(rdev);
3775 }
3776
3777 /* Cannot find a valid fresh disk */
3778 if (!freshest) {
3779 pr_warn("md: cannot find a valid disk\n");
3780 return -EINVAL;
3781 }
3782
3783 super_types[mddev->major_version].
3784 validate_super(mddev, NULL/*freshest*/, freshest);
3785
3786 i = 0;
3787 rdev_for_each_safe(rdev, tmp, mddev) {
3788 if (mddev->max_disks &&
3789 (rdev->desc_nr >= mddev->max_disks ||
3790 i > mddev->max_disks)) {
3791 pr_warn("md: %s: %pg: only %d devices permitted\n",
3792 mdname(mddev), rdev->bdev,
3793 mddev->max_disks);
3794 md_kick_rdev_from_array(rdev);
3795 continue;
3796 }
3797 if (rdev != freshest) {
3798 if (super_types[mddev->major_version].
3799 validate_super(mddev, freshest, rdev)) {
3800 pr_warn("md: kicking non-fresh %pg from array!\n",
3801 rdev->bdev);
3802 md_kick_rdev_from_array(rdev);
3803 continue;
3804 }
3805 }
3806 if (mddev->level == LEVEL_MULTIPATH) {
3807 rdev->desc_nr = i++;
3808 rdev->raid_disk = rdev->desc_nr;
3809 set_bit(In_sync, &rdev->flags);
3810 } else if (rdev->raid_disk >=
3811 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3812 !test_bit(Journal, &rdev->flags)) {
3813 rdev->raid_disk = -1;
3814 clear_bit(In_sync, &rdev->flags);
3815 }
3816 }
3817
3818 return 0;
3819 }
3820
3821 /* Read a fixed-point number.
3822 * Numbers in sysfs attributes should be in "standard" units where
3823 * possible, so time should be in seconds.
3824 * However we internally use a a much smaller unit such as
3825 * milliseconds or jiffies.
3826 * This function takes a decimal number with a possible fractional
3827 * component, and produces an integer which is the result of
3828 * multiplying that number by 10^'scale'.
3829 * all without any floating-point arithmetic.
3830 */
strict_strtoul_scaled(const char * cp,unsigned long * res,int scale)3831 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3832 {
3833 unsigned long result = 0;
3834 long decimals = -1;
3835 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3836 if (*cp == '.')
3837 decimals = 0;
3838 else if (decimals < scale) {
3839 unsigned int value;
3840 value = *cp - '0';
3841 result = result * 10 + value;
3842 if (decimals >= 0)
3843 decimals++;
3844 }
3845 cp++;
3846 }
3847 if (*cp == '\n')
3848 cp++;
3849 if (*cp)
3850 return -EINVAL;
3851 if (decimals < 0)
3852 decimals = 0;
3853 *res = result * int_pow(10, scale - decimals);
3854 return 0;
3855 }
3856
3857 static ssize_t
safe_delay_show(struct mddev * mddev,char * page)3858 safe_delay_show(struct mddev *mddev, char *page)
3859 {
3860 unsigned int msec = ((unsigned long)mddev->safemode_delay*1000)/HZ;
3861
3862 return sprintf(page, "%u.%03u\n", msec/1000, msec%1000);
3863 }
3864 static ssize_t
safe_delay_store(struct mddev * mddev,const char * cbuf,size_t len)3865 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3866 {
3867 unsigned long msec;
3868
3869 if (mddev_is_clustered(mddev)) {
3870 pr_warn("md: Safemode is disabled for clustered mode\n");
3871 return -EINVAL;
3872 }
3873
3874 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0 || msec > UINT_MAX / HZ)
3875 return -EINVAL;
3876 if (msec == 0)
3877 mddev->safemode_delay = 0;
3878 else {
3879 unsigned long old_delay = mddev->safemode_delay;
3880 unsigned long new_delay = (msec*HZ)/1000;
3881
3882 if (new_delay == 0)
3883 new_delay = 1;
3884 mddev->safemode_delay = new_delay;
3885 if (new_delay < old_delay || old_delay == 0)
3886 mod_timer(&mddev->safemode_timer, jiffies+1);
3887 }
3888 return len;
3889 }
3890 static struct md_sysfs_entry md_safe_delay =
3891 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3892
3893 static ssize_t
level_show(struct mddev * mddev,char * page)3894 level_show(struct mddev *mddev, char *page)
3895 {
3896 struct md_personality *p;
3897 int ret;
3898 spin_lock(&mddev->lock);
3899 p = mddev->pers;
3900 if (p)
3901 ret = sprintf(page, "%s\n", p->name);
3902 else if (mddev->clevel[0])
3903 ret = sprintf(page, "%s\n", mddev->clevel);
3904 else if (mddev->level != LEVEL_NONE)
3905 ret = sprintf(page, "%d\n", mddev->level);
3906 else
3907 ret = 0;
3908 spin_unlock(&mddev->lock);
3909 return ret;
3910 }
3911
3912 static ssize_t
level_store(struct mddev * mddev,const char * buf,size_t len)3913 level_store(struct mddev *mddev, const char *buf, size_t len)
3914 {
3915 char clevel[16];
3916 ssize_t rv;
3917 size_t slen = len;
3918 struct md_personality *pers, *oldpers;
3919 long level;
3920 void *priv, *oldpriv;
3921 struct md_rdev *rdev;
3922
3923 if (slen == 0 || slen >= sizeof(clevel))
3924 return -EINVAL;
3925
3926 rv = mddev_lock(mddev);
3927 if (rv)
3928 return rv;
3929
3930 if (mddev->pers == NULL) {
3931 strncpy(mddev->clevel, buf, slen);
3932 if (mddev->clevel[slen-1] == '\n')
3933 slen--;
3934 mddev->clevel[slen] = 0;
3935 mddev->level = LEVEL_NONE;
3936 rv = len;
3937 goto out_unlock;
3938 }
3939 rv = -EROFS;
3940 if (!md_is_rdwr(mddev))
3941 goto out_unlock;
3942
3943 /* request to change the personality. Need to ensure:
3944 * - array is not engaged in resync/recovery/reshape
3945 * - old personality can be suspended
3946 * - new personality will access other array.
3947 */
3948
3949 rv = -EBUSY;
3950 if (mddev->sync_thread ||
3951 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3952 mddev->reshape_position != MaxSector ||
3953 mddev->sysfs_active)
3954 goto out_unlock;
3955
3956 rv = -EINVAL;
3957 if (!mddev->pers->quiesce) {
3958 pr_warn("md: %s: %s does not support online personality change\n",
3959 mdname(mddev), mddev->pers->name);
3960 goto out_unlock;
3961 }
3962
3963 /* Now find the new personality */
3964 strncpy(clevel, buf, slen);
3965 if (clevel[slen-1] == '\n')
3966 slen--;
3967 clevel[slen] = 0;
3968 if (kstrtol(clevel, 10, &level))
3969 level = LEVEL_NONE;
3970
3971 if (request_module("md-%s", clevel) != 0)
3972 request_module("md-level-%s", clevel);
3973 spin_lock(&pers_lock);
3974 pers = find_pers(level, clevel);
3975 if (!pers || !try_module_get(pers->owner)) {
3976 spin_unlock(&pers_lock);
3977 pr_warn("md: personality %s not loaded\n", clevel);
3978 rv = -EINVAL;
3979 goto out_unlock;
3980 }
3981 spin_unlock(&pers_lock);
3982
3983 if (pers == mddev->pers) {
3984 /* Nothing to do! */
3985 module_put(pers->owner);
3986 rv = len;
3987 goto out_unlock;
3988 }
3989 if (!pers->takeover) {
3990 module_put(pers->owner);
3991 pr_warn("md: %s: %s does not support personality takeover\n",
3992 mdname(mddev), clevel);
3993 rv = -EINVAL;
3994 goto out_unlock;
3995 }
3996
3997 rdev_for_each(rdev, mddev)
3998 rdev->new_raid_disk = rdev->raid_disk;
3999
4000 /* ->takeover must set new_* and/or delta_disks
4001 * if it succeeds, and may set them when it fails.
4002 */
4003 priv = pers->takeover(mddev);
4004 if (IS_ERR(priv)) {
4005 mddev->new_level = mddev->level;
4006 mddev->new_layout = mddev->layout;
4007 mddev->new_chunk_sectors = mddev->chunk_sectors;
4008 mddev->raid_disks -= mddev->delta_disks;
4009 mddev->delta_disks = 0;
4010 mddev->reshape_backwards = 0;
4011 module_put(pers->owner);
4012 pr_warn("md: %s: %s would not accept array\n",
4013 mdname(mddev), clevel);
4014 rv = PTR_ERR(priv);
4015 goto out_unlock;
4016 }
4017
4018 /* Looks like we have a winner */
4019 mddev_suspend(mddev);
4020 mddev_detach(mddev);
4021
4022 spin_lock(&mddev->lock);
4023 oldpers = mddev->pers;
4024 oldpriv = mddev->private;
4025 mddev->pers = pers;
4026 mddev->private = priv;
4027 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4028 mddev->level = mddev->new_level;
4029 mddev->layout = mddev->new_layout;
4030 mddev->chunk_sectors = mddev->new_chunk_sectors;
4031 mddev->delta_disks = 0;
4032 mddev->reshape_backwards = 0;
4033 mddev->degraded = 0;
4034 spin_unlock(&mddev->lock);
4035
4036 if (oldpers->sync_request == NULL &&
4037 mddev->external) {
4038 /* We are converting from a no-redundancy array
4039 * to a redundancy array and metadata is managed
4040 * externally so we need to be sure that writes
4041 * won't block due to a need to transition
4042 * clean->dirty
4043 * until external management is started.
4044 */
4045 mddev->in_sync = 0;
4046 mddev->safemode_delay = 0;
4047 mddev->safemode = 0;
4048 }
4049
4050 oldpers->free(mddev, oldpriv);
4051
4052 if (oldpers->sync_request == NULL &&
4053 pers->sync_request != NULL) {
4054 /* need to add the md_redundancy_group */
4055 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4056 pr_warn("md: cannot register extra attributes for %s\n",
4057 mdname(mddev));
4058 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4059 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
4060 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
4061 }
4062 if (oldpers->sync_request != NULL &&
4063 pers->sync_request == NULL) {
4064 /* need to remove the md_redundancy_group */
4065 if (mddev->to_remove == NULL)
4066 mddev->to_remove = &md_redundancy_group;
4067 }
4068
4069 module_put(oldpers->owner);
4070
4071 rdev_for_each(rdev, mddev) {
4072 if (rdev->raid_disk < 0)
4073 continue;
4074 if (rdev->new_raid_disk >= mddev->raid_disks)
4075 rdev->new_raid_disk = -1;
4076 if (rdev->new_raid_disk == rdev->raid_disk)
4077 continue;
4078 sysfs_unlink_rdev(mddev, rdev);
4079 }
4080 rdev_for_each(rdev, mddev) {
4081 if (rdev->raid_disk < 0)
4082 continue;
4083 if (rdev->new_raid_disk == rdev->raid_disk)
4084 continue;
4085 rdev->raid_disk = rdev->new_raid_disk;
4086 if (rdev->raid_disk < 0)
4087 clear_bit(In_sync, &rdev->flags);
4088 else {
4089 if (sysfs_link_rdev(mddev, rdev))
4090 pr_warn("md: cannot register rd%d for %s after level change\n",
4091 rdev->raid_disk, mdname(mddev));
4092 }
4093 }
4094
4095 if (pers->sync_request == NULL) {
4096 /* this is now an array without redundancy, so
4097 * it must always be in_sync
4098 */
4099 mddev->in_sync = 1;
4100 del_timer_sync(&mddev->safemode_timer);
4101 }
4102 blk_set_stacking_limits(&mddev->queue->limits);
4103 pers->run(mddev);
4104 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4105 mddev_resume(mddev);
4106 if (!mddev->thread)
4107 md_update_sb(mddev, 1);
4108 sysfs_notify_dirent_safe(mddev->sysfs_level);
4109 md_new_event();
4110 rv = len;
4111 out_unlock:
4112 mddev_unlock(mddev);
4113 return rv;
4114 }
4115
4116 static struct md_sysfs_entry md_level =
4117 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4118
4119 static ssize_t
layout_show(struct mddev * mddev,char * page)4120 layout_show(struct mddev *mddev, char *page)
4121 {
4122 /* just a number, not meaningful for all levels */
4123 if (mddev->reshape_position != MaxSector &&
4124 mddev->layout != mddev->new_layout)
4125 return sprintf(page, "%d (%d)\n",
4126 mddev->new_layout, mddev->layout);
4127 return sprintf(page, "%d\n", mddev->layout);
4128 }
4129
4130 static ssize_t
layout_store(struct mddev * mddev,const char * buf,size_t len)4131 layout_store(struct mddev *mddev, const char *buf, size_t len)
4132 {
4133 unsigned int n;
4134 int err;
4135
4136 err = kstrtouint(buf, 10, &n);
4137 if (err < 0)
4138 return err;
4139 err = mddev_lock(mddev);
4140 if (err)
4141 return err;
4142
4143 if (mddev->pers) {
4144 if (mddev->pers->check_reshape == NULL)
4145 err = -EBUSY;
4146 else if (!md_is_rdwr(mddev))
4147 err = -EROFS;
4148 else {
4149 mddev->new_layout = n;
4150 err = mddev->pers->check_reshape(mddev);
4151 if (err)
4152 mddev->new_layout = mddev->layout;
4153 }
4154 } else {
4155 mddev->new_layout = n;
4156 if (mddev->reshape_position == MaxSector)
4157 mddev->layout = n;
4158 }
4159 mddev_unlock(mddev);
4160 return err ?: len;
4161 }
4162 static struct md_sysfs_entry md_layout =
4163 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4164
4165 static ssize_t
raid_disks_show(struct mddev * mddev,char * page)4166 raid_disks_show(struct mddev *mddev, char *page)
4167 {
4168 if (mddev->raid_disks == 0)
4169 return 0;
4170 if (mddev->reshape_position != MaxSector &&
4171 mddev->delta_disks != 0)
4172 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4173 mddev->raid_disks - mddev->delta_disks);
4174 return sprintf(page, "%d\n", mddev->raid_disks);
4175 }
4176
4177 static int update_raid_disks(struct mddev *mddev, int raid_disks);
4178
4179 static ssize_t
raid_disks_store(struct mddev * mddev,const char * buf,size_t len)4180 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4181 {
4182 unsigned int n;
4183 int err;
4184
4185 err = kstrtouint(buf, 10, &n);
4186 if (err < 0)
4187 return err;
4188
4189 err = mddev_lock(mddev);
4190 if (err)
4191 return err;
4192 if (mddev->pers)
4193 err = update_raid_disks(mddev, n);
4194 else if (mddev->reshape_position != MaxSector) {
4195 struct md_rdev *rdev;
4196 int olddisks = mddev->raid_disks - mddev->delta_disks;
4197
4198 err = -EINVAL;
4199 rdev_for_each(rdev, mddev) {
4200 if (olddisks < n &&
4201 rdev->data_offset < rdev->new_data_offset)
4202 goto out_unlock;
4203 if (olddisks > n &&
4204 rdev->data_offset > rdev->new_data_offset)
4205 goto out_unlock;
4206 }
4207 err = 0;
4208 mddev->delta_disks = n - olddisks;
4209 mddev->raid_disks = n;
4210 mddev->reshape_backwards = (mddev->delta_disks < 0);
4211 } else
4212 mddev->raid_disks = n;
4213 out_unlock:
4214 mddev_unlock(mddev);
4215 return err ? err : len;
4216 }
4217 static struct md_sysfs_entry md_raid_disks =
4218 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4219
4220 static ssize_t
uuid_show(struct mddev * mddev,char * page)4221 uuid_show(struct mddev *mddev, char *page)
4222 {
4223 return sprintf(page, "%pU\n", mddev->uuid);
4224 }
4225 static struct md_sysfs_entry md_uuid =
4226 __ATTR(uuid, S_IRUGO, uuid_show, NULL);
4227
4228 static ssize_t
chunk_size_show(struct mddev * mddev,char * page)4229 chunk_size_show(struct mddev *mddev, char *page)
4230 {
4231 if (mddev->reshape_position != MaxSector &&
4232 mddev->chunk_sectors != mddev->new_chunk_sectors)
4233 return sprintf(page, "%d (%d)\n",
4234 mddev->new_chunk_sectors << 9,
4235 mddev->chunk_sectors << 9);
4236 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4237 }
4238
4239 static ssize_t
chunk_size_store(struct mddev * mddev,const char * buf,size_t len)4240 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4241 {
4242 unsigned long n;
4243 int err;
4244
4245 err = kstrtoul(buf, 10, &n);
4246 if (err < 0)
4247 return err;
4248
4249 err = mddev_lock(mddev);
4250 if (err)
4251 return err;
4252 if (mddev->pers) {
4253 if (mddev->pers->check_reshape == NULL)
4254 err = -EBUSY;
4255 else if (!md_is_rdwr(mddev))
4256 err = -EROFS;
4257 else {
4258 mddev->new_chunk_sectors = n >> 9;
4259 err = mddev->pers->check_reshape(mddev);
4260 if (err)
4261 mddev->new_chunk_sectors = mddev->chunk_sectors;
4262 }
4263 } else {
4264 mddev->new_chunk_sectors = n >> 9;
4265 if (mddev->reshape_position == MaxSector)
4266 mddev->chunk_sectors = n >> 9;
4267 }
4268 mddev_unlock(mddev);
4269 return err ?: len;
4270 }
4271 static struct md_sysfs_entry md_chunk_size =
4272 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4273
4274 static ssize_t
resync_start_show(struct mddev * mddev,char * page)4275 resync_start_show(struct mddev *mddev, char *page)
4276 {
4277 if (mddev->recovery_cp == MaxSector)
4278 return sprintf(page, "none\n");
4279 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4280 }
4281
4282 static ssize_t
resync_start_store(struct mddev * mddev,const char * buf,size_t len)4283 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4284 {
4285 unsigned long long n;
4286 int err;
4287
4288 if (cmd_match(buf, "none"))
4289 n = MaxSector;
4290 else {
4291 err = kstrtoull(buf, 10, &n);
4292 if (err < 0)
4293 return err;
4294 if (n != (sector_t)n)
4295 return -EINVAL;
4296 }
4297
4298 err = mddev_lock(mddev);
4299 if (err)
4300 return err;
4301 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4302 err = -EBUSY;
4303
4304 if (!err) {
4305 mddev->recovery_cp = n;
4306 if (mddev->pers)
4307 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4308 }
4309 mddev_unlock(mddev);
4310 return err ?: len;
4311 }
4312 static struct md_sysfs_entry md_resync_start =
4313 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4314 resync_start_show, resync_start_store);
4315
4316 /*
4317 * The array state can be:
4318 *
4319 * clear
4320 * No devices, no size, no level
4321 * Equivalent to STOP_ARRAY ioctl
4322 * inactive
4323 * May have some settings, but array is not active
4324 * all IO results in error
4325 * When written, doesn't tear down array, but just stops it
4326 * suspended (not supported yet)
4327 * All IO requests will block. The array can be reconfigured.
4328 * Writing this, if accepted, will block until array is quiescent
4329 * readonly
4330 * no resync can happen. no superblocks get written.
4331 * write requests fail
4332 * read-auto
4333 * like readonly, but behaves like 'clean' on a write request.
4334 *
4335 * clean - no pending writes, but otherwise active.
4336 * When written to inactive array, starts without resync
4337 * If a write request arrives then
4338 * if metadata is known, mark 'dirty' and switch to 'active'.
4339 * if not known, block and switch to write-pending
4340 * If written to an active array that has pending writes, then fails.
4341 * active
4342 * fully active: IO and resync can be happening.
4343 * When written to inactive array, starts with resync
4344 *
4345 * write-pending
4346 * clean, but writes are blocked waiting for 'active' to be written.
4347 *
4348 * active-idle
4349 * like active, but no writes have been seen for a while (100msec).
4350 *
4351 * broken
4352 * Array is failed. It's useful because mounted-arrays aren't stopped
4353 * when array is failed, so this state will at least alert the user that
4354 * something is wrong.
4355 */
4356 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4357 write_pending, active_idle, broken, bad_word};
4358 static char *array_states[] = {
4359 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4360 "write-pending", "active-idle", "broken", NULL };
4361
match_word(const char * word,char ** list)4362 static int match_word(const char *word, char **list)
4363 {
4364 int n;
4365 for (n=0; list[n]; n++)
4366 if (cmd_match(word, list[n]))
4367 break;
4368 return n;
4369 }
4370
4371 static ssize_t
array_state_show(struct mddev * mddev,char * page)4372 array_state_show(struct mddev *mddev, char *page)
4373 {
4374 enum array_state st = inactive;
4375
4376 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4377 switch(mddev->ro) {
4378 case MD_RDONLY:
4379 st = readonly;
4380 break;
4381 case MD_AUTO_READ:
4382 st = read_auto;
4383 break;
4384 case MD_RDWR:
4385 spin_lock(&mddev->lock);
4386 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4387 st = write_pending;
4388 else if (mddev->in_sync)
4389 st = clean;
4390 else if (mddev->safemode)
4391 st = active_idle;
4392 else
4393 st = active;
4394 spin_unlock(&mddev->lock);
4395 }
4396
4397 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4398 st = broken;
4399 } else {
4400 if (list_empty(&mddev->disks) &&
4401 mddev->raid_disks == 0 &&
4402 mddev->dev_sectors == 0)
4403 st = clear;
4404 else
4405 st = inactive;
4406 }
4407 return sprintf(page, "%s\n", array_states[st]);
4408 }
4409
4410 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4411 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4412 static int restart_array(struct mddev *mddev);
4413
4414 static ssize_t
array_state_store(struct mddev * mddev,const char * buf,size_t len)4415 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4416 {
4417 int err = 0;
4418 enum array_state st = match_word(buf, array_states);
4419
4420 if (mddev->pers && (st == active || st == clean) &&
4421 mddev->ro != MD_RDONLY) {
4422 /* don't take reconfig_mutex when toggling between
4423 * clean and active
4424 */
4425 spin_lock(&mddev->lock);
4426 if (st == active) {
4427 restart_array(mddev);
4428 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4429 md_wakeup_thread(mddev->thread);
4430 wake_up(&mddev->sb_wait);
4431 } else /* st == clean */ {
4432 restart_array(mddev);
4433 if (!set_in_sync(mddev))
4434 err = -EBUSY;
4435 }
4436 if (!err)
4437 sysfs_notify_dirent_safe(mddev->sysfs_state);
4438 spin_unlock(&mddev->lock);
4439 return err ?: len;
4440 }
4441 err = mddev_lock(mddev);
4442 if (err)
4443 return err;
4444 err = -EINVAL;
4445 switch(st) {
4446 case bad_word:
4447 break;
4448 case clear:
4449 /* stopping an active array */
4450 err = do_md_stop(mddev, 0, NULL);
4451 break;
4452 case inactive:
4453 /* stopping an active array */
4454 if (mddev->pers)
4455 err = do_md_stop(mddev, 2, NULL);
4456 else
4457 err = 0; /* already inactive */
4458 break;
4459 case suspended:
4460 break; /* not supported yet */
4461 case readonly:
4462 if (mddev->pers)
4463 err = md_set_readonly(mddev, NULL);
4464 else {
4465 mddev->ro = MD_RDONLY;
4466 set_disk_ro(mddev->gendisk, 1);
4467 err = do_md_run(mddev);
4468 }
4469 break;
4470 case read_auto:
4471 if (mddev->pers) {
4472 if (md_is_rdwr(mddev))
4473 err = md_set_readonly(mddev, NULL);
4474 else if (mddev->ro == MD_RDONLY)
4475 err = restart_array(mddev);
4476 if (err == 0) {
4477 mddev->ro = MD_AUTO_READ;
4478 set_disk_ro(mddev->gendisk, 0);
4479 }
4480 } else {
4481 mddev->ro = MD_AUTO_READ;
4482 err = do_md_run(mddev);
4483 }
4484 break;
4485 case clean:
4486 if (mddev->pers) {
4487 err = restart_array(mddev);
4488 if (err)
4489 break;
4490 spin_lock(&mddev->lock);
4491 if (!set_in_sync(mddev))
4492 err = -EBUSY;
4493 spin_unlock(&mddev->lock);
4494 } else
4495 err = -EINVAL;
4496 break;
4497 case active:
4498 if (mddev->pers) {
4499 err = restart_array(mddev);
4500 if (err)
4501 break;
4502 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4503 wake_up(&mddev->sb_wait);
4504 err = 0;
4505 } else {
4506 mddev->ro = MD_RDWR;
4507 set_disk_ro(mddev->gendisk, 0);
4508 err = do_md_run(mddev);
4509 }
4510 break;
4511 case write_pending:
4512 case active_idle:
4513 case broken:
4514 /* these cannot be set */
4515 break;
4516 }
4517
4518 if (!err) {
4519 if (mddev->hold_active == UNTIL_IOCTL)
4520 mddev->hold_active = 0;
4521 sysfs_notify_dirent_safe(mddev->sysfs_state);
4522 }
4523 mddev_unlock(mddev);
4524 return err ?: len;
4525 }
4526 static struct md_sysfs_entry md_array_state =
4527 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4528
4529 static ssize_t
max_corrected_read_errors_show(struct mddev * mddev,char * page)4530 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4531 return sprintf(page, "%d\n",
4532 atomic_read(&mddev->max_corr_read_errors));
4533 }
4534
4535 static ssize_t
max_corrected_read_errors_store(struct mddev * mddev,const char * buf,size_t len)4536 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4537 {
4538 unsigned int n;
4539 int rv;
4540
4541 rv = kstrtouint(buf, 10, &n);
4542 if (rv < 0)
4543 return rv;
4544 if (n > INT_MAX)
4545 return -EINVAL;
4546 atomic_set(&mddev->max_corr_read_errors, n);
4547 return len;
4548 }
4549
4550 static struct md_sysfs_entry max_corr_read_errors =
4551 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4552 max_corrected_read_errors_store);
4553
4554 static ssize_t
null_show(struct mddev * mddev,char * page)4555 null_show(struct mddev *mddev, char *page)
4556 {
4557 return -EINVAL;
4558 }
4559
4560 static ssize_t
new_dev_store(struct mddev * mddev,const char * buf,size_t len)4561 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4562 {
4563 /* buf must be %d:%d\n? giving major and minor numbers */
4564 /* The new device is added to the array.
