1 /*
2  * Machine check handler.
3  *
4  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5  * Rest from unknown author(s).
6  * 2004 Andi Kleen. Rewrote most of it.
7  * Copyright 2008 Intel Corporation
8  * Author: Andi Kleen
9  */
10 #include <linux/thread_info.h>
11 #include <linux/capability.h>
12 #include <linux/miscdevice.h>
13 #include <linux/ratelimit.h>
14 #include <linux/kallsyms.h>
15 #include <linux/rcupdate.h>
16 #include <linux/kobject.h>
17 #include <linux/uaccess.h>
18 #include <linux/kdebug.h>
19 #include <linux/kernel.h>
20 #include <linux/percpu.h>
21 #include <linux/string.h>
22 #include <linux/device.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/delay.h>
25 #include <linux/ctype.h>
26 #include <linux/sched.h>
27 #include <linux/sysfs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/kmod.h>
32 #include <linux/poll.h>
33 #include <linux/nmi.h>
34 #include <linux/cpu.h>
35 #include <linux/smp.h>
36 #include <linux/fs.h>
37 #include <linux/mm.h>
38 #include <linux/debugfs.h>
39 #include <linux/irq_work.h>
40 #include <linux/export.h>
41 
42 #include <asm/processor.h>
43 #include <asm/mce.h>
44 #include <asm/msr.h>
45 
46 #include "mce-internal.h"
47 
48 static DEFINE_MUTEX(mce_chrdev_read_mutex);
49 
50 #define rcu_dereference_check_mce(p) \
51 	rcu_dereference_index_check((p), \
52 			      rcu_read_lock_sched_held() || \
53 			      lockdep_is_held(&mce_chrdev_read_mutex))
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/mce.h>
57 
58 int mce_disabled __read_mostly;
59 
60 #define MISC_MCELOG_MINOR	227
61 
62 #define SPINUNIT 100	/* 100ns */
63 
64 atomic_t mce_entry;
65 
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67 
68 /*
69  * Tolerant levels:
70  *   0: always panic on uncorrected errors, log corrected errors
71  *   1: panic or SIGBUS on uncorrected errors, log corrected errors
72  *   2: SIGBUS or log uncorrected errors (if possible), log corrected errors
73  *   3: never panic or SIGBUS, log all errors (for testing only)
74  */
75 static int			tolerant		__read_mostly = 1;
76 static int			banks			__read_mostly;
77 static int			rip_msr			__read_mostly;
78 static int			mce_bootlog		__read_mostly = -1;
79 static int			monarch_timeout		__read_mostly = -1;
80 static int			mce_panic_timeout	__read_mostly;
81 static int			mce_dont_log_ce		__read_mostly;
82 int				mce_cmci_disabled	__read_mostly;
83 int				mce_ignore_ce		__read_mostly;
84 int				mce_ser			__read_mostly;
85 
86 struct mce_bank                *mce_banks		__read_mostly;
87 
88 /* User mode helper program triggered by machine check event */
89 static unsigned long		mce_need_notify;
90 static char			mce_helper[128];
91 static char			*mce_helper_argv[2] = { mce_helper, NULL };
92 
93 static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
94 
95 static DEFINE_PER_CPU(struct mce, mces_seen);
96 static int			cpu_missing;
97 
98 /* MCA banks polled by the period polling timer for corrected events */
99 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
100 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
101 };
102 
103 static DEFINE_PER_CPU(struct work_struct, mce_work);
104 
105 /*
106  * CPU/chipset specific EDAC code can register a notifier call here to print
107  * MCE errors in a human-readable form.
108  */
109 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
110 
111 /* Do initial initialization of a struct mce */
mce_setup(struct mce * m)112 void mce_setup(struct mce *m)
113 {
114 	memset(m, 0, sizeof(struct mce));
115 	m->cpu = m->extcpu = smp_processor_id();
116 	rdtscll(m->tsc);
117 	/* We hope get_seconds stays lockless */
118 	m->time = get_seconds();
119 	m->cpuvendor = boot_cpu_data.x86_vendor;
120 	m->cpuid = cpuid_eax(1);
121 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
122 	m->apicid = cpu_data(m->extcpu).initial_apicid;
123 	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
124 }
125 
126 DEFINE_PER_CPU(struct mce, injectm);
127 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
128 
129 /*
130  * Lockless MCE logging infrastructure.
131  * This avoids deadlocks on printk locks without having to break locks. Also
132  * separate MCEs from kernel messages to avoid bogus bug reports.
133  */
134 
135 static struct mce_log mcelog = {
136 	.signature	= MCE_LOG_SIGNATURE,
137 	.len		= MCE_LOG_LEN,
138 	.recordlen	= sizeof(struct mce),
139 };
140 
mce_log(struct mce * mce)141 void mce_log(struct mce *mce)
142 {
143 	unsigned next, entry;
144 	int ret = 0;
145 
146 	/* Emit the trace record: */
147 	trace_mce_record(mce);
148 
149 	ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
150 	if (ret == NOTIFY_STOP)
151 		return;
152 
153 	mce->finished = 0;
154 	wmb();
155 	for (;;) {
156 		entry = rcu_dereference_check_mce(mcelog.next);
157 		for (;;) {
158 
159 			/*
160 			 * When the buffer fills up discard new entries.
161 			 * Assume that the earlier errors are the more
162 			 * interesting ones:
163 			 */
164 			if (entry >= MCE_LOG_LEN) {
165 				set_bit(MCE_OVERFLOW,
166 					(unsigned long *)&mcelog.flags);
167 				return;
168 			}
169 			/* Old left over entry. Skip: */
170 			if (mcelog.entry[entry].finished) {
171 				entry++;
172 				continue;
173 			}
174 			break;
175 		}
176 		smp_rmb();
177 		next = entry + 1;
178 		if (cmpxchg(&mcelog.next, entry, next) == entry)
179 			break;
180 	}
181 	memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
182 	wmb();
183 	mcelog.entry[entry].finished = 1;
184 	wmb();
185 
186 	mce->finished = 1;
187 	set_bit(0, &mce_need_notify);
188 }
189 
drain_mcelog_buffer(void)190 static void drain_mcelog_buffer(void)
191 {
192 	unsigned int next, i, prev = 0;
193 
194 	next = ACCESS_ONCE(mcelog.next);
195 
196 	do {
197 		struct mce *m;
198 
199 		/* drain what was logged during boot */
200 		for (i = prev; i < next; i++) {
201 			unsigned long start = jiffies;
202 			unsigned retries = 1;
203 
204 			m = &mcelog.entry[i];
205 
206 			while (!m->finished) {
207 				if (time_after_eq(jiffies, start + 2*retries))
208 					retries++;
209 
210 				cpu_relax();
211 
212 				if (!m->finished && retries >= 4) {
213 					pr_err("MCE: skipping error being logged currently!\n");
214 					break;
215 				}
216 			}
217 			smp_rmb();
218 			atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
219 		}
220 
221 		memset(mcelog.entry + prev, 0, (next - prev) * sizeof(*m));
222 		prev = next;
223 		next = cmpxchg(&mcelog.next, prev, 0);
224 	} while (next != prev);
225 }
226 
227 
mce_register_decode_chain(struct notifier_block * nb)228 void mce_register_decode_chain(struct notifier_block *nb)
229 {
230 	atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
231 	drain_mcelog_buffer();
232 }
233 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
234 
mce_unregister_decode_chain(struct notifier_block * nb)235 void mce_unregister_decode_chain(struct notifier_block *nb)
236 {
237 	atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
238 }
239 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
240 
print_mce(struct mce * m)241 static void print_mce(struct mce *m)
242 {
243 	int ret = 0;
244 
245 	pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
246 	       m->extcpu, m->mcgstatus, m->bank, m->status);
247 
248 	if (m->ip) {
249 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
250 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
251 				m->cs, m->ip);
252 
253 		if (m->cs == __KERNEL_CS)
254 			print_symbol("{%s}", m->ip);
255 		pr_cont("\n");
256 	}
257 
258 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
259 	if (m->addr)
260 		pr_cont("ADDR %llx ", m->addr);
261 	if (m->misc)
262 		pr_cont("MISC %llx ", m->misc);
263 
264 	pr_cont("\n");
265 	/*
266 	 * Note this output is parsed by external tools and old fields
267 	 * should not be changed.
