1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10 #include <linux/thread_info.h>
11 #include <linux/capability.h>
12 #include <linux/miscdevice.h>
13 #include <linux/ratelimit.h>
14 #include <linux/kallsyms.h>
15 #include <linux/rcupdate.h>
16 #include <linux/kobject.h>
17 #include <linux/uaccess.h>
18 #include <linux/kdebug.h>
19 #include <linux/kernel.h>
20 #include <linux/percpu.h>
21 #include <linux/string.h>
22 #include <linux/device.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/delay.h>
25 #include <linux/ctype.h>
26 #include <linux/sched.h>
27 #include <linux/sysfs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/kmod.h>
32 #include <linux/poll.h>
33 #include <linux/nmi.h>
34 #include <linux/cpu.h>
35 #include <linux/smp.h>
36 #include <linux/fs.h>
37 #include <linux/mm.h>
38 #include <linux/debugfs.h>
39 #include <linux/irq_work.h>
40 #include <linux/export.h>
41
42 #include <asm/processor.h>
43 #include <asm/mce.h>
44 #include <asm/msr.h>
45
46 #include "mce-internal.h"
47
48 static DEFINE_MUTEX(mce_chrdev_read_mutex);
49
50 #define rcu_dereference_check_mce(p) \
51 rcu_dereference_index_check((p), \
52 rcu_read_lock_sched_held() || \
53 lockdep_is_held(&mce_chrdev_read_mutex))
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/mce.h>
57
58 int mce_disabled __read_mostly;
59
60 #define MISC_MCELOG_MINOR 227
61
62 #define SPINUNIT 100 /* 100ns */
63
64 atomic_t mce_entry;
65
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67
68 /*
69 * Tolerant levels:
70 * 0: always panic on uncorrected errors, log corrected errors
71 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
72 * 2: SIGBUS or log uncorrected errors (if possible), log corrected errors
73 * 3: never panic or SIGBUS, log all errors (for testing only)
74 */
75 static int tolerant __read_mostly = 1;
76 static int banks __read_mostly;
77 static int rip_msr __read_mostly;
78 static int mce_bootlog __read_mostly = -1;
79 static int monarch_timeout __read_mostly = -1;
80 static int mce_panic_timeout __read_mostly;
81 static int mce_dont_log_ce __read_mostly;
82 int mce_cmci_disabled __read_mostly;
83 int mce_ignore_ce __read_mostly;
84 int mce_ser __read_mostly;
85
86 struct mce_bank *mce_banks __read_mostly;
87
88 /* User mode helper program triggered by machine check event */
89 static unsigned long mce_need_notify;
90 static char mce_helper[128];
91 static char *mce_helper_argv[2] = { mce_helper, NULL };
92
93 static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
94
95 static DEFINE_PER_CPU(struct mce, mces_seen);
96 static int cpu_missing;
97
98 /* MCA banks polled by the period polling timer for corrected events */
99 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
100 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
101 };
102
103 static DEFINE_PER_CPU(struct work_struct, mce_work);
104
105 /*
106 * CPU/chipset specific EDAC code can register a notifier call here to print
107 * MCE errors in a human-readable form.
108 */
109 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
110
111 /* Do initial initialization of a struct mce */
mce_setup(struct mce * m)112 void mce_setup(struct mce *m)
113 {
114 memset(m, 0, sizeof(struct mce));
115 m->cpu = m->extcpu = smp_processor_id();
116 rdtscll(m->tsc);
117 /* We hope get_seconds stays lockless */
118 m->time = get_seconds();
119 m->cpuvendor = boot_cpu_data.x86_vendor;
120 m->cpuid = cpuid_eax(1);
121 m->socketid = cpu_data(m->extcpu).phys_proc_id;
122 m->apicid = cpu_data(m->extcpu).initial_apicid;
123 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
124 }
125
126 DEFINE_PER_CPU(struct mce, injectm);
127 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
128
129 /*
130 * Lockless MCE logging infrastructure.
131 * This avoids deadlocks on printk locks without having to break locks. Also
132 * separate MCEs from kernel messages to avoid bogus bug reports.
133 */
134
135 static struct mce_log mcelog = {
136 .signature = MCE_LOG_SIGNATURE,
137 .len = MCE_LOG_LEN,
138 .recordlen = sizeof(struct mce),
139 };
140
mce_log(struct mce * mce)141 void mce_log(struct mce *mce)
142 {
143 unsigned next, entry;
144 int ret = 0;
145
146 /* Emit the trace record: */
147 trace_mce_record(mce);
148
149 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
150 if (ret == NOTIFY_STOP)
151 return;
152
153 mce->finished = 0;
154 wmb();
155 for (;;) {
156 entry = rcu_dereference_check_mce(mcelog.next);
157 for (;;) {
158
159 /*
160 * When the buffer fills up discard new entries.
161 * Assume that the earlier errors are the more
162 * interesting ones:
163 */
164 if (entry >= MCE_LOG_LEN) {
165 set_bit(MCE_OVERFLOW,
166 (unsigned long *)&mcelog.flags);
167 return;
168 }
169 /* Old left over entry. Skip: */
170 if (mcelog.entry[entry].finished) {
171 entry++;
172 continue;
173 }
174 break;
175 }
176 smp_rmb();
177 next = entry + 1;
178 if (cmpxchg(&mcelog.next, entry, next) == entry)
179 break;
180 }
181 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
182 wmb();
183 mcelog.entry[entry].finished = 1;
184 wmb();
185
186 mce->finished = 1;
187 set_bit(0, &mce_need_notify);
188 }
189
drain_mcelog_buffer(void)190 static void drain_mcelog_buffer(void)
191 {
192 unsigned int next, i, prev = 0;
193
194 next = ACCESS_ONCE(mcelog.next);
195
196 do {
197 struct mce *m;
198
199 /* drain what was logged during boot */
200 for (i = prev; i < next; i++) {
201 unsigned long start = jiffies;
202 unsigned retries = 1;
203
204 m = &mcelog.entry[i];
205
206 while (!m->finished) {
207 if (time_after_eq(jiffies, start + 2*retries))
208 retries++;
209
210 cpu_relax();
211
212 if (!m->finished && retries >= 4) {
213 pr_err("MCE: skipping error being logged currently!\n");
214 break;
215 }
216 }
217 smp_rmb();
218 atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
219 }
220
221 memset(mcelog.entry + prev, 0, (next - prev) * sizeof(*m));
222 prev = next;
223 next = cmpxchg(&mcelog.next, prev, 0);
224 } while (next != prev);
225 }
226
227
mce_register_decode_chain(struct notifier_block * nb)228 void mce_register_decode_chain(struct notifier_block *nb)
229 {
230 atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
231 drain_mcelog_buffer();
232 }
233 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
234
mce_unregister_decode_chain(struct notifier_block * nb)235 void mce_unregister_decode_chain(struct notifier_block *nb)
236 {
237 atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
238 }
239 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
240
print_mce(struct mce * m)241 static void print_mce(struct mce *m)
242 {
243 int ret = 0;
244
245 pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
246 m->extcpu, m->mcgstatus, m->bank, m->status);
247
248 if (m->ip) {
249 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
250 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
251 m->cs, m->ip);
252
253 if (m->cs == __KERNEL_CS)
254 print_symbol("{%s}", m->ip);
255 pr_cont("\n");
256 }
257
258 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
259 if (m->addr)
260 pr_cont("ADDR %llx ", m->addr);
261 if (m->misc)
262 pr_cont("MISC %llx ", m->misc);
263
264 pr_cont("\n");
265 /*
266 * Note this output is parsed by external tools and old fields
267 * should not be changed.