4565 * If the array has a persistent superblock, we read the
4566 * superblock to initialise info and check validity.
4567 * Otherwise, only checking done is that in bind_rdev_to_array,
4568 * which mainly checks size.
4569 */
4570 char *e;
4571 int major = simple_strtoul(buf, &e, 10);
4572 int minor;
4573 dev_t dev;
4574 struct md_rdev *rdev;
4575 int err;
4576
4577 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4578 return -EINVAL;
4579 minor = simple_strtoul(e+1, &e, 10);
4580 if (*e && *e != '\n')
4581 return -EINVAL;
4582 dev = MKDEV(major, minor);
4583 if (major != MAJOR(dev) ||
4584 minor != MINOR(dev))
4585 return -EOVERFLOW;
4586
4587 err = mddev_lock(mddev);
4588 if (err)
4589 return err;
4590 if (mddev->persistent) {
4591 rdev = md_import_device(dev, mddev->major_version,
4592 mddev->minor_version);
4593 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4594 struct md_rdev *rdev0
4595 = list_entry(mddev->disks.next,
4596 struct md_rdev, same_set);
4597 err = super_types[mddev->major_version]
4598 .load_super(rdev, rdev0, mddev->minor_version);
4599 if (err < 0)
4600 goto out;
4601 }
4602 } else if (mddev->external)
4603 rdev = md_import_device(dev, -2, -1);
4604 else
4605 rdev = md_import_device(dev, -1, -1);
4606
4607 if (IS_ERR(rdev)) {
4608 mddev_unlock(mddev);
4609 return PTR_ERR(rdev);
4610 }
4611 err = bind_rdev_to_array(rdev, mddev);
4612 out:
4613 if (err)
4614 export_rdev(rdev, mddev);
4615 mddev_unlock(mddev);
4616 if (!err)
4617 md_new_event();
4618 return err ? err : len;
4619 }
4620
4621 static struct md_sysfs_entry md_new_device =
4622 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4623
4624 static ssize_t
bitmap_store(struct mddev * mddev,const char * buf,size_t len)4625 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4626 {
4627 char *end;
4628 unsigned long chunk, end_chunk;
4629 int err;
4630
4631 err = mddev_lock(mddev);
4632 if (err)
4633 return err;
4634 if (!mddev->bitmap)
4635 goto out;
4636 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4637 while (*buf) {
4638 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4639 if (buf == end) break;
4640 if (*end == '-') { /* range */
4641 buf = end + 1;
4642 end_chunk = simple_strtoul(buf, &end, 0);
4643 if (buf == end) break;
4644 }
4645 if (*end && !isspace(*end)) break;
4646 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4647 buf = skip_spaces(end);
4648 }
4649 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4650 out:
4651 mddev_unlock(mddev);
4652 return len;
4653 }
4654
4655 static struct md_sysfs_entry md_bitmap =
4656 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4657
4658 static ssize_t
size_show(struct mddev * mddev,char * page)4659 size_show(struct mddev *mddev, char *page)
4660 {
4661 return sprintf(page, "%llu\n",
4662 (unsigned long long)mddev->dev_sectors / 2);
4663 }
4664
4665 static int update_size(struct mddev *mddev, sector_t num_sectors);
4666
4667 static ssize_t
size_store(struct mddev * mddev,const char * buf,size_t len)4668 size_store(struct mddev *mddev, const char *buf, size_t len)
4669 {
4670 /* If array is inactive, we can reduce the component size, but
4671 * not increase it (except from 0).
4672 * If array is active, we can try an on-line resize
4673 */
4674 sector_t sectors;
4675 int err = strict_blocks_to_sectors(buf, §ors);
4676
4677 if (err < 0)
4678 return err;
4679 err = mddev_lock(mddev);
4680 if (err)
4681 return err;
4682 if (mddev->pers) {
4683 err = update_size(mddev, sectors);
4684 if (err == 0)
4685 md_update_sb(mddev, 1);
4686 } else {
4687 if (mddev->dev_sectors == 0 ||
4688 mddev->dev_sectors > sectors)
4689 mddev->dev_sectors = sectors;
4690 else
4691 err = -ENOSPC;
4692 }
4693 mddev_unlock(mddev);
4694 return err ? err : len;
4695 }
4696
4697 static struct md_sysfs_entry md_size =
4698 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4699
4700 /* Metadata version.
4701 * This is one of
4702 * 'none' for arrays with no metadata (good luck...)
4703 * 'external' for arrays with externally managed metadata,
4704 * or N.M for internally known formats
4705 */
4706 static ssize_t
metadata_show(struct mddev * mddev,char * page)4707 metadata_show(struct mddev *mddev, char *page)
4708 {
4709 if (mddev->persistent)
4710 return sprintf(page, "%d.%d\n",
4711 mddev->major_version, mddev->minor_version);
4712 else if (mddev->external)
4713 return sprintf(page, "external:%s\n", mddev->metadata_type);
4714 else
4715 return sprintf(page, "none\n");
4716 }
4717
4718 static ssize_t
metadata_store(struct mddev * mddev,const char * buf,size_t len)4719 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4720 {
4721 int major, minor;
4722 char *e;
4723 int err;
4724 /* Changing the details of 'external' metadata is
4725 * always permitted. Otherwise there must be
4726 * no devices attached to the array.
4727 */
4728
4729 err = mddev_lock(mddev);
4730 if (err)
4731 return err;
4732 err = -EBUSY;
4733 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4734 ;
4735 else if (!list_empty(&mddev->disks))
4736 goto out_unlock;
4737
4738 err = 0;
4739 if (cmd_match(buf, "none")) {
4740 mddev->persistent = 0;
4741 mddev->external = 0;
4742 mddev->major_version = 0;
4743 mddev->minor_version = 90;
4744 goto out_unlock;
4745 }
4746 if (strncmp(buf, "external:", 9) == 0) {
4747 size_t namelen = len-9;
4748 if (namelen >= sizeof(mddev->metadata_type))
4749 namelen = sizeof(mddev->metadata_type)-1;
4750 strncpy(mddev->metadata_type, buf+9, namelen);
4751 mddev->metadata_type[namelen] = 0;
4752 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4753 mddev->metadata_type[--namelen] = 0;
4754 mddev->persistent = 0;
4755 mddev->external = 1;
4756 mddev->major_version = 0;
4757 mddev->minor_version = 90;
4758 goto out_unlock;
4759 }
4760 major = simple_strtoul(buf, &e, 10);
4761 err = -EINVAL;
4762 if (e==buf || *e != '.')
4763 goto out_unlock;
4764 buf = e+1;
4765 minor = simple_strtoul(buf, &e, 10);
4766 if (e==buf || (*e && *e != '\n') )
4767 goto out_unlock;
4768 err = -ENOENT;
4769 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4770 goto out_unlock;
4771 mddev->major_version = major;
4772 mddev->minor_version = minor;
4773 mddev->persistent = 1;
4774 mddev->external = 0;
4775 err = 0;
4776 out_unlock:
4777 mddev_unlock(mddev);
4778 return err ?: len;
4779 }
4780
4781 static struct md_sysfs_entry md_metadata =
4782 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4783
4784 static ssize_t
action_show(struct mddev * mddev,char * page)4785 action_show(struct mddev *mddev, char *page)
4786 {
4787 char *type = "idle";
4788 unsigned long recovery = mddev->recovery;
4789 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4790 type = "frozen";
4791 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4792 (md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4793 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4794 type = "reshape";
4795 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4796 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4797 type = "resync";
4798 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4799 type = "check";
4800 else
4801 type = "repair";
4802 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4803 type = "recover";
4804 else if (mddev->reshape_position != MaxSector)
4805 type = "reshape";
4806 }
4807 return sprintf(page, "%s\n", type);
4808 }
4809
stop_sync_thread(struct mddev * mddev)4810 static void stop_sync_thread(struct mddev *mddev)
4811 {
4812 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4813 return;
4814
4815 if (mddev_lock(mddev))
4816 return;
4817
4818 /*
4819 * Check again in case MD_RECOVERY_RUNNING is cleared before lock is
4820 * held.
4821 */
4822 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
4823 mddev_unlock(mddev);
4824 return;
4825 }
4826
4827 if (work_pending(&mddev->del_work))
4828 flush_workqueue(md_misc_wq);
4829
4830 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4831 /*
4832 * Thread might be blocked waiting for metadata update which will now
4833 * never happen
4834 */
4835 md_wakeup_thread_directly(mddev->sync_thread);
4836
4837 mddev_unlock(mddev);
4838 }
4839
idle_sync_thread(struct mddev * mddev)4840 static void idle_sync_thread(struct mddev *mddev)
4841 {
4842 int sync_seq = atomic_read(&mddev->sync_seq);
4843
4844 mutex_lock(&mddev->sync_mutex);
4845 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4846 stop_sync_thread(mddev);
4847
4848 wait_event(resync_wait, sync_seq != atomic_read(&mddev->sync_seq) ||
4849 !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery));
4850
4851 mutex_unlock(&mddev->sync_mutex);
4852 }
4853
frozen_sync_thread(struct mddev * mddev)4854 static void frozen_sync_thread(struct mddev *mddev)
4855 {
4856 mutex_lock(&mddev->sync_mutex);
4857 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4858 stop_sync_thread(mddev);
4859
4860 wait_event(resync_wait, mddev->sync_thread == NULL &&
4861 !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery));
4862
4863 mutex_unlock(&mddev->sync_mutex);
4864 }
4865
4866 static ssize_t
action_store(struct mddev * mddev,const char * page,size_t len)4867 action_store(struct mddev *mddev, const char *page, size_t len)
4868 {
4869 if (!mddev->pers || !mddev->pers->sync_request)
4870 return -EINVAL;
4871
4872
4873 if (cmd_match(page, "idle"))
4874 idle_sync_thread(mddev);
4875 else if (cmd_match(page, "frozen"))
4876 frozen_sync_thread(mddev);
4877 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4878 return -EBUSY;
4879 else if (cmd_match(page, "resync"))
4880 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4881 else if (cmd_match(page, "recover")) {
4882 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4883 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4884 } else if (cmd_match(page, "reshape")) {
4885 int err;
4886 if (mddev->pers->start_reshape == NULL)
4887 return -EINVAL;
4888 err = mddev_lock(mddev);
4889 if (!err) {
4890 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
4891 err = -EBUSY;
4892 } else if (mddev->reshape_position == MaxSector ||
4893 mddev->pers->check_reshape == NULL ||
4894 mddev->pers->check_reshape(mddev)) {
4895 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4896 err = mddev->pers->start_reshape(mddev);
4897 } else {
4898 /*
4899 * If reshape is still in progress, and
4900 * md_check_recovery() can continue to reshape,
4901 * don't restart reshape because data can be
4902 * corrupted for raid456.
4903 */
4904 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4905 }
4906 mddev_unlock(mddev);
4907 }
4908 if (err)
4909 return err;
4910 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
4911 } else {
4912 if (cmd_match(page, "check"))
4913 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4914 else if (!cmd_match(page, "repair"))
4915 return -EINVAL;
4916 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4917 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4918 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4919 }
4920 if (mddev->ro == MD_AUTO_READ) {
4921 /* A write to sync_action is enough to justify
4922 * canceling read-auto mode
4923 */
4924 mddev->ro = MD_RDWR;
4925 md_wakeup_thread(mddev->sync_thread);
4926 }
4927 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4928 md_wakeup_thread(mddev->thread);
4929 sysfs_notify_dirent_safe(mddev->sysfs_action);
4930 return len;
4931 }
4932
4933 static struct md_sysfs_entry md_scan_mode =
4934 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4935
4936 static ssize_t
last_sync_action_show(struct mddev * mddev,char * page)4937 last_sync_action_show(struct mddev *mddev, char *page)
4938 {
4939 return sprintf(page, "%s\n", mddev->last_sync_action);
4940 }
4941
4942 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4943
4944 static ssize_t
mismatch_cnt_show(struct mddev * mddev,char * page)4945 mismatch_cnt_show(struct mddev *mddev, char *page)
4946 {
4947 return sprintf(page, "%llu\n",
4948 (unsigned long long)
4949 atomic64_read(&mddev->resync_mismatches));
4950 }
4951
4952 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4953
4954 static ssize_t
sync_min_show(struct mddev * mddev,char * page)4955 sync_min_show(struct mddev *mddev, char *page)
4956 {
4957 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4958 mddev->sync_speed_min ? "local": "system");
4959 }
4960
4961 static ssize_t
sync_min_store(struct mddev * mddev,const char * buf,size_t len)4962 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4963 {
4964 unsigned int min;
4965 int rv;
4966
4967 if (strncmp(buf, "system", 6)==0) {
4968 min = 0;
4969 } else {
4970 rv = kstrtouint(buf, 10, &min);
4971 if (rv < 0)
4972 return rv;
4973 if (min == 0)
4974 return -EINVAL;
4975 }
4976 mddev->sync_speed_min = min;
4977 return len;
4978 }
4979
4980 static struct md_sysfs_entry md_sync_min =
4981 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4982
4983 static ssize_t
sync_max_show(struct mddev * mddev,char * page)4984 sync_max_show(struct mddev *mddev, char *page)
4985 {
4986 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4987 mddev->sync_speed_max ? "local": "system");
4988 }
4989
4990 static ssize_t
sync_max_store(struct mddev * mddev,const char * buf,size_t len)4991 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4992 {
4993 unsigned int max;
4994 int rv;
4995
4996 if (strncmp(buf, "system", 6)==0) {
4997 max = 0;
4998 } else {
4999 rv = kstrtouint(buf, 10, &max);
5000 if (rv < 0)
5001 return rv;
5002 if (max == 0)
5003 return -EINVAL;
5004 }
5005 mddev->sync_speed_max = max;
5006 return len;
5007 }
5008
5009 static struct md_sysfs_entry md_sync_max =
5010 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
5011
5012 static ssize_t
degraded_show(struct mddev * mddev,char * page)5013 degraded_show(struct mddev *mddev, char *page)
5014 {
5015 return sprintf(page, "%d\n", mddev->degraded);
5016 }
5017 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
5018
5019 static ssize_t
sync_force_parallel_show(struct mddev * mddev,char * page)5020 sync_force_parallel_show(struct mddev *mddev, char *page)
5021 {
5022 return sprintf(page, "%d\n", mddev->parallel_resync);
5023 }
5024
5025 static ssize_t
sync_force_parallel_store(struct mddev * mddev,const char * buf,size_t len)5026 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
5027 {
5028 long n;
5029
5030 if (kstrtol(buf, 10, &n))
5031 return -EINVAL;
5032
5033 if (n != 0 && n != 1)
5034 return -EINVAL;
5035
5036 mddev->parallel_resync = n;
5037
5038 if (mddev->sync_thread)
5039 wake_up(&resync_wait);
5040
5041 return len;
5042 }
5043
5044 /* force parallel resync, even with shared block devices */
5045 static struct md_sysfs_entry md_sync_force_parallel =
5046 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
5047 sync_force_parallel_show, sync_force_parallel_store);
5048
5049 static ssize_t
sync_speed_show(struct mddev * mddev,char * page)5050 sync_speed_show(struct mddev *mddev, char *page)
5051 {
5052 unsigned long resync, dt, db;
5053 if (mddev->curr_resync == MD_RESYNC_NONE)
5054 return sprintf(page, "none\n");
5055 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
5056 dt = (jiffies - mddev->resync_mark) / HZ;
5057 if (!dt) dt++;
5058 db = resync - mddev->resync_mark_cnt;
5059 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
5060 }
5061
5062 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
5063
5064 static ssize_t
sync_completed_show(struct mddev * mddev,char * page)5065 sync_completed_show(struct mddev *mddev, char *page)
5066 {
5067 unsigned long long max_sectors, resync;
5068
5069 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5070 return sprintf(page, "none\n");
5071
5072 if (mddev->curr_resync == MD_RESYNC_YIELDED ||
5073 mddev->curr_resync == MD_RESYNC_DELAYED)
5074 return sprintf(page, "delayed\n");
5075
5076 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5077 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5078 max_sectors = mddev->resync_max_sectors;
5079 else
5080 max_sectors = mddev->dev_sectors;
5081
5082 resync = mddev->curr_resync_completed;
5083 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5084 }
5085
5086 static struct md_sysfs_entry md_sync_completed =
5087 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5088
5089 static ssize_t
min_sync_show(struct mddev * mddev,char * page)5090 min_sync_show(struct mddev *mddev, char *page)
5091 {
5092 return sprintf(page, "%llu\n",
5093 (unsigned long long)mddev->resync_min);
5094 }
5095 static ssize_t
min_sync_store(struct mddev * mddev,const char * buf,size_t len)5096 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5097 {
5098 unsigned long long min;
5099 int err;
5100
5101 if (kstrtoull(buf, 10, &min))
5102 return -EINVAL;
5103
5104 spin_lock(&mddev->lock);
5105 err = -EINVAL;
5106 if (min > mddev->resync_max)
5107 goto out_unlock;
5108
5109 err = -EBUSY;
5110 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5111 goto out_unlock;
5112
5113 /* Round down to multiple of 4K for safety */
5114 mddev->resync_min = round_down(min, 8);
5115 err = 0;
5116
5117 out_unlock:
5118 spin_unlock(&mddev->lock);
5119 return err ?: len;
5120 }
5121
5122 static struct md_sysfs_entry md_min_sync =
5123 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5124
5125 static ssize_t
max_sync_show(struct mddev * mddev,char * page)5126 max_sync_show(struct mddev *mddev, char *page)
5127 {
5128 if (mddev->resync_max == MaxSector)
5129 return sprintf(page, "max\n");
5130 else
5131 return sprintf(page, "%llu\n",
5132 (unsigned long long)mddev->resync_max);
5133 }
5134 static ssize_t
max_sync_store(struct mddev * mddev,const char * buf,size_t len)5135 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5136 {
5137 int err;
5138 spin_lock(&mddev->lock);
5139 if (strncmp(buf, "max", 3) == 0)
5140 mddev->resync_max = MaxSector;
5141 else {
5142 unsigned long long max;
5143 int chunk;
5144
5145 err = -EINVAL;
5146 if (kstrtoull(buf, 10, &max))
5147 goto out_unlock;
5148 if (max < mddev->resync_min)
5149 goto out_unlock;
5150
5151 err = -EBUSY;
5152 if (max < mddev->resync_max && md_is_rdwr(mddev) &&
5153 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5154 goto out_unlock;
5155
5156 /* Must be a multiple of chunk_size */
5157 chunk = mddev->chunk_sectors;
5158 if (chunk) {
5159 sector_t temp = max;
5160
5161 err = -EINVAL;
5162 if (sector_div(temp, chunk))
5163 goto out_unlock;
5164 }
5165 mddev->resync_max = max;
5166 }
5167 wake_up(&mddev->recovery_wait);
5168 err = 0;
5169 out_unlock:
5170 spin_unlock(&mddev->lock);
5171 return err ?: len;
5172 }
5173
5174 static struct md_sysfs_entry md_max_sync =
5175 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5176
5177 static ssize_t
suspend_lo_show(struct mddev * mddev,char * page)5178 suspend_lo_show(struct mddev *mddev, char *page)
5179 {
5180 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
5181 }
5182
5183 static ssize_t
suspend_lo_store(struct mddev * mddev,const char * buf,size_t len)5184 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5185 {
5186 unsigned long long new;
5187 int err;
5188
5189 err = kstrtoull(buf, 10, &new);
5190 if (err < 0)
5191 return err;
5192 if (new != (sector_t)new)
5193 return -EINVAL;
5194
5195 err = mddev_lock(mddev);
5196 if (err)
5197 return err;
5198 err = -EINVAL;
5199 if (mddev->pers == NULL ||
5200 mddev->pers->quiesce == NULL)
5201 goto unlock;
5202 mddev_suspend(mddev);
5203 mddev->suspend_lo = new;
5204 mddev_resume(mddev);
5205
5206 err = 0;
5207 unlock:
5208 mddev_unlock(mddev);
5209 return err ?: len;
5210 }
5211 static struct md_sysfs_entry md_suspend_lo =
5212 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5213
5214 static ssize_t
suspend_hi_show(struct mddev * mddev,char * page)5215 suspend_hi_show(struct mddev *mddev, char *page)
5216 {
5217 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
5218 }
5219
5220 static ssize_t
suspend_hi_store(struct mddev * mddev,const char * buf,size_t len)5221 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5222 {
5223 unsigned long long new;
5224 int err;
5225
5226 err = kstrtoull(buf, 10, &new);
5227 if (err < 0)
5228 return err;
5229 if (new != (sector_t)new)
5230 return -EINVAL;
5231
5232 err = mddev_lock(mddev);
5233 if (err)
5234 return err;
5235 err = -EINVAL;
5236 if (mddev->pers == NULL)
5237 goto unlock;
5238
5239 mddev_suspend(mddev);
5240 mddev->suspend_hi = new;
5241 mddev_resume(mddev);
5242
5243 err = 0;
5244 unlock:
5245 mddev_unlock(mddev);
5246 return err ?: len;
5247 }
5248 static struct md_sysfs_entry md_suspend_hi =
5249 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5250
5251 static ssize_t
reshape_position_show(struct mddev * mddev,char * page)5252 reshape_position_show(struct mddev *mddev, char *page)
5253 {
5254 if (mddev->reshape_position != MaxSector)
5255 return sprintf(page, "%llu\n",
5256 (unsigned long long)mddev->reshape_position);
5257 strcpy(page, "none\n");
5258 return 5;
5259 }
5260
5261 static ssize_t
reshape_position_store(struct mddev * mddev,const char * buf,size_t len)5262 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5263 {
5264 struct md_rdev *rdev;
5265 unsigned long long new;
5266 int err;
5267
5268 err = kstrtoull(buf, 10, &new);
5269 if (err < 0)
5270 return err;
5271 if (new != (sector_t)new)
5272 return -EINVAL;
5273 err = mddev_lock(mddev);
5274 if (err)
5275 return err;
5276 err = -EBUSY;
5277 if (mddev->pers)
5278 goto unlock;
5279 mddev->reshape_position = new;
5280 mddev->delta_disks = 0;
5281 mddev->reshape_backwards = 0;
5282 mddev->new_level = mddev->level;
5283 mddev->new_layout = mddev->layout;
5284 mddev->new_chunk_sectors = mddev->chunk_sectors;
5285 rdev_for_each(rdev, mddev)
5286 rdev->new_data_offset = rdev->data_offset;
5287 err = 0;
5288 unlock:
5289 mddev_unlock(mddev);
5290 return err ?: len;
5291 }
5292
5293 static struct md_sysfs_entry md_reshape_position =
5294 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5295 reshape_position_store);
5296
5297 static ssize_t
reshape_direction_show(struct mddev * mddev,char * page)5298 reshape_direction_show(struct mddev *mddev, char *page)
5299 {
5300 return sprintf(page, "%s\n",
5301 mddev->reshape_backwards ? "backwards" : "forwards");
5302 }
5303
5304 static ssize_t
reshape_direction_store(struct mddev * mddev,const char * buf,size_t len)5305 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5306 {
5307 int backwards = 0;
5308 int err;
5309
5310 if (cmd_match(buf, "forwards"))
5311 backwards = 0;
5312 else if (cmd_match(buf, "backwards"))
5313 backwards = 1;
5314 else
5315 return -EINVAL;
5316 if (mddev->reshape_backwards == backwards)
5317 return len;
5318
5319 err = mddev_lock(mddev);
5320 if (err)
5321 return err;
5322 /* check if we are allowed to change */
5323 if (mddev->delta_disks)
5324 err = -EBUSY;
5325 else if (mddev->persistent &&
5326 mddev->major_version == 0)
5327 err = -EINVAL;
5328 else
5329 mddev->reshape_backwards = backwards;
5330 mddev_unlock(mddev);
5331 return err ?: len;
5332 }
5333
5334 static struct md_sysfs_entry md_reshape_direction =
5335 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5336 reshape_direction_store);
5337
5338 static ssize_t
array_size_show(struct mddev * mddev,char * page)5339 array_size_show(struct mddev *mddev, char *page)
5340 {
5341 if (mddev->external_size)
5342 return sprintf(page, "%llu\n",
5343 (unsigned long long)mddev->array_sectors/2);
5344 else
5345 return sprintf(page, "default\n");
5346 }
5347
5348 static ssize_t
array_size_store(struct mddev * mddev,const char * buf,size_t len)5349 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5350 {
5351 sector_t sectors;
5352 int err;
5353
5354 err = mddev_lock(mddev);
5355 if (err)
5356 return err;
5357
5358 /* cluster raid doesn't support change array_sectors */
5359 if (mddev_is_clustered(mddev)) {
5360 mddev_unlock(mddev);
5361 return -EINVAL;
5362 }
5363
5364 if (strncmp(buf, "default", 7) == 0) {
5365 if (mddev->pers)
5366 sectors = mddev->pers->size(mddev, 0, 0);
5367 else
5368 sectors = mddev->array_sectors;
5369
5370 mddev->external_size = 0;
5371 } else {
5372 if (strict_blocks_to_sectors(buf, §ors) < 0)
5373 err = -EINVAL;
5374 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5375 err = -E2BIG;
5376 else
5377 mddev->external_size = 1;
5378 }
5379
5380 if (!err) {
5381 mddev->array_sectors = sectors;
5382 if (mddev->pers)
5383 set_capacity_and_notify(mddev->gendisk,
5384 mddev->array_sectors);
5385 }
5386 mddev_unlock(mddev);
5387 return err ?: len;
5388 }
5389
5390 static struct md_sysfs_entry md_array_size =
5391 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5392 array_size_store);
5393
5394 static ssize_t
consistency_policy_show(struct mddev * mddev,char * page)5395 consistency_policy_show(struct mddev *mddev, char *page)
5396 {
5397 int ret;
5398
5399 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5400 ret = sprintf(page, "journal\n");
5401 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5402 ret = sprintf(page, "ppl\n");
5403 } else if (mddev->bitmap) {
5404 ret = sprintf(page, "bitmap\n");
5405 } else if (mddev->pers) {
5406 if (mddev->pers->sync_request)
5407 ret = sprintf(page, "resync\n");
5408 else
5409 ret = sprintf(page, "none\n");
5410 } else {
5411 ret = sprintf(page, "unknown\n");
5412 }
5413
5414 return ret;
5415 }
5416
5417 static ssize_t
consistency_policy_store(struct mddev * mddev,const char * buf,size_t len)5418 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5419 {
5420 int err = 0;
5421
5422 if (mddev->pers) {
5423 if (mddev->pers->change_consistency_policy)
5424 err = mddev->pers->change_consistency_policy(mddev, buf);
5425 else
5426 err = -EBUSY;
5427 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5428 set_bit(MD_HAS_PPL, &mddev->flags);
5429 } else {
5430 err = -EINVAL;
5431 }
5432
5433 return err ? err : len;
5434 }
5435
5436 static struct md_sysfs_entry md_consistency_policy =
5437 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5438 consistency_policy_store);
5439
fail_last_dev_show(struct mddev * mddev,char * page)5440 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5441 {
5442 return sprintf(page, "%d\n", mddev->fail_last_dev);
5443 }
5444
5445 /*
5446 * Setting fail_last_dev to true to allow last device to be forcibly removed
5447 * from RAID1/RAID10.