268 	 */
269 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
270 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
271 		cpu_data(m->extcpu).microcode);
272 
273 	/*
274 	 * Print out human-readable details about the MCE error,
275 	 * (if the CPU has an implementation for that)
276 	 */
277 	ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
278 	if (ret == NOTIFY_STOP)
279 		return;
280 
281 	pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
282 }
283 
284 #define PANIC_TIMEOUT 5 /* 5 seconds */
285 
286 static atomic_t mce_paniced;
287 
288 static int fake_panic;
289 static atomic_t mce_fake_paniced;
290 
291 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)292 static void wait_for_panic(void)
293 {
294 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
295 
296 	preempt_disable();
297 	local_irq_enable();
298 	while (timeout-- > 0)
299 		udelay(1);
300 	if (panic_timeout == 0)
301 		panic_timeout = mce_panic_timeout;
302 	panic("Panicing machine check CPU died");
303 }
304 
mce_panic(char * msg,struct mce * final,char * exp)305 static void mce_panic(char *msg, struct mce *final, char *exp)
306 {
307 	int i, apei_err = 0;
308 
309 	if (!fake_panic) {
310 		/*
311 		 * Make sure only one CPU runs in machine check panic
312 		 */
313 		if (atomic_inc_return(&mce_paniced) > 1)
314 			wait_for_panic();
315 		barrier();
316 
317 		bust_spinlocks(1);
318 		console_verbose();
319 	} else {
320 		/* Don't log too much for fake panic */
321 		if (atomic_inc_return(&mce_fake_paniced) > 1)
322 			return;
323 	}
324 	/* First print corrected ones that are still unlogged */
325 	for (i = 0; i < MCE_LOG_LEN; i++) {
326 		struct mce *m = &mcelog.entry[i];
327 		if (!(m->status & MCI_STATUS_VAL))
328 			continue;
329 		if (!(m->status & MCI_STATUS_UC)) {
330 			print_mce(m);
331 			if (!apei_err)
332 				apei_err = apei_write_mce(m);
333 		}
334 	}
335 	/* Now print uncorrected but with the final one last */
336 	for (i = 0; i < MCE_LOG_LEN; i++) {
337 		struct mce *m = &mcelog.entry[i];
338 		if (!(m->status & MCI_STATUS_VAL))
339 			continue;
340 		if (!(m->status & MCI_STATUS_UC))
341 			continue;
342 		if (!final || memcmp(m, final, sizeof(struct mce))) {
343 			print_mce(m);
344 			if (!apei_err)
345 				apei_err = apei_write_mce(m);
346 		}
347 	}
348 	if (final) {
349 		print_mce(final);
350 		if (!apei_err)
351 			apei_err = apei_write_mce(final);
352 	}
353 	if (cpu_missing)
354 		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
355 	if (exp)
356 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
357 	if (!fake_panic) {
358 		if (panic_timeout == 0)
359 			panic_timeout = mce_panic_timeout;
360 		panic(msg);
361 	} else
362 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
363 }
364 
365 /* Support code for software error injection */
366 
msr_to_offset(u32 msr)367 static int msr_to_offset(u32 msr)
368 {
369 	unsigned bank = __this_cpu_read(injectm.bank);
370 
371 	if (msr == rip_msr)
372 		return offsetof(struct mce, ip);
373 	if (msr == MSR_IA32_MCx_STATUS(bank))
374 		return offsetof(struct mce, status);
375 	if (msr == MSR_IA32_MCx_ADDR(bank))
376 		return offsetof(struct mce, addr);
377 	if (msr == MSR_IA32_MCx_MISC(bank))
378 		return offsetof(struct mce, misc);
379 	if (msr == MSR_IA32_MCG_STATUS)
380 		return offsetof(struct mce, mcgstatus);
381 	return -1;
382 }
383 
384 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)385 static u64 mce_rdmsrl(u32 msr)
386 {
387 	u64 v;
388 
389 	if (__this_cpu_read(injectm.finished)) {
390 		int offset = msr_to_offset(msr);
391 
392 		if (offset < 0)
393 			return 0;
394 		return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
395 	}
396 
397 	if (rdmsrl_safe(msr, &v)) {
398 		WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
399 		/*
400 		 * Return zero in case the access faulted. This should
401 		 * not happen normally but can happen if the CPU does
402 		 * something weird, or if the code is buggy.
403 		 */
404 		v = 0;
405 	}
406 
407 	return v;
408 }
409 
mce_wrmsrl(u32 msr,u64 v)410 static void mce_wrmsrl(u32 msr, u64 v)
411 {
412 	if (__this_cpu_read(injectm.finished)) {
413 		int offset = msr_to_offset(msr);
414 
415 		if (offset >= 0)
416 			*(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
417 		return;
418 	}
419 	wrmsrl(msr, v);
420 }
421 
422 /*
423  * Collect all global (w.r.t. this processor) status about this machine
424  * check into our "mce" struct so that we can use it later to assess
425  * the severity of the problem as we read per-bank specific details.
426  */
mce_gather_info(struct mce * m,struct pt_regs * regs)427 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
428 {
429 	mce_setup(m);
430 
431 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
432 	if (regs) {
433 		/*
434 		 * Get the address of the instruction at the time of
435 		 * the machine check error.
436 		 */
437 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
438 			m->ip = regs->ip;
439 			m->cs = regs->cs;
440 
441 			/*
442 			 * When in VM86 mode make the cs look like ring 3
443 			 * always. This is a lie, but it's better than passing
444 			 * the additional vm86 bit around everywhere.
445 			 */
446 			if (v8086_mode(regs))
447 				m->cs |= 3;
448 		}
449 		/* Use accurate RIP reporting if available. */
450 		if (rip_msr)
451 			m->ip = mce_rdmsrl(rip_msr);
452 	}
453 }
454 
455 /*
456  * Simple lockless ring to communicate PFNs from the exception handler with the
457  * process context work function. This is vastly simplified because there's
458  * only a single reader and a single writer.