268 */
269 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
270 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
271 cpu_data(m->extcpu).microcode);
272
273 /*
274 * Print out human-readable details about the MCE error,
275 * (if the CPU has an implementation for that)
276 */
277 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
278 if (ret == NOTIFY_STOP)
279 return;
280
281 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
282 }
283
284 #define PANIC_TIMEOUT 5 /* 5 seconds */
285
286 static atomic_t mce_paniced;
287
288 static int fake_panic;
289 static atomic_t mce_fake_paniced;
290
291 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)292 static void wait_for_panic(void)
293 {
294 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
295
296 preempt_disable();
297 local_irq_enable();
298 while (timeout-- > 0)
299 udelay(1);
300 if (panic_timeout == 0)
301 panic_timeout = mce_panic_timeout;
302 panic("Panicing machine check CPU died");
303 }
304
mce_panic(char * msg,struct mce * final,char * exp)305 static void mce_panic(char *msg, struct mce *final, char *exp)
306 {
307 int i, apei_err = 0;
308
309 if (!fake_panic) {
310 /*
311 * Make sure only one CPU runs in machine check panic
312 */
313 if (atomic_inc_return(&mce_paniced) > 1)
314 wait_for_panic();
315 barrier();
316
317 bust_spinlocks(1);
318 console_verbose();
319 } else {
320 /* Don't log too much for fake panic */
321 if (atomic_inc_return(&mce_fake_paniced) > 1)
322 return;
323 }
324 /* First print corrected ones that are still unlogged */
325 for (i = 0; i < MCE_LOG_LEN; i++) {
326 struct mce *m = &mcelog.entry[i];
327 if (!(m->status & MCI_STATUS_VAL))
328 continue;
329 if (!(m->status & MCI_STATUS_UC)) {
330 print_mce(m);
331 if (!apei_err)
332 apei_err = apei_write_mce(m);
333 }
334 }
335 /* Now print uncorrected but with the final one last */
336 for (i = 0; i < MCE_LOG_LEN; i++) {
337 struct mce *m = &mcelog.entry[i];
338 if (!(m->status & MCI_STATUS_VAL))
339 continue;
340 if (!(m->status & MCI_STATUS_UC))
341 continue;
342 if (!final || memcmp(m, final, sizeof(struct mce))) {
343 print_mce(m);
344 if (!apei_err)
345 apei_err = apei_write_mce(m);
346 }
347 }
348 if (final) {
349 print_mce(final);
350 if (!apei_err)
351 apei_err = apei_write_mce(final);
352 }
353 if (cpu_missing)
354 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
355 if (exp)
356 pr_emerg(HW_ERR "Machine check: %s\n", exp);
357 if (!fake_panic) {
358 if (panic_timeout == 0)
359 panic_timeout = mce_panic_timeout;
360 panic(msg);
361 } else
362 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
363 }
364
365 /* Support code for software error injection */
366
msr_to_offset(u32 msr)367 static int msr_to_offset(u32 msr)
368 {
369 unsigned bank = __this_cpu_read(injectm.bank);
370
371 if (msr == rip_msr)
372 return offsetof(struct mce, ip);
373 if (msr == MSR_IA32_MCx_STATUS(bank))
374 return offsetof(struct mce, status);
375 if (msr == MSR_IA32_MCx_ADDR(bank))
376 return offsetof(struct mce, addr);
377 if (msr == MSR_IA32_MCx_MISC(bank))
378 return offsetof(struct mce, misc);
379 if (msr == MSR_IA32_MCG_STATUS)
380 return offsetof(struct mce, mcgstatus);
381 return -1;
382 }
383
384 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)385 static u64 mce_rdmsrl(u32 msr)
386 {
387 u64 v;
388
389 if (__this_cpu_read(injectm.finished)) {
390 int offset = msr_to_offset(msr);
391
392 if (offset < 0)
393 return 0;
394 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
395 }
396
397 if (rdmsrl_safe(msr, &v)) {
398 WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
399 /*
400 * Return zero in case the access faulted. This should
401 * not happen normally but can happen if the CPU does
402 * something weird, or if the code is buggy.
403 */
404 v = 0;
405 }
406
407 return v;
408 }
409
mce_wrmsrl(u32 msr,u64 v)410 static void mce_wrmsrl(u32 msr, u64 v)
411 {
412 if (__this_cpu_read(injectm.finished)) {
413 int offset = msr_to_offset(msr);
414
415 if (offset >= 0)
416 *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
417 return;
418 }
419 wrmsrl(msr, v);
420 }
421
422 /*
423 * Collect all global (w.r.t. this processor) status about this machine
424 * check into our "mce" struct so that we can use it later to assess
425 * the severity of the problem as we read per-bank specific details.
426 */
mce_gather_info(struct mce * m,struct pt_regs * regs)427 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
428 {
429 mce_setup(m);
430
431 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
432 if (regs) {
433 /*
434 * Get the address of the instruction at the time of
435 * the machine check error.
436 */
437 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
438 m->ip = regs->ip;
439 m->cs = regs->cs;
440
441 /*
442 * When in VM86 mode make the cs look like ring 3
443 * always. This is a lie, but it's better than passing
444 * the additional vm86 bit around everywhere.
445 */
446 if (v8086_mode(regs))
447 m->cs |= 3;
448 }
449 /* Use accurate RIP reporting if available. */
450 if (rip_msr)
451 m->ip = mce_rdmsrl(rip_msr);
452 }
453 }
454
455 /*
456 * Simple lockless ring to communicate PFNs from the exception handler with the
457 * process context work function. This is vastly simplified because there's
458 * only a single reader and a single writer.
459 */
460 #define MCE_RING_SIZE 16 /* we use one entry less */
461
462 struct mce_ring {
463 unsigned short start;
464 unsigned short end;
465 unsigned long ring[MCE_RING_SIZE];
466 };
467 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
468
469 /* Runs with CPU affinity in workqueue */
mce_ring_empty(void)470 static int mce_ring_empty(void)
471 {
472 struct mce_ring *r = &__get_cpu_var(mce_ring);
473
474 return r->start == r->end;
475 }
476
mce_ring_get(unsigned long * pfn)477 static int mce_ring_get(unsigned long *pfn)
478 {
479 struct mce_ring *r;
480 int ret = 0;
481
482 *pfn = 0;
483 get_cpu();
484 r = &__get_cpu_var(mce_ring);
485 if (r->start == r->end)
486 goto out;
487 *pfn = r->ring[r->start];
488 r->start = (r->start + 1) % MCE_RING_SIZE;
489 ret = 1;
490 out:
491 put_cpu();
492 return ret;
493 }
494
495 /* Always runs in MCE context with preempt off */
mce_ring_add(unsigned long pfn)496 static int mce_ring_add(unsigned long pfn)
497 {
498 struct mce_ring *r = &__get_cpu_var(mce_ring);
499 unsigned next;
500
501 next = (r->end + 1) % MCE_RING_SIZE;
502 if (next == r->start)
503 return -1;
504 r->ring[r->end] = pfn;
505 wmb();
506 r->end = next;
507 return 0;
508 }
509
mce_available(struct cpuinfo_x86 * c)510 int mce_available(struct cpuinfo_x86 *c)
511 {
512 if (mce_disabled)
513 return 0;
514 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
515 }
516
mce_schedule_work(void)517 static void mce_schedule_work(void)
518 {
519 if (!mce_ring_empty()) {
520 struct work_struct *work = &__get_cpu_var(mce_work);
521 if (!work_pending(work))
522 schedule_work(work);
523 }
524 }
525
526 DEFINE_PER_CPU(struct irq_work, mce_irq_work);
527
mce_irq_work_cb(struct irq_work * entry)528 static void mce_irq_work_cb(struct irq_work *entry)
529 {
530 mce_notify_irq();
531 mce_schedule_work();
532 }
533
mce_report_event(struct pt_regs * regs)534 static void mce_report_event(struct pt_regs *regs)
535 {
536 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
537 mce_notify_irq();
538 /*
539 * Triggering the work queue here is just an insurance
540 * policy in case the syscall exit notify handler
541 * doesn't run soon enough or ends up running on the
542 * wrong CPU (can happen when audit sleeps)
543 */
544 mce_schedule_work();
545 return;
546 }
547
548 irq_work_queue(&__get_cpu_var(mce_irq_work));
549 }
550
551 /*
552 * Read ADDR and MISC registers.
553 */
mce_read_aux(struct mce * m,int i)554 static void mce_read_aux(struct mce *m, int i)
555 {
556 if (m->status & MCI_STATUS_MISCV)
557 m->misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
558 if (m->status & MCI_STATUS_ADDRV) {
559 m->addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
560
561 /*
562 * Mask the reported address by the reported granularity.
563 */
564 if (mce_ser && (m->status & MCI_STATUS_MISCV)) {
565 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
566 m->addr >>= shift;
567 m->addr <<= shift;
568 }
569 }
570 }
571
572 DEFINE_PER_CPU(unsigned, mce_poll_count);
573
574 /*
575 * Poll for corrected events or events that happened before reset.
576 * Those are just logged through /dev/mcelog.
577 *
578 * This is executed in standard interrupt context.
579 *
580 * Note: spec recommends to panic for fatal unsignalled
581 * errors here. However this would be quite problematic --
582 * we would need to reimplement the Monarch handling and
583 * it would mess up the exclusion between exception handler
584 * and poll hander -- * so we skip this for now.
585 * These cases should not happen anyways, or only when the CPU
586 * is already totally * confused. In this case it's likely it will
587 * not fully execute the machine check handler either.
588 */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)589 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
590 {
591 struct mce m;
592 int i;
593
594 percpu_inc(mce_poll_count);
595
596 mce_gather_info(&m, NULL);
597
598 for (i = 0; i < banks; i++) {
599 if (!mce_banks[i].ctl || !test_bit(i, *b))
600 continue;
601
602 m.misc = 0;
603 m.addr = 0;
604 m.bank = i;
605 m.tsc = 0;
606
607 barrier();
608 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
609 if (!(m.status & MCI_STATUS_VAL))
610 continue;
611
612 /*
613 * Uncorrected or signalled events are handled by the exception
614 * handler when it is enabled, so don't process those here.