5448 */
5449 static ssize_t
fail_last_dev_store(struct mddev * mddev,const char * buf,size_t len)5450 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5451 {
5452 int ret;
5453 bool value;
5454
5455 ret = kstrtobool(buf, &value);
5456 if (ret)
5457 return ret;
5458
5459 if (value != mddev->fail_last_dev)
5460 mddev->fail_last_dev = value;
5461
5462 return len;
5463 }
5464 static struct md_sysfs_entry md_fail_last_dev =
5465 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5466 fail_last_dev_store);
5467
serialize_policy_show(struct mddev * mddev,char * page)5468 static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5469 {
5470 if (mddev->pers == NULL || (mddev->pers->level != 1))
5471 return sprintf(page, "n/a\n");
5472 else
5473 return sprintf(page, "%d\n", mddev->serialize_policy);
5474 }
5475
5476 /*
5477 * Setting serialize_policy to true to enforce write IO is not reordered
5478 * for raid1.
5479 */
5480 static ssize_t
serialize_policy_store(struct mddev * mddev,const char * buf,size_t len)5481 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5482 {
5483 int err;
5484 bool value;
5485
5486 err = kstrtobool(buf, &value);
5487 if (err)
5488 return err;
5489
5490 if (value == mddev->serialize_policy)
5491 return len;
5492
5493 err = mddev_lock(mddev);
5494 if (err)
5495 return err;
5496 if (mddev->pers == NULL || (mddev->pers->level != 1)) {
5497 pr_err("md: serialize_policy is only effective for raid1\n");
5498 err = -EINVAL;
5499 goto unlock;
5500 }
5501
5502 mddev_suspend(mddev);
5503 if (value)
5504 mddev_create_serial_pool(mddev, NULL, true);
5505 else
5506 mddev_destroy_serial_pool(mddev, NULL, true);
5507 mddev->serialize_policy = value;
5508 mddev_resume(mddev);
5509 unlock:
5510 mddev_unlock(mddev);
5511 return err ?: len;
5512 }
5513
5514 static struct md_sysfs_entry md_serialize_policy =
5515 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5516 serialize_policy_store);
5517
5518
5519 static struct attribute *md_default_attrs[] = {
5520 &md_level.attr,
5521 &md_layout.attr,
5522 &md_raid_disks.attr,
5523 &md_uuid.attr,
5524 &md_chunk_size.attr,
5525 &md_size.attr,
5526 &md_resync_start.attr,
5527 &md_metadata.attr,
5528 &md_new_device.attr,
5529 &md_safe_delay.attr,
5530 &md_array_state.attr,
5531 &md_reshape_position.attr,
5532 &md_reshape_direction.attr,
5533 &md_array_size.attr,
5534 &max_corr_read_errors.attr,
5535 &md_consistency_policy.attr,
5536 &md_fail_last_dev.attr,
5537 &md_serialize_policy.attr,
5538 NULL,
5539 };
5540
5541 static const struct attribute_group md_default_group = {
5542 .attrs = md_default_attrs,
5543 };
5544
5545 static struct attribute *md_redundancy_attrs[] = {
5546 &md_scan_mode.attr,
5547 &md_last_scan_mode.attr,
5548 &md_mismatches.attr,
5549 &md_sync_min.attr,
5550 &md_sync_max.attr,
5551 &md_sync_speed.attr,
5552 &md_sync_force_parallel.attr,
5553 &md_sync_completed.attr,
5554 &md_min_sync.attr,
5555 &md_max_sync.attr,
5556 &md_suspend_lo.attr,
5557 &md_suspend_hi.attr,
5558 &md_bitmap.attr,
5559 &md_degraded.attr,
5560 NULL,
5561 };
5562 static const struct attribute_group md_redundancy_group = {
5563 .name = NULL,
5564 .attrs = md_redundancy_attrs,
5565 };
5566
5567 static const struct attribute_group *md_attr_groups[] = {
5568 &md_default_group,
5569 &md_bitmap_group,
5570 NULL,
5571 };
5572
5573 static ssize_t
md_attr_show(struct kobject * kobj,struct attribute * attr,char * page)5574 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5575 {
5576 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5577 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5578 ssize_t rv;
5579
5580 if (!entry->show)
5581 return -EIO;
5582 spin_lock(&all_mddevs_lock);
5583 if (!mddev_get(mddev)) {
5584 spin_unlock(&all_mddevs_lock);
5585 return -EBUSY;
5586 }
5587 spin_unlock(&all_mddevs_lock);
5588
5589 rv = entry->show(mddev, page);
5590 mddev_put(mddev);
5591 return rv;
5592 }
5593
5594 static ssize_t
md_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)5595 md_attr_store(struct kobject *kobj, struct attribute *attr,
5596 const char *page, size_t length)
5597 {
5598 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5599 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5600 ssize_t rv;
5601
5602 if (!entry->store)
5603 return -EIO;
5604 if (!capable(CAP_SYS_ADMIN))
5605 return -EACCES;
5606 spin_lock(&all_mddevs_lock);
5607 if (!mddev_get(mddev)) {
5608 spin_unlock(&all_mddevs_lock);
5609 return -EBUSY;
5610 }
5611 spin_unlock(&all_mddevs_lock);
5612 rv = entry->store(mddev, page, length);
5613 mddev_put(mddev);
5614 return rv;
5615 }
5616
md_kobj_release(struct kobject * ko)5617 static void md_kobj_release(struct kobject *ko)
5618 {
5619 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5620
5621 if (mddev->sysfs_state)
5622 sysfs_put(mddev->sysfs_state);
5623 if (mddev->sysfs_level)
5624 sysfs_put(mddev->sysfs_level);
5625
5626 del_gendisk(mddev->gendisk);
5627 put_disk(mddev->gendisk);
5628 }
5629
5630 static const struct sysfs_ops md_sysfs_ops = {
5631 .show = md_attr_show,
5632 .store = md_attr_store,
5633 };
5634 static const struct kobj_type md_ktype = {
5635 .release = md_kobj_release,
5636 .sysfs_ops = &md_sysfs_ops,
5637 .default_groups = md_attr_groups,
5638 };
5639
5640 int mdp_major = 0;
5641
mddev_delayed_delete(struct work_struct * ws)5642 static void mddev_delayed_delete(struct work_struct *ws)
5643 {
5644 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5645
5646 kobject_put(&mddev->kobj);
5647 }
5648
no_op(struct percpu_ref * r)5649 static void no_op(struct percpu_ref *r) {}
5650
mddev_init_writes_pending(struct mddev * mddev)5651 int mddev_init_writes_pending(struct mddev *mddev)
5652 {
5653 if (mddev->writes_pending.percpu_count_ptr)
5654 return 0;
5655 if (percpu_ref_init(&mddev->writes_pending, no_op,
5656 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
5657 return -ENOMEM;
5658 /* We want to start with the refcount at zero */
5659 percpu_ref_put(&mddev->writes_pending);
5660 return 0;
5661 }
5662 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5663
md_alloc(dev_t dev,char * name)5664 struct mddev *md_alloc(dev_t dev, char *name)
5665 {
5666 /*
5667 * If dev is zero, name is the name of a device to allocate with
5668 * an arbitrary minor number. It will be "md_???"
5669 * If dev is non-zero it must be a device number with a MAJOR of
5670 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5671 * the device is being created by opening a node in /dev.
5672 * If "name" is not NULL, the device is being created by
5673 * writing to /sys/module/md_mod/parameters/new_array.
5674 */
5675 static DEFINE_MUTEX(disks_mutex);
5676 struct mddev *mddev;
5677 struct gendisk *disk;
5678 int partitioned;
5679 int shift;
5680 int unit;
5681 int error ;
5682
5683 /*
5684 * Wait for any previous instance of this device to be completely
5685 * removed (mddev_delayed_delete).
5686 */
5687 flush_workqueue(md_misc_wq);
5688
5689 mutex_lock(&disks_mutex);
5690 mddev = mddev_alloc(dev);
5691 if (IS_ERR(mddev)) {
5692 error = PTR_ERR(mddev);
5693 goto out_unlock;
5694 }
5695
5696 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5697 shift = partitioned ? MdpMinorShift : 0;
5698 unit = MINOR(mddev->unit) >> shift;
5699
5700 if (name && !dev) {
5701 /* Need to ensure that 'name' is not a duplicate.
5702 */
5703 struct mddev *mddev2;
5704 spin_lock(&all_mddevs_lock);
5705
5706 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5707 if (mddev2->gendisk &&
5708 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5709 spin_unlock(&all_mddevs_lock);
5710 error = -EEXIST;
5711 goto out_free_mddev;
5712 }
5713 spin_unlock(&all_mddevs_lock);
5714 }
5715 if (name && dev)
5716 /*
5717 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5718 */
5719 mddev->hold_active = UNTIL_STOP;
5720
5721 error = -ENOMEM;
5722 disk = blk_alloc_disk(NUMA_NO_NODE);
5723 if (!disk)
5724 goto out_free_mddev;
5725
5726 disk->major = MAJOR(mddev->unit);
5727 disk->first_minor = unit << shift;
5728 disk->minors = 1 << shift;
5729 if (name)
5730 strcpy(disk->disk_name, name);
5731 else if (partitioned)
5732 sprintf(disk->disk_name, "md_d%d", unit);
5733 else
5734 sprintf(disk->disk_name, "md%d", unit);
5735 disk->fops = &md_fops;
5736 disk->private_data = mddev;
5737
5738 mddev->queue = disk->queue;
5739 blk_set_stacking_limits(&mddev->queue->limits);
5740 blk_queue_write_cache(mddev->queue, true, true);
5741 disk->events |= DISK_EVENT_MEDIA_CHANGE;
5742 mddev->gendisk = disk;
5743 error = add_disk(disk);
5744 if (error)
5745 goto out_put_disk;
5746
5747 kobject_init(&mddev->kobj, &md_ktype);
5748 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5749 if (error) {
5750 /*
5751 * The disk is already live at this point. Clear the hold flag
5752 * and let mddev_put take care of the deletion, as it isn't any
5753 * different from a normal close on last release now.
5754 */
5755 mddev->hold_active = 0;
5756 mutex_unlock(&disks_mutex);
5757 mddev_put(mddev);
5758 return ERR_PTR(error);
5759 }
5760
5761 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5762 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5763 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
5764 mutex_unlock(&disks_mutex);
5765 return mddev;
5766
5767 out_put_disk:
5768 put_disk(disk);
5769 out_free_mddev:
5770 mddev_free(mddev);
5771 out_unlock:
5772 mutex_unlock(&disks_mutex);
5773 return ERR_PTR(error);
5774 }
5775
md_alloc_and_put(dev_t dev,char * name)5776 static int md_alloc_and_put(dev_t dev, char *name)
5777 {
5778 struct mddev *mddev = md_alloc(dev, name);
5779
5780 if (IS_ERR(mddev))
5781 return PTR_ERR(mddev);
5782 mddev_put(mddev);
5783 return 0;
5784 }
5785
md_probe(dev_t dev)5786 static void md_probe(dev_t dev)
5787 {
5788 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512)
5789 return;
5790 if (create_on_open)
5791 md_alloc_and_put(dev, NULL);
5792 }
5793
add_named_array(const char * val,const struct kernel_param * kp)5794 static int add_named_array(const char *val, const struct kernel_param *kp)
5795 {
5796 /*
5797 * val must be "md_*" or "mdNNN".
5798 * For "md_*" we allocate an array with a large free minor number, and
5799 * set the name to val. val must not already be an active name.
5800 * For "mdNNN" we allocate an array with the minor number NNN
5801 * which must not already be in use.
5802 */
5803 int len = strlen(val);
5804 char buf[DISK_NAME_LEN];
5805 unsigned long devnum;
5806
5807 while (len && val[len-1] == '\n')
5808 len--;
5809 if (len >= DISK_NAME_LEN)
5810 return -E2BIG;
5811 strscpy(buf, val, len+1);
5812 if (strncmp(buf, "md_", 3) == 0)
5813 return md_alloc_and_put(0, buf);
5814 if (strncmp(buf, "md", 2) == 0 &&
5815 isdigit(buf[2]) &&
5816 kstrtoul(buf+2, 10, &devnum) == 0 &&
5817 devnum <= MINORMASK)
5818 return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL);
5819
5820 return -EINVAL;
5821 }
5822
md_safemode_timeout(struct timer_list * t)5823 static void md_safemode_timeout(struct timer_list *t)
5824 {
5825 struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5826
5827 mddev->safemode = 1;
5828 if (mddev->external)
5829 sysfs_notify_dirent_safe(mddev->sysfs_state);
5830
5831 md_wakeup_thread(mddev->thread);
5832 }
5833
5834 static int start_dirty_degraded;
active_io_release(struct percpu_ref * ref)5835 static void active_io_release(struct percpu_ref *ref)
5836 {
5837 struct mddev *mddev = container_of(ref, struct mddev, active_io);
5838
5839 wake_up(&mddev->sb_wait);
5840 }
5841
md_run(struct mddev * mddev)5842 int md_run(struct mddev *mddev)
5843 {
5844 int err;
5845 struct md_rdev *rdev;
5846 struct md_personality *pers;
5847 bool nowait = true;
5848
5849 if (list_empty(&mddev->disks))
5850 /* cannot run an array with no devices.. */
5851 return -EINVAL;
5852
5853 if (mddev->pers)
5854 return -EBUSY;
5855 /* Cannot run until previous stop completes properly */
5856 if (mddev->sysfs_active)
5857 return -EBUSY;
5858
5859 /*
5860 * Analyze all RAID superblock(s)
5861 */
5862 if (!mddev->raid_disks) {
5863 if (!mddev->persistent)
5864 return -EINVAL;
5865 err = analyze_sbs(mddev);
5866 if (err)
5867 return -EINVAL;
5868 }
5869
5870 if (mddev->level != LEVEL_NONE)
5871 request_module("md-level-%d", mddev->level);
5872 else if (mddev->clevel[0])
5873 request_module("md-%s", mddev->clevel);
5874
5875 /*
5876 * Drop all container device buffers, from now on
5877 * the only valid external interface is through the md
5878 * device.
5879 */
5880 mddev->has_superblocks = false;
5881 rdev_for_each(rdev, mddev) {
5882 if (test_bit(Faulty, &rdev->flags))
5883 continue;
5884 sync_blockdev(rdev->bdev);
5885 invalidate_bdev(rdev->bdev);
5886 if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) {
5887 mddev->ro = MD_RDONLY;
5888 if (mddev->gendisk)
5889 set_disk_ro(mddev->gendisk, 1);
5890 }
5891
5892 if (rdev->sb_page)
5893 mddev->has_superblocks = true;
5894
5895 /* perform some consistency tests on the device.
5896 * We don't want the data to overlap the metadata,
5897 * Internal Bitmap issues have been handled elsewhere.
5898 */
5899 if (rdev->meta_bdev) {
5900 /* Nothing to check */;
5901 } else if (rdev->data_offset < rdev->sb_start) {
5902 if (mddev->dev_sectors &&
5903 rdev->data_offset + mddev->dev_sectors
5904 > rdev->sb_start) {
5905 pr_warn("md: %s: data overlaps metadata\n",
5906 mdname(mddev));
5907 return -EINVAL;
5908 }
5909 } else {
5910 if (rdev->sb_start + rdev->sb_size/512
5911 > rdev->data_offset) {
5912 pr_warn("md: %s: metadata overlaps data\n",
5913 mdname(mddev));
5914 return -EINVAL;
5915 }
5916 }
5917 sysfs_notify_dirent_safe(rdev->sysfs_state);
5918 nowait = nowait && bdev_nowait(rdev->bdev);
5919 }
5920
5921 err = percpu_ref_init(&mddev->active_io, active_io_release,
5922 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
5923 if (err)
5924 return err;
5925
5926 if (!bioset_initialized(&mddev->bio_set)) {
5927 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5928 if (err)
5929 goto exit_active_io;
5930 }
5931 if (!bioset_initialized(&mddev->sync_set)) {
5932 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5933 if (err)
5934 goto exit_bio_set;
5935 }
5936
5937 if (!bioset_initialized(&mddev->io_clone_set)) {
5938 err = bioset_init(&mddev->io_clone_set, BIO_POOL_SIZE,
5939 offsetof(struct md_io_clone, bio_clone), 0);
5940 if (err)
5941 goto exit_sync_set;
5942 }
5943
5944 spin_lock(&pers_lock);
5945 pers = find_pers(mddev->level, mddev->clevel);
5946 if (!pers || !try_module_get(pers->owner)) {
5947 spin_unlock(&pers_lock);
5948 if (mddev->level != LEVEL_NONE)
5949 pr_warn("md: personality for level %d is not loaded!\n",
5950 mddev->level);
5951 else
5952 pr_warn("md: personality for level %s is not loaded!\n",
5953 mddev->clevel);
5954 err = -EINVAL;
5955 goto abort;
5956 }
5957 spin_unlock(&pers_lock);
5958 if (mddev->level != pers->level) {
5959 mddev->level = pers->level;
5960 mddev->new_level = pers->level;
5961 }
5962 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5963
5964 if (mddev->reshape_position != MaxSector &&
5965 pers->start_reshape == NULL) {
5966 /* This personality cannot handle reshaping... */
5967 module_put(pers->owner);
5968 err = -EINVAL;
5969 goto abort;
5970 }
5971
5972 if (pers->sync_request) {
5973 /* Warn if this is a potentially silly
5974 * configuration.
5975 */
5976 struct md_rdev *rdev2;
5977 int warned = 0;
5978
5979 rdev_for_each(rdev, mddev)
5980 rdev_for_each(rdev2, mddev) {
5981 if (rdev < rdev2 &&
5982 rdev->bdev->bd_disk ==
5983 rdev2->bdev->bd_disk) {
5984 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n",
5985 mdname(mddev),
5986 rdev->bdev,
5987 rdev2->bdev);
5988 warned = 1;
5989 }
5990 }
5991
5992 if (warned)
5993 pr_warn("True protection against single-disk failure might be compromised.\n");
5994 }
5995
5996 mddev->recovery = 0;
5997 /* may be over-ridden by personality */
5998 mddev->resync_max_sectors = mddev->dev_sectors;
5999
6000 mddev->ok_start_degraded = start_dirty_degraded;
6001
6002 if (start_readonly && md_is_rdwr(mddev))
6003 mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */
6004
6005 err = pers->run(mddev);
6006 if (err)
6007 pr_warn("md: pers->run() failed ...\n");
6008 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
6009 WARN_ONCE(!mddev->external_size,
6010 "%s: default size too small, but 'external_size' not in effect?\n",
6011 __func__);
6012 pr_warn("md: invalid array_size %llu > default size %llu\n",
6013 (unsigned long long)mddev->array_sectors / 2,
6014 (unsigned long long)pers->size(mddev, 0, 0) / 2);
6015 err = -EINVAL;
6016 }
6017 if (err == 0 && pers->sync_request &&
6018 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
6019 struct bitmap *bitmap;
6020
6021 bitmap = md_bitmap_create(mddev, -1);
6022 if (IS_ERR(bitmap)) {
6023 err = PTR_ERR(bitmap);
6024 pr_warn("%s: failed to create bitmap (%d)\n",
6025 mdname(mddev), err);
6026 } else
6027 mddev->bitmap = bitmap;
6028
6029 }
6030 if (err)
6031 goto bitmap_abort;
6032
6033 if (mddev->bitmap_info.max_write_behind > 0) {
6034 bool create_pool = false;
6035
6036 rdev_for_each(rdev, mddev) {
6037 if (test_bit(WriteMostly, &rdev->flags) &&
6038 rdev_init_serial(rdev))
6039 create_pool = true;
6040 }
6041 if (create_pool && mddev->serial_info_pool == NULL) {
6042 mddev->serial_info_pool =
6043 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
6044 sizeof(struct serial_info));
6045 if (!mddev->serial_info_pool) {
6046 err = -ENOMEM;
6047 goto bitmap_abort;
6048 }
6049 }
6050 }
6051
6052 if (mddev->queue) {
6053 bool nonrot = true;
6054
6055 rdev_for_each(rdev, mddev) {
6056 if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) {
6057 nonrot = false;
6058 break;
6059 }
6060 }
6061 if (mddev->degraded)
6062 nonrot = false;
6063 if (nonrot)
6064 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
6065 else
6066 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
6067 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue);
6068
6069 /* Set the NOWAIT flags if all underlying devices support it */
6070 if (nowait)
6071 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue);
6072 }
6073 if (pers->sync_request) {
6074 if (mddev->kobj.sd &&
6075 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
6076 pr_warn("md: cannot register extra attributes for %s\n",
6077 mdname(mddev));
6078 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
6079 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
6080 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
6081 } else if (mddev->ro == MD_AUTO_READ)
6082 mddev->ro = MD_RDWR;
6083
6084 atomic_set(&mddev->max_corr_read_errors,
6085 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
6086 mddev->safemode = 0;
6087 if (mddev_is_clustered(mddev))
6088 mddev->safemode_delay = 0;
6089 else
6090 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6091 mddev->in_sync = 1;
6092 smp_wmb();
6093 spin_lock(&mddev->lock);
6094 mddev->pers = pers;
6095 spin_unlock(&mddev->lock);
6096 rdev_for_each(rdev, mddev)
6097 if (rdev->raid_disk >= 0)
6098 sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6099
6100 if (mddev->degraded && md_is_rdwr(mddev))
6101 /* This ensures that recovering status is reported immediately
6102 * via sysfs - until a lack of spares is confirmed.