459  */
460 #define MCE_RING_SIZE 16	/* we use one entry less */
461 
462 struct mce_ring {
463 	unsigned short start;
464 	unsigned short end;
465 	unsigned long ring[MCE_RING_SIZE];
466 };
467 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
468 
469 /* Runs with CPU affinity in workqueue */
mce_ring_empty(void)470 static int mce_ring_empty(void)
471 {
472 	struct mce_ring *r = &__get_cpu_var(mce_ring);
473 
474 	return r->start == r->end;
475 }
476 
mce_ring_get(unsigned long * pfn)477 static int mce_ring_get(unsigned long *pfn)
478 {
479 	struct mce_ring *r;
480 	int ret = 0;
481 
482 	*pfn = 0;
483 	get_cpu();
484 	r = &__get_cpu_var(mce_ring);
485 	if (r->start == r->end)
486 		goto out;
487 	*pfn = r->ring[r->start];
488 	r->start = (r->start + 1) % MCE_RING_SIZE;
489 	ret = 1;
490 out:
491 	put_cpu();
492 	return ret;
493 }
494 
495 /* Always runs in MCE context with preempt off */
mce_ring_add(unsigned long pfn)496 static int mce_ring_add(unsigned long pfn)
497 {
498 	struct mce_ring *r = &__get_cpu_var(mce_ring);
499 	unsigned next;
500 
501 	next = (r->end + 1) % MCE_RING_SIZE;
502 	if (next == r->start)
503 		return -1;
504 	r->ring[r->end] = pfn;
505 	wmb();
506 	r->end = next;
507 	return 0;
508 }
509 
mce_available(struct cpuinfo_x86 * c)510 int mce_available(struct cpuinfo_x86 *c)
511 {
512 	if (mce_disabled)
513 		return 0;
514 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
515 }
516 
mce_schedule_work(void)517 static void mce_schedule_work(void)
518 {
519 	if (!mce_ring_empty()) {
520 		struct work_struct *work = &__get_cpu_var(mce_work);
521 		if (!work_pending(work))
522 			schedule_work(work);
523 	}
524 }
525 
526 DEFINE_PER_CPU(struct irq_work, mce_irq_work);
527 
mce_irq_work_cb(struct irq_work * entry)528 static void mce_irq_work_cb(struct irq_work *entry)
529 {
530 	mce_notify_irq();
531 	mce_schedule_work();
532 }
533 
mce_report_event(struct pt_regs * regs)534 static void mce_report_event(struct pt_regs *regs)
535 {
536 	if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
537 		mce_notify_irq();
538 		/*
539 		 * Triggering the work queue here is just an insurance
540 		 * policy in case the syscall exit notify handler
541 		 * doesn't run soon enough or ends up running on the
542 		 * wrong CPU (can happen when audit sleeps)
543 		 */
544 		mce_schedule_work();
545 		return;
546 	}
547 
548 	irq_work_queue(&__get_cpu_var(mce_irq_work));
549 }
550 
551 /*
552  * Read ADDR and MISC registers.
553  */
mce_read_aux(struct mce * m,int i)554 static void mce_read_aux(struct mce *m, int i)
555 {
556 	if (m->status & MCI_STATUS_MISCV)
557 		m->misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
558 	if (m->status & MCI_STATUS_ADDRV) {
559 		m->addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
560 
561 		/*
562 		 * Mask the reported address by the reported granularity.
563 		 */
564 		if (mce_ser && (m->status & MCI_STATUS_MISCV)) {
565 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
566 			m->addr >>= shift;
567 			m->addr <<= shift;
568 		}
569 	}
570 }
571 
572 DEFINE_PER_CPU(unsigned, mce_poll_count);
573 
574 /*
575  * Poll for corrected events or events that happened before reset.
576  * Those are just logged through /dev/mcelog.
577  *
578  * This is executed in standard interrupt context.
579  *
580  * Note: spec recommends to panic for fatal unsignalled
581  * errors here. However this would be quite problematic --
582  * we would need to reimplement the Monarch handling and
583  * it would mess up the exclusion between exception handler
584  * and poll hander -- * so we skip this for now.
585  * These cases should not happen anyways, or only when the CPU
586  * is already totally * confused. In this case it's likely it will
587  * not fully execute the machine check handler either.
588  */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)589 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
590 {
591 	struct mce m;
592 	int i;
593 
594 	percpu_inc(mce_poll_count);
595 
596 	mce_gather_info(&m, NULL);
597 
598 	for (i = 0; i < banks; i++) {
599 		if (!mce_banks[i].ctl || !test_bit(i, *b))
600 			continue;
601 
602 		m.misc = 0;
603 		m.addr = 0;
604 		m.bank = i;
605 		m.tsc = 0;
606 
607 		barrier();
608 		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
609 		if (!(m.status & MCI_STATUS_VAL))
610 			continue;
611 
612 		/*
613 		 * Uncorrected or signalled events are handled by the exception
614 		 * handler when it is enabled, so don't process those here.
615 		 *
616 		 * TBD do the same check for MCI_STATUS_EN here?
617 		 */
618 		if (!(flags & MCP_UC) &&
619 		    (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
620 			continue;
621 
622 		mce_read_aux(&m, i);
623 
624 		if (!(flags & MCP_TIMESTAMP))
625 			m.tsc = 0;
626 		/*
627 		 * Don't get the IP here because it's unlikely to
628 		 * have anything to do with the actual error location.
629 		 */
630 		if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce)
631 			mce_log(&m);
632 
633 		/*
634 		 * Clear state for this bank.
635 		 */
636 		mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
637 	}
638 
639 	/*
640 	 * Don't clear MCG_STATUS here because it's only defined for
641 	 * exceptions.
642 	 */
643 
644 	sync_core();
645 }
646 EXPORT_SYMBOL_GPL(machine_check_poll);
647 
648 /*
649  * Do a quick check if any of the events requires a panic.
650  * This decides if we keep the events around or clear them.
651  */
mce_no_way_out(struct mce * m,char ** msg)652 static int mce_no_way_out(struct mce *m, char **msg)
653 {
654 	int i;
655 
656 	for (i = 0; i < banks; i++) {
657 		m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
658 		if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
659 			return 1;
660 	}
661 	return 0;
662 }
663 
664 /*
665  * Variable to establish order between CPUs while scanning.
666  * Each CPU spins initially until executing is equal its number.
667  */
668 static atomic_t mce_executing;
669 
670 /*
671  * Defines order of CPUs on entry. First CPU becomes Monarch.
672  */
673 static atomic_t mce_callin;
674 
675 /*
676  * Check if a timeout waiting for other CPUs happened.
677  */
mce_timed_out(u64 * t)678 static int mce_timed_out(u64 *t)
679 {
680 	/*
681 	 * The others already did panic for some reason.
682 	 * Bail out like in a timeout.
683 	 * rmb() to tell the compiler that system_state
684 	 * might have been modified by someone else.
685 	 */
686 	rmb();
687 	if (atomic_read(&mce_paniced))
688 		wait_for_panic();
689 	if (!monarch_timeout)
690 		goto out;
691 	if ((s64)*t < SPINUNIT) {
692 		/* CHECKME: Make panic default for 1 too? */
693 		if (tolerant < 1)
694 			mce_panic("Timeout synchronizing machine check over CPUs",
695 				  NULL, NULL);
696 		cpu_missing = 1;
697 		return 1;
698 	}
699 	*t -= SPINUNIT;
700 out:
701 	touch_nmi_watchdog();
702 	return 0;
703 }
704 
705 /*
706  * The Monarch's reign.  The Monarch is the CPU who entered
707  * the machine check handler first. It waits for the others to
708  * raise the exception too and then grades them. When any
709  * error is fatal panic. Only then let the others continue.
710  *
711  * The other CPUs entering the MCE handler will be controlled by the
712  * Monarch. They are called Subjects.
713  *
714  * This way we prevent any potential data corruption in a unrecoverable case
715  * and also makes sure always all CPU's errors are examined.
716  *
717  * Also this detects the case of a machine check event coming from outer
718  * space (not detected by any CPUs) In this case some external agent wants
719  * us to shut down, so panic too.
720  *
721  * The other CPUs might still decide to panic if the handler happens
722  * in a unrecoverable place, but in this case the system is in a semi-stable
723  * state and won't corrupt anything by itself. It's ok to let the others
724  * continue for a bit first.
725  *
726  * All the spin loops have timeouts; when a timeout happens a CPU
727  * typically elects itself to be Monarch.