615 *
616 * TBD do the same check for MCI_STATUS_EN here?
617 */
618 if (!(flags & MCP_UC) &&
619 (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
620 continue;
621
622 mce_read_aux(&m, i);
623
624 if (!(flags & MCP_TIMESTAMP))
625 m.tsc = 0;
626 /*
627 * Don't get the IP here because it's unlikely to
628 * have anything to do with the actual error location.
629 */
630 if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce)
631 mce_log(&m);
632
633 /*
634 * Clear state for this bank.
635 */
636 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
637 }
638
639 /*
640 * Don't clear MCG_STATUS here because it's only defined for
641 * exceptions.
642 */
643
644 sync_core();
645 }
646 EXPORT_SYMBOL_GPL(machine_check_poll);
647
648 /*
649 * Do a quick check if any of the events requires a panic.
650 * This decides if we keep the events around or clear them.
651 */
mce_no_way_out(struct mce * m,char ** msg)652 static int mce_no_way_out(struct mce *m, char **msg)
653 {
654 int i;
655
656 for (i = 0; i < banks; i++) {
657 m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
658 if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
659 return 1;
660 }
661 return 0;
662 }
663
664 /*
665 * Variable to establish order between CPUs while scanning.
666 * Each CPU spins initially until executing is equal its number.
667 */
668 static atomic_t mce_executing;
669
670 /*
671 * Defines order of CPUs on entry. First CPU becomes Monarch.
672 */
673 static atomic_t mce_callin;
674
675 /*
676 * Check if a timeout waiting for other CPUs happened.
677 */
mce_timed_out(u64 * t)678 static int mce_timed_out(u64 *t)
679 {
680 /*
681 * The others already did panic for some reason.
682 * Bail out like in a timeout.
683 * rmb() to tell the compiler that system_state
684 * might have been modified by someone else.
685 */
686 rmb();
687 if (atomic_read(&mce_paniced))
688 wait_for_panic();
689 if (!monarch_timeout)
690 goto out;
691 if ((s64)*t < SPINUNIT) {
692 /* CHECKME: Make panic default for 1 too? */
693 if (tolerant < 1)
694 mce_panic("Timeout synchronizing machine check over CPUs",
695 NULL, NULL);
696 cpu_missing = 1;
697 return 1;
698 }
699 *t -= SPINUNIT;
700 out:
701 touch_nmi_watchdog();
702 return 0;
703 }
704
705 /*
706 * The Monarch's reign. The Monarch is the CPU who entered
707 * the machine check handler first. It waits for the others to
708 * raise the exception too and then grades them. When any
709 * error is fatal panic. Only then let the others continue.
710 *
711 * The other CPUs entering the MCE handler will be controlled by the
712 * Monarch. They are called Subjects.
713 *
714 * This way we prevent any potential data corruption in a unrecoverable case
715 * and also makes sure always all CPU's errors are examined.
716 *
717 * Also this detects the case of a machine check event coming from outer
718 * space (not detected by any CPUs) In this case some external agent wants
719 * us to shut down, so panic too.
720 *
721 * The other CPUs might still decide to panic if the handler happens
722 * in a unrecoverable place, but in this case the system is in a semi-stable
723 * state and won't corrupt anything by itself. It's ok to let the others
724 * continue for a bit first.
725 *
726 * All the spin loops have timeouts; when a timeout happens a CPU
727 * typically elects itself to be Monarch.
728 */
mce_reign(void)729 static void mce_reign(void)
730 {
731 int cpu;
732 struct mce *m = NULL;
733 int global_worst = 0;
734 char *msg = NULL;
735 char *nmsg = NULL;
736
737 /*
738 * This CPU is the Monarch and the other CPUs have run
739 * through their handlers.
740 * Grade the severity of the errors of all the CPUs.
741 */
742 for_each_possible_cpu(cpu) {
743 int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
744 &nmsg);
745 if (severity > global_worst) {
746 msg = nmsg;
747 global_worst = severity;
748 m = &per_cpu(mces_seen, cpu);
749 }
750 }
751
752 /*
753 * Cannot recover? Panic here then.
754 * This dumps all the mces in the log buffer and stops the
755 * other CPUs.
756 */
757 if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
758 mce_panic("Fatal Machine check", m, msg);
759
760 /*
761 * For UC somewhere we let the CPU who detects it handle it.
762 * Also must let continue the others, otherwise the handling
763 * CPU could deadlock on a lock.
764 */
765
766 /*
767 * No machine check event found. Must be some external
768 * source or one CPU is hung. Panic.
769 */
770 if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
771 mce_panic("Machine check from unknown source", NULL, NULL);
772
773 /*
774 * Now clear all the mces_seen so that they don't reappear on
775 * the next mce.
776 */
777 for_each_possible_cpu(cpu)
778 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
779 }
780
781 static atomic_t global_nwo;
782
783 /*
784 * Start of Monarch synchronization. This waits until all CPUs have
785 * entered the exception handler and then determines if any of them
786 * saw a fatal event that requires panic. Then it executes them
787 * in the entry order.
788 * TBD double check parallel CPU hotunplug
789 */
mce_start(int * no_way_out)790 static int mce_start(int *no_way_out)
791 {
792 int order;
793 int cpus = num_online_cpus();
794 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
795
796 if (!timeout)
797 return -1;
798
799 atomic_add(*no_way_out, &global_nwo);
800 /*
801 * global_nwo should be updated before mce_callin
802 */
803 smp_wmb();
804 order = atomic_inc_return(&mce_callin);
805
806 /*
807 * Wait for everyone.
808 */
809 while (atomic_read(&mce_callin) != cpus) {
810 if (mce_timed_out(&timeout)) {
811 atomic_set(&global_nwo, 0);
812 return -1;
813 }
814 ndelay(SPINUNIT);
815 }
816
817 /*
818 * mce_callin should be read before global_nwo
819 */
820 smp_rmb();
821
822 if (order == 1) {
823 /*
824 * Monarch: Starts executing now, the others wait.
825 */
826 atomic_set(&mce_executing, 1);
827 } else {
828 /*
829 * Subject: Now start the scanning loop one by one in
830 * the original callin order.
831 * This way when there are any shared banks it will be
832 * only seen by one CPU before cleared, avoiding duplicates.
833 */
834 while (atomic_read(&mce_executing) < order) {
835 if (mce_timed_out(&timeout)) {
836 atomic_set(&global_nwo, 0);
837 return -1;
838 }
839 ndelay(SPINUNIT);
840 }
841 }
842
843 /*
844 * Cache the global no_way_out state.
845 */
846 *no_way_out = atomic_read(&global_nwo);
847
848 return order;
849 }
850
851 /*
852 * Synchronize between CPUs after main scanning loop.
853 * This invokes the bulk of the Monarch processing.
854 */
mce_end(int order)855 static int mce_end(int order)
856 {
857 int ret = -1;
858 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
859
860 if (!timeout)
861 goto reset;
862 if (order < 0)
863 goto reset;
864
865 /*
866 * Allow others to run.
867 */
868 atomic_inc(&mce_executing);
869
870 if (order == 1) {
871 /* CHECKME: Can this race with a parallel hotplug? */
872 int cpus = num_online_cpus();
873
874 /*
875 * Monarch: Wait for everyone to go through their scanning
876 * loops.
877 */
878 while (atomic_read(&mce_executing) <= cpus) {
879 if (mce_timed_out(&timeout))
880 goto reset;
881 ndelay(SPINUNIT);
882 }
883
884 mce_reign();
885 barrier();
886 ret = 0;
887 } else {
888 /*
889 * Subject: Wait for Monarch to finish.
890 */
891 while (atomic_read(&mce_executing) != 0) {
892 if (mce_timed_out(&timeout))
893 goto reset;
894 ndelay(SPINUNIT);
895 }
896
897 /*
898 * Don't reset anything. That's done by the Monarch.
899 */
900 return 0;
901 }
902
903 /*
904 * Reset all global state.
905 */
906 reset:
907 atomic_set(&global_nwo, 0);
908 atomic_set(&mce_callin, 0);
909 barrier();
910
911 /*
912 * Let others run again.
913 */
914 atomic_set(&mce_executing, 0);
915 return ret;
916 }
917
918 /*
919 * Check if the address reported by the CPU is in a format we can parse.
920 * It would be possible to add code for most other cases, but all would
921 * be somewhat complicated (e.g. segment offset would require an instruction
922 * parser). So only support physical addresses up to page granuality for now.