6103 */
6104 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6105 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6106
6107 if (mddev->sb_flags)
6108 md_update_sb(mddev, 0);
6109
6110 md_new_event();
6111 return 0;
6112
6113 bitmap_abort:
6114 mddev_detach(mddev);
6115 if (mddev->private)
6116 pers->free(mddev, mddev->private);
6117 mddev->private = NULL;
6118 module_put(pers->owner);
6119 md_bitmap_destroy(mddev);
6120 abort:
6121 bioset_exit(&mddev->io_clone_set);
6122 exit_sync_set:
6123 bioset_exit(&mddev->sync_set);
6124 exit_bio_set:
6125 bioset_exit(&mddev->bio_set);
6126 exit_active_io:
6127 percpu_ref_exit(&mddev->active_io);
6128 return err;
6129 }
6130 EXPORT_SYMBOL_GPL(md_run);
6131
do_md_run(struct mddev * mddev)6132 int do_md_run(struct mddev *mddev)
6133 {
6134 int err;
6135
6136 set_bit(MD_NOT_READY, &mddev->flags);
6137 err = md_run(mddev);
6138 if (err)
6139 goto out;
6140 err = md_bitmap_load(mddev);
6141 if (err) {
6142 md_bitmap_destroy(mddev);
6143 goto out;
6144 }
6145
6146 if (mddev_is_clustered(mddev))
6147 md_allow_write(mddev);
6148
6149 /* run start up tasks that require md_thread */
6150 md_start(mddev);
6151
6152 md_wakeup_thread(mddev->thread);
6153 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6154
6155 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
6156 clear_bit(MD_NOT_READY, &mddev->flags);
6157 mddev->changed = 1;
6158 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6159 sysfs_notify_dirent_safe(mddev->sysfs_state);
6160 sysfs_notify_dirent_safe(mddev->sysfs_action);
6161 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6162 out:
6163 clear_bit(MD_NOT_READY, &mddev->flags);
6164 return err;
6165 }
6166
md_start(struct mddev * mddev)6167 int md_start(struct mddev *mddev)
6168 {
6169 int ret = 0;
6170
6171 if (mddev->pers->start) {
6172 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6173 md_wakeup_thread(mddev->thread);
6174 ret = mddev->pers->start(mddev);
6175 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6176 md_wakeup_thread(mddev->sync_thread);
6177 }
6178 return ret;
6179 }
6180 EXPORT_SYMBOL_GPL(md_start);
6181
restart_array(struct mddev * mddev)6182 static int restart_array(struct mddev *mddev)
6183 {
6184 struct gendisk *disk = mddev->gendisk;
6185 struct md_rdev *rdev;
6186 bool has_journal = false;
6187 bool has_readonly = false;
6188
6189 /* Complain if it has no devices */
6190 if (list_empty(&mddev->disks))
6191 return -ENXIO;
6192 if (!mddev->pers)
6193 return -EINVAL;
6194 if (md_is_rdwr(mddev))
6195 return -EBUSY;
6196
6197 rcu_read_lock();
6198 rdev_for_each_rcu(rdev, mddev) {
6199 if (test_bit(Journal, &rdev->flags) &&
6200 !test_bit(Faulty, &rdev->flags))
6201 has_journal = true;
6202 if (rdev_read_only(rdev))
6203 has_readonly = true;
6204 }
6205 rcu_read_unlock();
6206 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6207 /* Don't restart rw with journal missing/faulty */
6208 return -EINVAL;
6209 if (has_readonly)
6210 return -EROFS;
6211
6212 mddev->safemode = 0;
6213 mddev->ro = MD_RDWR;
6214 set_disk_ro(disk, 0);
6215 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
6216 /* Kick recovery or resync if necessary */
6217 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6218 md_wakeup_thread(mddev->thread);
6219 md_wakeup_thread(mddev->sync_thread);
6220 sysfs_notify_dirent_safe(mddev->sysfs_state);
6221 return 0;
6222 }
6223
md_clean(struct mddev * mddev)6224 static void md_clean(struct mddev *mddev)
6225 {
6226 mddev->array_sectors = 0;
6227 mddev->external_size = 0;
6228 mddev->dev_sectors = 0;
6229 mddev->raid_disks = 0;
6230 mddev->recovery_cp = 0;
6231 mddev->resync_min = 0;
6232 mddev->resync_max = MaxSector;
6233 mddev->reshape_position = MaxSector;
6234 /* we still need mddev->external in export_rdev, do not clear it yet */
6235 mddev->persistent = 0;
6236 mddev->level = LEVEL_NONE;
6237 mddev->clevel[0] = 0;
6238 mddev->flags = 0;
6239 mddev->sb_flags = 0;
6240 mddev->ro = MD_RDWR;
6241 mddev->metadata_type[0] = 0;
6242 mddev->chunk_sectors = 0;
6243 mddev->ctime = mddev->utime = 0;
6244 mddev->layout = 0;
6245 mddev->max_disks = 0;
6246 mddev->events = 0;
6247 mddev->can_decrease_events = 0;
6248 mddev->delta_disks = 0;
6249 mddev->reshape_backwards = 0;
6250 mddev->new_level = LEVEL_NONE;
6251 mddev->new_layout = 0;
6252 mddev->new_chunk_sectors = 0;
6253 mddev->curr_resync = MD_RESYNC_NONE;
6254 atomic64_set(&mddev->resync_mismatches, 0);
6255 mddev->suspend_lo = mddev->suspend_hi = 0;
6256 mddev->sync_speed_min = mddev->sync_speed_max = 0;
6257 mddev->recovery = 0;
6258 mddev->in_sync = 0;
6259 mddev->changed = 0;
6260 mddev->degraded = 0;
6261 mddev->safemode = 0;
6262 mddev->private = NULL;
6263 mddev->cluster_info = NULL;
6264 mddev->bitmap_info.offset = 0;
6265 mddev->bitmap_info.default_offset = 0;
6266 mddev->bitmap_info.default_space = 0;
6267 mddev->bitmap_info.chunksize = 0;
6268 mddev->bitmap_info.daemon_sleep = 0;
6269 mddev->bitmap_info.max_write_behind = 0;
6270 mddev->bitmap_info.nodes = 0;
6271 }
6272
__md_stop_writes(struct mddev * mddev)6273 static void __md_stop_writes(struct mddev *mddev)
6274 {
6275 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6276 if (work_pending(&mddev->del_work))
6277 flush_workqueue(md_misc_wq);
6278 if (mddev->sync_thread) {
6279 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6280 md_reap_sync_thread(mddev);
6281 }
6282
6283 del_timer_sync(&mddev->safemode_timer);
6284
6285 if (mddev->pers && mddev->pers->quiesce) {
6286 mddev->pers->quiesce(mddev, 1);
6287 mddev->pers->quiesce(mddev, 0);
6288 }
6289 md_bitmap_flush(mddev);
6290
6291 if (md_is_rdwr(mddev) &&
6292 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6293 mddev->sb_flags)) {
6294 /* mark array as shutdown cleanly */
6295 if (!mddev_is_clustered(mddev))
6296 mddev->in_sync = 1;
6297 md_update_sb(mddev, 1);
6298 }
6299 /* disable policy to guarantee rdevs free resources for serialization */
6300 mddev->serialize_policy = 0;
6301 mddev_destroy_serial_pool(mddev, NULL, true);
6302 }
6303
md_stop_writes(struct mddev * mddev)6304 void md_stop_writes(struct mddev *mddev)
6305 {
6306 mddev_lock_nointr(mddev);
6307 __md_stop_writes(mddev);
6308 mddev_unlock(mddev);
6309 }
6310 EXPORT_SYMBOL_GPL(md_stop_writes);
6311
mddev_detach(struct mddev * mddev)6312 static void mddev_detach(struct mddev *mddev)
6313 {
6314 md_bitmap_wait_behind_writes(mddev);
6315 if (mddev->pers && mddev->pers->quiesce && !is_md_suspended(mddev)) {
6316 mddev->pers->quiesce(mddev, 1);
6317 mddev->pers->quiesce(mddev, 0);
6318 }
6319 md_unregister_thread(mddev, &mddev->thread);
6320 if (mddev->queue)
6321 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
6322 }
6323
__md_stop(struct mddev * mddev)6324 static void __md_stop(struct mddev *mddev)
6325 {
6326 struct md_personality *pers = mddev->pers;
6327 md_bitmap_destroy(mddev);
6328 mddev_detach(mddev);
6329 /* Ensure ->event_work is done */
6330 if (mddev->event_work.func)
6331 flush_workqueue(md_misc_wq);
6332 spin_lock(&mddev->lock);
6333 mddev->pers = NULL;
6334 spin_unlock(&mddev->lock);
6335 if (mddev->private)
6336 pers->free(mddev, mddev->private);
6337 mddev->private = NULL;
6338 if (pers->sync_request && mddev->to_remove == NULL)
6339 mddev->to_remove = &md_redundancy_group;
6340 module_put(pers->owner);
6341 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6342
6343 percpu_ref_exit(&mddev->active_io);
6344 bioset_exit(&mddev->bio_set);
6345 bioset_exit(&mddev->sync_set);
6346 bioset_exit(&mddev->io_clone_set);
6347 }
6348
md_stop(struct mddev * mddev)6349 void md_stop(struct mddev *mddev)
6350 {
6351 lockdep_assert_held(&mddev->reconfig_mutex);
6352
6353 /* stop the array and free an attached data structures.
6354 * This is called from dm-raid
6355 */
6356 __md_stop_writes(mddev);
6357 __md_stop(mddev);
6358 percpu_ref_exit(&mddev->writes_pending);
6359 }
6360
6361 EXPORT_SYMBOL_GPL(md_stop);
6362
md_set_readonly(struct mddev * mddev,struct block_device * bdev)6363 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
6364 {
6365 int err = 0;
6366 int did_freeze = 0;
6367
6368 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6369 return -EBUSY;
6370
6371 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6372 did_freeze = 1;
6373 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6374 md_wakeup_thread(mddev->thread);
6375 }
6376 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6377 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6378
6379 /*
6380 * Thread might be blocked waiting for metadata update which will now
6381 * never happen
6382 */
6383 md_wakeup_thread_directly(mddev->sync_thread);
6384
6385 mddev_unlock(mddev);
6386 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
6387 &mddev->recovery));
6388 wait_event(mddev->sb_wait,
6389 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6390 mddev_lock_nointr(mddev);
6391
6392 mutex_lock(&mddev->open_mutex);
6393 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6394 mddev->sync_thread ||
6395 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6396 pr_warn("md: %s still in use.\n",mdname(mddev));
6397 err = -EBUSY;
6398 goto out;
6399 }
6400
6401 if (mddev->pers) {
6402 __md_stop_writes(mddev);
6403
6404 if (mddev->ro == MD_RDONLY) {
6405 err = -ENXIO;
6406 goto out;
6407 }
6408
6409 mddev->ro = MD_RDONLY;
6410 set_disk_ro(mddev->gendisk, 1);
6411 }
6412
6413 out:
6414 if ((mddev->pers && !err) || did_freeze) {
6415 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6416 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6417 md_wakeup_thread(mddev->thread);
6418 sysfs_notify_dirent_safe(mddev->sysfs_state);
6419 }
6420
6421 mutex_unlock(&mddev->open_mutex);
6422 return err;
6423 }
6424
6425 /* mode:
6426 * 0 - completely stop and dis-assemble array
6427 * 2 - stop but do not disassemble array
6428 */
do_md_stop(struct mddev * mddev,int mode,struct block_device * bdev)6429 static int do_md_stop(struct mddev *mddev, int mode,
6430 struct block_device *bdev)
6431 {
6432 struct gendisk *disk = mddev->gendisk;
6433 struct md_rdev *rdev;
6434 int did_freeze = 0;
6435
6436 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6437 did_freeze = 1;
6438 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6439 md_wakeup_thread(mddev->thread);
6440 }
6441 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6442 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6443
6444 /*
6445 * Thread might be blocked waiting for metadata update which will now
6446 * never happen
6447 */
6448 md_wakeup_thread_directly(mddev->sync_thread);
6449
6450 mddev_unlock(mddev);
6451 wait_event(resync_wait, (mddev->sync_thread == NULL &&
6452 !test_bit(MD_RECOVERY_RUNNING,
6453 &mddev->recovery)));
6454 mddev_lock_nointr(mddev);
6455
6456 mutex_lock(&mddev->open_mutex);
6457 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6458 mddev->sysfs_active ||
6459 mddev->sync_thread ||
6460 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6461 pr_warn("md: %s still in use.\n",mdname(mddev));
6462 mutex_unlock(&mddev->open_mutex);
6463 if (did_freeze) {
6464 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6465 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6466 md_wakeup_thread(mddev->thread);
6467 }
6468 return -EBUSY;
6469 }
6470 if (mddev->pers) {
6471 if (!md_is_rdwr(mddev))
6472 set_disk_ro(disk, 0);
6473
6474 __md_stop_writes(mddev);
6475 __md_stop(mddev);
6476
6477 /* tell userspace to handle 'inactive' */
6478 sysfs_notify_dirent_safe(mddev->sysfs_state);
6479
6480 rdev_for_each(rdev, mddev)
6481 if (rdev->raid_disk >= 0)
6482 sysfs_unlink_rdev(mddev, rdev);
6483
6484 set_capacity_and_notify(disk, 0);
6485 mutex_unlock(&mddev->open_mutex);
6486 mddev->changed = 1;
6487
6488 if (!md_is_rdwr(mddev))
6489 mddev->ro = MD_RDWR;
6490 } else
6491 mutex_unlock(&mddev->open_mutex);
6492 /*
6493 * Free resources if final stop
6494 */
6495 if (mode == 0) {
6496 pr_info("md: %s stopped.\n", mdname(mddev));
6497
6498 if (mddev->bitmap_info.file) {
6499 struct file *f = mddev->bitmap_info.file;
6500 spin_lock(&mddev->lock);
6501 mddev->bitmap_info.file = NULL;
6502 spin_unlock(&mddev->lock);
6503 fput(f);
6504 }
6505 mddev->bitmap_info.offset = 0;
6506
6507 export_array(mddev);
6508
6509 md_clean(mddev);
6510 if (mddev->hold_active == UNTIL_STOP)
6511 mddev->hold_active = 0;
6512 }
6513 md_new_event();
6514 sysfs_notify_dirent_safe(mddev->sysfs_state);
6515 return 0;
6516 }
6517
6518 #ifndef MODULE
autorun_array(struct mddev * mddev)6519 static void autorun_array(struct mddev *mddev)
6520 {
6521 struct md_rdev *rdev;
6522 int err;
6523
6524 if (list_empty(&mddev->disks))
6525 return;
6526
6527 pr_info("md: running: ");
6528
6529 rdev_for_each(rdev, mddev) {
6530 pr_cont("<%pg>", rdev->bdev);
6531 }
6532 pr_cont("\n");
6533
6534 err = do_md_run(mddev);
6535 if (err) {
6536 pr_warn("md: do_md_run() returned %d\n", err);
6537 do_md_stop(mddev, 0, NULL);
6538 }
6539 }
6540
6541 /*
6542 * lets try to run arrays based on all disks that have arrived
6543 * until now. (those are in pending_raid_disks)
6544 *
6545 * the method: pick the first pending disk, collect all disks with
6546 * the same UUID, remove all from the pending list and put them into
6547 * the 'same_array' list. Then order this list based on superblock
6548 * update time (freshest comes first), kick out 'old' disks and
6549 * compare superblocks. If everything's fine then run it.
6550 *
6551 * If "unit" is allocated, then bump its reference count
6552 */
autorun_devices(int part)6553 static void autorun_devices(int part)
6554 {
6555 struct md_rdev *rdev0, *rdev, *tmp;
6556 struct mddev *mddev;
6557
6558 pr_info("md: autorun ...\n");
6559 while (!list_empty(&pending_raid_disks)) {
6560 int unit;
6561 dev_t dev;
6562 LIST_HEAD(candidates);
6563 rdev0 = list_entry(pending_raid_disks.next,
6564 struct md_rdev, same_set);
6565
6566 pr_debug("md: considering %pg ...\n", rdev0->bdev);
6567 INIT_LIST_HEAD(&candidates);
6568 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6569 if (super_90_load(rdev, rdev0, 0) >= 0) {
6570 pr_debug("md: adding %pg ...\n",
6571 rdev->bdev);
6572 list_move(&rdev->same_set, &candidates);
6573 }
6574 /*
6575 * now we have a set of devices, with all of them having
6576 * mostly sane superblocks. It's time to allocate the
6577 * mddev.
6578 */
6579 if (part) {
6580 dev = MKDEV(mdp_major,
6581 rdev0->preferred_minor << MdpMinorShift);
6582 unit = MINOR(dev) >> MdpMinorShift;
6583 } else {
6584 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6585 unit = MINOR(dev);
6586 }
6587 if (rdev0->preferred_minor != unit) {
6588 pr_warn("md: unit number in %pg is bad: %d\n",
6589 rdev0->bdev, rdev0->preferred_minor);
6590 break;
6591 }
6592
6593 mddev = md_alloc(dev, NULL);
6594 if (IS_ERR(mddev))
6595 break;
6596
6597 if (mddev_lock(mddev))
6598 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6599 else if (mddev->raid_disks || mddev->major_version
6600 || !list_empty(&mddev->disks)) {
6601 pr_warn("md: %s already running, cannot run %pg\n",
6602 mdname(mddev), rdev0->bdev);
6603 mddev_unlock(mddev);
6604 } else {
6605 pr_debug("md: created %s\n", mdname(mddev));
6606 mddev->persistent = 1;
6607 rdev_for_each_list(rdev, tmp, &candidates) {
6608 list_del_init(&rdev->same_set);
6609 if (bind_rdev_to_array(rdev, mddev))
6610 export_rdev(rdev, mddev);
6611 }
6612 autorun_array(mddev);
6613 mddev_unlock(mddev);
6614 }
6615 /* on success, candidates will be empty, on error
6616 * it won't...
6617 */
6618 rdev_for_each_list(rdev, tmp, &candidates) {
6619 list_del_init(&rdev->same_set);
6620 export_rdev(rdev, mddev);
6621 }
6622 mddev_put(mddev);
6623 }
6624 pr_info("md: ... autorun DONE.\n");
6625 }
6626 #endif /* !MODULE */
6627
get_version(void __user * arg)6628 static int get_version(void __user *arg)
6629 {
6630 mdu_version_t ver;
6631
6632 ver.major = MD_MAJOR_VERSION;
6633 ver.minor = MD_MINOR_VERSION;
6634 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6635
6636 if (copy_to_user(arg, &ver, sizeof(ver)))
6637 return -EFAULT;
6638
6639 return 0;
6640 }
6641
get_array_info(struct mddev * mddev,void __user * arg)6642 static int get_array_info(struct mddev *mddev, void __user *arg)
6643 {
6644 mdu_array_info_t info;
6645 int nr,working,insync,failed,spare;
6646 struct md_rdev *rdev;
6647
6648 nr = working = insync = failed = spare = 0;
6649 rcu_read_lock();
6650 rdev_for_each_rcu(rdev, mddev) {
6651 nr++;
6652 if (test_bit(Faulty, &rdev->flags))
6653 failed++;
6654 else {
6655 working++;
6656 if (test_bit(In_sync, &rdev->flags))
6657 insync++;
6658 else if (test_bit(Journal, &rdev->flags))
6659 /* TODO: add journal count to md_u.h */
6660 ;
6661 else
6662 spare++;
6663 }
6664 }
6665 rcu_read_unlock();
6666
6667 info.major_version = mddev->major_version;
6668 info.minor_version = mddev->minor_version;
6669 info.patch_version = MD_PATCHLEVEL_VERSION;
6670 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6671 info.level = mddev->level;
6672 info.size = mddev->dev_sectors / 2;
6673 if (info.size != mddev->dev_sectors / 2) /* overflow */
6674 info.size = -1;
6675 info.nr_disks = nr;
6676 info.raid_disks = mddev->raid_disks;
6677 info.md_minor = mddev->md_minor;
6678 info.not_persistent= !mddev->persistent;
6679
6680 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6681 info.state = 0;
6682 if (mddev->in_sync)
6683 info.state = (1<<MD_SB_CLEAN);
6684 if (mddev->bitmap && mddev->bitmap_info.offset)
6685 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6686 if (mddev_is_clustered(mddev))
6687 info.state |= (1<<MD_SB_CLUSTERED);
6688 info.active_disks = insync;
6689 info.working_disks = working;
6690 info.failed_disks = failed;
6691 info.spare_disks = spare;
6692
6693 info.layout = mddev->layout;
6694 info.chunk_size = mddev->chunk_sectors << 9;
6695
6696 if (copy_to_user(arg, &info, sizeof(info)))
6697 return -EFAULT;
6698
6699 return 0;
6700 }
6701
get_bitmap_file(struct mddev * mddev,void __user * arg)6702 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6703 {
6704 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6705 char *ptr;
6706 int err;
6707
6708 file = kzalloc(sizeof(*file), GFP_NOIO);
6709 if (!file)
6710 return -ENOMEM;
6711
6712 err = 0;
6713 spin_lock(&mddev->lock);
6714 /* bitmap enabled */
6715 if (mddev->bitmap_info.file) {
6716 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6717 sizeof(file->pathname));
6718 if (IS_ERR(ptr))
6719 err = PTR_ERR(ptr);
6720 else
6721 memmove(file->pathname, ptr,
6722 sizeof(file->pathname)-(ptr-file->pathname));
6723 }
6724 spin_unlock(&mddev->lock);
6725
6726 if (err == 0 &&
6727 copy_to_user(arg, file, sizeof(*file)))
6728 err = -EFAULT;
6729
6730 kfree(file);
6731 return err;
6732 }
6733
get_disk_info(struct mddev * mddev,void __user * arg)6734 static int get_disk_info(struct mddev *mddev, void __user * arg)
6735 {
6736 mdu_disk_info_t info;
6737 struct md_rdev *rdev;
6738
6739 if (copy_from_user(&info, arg, sizeof(info)))
6740 return -EFAULT;
6741
6742 rcu_read_lock();
6743 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6744 if (rdev) {
6745 info.major = MAJOR(rdev->bdev->bd_dev);
6746 info.minor = MINOR(rdev->bdev->bd_dev);
6747 info.raid_disk = rdev->raid_disk;
6748 info.state = 0;
6749 if (test_bit(Faulty, &rdev->flags))
6750 info.state |= (1<<MD_DISK_FAULTY);
6751 else if (test_bit(In_sync, &rdev->flags)) {
6752 info.state |= (1<<MD_DISK_ACTIVE);
6753 info.state |= (1<<MD_DISK_SYNC);
6754 }
6755 if (test_bit(Journal, &rdev->flags))
6756 info.state |= (1<<MD_DISK_JOURNAL);
6757 if (test_bit(WriteMostly, &rdev->flags))
6758 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6759 if (test_bit(FailFast, &rdev->flags))
6760 info.state |= (1<<MD_DISK_FAILFAST);
6761 } else {
6762 info.major = info.minor = 0;
6763 info.raid_disk = -1;
6764 info.state = (1<<MD_DISK_REMOVED);
6765 }
6766 rcu_read_unlock();
6767
6768 if (copy_to_user(arg, &info, sizeof(info)))
6769 return -EFAULT;
6770
6771 return 0;
6772 }
6773
md_add_new_disk(struct mddev * mddev,struct mdu_disk_info_s * info)6774 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
6775 {
6776 struct md_rdev *rdev;
6777 dev_t dev = MKDEV(info->major,info->minor);
6778
6779 if (mddev_is_clustered(mddev) &&
6780 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6781 pr_warn("%s: Cannot add to clustered mddev.\n",
6782 mdname(mddev));
6783 return -EINVAL;
6784 }
6785
6786 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6787 return -EOVERFLOW;
6788
6789 if (!mddev->raid_disks) {
6790 int err;
6791 /* expecting a device which has a superblock */
6792 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6793 if (IS_ERR(rdev)) {
6794 pr_warn("md: md_import_device returned %ld\n",
6795 PTR_ERR(rdev));
6796 return PTR_ERR(rdev);
6797 }
6798 if (!list_empty(&mddev->disks)) {
6799 struct md_rdev *rdev0
6800 = list_entry(mddev->disks.next,
6801 struct md_rdev, same_set);
6802 err = super_types[mddev->major_version]
6803 .load_super(rdev, rdev0, mddev->minor_version);
6804 if (err < 0) {
6805 pr_warn("md: %pg has different UUID to %pg\n",
6806 rdev->bdev,
6807 rdev0->bdev);
6808 export_rdev(rdev, mddev);
6809 return -EINVAL;
6810 }
6811 }
6812 err = bind_rdev_to_array(rdev, mddev);
6813 if (err)
6814 export_rdev(rdev, mddev);
6815 return err;
6816 }
6817
6818 /*
6819 * md_add_new_disk can be used once the array is assembled
6820 * to add "hot spares". They must already have a superblock
6821 * written
6822 */
6823 if (mddev->pers) {
6824 int err;
6825 if (!mddev->pers->hot_add_disk) {
6826 pr_warn("%s: personality does not support diskops!\n",
6827 mdname(mddev));
6828 return -EINVAL;
6829 }
6830 if (mddev->persistent)
6831 rdev = md_import_device(dev, mddev->major_version,
6832 mddev->minor_version);
6833 else
6834 rdev = md_import_device(dev, -1, -1);
6835 if (IS_ERR(rdev)) {
6836 pr_warn("md: md_import_device returned %ld\n",
6837 PTR_ERR(rdev));
6838 return PTR_ERR(rdev);
6839 }
6840 /* set saved_raid_disk if appropriate */
6841 if (!mddev->persistent) {
6842 if (info->state & (1<<MD_DISK_SYNC) &&
6843 info->raid_disk < mddev->raid_disks) {
6844 rdev->raid_disk = info->raid_disk;
6845 clear_bit(Bitmap_sync, &rdev->flags);
6846 } else
6847 rdev->raid_disk = -1;
6848 rdev->saved_raid_disk = rdev->raid_disk;
6849 } else
6850 super_types[mddev->major_version].
6851 validate_super(mddev, NULL/*freshest*/, rdev);
6852 if ((info->state & (1<<MD_DISK_SYNC)) &&
6853 rdev->raid_disk != info->raid_disk) {
6854 /* This was a hot-add request, but events doesn't
6855 * match, so reject it.