728  */
mce_reign(void)729 static void mce_reign(void)
730 {
731 	int cpu;
732 	struct mce *m = NULL;
733 	int global_worst = 0;
734 	char *msg = NULL;
735 	char *nmsg = NULL;
736 
737 	/*
738 	 * This CPU is the Monarch and the other CPUs have run
739 	 * through their handlers.
740 	 * Grade the severity of the errors of all the CPUs.
741 	 */
742 	for_each_possible_cpu(cpu) {
743 		int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
744 					    &nmsg);
745 		if (severity > global_worst) {
746 			msg = nmsg;
747 			global_worst = severity;
748 			m = &per_cpu(mces_seen, cpu);
749 		}
750 	}
751 
752 	/*
753 	 * Cannot recover? Panic here then.
754 	 * This dumps all the mces in the log buffer and stops the
755 	 * other CPUs.
756 	 */
757 	if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
758 		mce_panic("Fatal Machine check", m, msg);
759 
760 	/*
761 	 * For UC somewhere we let the CPU who detects it handle it.
762 	 * Also must let continue the others, otherwise the handling
763 	 * CPU could deadlock on a lock.
764 	 */
765 
766 	/*
767 	 * No machine check event found. Must be some external
768 	 * source or one CPU is hung. Panic.
769 	 */
770 	if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
771 		mce_panic("Machine check from unknown source", NULL, NULL);
772 
773 	/*
774 	 * Now clear all the mces_seen so that they don't reappear on
775 	 * the next mce.
776 	 */
777 	for_each_possible_cpu(cpu)
778 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
779 }
780 
781 static atomic_t global_nwo;
782 
783 /*
784  * Start of Monarch synchronization. This waits until all CPUs have
785  * entered the exception handler and then determines if any of them
786  * saw a fatal event that requires panic. Then it executes them
787  * in the entry order.
788  * TBD double check parallel CPU hotunplug
789  */
mce_start(int * no_way_out)790 static int mce_start(int *no_way_out)
791 {
792 	int order;
793 	int cpus = num_online_cpus();
794 	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
795 
796 	if (!timeout)
797 		return -1;
798 
799 	atomic_add(*no_way_out, &global_nwo);
800 	/*
801 	 * global_nwo should be updated before mce_callin
802 	 */
803 	smp_wmb();
804 	order = atomic_inc_return(&mce_callin);
805 
806 	/*
807 	 * Wait for everyone.
808 	 */
809 	while (atomic_read(&mce_callin) != cpus) {
810 		if (mce_timed_out(&timeout)) {
811 			atomic_set(&global_nwo, 0);
812 			return -1;
813 		}
814 		ndelay(SPINUNIT);
815 	}
816 
817 	/*
818 	 * mce_callin should be read before global_nwo
819 	 */
820 	smp_rmb();
821 
822 	if (order == 1) {
823 		/*
824 		 * Monarch: Starts executing now, the others wait.
825 		 */
826 		atomic_set(&mce_executing, 1);
827 	} else {
828 		/*
829 		 * Subject: Now start the scanning loop one by one in
830 		 * the original callin order.
831 		 * This way when there are any shared banks it will be
832 		 * only seen by one CPU before cleared, avoiding duplicates.
833 		 */
834 		while (atomic_read(&mce_executing) < order) {
835 			if (mce_timed_out(&timeout)) {
836 				atomic_set(&global_nwo, 0);
837 				return -1;
838 			}
839 			ndelay(SPINUNIT);
840 		}
841 	}
842 
843 	/*
844 	 * Cache the global no_way_out state.
845 	 */
846 	*no_way_out = atomic_read(&global_nwo);
847 
848 	return order;
849 }
850 
851 /*
852  * Synchronize between CPUs after main scanning loop.
853  * This invokes the bulk of the Monarch processing.
854  */
mce_end(int order)855 static int mce_end(int order)
856 {
857 	int ret = -1;
858 	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
859 
860 	if (!timeout)
861 		goto reset;
862 	if (order < 0)
863 		goto reset;
864 
865 	/*
866 	 * Allow others to run.
867 	 */
868 	atomic_inc(&mce_executing);
869 
870 	if (order == 1) {
871 		/* CHECKME: Can this race with a parallel hotplug? */
872 		int cpus = num_online_cpus();
873 
874 		/*
875 		 * Monarch: Wait for everyone to go through their scanning
876 		 * loops.
877 		 */
878 		while (atomic_read(&mce_executing) <= cpus) {
879 			if (mce_timed_out(&timeout))
880 				goto reset;
881 			ndelay(SPINUNIT);
882 		}
883 
884 		mce_reign();
885 		barrier();
886 		ret = 0;
887 	} else {
888 		/*
889 		 * Subject: Wait for Monarch to finish.
890 		 */
891 		while (atomic_read(&mce_executing) != 0) {
892 			if (mce_timed_out(&timeout))
893 				goto reset;
894 			ndelay(SPINUNIT);
895 		}
896 
897 		/*
898 		 * Don't reset anything. That's done by the Monarch.
899 		 */
900 		return 0;
901 	}
902 
903 	/*
904 	 * Reset all global state.
905 	 */
906 reset:
907 	atomic_set(&global_nwo, 0);
908 	atomic_set(&mce_callin, 0);
909 	barrier();
910 
911 	/*
912 	 * Let others run again.
913 	 */
914 	atomic_set(&mce_executing, 0);
915 	return ret;
916 }
917 
918 /*
919  * Check if the address reported by the CPU is in a format we can parse.
920  * It would be possible to add code for most other cases, but all would
921  * be somewhat complicated (e.g. segment offset would require an instruction
922  * parser). So only support physical addresses up to page granuality for now.
923  */
mce_usable_address(struct mce * m)924 static int mce_usable_address(struct mce *m)
925 {
926 	if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
927 		return 0;
928 	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
929 		return 0;
930 	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
931 		return 0;
932 	return 1;
933 }
934 
mce_clear_state(unsigned long * toclear)935 static void mce_clear_state(unsigned long *toclear)
936 {
937 	int i;
938 
939 	for (i = 0; i < banks; i++) {
940 		if (test_bit(i, toclear))
941 			mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
942 	}
943 }
944 
945 /*
946  * Need to save faulting physical address associated with a process
947  * in the machine check handler some place where we can grab it back
948  * later in mce_notify_process()
949  */
950 #define	MCE_INFO_MAX	16
951 
952 struct mce_info {
953 	atomic_t		inuse;
954 	struct task_struct	*t;
955 	__u64			paddr;
956 	int			restartable;
957 } mce_info[MCE_INFO_MAX];
958 
mce_save_info(__u64 addr,int c)959 static void mce_save_info(__u64 addr, int c)
960 {
961 	struct mce_info *mi;
962 
963 	for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++) {
964 		if (atomic_cmpxchg(&mi->inuse, 0, 1) == 0) {
965 			mi->t = current;
966 			mi->paddr = addr;
967 			mi->restartable = c;
968 			return;
969 		}
970 	}
971 
972 	mce_panic("Too many concurrent recoverable errors", NULL, NULL);
973 }
974 
mce_find_info(void)975 static struct mce_info *mce_find_info(void)
976 {
977 	struct mce_info *mi;
978 
979 	for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++)
980 		if (atomic_read(&mi->inuse) && mi->t == current)
981 			return mi;
982 	return NULL;
983 }
984 
mce_clear_info(struct mce_info * mi)985 static void mce_clear_info(struct mce_info *mi)
986 {
987 	atomic_set(&mi->inuse, 0);
988 }
989 
990 /*
991  * The actual machine check handler. This only handles real
992  * exceptions when something got corrupted coming in through int 18.