923 */
mce_usable_address(struct mce * m)924 static int mce_usable_address(struct mce *m)
925 {
926 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
927 return 0;
928 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
929 return 0;
930 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
931 return 0;
932 return 1;
933 }
934
mce_clear_state(unsigned long * toclear)935 static void mce_clear_state(unsigned long *toclear)
936 {
937 int i;
938
939 for (i = 0; i < banks; i++) {
940 if (test_bit(i, toclear))
941 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
942 }
943 }
944
945 /*
946 * Need to save faulting physical address associated with a process
947 * in the machine check handler some place where we can grab it back
948 * later in mce_notify_process()
949 */
950 #define MCE_INFO_MAX 16
951
952 struct mce_info {
953 atomic_t inuse;
954 struct task_struct *t;
955 __u64 paddr;
956 int restartable;
957 } mce_info[MCE_INFO_MAX];
958
mce_save_info(__u64 addr,int c)959 static void mce_save_info(__u64 addr, int c)
960 {
961 struct mce_info *mi;
962
963 for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++) {
964 if (atomic_cmpxchg(&mi->inuse, 0, 1) == 0) {
965 mi->t = current;
966 mi->paddr = addr;
967 mi->restartable = c;
968 return;
969 }
970 }
971
972 mce_panic("Too many concurrent recoverable errors", NULL, NULL);
973 }
974
mce_find_info(void)975 static struct mce_info *mce_find_info(void)
976 {
977 struct mce_info *mi;
978
979 for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++)
980 if (atomic_read(&mi->inuse) && mi->t == current)
981 return mi;
982 return NULL;
983 }
984
mce_clear_info(struct mce_info * mi)985 static void mce_clear_info(struct mce_info *mi)
986 {
987 atomic_set(&mi->inuse, 0);
988 }
989
990 /*
991 * The actual machine check handler. This only handles real
992 * exceptions when something got corrupted coming in through int 18.
993 *
994 * This is executed in NMI context not subject to normal locking rules. This
995 * implies that most kernel services cannot be safely used. Don't even
996 * think about putting a printk in there!
997 *
998 * On Intel systems this is entered on all CPUs in parallel through
999 * MCE broadcast. However some CPUs might be broken beyond repair,
1000 * so be always careful when synchronizing with others.
1001 */
do_machine_check(struct pt_regs * regs,long error_code)1002 void do_machine_check(struct pt_regs *regs, long error_code)
1003 {
1004 struct mce m, *final;
1005 int i;
1006 int worst = 0;
1007 int severity;
1008 /*
1009 * Establish sequential order between the CPUs entering the machine
1010 * check handler.
1011 */
1012 int order;
1013 /*
1014 * If no_way_out gets set, there is no safe way to recover from this
1015 * MCE. If tolerant is cranked up, we'll try anyway.
1016 */
1017 int no_way_out = 0;
1018 /*
1019 * If kill_it gets set, there might be a way to recover from this
1020 * error.
1021 */
1022 int kill_it = 0;
1023 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1024 char *msg = "Unknown";
1025
1026 atomic_inc(&mce_entry);
1027
1028 percpu_inc(mce_exception_count);
1029
1030 if (!banks)
1031 goto out;
1032
1033 mce_gather_info(&m, regs);
1034
1035 final = &__get_cpu_var(mces_seen);
1036 *final = m;
1037
1038 no_way_out = mce_no_way_out(&m, &msg);
1039
1040 barrier();
1041
1042 /*
1043 * When no restart IP might need to kill or panic.
1044 * Assume the worst for now, but if we find the
1045 * severity is MCE_AR_SEVERITY we have other options.
1046 */
1047 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1048 kill_it = 1;
1049
1050 /*
1051 * Go through all the banks in exclusion of the other CPUs.
1052 * This way we don't report duplicated events on shared banks
1053 * because the first one to see it will clear it.
1054 */
1055 order = mce_start(&no_way_out);
1056 for (i = 0; i < banks; i++) {
1057 __clear_bit(i, toclear);
1058 if (!mce_banks[i].ctl)
1059 continue;
1060
1061 m.misc = 0;
1062 m.addr = 0;
1063 m.bank = i;
1064
1065 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
1066 if ((m.status & MCI_STATUS_VAL) == 0)
1067 continue;
1068
1069 /*
1070 * Non uncorrected or non signaled errors are handled by
1071 * machine_check_poll. Leave them alone, unless this panics.
1072 */
1073 if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1074 !no_way_out)
1075 continue;
1076
1077 /*
1078 * Set taint even when machine check was not enabled.
1079 */
1080 add_taint(TAINT_MACHINE_CHECK);
1081
1082 severity = mce_severity(&m, tolerant, NULL);
1083
1084 /*
1085 * When machine check was for corrected handler don't touch,
1086 * unless we're panicing.
1087 */
1088 if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1089 continue;
1090 __set_bit(i, toclear);
1091 if (severity == MCE_NO_SEVERITY) {
1092 /*
1093 * Machine check event was not enabled. Clear, but
1094 * ignore.
1095 */
1096 continue;
1097 }
1098
1099 mce_read_aux(&m, i);
1100
1101 /*
1102 * Action optional error. Queue address for later processing.
1103 * When the ring overflows we just ignore the AO error.
1104 * RED-PEN add some logging mechanism when
1105 * usable_address or mce_add_ring fails.
1106 * RED-PEN don't ignore overflow for tolerant == 0
1107 */
1108 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1109 mce_ring_add(m.addr >> PAGE_SHIFT);
1110
1111 mce_log(&m);
1112
1113 if (severity > worst) {
1114 *final = m;
1115 worst = severity;
1116 }
1117 }
1118
1119 /* mce_clear_state will clear *final, save locally for use later */
1120 m = *final;
1121
1122 if (!no_way_out)
1123 mce_clear_state(toclear);
1124
1125 /*
1126 * Do most of the synchronization with other CPUs.
1127 * When there's any problem use only local no_way_out state.
1128 */
1129 if (mce_end(order) < 0)
1130 no_way_out = worst >= MCE_PANIC_SEVERITY;
1131
1132 /*
1133 * At insane "tolerant" levels we take no action. Otherwise
1134 * we only die if we have no other choice. For less serious
1135 * issues we try to recover, or limit damage to the current
1136 * process.
1137 */
1138 if (tolerant < 3) {
1139 if (no_way_out)
1140 mce_panic("Fatal machine check on current CPU", &m, msg);
1141 if (worst == MCE_AR_SEVERITY) {
1142 /* schedule action before return to userland */
1143 mce_save_info(m.addr, m.mcgstatus & MCG_STATUS_RIPV);
1144 set_thread_flag(TIF_MCE_NOTIFY);
1145 } else if (kill_it) {
1146 force_sig(SIGBUS, current);
1147 }
1148 }
1149
1150 if (worst > 0)
1151 mce_report_event(regs);
1152 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1153 out:
1154 atomic_dec(&mce_entry);
1155 sync_core();
1156 }
1157 EXPORT_SYMBOL_GPL(do_machine_check);
1158
1159 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int vector,int flags)1160 int memory_failure(unsigned long pfn, int vector, int flags)
1161 {
1162 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1163 BUG_ON(flags & MF_ACTION_REQUIRED);
1164 printk(KERN_ERR "Uncorrected memory error in page 0x%lx ignored\n"
1165 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", pfn);
1166
1167 return 0;
1168 }
1169 #endif
1170
1171 /*
1172 * Called in process context that interrupted by MCE and marked with
1173 * TIF_MCE_NOTIFY, just before returning to erroneous userland.
1174 * This code is allowed to sleep.
1175 * Attempt possible recovery such as calling the high level VM handler to
1176 * process any corrupted pages, and kill/signal current process if required.
1177 * Action required errors are handled here.
1178 */
mce_notify_process(void)1179 void mce_notify_process(void)
1180 {
1181 unsigned long pfn;
1182 struct mce_info *mi = mce_find_info();
1183 int flags = MF_ACTION_REQUIRED;
1184
1185 if (!mi)
1186 mce_panic("Lost physical address for unconsumed uncorrectable error", NULL, NULL);
1187 pfn = mi->paddr >> PAGE_SHIFT;
1188
1189 clear_thread_flag(TIF_MCE_NOTIFY);
1190
1191 pr_err("Uncorrected hardware memory error in user-access at %llx",
1192 mi->paddr);
1193 /*
1194 * We must call memory_failure() here even if the current process is
1195 * doomed. We still need to mark the page as poisoned and alert any
1196 * other users of the page.
1197 */
1198 if (!mi->restartable)
1199 flags |= MF_MUST_KILL;
1200 if (memory_failure(pfn, MCE_VECTOR, flags) < 0) {
1201 pr_err("Memory error not recovered");
1202 force_sig(SIGBUS, current);
1203 }
1204 mce_clear_info(mi);
1205 }
1206
1207 /*
1208 * Action optional processing happens here (picking up
1209 * from the list of faulting pages that do_machine_check()
1210 * placed into the "ring").