6856 */
6857 export_rdev(rdev, mddev);
6858 return -EINVAL;
6859 }
6860
6861 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6862 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6863 set_bit(WriteMostly, &rdev->flags);
6864 else
6865 clear_bit(WriteMostly, &rdev->flags);
6866 if (info->state & (1<<MD_DISK_FAILFAST))
6867 set_bit(FailFast, &rdev->flags);
6868 else
6869 clear_bit(FailFast, &rdev->flags);
6870
6871 if (info->state & (1<<MD_DISK_JOURNAL)) {
6872 struct md_rdev *rdev2;
6873 bool has_journal = false;
6874
6875 /* make sure no existing journal disk */
6876 rdev_for_each(rdev2, mddev) {
6877 if (test_bit(Journal, &rdev2->flags)) {
6878 has_journal = true;
6879 break;
6880 }
6881 }
6882 if (has_journal || mddev->bitmap) {
6883 export_rdev(rdev, mddev);
6884 return -EBUSY;
6885 }
6886 set_bit(Journal, &rdev->flags);
6887 }
6888 /*
6889 * check whether the device shows up in other nodes
6890 */
6891 if (mddev_is_clustered(mddev)) {
6892 if (info->state & (1 << MD_DISK_CANDIDATE))
6893 set_bit(Candidate, &rdev->flags);
6894 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6895 /* --add initiated by this node */
6896 err = md_cluster_ops->add_new_disk(mddev, rdev);
6897 if (err) {
6898 export_rdev(rdev, mddev);
6899 return err;
6900 }
6901 }
6902 }
6903
6904 rdev->raid_disk = -1;
6905 err = bind_rdev_to_array(rdev, mddev);
6906
6907 if (err)
6908 export_rdev(rdev, mddev);
6909
6910 if (mddev_is_clustered(mddev)) {
6911 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6912 if (!err) {
6913 err = md_cluster_ops->new_disk_ack(mddev,
6914 err == 0);
6915 if (err)
6916 md_kick_rdev_from_array(rdev);
6917 }
6918 } else {
6919 if (err)
6920 md_cluster_ops->add_new_disk_cancel(mddev);
6921 else
6922 err = add_bound_rdev(rdev);
6923 }
6924
6925 } else if (!err)
6926 err = add_bound_rdev(rdev);
6927
6928 return err;
6929 }
6930
6931 /* otherwise, md_add_new_disk is only allowed
6932 * for major_version==0 superblocks
6933 */
6934 if (mddev->major_version != 0) {
6935 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6936 return -EINVAL;
6937 }
6938
6939 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6940 int err;
6941 rdev = md_import_device(dev, -1, 0);
6942 if (IS_ERR(rdev)) {
6943 pr_warn("md: error, md_import_device() returned %ld\n",
6944 PTR_ERR(rdev));
6945 return PTR_ERR(rdev);
6946 }
6947 rdev->desc_nr = info->number;
6948 if (info->raid_disk < mddev->raid_disks)
6949 rdev->raid_disk = info->raid_disk;
6950 else
6951 rdev->raid_disk = -1;
6952
6953 if (rdev->raid_disk < mddev->raid_disks)
6954 if (info->state & (1<<MD_DISK_SYNC))
6955 set_bit(In_sync, &rdev->flags);
6956
6957 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6958 set_bit(WriteMostly, &rdev->flags);
6959 if (info->state & (1<<MD_DISK_FAILFAST))
6960 set_bit(FailFast, &rdev->flags);
6961
6962 if (!mddev->persistent) {
6963 pr_debug("md: nonpersistent superblock ...\n");
6964 rdev->sb_start = bdev_nr_sectors(rdev->bdev);
6965 } else
6966 rdev->sb_start = calc_dev_sboffset(rdev);
6967 rdev->sectors = rdev->sb_start;
6968
6969 err = bind_rdev_to_array(rdev, mddev);
6970 if (err) {
6971 export_rdev(rdev, mddev);
6972 return err;
6973 }
6974 }
6975
6976 return 0;
6977 }
6978
hot_remove_disk(struct mddev * mddev,dev_t dev)6979 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6980 {
6981 struct md_rdev *rdev;
6982
6983 if (!mddev->pers)
6984 return -ENODEV;
6985
6986 rdev = find_rdev(mddev, dev);
6987 if (!rdev)
6988 return -ENXIO;
6989
6990 if (rdev->raid_disk < 0)
6991 goto kick_rdev;
6992
6993 clear_bit(Blocked, &rdev->flags);
6994 remove_and_add_spares(mddev, rdev);
6995
6996 if (rdev->raid_disk >= 0)
6997 goto busy;
6998
6999 kick_rdev:
7000 if (mddev_is_clustered(mddev)) {
7001 if (md_cluster_ops->remove_disk(mddev, rdev))
7002 goto busy;
7003 }
7004
7005 md_kick_rdev_from_array(rdev);
7006 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7007 if (mddev->thread)
7008 md_wakeup_thread(mddev->thread);
7009 else
7010 md_update_sb(mddev, 1);
7011 md_new_event();
7012
7013 return 0;
7014 busy:
7015 pr_debug("md: cannot remove active disk %pg from %s ...\n",
7016 rdev->bdev, mdname(mddev));
7017 return -EBUSY;
7018 }
7019
hot_add_disk(struct mddev * mddev,dev_t dev)7020 static int hot_add_disk(struct mddev *mddev, dev_t dev)
7021 {
7022 int err;
7023 struct md_rdev *rdev;
7024
7025 if (!mddev->pers)
7026 return -ENODEV;
7027
7028 if (mddev->major_version != 0) {
7029 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
7030 mdname(mddev));
7031 return -EINVAL;
7032 }
7033 if (!mddev->pers->hot_add_disk) {
7034 pr_warn("%s: personality does not support diskops!\n",
7035 mdname(mddev));
7036 return -EINVAL;
7037 }
7038
7039 rdev = md_import_device(dev, -1, 0);
7040 if (IS_ERR(rdev)) {
7041 pr_warn("md: error, md_import_device() returned %ld\n",
7042 PTR_ERR(rdev));
7043 return -EINVAL;
7044 }
7045
7046 if (mddev->persistent)
7047 rdev->sb_start = calc_dev_sboffset(rdev);
7048 else
7049 rdev->sb_start = bdev_nr_sectors(rdev->bdev);
7050
7051 rdev->sectors = rdev->sb_start;
7052
7053 if (test_bit(Faulty, &rdev->flags)) {
7054 pr_warn("md: can not hot-add faulty %pg disk to %s!\n",
7055 rdev->bdev, mdname(mddev));
7056 err = -EINVAL;
7057 goto abort_export;
7058 }
7059
7060 clear_bit(In_sync, &rdev->flags);
7061 rdev->desc_nr = -1;
7062 rdev->saved_raid_disk = -1;
7063 err = bind_rdev_to_array(rdev, mddev);
7064 if (err)
7065 goto abort_export;
7066
7067 /*
7068 * The rest should better be atomic, we can have disk failures
7069 * noticed in interrupt contexts ...
7070 */
7071
7072 rdev->raid_disk = -1;
7073
7074 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7075 if (!mddev->thread)
7076 md_update_sb(mddev, 1);
7077 /*
7078 * If the new disk does not support REQ_NOWAIT,
7079 * disable on the whole MD.
7080 */
7081 if (!bdev_nowait(rdev->bdev)) {
7082 pr_info("%s: Disabling nowait because %pg does not support nowait\n",
7083 mdname(mddev), rdev->bdev);
7084 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue);
7085 }
7086 /*
7087 * Kick recovery, maybe this spare has to be added to the
7088 * array immediately.
7089 */
7090 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7091 md_wakeup_thread(mddev->thread);
7092 md_new_event();
7093 return 0;
7094
7095 abort_export:
7096 export_rdev(rdev, mddev);
7097 return err;
7098 }
7099
set_bitmap_file(struct mddev * mddev,int fd)7100 static int set_bitmap_file(struct mddev *mddev, int fd)
7101 {
7102 int err = 0;
7103
7104 if (mddev->pers) {
7105 if (!mddev->pers->quiesce || !mddev->thread)
7106 return -EBUSY;
7107 if (mddev->recovery || mddev->sync_thread)
7108 return -EBUSY;
7109 /* we should be able to change the bitmap.. */
7110 }
7111
7112 if (fd >= 0) {
7113 struct inode *inode;
7114 struct file *f;
7115
7116 if (mddev->bitmap || mddev->bitmap_info.file)
7117 return -EEXIST; /* cannot add when bitmap is present */
7118
7119 if (!IS_ENABLED(CONFIG_MD_BITMAP_FILE)) {
7120 pr_warn("%s: bitmap files not supported by this kernel\n",
7121 mdname(mddev));
7122 return -EINVAL;
7123 }
7124 pr_warn("%s: using deprecated bitmap file support\n",
7125 mdname(mddev));
7126
7127 f = fget(fd);
7128
7129 if (f == NULL) {
7130 pr_warn("%s: error: failed to get bitmap file\n",
7131 mdname(mddev));
7132 return -EBADF;
7133 }
7134
7135 inode = f->f_mapping->host;
7136 if (!S_ISREG(inode->i_mode)) {
7137 pr_warn("%s: error: bitmap file must be a regular file\n",
7138 mdname(mddev));
7139 err = -EBADF;
7140 } else if (!(f->f_mode & FMODE_WRITE)) {
7141 pr_warn("%s: error: bitmap file must open for write\n",
7142 mdname(mddev));
7143 err = -EBADF;
7144 } else if (atomic_read(&inode->i_writecount) != 1) {
7145 pr_warn("%s: error: bitmap file is already in use\n",
7146 mdname(mddev));
7147 err = -EBUSY;
7148 }
7149 if (err) {
7150 fput(f);
7151 return err;
7152 }
7153 mddev->bitmap_info.file = f;
7154 mddev->bitmap_info.offset = 0; /* file overrides offset */
7155 } else if (mddev->bitmap == NULL)
7156 return -ENOENT; /* cannot remove what isn't there */
7157 err = 0;
7158 if (mddev->pers) {
7159 if (fd >= 0) {
7160 struct bitmap *bitmap;
7161
7162 bitmap = md_bitmap_create(mddev, -1);
7163 mddev_suspend(mddev);
7164 if (!IS_ERR(bitmap)) {
7165 mddev->bitmap = bitmap;
7166 err = md_bitmap_load(mddev);
7167 } else
7168 err = PTR_ERR(bitmap);
7169 if (err) {
7170 md_bitmap_destroy(mddev);
7171 fd = -1;
7172 }
7173 mddev_resume(mddev);
7174 } else if (fd < 0) {
7175 mddev_suspend(mddev);
7176 md_bitmap_destroy(mddev);
7177 mddev_resume(mddev);
7178 }
7179 }
7180 if (fd < 0) {
7181 struct file *f = mddev->bitmap_info.file;
7182 if (f) {
7183 spin_lock(&mddev->lock);
7184 mddev->bitmap_info.file = NULL;
7185 spin_unlock(&mddev->lock);
7186 fput(f);
7187 }
7188 }
7189
7190 return err;
7191 }
7192
7193 /*
7194 * md_set_array_info is used two different ways
7195 * The original usage is when creating a new array.
7196 * In this usage, raid_disks is > 0 and it together with
7197 * level, size, not_persistent,layout,chunksize determine the
7198 * shape of the array.
7199 * This will always create an array with a type-0.90.0 superblock.
7200 * The newer usage is when assembling an array.
7201 * In this case raid_disks will be 0, and the major_version field is
7202 * use to determine which style super-blocks are to be found on the devices.
7203 * The minor and patch _version numbers are also kept incase the
7204 * super_block handler wishes to interpret them.
7205 */
md_set_array_info(struct mddev * mddev,struct mdu_array_info_s * info)7206 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
7207 {
7208 if (info->raid_disks == 0) {
7209 /* just setting version number for superblock loading */
7210 if (info->major_version < 0 ||
7211 info->major_version >= ARRAY_SIZE(super_types) ||
7212 super_types[info->major_version].name == NULL) {
7213 /* maybe try to auto-load a module? */
7214 pr_warn("md: superblock version %d not known\n",
7215 info->major_version);
7216 return -EINVAL;
7217 }
7218 mddev->major_version = info->major_version;
7219 mddev->minor_version = info->minor_version;
7220 mddev->patch_version = info->patch_version;
7221 mddev->persistent = !info->not_persistent;
7222 /* ensure mddev_put doesn't delete this now that there
7223 * is some minimal configuration.
7224 */
7225 mddev->ctime = ktime_get_real_seconds();
7226 return 0;
7227 }
7228 mddev->major_version = MD_MAJOR_VERSION;
7229 mddev->minor_version = MD_MINOR_VERSION;
7230 mddev->patch_version = MD_PATCHLEVEL_VERSION;
7231 mddev->ctime = ktime_get_real_seconds();
7232
7233 mddev->level = info->level;
7234 mddev->clevel[0] = 0;
7235 mddev->dev_sectors = 2 * (sector_t)info->size;
7236 mddev->raid_disks = info->raid_disks;
7237 /* don't set md_minor, it is determined by which /dev/md* was
7238 * openned
7239 */
7240 if (info->state & (1<<MD_SB_CLEAN))
7241 mddev->recovery_cp = MaxSector;
7242 else
7243 mddev->recovery_cp = 0;
7244 mddev->persistent = ! info->not_persistent;
7245 mddev->external = 0;
7246
7247 mddev->layout = info->layout;
7248 if (mddev->level == 0)
7249 /* Cannot trust RAID0 layout info here */
7250 mddev->layout = -1;
7251 mddev->chunk_sectors = info->chunk_size >> 9;
7252
7253 if (mddev->persistent) {
7254 mddev->max_disks = MD_SB_DISKS;
7255 mddev->flags = 0;
7256 mddev->sb_flags = 0;
7257 }
7258 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7259
7260 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7261 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7262 mddev->bitmap_info.offset = 0;
7263
7264 mddev->reshape_position = MaxSector;
7265
7266 /*
7267 * Generate a 128 bit UUID
7268 */
7269 get_random_bytes(mddev->uuid, 16);
7270
7271 mddev->new_level = mddev->level;
7272 mddev->new_chunk_sectors = mddev->chunk_sectors;
7273 mddev->new_layout = mddev->layout;
7274 mddev->delta_disks = 0;
7275 mddev->reshape_backwards = 0;
7276
7277 return 0;
7278 }
7279
md_set_array_sectors(struct mddev * mddev,sector_t array_sectors)7280 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7281 {
7282 lockdep_assert_held(&mddev->reconfig_mutex);
7283
7284 if (mddev->external_size)
7285 return;
7286
7287 mddev->array_sectors = array_sectors;
7288 }
7289 EXPORT_SYMBOL(md_set_array_sectors);
7290
update_size(struct mddev * mddev,sector_t num_sectors)7291 static int update_size(struct mddev *mddev, sector_t num_sectors)
7292 {
7293 struct md_rdev *rdev;
7294 int rv;
7295 int fit = (num_sectors == 0);
7296 sector_t old_dev_sectors = mddev->dev_sectors;
7297
7298 if (mddev->pers->resize == NULL)
7299 return -EINVAL;
7300 /* The "num_sectors" is the number of sectors of each device that
7301 * is used. This can only make sense for arrays with redundancy.
7302 * linear and raid0 always use whatever space is available. We can only
7303 * consider changing this number if no resync or reconstruction is
7304 * happening, and if the new size is acceptable. It must fit before the
7305 * sb_start or, if that is <data_offset, it must fit before the size
7306 * of each device. If num_sectors is zero, we find the largest size
7307 * that fits.
7308 */
7309 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7310 mddev->sync_thread)
7311 return -EBUSY;
7312 if (!md_is_rdwr(mddev))
7313 return -EROFS;
7314
7315 rdev_for_each(rdev, mddev) {
7316 sector_t avail = rdev->sectors;
7317
7318 if (fit && (num_sectors == 0 || num_sectors > avail))
7319 num_sectors = avail;
7320 if (avail < num_sectors)
7321 return -ENOSPC;
7322 }
7323 rv = mddev->pers->resize(mddev, num_sectors);
7324 if (!rv) {
7325 if (mddev_is_clustered(mddev))
7326 md_cluster_ops->update_size(mddev, old_dev_sectors);
7327 else if (mddev->queue) {
7328 set_capacity_and_notify(mddev->gendisk,
7329 mddev->array_sectors);
7330 }
7331 }
7332 return rv;
7333 }
7334
update_raid_disks(struct mddev * mddev,int raid_disks)7335 static int update_raid_disks(struct mddev *mddev, int raid_disks)
7336 {
7337 int rv;
7338 struct md_rdev *rdev;
7339 /* change the number of raid disks */
7340 if (mddev->pers->check_reshape == NULL)
7341 return -EINVAL;
7342 if (!md_is_rdwr(mddev))
7343 return -EROFS;
7344 if (raid_disks <= 0 ||
7345 (mddev->max_disks && raid_disks >= mddev->max_disks))
7346 return -EINVAL;
7347 if (mddev->sync_thread ||
7348 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7349 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
7350 mddev->reshape_position != MaxSector)
7351 return -EBUSY;
7352
7353 rdev_for_each(rdev, mddev) {
7354 if (mddev->raid_disks < raid_disks &&
7355 rdev->data_offset < rdev->new_data_offset)
7356 return -EINVAL;
7357 if (mddev->raid_disks > raid_disks &&
7358 rdev->data_offset > rdev->new_data_offset)
7359 return -EINVAL;
7360 }
7361
7362 mddev->delta_disks = raid_disks - mddev->raid_disks;
7363 if (mddev->delta_disks < 0)
7364 mddev->reshape_backwards = 1;
7365 else if (mddev->delta_disks > 0)
7366 mddev->reshape_backwards = 0;
7367
7368 rv = mddev->pers->check_reshape(mddev);
7369 if (rv < 0) {
7370 mddev->delta_disks = 0;
7371 mddev->reshape_backwards = 0;
7372 }
7373 return rv;
7374 }
7375
7376 /*
7377 * update_array_info is used to change the configuration of an
7378 * on-line array.
7379 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7380 * fields in the info are checked against the array.
7381 * Any differences that cannot be handled will cause an error.
7382 * Normally, only one change can be managed at a time.
7383 */
update_array_info(struct mddev * mddev,mdu_array_info_t * info)7384 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7385 {
7386 int rv = 0;
7387 int cnt = 0;
7388 int state = 0;
7389
7390 /* calculate expected state,ignoring low bits */
7391 if (mddev->bitmap && mddev->bitmap_info.offset)
7392 state |= (1 << MD_SB_BITMAP_PRESENT);
7393
7394 if (mddev->major_version != info->major_version ||
7395 mddev->minor_version != info->minor_version ||
7396 /* mddev->patch_version != info->patch_version || */
7397 mddev->ctime != info->ctime ||
7398 mddev->level != info->level ||
7399 /* mddev->layout != info->layout || */
7400 mddev->persistent != !info->not_persistent ||
7401 mddev->chunk_sectors != info->chunk_size >> 9 ||
7402 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7403 ((state^info->state) & 0xfffffe00)
7404 )
7405 return -EINVAL;
7406 /* Check there is only one change */
7407 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7408 cnt++;
7409 if (mddev->raid_disks != info->raid_disks)
7410 cnt++;
7411 if (mddev->layout != info->layout)
7412 cnt++;
7413 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7414 cnt++;
7415 if (cnt == 0)
7416 return 0;
7417 if (cnt > 1)
7418 return -EINVAL;
7419
7420 if (mddev->layout != info->layout) {
7421 /* Change layout
7422 * we don't need to do anything at the md level, the
7423 * personality will take care of it all.
7424 */
7425 if (mddev->pers->check_reshape == NULL)
7426 return -EINVAL;
7427 else {
7428 mddev->new_layout = info->layout;
7429 rv = mddev->pers->check_reshape(mddev);
7430 if (rv)
7431 mddev->new_layout = mddev->layout;
7432 return rv;
7433 }
7434 }
7435 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7436 rv = update_size(mddev, (sector_t)info->size * 2);
7437
7438 if (mddev->raid_disks != info->raid_disks)
7439 rv = update_raid_disks(mddev, info->raid_disks);
7440
7441 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7442 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7443 rv = -EINVAL;
7444 goto err;
7445 }
7446 if (mddev->recovery || mddev->sync_thread) {
7447 rv = -EBUSY;
7448 goto err;
7449 }
7450 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7451 struct bitmap *bitmap;
7452 /* add the bitmap */
7453 if (mddev->bitmap) {
7454 rv = -EEXIST;
7455 goto err;
7456 }
7457 if (mddev->bitmap_info.default_offset == 0) {
7458 rv = -EINVAL;
7459 goto err;
7460 }
7461 mddev->bitmap_info.offset =
7462 mddev->bitmap_info.default_offset;
7463 mddev->bitmap_info.space =
7464 mddev->bitmap_info.default_space;
7465 bitmap = md_bitmap_create(mddev, -1);
7466 mddev_suspend(mddev);
7467 if (!IS_ERR(bitmap)) {
7468 mddev->bitmap = bitmap;
7469 rv = md_bitmap_load(mddev);
7470 } else
7471 rv = PTR_ERR(bitmap);
7472 if (rv)
7473 md_bitmap_destroy(mddev);
7474 mddev_resume(mddev);
7475 } else {
7476 /* remove the bitmap */
7477 if (!mddev->bitmap) {
7478 rv = -ENOENT;
7479 goto err;
7480 }
7481 if (mddev->bitmap->storage.file) {
7482 rv = -EINVAL;
7483 goto err;
7484 }
7485 if (mddev->bitmap_info.nodes) {
7486 /* hold PW on all the bitmap lock */
7487 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7488 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7489 rv = -EPERM;
7490 md_cluster_ops->unlock_all_bitmaps(mddev);
7491 goto err;
7492 }
7493
7494 mddev->bitmap_info.nodes = 0;
7495 md_cluster_ops->leave(mddev);
7496 module_put(md_cluster_mod);
7497 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7498 }
7499 mddev_suspend(mddev);
7500 md_bitmap_destroy(mddev);
7501 mddev_resume(mddev);
7502 mddev->bitmap_info.offset = 0;
7503 }
7504 }
7505 md_update_sb(mddev, 1);
7506 return rv;
7507 err:
7508 return rv;
7509 }
7510
set_disk_faulty(struct mddev * mddev,dev_t dev)7511 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7512 {
7513 struct md_rdev *rdev;
7514 int err = 0;
7515
7516 if (mddev->pers == NULL)
7517 return -ENODEV;
7518
7519 rcu_read_lock();
7520 rdev = md_find_rdev_rcu(mddev, dev);
7521 if (!rdev)
7522 err = -ENODEV;
7523 else {
7524 md_error(mddev, rdev);
7525 if (test_bit(MD_BROKEN, &mddev->flags))
7526 err = -EBUSY;
7527 }
7528 rcu_read_unlock();
7529 return err;
7530 }
7531
7532 /*
7533 * We have a problem here : there is no easy way to give a CHS
7534 * virtual geometry. We currently pretend that we have a 2 heads
7535 * 4 sectors (with a BIG number of cylinders...). This drives
7536 * dosfs just mad... ;-)
7537 */
md_getgeo(struct block_device * bdev,struct hd_geometry * geo)7538 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7539 {
7540 struct mddev *mddev = bdev->bd_disk->private_data;
7541
7542 geo->heads = 2;
7543 geo->sectors = 4;
7544 geo->cylinders = mddev->array_sectors / 8;
7545 return 0;
7546 }
7547
md_ioctl_valid(unsigned int cmd)7548 static inline bool md_ioctl_valid(unsigned int cmd)
7549 {
7550 switch (cmd) {
7551 case ADD_NEW_DISK:
7552 case GET_ARRAY_INFO:
7553 case GET_BITMAP_FILE:
7554 case GET_DISK_INFO:
7555 case HOT_ADD_DISK:
7556 case HOT_REMOVE_DISK:
7557 case RAID_VERSION:
7558 case RESTART_ARRAY_RW:
7559 case RUN_ARRAY:
7560 case SET_ARRAY_INFO:
7561 case SET_BITMAP_FILE:
7562 case SET_DISK_FAULTY:
7563 case STOP_ARRAY:
7564 case STOP_ARRAY_RO:
7565 case CLUSTERED_DISK_NACK:
7566 return true;
7567 default:
7568 return false;
7569 }
7570 }
7571
__md_set_array_info(struct mddev * mddev,void __user * argp)7572 static int __md_set_array_info(struct mddev *mddev, void __user *argp)
7573 {
7574 mdu_array_info_t info;
7575 int err;
7576
7577 if (!argp)
7578 memset(&info, 0, sizeof(info));
7579 else if (copy_from_user(&info, argp, sizeof(info)))
7580 return -EFAULT;
7581
7582 if (mddev->pers) {
7583 err = update_array_info(mddev, &info);
7584 if (err)
7585 pr_warn("md: couldn't update array info. %d\n", err);
7586 return err;
7587 }
7588
7589 if (!list_empty(&mddev->disks)) {
7590 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7591 return -EBUSY;
7592 }
7593
7594 if (mddev->raid_disks) {
7595 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7596 return -EBUSY;
7597 }
7598
7599 err = md_set_array_info(mddev, &info);
7600 if (err)
7601 pr_warn("md: couldn't set array info. %d\n", err);
7602
7603 return err;
7604 }
7605
md_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)7606 static int md_ioctl(struct block_device *bdev, blk_mode_t mode,
7607 unsigned int cmd, unsigned long arg)
7608 {
7609 int err = 0;
7610 void __user *argp = (void __user *)arg;
7611 struct mddev *mddev = NULL;
7612 bool did_set_md_closing = false;
7613
7614 if (!md_ioctl_valid(cmd))
7615 return -ENOTTY;
7616
7617 switch (cmd) {
7618 case RAID_VERSION:
7619 case GET_ARRAY_INFO:
7620 case GET_DISK_INFO:
7621 break;
7622 default:
7623 if (!capable(CAP_SYS_ADMIN))
7624 return -EACCES;
7625 }
7626
7627 /*
7628 * Commands dealing with the RAID driver but not any
7629 * particular array:
7630 */
7631 switch (cmd) {
7632 case RAID_VERSION:
7633 err = get_version(argp);
7634 goto out;
7635 default:;
7636 }
7637
7638 /*
7639 * Commands creating/starting a new array:
7640 */
7641
7642 mddev = bdev->bd_disk->private_data;
7643
7644 if (!mddev) {
7645 BUG();
7646 goto out;
7647 }
7648
7649 /* Some actions do not requires the mutex */
7650 switch (cmd) {
7651 case GET_ARRAY_INFO:
7652 if (!mddev->raid_disks && !mddev->external)
7653 err = -ENODEV;
7654 else
7655 err = get_array_info(mddev, argp);
7656 goto out;
7657
7658 case GET_DISK_INFO:
7659 if (!mddev->raid_disks && !mddev->external)
7660 err = -ENODEV;
7661 else
7662 err = get_disk_info(mddev, argp);
7663 goto out;
7664
7665 case SET_DISK_FAULTY:
7666 err = set_disk_faulty(mddev, new_decode_dev(arg));
7667 goto out;
7668
7669 case GET_BITMAP_FILE:
7670 err = get_bitmap_file(mddev, argp);
7671 goto out;
7672
7673 }
7674
7675 if (cmd == HOT_REMOVE_DISK)
7676 /* need to ensure recovery thread has run */
7677 wait_event_interruptible_timeout(mddev->sb_wait,
7678 !test_bit(MD_RECOVERY_NEEDED,
7679 &mddev->recovery),
7680 msecs_to_jiffies(5000));
7681 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7682 /* Need to flush page cache, and ensure no-one else opens
7683 * and writes
7684 */
7685 mutex_lock(&mddev->open_mutex);
7686 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7687 mutex_unlock(&mddev->open_mutex);
7688 err = -EBUSY;
7689 goto out;
7690 }
7691 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
7692 mutex_unlock(&mddev->open_mutex);
7693 err = -EBUSY;
7694 goto out;
7695 }
7696 did_set_md_closing = true;
7697 mutex_unlock(&mddev->open_mutex);
7698 sync_blockdev(bdev);
7699 }
7700 err = mddev_lock(mddev);
7701 if (err) {
7702 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7703 err, cmd);
7704 goto out;
7705 }
7706
7707 if (cmd == SET_ARRAY_INFO) {
7708 err = __md_set_array_info(mddev, argp);
7709 goto unlock;
7710 }
7711
7712 /*
7713 * Commands querying/configuring an existing array:
7714 */
7715 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7716 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7717 if ((!mddev->raid_disks && !mddev->external)
7718 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7719 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7720 && cmd != GET_BITMAP_FILE) {
7721 err = -ENODEV;
7722 goto unlock;
7723 }
7724
7725 /*
7726 * Commands even a read-only array can execute:
7727 */
7728 switch (cmd) {
7729 case RESTART_ARRAY_RW:
7730 err = restart_array(mddev);
7731 goto unlock;
7732
7733 case STOP_ARRAY:
7734 err = do_md_stop(mddev, 0, bdev);
7735 goto unlock;
7736
7737 case STOP_ARRAY_RO:
7738 err = md_set_readonly(mddev, bdev);
7739 goto unlock;
7740
7741 case HOT_REMOVE_DISK:
7742 err = hot_remove_disk(mddev, new_decode_dev(arg));
7743 goto unlock;
7744
7745 case ADD_NEW_DISK:
7746 /* We can support ADD_NEW_DISK on read-only arrays
7747 * only if we are re-adding a preexisting device.