993  *
994  * This is executed in NMI context not subject to normal locking rules. This
995  * implies that most kernel services cannot be safely used. Don't even
996  * think about putting a printk in there!
997  *
998  * On Intel systems this is entered on all CPUs in parallel through
999  * MCE broadcast. However some CPUs might be broken beyond repair,
1000  * so be always careful when synchronizing with others.
1001  */
do_machine_check(struct pt_regs * regs,long error_code)1002 void do_machine_check(struct pt_regs *regs, long error_code)
1003 {
1004 	struct mce m, *final;
1005 	int i;
1006 	int worst = 0;
1007 	int severity;
1008 	/*
1009 	 * Establish sequential order between the CPUs entering the machine
1010 	 * check handler.
1011 	 */
1012 	int order;
1013 	/*
1014 	 * If no_way_out gets set, there is no safe way to recover from this
1015 	 * MCE.  If tolerant is cranked up, we'll try anyway.
1016 	 */
1017 	int no_way_out = 0;
1018 	/*
1019 	 * If kill_it gets set, there might be a way to recover from this
1020 	 * error.
1021 	 */
1022 	int kill_it = 0;
1023 	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1024 	char *msg = "Unknown";
1025 
1026 	atomic_inc(&mce_entry);
1027 
1028 	percpu_inc(mce_exception_count);
1029 
1030 	if (!banks)
1031 		goto out;
1032 
1033 	mce_gather_info(&m, regs);
1034 
1035 	final = &__get_cpu_var(mces_seen);
1036 	*final = m;
1037 
1038 	no_way_out = mce_no_way_out(&m, &msg);
1039 
1040 	barrier();
1041 
1042 	/*
1043 	 * When no restart IP might need to kill or panic.
1044 	 * Assume the worst for now, but if we find the
1045 	 * severity is MCE_AR_SEVERITY we have other options.
1046 	 */
1047 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1048 		kill_it = 1;
1049 
1050 	/*
1051 	 * Go through all the banks in exclusion of the other CPUs.
1052 	 * This way we don't report duplicated events on shared banks
1053 	 * because the first one to see it will clear it.
1054 	 */
1055 	order = mce_start(&no_way_out);
1056 	for (i = 0; i < banks; i++) {
1057 		__clear_bit(i, toclear);
1058 		if (!mce_banks[i].ctl)
1059 			continue;
1060 
1061 		m.misc = 0;
1062 		m.addr = 0;
1063 		m.bank = i;
1064 
1065 		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
1066 		if ((m.status & MCI_STATUS_VAL) == 0)
1067 			continue;
1068 
1069 		/*
1070 		 * Non uncorrected or non signaled errors are handled by
1071 		 * machine_check_poll. Leave them alone, unless this panics.
1072 		 */
1073 		if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1074 			!no_way_out)
1075 			continue;
1076 
1077 		/*
1078 		 * Set taint even when machine check was not enabled.
1079 		 */
1080 		add_taint(TAINT_MACHINE_CHECK);
1081 
1082 		severity = mce_severity(&m, tolerant, NULL);
1083 
1084 		/*
1085 		 * When machine check was for corrected handler don't touch,
1086 		 * unless we're panicing.
1087 		 */
1088 		if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1089 			continue;
1090 		__set_bit(i, toclear);
1091 		if (severity == MCE_NO_SEVERITY) {
1092 			/*
1093 			 * Machine check event was not enabled. Clear, but
1094 			 * ignore.
1095 			 */
1096 			continue;
1097 		}
1098 
1099 		mce_read_aux(&m, i);
1100 
1101 		/*
1102 		 * Action optional error. Queue address for later processing.
1103 		 * When the ring overflows we just ignore the AO error.
1104 		 * RED-PEN add some logging mechanism when
1105 		 * usable_address or mce_add_ring fails.
1106 		 * RED-PEN don't ignore overflow for tolerant == 0
1107 		 */
1108 		if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1109 			mce_ring_add(m.addr >> PAGE_SHIFT);
1110 
1111 		mce_log(&m);
1112 
1113 		if (severity > worst) {
1114 			*final = m;
1115 			worst = severity;
1116 		}
1117 	}
1118 
1119 	/* mce_clear_state will clear *final, save locally for use later */
1120 	m = *final;
1121 
1122 	if (!no_way_out)
1123 		mce_clear_state(toclear);
1124 
1125 	/*
1126 	 * Do most of the synchronization with other CPUs.
1127 	 * When there's any problem use only local no_way_out state.
1128 	 */
1129 	if (mce_end(order) < 0)
1130 		no_way_out = worst >= MCE_PANIC_SEVERITY;
1131 
1132 	/*
1133 	 * At insane "tolerant" levels we take no action. Otherwise
1134 	 * we only die if we have no other choice. For less serious
1135 	 * issues we try to recover, or limit damage to the current
1136 	 * process.
1137 	 */
1138 	if (tolerant < 3) {
1139 		if (no_way_out)
1140 			mce_panic("Fatal machine check on current CPU", &m, msg);
1141 		if (worst == MCE_AR_SEVERITY) {
1142 			/* schedule action before return to userland */
1143 			mce_save_info(m.addr, m.mcgstatus & MCG_STATUS_RIPV);
1144 			set_thread_flag(TIF_MCE_NOTIFY);
1145 		} else if (kill_it) {
1146 			force_sig(SIGBUS, current);
1147 		}
1148 	}
1149 
1150 	if (worst > 0)
1151 		mce_report_event(regs);
1152 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1153 out:
1154 	atomic_dec(&mce_entry);
1155 	sync_core();
1156 }
1157 EXPORT_SYMBOL_GPL(do_machine_check);
1158 
1159 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int vector,int flags)1160 int memory_failure(unsigned long pfn, int vector, int flags)
1161 {
1162 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1163 	BUG_ON(flags & MF_ACTION_REQUIRED);
1164 	printk(KERN_ERR "Uncorrected memory error in page 0x%lx ignored\n"
1165 		"Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", pfn);
1166 
1167 	return 0;
1168 }
1169 #endif
1170 
1171 /*
1172  * Called in process context that interrupted by MCE and marked with
1173  * TIF_MCE_NOTIFY, just before returning to erroneous userland.
1174  * This code is allowed to sleep.
1175  * Attempt possible recovery such as calling the high level VM handler to
1176  * process any corrupted pages, and kill/signal current process if required.
1177  * Action required errors are handled here.
1178  */
mce_notify_process(void)1179 void mce_notify_process(void)
1180 {
1181 	unsigned long pfn;
1182 	struct mce_info *mi = mce_find_info();
1183 	int flags = MF_ACTION_REQUIRED;
1184 
1185 	if (!mi)
1186 		mce_panic("Lost physical address for unconsumed uncorrectable error", NULL, NULL);
1187 	pfn = mi->paddr >> PAGE_SHIFT;
1188 
1189 	clear_thread_flag(TIF_MCE_NOTIFY);
1190 
1191 	pr_err("Uncorrected hardware memory error in user-access at %llx",
1192 		 mi->paddr);
1193 	/*
1194 	 * We must call memory_failure() here even if the current process is
1195 	 * doomed. We still need to mark the page as poisoned and alert any
1196 	 * other users of the page.
1197 	 */
1198 	if (!mi->restartable)
1199 		flags |= MF_MUST_KILL;
1200 	if (memory_failure(pfn, MCE_VECTOR, flags) < 0) {
1201 		pr_err("Memory error not recovered");
1202 		force_sig(SIGBUS, current);
1203 	}
1204 	mce_clear_info(mi);
1205 }
1206 
1207 /*
1208  * Action optional processing happens here (picking up
1209  * from the list of faulting pages that do_machine_check()
1210  * placed into the "ring").