1211 */
mce_process_work(struct work_struct * dummy)1212 static void mce_process_work(struct work_struct *dummy)
1213 {
1214 unsigned long pfn;
1215
1216 while (mce_ring_get(&pfn))
1217 memory_failure(pfn, MCE_VECTOR, 0);
1218 }
1219
1220 #ifdef CONFIG_X86_MCE_INTEL
1221 /***
1222 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1223 * @cpu: The CPU on which the event occurred.
1224 * @status: Event status information
1225 *
1226 * This function should be called by the thermal interrupt after the
1227 * event has been processed and the decision was made to log the event
1228 * further.
1229 *
1230 * The status parameter will be saved to the 'status' field of 'struct mce'
1231 * and historically has been the register value of the
1232 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1233 */
mce_log_therm_throt_event(__u64 status)1234 void mce_log_therm_throt_event(__u64 status)
1235 {
1236 struct mce m;
1237
1238 mce_setup(&m);
1239 m.bank = MCE_THERMAL_BANK;
1240 m.status = status;
1241 mce_log(&m);
1242 }
1243 #endif /* CONFIG_X86_MCE_INTEL */
1244
1245 /*
1246 * Periodic polling timer for "silent" machine check errors. If the
1247 * poller finds an MCE, poll 2x faster. When the poller finds no more
1248 * errors, poll 2x slower (up to check_interval seconds).
1249 */
1250 static int check_interval = 5 * 60; /* 5 minutes */
1251
1252 static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1253 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1254
mce_start_timer(unsigned long data)1255 static void mce_start_timer(unsigned long data)
1256 {
1257 struct timer_list *t = &per_cpu(mce_timer, data);
1258 int *n;
1259
1260 WARN_ON(smp_processor_id() != data);
1261
1262 if (mce_available(__this_cpu_ptr(&cpu_info))) {
1263 machine_check_poll(MCP_TIMESTAMP,
1264 &__get_cpu_var(mce_poll_banks));
1265 }
1266
1267 /*
1268 * Alert userspace if needed. If we logged an MCE, reduce the
1269 * polling interval, otherwise increase the polling interval.
1270 */
1271 n = &__get_cpu_var(mce_next_interval);
1272 if (mce_notify_irq())
1273 *n = max(*n/2, HZ/100);
1274 else
1275 *n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1276
1277 t->expires = jiffies + *n;
1278 add_timer_on(t, smp_processor_id());
1279 }
1280
1281 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
mce_timer_delete_all(void)1282 static void mce_timer_delete_all(void)
1283 {
1284 int cpu;
1285
1286 for_each_online_cpu(cpu)
1287 del_timer_sync(&per_cpu(mce_timer, cpu));
1288 }
1289
mce_do_trigger(struct work_struct * work)1290 static void mce_do_trigger(struct work_struct *work)
1291 {
1292 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1293 }
1294
1295 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1296
1297 /*
1298 * Notify the user(s) about new machine check events.
1299 * Can be called from interrupt context, but not from machine check/NMI
1300 * context.
1301 */
mce_notify_irq(void)1302 int mce_notify_irq(void)
1303 {
1304 /* Not more than two messages every minute */
1305 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1306
1307 if (test_and_clear_bit(0, &mce_need_notify)) {
1308 /* wake processes polling /dev/mcelog */
1309 wake_up_interruptible(&mce_chrdev_wait);
1310
1311 /*
1312 * There is no risk of missing notifications because
1313 * work_pending is always cleared before the function is
1314 * executed.
1315 */
1316 if (mce_helper[0] && !work_pending(&mce_trigger_work))
1317 schedule_work(&mce_trigger_work);
1318
1319 if (__ratelimit(&ratelimit))
1320 pr_info(HW_ERR "Machine check events logged\n");
1321
1322 return 1;
1323 }
1324 return 0;
1325 }
1326 EXPORT_SYMBOL_GPL(mce_notify_irq);
1327
__mcheck_cpu_mce_banks_init(void)1328 static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1329 {
1330 int i;
1331
1332 mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1333 if (!mce_banks)
1334 return -ENOMEM;
1335 for (i = 0; i < banks; i++) {
1336 struct mce_bank *b = &mce_banks[i];
1337
1338 b->ctl = -1ULL;
1339 b->init = 1;
1340 }
1341 return 0;
1342 }
1343
1344 /*
1345 * Initialize Machine Checks for a CPU.
1346 */
__mcheck_cpu_cap_init(void)1347 static int __cpuinit __mcheck_cpu_cap_init(void)
1348 {
1349 unsigned b;
1350 u64 cap;
1351
1352 rdmsrl(MSR_IA32_MCG_CAP, cap);
1353
1354 b = cap & MCG_BANKCNT_MASK;
1355 if (!banks)
1356 printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1357
1358 if (b > MAX_NR_BANKS) {
1359 printk(KERN_WARNING
1360 "MCE: Using only %u machine check banks out of %u\n",
1361 MAX_NR_BANKS, b);
1362 b = MAX_NR_BANKS;
1363 }
1364
1365 /* Don't support asymmetric configurations today */
1366 WARN_ON(banks != 0 && b != banks);
1367 banks = b;
1368 if (!mce_banks) {
1369 int err = __mcheck_cpu_mce_banks_init();
1370
1371 if (err)
1372 return err;
1373 }
1374
1375 /* Use accurate RIP reporting if available. */
1376 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1377 rip_msr = MSR_IA32_MCG_EIP;
1378
1379 if (cap & MCG_SER_P)
1380 mce_ser = 1;
1381
1382 return 0;
1383 }
1384
__mcheck_cpu_init_generic(void)1385 static void __mcheck_cpu_init_generic(void)
1386 {
1387 mce_banks_t all_banks;
1388 u64 cap;
1389 int i;
1390
1391 /*
1392 * Log the machine checks left over from the previous reset.
1393 */
1394 bitmap_fill(all_banks, MAX_NR_BANKS);
1395 machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1396
1397 set_in_cr4(X86_CR4_MCE);
1398
1399 rdmsrl(MSR_IA32_MCG_CAP, cap);
1400 if (cap & MCG_CTL_P)
1401 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1402
1403 for (i = 0; i < banks; i++) {
1404 struct mce_bank *b = &mce_banks[i];
1405
1406 if (!b->init)
1407 continue;
1408 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1409 wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1410 }
1411 }
1412
1413 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1414 static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1415 {
1416 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1417 pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1418 return -EOPNOTSUPP;
1419 }
1420
1421 /* This should be disabled by the BIOS, but isn't always */
1422 if (c->x86_vendor == X86_VENDOR_AMD) {
1423 if (c->x86 == 15 && banks > 4) {
1424 /*
1425 * disable GART TBL walk error reporting, which
1426 * trips off incorrectly with the IOMMU & 3ware
1427 * & Cerberus:
1428 */
1429 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1430 }
1431 if (c->x86 <= 17 && mce_bootlog < 0) {
1432 /*
1433 * Lots of broken BIOS around that don't clear them
1434 * by default and leave crap in there. Don't log:
1435 */
1436 mce_bootlog = 0;
1437 }
1438 /*
1439 * Various K7s with broken bank 0 around. Always disable
1440 * by default.
1441 */
1442 if (c->x86 == 6 && banks > 0)
1443 mce_banks[0].ctl = 0;
1444 }
1445
1446 if (c->x86_vendor == X86_VENDOR_INTEL) {
1447 /*
1448 * SDM documents that on family 6 bank 0 should not be written
1449 * because it aliases to another special BIOS controlled
1450 * register.
1451 * But it's not aliased anymore on model 0x1a+
1452 * Don't ignore bank 0 completely because there could be a
1453 * valid event later, merely don't write CTL0.
1454 */
1455
1456 if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1457 mce_banks[0].init = 0;
1458
1459 /*
1460 * All newer Intel systems support MCE broadcasting. Enable
1461 * synchronization with a one second timeout.