7748 * So require mddev->pers and MD_DISK_SYNC.
7749 */
7750 if (mddev->pers) {
7751 mdu_disk_info_t info;
7752 if (copy_from_user(&info, argp, sizeof(info)))
7753 err = -EFAULT;
7754 else if (!(info.state & (1<<MD_DISK_SYNC)))
7755 /* Need to clear read-only for this */
7756 break;
7757 else
7758 err = md_add_new_disk(mddev, &info);
7759 goto unlock;
7760 }
7761 break;
7762 }
7763
7764 /*
7765 * The remaining ioctls are changing the state of the
7766 * superblock, so we do not allow them on read-only arrays.
7767 */
7768 if (!md_is_rdwr(mddev) && mddev->pers) {
7769 if (mddev->ro != MD_AUTO_READ) {
7770 err = -EROFS;
7771 goto unlock;
7772 }
7773 mddev->ro = MD_RDWR;
7774 sysfs_notify_dirent_safe(mddev->sysfs_state);
7775 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7776 /* mddev_unlock will wake thread */
7777 /* If a device failed while we were read-only, we
7778 * need to make sure the metadata is updated now.
7779 */
7780 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7781 mddev_unlock(mddev);
7782 wait_event(mddev->sb_wait,
7783 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7784 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7785 mddev_lock_nointr(mddev);
7786 }
7787 }
7788
7789 switch (cmd) {
7790 case ADD_NEW_DISK:
7791 {
7792 mdu_disk_info_t info;
7793 if (copy_from_user(&info, argp, sizeof(info)))
7794 err = -EFAULT;
7795 else
7796 err = md_add_new_disk(mddev, &info);
7797 goto unlock;
7798 }
7799
7800 case CLUSTERED_DISK_NACK:
7801 if (mddev_is_clustered(mddev))
7802 md_cluster_ops->new_disk_ack(mddev, false);
7803 else
7804 err = -EINVAL;
7805 goto unlock;
7806
7807 case HOT_ADD_DISK:
7808 err = hot_add_disk(mddev, new_decode_dev(arg));
7809 goto unlock;
7810
7811 case RUN_ARRAY:
7812 err = do_md_run(mddev);
7813 goto unlock;
7814
7815 case SET_BITMAP_FILE:
7816 err = set_bitmap_file(mddev, (int)arg);
7817 goto unlock;
7818
7819 default:
7820 err = -EINVAL;
7821 goto unlock;
7822 }
7823
7824 unlock:
7825 if (mddev->hold_active == UNTIL_IOCTL &&
7826 err != -EINVAL)
7827 mddev->hold_active = 0;
7828 mddev_unlock(mddev);
7829 out:
7830 if(did_set_md_closing)
7831 clear_bit(MD_CLOSING, &mddev->flags);
7832 return err;
7833 }
7834 #ifdef CONFIG_COMPAT
md_compat_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)7835 static int md_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
7836 unsigned int cmd, unsigned long arg)
7837 {
7838 switch (cmd) {
7839 case HOT_REMOVE_DISK:
7840 case HOT_ADD_DISK:
7841 case SET_DISK_FAULTY:
7842 case SET_BITMAP_FILE:
7843 /* These take in integer arg, do not convert */
7844 break;
7845 default:
7846 arg = (unsigned long)compat_ptr(arg);
7847 break;
7848 }
7849
7850 return md_ioctl(bdev, mode, cmd, arg);
7851 }
7852 #endif /* CONFIG_COMPAT */
7853
md_set_read_only(struct block_device * bdev,bool ro)7854 static int md_set_read_only(struct block_device *bdev, bool ro)
7855 {
7856 struct mddev *mddev = bdev->bd_disk->private_data;
7857 int err;
7858
7859 err = mddev_lock(mddev);
7860 if (err)
7861 return err;
7862
7863 if (!mddev->raid_disks && !mddev->external) {
7864 err = -ENODEV;
7865 goto out_unlock;
7866 }
7867
7868 /*
7869 * Transitioning to read-auto need only happen for arrays that call
7870 * md_write_start and which are not ready for writes yet.
7871 */
7872 if (!ro && mddev->ro == MD_RDONLY && mddev->pers) {
7873 err = restart_array(mddev);
7874 if (err)
7875 goto out_unlock;
7876 mddev->ro = MD_AUTO_READ;
7877 }
7878
7879 out_unlock:
7880 mddev_unlock(mddev);
7881 return err;
7882 }
7883
md_open(struct gendisk * disk,blk_mode_t mode)7884 static int md_open(struct gendisk *disk, blk_mode_t mode)
7885 {
7886 struct mddev *mddev;
7887 int err;
7888
7889 spin_lock(&all_mddevs_lock);
7890 mddev = mddev_get(disk->private_data);
7891 spin_unlock(&all_mddevs_lock);
7892 if (!mddev)
7893 return -ENODEV;
7894
7895 err = mutex_lock_interruptible(&mddev->open_mutex);
7896 if (err)
7897 goto out;
7898
7899 err = -ENODEV;
7900 if (test_bit(MD_CLOSING, &mddev->flags))
7901 goto out_unlock;
7902
7903 atomic_inc(&mddev->openers);
7904 mutex_unlock(&mddev->open_mutex);
7905
7906 disk_check_media_change(disk);
7907 return 0;
7908
7909 out_unlock:
7910 mutex_unlock(&mddev->open_mutex);
7911 out:
7912 mddev_put(mddev);
7913 return err;
7914 }
7915
md_release(struct gendisk * disk)7916 static void md_release(struct gendisk *disk)
7917 {
7918 struct mddev *mddev = disk->private_data;
7919
7920 BUG_ON(!mddev);
7921 atomic_dec(&mddev->openers);
7922 mddev_put(mddev);
7923 }
7924
md_check_events(struct gendisk * disk,unsigned int clearing)7925 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
7926 {
7927 struct mddev *mddev = disk->private_data;
7928 unsigned int ret = 0;
7929
7930 if (mddev->changed)
7931 ret = DISK_EVENT_MEDIA_CHANGE;
7932 mddev->changed = 0;
7933 return ret;
7934 }
7935
md_free_disk(struct gendisk * disk)7936 static void md_free_disk(struct gendisk *disk)
7937 {
7938 struct mddev *mddev = disk->private_data;
7939
7940 percpu_ref_exit(&mddev->writes_pending);
7941 mddev_free(mddev);
7942 }
7943
7944 const struct block_device_operations md_fops =
7945 {
7946 .owner = THIS_MODULE,
7947 .submit_bio = md_submit_bio,
7948 .open = md_open,
7949 .release = md_release,
7950 .ioctl = md_ioctl,
7951 #ifdef CONFIG_COMPAT
7952 .compat_ioctl = md_compat_ioctl,
7953 #endif
7954 .getgeo = md_getgeo,
7955 .check_events = md_check_events,
7956 .set_read_only = md_set_read_only,
7957 .free_disk = md_free_disk,
7958 };
7959
md_thread(void * arg)7960 static int md_thread(void *arg)
7961 {
7962 struct md_thread *thread = arg;
7963
7964 /*
7965 * md_thread is a 'system-thread', it's priority should be very
7966 * high. We avoid resource deadlocks individually in each
7967 * raid personality. (RAID5 does preallocation) We also use RR and
7968 * the very same RT priority as kswapd, thus we will never get
7969 * into a priority inversion deadlock.
7970 *
7971 * we definitely have to have equal or higher priority than
7972 * bdflush, otherwise bdflush will deadlock if there are too
7973 * many dirty RAID5 blocks.
7974 */
7975
7976 allow_signal(SIGKILL);
7977 while (!kthread_should_stop()) {
7978
7979 /* We need to wait INTERRUPTIBLE so that
7980 * we don't add to the load-average.
7981 * That means we need to be sure no signals are
7982 * pending
7983 */
7984 if (signal_pending(current))
7985 flush_signals(current);
7986
7987 wait_event_interruptible_timeout
7988 (thread->wqueue,
7989 test_bit(THREAD_WAKEUP, &thread->flags)
7990 || kthread_should_stop() || kthread_should_park(),
7991 thread->timeout);
7992
7993 clear_bit(THREAD_WAKEUP, &thread->flags);
7994 if (kthread_should_park())
7995 kthread_parkme();
7996 if (!kthread_should_stop())
7997 thread->run(thread);
7998 }
7999
8000 return 0;
8001 }
8002
md_wakeup_thread_directly(struct md_thread __rcu * thread)8003 static void md_wakeup_thread_directly(struct md_thread __rcu *thread)
8004 {
8005 struct md_thread *t;
8006
8007 rcu_read_lock();
8008 t = rcu_dereference(thread);
8009 if (t)
8010 wake_up_process(t->tsk);
8011 rcu_read_unlock();
8012 }
8013
md_wakeup_thread(struct md_thread __rcu * thread)8014 void md_wakeup_thread(struct md_thread __rcu *thread)
8015 {
8016 struct md_thread *t;
8017
8018 rcu_read_lock();
8019 t = rcu_dereference(thread);
8020 if (t) {
8021 pr_debug("md: waking up MD thread %s.\n", t->tsk->comm);
8022 set_bit(THREAD_WAKEUP, &t->flags);
8023 wake_up(&t->wqueue);
8024 }
8025 rcu_read_unlock();
8026 }
8027 EXPORT_SYMBOL(md_wakeup_thread);
8028
md_register_thread(void (* run)(struct md_thread *),struct mddev * mddev,const char * name)8029 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
8030 struct mddev *mddev, const char *name)
8031 {
8032 struct md_thread *thread;
8033
8034 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
8035 if (!thread)
8036 return NULL;
8037
8038 init_waitqueue_head(&thread->wqueue);
8039
8040 thread->run = run;
8041 thread->mddev = mddev;
8042 thread->timeout = MAX_SCHEDULE_TIMEOUT;
8043 thread->tsk = kthread_run(md_thread, thread,
8044 "%s_%s",
8045 mdname(thread->mddev),
8046 name);
8047 if (IS_ERR(thread->tsk)) {
8048 kfree(thread);
8049 return NULL;
8050 }
8051 return thread;
8052 }
8053 EXPORT_SYMBOL(md_register_thread);
8054
md_unregister_thread(struct mddev * mddev,struct md_thread __rcu ** threadp)8055 void md_unregister_thread(struct mddev *mddev, struct md_thread __rcu **threadp)
8056 {
8057 struct md_thread *thread = rcu_dereference_protected(*threadp,
8058 lockdep_is_held(&mddev->reconfig_mutex));
8059
8060 if (!thread)
8061 return;
8062
8063 rcu_assign_pointer(*threadp, NULL);
8064 synchronize_rcu();
8065
8066 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
8067 kthread_stop(thread->tsk);
8068 kfree(thread);
8069 }
8070 EXPORT_SYMBOL(md_unregister_thread);
8071
md_error(struct mddev * mddev,struct md_rdev * rdev)8072 void md_error(struct mddev *mddev, struct md_rdev *rdev)
8073 {
8074 if (!rdev || test_bit(Faulty, &rdev->flags))
8075 return;
8076
8077 if (!mddev->pers || !mddev->pers->error_handler)
8078 return;
8079 mddev->pers->error_handler(mddev, rdev);
8080
8081 if (mddev->pers->level == 0 || mddev->pers->level == LEVEL_LINEAR)
8082 return;
8083
8084 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags))
8085 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8086 sysfs_notify_dirent_safe(rdev->sysfs_state);
8087 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8088 if (!test_bit(MD_BROKEN, &mddev->flags)) {
8089 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8090 md_wakeup_thread(mddev->thread);
8091 }
8092 if (mddev->event_work.func)
8093 queue_work(md_misc_wq, &mddev->event_work);
8094 md_new_event();
8095 }
8096 EXPORT_SYMBOL(md_error);
8097
8098 /* seq_file implementation /proc/mdstat */
8099
status_unused(struct seq_file * seq)8100 static void status_unused(struct seq_file *seq)
8101 {
8102 int i = 0;
8103 struct md_rdev *rdev;
8104
8105 seq_printf(seq, "unused devices: ");
8106
8107 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
8108 i++;
8109 seq_printf(seq, "%pg ", rdev->bdev);
8110 }
8111 if (!i)
8112 seq_printf(seq, "<none>");
8113
8114 seq_printf(seq, "\n");
8115 }
8116
status_resync(struct seq_file * seq,struct mddev * mddev)8117 static int status_resync(struct seq_file *seq, struct mddev *mddev)
8118 {
8119 sector_t max_sectors, resync, res;
8120 unsigned long dt, db = 0;
8121 sector_t rt, curr_mark_cnt, resync_mark_cnt;
8122 int scale, recovery_active;
8123 unsigned int per_milli;
8124
8125 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8126 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8127 max_sectors = mddev->resync_max_sectors;
8128 else
8129 max_sectors = mddev->dev_sectors;
8130
8131 resync = mddev->curr_resync;
8132 if (resync < MD_RESYNC_ACTIVE) {
8133 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8134 /* Still cleaning up */
8135 resync = max_sectors;
8136 } else if (resync > max_sectors) {
8137 resync = max_sectors;
8138 } else {
8139 res = atomic_read(&mddev->recovery_active);
8140 /*
8141 * Resync has started, but the subtraction has overflowed or
8142 * yielded one of the special values. Force it to active to
8143 * ensure the status reports an active resync.
8144 */
8145 if (resync < res || resync - res < MD_RESYNC_ACTIVE)
8146 resync = MD_RESYNC_ACTIVE;
8147 else
8148 resync -= res;
8149 }
8150
8151 if (resync == MD_RESYNC_NONE) {
8152 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8153 struct md_rdev *rdev;
8154
8155 rdev_for_each(rdev, mddev)
8156 if (rdev->raid_disk >= 0 &&
8157 !test_bit(Faulty, &rdev->flags) &&
8158 rdev->recovery_offset != MaxSector &&
8159 rdev->recovery_offset) {
8160 seq_printf(seq, "\trecover=REMOTE");
8161 return 1;
8162 }
8163 if (mddev->reshape_position != MaxSector)
8164 seq_printf(seq, "\treshape=REMOTE");
8165 else
8166 seq_printf(seq, "\tresync=REMOTE");
8167 return 1;
8168 }
8169 if (mddev->recovery_cp < MaxSector) {
8170 seq_printf(seq, "\tresync=PENDING");
8171 return 1;
8172 }
8173 return 0;
8174 }
8175 if (resync < MD_RESYNC_ACTIVE) {
8176 seq_printf(seq, "\tresync=DELAYED");
8177 return 1;
8178 }
8179
8180 WARN_ON(max_sectors == 0);
8181 /* Pick 'scale' such that (resync>>scale)*1000 will fit
8182 * in a sector_t, and (max_sectors>>scale) will fit in a
8183 * u32, as those are the requirements for sector_div.
8184 * Thus 'scale' must be at least 10
8185 */
8186 scale = 10;
8187 if (sizeof(sector_t) > sizeof(unsigned long)) {
8188 while ( max_sectors/2 > (1ULL<<(scale+32)))
8189 scale++;
8190 }
8191 res = (resync>>scale)*1000;
8192 sector_div(res, (u32)((max_sectors>>scale)+1));
8193
8194 per_milli = res;
8195 {
8196 int i, x = per_milli/50, y = 20-x;
8197 seq_printf(seq, "[");
8198 for (i = 0; i < x; i++)
8199 seq_printf(seq, "=");
8200 seq_printf(seq, ">");
8201 for (i = 0; i < y; i++)
8202 seq_printf(seq, ".");
8203 seq_printf(seq, "] ");
8204 }
8205 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8206 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8207 "reshape" :
8208 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8209 "check" :
8210 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8211 "resync" : "recovery"))),
8212 per_milli/10, per_milli % 10,
8213 (unsigned long long) resync/2,
8214 (unsigned long long) max_sectors/2);
8215
8216 /*
8217 * dt: time from mark until now
8218 * db: blocks written from mark until now
8219 * rt: remaining time
8220 *
8221 * rt is a sector_t, which is always 64bit now. We are keeping
8222 * the original algorithm, but it is not really necessary.
8223 *
8224 * Original algorithm:
8225 * So we divide before multiply in case it is 32bit and close
8226 * to the limit.
8227 * We scale the divisor (db) by 32 to avoid losing precision
8228 * near the end of resync when the number of remaining sectors
8229 * is close to 'db'.
8230 * We then divide rt by 32 after multiplying by db to compensate.
8231 * The '+1' avoids division by zero if db is very small.
8232 */
8233 dt = ((jiffies - mddev->resync_mark) / HZ);
8234 if (!dt) dt++;
8235
8236 curr_mark_cnt = mddev->curr_mark_cnt;
8237 recovery_active = atomic_read(&mddev->recovery_active);
8238 resync_mark_cnt = mddev->resync_mark_cnt;
8239
8240 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8241 db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8242
8243 rt = max_sectors - resync; /* number of remaining sectors */
8244 rt = div64_u64(rt, db/32+1);
8245 rt *= dt;
8246 rt >>= 5;
8247
8248 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8249 ((unsigned long)rt % 60)/6);
8250
8251 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8252 return 1;
8253 }
8254
md_seq_start(struct seq_file * seq,loff_t * pos)8255 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8256 {
8257 struct list_head *tmp;
8258 loff_t l = *pos;
8259 struct mddev *mddev;
8260
8261 if (l == 0x10000) {
8262 ++*pos;
8263 return (void *)2;
8264 }
8265 if (l > 0x10000)
8266 return NULL;
8267 if (!l--)
8268 /* header */
8269 return (void*)1;
8270
8271 spin_lock(&all_mddevs_lock);
8272 list_for_each(tmp,&all_mddevs)
8273 if (!l--) {
8274 mddev = list_entry(tmp, struct mddev, all_mddevs);
8275 if (!mddev_get(mddev))
8276 continue;
8277 spin_unlock(&all_mddevs_lock);
8278 return mddev;
8279 }
8280 spin_unlock(&all_mddevs_lock);
8281 if (!l--)
8282 return (void*)2;/* tail */
8283 return NULL;
8284 }
8285
md_seq_next(struct seq_file * seq,void * v,loff_t * pos)8286 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8287 {
8288 struct list_head *tmp;
8289 struct mddev *next_mddev, *mddev = v;
8290 struct mddev *to_put = NULL;
8291
8292 ++*pos;
8293 if (v == (void*)2)
8294 return NULL;
8295
8296 spin_lock(&all_mddevs_lock);
8297 if (v == (void*)1) {
8298 tmp = all_mddevs.next;
8299 } else {
8300 to_put = mddev;
8301 tmp = mddev->all_mddevs.next;
8302 }
8303
8304 for (;;) {
8305 if (tmp == &all_mddevs) {
8306 next_mddev = (void*)2;
8307 *pos = 0x10000;
8308 break;
8309 }
8310 next_mddev = list_entry(tmp, struct mddev, all_mddevs);
8311 if (mddev_get(next_mddev))
8312 break;
8313 mddev = next_mddev;
8314 tmp = mddev->all_mddevs.next;
8315 }
8316 spin_unlock(&all_mddevs_lock);
8317
8318 if (to_put)
8319 mddev_put(to_put);
8320 return next_mddev;
8321
8322 }
8323
md_seq_stop(struct seq_file * seq,void * v)8324 static void md_seq_stop(struct seq_file *seq, void *v)
8325 {
8326 struct mddev *mddev = v;
8327
8328 if (mddev && v != (void*)1 && v != (void*)2)
8329 mddev_put(mddev);
8330 }
8331
md_seq_show(struct seq_file * seq,void * v)8332 static int md_seq_show(struct seq_file *seq, void *v)
8333 {
8334 struct mddev *mddev = v;
8335 sector_t sectors;
8336 struct md_rdev *rdev;
8337
8338 if (v == (void*)1) {
8339 struct md_personality *pers;
8340 seq_printf(seq, "Personalities : ");
8341 spin_lock(&pers_lock);
8342 list_for_each_entry(pers, &pers_list, list)
8343 seq_printf(seq, "[%s] ", pers->name);
8344
8345 spin_unlock(&pers_lock);
8346 seq_printf(seq, "\n");
8347 seq->poll_event = atomic_read(&md_event_count);
8348 return 0;
8349 }
8350 if (v == (void*)2) {
8351 status_unused(seq);
8352 return 0;
8353 }
8354
8355 spin_lock(&mddev->lock);
8356 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8357 seq_printf(seq, "%s : %sactive", mdname(mddev),
8358 mddev->pers ? "" : "in");
8359 if (mddev->pers) {
8360 if (mddev->ro == MD_RDONLY)
8361 seq_printf(seq, " (read-only)");
8362 if (mddev->ro == MD_AUTO_READ)
8363 seq_printf(seq, " (auto-read-only)");
8364 seq_printf(seq, " %s", mddev->pers->name);
8365 }
8366
8367 sectors = 0;
8368 rcu_read_lock();
8369 rdev_for_each_rcu(rdev, mddev) {
8370 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr);
8371
8372 if (test_bit(WriteMostly, &rdev->flags))
8373 seq_printf(seq, "(W)");
8374 if (test_bit(Journal, &rdev->flags))
8375 seq_printf(seq, "(J)");
8376 if (test_bit(Faulty, &rdev->flags)) {
8377 seq_printf(seq, "(F)");
8378 continue;
8379 }
8380 if (rdev->raid_disk < 0)
8381 seq_printf(seq, "(S)"); /* spare */
8382 if (test_bit(Replacement, &rdev->flags))
8383 seq_printf(seq, "(R)");
8384 sectors += rdev->sectors;
8385 }
8386 rcu_read_unlock();
8387
8388 if (!list_empty(&mddev->disks)) {
8389 if (mddev->pers)
8390 seq_printf(seq, "\n %llu blocks",
8391 (unsigned long long)
8392 mddev->array_sectors / 2);
8393 else
8394 seq_printf(seq, "\n %llu blocks",
8395 (unsigned long long)sectors / 2);
8396 }
8397 if (mddev->persistent) {
8398 if (mddev->major_version != 0 ||
8399 mddev->minor_version != 90) {
8400 seq_printf(seq," super %d.%d",
8401 mddev->major_version,
8402 mddev->minor_version);
8403 }
8404 } else if (mddev->external)
8405 seq_printf(seq, " super external:%s",
8406 mddev->metadata_type);
8407 else
8408 seq_printf(seq, " super non-persistent");
8409
8410 if (mddev->pers) {
8411 mddev->pers->status(seq, mddev);
8412 seq_printf(seq, "\n ");
8413 if (mddev->pers->sync_request) {
8414 if (status_resync(seq, mddev))
8415 seq_printf(seq, "\n ");
8416 }
8417 } else
8418 seq_printf(seq, "\n ");
8419
8420 md_bitmap_status(seq, mddev->bitmap);
8421
8422 seq_printf(seq, "\n");
8423 }
8424 spin_unlock(&mddev->lock);
8425
8426 return 0;
8427 }
8428
8429 static const struct seq_operations md_seq_ops = {
8430 .start = md_seq_start,
8431 .next = md_seq_next,
8432 .stop = md_seq_stop,
8433 .show = md_seq_show,
8434 };
8435
md_seq_open(struct inode * inode,struct file * file)8436 static int md_seq_open(struct inode *inode, struct file *file)
8437 {
8438 struct seq_file *seq;
8439 int error;
8440
8441 error = seq_open(file, &md_seq_ops);
8442 if (error)
8443 return error;
8444
8445 seq = file->private_data;
8446 seq->poll_event = atomic_read(&md_event_count);
8447 return error;
8448 }
8449
8450 static int md_unloading;
mdstat_poll(struct file * filp,poll_table * wait)8451 static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8452 {
8453 struct seq_file *seq = filp->private_data;
8454 __poll_t mask;
8455
8456 if (md_unloading)
8457 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8458 poll_wait(filp, &md_event_waiters, wait);
8459
8460 /* always allow read */
8461 mask = EPOLLIN | EPOLLRDNORM;
8462
8463 if (seq->poll_event != atomic_read(&md_event_count))
8464 mask |= EPOLLERR | EPOLLPRI;
8465 return mask;
8466 }
8467
8468 static const struct proc_ops mdstat_proc_ops = {
8469 .proc_open = md_seq_open,
8470 .proc_read = seq_read,
8471 .proc_lseek = seq_lseek,
8472 .proc_release = seq_release,
8473 .proc_poll = mdstat_poll,
8474 };
8475
register_md_personality(struct md_personality * p)8476 int register_md_personality(struct md_personality *p)
8477 {
8478 pr_debug("md: %s personality registered for level %d\n",
8479 p->name, p->level);
8480 spin_lock(&pers_lock);
8481 list_add_tail(&p->list, &pers_list);
8482 spin_unlock(&pers_lock);
8483 return 0;
8484 }
8485 EXPORT_SYMBOL(register_md_personality);
8486
unregister_md_personality(struct md_personality * p)8487 int unregister_md_personality(struct md_personality *p)
8488 {
8489 pr_debug("md: %s personality unregistered\n", p->name);
8490 spin_lock(&pers_lock);
8491 list_del_init(&p->list);
8492 spin_unlock(&pers_lock);
8493 return 0;
8494 }
8495 EXPORT_SYMBOL(unregister_md_personality);
8496
register_md_cluster_operations(struct md_cluster_operations * ops,struct module * module)8497 int register_md_cluster_operations(struct md_cluster_operations *ops,
8498 struct module *module)
8499 {
8500 int ret = 0;
8501 spin_lock(&pers_lock);
8502 if (md_cluster_ops != NULL)
8503 ret = -EALREADY;
8504 else {
8505 md_cluster_ops = ops;
8506 md_cluster_mod = module;
8507 }
8508 spin_unlock(&pers_lock);
8509 return ret;
8510 }
8511 EXPORT_SYMBOL(register_md_cluster_operations);
8512
unregister_md_cluster_operations(void)8513 int unregister_md_cluster_operations(void)
8514 {
8515 spin_lock(&pers_lock);
8516 md_cluster_ops = NULL;
8517 spin_unlock(&pers_lock);
8518 return 0;
8519 }
8520 EXPORT_SYMBOL(unregister_md_cluster_operations);
8521
md_setup_cluster(struct mddev * mddev,int nodes)8522 int md_setup_cluster(struct mddev *mddev, int nodes)
8523 {
8524 int ret;
8525 if (!md_cluster_ops)
8526 request_module("md-cluster");
8527 spin_lock(&pers_lock);
8528 /* ensure module won't be unloaded */
8529 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8530 pr_warn("can't find md-cluster module or get its reference.\n");
8531 spin_unlock(&pers_lock);
8532 return -ENOENT;
8533 }
8534 spin_unlock(&pers_lock);
8535
8536 ret = md_cluster_ops->join(mddev, nodes);
8537 if (!ret)
8538 mddev->safemode_delay = 0;
8539 return ret;
8540 }
8541
md_cluster_stop(struct mddev * mddev)8542 void md_cluster_stop(struct mddev *mddev)
8543 {
8544 if (!md_cluster_ops)
8545 return;
8546 md_cluster_ops->leave(mddev);
8547 module_put(md_cluster_mod);
8548 }
8549
is_mddev_idle(struct mddev * mddev,int init)8550 static int is_mddev_idle(struct mddev *mddev, int init)
8551 {
8552 struct md_rdev *rdev;
8553 int idle;
8554 int curr_events;
8555
8556 idle = 1;
8557 rcu_read_lock();
8558 rdev_for_each_rcu(rdev, mddev) {
8559 struct gendisk *disk = rdev->bdev->bd_disk;
8560 curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
8561 atomic_read(&disk->sync_io);
8562 /* sync IO will cause sync_io to increase before the disk_stats
8563 * as sync_io is counted when a request starts, and
8564 * disk_stats is counted when it completes.