1211  */
mce_process_work(struct work_struct * dummy)1212 static void mce_process_work(struct work_struct *dummy)
1213 {
1214 	unsigned long pfn;
1215 
1216 	while (mce_ring_get(&pfn))
1217 		memory_failure(pfn, MCE_VECTOR, 0);
1218 }
1219 
1220 #ifdef CONFIG_X86_MCE_INTEL
1221 /***
1222  * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1223  * @cpu: The CPU on which the event occurred.
1224  * @status: Event status information
1225  *
1226  * This function should be called by the thermal interrupt after the
1227  * event has been processed and the decision was made to log the event
1228  * further.
1229  *
1230  * The status parameter will be saved to the 'status' field of 'struct mce'
1231  * and historically has been the register value of the
1232  * MSR_IA32_THERMAL_STATUS (Intel) msr.
1233  */
mce_log_therm_throt_event(__u64 status)1234 void mce_log_therm_throt_event(__u64 status)
1235 {
1236 	struct mce m;
1237 
1238 	mce_setup(&m);
1239 	m.bank = MCE_THERMAL_BANK;
1240 	m.status = status;
1241 	mce_log(&m);
1242 }
1243 #endif /* CONFIG_X86_MCE_INTEL */
1244 
1245 /*
1246  * Periodic polling timer for "silent" machine check errors.  If the
1247  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1248  * errors, poll 2x slower (up to check_interval seconds).
1249  */
1250 static int check_interval = 5 * 60; /* 5 minutes */
1251 
1252 static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1253 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1254 
mce_start_timer(unsigned long data)1255 static void mce_start_timer(unsigned long data)
1256 {
1257 	struct timer_list *t = &per_cpu(mce_timer, data);
1258 	int *n;
1259 
1260 	WARN_ON(smp_processor_id() != data);
1261 
1262 	if (mce_available(__this_cpu_ptr(&cpu_info))) {
1263 		machine_check_poll(MCP_TIMESTAMP,
1264 				&__get_cpu_var(mce_poll_banks));
1265 	}
1266 
1267 	/*
1268 	 * Alert userspace if needed.  If we logged an MCE, reduce the
1269 	 * polling interval, otherwise increase the polling interval.
1270 	 */
1271 	n = &__get_cpu_var(mce_next_interval);
1272 	if (mce_notify_irq())
1273 		*n = max(*n/2, HZ/100);
1274 	else
1275 		*n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1276 
1277 	t->expires = jiffies + *n;
1278 	add_timer_on(t, smp_processor_id());
1279 }
1280 
1281 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
mce_timer_delete_all(void)1282 static void mce_timer_delete_all(void)
1283 {
1284 	int cpu;
1285 
1286 	for_each_online_cpu(cpu)
1287 		del_timer_sync(&per_cpu(mce_timer, cpu));
1288 }
1289 
mce_do_trigger(struct work_struct * work)1290 static void mce_do_trigger(struct work_struct *work)
1291 {
1292 	call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1293 }
1294 
1295 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1296 
1297 /*
1298  * Notify the user(s) about new machine check events.
1299  * Can be called from interrupt context, but not from machine check/NMI
1300  * context.
1301  */
mce_notify_irq(void)1302 int mce_notify_irq(void)
1303 {
1304 	/* Not more than two messages every minute */
1305 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1306 
1307 	if (test_and_clear_bit(0, &mce_need_notify)) {
1308 		/* wake processes polling /dev/mcelog */
1309 		wake_up_interruptible(&mce_chrdev_wait);
1310 
1311 		/*
1312 		 * There is no risk of missing notifications because
1313 		 * work_pending is always cleared before the function is
1314 		 * executed.
1315 		 */
1316 		if (mce_helper[0] && !work_pending(&mce_trigger_work))
1317 			schedule_work(&mce_trigger_work);
1318 
1319 		if (__ratelimit(&ratelimit))
1320 			pr_info(HW_ERR "Machine check events logged\n");
1321 
1322 		return 1;
1323 	}
1324 	return 0;
1325 }
1326 EXPORT_SYMBOL_GPL(mce_notify_irq);
1327 
__mcheck_cpu_mce_banks_init(void)1328 static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1329 {
1330 	int i;
1331 
1332 	mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1333 	if (!mce_banks)
1334 		return -ENOMEM;
1335 	for (i = 0; i < banks; i++) {
1336 		struct mce_bank *b = &mce_banks[i];
1337 
1338 		b->ctl = -1ULL;
1339 		b->init = 1;
1340 	}
1341 	return 0;
1342 }
1343 
1344 /*
1345  * Initialize Machine Checks for a CPU.
1346  */
__mcheck_cpu_cap_init(void)1347 static int __cpuinit __mcheck_cpu_cap_init(void)
1348 {
1349 	unsigned b;
1350 	u64 cap;
1351 
1352 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1353 
1354 	b = cap & MCG_BANKCNT_MASK;
1355 	if (!banks)
1356 		printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1357 
1358 	if (b > MAX_NR_BANKS) {
1359 		printk(KERN_WARNING
1360 		       "MCE: Using only %u machine check banks out of %u\n",
1361 			MAX_NR_BANKS, b);
1362 		b = MAX_NR_BANKS;
1363 	}
1364 
1365 	/* Don't support asymmetric configurations today */
1366 	WARN_ON(banks != 0 && b != banks);
1367 	banks = b;
1368 	if (!mce_banks) {
1369 		int err = __mcheck_cpu_mce_banks_init();
1370 
1371 		if (err)
1372 			return err;
1373 	}
1374 
1375 	/* Use accurate RIP reporting if available. */
1376 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1377 		rip_msr = MSR_IA32_MCG_EIP;
1378 
1379 	if (cap & MCG_SER_P)
1380 		mce_ser = 1;
1381 
1382 	return 0;
1383 }
1384 
__mcheck_cpu_init_generic(void)1385 static void __mcheck_cpu_init_generic(void)
1386 {
1387 	mce_banks_t all_banks;
1388 	u64 cap;
1389 	int i;
1390 
1391 	/*
1392 	 * Log the machine checks left over from the previous reset.
1393 	 */
1394 	bitmap_fill(all_banks, MAX_NR_BANKS);
1395 	machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1396 
1397 	set_in_cr4(X86_CR4_MCE);
1398 
1399 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1400 	if (cap & MCG_CTL_P)
1401 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1402 
1403 	for (i = 0; i < banks; i++) {
1404 		struct mce_bank *b = &mce_banks[i];
1405 
1406 		if (!b->init)
1407 			continue;
1408 		wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1409 		wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1410 	}
1411 }
1412 
1413 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1414 static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1415 {
1416 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1417 		pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1418 		return -EOPNOTSUPP;
1419 	}
1420 
1421 	/* This should be disabled by the BIOS, but isn't always */
1422 	if (c->x86_vendor == X86_VENDOR_AMD) {
1423 		if (c->x86 == 15 && banks > 4) {
1424 			/*
1425 			 * disable GART TBL walk error reporting, which
1426 			 * trips off incorrectly with the IOMMU & 3ware
1427 			 * & Cerberus:
1428 			 */
1429 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1430 		}
1431 		if (c->x86 <= 17 && mce_bootlog < 0) {
1432 			/*
1433 			 * Lots of broken BIOS around that don't clear them
1434 			 * by default and leave crap in there. Don't log:
1435 			 */
1436 			mce_bootlog = 0;
1437 		}
1438 		/*
1439 		 * Various K7s with broken bank 0 around. Always disable
1440 		 * by default.