1462 */
1463 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1464 monarch_timeout < 0)
1465 monarch_timeout = USEC_PER_SEC;
1466
1467 /*
1468 * There are also broken BIOSes on some Pentium M and
1469 * earlier systems:
1470 */
1471 if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1472 mce_bootlog = 0;
1473 }
1474 if (monarch_timeout < 0)
1475 monarch_timeout = 0;
1476 if (mce_bootlog != 0)
1477 mce_panic_timeout = 30;
1478
1479 return 0;
1480 }
1481
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1482 static int __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1483 {
1484 if (c->x86 != 5)
1485 return 0;
1486
1487 switch (c->x86_vendor) {
1488 case X86_VENDOR_INTEL:
1489 intel_p5_mcheck_init(c);
1490 return 1;
1491 break;
1492 case X86_VENDOR_CENTAUR:
1493 winchip_mcheck_init(c);
1494 return 1;
1495 break;
1496 }
1497
1498 return 0;
1499 }
1500
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)1501 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1502 {
1503 switch (c->x86_vendor) {
1504 case X86_VENDOR_INTEL:
1505 mce_intel_feature_init(c);
1506 break;
1507 case X86_VENDOR_AMD:
1508 mce_amd_feature_init(c);
1509 break;
1510 default:
1511 break;
1512 }
1513 }
1514
__mcheck_cpu_init_timer(void)1515 static void __mcheck_cpu_init_timer(void)
1516 {
1517 struct timer_list *t = &__get_cpu_var(mce_timer);
1518 int *n = &__get_cpu_var(mce_next_interval);
1519
1520 setup_timer(t, mce_start_timer, smp_processor_id());
1521
1522 if (mce_ignore_ce)
1523 return;
1524
1525 *n = check_interval * HZ;
1526 if (!*n)
1527 return;
1528 t->expires = round_jiffies(jiffies + *n);
1529 add_timer_on(t, smp_processor_id());
1530 }
1531
1532 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs,long error_code)1533 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1534 {
1535 printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1536 smp_processor_id());
1537 }
1538
1539 /* Call the installed machine check handler for this CPU setup. */
1540 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1541 unexpected_machine_check;
1542
1543 /*
1544 * Called for each booted CPU to set up machine checks.
1545 * Must be called with preempt off:
1546 */
mcheck_cpu_init(struct cpuinfo_x86 * c)1547 void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1548 {
1549 if (mce_disabled)
1550 return;
1551
1552 if (__mcheck_cpu_ancient_init(c))
1553 return;
1554
1555 if (!mce_available(c))
1556 return;
1557
1558 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1559 mce_disabled = 1;
1560 return;
1561 }
1562
1563 machine_check_vector = do_machine_check;
1564
1565 __mcheck_cpu_init_generic();
1566 __mcheck_cpu_init_vendor(c);
1567 __mcheck_cpu_init_timer();
1568 INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1569 init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1570 }
1571
1572 /*
1573 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1574 */
1575
1576 static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1577 static int mce_chrdev_open_count; /* #times opened */
1578 static int mce_chrdev_open_exclu; /* already open exclusive? */
1579
mce_chrdev_open(struct inode * inode,struct file * file)1580 static int mce_chrdev_open(struct inode *inode, struct file *file)
1581 {
1582 spin_lock(&mce_chrdev_state_lock);
1583
1584 if (mce_chrdev_open_exclu ||
1585 (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1586 spin_unlock(&mce_chrdev_state_lock);
1587
1588 return -EBUSY;
1589 }
1590
1591 if (file->f_flags & O_EXCL)
1592 mce_chrdev_open_exclu = 1;
1593 mce_chrdev_open_count++;
1594
1595 spin_unlock(&mce_chrdev_state_lock);
1596
1597 return nonseekable_open(inode, file);
1598 }
1599
mce_chrdev_release(struct inode * inode,struct file * file)1600 static int mce_chrdev_release(struct inode *inode, struct file *file)
1601 {
1602 spin_lock(&mce_chrdev_state_lock);
1603
1604 mce_chrdev_open_count--;
1605 mce_chrdev_open_exclu = 0;
1606
1607 spin_unlock(&mce_chrdev_state_lock);
1608
1609 return 0;
1610 }
1611
collect_tscs(void * data)1612 static void collect_tscs(void *data)
1613 {
1614 unsigned long *cpu_tsc = (unsigned long *)data;
1615
1616 rdtscll(cpu_tsc[smp_processor_id()]);
1617 }
1618
1619 static int mce_apei_read_done;
1620
1621 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
__mce_read_apei(char __user ** ubuf,size_t usize)1622 static int __mce_read_apei(char __user **ubuf, size_t usize)
1623 {
1624 int rc;
1625 u64 record_id;
1626 struct mce m;
1627
1628 if (usize < sizeof(struct mce))
1629 return -EINVAL;
1630
1631 rc = apei_read_mce(&m, &record_id);
1632 /* Error or no more MCE record */
1633 if (rc <= 0) {
1634 mce_apei_read_done = 1;
1635 /*
1636 * When ERST is disabled, mce_chrdev_read() should return
1637 * "no record" instead of "no device."
1638 */
1639 if (rc == -ENODEV)
1640 return 0;
1641 return rc;
1642 }
1643 rc = -EFAULT;
1644 if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1645 return rc;
1646 /*
1647 * In fact, we should have cleared the record after that has
1648 * been flushed to the disk or sent to network in
1649 * /sbin/mcelog, but we have no interface to support that now,
1650 * so just clear it to avoid duplication.
1651 */
1652 rc = apei_clear_mce(record_id);
1653 if (rc) {
1654 mce_apei_read_done = 1;
1655 return rc;
1656 }
1657 *ubuf += sizeof(struct mce);
1658
1659 return 0;
1660 }
1661
mce_chrdev_read(struct file * filp,char __user * ubuf,size_t usize,loff_t * off)1662 static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1663 size_t usize, loff_t *off)
1664 {
1665 char __user *buf = ubuf;
1666 unsigned long *cpu_tsc;
1667 unsigned prev, next;
1668 int i, err;
1669
1670 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1671 if (!cpu_tsc)
1672 return -ENOMEM;
1673
1674 mutex_lock(&mce_chrdev_read_mutex);
1675
1676 if (!mce_apei_read_done) {
1677 err = __mce_read_apei(&buf, usize);
1678 if (err || buf != ubuf)
1679 goto out;
1680 }
1681
1682 next = rcu_dereference_check_mce(mcelog.next);
1683
1684 /* Only supports full reads right now */
1685 err = -EINVAL;
1686 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1687 goto out;
1688
1689 err = 0;
1690 prev = 0;
1691 do {
1692 for (i = prev; i < next; i++) {
1693 unsigned long start = jiffies;
1694 struct mce *m = &mcelog.entry[i];
1695
1696 while (!m->finished) {
1697 if (time_after_eq(jiffies, start + 2)) {
1698 memset(m, 0, sizeof(*m));
1699 goto timeout;
1700 }
1701 cpu_relax();
1702 }
1703 smp_rmb();
1704 err |= copy_to_user(buf, m, sizeof(*m));
1705 buf += sizeof(*m);
1706 timeout:
1707 ;
1708 }
1709
1710 memset(mcelog.entry + prev, 0,
1711 (next - prev) * sizeof(struct mce));
1712 prev = next;
1713 next = cmpxchg(&mcelog.next, prev, 0);
1714 } while (next != prev);
1715
1716 synchronize_sched();
1717
1718 /*
1719 * Collect entries that were still getting written before the
1720 * synchronize.
1721 */
1722 on_each_cpu(collect_tscs, cpu_tsc, 1);
1723
1724 for (i = next; i < MCE_LOG_LEN; i++) {
1725 struct mce *m = &mcelog.entry[i];
1726
1727 if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1728 err |= copy_to_user(buf, m, sizeof(*m));
1729 smp_rmb();
1730 buf += sizeof(*m);
1731 memset(m, 0, sizeof(*m));
1732 }
1733 }
1734
1735 if (err)
1736 err = -EFAULT;
1737
1738 out:
1739 mutex_unlock(&mce_chrdev_read_mutex);
1740 kfree(cpu_tsc);
1741
1742 return err ? err : buf - ubuf;
1743 }
1744
mce_chrdev_poll(struct file * file,poll_table * wait)1745 static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1746 {
1747 poll_wait(file, &mce_chrdev_wait, wait);
1748 if (rcu_access_index(mcelog.next))
1749 return POLLIN | POLLRDNORM;
1750 if (!mce_apei_read_done && apei_check_mce())
1751 return POLLIN | POLLRDNORM;
1752 return 0;
1753 }
1754
mce_chrdev_ioctl(struct file * f,unsigned int cmd,unsigned long arg)1755 static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1756 unsigned long arg)
1757 {
1758 int __user *p = (int __user *)arg;
1759
1760 if (!capable(CAP_SYS_ADMIN))
1761 return -EPERM;
1762
1763 switch (cmd) {
1764 case MCE_GET_RECORD_LEN:
1765 return put_user(sizeof(struct mce), p);
1766 case MCE_GET_LOG_LEN:
1767 return put_user(MCE_LOG_LEN, p);
1768 case MCE_GETCLEAR_FLAGS: {
1769 unsigned flags;
1770
1771 do {
1772 flags = mcelog.flags;
1773 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1774
1775 return put_user(flags, p);
1776 }
1777 default:
1778 return -ENOTTY;
1779 }
1780 }
1781
1782 static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1783 size_t usize, loff_t *off);
1784
register_mce_write_callback(ssize_t (* fn)(struct file * filp,const char __user * ubuf,size_t usize,loff_t * off))1785 void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1786 const char __user *ubuf,
1787 size_t usize, loff_t *off))
1788 {
1789 mce_write = fn;
1790 }
1791 EXPORT_SYMBOL_GPL(register_mce_write_callback);
1792
mce_chrdev_write(struct file * filp,const char __user * ubuf,size_t usize,loff_t * off)1793 ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1794 size_t usize, loff_t *off)
1795 {
1796 if (mce_write)
1797 return mce_write(filp, ubuf, usize, off);
1798 else
1799 return -EINVAL;
1800 }
1801
1802 static const struct file_operations mce_chrdev_ops = {
1803 .open = mce_chrdev_open,
1804 .release = mce_chrdev_release,
1805 .read = mce_chrdev_read,
1806 .write = mce_chrdev_write,
1807 .poll = mce_chrdev_poll,
1808 .unlocked_ioctl = mce_chrdev_ioctl,
1809 .llseek = no_llseek,
1810 };
1811
1812 static struct miscdevice mce_chrdev_device = {
1813 MISC_MCELOG_MINOR,
1814 "mcelog",
1815 &mce_chrdev_ops,
1816 };
1817
1818 /*
1819 * mce=off Disables machine check
1820 * mce=no_cmci Disables CMCI
1821 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1822 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1823 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1824 * monarchtimeout is how long to wait for other CPUs on machine
1825 * check, or 0 to not wait
1826 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1827 * mce=nobootlog Don't log MCEs from before booting.