8565 * So resync activity will cause curr_events to be smaller than
8566 * when there was no such activity.
8567 * non-sync IO will cause disk_stat to increase without
8568 * increasing sync_io so curr_events will (eventually)
8569 * be larger than it was before. Once it becomes
8570 * substantially larger, the test below will cause
8571 * the array to appear non-idle, and resync will slow
8572 * down.
8573 * If there is a lot of outstanding resync activity when
8574 * we set last_event to curr_events, then all that activity
8575 * completing might cause the array to appear non-idle
8576 * and resync will be slowed down even though there might
8577 * not have been non-resync activity. This will only
8578 * happen once though. 'last_events' will soon reflect
8579 * the state where there is little or no outstanding
8580 * resync requests, and further resync activity will
8581 * always make curr_events less than last_events.
8582 *
8583 */
8584 if (init || curr_events - rdev->last_events > 64) {
8585 rdev->last_events = curr_events;
8586 idle = 0;
8587 }
8588 }
8589 rcu_read_unlock();
8590 return idle;
8591 }
8592
md_done_sync(struct mddev * mddev,int blocks,int ok)8593 void md_done_sync(struct mddev *mddev, int blocks, int ok)
8594 {
8595 /* another "blocks" (512byte) blocks have been synced */
8596 atomic_sub(blocks, &mddev->recovery_active);
8597 wake_up(&mddev->recovery_wait);
8598 if (!ok) {
8599 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8600 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8601 md_wakeup_thread(mddev->thread);
8602 // stop recovery, signal do_sync ....
8603 }
8604 }
8605 EXPORT_SYMBOL(md_done_sync);
8606
8607 /* md_write_start(mddev, bi)
8608 * If we need to update some array metadata (e.g. 'active' flag
8609 * in superblock) before writing, schedule a superblock update
8610 * and wait for it to complete.
8611 * A return value of 'false' means that the write wasn't recorded
8612 * and cannot proceed as the array is being suspend.
8613 */
md_write_start(struct mddev * mddev,struct bio * bi)8614 bool md_write_start(struct mddev *mddev, struct bio *bi)
8615 {
8616 int did_change = 0;
8617
8618 if (bio_data_dir(bi) != WRITE)
8619 return true;
8620
8621 BUG_ON(mddev->ro == MD_RDONLY);
8622 if (mddev->ro == MD_AUTO_READ) {
8623 /* need to switch to read/write */
8624 mddev->ro = MD_RDWR;
8625 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8626 md_wakeup_thread(mddev->thread);
8627 md_wakeup_thread(mddev->sync_thread);
8628 did_change = 1;
8629 }
8630 rcu_read_lock();
8631 percpu_ref_get(&mddev->writes_pending);
8632 smp_mb(); /* Match smp_mb in set_in_sync() */
8633 if (mddev->safemode == 1)
8634 mddev->safemode = 0;
8635 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8636 if (mddev->in_sync || mddev->sync_checkers) {
8637 spin_lock(&mddev->lock);
8638 if (mddev->in_sync) {
8639 mddev->in_sync = 0;
8640 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8641 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8642 md_wakeup_thread(mddev->thread);
8643 did_change = 1;
8644 }
8645 spin_unlock(&mddev->lock);
8646 }
8647 rcu_read_unlock();
8648 if (did_change)
8649 sysfs_notify_dirent_safe(mddev->sysfs_state);
8650 if (!mddev->has_superblocks)
8651 return true;
8652 wait_event(mddev->sb_wait,
8653 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8654 is_md_suspended(mddev));
8655 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8656 percpu_ref_put(&mddev->writes_pending);
8657 return false;
8658 }
8659 return true;
8660 }
8661 EXPORT_SYMBOL(md_write_start);
8662
8663 /* md_write_inc can only be called when md_write_start() has
8664 * already been called at least once of the current request.
8665 * It increments the counter and is useful when a single request
8666 * is split into several parts. Each part causes an increment and
8667 * so needs a matching md_write_end().
8668 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8669 * a spinlocked region.
8670 */
md_write_inc(struct mddev * mddev,struct bio * bi)8671 void md_write_inc(struct mddev *mddev, struct bio *bi)
8672 {
8673 if (bio_data_dir(bi) != WRITE)
8674 return;
8675 WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev));
8676 percpu_ref_get(&mddev->writes_pending);
8677 }
8678 EXPORT_SYMBOL(md_write_inc);
8679
md_write_end(struct mddev * mddev)8680 void md_write_end(struct mddev *mddev)
8681 {
8682 percpu_ref_put(&mddev->writes_pending);
8683
8684 if (mddev->safemode == 2)
8685 md_wakeup_thread(mddev->thread);
8686 else if (mddev->safemode_delay)
8687 /* The roundup() ensures this only performs locking once
8688 * every ->safemode_delay jiffies
8689 */
8690 mod_timer(&mddev->safemode_timer,
8691 roundup(jiffies, mddev->safemode_delay) +
8692 mddev->safemode_delay);
8693 }
8694
8695 EXPORT_SYMBOL(md_write_end);
8696
8697 /* This is used by raid0 and raid10 */
md_submit_discard_bio(struct mddev * mddev,struct md_rdev * rdev,struct bio * bio,sector_t start,sector_t size)8698 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev,
8699 struct bio *bio, sector_t start, sector_t size)
8700 {
8701 struct bio *discard_bio = NULL;
8702
8703 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO,
8704 &discard_bio) || !discard_bio)
8705 return;
8706
8707 bio_chain(discard_bio, bio);
8708 bio_clone_blkg_association(discard_bio, bio);
8709 if (mddev->gendisk)
8710 trace_block_bio_remap(discard_bio,
8711 disk_devt(mddev->gendisk),
8712 bio->bi_iter.bi_sector);
8713 submit_bio_noacct(discard_bio);
8714 }
8715 EXPORT_SYMBOL_GPL(md_submit_discard_bio);
8716
md_end_clone_io(struct bio * bio)8717 static void md_end_clone_io(struct bio *bio)
8718 {
8719 struct md_io_clone *md_io_clone = bio->bi_private;
8720 struct bio *orig_bio = md_io_clone->orig_bio;
8721 struct mddev *mddev = md_io_clone->mddev;
8722
8723 if (bio->bi_status && !orig_bio->bi_status)
8724 orig_bio->bi_status = bio->bi_status;
8725
8726 if (md_io_clone->start_time)
8727 bio_end_io_acct(orig_bio, md_io_clone->start_time);
8728
8729 bio_put(bio);
8730 bio_endio(orig_bio);
8731 percpu_ref_put(&mddev->active_io);
8732 }
8733
md_clone_bio(struct mddev * mddev,struct bio ** bio)8734 static void md_clone_bio(struct mddev *mddev, struct bio **bio)
8735 {
8736 struct block_device *bdev = (*bio)->bi_bdev;
8737 struct md_io_clone *md_io_clone;
8738 struct bio *clone =
8739 bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_clone_set);
8740
8741 md_io_clone = container_of(clone, struct md_io_clone, bio_clone);
8742 md_io_clone->orig_bio = *bio;
8743 md_io_clone->mddev = mddev;
8744 if (blk_queue_io_stat(bdev->bd_disk->queue))
8745 md_io_clone->start_time = bio_start_io_acct(*bio);
8746
8747 clone->bi_end_io = md_end_clone_io;
8748 clone->bi_private = md_io_clone;
8749 *bio = clone;
8750 }
8751
md_account_bio(struct mddev * mddev,struct bio ** bio)8752 void md_account_bio(struct mddev *mddev, struct bio **bio)
8753 {
8754 percpu_ref_get(&mddev->active_io);
8755 md_clone_bio(mddev, bio);
8756 }
8757 EXPORT_SYMBOL_GPL(md_account_bio);
8758
8759 /* md_allow_write(mddev)
8760 * Calling this ensures that the array is marked 'active' so that writes
8761 * may proceed without blocking. It is important to call this before
8762 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8763 * Must be called with mddev_lock held.
8764 */
md_allow_write(struct mddev * mddev)8765 void md_allow_write(struct mddev *mddev)
8766 {
8767 if (!mddev->pers)
8768 return;
8769 if (!md_is_rdwr(mddev))
8770 return;
8771 if (!mddev->pers->sync_request)
8772 return;
8773
8774 spin_lock(&mddev->lock);
8775 if (mddev->in_sync) {
8776 mddev->in_sync = 0;
8777 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8778 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8779 if (mddev->safemode_delay &&
8780 mddev->safemode == 0)
8781 mddev->safemode = 1;
8782 spin_unlock(&mddev->lock);
8783 md_update_sb(mddev, 0);
8784 sysfs_notify_dirent_safe(mddev->sysfs_state);
8785 /* wait for the dirty state to be recorded in the metadata */
8786 wait_event(mddev->sb_wait,
8787 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8788 } else
8789 spin_unlock(&mddev->lock);
8790 }
8791 EXPORT_SYMBOL_GPL(md_allow_write);
8792
8793 #define SYNC_MARKS 10
8794 #define SYNC_MARK_STEP (3*HZ)
8795 #define UPDATE_FREQUENCY (5*60*HZ)
md_do_sync(struct md_thread * thread)8796 void md_do_sync(struct md_thread *thread)
8797 {
8798 struct mddev *mddev = thread->mddev;
8799 struct mddev *mddev2;
8800 unsigned int currspeed = 0, window;
8801 sector_t max_sectors,j, io_sectors, recovery_done;
8802 unsigned long mark[SYNC_MARKS];
8803 unsigned long update_time;
8804 sector_t mark_cnt[SYNC_MARKS];
8805 int last_mark,m;
8806 sector_t last_check;
8807 int skipped = 0;
8808 struct md_rdev *rdev;
8809 char *desc, *action = NULL;
8810 struct blk_plug plug;
8811 int ret;
8812
8813 /* just incase thread restarts... */
8814 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8815 test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8816 return;
8817 if (!md_is_rdwr(mddev)) {/* never try to sync a read-only array */
8818 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8819 return;
8820 }
8821
8822 if (mddev_is_clustered(mddev)) {
8823 ret = md_cluster_ops->resync_start(mddev);
8824 if (ret)
8825 goto skip;
8826
8827 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8828 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8829 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8830 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8831 && ((unsigned long long)mddev->curr_resync_completed
8832 < (unsigned long long)mddev->resync_max_sectors))
8833 goto skip;
8834 }
8835
8836 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8837 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8838 desc = "data-check";
8839 action = "check";
8840 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8841 desc = "requested-resync";
8842 action = "repair";
8843 } else
8844 desc = "resync";
8845 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8846 desc = "reshape";
8847 else
8848 desc = "recovery";
8849
8850 mddev->last_sync_action = action ?: desc;
8851
8852 /*
8853 * Before starting a resync we must have set curr_resync to
8854 * 2, and then checked that every "conflicting" array has curr_resync
8855 * less than ours. When we find one that is the same or higher
8856 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8857 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8858 * This will mean we have to start checking from the beginning again.
8859 *
8860 */
8861
8862 do {
8863 int mddev2_minor = -1;
8864 mddev->curr_resync = MD_RESYNC_DELAYED;
8865
8866 try_again:
8867 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8868 goto skip;
8869 spin_lock(&all_mddevs_lock);
8870 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) {
8871 if (test_bit(MD_DELETED, &mddev2->flags))
8872 continue;
8873 if (mddev2 == mddev)
8874 continue;
8875 if (!mddev->parallel_resync
8876 && mddev2->curr_resync
8877 && match_mddev_units(mddev, mddev2)) {
8878 DEFINE_WAIT(wq);
8879 if (mddev < mddev2 &&
8880 mddev->curr_resync == MD_RESYNC_DELAYED) {
8881 /* arbitrarily yield */
8882 mddev->curr_resync = MD_RESYNC_YIELDED;
8883 wake_up(&resync_wait);
8884 }
8885 if (mddev > mddev2 &&
8886 mddev->curr_resync == MD_RESYNC_YIELDED)
8887 /* no need to wait here, we can wait the next
8888 * time 'round when curr_resync == 2
8889 */
8890 continue;
8891 /* We need to wait 'interruptible' so as not to
8892 * contribute to the load average, and not to
8893 * be caught by 'softlockup'
8894 */
8895 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8896 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8897 mddev2->curr_resync >= mddev->curr_resync) {
8898 if (mddev2_minor != mddev2->md_minor) {
8899 mddev2_minor = mddev2->md_minor;
8900 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8901 desc, mdname(mddev),
8902 mdname(mddev2));
8903 }
8904 spin_unlock(&all_mddevs_lock);
8905
8906 if (signal_pending(current))
8907 flush_signals(current);
8908 schedule();
8909 finish_wait(&resync_wait, &wq);
8910 goto try_again;
8911 }
8912 finish_wait(&resync_wait, &wq);
8913 }
8914 }
8915 spin_unlock(&all_mddevs_lock);
8916 } while (mddev->curr_resync < MD_RESYNC_DELAYED);
8917
8918 j = 0;
8919 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8920 /* resync follows the size requested by the personality,
8921 * which defaults to physical size, but can be virtual size
8922 */
8923 max_sectors = mddev->resync_max_sectors;
8924 atomic64_set(&mddev->resync_mismatches, 0);
8925 /* we don't use the checkpoint if there's a bitmap */
8926 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8927 j = mddev->resync_min;
8928 else if (!mddev->bitmap)
8929 j = mddev->recovery_cp;
8930
8931 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8932 max_sectors = mddev->resync_max_sectors;
8933 /*
8934 * If the original node aborts reshaping then we continue the
8935 * reshaping, so set j again to avoid restart reshape from the
8936 * first beginning
8937 */
8938 if (mddev_is_clustered(mddev) &&
8939 mddev->reshape_position != MaxSector)
8940 j = mddev->reshape_position;
8941 } else {
8942 /* recovery follows the physical size of devices */
8943 max_sectors = mddev->dev_sectors;
8944 j = MaxSector;
8945 rcu_read_lock();
8946 rdev_for_each_rcu(rdev, mddev)
8947 if (rdev->raid_disk >= 0 &&
8948 !test_bit(Journal, &rdev->flags) &&
8949 !test_bit(Faulty, &rdev->flags) &&
8950 !test_bit(In_sync, &rdev->flags) &&
8951 rdev->recovery_offset < j)
8952 j = rdev->recovery_offset;
8953 rcu_read_unlock();
8954
8955 /* If there is a bitmap, we need to make sure all
8956 * writes that started before we added a spare
8957 * complete before we start doing a recovery.
8958 * Otherwise the write might complete and (via
8959 * bitmap_endwrite) set a bit in the bitmap after the
8960 * recovery has checked that bit and skipped that
8961 * region.
8962 */
8963 if (mddev->bitmap) {
8964 mddev->pers->quiesce(mddev, 1);
8965 mddev->pers->quiesce(mddev, 0);
8966 }
8967 }
8968
8969 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8970 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8971 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8972 speed_max(mddev), desc);
8973
8974 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8975
8976 io_sectors = 0;
8977 for (m = 0; m < SYNC_MARKS; m++) {
8978 mark[m] = jiffies;
8979 mark_cnt[m] = io_sectors;
8980 }
8981 last_mark = 0;
8982 mddev->resync_mark = mark[last_mark];
8983 mddev->resync_mark_cnt = mark_cnt[last_mark];
8984
8985 /*
8986 * Tune reconstruction:
8987 */
8988 window = 32 * (PAGE_SIZE / 512);
8989 pr_debug("md: using %dk window, over a total of %lluk.\n",
8990 window/2, (unsigned long long)max_sectors/2);
8991
8992 atomic_set(&mddev->recovery_active, 0);
8993 last_check = 0;
8994
8995 if (j >= MD_RESYNC_ACTIVE) {
8996 pr_debug("md: resuming %s of %s from checkpoint.\n",
8997 desc, mdname(mddev));
8998 mddev->curr_resync = j;
8999 } else
9000 mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */
9001 mddev->curr_resync_completed = j;
9002 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9003 md_new_event();
9004 update_time = jiffies;
9005
9006 blk_start_plug(&plug);
9007 while (j < max_sectors) {
9008 sector_t sectors;
9009
9010 skipped = 0;
9011
9012 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9013 ((mddev->curr_resync > mddev->curr_resync_completed &&
9014 (mddev->curr_resync - mddev->curr_resync_completed)
9015 > (max_sectors >> 4)) ||
9016 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
9017 (j - mddev->curr_resync_completed)*2
9018 >= mddev->resync_max - mddev->curr_resync_completed ||
9019 mddev->curr_resync_completed > mddev->resync_max
9020 )) {
9021 /* time to update curr_resync_completed */
9022 wait_event(mddev->recovery_wait,
9023 atomic_read(&mddev->recovery_active) == 0);
9024 mddev->curr_resync_completed = j;
9025 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
9026 j > mddev->recovery_cp)
9027 mddev->recovery_cp = j;
9028 update_time = jiffies;
9029 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
9030 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9031 }
9032
9033 while (j >= mddev->resync_max &&
9034 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9035 /* As this condition is controlled by user-space,
9036 * we can block indefinitely, so use '_interruptible'
9037 * to avoid triggering warnings.
9038 */
9039 flush_signals(current); /* just in case */
9040 wait_event_interruptible(mddev->recovery_wait,
9041 mddev->resync_max > j
9042 || test_bit(MD_RECOVERY_INTR,
9043 &mddev->recovery));
9044 }
9045
9046 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9047 break;
9048
9049 sectors = mddev->pers->sync_request(mddev, j, &skipped);
9050 if (sectors == 0) {
9051 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9052 break;
9053 }
9054
9055 if (!skipped) { /* actual IO requested */
9056 io_sectors += sectors;
9057 atomic_add(sectors, &mddev->recovery_active);
9058 }
9059
9060 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9061 break;
9062
9063 j += sectors;
9064 if (j > max_sectors)
9065 /* when skipping, extra large numbers can be returned. */
9066 j = max_sectors;
9067 if (j >= MD_RESYNC_ACTIVE)
9068 mddev->curr_resync = j;
9069 mddev->curr_mark_cnt = io_sectors;
9070 if (last_check == 0)
9071 /* this is the earliest that rebuild will be
9072 * visible in /proc/mdstat
9073 */
9074 md_new_event();
9075
9076 if (last_check + window > io_sectors || j == max_sectors)
9077 continue;
9078
9079 last_check = io_sectors;
9080 repeat:
9081 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
9082 /* step marks */
9083 int next = (last_mark+1) % SYNC_MARKS;
9084
9085 mddev->resync_mark = mark[next];
9086 mddev->resync_mark_cnt = mark_cnt[next];
9087 mark[next] = jiffies;
9088 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
9089 last_mark = next;
9090 }
9091
9092 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9093 break;
9094
9095 /*
9096 * this loop exits only if either when we are slower than
9097 * the 'hard' speed limit, or the system was IO-idle for
9098 * a jiffy.
9099 * the system might be non-idle CPU-wise, but we only care
9100 * about not overloading the IO subsystem. (things like an
9101 * e2fsck being done on the RAID array should execute fast)
9102 */
9103 cond_resched();
9104
9105 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
9106 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
9107 /((jiffies-mddev->resync_mark)/HZ +1) +1;
9108
9109 if (currspeed > speed_min(mddev)) {
9110 if (currspeed > speed_max(mddev)) {
9111 msleep(500);
9112 goto repeat;
9113 }
9114 if (!is_mddev_idle(mddev, 0)) {
9115 /*
9116 * Give other IO more of a chance.
9117 * The faster the devices, the less we wait.
9118 */
9119 wait_event(mddev->recovery_wait,
9120 !atomic_read(&mddev->recovery_active));
9121 }
9122 }
9123 }
9124 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
9125 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
9126 ? "interrupted" : "done");
9127 /*
9128 * this also signals 'finished resyncing' to md_stop
9129 */
9130 blk_finish_plug(&plug);
9131 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
9132
9133 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9134 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9135 mddev->curr_resync >= MD_RESYNC_ACTIVE) {
9136 mddev->curr_resync_completed = mddev->curr_resync;
9137 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9138 }
9139 mddev->pers->sync_request(mddev, max_sectors, &skipped);
9140
9141 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
9142 mddev->curr_resync > MD_RESYNC_ACTIVE) {
9143 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
9144 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9145 if (mddev->curr_resync >= mddev->recovery_cp) {
9146 pr_debug("md: checkpointing %s of %s.\n",
9147 desc, mdname(mddev));
9148 if (test_bit(MD_RECOVERY_ERROR,
9149 &mddev->recovery))
9150 mddev->recovery_cp =
9151 mddev->curr_resync_completed;
9152 else
9153 mddev->recovery_cp =
9154 mddev->curr_resync;
9155 }
9156 } else
9157 mddev->recovery_cp = MaxSector;
9158 } else {
9159 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9160 mddev->curr_resync = MaxSector;
9161 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9162 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
9163 rcu_read_lock();
9164 rdev_for_each_rcu(rdev, mddev)
9165 if (rdev->raid_disk >= 0 &&
9166 mddev->delta_disks >= 0 &&
9167 !test_bit(Journal, &rdev->flags) &&
9168 !test_bit(Faulty, &rdev->flags) &&
9169 !test_bit(In_sync, &rdev->flags) &&
9170 rdev->recovery_offset < mddev->curr_resync)
9171 rdev->recovery_offset = mddev->curr_resync;
9172 rcu_read_unlock();
9173 }
9174 }
9175 }
9176 skip:
9177 /* set CHANGE_PENDING here since maybe another update is needed,
9178 * so other nodes are informed. It should be harmless for normal
9179 * raid */
9180 set_mask_bits(&mddev->sb_flags, 0,
9181 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9182
9183 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9184 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9185 mddev->delta_disks > 0 &&
9186 mddev->pers->finish_reshape &&
9187 mddev->pers->size &&
9188 mddev->queue) {
9189 mddev_lock_nointr(mddev);
9190 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9191 mddev_unlock(mddev);
9192 if (!mddev_is_clustered(mddev))
9193 set_capacity_and_notify(mddev->gendisk,
9194 mddev->array_sectors);
9195 }
9196
9197 spin_lock(&mddev->lock);
9198 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9199 /* We completed so min/max setting can be forgotten if used. */
9200 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9201 mddev->resync_min = 0;
9202 mddev->resync_max = MaxSector;
9203 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9204 mddev->resync_min = mddev->curr_resync_completed;
9205 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9206 mddev->curr_resync = MD_RESYNC_NONE;
9207 spin_unlock(&mddev->lock);
9208
9209 wake_up(&resync_wait);
9210 wake_up(&mddev->sb_wait);
9211 md_wakeup_thread(mddev->thread);
9212 return;
9213 }
9214 EXPORT_SYMBOL_GPL(md_do_sync);
9215
remove_and_add_spares(struct mddev * mddev,struct md_rdev * this)9216 static int remove_and_add_spares(struct mddev *mddev,
9217 struct md_rdev *this)
9218 {
9219 struct md_rdev *rdev;
9220 int spares = 0;
9221 int removed = 0;
9222 bool remove_some = false;
9223
9224 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9225 /* Mustn't remove devices when resync thread is running */
9226 return 0;
9227
9228 rdev_for_each(rdev, mddev) {
9229 if ((this == NULL || rdev == this) &&
9230 rdev->raid_disk >= 0 &&
9231 !test_bit(Blocked, &rdev->flags) &&
9232 test_bit(Faulty, &rdev->flags) &&
9233 atomic_read(&rdev->nr_pending)==0) {
9234 /* Faulty non-Blocked devices with nr_pending == 0
9235 * never get nr_pending incremented,
9236 * never get Faulty cleared, and never get Blocked set.