1441 		 */
1442 		 if (c->x86 == 6 && banks > 0)
1443 			mce_banks[0].ctl = 0;
1444 	}
1445 
1446 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1447 		/*
1448 		 * SDM documents that on family 6 bank 0 should not be written
1449 		 * because it aliases to another special BIOS controlled
1450 		 * register.
1451 		 * But it's not aliased anymore on model 0x1a+
1452 		 * Don't ignore bank 0 completely because there could be a
1453 		 * valid event later, merely don't write CTL0.
1454 		 */
1455 
1456 		if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1457 			mce_banks[0].init = 0;
1458 
1459 		/*
1460 		 * All newer Intel systems support MCE broadcasting. Enable
1461 		 * synchronization with a one second timeout.
1462 		 */
1463 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1464 			monarch_timeout < 0)
1465 			monarch_timeout = USEC_PER_SEC;
1466 
1467 		/*
1468 		 * There are also broken BIOSes on some Pentium M and
1469 		 * earlier systems:
1470 		 */
1471 		if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1472 			mce_bootlog = 0;
1473 	}
1474 	if (monarch_timeout < 0)
1475 		monarch_timeout = 0;
1476 	if (mce_bootlog != 0)
1477 		mce_panic_timeout = 30;
1478 
1479 	return 0;
1480 }
1481 
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1482 static int __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1483 {
1484 	if (c->x86 != 5)
1485 		return 0;
1486 
1487 	switch (c->x86_vendor) {
1488 	case X86_VENDOR_INTEL:
1489 		intel_p5_mcheck_init(c);
1490 		return 1;
1491 		break;
1492 	case X86_VENDOR_CENTAUR:
1493 		winchip_mcheck_init(c);
1494 		return 1;
1495 		break;
1496 	}
1497 
1498 	return 0;
1499 }
1500 
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)1501 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1502 {
1503 	switch (c->x86_vendor) {
1504 	case X86_VENDOR_INTEL:
1505 		mce_intel_feature_init(c);
1506 		break;
1507 	case X86_VENDOR_AMD:
1508 		mce_amd_feature_init(c);
1509 		break;
1510 	default:
1511 		break;
1512 	}
1513 }
1514 
__mcheck_cpu_init_timer(void)1515 static void __mcheck_cpu_init_timer(void)
1516 {
1517 	struct timer_list *t = &__get_cpu_var(mce_timer);
1518 	int *n = &__get_cpu_var(mce_next_interval);
1519 
1520 	setup_timer(t, mce_start_timer, smp_processor_id());
1521 
1522 	if (mce_ignore_ce)
1523 		return;
1524 
1525 	*n = check_interval * HZ;
1526 	if (!*n)
1527 		return;
1528 	t->expires = round_jiffies(jiffies + *n);
1529 	add_timer_on(t, smp_processor_id());
1530 }
1531 
1532 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs,long error_code)1533 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1534 {
1535 	printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1536 	       smp_processor_id());
1537 }
1538 
1539 /* Call the installed machine check handler for this CPU setup. */
1540 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1541 						unexpected_machine_check;
1542 
1543 /*
1544  * Called for each booted CPU to set up machine checks.
1545  * Must be called with preempt off:
1546  */
mcheck_cpu_init(struct cpuinfo_x86 * c)1547 void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1548 {
1549 	if (mce_disabled)
1550 		return;
1551 
1552 	if (__mcheck_cpu_ancient_init(c))
1553 		return;
1554 
1555 	if (!mce_available(c))
1556 		return;
1557 
1558 	if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1559 		mce_disabled = 1;
1560 		return;
1561 	}
1562 
1563 	machine_check_vector = do_machine_check;
1564 
1565 	__mcheck_cpu_init_generic();
1566 	__mcheck_cpu_init_vendor(c);
1567 	__mcheck_cpu_init_timer();
1568 	INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1569 	init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1570 }
1571 
1572 /*
1573  * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1574  */
1575 
1576 static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1577 static int mce_chrdev_open_count;	/* #times opened */
1578 static int mce_chrdev_open_exclu;	/* already open exclusive? */
1579 
mce_chrdev_open(struct inode * inode,struct file * file)1580 static int mce_chrdev_open(struct inode *inode, struct file *file)
1581 {
1582 	spin_lock(&mce_chrdev_state_lock);
1583 
1584 	if (mce_chrdev_open_exclu ||
1585 	    (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1586 		spin_unlock(&mce_chrdev_state_lock);
1587 
1588 		return -EBUSY;
1589 	}
1590 
1591 	if (file->f_flags & O_EXCL)
1592 		mce_chrdev_open_exclu = 1;
1593 	mce_chrdev_open_count++;
1594 
1595 	spin_unlock(&mce_chrdev_state_lock);
1596 
1597 	return nonseekable_open(inode, file);
1598 }
1599 
mce_chrdev_release(struct inode * inode,struct file * file)1600 static int mce_chrdev_release(struct inode *inode, struct file *file)
1601 {
1602 	spin_lock(&mce_chrdev_state_lock);
1603 
1604 	mce_chrdev_open_count--;
1605 	mce_chrdev_open_exclu = 0;
1606 
1607 	spin_unlock(&mce_chrdev_state_lock);
1608 
1609 	return 0;
1610 }
1611 
collect_tscs(void * data)1612 static void collect_tscs(void *data)
1613 {
1614 	unsigned long *cpu_tsc = (unsigned long *)data;
1615 
1616 	rdtscll(cpu_tsc[smp_processor_id()]);
1617 }
1618 
1619 static int mce_apei_read_done;
1620 
1621 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
__mce_read_apei(char __user ** ubuf,size_t usize)1622 static int __mce_read_apei(char __user **ubuf, size_t usize)
1623 {
1624 	int rc;
1625 	u64 record_id;
1626 	struct mce m;
1627 
1628 	if (usize < sizeof(struct mce))
1629 		return -EINVAL;
1630 
1631 	rc = apei_read_mce(&m, &record_id);
1632 	/* Error or no more MCE record */
1633 	if (rc <= 0) {
1634 		mce_apei_read_done = 1;
1635 		/*
1636 		 * When ERST is disabled, mce_chrdev_read() should return
1637 		 * "no record" instead of "no device."
1638 		 */
1639 		if (rc == -ENODEV)
1640 			return 0;
1641 		return rc;
1642 	}
1643 	rc = -EFAULT;
1644 	if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1645 		return rc;
1646 	/*
1647 	 * In fact, we should have cleared the record after that has
1648 	 * been flushed to the disk or sent to network in
1649 	 * /sbin/mcelog, but we have no interface to support that now,
1650 	 * so just clear it to avoid duplication.