1828 */
mcheck_enable(char * str)1829 static int __init mcheck_enable(char *str)
1830 {
1831 if (*str == 0) {
1832 enable_p5_mce();
1833 return 1;
1834 }
1835 if (*str == '=')
1836 str++;
1837 if (!strcmp(str, "off"))
1838 mce_disabled = 1;
1839 else if (!strcmp(str, "no_cmci"))
1840 mce_cmci_disabled = 1;
1841 else if (!strcmp(str, "dont_log_ce"))
1842 mce_dont_log_ce = 1;
1843 else if (!strcmp(str, "ignore_ce"))
1844 mce_ignore_ce = 1;
1845 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1846 mce_bootlog = (str[0] == 'b');
1847 else if (isdigit(str[0])) {
1848 get_option(&str, &tolerant);
1849 if (*str == ',') {
1850 ++str;
1851 get_option(&str, &monarch_timeout);
1852 }
1853 } else {
1854 printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1855 str);
1856 return 0;
1857 }
1858 return 1;
1859 }
1860 __setup("mce", mcheck_enable);
1861
mcheck_init(void)1862 int __init mcheck_init(void)
1863 {
1864 mcheck_intel_therm_init();
1865
1866 return 0;
1867 }
1868
1869 /*
1870 * mce_syscore: PM support
1871 */
1872
1873 /*
1874 * Disable machine checks on suspend and shutdown. We can't really handle
1875 * them later.
1876 */
mce_disable_error_reporting(void)1877 static int mce_disable_error_reporting(void)
1878 {
1879 int i;
1880
1881 for (i = 0; i < banks; i++) {
1882 struct mce_bank *b = &mce_banks[i];
1883
1884 if (b->init)
1885 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1886 }
1887 return 0;
1888 }
1889
mce_syscore_suspend(void)1890 static int mce_syscore_suspend(void)
1891 {
1892 return mce_disable_error_reporting();
1893 }
1894
mce_syscore_shutdown(void)1895 static void mce_syscore_shutdown(void)
1896 {
1897 mce_disable_error_reporting();
1898 }
1899
1900 /*
1901 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1902 * Only one CPU is active at this time, the others get re-added later using
1903 * CPU hotplug:
1904 */
mce_syscore_resume(void)1905 static void mce_syscore_resume(void)
1906 {
1907 __mcheck_cpu_init_generic();
1908 __mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1909 }
1910
1911 static struct syscore_ops mce_syscore_ops = {
1912 .suspend = mce_syscore_suspend,
1913 .shutdown = mce_syscore_shutdown,
1914 .resume = mce_syscore_resume,
1915 };
1916
1917 /*
1918 * mce_device: Sysfs support
1919 */
1920
mce_cpu_restart(void * data)1921 static void mce_cpu_restart(void *data)
1922 {
1923 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1924 return;
1925 __mcheck_cpu_init_generic();
1926 __mcheck_cpu_init_timer();
1927 }
1928
1929 /* Reinit MCEs after user configuration changes */
mce_restart(void)1930 static void mce_restart(void)
1931 {
1932 mce_timer_delete_all();
1933 on_each_cpu(mce_cpu_restart, NULL, 1);
1934 }
1935
1936 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)1937 static void mce_disable_cmci(void *data)
1938 {
1939 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1940 return;
1941 cmci_clear();
1942 }
1943
mce_enable_ce(void * all)1944 static void mce_enable_ce(void *all)
1945 {
1946 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1947 return;
1948 cmci_reenable();
1949 cmci_recheck();
1950 if (all)
1951 __mcheck_cpu_init_timer();
1952 }
1953
1954 static struct bus_type mce_subsys = {
1955 .name = "machinecheck",
1956 .dev_name = "machinecheck",
1957 };
1958
1959 DEFINE_PER_CPU(struct device *, mce_device);
1960
1961 __cpuinitdata
1962 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1963
attr_to_bank(struct device_attribute * attr)1964 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
1965 {
1966 return container_of(attr, struct mce_bank, attr);
1967 }
1968
show_bank(struct device * s,struct device_attribute * attr,char * buf)1969 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
1970 char *buf)
1971 {
1972 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1973 }
1974
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)1975 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
1976 const char *buf, size_t size)
1977 {
1978 u64 new;
1979
1980 if (strict_strtoull(buf, 0, &new) < 0)
1981 return -EINVAL;
1982
1983 attr_to_bank(attr)->ctl = new;
1984 mce_restart();
1985
1986 return size;
1987 }
1988
1989 static ssize_t
show_trigger(struct device * s,struct device_attribute * attr,char * buf)1990 show_trigger(struct device *s, struct device_attribute *attr, char *buf)
1991 {
1992 strcpy(buf, mce_helper);
1993 strcat(buf, "\n");
1994 return strlen(mce_helper) + 1;
1995 }
1996
set_trigger(struct device * s,struct device_attribute * attr,const char * buf,size_t siz)1997 static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
1998 const char *buf, size_t siz)
1999 {
2000 char *p;
2001
2002 strncpy(mce_helper, buf, sizeof(mce_helper));
2003 mce_helper[sizeof(mce_helper)-1] = 0;
2004 p = strchr(mce_helper, '\n');
2005
2006 if (p)
2007 *p = 0;
2008
2009 return strlen(mce_helper) + !!p;
2010 }
2011
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2012 static ssize_t set_ignore_ce(struct device *s,
2013 struct device_attribute *attr,
2014 const char *buf, size_t size)
2015 {
2016 u64 new;
2017
2018 if (strict_strtoull(buf, 0, &new) < 0)
2019 return -EINVAL;
2020
2021 if (mce_ignore_ce ^ !!new) {
2022 if (new) {
2023 /* disable ce features */
2024 mce_timer_delete_all();
2025 on_each_cpu(mce_disable_cmci, NULL, 1);
2026 mce_ignore_ce = 1;
2027 } else {
2028 /* enable ce features */
2029 mce_ignore_ce = 0;
2030 on_each_cpu(mce_enable_ce, (void *)1, 1);
2031 }
2032 }
2033 return size;
2034 }
2035
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2036 static ssize_t set_cmci_disabled(struct device *s,
2037 struct device_attribute *attr,
2038 const char *buf, size_t size)
2039 {
2040 u64 new;
2041
2042 if (strict_strtoull(buf, 0, &new) < 0)
2043 return -EINVAL;
2044
2045 if (mce_cmci_disabled ^ !!new) {
2046 if (new) {
2047 /* disable cmci */
2048 on_each_cpu(mce_disable_cmci, NULL, 1);
2049 mce_cmci_disabled = 1;
2050 } else {
2051 /* enable cmci */
2052 mce_cmci_disabled = 0;
2053 on_each_cpu(mce_enable_ce, NULL, 1);
2054 }
2055 }
2056 return size;
2057 }
2058
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2059 static ssize_t store_int_with_restart(struct device *s,
2060 struct device_attribute *attr,
2061 const char *buf, size_t size)
2062 {
2063 ssize_t ret = device_store_int(s, attr, buf, size);
2064 mce_restart();
2065 return ret;
2066 }
2067
2068 static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
2069 static DEVICE_INT_ATTR(tolerant, 0644, tolerant);
2070 static DEVICE_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
2071 static DEVICE_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
2072
2073 static struct dev_ext_attribute dev_attr_check_interval = {
2074 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2075 &check_interval
2076 };
2077
2078 static struct dev_ext_attribute dev_attr_ignore_ce = {
2079 __ATTR(ignore_ce, 0644, device_show_int, set_ignore_ce),
2080 &mce_ignore_ce
2081 };
2082
2083 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2084 __ATTR(cmci_disabled, 0644, device_show_int, set_cmci_disabled),
2085 &mce_cmci_disabled
2086 };
2087
2088 static struct device_attribute *mce_device_attrs[] = {
2089 &dev_attr_tolerant.attr,