9237 * So we can synchronize_rcu now rather than once per device
9238 */
9239 remove_some = true;
9240 set_bit(RemoveSynchronized, &rdev->flags);
9241 }
9242 }
9243
9244 if (remove_some)
9245 synchronize_rcu();
9246 rdev_for_each(rdev, mddev) {
9247 if ((this == NULL || rdev == this) &&
9248 rdev->raid_disk >= 0 &&
9249 !test_bit(Blocked, &rdev->flags) &&
9250 ((test_bit(RemoveSynchronized, &rdev->flags) ||
9251 (!test_bit(In_sync, &rdev->flags) &&
9252 !test_bit(Journal, &rdev->flags))) &&
9253 atomic_read(&rdev->nr_pending)==0)) {
9254 if (mddev->pers->hot_remove_disk(
9255 mddev, rdev) == 0) {
9256 sysfs_unlink_rdev(mddev, rdev);
9257 rdev->saved_raid_disk = rdev->raid_disk;
9258 rdev->raid_disk = -1;
9259 removed++;
9260 }
9261 }
9262 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
9263 clear_bit(RemoveSynchronized, &rdev->flags);
9264 }
9265
9266 if (removed && mddev->kobj.sd)
9267 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9268
9269 if (this && removed)
9270 goto no_add;
9271
9272 rdev_for_each(rdev, mddev) {
9273 if (this && this != rdev)
9274 continue;
9275 if (test_bit(Candidate, &rdev->flags))
9276 continue;
9277 if (rdev->raid_disk >= 0 &&
9278 !test_bit(In_sync, &rdev->flags) &&
9279 !test_bit(Journal, &rdev->flags) &&
9280 !test_bit(Faulty, &rdev->flags))
9281 spares++;
9282 if (rdev->raid_disk >= 0)
9283 continue;
9284 if (test_bit(Faulty, &rdev->flags))
9285 continue;
9286 if (!test_bit(Journal, &rdev->flags)) {
9287 if (!md_is_rdwr(mddev) &&
9288 !(rdev->saved_raid_disk >= 0 &&
9289 !test_bit(Bitmap_sync, &rdev->flags)))
9290 continue;
9291
9292 rdev->recovery_offset = 0;
9293 }
9294 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9295 /* failure here is OK */
9296 sysfs_link_rdev(mddev, rdev);
9297 if (!test_bit(Journal, &rdev->flags))
9298 spares++;
9299 md_new_event();
9300 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9301 }
9302 }
9303 no_add:
9304 if (removed)
9305 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9306 return spares;
9307 }
9308
md_start_sync(struct work_struct * ws)9309 static void md_start_sync(struct work_struct *ws)
9310 {
9311 struct mddev *mddev = container_of(ws, struct mddev, del_work);
9312
9313 rcu_assign_pointer(mddev->sync_thread,
9314 md_register_thread(md_do_sync, mddev, "resync"));
9315 if (!mddev->sync_thread) {
9316 pr_warn("%s: could not start resync thread...\n",
9317 mdname(mddev));
9318 /* leave the spares where they are, it shouldn't hurt */
9319 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9320 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9321 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9322 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9323 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9324 wake_up(&resync_wait);
9325 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9326 &mddev->recovery))
9327 if (mddev->sysfs_action)
9328 sysfs_notify_dirent_safe(mddev->sysfs_action);
9329 } else
9330 md_wakeup_thread(mddev->sync_thread);
9331 sysfs_notify_dirent_safe(mddev->sysfs_action);
9332 md_new_event();
9333 }
9334
9335 /*
9336 * This routine is regularly called by all per-raid-array threads to
9337 * deal with generic issues like resync and super-block update.
9338 * Raid personalities that don't have a thread (linear/raid0) do not
9339 * need this as they never do any recovery or update the superblock.
9340 *
9341 * It does not do any resync itself, but rather "forks" off other threads
9342 * to do that as needed.
9343 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9344 * "->recovery" and create a thread at ->sync_thread.
9345 * When the thread finishes it sets MD_RECOVERY_DONE
9346 * and wakeups up this thread which will reap the thread and finish up.
9347 * This thread also removes any faulty devices (with nr_pending == 0).
9348 *
9349 * The overall approach is:
9350 * 1/ if the superblock needs updating, update it.
9351 * 2/ If a recovery thread is running, don't do anything else.
9352 * 3/ If recovery has finished, clean up, possibly marking spares active.
9353 * 4/ If there are any faulty devices, remove them.
9354 * 5/ If array is degraded, try to add spares devices
9355 * 6/ If array has spares or is not in-sync, start a resync thread.
9356 */
md_check_recovery(struct mddev * mddev)9357 void md_check_recovery(struct mddev *mddev)
9358 {
9359 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
9360 /* Write superblock - thread that called mddev_suspend()
9361 * holds reconfig_mutex for us.
9362 */
9363 set_bit(MD_UPDATING_SB, &mddev->flags);
9364 smp_mb__after_atomic();
9365 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
9366 md_update_sb(mddev, 0);
9367 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
9368 wake_up(&mddev->sb_wait);
9369 }
9370
9371 if (is_md_suspended(mddev))
9372 return;
9373
9374 if (mddev->bitmap)
9375 md_bitmap_daemon_work(mddev);
9376
9377 if (signal_pending(current)) {
9378 if (mddev->pers->sync_request && !mddev->external) {
9379 pr_debug("md: %s in immediate safe mode\n",
9380 mdname(mddev));
9381 mddev->safemode = 2;
9382 }
9383 flush_signals(current);
9384 }
9385
9386 if (!md_is_rdwr(mddev) &&
9387 !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
9388 return;
9389 if ( ! (
9390 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9391 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9392 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9393 (mddev->external == 0 && mddev->safemode == 1) ||
9394 (mddev->safemode == 2
9395 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
9396 ))
9397 return;
9398
9399 if (mddev_trylock(mddev)) {
9400 int spares = 0;
9401 bool try_set_sync = mddev->safemode != 0;
9402
9403 if (!mddev->external && mddev->safemode == 1)
9404 mddev->safemode = 0;
9405
9406 if (!md_is_rdwr(mddev)) {
9407 struct md_rdev *rdev;
9408 if (!mddev->external && mddev->in_sync)
9409 /* 'Blocked' flag not needed as failed devices
9410 * will be recorded if array switched to read/write.
9411 * Leaving it set will prevent the device
9412 * from being removed.
9413 */
9414 rdev_for_each(rdev, mddev)
9415 clear_bit(Blocked, &rdev->flags);
9416 /* On a read-only array we can:
9417 * - remove failed devices
9418 * - add already-in_sync devices if the array itself
9419 * is in-sync.
9420 * As we only add devices that are already in-sync,
9421 * we can activate the spares immediately.
9422 */
9423 remove_and_add_spares(mddev, NULL);
9424 /* There is no thread, but we need to call
9425 * ->spare_active and clear saved_raid_disk
9426 */
9427 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9428 md_reap_sync_thread(mddev);
9429 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9430 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9431 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9432 goto unlock;
9433 }
9434
9435 if (mddev_is_clustered(mddev)) {
9436 struct md_rdev *rdev, *tmp;
9437 /* kick the device if another node issued a
9438 * remove disk.
9439 */
9440 rdev_for_each_safe(rdev, tmp, mddev) {
9441 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
9442 rdev->raid_disk < 0)
9443 md_kick_rdev_from_array(rdev);
9444 }
9445 }
9446
9447 if (try_set_sync && !mddev->external && !mddev->in_sync) {
9448 spin_lock(&mddev->lock);
9449 set_in_sync(mddev);
9450 spin_unlock(&mddev->lock);
9451 }
9452
9453 if (mddev->sb_flags)
9454 md_update_sb(mddev, 0);
9455
9456 /*
9457 * Never start a new sync thread if MD_RECOVERY_RUNNING is
9458 * still set.
9459 */
9460 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
9461 if (!test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9462 /* resync/recovery still happening */
9463 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9464 goto unlock;
9465 }
9466
9467 if (WARN_ON_ONCE(!mddev->sync_thread))
9468 goto unlock;
9469
9470 md_reap_sync_thread(mddev);
9471 goto unlock;
9472 }
9473
9474 /* Set RUNNING before clearing NEEDED to avoid
9475 * any transients in the value of "sync_action".
9476 */
9477 mddev->curr_resync_completed = 0;
9478 spin_lock(&mddev->lock);
9479 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9480 spin_unlock(&mddev->lock);
9481 /* Clear some bits that don't mean anything, but
9482 * might be left set
9483 */
9484 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9485 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9486
9487 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9488 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
9489 goto not_running;
9490 /* no recovery is running.
9491 * remove any failed drives, then
9492 * add spares if possible.
9493 * Spares are also removed and re-added, to allow
9494 * the personality to fail the re-add.
9495 */
9496
9497 if (mddev->reshape_position != MaxSector) {
9498 if (mddev->pers->check_reshape == NULL ||
9499 mddev->pers->check_reshape(mddev) != 0)
9500 /* Cannot proceed */
9501 goto not_running;
9502 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9503 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9504 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
9505 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9506 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9507 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9508 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9509 } else if (mddev->recovery_cp < MaxSector) {
9510 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9511 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9512 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9513 /* nothing to be done ... */
9514 goto not_running;
9515
9516 if (mddev->pers->sync_request) {
9517 if (spares) {
9518 /* We are adding a device or devices to an array
9519 * which has the bitmap stored on all devices.
9520 * So make sure all bitmap pages get written
9521 */
9522 md_bitmap_write_all(mddev->bitmap);
9523 }
9524 INIT_WORK(&mddev->del_work, md_start_sync);
9525 queue_work(md_misc_wq, &mddev->del_work);
9526 goto unlock;
9527 }
9528 not_running:
9529 if (!mddev->sync_thread) {
9530 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9531 wake_up(&resync_wait);
9532 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9533 &mddev->recovery))
9534 if (mddev->sysfs_action)
9535 sysfs_notify_dirent_safe(mddev->sysfs_action);
9536 }
9537 unlock:
9538 wake_up(&mddev->sb_wait);
9539 mddev_unlock(mddev);
9540 }
9541 }
9542 EXPORT_SYMBOL(md_check_recovery);
9543
md_reap_sync_thread(struct mddev * mddev)9544 void md_reap_sync_thread(struct mddev *mddev)
9545 {
9546 struct md_rdev *rdev;
9547 sector_t old_dev_sectors = mddev->dev_sectors;
9548 bool is_reshaped = false;
9549
9550 /* resync has finished, collect result */
9551 md_unregister_thread(mddev, &mddev->sync_thread);
9552 atomic_inc(&mddev->sync_seq);
9553
9554 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9555 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9556 mddev->degraded != mddev->raid_disks) {
9557 /* success...*/
9558 /* activate any spares */
9559 if (mddev->pers->spare_active(mddev)) {
9560 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9561 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9562 }
9563 }
9564 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9565 mddev->pers->finish_reshape) {
9566 mddev->pers->finish_reshape(mddev);
9567 if (mddev_is_clustered(mddev))
9568 is_reshaped = true;
9569 }
9570
9571 /* If array is no-longer degraded, then any saved_raid_disk
9572 * information must be scrapped.
9573 */
9574 if (!mddev->degraded)
9575 rdev_for_each(rdev, mddev)
9576 rdev->saved_raid_disk = -1;
9577
9578 md_update_sb(mddev, 1);
9579 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9580 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9581 * clustered raid */
9582 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9583 md_cluster_ops->resync_finish(mddev);
9584 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9585 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9586 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9587 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9588 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9589 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9590 /*
9591 * We call md_cluster_ops->update_size here because sync_size could
9592 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9593 * so it is time to update size across cluster.
9594 */
9595 if (mddev_is_clustered(mddev) && is_reshaped
9596 && !test_bit(MD_CLOSING, &mddev->flags))
9597 md_cluster_ops->update_size(mddev, old_dev_sectors);
9598 /* flag recovery needed just to double check */
9599 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9600 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9601 sysfs_notify_dirent_safe(mddev->sysfs_action);
9602 md_new_event();
9603 if (mddev->event_work.func)
9604 queue_work(md_misc_wq, &mddev->event_work);
9605 wake_up(&resync_wait);
9606 }
9607 EXPORT_SYMBOL(md_reap_sync_thread);
9608
md_wait_for_blocked_rdev(struct md_rdev * rdev,struct mddev * mddev)9609 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9610 {
9611 sysfs_notify_dirent_safe(rdev->sysfs_state);
9612 wait_event_timeout(rdev->blocked_wait,
9613 !test_bit(Blocked, &rdev->flags) &&
9614 !test_bit(BlockedBadBlocks, &rdev->flags),
9615 msecs_to_jiffies(5000));
9616 rdev_dec_pending(rdev, mddev);
9617 }
9618 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9619
md_finish_reshape(struct mddev * mddev)9620 void md_finish_reshape(struct mddev *mddev)
9621 {
9622 /* called be personality module when reshape completes. */
9623 struct md_rdev *rdev;
9624
9625 rdev_for_each(rdev, mddev) {
9626 if (rdev->data_offset > rdev->new_data_offset)
9627 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9628 else
9629 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9630 rdev->data_offset = rdev->new_data_offset;
9631 }
9632 }
9633 EXPORT_SYMBOL(md_finish_reshape);
9634
9635 /* Bad block management */
9636
9637 /* Returns 1 on success, 0 on failure */
rdev_set_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)9638 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9639 int is_new)
9640 {
9641 struct mddev *mddev = rdev->mddev;
9642 int rv;
9643 if (is_new)
9644 s += rdev->new_data_offset;
9645 else
9646 s += rdev->data_offset;
9647 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9648 if (rv == 0) {
9649 /* Make sure they get written out promptly */
9650 if (test_bit(ExternalBbl, &rdev->flags))
9651 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
9652 sysfs_notify_dirent_safe(rdev->sysfs_state);
9653 set_mask_bits(&mddev->sb_flags, 0,
9654 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9655 md_wakeup_thread(rdev->mddev->thread);
9656 return 1;
9657 } else
9658 return 0;
9659 }
9660 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9661
rdev_clear_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)9662 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9663 int is_new)
9664 {
9665 int rv;
9666 if (is_new)
9667 s += rdev->new_data_offset;
9668 else
9669 s += rdev->data_offset;
9670 rv = badblocks_clear(&rdev->badblocks, s, sectors);
9671 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9672 sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
9673 return rv;
9674 }
9675 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9676
md_notify_reboot(struct notifier_block * this,unsigned long code,void * x)9677 static int md_notify_reboot(struct notifier_block *this,
9678 unsigned long code, void *x)
9679 {
9680 struct mddev *mddev, *n;
9681 int need_delay = 0;
9682
9683 spin_lock(&all_mddevs_lock);
9684 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) {
9685 if (!mddev_get(mddev))
9686 continue;
9687 spin_unlock(&all_mddevs_lock);
9688 if (mddev_trylock(mddev)) {
9689 if (mddev->pers)
9690 __md_stop_writes(mddev);
9691 if (mddev->persistent)
9692 mddev->safemode = 2;
9693 mddev_unlock(mddev);
9694 }
9695 need_delay = 1;
9696 mddev_put(mddev);
9697 spin_lock(&all_mddevs_lock);
9698 }
9699 spin_unlock(&all_mddevs_lock);
9700
9701 /*
9702 * certain more exotic SCSI devices are known to be
9703 * volatile wrt too early system reboots. While the
9704 * right place to handle this issue is the given
9705 * driver, we do want to have a safe RAID driver ...
9706 */
9707 if (need_delay)
9708 msleep(1000);
9709
9710 return NOTIFY_DONE;
9711 }
9712
9713 static struct notifier_block md_notifier = {
9714 .notifier_call = md_notify_reboot,
9715 .next = NULL,
9716 .priority = INT_MAX, /* before any real devices */
9717 };
9718
md_geninit(void)9719 static void md_geninit(void)
9720 {
9721 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9722
9723 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
9724 }
9725
md_init(void)9726 static int __init md_init(void)
9727 {
9728 int ret = -ENOMEM;
9729
9730 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9731 if (!md_wq)
9732 goto err_wq;
9733
9734 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9735 if (!md_misc_wq)
9736 goto err_misc_wq;
9737
9738 md_bitmap_wq = alloc_workqueue("md_bitmap", WQ_MEM_RECLAIM | WQ_UNBOUND,
9739 0);
9740 if (!md_bitmap_wq)
9741 goto err_bitmap_wq;
9742
9743 ret = __register_blkdev(MD_MAJOR, "md", md_probe);
9744 if (ret < 0)
9745 goto err_md;
9746
9747 ret = __register_blkdev(0, "mdp", md_probe);
9748 if (ret < 0)
9749 goto err_mdp;
9750 mdp_major = ret;
9751
9752 register_reboot_notifier(&md_notifier);
9753 raid_table_header = register_sysctl("dev/raid", raid_table);
9754
9755 md_geninit();
9756 return 0;
9757
9758 err_mdp:
9759 unregister_blkdev(MD_MAJOR, "md");
9760 err_md:
9761 destroy_workqueue(md_bitmap_wq);
9762 err_bitmap_wq:
9763 destroy_workqueue(md_misc_wq);
9764 err_misc_wq:
9765 destroy_workqueue(md_wq);
9766 err_wq:
9767 return ret;
9768 }
9769
check_sb_changes(struct mddev * mddev,struct md_rdev * rdev)9770 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9771 {
9772 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9773 struct md_rdev *rdev2, *tmp;
9774 int role, ret;
9775
9776 /*
9777 * If size is changed in another node then we need to
9778 * do resize as well.
9779 */
9780 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9781 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9782 if (ret)
9783 pr_info("md-cluster: resize failed\n");
9784 else
9785 md_bitmap_update_sb(mddev->bitmap);
9786 }
9787
9788 /* Check for change of roles in the active devices */
9789 rdev_for_each_safe(rdev2, tmp, mddev) {
9790 if (test_bit(Faulty, &rdev2->flags))
9791 continue;
9792
9793 /* Check if the roles changed */
9794 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9795
9796 if (test_bit(Candidate, &rdev2->flags)) {
9797 if (role == MD_DISK_ROLE_FAULTY) {
9798 pr_info("md: Removing Candidate device %pg because add failed\n",
9799 rdev2->bdev);
9800 md_kick_rdev_from_array(rdev2);
9801 continue;
9802 }
9803 else
9804 clear_bit(Candidate, &rdev2->flags);
9805 }
9806
9807 if (role != rdev2->raid_disk) {
9808 /*
9809 * got activated except reshape is happening.
9810 */
9811 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE &&
9812 !(le32_to_cpu(sb->feature_map) &
9813 MD_FEATURE_RESHAPE_ACTIVE)) {
9814 rdev2->saved_raid_disk = role;
9815 ret = remove_and_add_spares(mddev, rdev2);
9816 pr_info("Activated spare: %pg\n",
9817 rdev2->bdev);
9818 /* wakeup mddev->thread here, so array could
9819 * perform resync with the new activated disk */
9820 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9821 md_wakeup_thread(mddev->thread);
9822 }
9823 /* device faulty
9824 * We just want to do the minimum to mark the disk
9825 * as faulty. The recovery is performed by the
9826 * one who initiated the error.
9827 */
9828 if (role == MD_DISK_ROLE_FAULTY ||
9829 role == MD_DISK_ROLE_JOURNAL) {
9830 md_error(mddev, rdev2);
9831 clear_bit(Blocked, &rdev2->flags);
9832 }
9833 }
9834 }
9835
9836 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
9837 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9838 if (ret)
9839 pr_warn("md: updating array disks failed. %d\n", ret);
9840 }
9841
9842 /*
9843 * Since mddev->delta_disks has already updated in update_raid_disks,
9844 * so it is time to check reshape.
9845 */
9846 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9847 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9848 /*
9849 * reshape is happening in the remote node, we need to
9850 * update reshape_position and call start_reshape.
9851 */
9852 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9853 if (mddev->pers->update_reshape_pos)
9854 mddev->pers->update_reshape_pos(mddev);
9855 if (mddev->pers->start_reshape)
9856 mddev->pers->start_reshape(mddev);
9857 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9858 mddev->reshape_position != MaxSector &&
9859 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9860 /* reshape is just done in another node. */
9861 mddev->reshape_position = MaxSector;
9862 if (mddev->pers->update_reshape_pos)
9863 mddev->pers->update_reshape_pos(mddev);
9864 }
9865
9866 /* Finally set the event to be up to date */
9867 mddev->events = le64_to_cpu(sb->events);
9868 }
9869
read_rdev(struct mddev * mddev,struct md_rdev * rdev)9870 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9871 {
9872 int err;
9873 struct page *swapout = rdev->sb_page;
9874 struct mdp_superblock_1 *sb;
9875
9876 /* Store the sb page of the rdev in the swapout temporary
9877 * variable in case we err in the future
9878 */
9879 rdev->sb_page = NULL;
9880 err = alloc_disk_sb(rdev);
9881 if (err == 0) {
9882 ClearPageUptodate(rdev->sb_page);
9883 rdev->sb_loaded = 0;
9884 err = super_types[mddev->major_version].
9885 load_super(rdev, NULL, mddev->minor_version);
9886 }
9887 if (err < 0) {
9888 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9889 __func__, __LINE__, rdev->desc_nr, err);
9890 if (rdev->sb_page)
9891 put_page(rdev->sb_page);
9892 rdev->sb_page = swapout;
9893 rdev->sb_loaded = 1;
9894 return err;
9895 }
9896
9897 sb = page_address(rdev->sb_page);
9898 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9899 * is not set
9900 */
9901
9902 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9903 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9904
9905 /* The other node finished recovery, call spare_active to set
9906 * device In_sync and mddev->degraded
9907 */
9908 if (rdev->recovery_offset == MaxSector &&
9909 !test_bit(In_sync, &rdev->flags) &&
9910 mddev->pers->spare_active(mddev))
9911 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9912
9913 put_page(swapout);
9914 return 0;
9915 }
9916
md_reload_sb(struct mddev * mddev,int nr)9917 void md_reload_sb(struct mddev *mddev, int nr)
9918 {
9919 struct md_rdev *rdev = NULL, *iter;
9920 int err;
9921
9922 /* Find the rdev */
9923 rdev_for_each_rcu(iter, mddev) {
9924 if (iter->desc_nr == nr) {
9925 rdev = iter;
9926 break;
9927 }
9928 }
9929
9930 if (!rdev) {
9931 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9932 return;
9933 }
9934
9935 err = read_rdev(mddev, rdev);
9936 if (err < 0)
9937 return;
9938
9939 check_sb_changes(mddev, rdev);
9940
9941 /* Read all rdev's to update recovery_offset */
9942 rdev_for_each_rcu(rdev, mddev) {
9943 if (!test_bit(Faulty, &rdev->flags))
9944 read_rdev(mddev, rdev);
9945 }
9946 }
9947 EXPORT_SYMBOL(md_reload_sb);
9948
9949 #ifndef MODULE
9950
9951 /*
9952 * Searches all registered partitions for autorun RAID arrays
9953 * at boot time.
9954 */
9955
9956 static DEFINE_MUTEX(detected_devices_mutex);
9957 static LIST_HEAD(all_detected_devices);
9958 struct detected_devices_node {
9959 struct list_head list;
9960 dev_t dev;
9961 };
9962
md_autodetect_dev(dev_t dev)9963 void md_autodetect_dev(dev_t dev)
9964 {
9965 struct detected_devices_node *node_detected_dev;
9966
9967 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9968 if (node_detected_dev) {
9969 node_detected_dev->dev = dev;
9970 mutex_lock(&detected_devices_mutex);
9971 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9972 mutex_unlock(&detected_devices_mutex);
9973 }
9974 }
9975
md_autostart_arrays(int part)9976 void md_autostart_arrays(int part)
9977 {
9978 struct md_rdev *rdev;
9979 struct detected_devices_node *node_detected_dev;
9980 dev_t dev;
9981 int i_scanned, i_passed;
9982
9983 i_scanned = 0;
9984 i_passed = 0;
9985
9986 pr_info("md: Autodetecting RAID arrays.\n");
9987
9988 mutex_lock(&detected_devices_mutex);
9989 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9990 i_scanned++;
9991 node_detected_dev = list_entry(all_detected_devices.next,
9992 struct detected_devices_node, list);
9993 list_del(&node_detected_dev->list);
9994 dev = node_detected_dev->dev;
9995 kfree(node_detected_dev);
9996 mutex_unlock(&detected_devices_mutex);
9997 rdev = md_import_device(dev,0, 90);
9998 mutex_lock(&detected_devices_mutex);
9999 if (IS_ERR(rdev))
10000 continue;
10001
10002 if (test_bit(Faulty, &rdev->flags))
10003 continue;
10004
10005 set_bit(AutoDetected, &rdev->flags);
10006 list_add(&rdev->same_set, &pending_raid_disks);
10007 i_passed++;
10008 }
10009 mutex_unlock(&detected_devices_mutex);
10010
10011 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
10012
10013 autorun_devices(part);
10014 }
10015
10016 #endif /* !MODULE */
10017
md_exit(void)10018 static __exit void md_exit(void)
10019 {
10020 struct mddev *mddev, *n;
10021 int delay = 1;
10022
10023 unregister_blkdev(MD_MAJOR,"md");
10024 unregister_blkdev(mdp_major, "mdp");
10025 unregister_reboot_notifier(&md_notifier);
10026 unregister_sysctl_table(raid_table_header);
10027
10028 /* We cannot unload the modules while some process is
10029 * waiting for us in select() or poll() - wake them up
10030 */
10031 md_unloading = 1;
10032 while (waitqueue_active(&md_event_waiters)) {
10033 /* not safe to leave yet */
10034 wake_up(&md_event_waiters);
10035 msleep(delay);
10036 delay += delay;
10037 }
10038 remove_proc_entry("mdstat", NULL);
10039
10040 spin_lock(&all_mddevs_lock);
10041 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) {
10042 if (!mddev_get(mddev))
10043 continue;
10044 spin_unlock(&all_mddevs_lock);
10045 export_array(mddev);
10046 mddev->ctime = 0;
10047 mddev->hold_active = 0;
10048 /*
10049 * As the mddev is now fully clear, mddev_put will schedule
10050 * the mddev for destruction by a workqueue, and the
10051 * destroy_workqueue() below will wait for that to complete.
10052 */
10053 mddev_put(mddev);
10054 spin_lock(&all_mddevs_lock);
10055 }
10056 spin_unlock(&all_mddevs_lock);
10057
10058 destroy_workqueue(md_misc_wq);
10059 destroy_workqueue(md_bitmap_wq);
10060 destroy_workqueue(md_wq);
10061 }
10062
10063 subsys_initcall(md_init);
module_exit(md_exit)10064 module_exit(md_exit)
10065
10066 static int get_ro(char *buffer, const struct kernel_param *kp)
10067 {
10068 return sprintf(buffer, "%d\n", start_readonly);
10069 }
set_ro(const char * val,const struct kernel_param * kp)10070 static int set_ro(const char *val, const struct kernel_param *kp)
10071 {
10072 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
10073 }
10074
10075 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
10076 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
10077 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
10078 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
10079
10080 MODULE_LICENSE("GPL");
10081 MODULE_DESCRIPTION("MD RAID framework");
10082 MODULE_ALIAS("md");
10083 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
10084