2090 &dev_attr_check_interval.attr,
2091 &dev_attr_trigger,
2092 &dev_attr_monarch_timeout.attr,
2093 &dev_attr_dont_log_ce.attr,
2094 &dev_attr_ignore_ce.attr,
2095 &dev_attr_cmci_disabled.attr,
2096 NULL
2097 };
2098
2099 static cpumask_var_t mce_device_initialized;
2100
mce_device_release(struct device * dev)2101 static void mce_device_release(struct device *dev)
2102 {
2103 kfree(dev);
2104 }
2105
2106 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
mce_device_create(unsigned int cpu)2107 static __cpuinit int mce_device_create(unsigned int cpu)
2108 {
2109 struct device *dev;
2110 int err;
2111 int i, j;
2112
2113 if (!mce_available(&boot_cpu_data))
2114 return -EIO;
2115
2116 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2117 if (!dev)
2118 return -ENOMEM;
2119 dev->id = cpu;
2120 dev->bus = &mce_subsys;
2121 dev->release = &mce_device_release;
2122
2123 err = device_register(dev);
2124 if (err)
2125 return err;
2126
2127 for (i = 0; mce_device_attrs[i]; i++) {
2128 err = device_create_file(dev, mce_device_attrs[i]);
2129 if (err)
2130 goto error;
2131 }
2132 for (j = 0; j < banks; j++) {
2133 err = device_create_file(dev, &mce_banks[j].attr);
2134 if (err)
2135 goto error2;
2136 }
2137 cpumask_set_cpu(cpu, mce_device_initialized);
2138 per_cpu(mce_device, cpu) = dev;
2139
2140 return 0;
2141 error2:
2142 while (--j >= 0)
2143 device_remove_file(dev, &mce_banks[j].attr);
2144 error:
2145 while (--i >= 0)
2146 device_remove_file(dev, mce_device_attrs[i]);
2147
2148 device_unregister(dev);
2149
2150 return err;
2151 }
2152
mce_device_remove(unsigned int cpu)2153 static __cpuinit void mce_device_remove(unsigned int cpu)
2154 {
2155 struct device *dev = per_cpu(mce_device, cpu);
2156 int i;
2157
2158 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2159 return;
2160
2161 for (i = 0; mce_device_attrs[i]; i++)
2162 device_remove_file(dev, mce_device_attrs[i]);
2163
2164 for (i = 0; i < banks; i++)
2165 device_remove_file(dev, &mce_banks[i].attr);
2166
2167 device_unregister(dev);
2168 cpumask_clear_cpu(cpu, mce_device_initialized);
2169 per_cpu(mce_device, cpu) = NULL;
2170 }
2171
2172 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void * h)2173 static void __cpuinit mce_disable_cpu(void *h)
2174 {
2175 unsigned long action = *(unsigned long *)h;
2176 int i;
2177
2178 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2179 return;
2180
2181 if (!(action & CPU_TASKS_FROZEN))
2182 cmci_clear();
2183 for (i = 0; i < banks; i++) {
2184 struct mce_bank *b = &mce_banks[i];
2185
2186 if (b->init)
2187 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2188 }
2189 }
2190
mce_reenable_cpu(void * h)2191 static void __cpuinit mce_reenable_cpu(void *h)
2192 {
2193 unsigned long action = *(unsigned long *)h;
2194 int i;
2195
2196 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2197 return;
2198
2199 if (!(action & CPU_TASKS_FROZEN))
2200 cmci_reenable();
2201 for (i = 0; i < banks; i++) {
2202 struct mce_bank *b = &mce_banks[i];
2203
2204 if (b->init)
2205 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2206 }
2207 }
2208
2209 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2210 static int __cpuinit
mce_cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)2211 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2212 {
2213 unsigned int cpu = (unsigned long)hcpu;
2214 struct timer_list *t = &per_cpu(mce_timer, cpu);
2215
2216 switch (action) {
2217 case CPU_ONLINE:
2218 case CPU_ONLINE_FROZEN:
2219 mce_device_create(cpu);
2220 if (threshold_cpu_callback)
2221 threshold_cpu_callback(action, cpu);
2222 break;
2223 case CPU_DEAD:
2224 case CPU_DEAD_FROZEN:
2225 if (threshold_cpu_callback)
2226 threshold_cpu_callback(action, cpu);
2227 mce_device_remove(cpu);
2228 break;
2229 case CPU_DOWN_PREPARE:
2230 case CPU_DOWN_PREPARE_FROZEN:
2231 del_timer_sync(t);
2232 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2233 break;
2234 case CPU_DOWN_FAILED:
2235 case CPU_DOWN_FAILED_FROZEN:
2236 if (!mce_ignore_ce && check_interval) {
2237 t->expires = round_jiffies(jiffies +
2238 __get_cpu_var(mce_next_interval));
2239 add_timer_on(t, cpu);
2240 }
2241 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2242 break;
2243 case CPU_POST_DEAD:
2244 /* intentionally ignoring frozen here */
2245 cmci_rediscover(cpu);
2246 break;
2247 }
2248 return NOTIFY_OK;
2249 }
2250
2251 static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2252 .notifier_call = mce_cpu_callback,
2253 };
2254
mce_init_banks(void)2255 static __init void mce_init_banks(void)
2256 {
2257 int i;
2258
2259 for (i = 0; i < banks; i++) {
2260 struct mce_bank *b = &mce_banks[i];
2261 struct device_attribute *a = &b->attr;
2262
2263 sysfs_attr_init(&a->attr);
2264 a->attr.name = b->attrname;
2265 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2266
2267 a->attr.mode = 0644;
2268 a->show = show_bank;
2269 a->store = set_bank;
2270 }
2271 }
2272
mcheck_init_device(void)2273 static __init int mcheck_init_device(void)
2274 {
2275 int err;
2276 int i = 0;
2277
2278 if (!mce_available(&boot_cpu_data))
2279 return -EIO;
2280
2281 zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL);
2282
2283 mce_init_banks();
2284
2285 err = subsys_system_register(&mce_subsys, NULL);
2286 if (err)
2287 return err;
2288
2289 for_each_online_cpu(i) {
2290 err = mce_device_create(i);
2291 if (err)
2292 return err;
2293 }
2294
2295 register_syscore_ops(&mce_syscore_ops);
2296 register_hotcpu_notifier(&mce_cpu_notifier);
2297
2298 /* register character device /dev/mcelog */
2299 misc_register(&mce_chrdev_device);
2300
2301 return err;
2302 }
2303 device_initcall(mcheck_init_device);
2304
2305 /*
2306 * Old style boot options parsing. Only for compatibility.
2307 */
mcheck_disable(char * str)2308 static int __init mcheck_disable(char *str)
2309 {
2310 mce_disabled = 1;
2311 return 1;
2312 }
2313 __setup("nomce", mcheck_disable);
2314
2315 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2316 struct dentry *mce_get_debugfs_dir(void)
2317 {
2318 static struct dentry *dmce;
2319
2320 if (!dmce)
2321 dmce = debugfs_create_dir("mce", NULL);
2322
2323 return dmce;
2324 }
2325
mce_reset(void)2326 static void mce_reset(void)
2327 {
2328 cpu_missing = 0;
2329 atomic_set(&mce_fake_paniced, 0);
2330 atomic_set(&mce_executing, 0);
2331 atomic_set(&mce_callin, 0);
2332 atomic_set(&global_nwo, 0);
2333 }
2334
fake_panic_get(void * data,u64 * val)2335 static int fake_panic_get(void *data, u64 *val)
2336 {
2337 *val = fake_panic;
2338 return 0;
2339 }
2340
fake_panic_set(void * data,u64 val)2341 static int fake_panic_set(void *data, u64 val)
2342 {
2343 mce_reset();
2344 fake_panic = val;
2345 return 0;
2346 }
2347
2348 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2349 fake_panic_set, "%llu\n");
2350
mcheck_debugfs_init(void)2351 static int __init mcheck_debugfs_init(void)
2352 {
2353 struct dentry *dmce, *ffake_panic;
2354
2355 dmce = mce_get_debugfs_dir();
2356 if (!dmce)
2357 return -ENOMEM;
2358 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2359 &fake_panic_fops);
2360 if (!ffake_panic)
2361 return -ENOMEM;
2362
2363 return 0;
2364 }
2365 late_initcall(mcheck_debugfs_init);
2366 #endif
2367