1651 	 */
1652 	rc = apei_clear_mce(record_id);
1653 	if (rc) {
1654 		mce_apei_read_done = 1;
1655 		return rc;
1656 	}
1657 	*ubuf += sizeof(struct mce);
1658 
1659 	return 0;
1660 }
1661 
mce_chrdev_read(struct file * filp,char __user * ubuf,size_t usize,loff_t * off)1662 static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1663 				size_t usize, loff_t *off)
1664 {
1665 	char __user *buf = ubuf;
1666 	unsigned long *cpu_tsc;
1667 	unsigned prev, next;
1668 	int i, err;
1669 
1670 	cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1671 	if (!cpu_tsc)
1672 		return -ENOMEM;
1673 
1674 	mutex_lock(&mce_chrdev_read_mutex);
1675 
1676 	if (!mce_apei_read_done) {
1677 		err = __mce_read_apei(&buf, usize);
1678 		if (err || buf != ubuf)
1679 			goto out;
1680 	}
1681 
1682 	next = rcu_dereference_check_mce(mcelog.next);
1683 
1684 	/* Only supports full reads right now */
1685 	err = -EINVAL;
1686 	if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1687 		goto out;
1688 
1689 	err = 0;
1690 	prev = 0;
1691 	do {
1692 		for (i = prev; i < next; i++) {
1693 			unsigned long start = jiffies;
1694 			struct mce *m = &mcelog.entry[i];
1695 
1696 			while (!m->finished) {
1697 				if (time_after_eq(jiffies, start + 2)) {
1698 					memset(m, 0, sizeof(*m));
1699 					goto timeout;
1700 				}
1701 				cpu_relax();
1702 			}
1703 			smp_rmb();
1704 			err |= copy_to_user(buf, m, sizeof(*m));
1705 			buf += sizeof(*m);
1706 timeout:
1707 			;
1708 		}
1709 
1710 		memset(mcelog.entry + prev, 0,
1711 		       (next - prev) * sizeof(struct mce));
1712 		prev = next;
1713 		next = cmpxchg(&mcelog.next, prev, 0);
1714 	} while (next != prev);
1715 
1716 	synchronize_sched();
1717 
1718 	/*
1719 	 * Collect entries that were still getting written before the
1720 	 * synchronize.
1721 	 */
1722 	on_each_cpu(collect_tscs, cpu_tsc, 1);
1723 
1724 	for (i = next; i < MCE_LOG_LEN; i++) {
1725 		struct mce *m = &mcelog.entry[i];
1726 
1727 		if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1728 			err |= copy_to_user(buf, m, sizeof(*m));
1729 			smp_rmb();
1730 			buf += sizeof(*m);
1731 			memset(m, 0, sizeof(*m));
1732 		}
1733 	}
1734 
1735 	if (err)
1736 		err = -EFAULT;
1737 
1738 out:
1739 	mutex_unlock(&mce_chrdev_read_mutex);
1740 	kfree(cpu_tsc);
1741 
1742 	return err ? err : buf - ubuf;
1743 }
1744 
mce_chrdev_poll(struct file * file,poll_table * wait)1745 static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1746 {
1747 	poll_wait(file, &mce_chrdev_wait, wait);
1748 	if (rcu_access_index(mcelog.next))
1749 		return POLLIN | POLLRDNORM;
1750 	if (!mce_apei_read_done && apei_check_mce())
1751 		return POLLIN | POLLRDNORM;
1752 	return 0;
1753 }
1754 
mce_chrdev_ioctl(struct file * f,unsigned int cmd,unsigned long arg)1755 static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1756 				unsigned long arg)
1757 {
1758 	int __user *p = (int __user *)arg;
1759 
1760 	if (!capable(CAP_SYS_ADMIN))
1761 		return -EPERM;
1762 
1763 	switch (cmd) {
1764 	case MCE_GET_RECORD_LEN:
1765 		return put_user(sizeof(struct mce), p);
1766 	case MCE_GET_LOG_LEN:
1767 		return put_user(MCE_LOG_LEN, p);
1768 	case MCE_GETCLEAR_FLAGS: {
1769 		unsigned flags;
1770 
1771 		do {
1772 			flags = mcelog.flags;
1773 		} while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1774 
1775 		return put_user(flags, p);
1776 	}
1777 	default:
1778 		return -ENOTTY;
1779 	}
1780 }
1781 
1782 static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1783 			    size_t usize, loff_t *off);
1784 
register_mce_write_callback(ssize_t (* fn)(struct file * filp,const char __user * ubuf,size_t usize,loff_t * off))1785 void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1786 			     const char __user *ubuf,
1787 			     size_t usize, loff_t *off))
1788 {
1789 	mce_write = fn;
1790 }
1791 EXPORT_SYMBOL_GPL(register_mce_write_callback);
1792 
mce_chrdev_write(struct file * filp,const char __user * ubuf,size_t usize,loff_t * off)1793 ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1794 			 size_t usize, loff_t *off)
1795 {
1796 	if (mce_write)
1797 		return mce_write(filp, ubuf, usize, off);
1798 	else
1799 		return -EINVAL;
1800 }
1801 
1802 static const struct file_operations mce_chrdev_ops = {
1803 	.open			= mce_chrdev_open,
1804 	.release		= mce_chrdev_release,
1805 	.read			= mce_chrdev_read,
1806 	.write			= mce_chrdev_write,
1807 	.poll			= mce_chrdev_poll,
1808 	.unlocked_ioctl		= mce_chrdev_ioctl,
1809 	.llseek			= no_llseek,
1810 };
1811 
1812 static struct miscdevice mce_chrdev_device = {
1813 	MISC_MCELOG_MINOR,
1814 	"mcelog",
1815 	&mce_chrdev_ops,
1816 };
1817 
1818 /*
1819  * mce=off Disables machine check
1820  * mce=no_cmci Disables CMCI
1821  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1822  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1823  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1824  *	monarchtimeout is how long to wait for other CPUs on machine
1825  *	check, or 0 to not wait
1826  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1827  * mce=nobootlog Don't log MCEs from before booting.
1828  */
mcheck_enable(char * str)1829 static int __init mcheck_enable(char *str)
1830 {
1831 	if (*str == 0) {
1832 		enable_p5_mce();
1833 		return 1;
1834 	}
1835 	if (*str == '=')
1836 		str++;
1837 	if (!strcmp(str, "off"))
1838 		mce_disabled = 1;
1839 	else if (!strcmp(str, "no_cmci"))
1840 		mce_cmci_disabled = 1;
1841 	else if (!strcmp(str, "dont_log_ce"))
1842 		mce_dont_log_ce = 1;
1843 	else if (!strcmp(str, "ignore_ce"))
1844 		mce_ignore_ce = 1;
1845 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1846 		mce_bootlog = (str[0] == 'b');
1847 	else if (isdigit(str[0])) {
1848 		get_option(&str, &tolerant);
1849 		if (*str == ',') {
1850 			++str;
1851 			get_option(&str, &monarch_timeout);
1852 		}
1853 	} else {
1854 		printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1855 		       str);
1856 		return 0;
1857 	}
1858 	return 1;
1859 }
1860 __setup("mce", mcheck_enable);
1861 
mcheck_init(void)1862 int __init mcheck_init(void)
1863 {
1864 	mcheck_intel_therm_init();
1865 
1866 	return 0;
1867 }
1868 
1869 /*
1870  * mce_syscore: PM support
1871  */
1872 
1873 /*
1874  * Disable machine checks on suspend and shutdown. We can't really handle
1875  * them later.
1876  */
mce_disable_error_reporting(void)1877 static int mce_disable_error_reporting(void)
1878 {
1879 	int i;
1880 
1881 	for (i = 0; i < banks; i++) {
1882 		struct mce_bank *b = &mce_banks[i];
1883 
1884 		if (b->init)
1885 			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1886 	}
1887 	return 0;
1888 }
1889 
mce_syscore_suspend(void)1890 static int mce_syscore_suspend(void)
1891 {
1892 	return mce_disable_error_reporting();
1893 }
1894 
mce_syscore_shutdown(void)1895 static void mce_syscore_shutdown(void)
1896 {
1897 	mce_disable_error_reporting();
1898 }
1899 
1900 /*
1901  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1902  * Only one CPU is active at this time, the others get re-added later using
1903  * CPU hotplug:
1904  */
mce_syscore_resume(void)1905 static void mce_syscore_resume(void)
1906 {
1907 	__mcheck_cpu_init_generic();
1908 	__mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1909 }
1910 
1911 static struct syscore_ops mce_syscore_ops = {
1912 	.suspend	= mce_syscore_suspend,
1913 	.shutdown	= mce_syscore_shutdown,
1914 	.resume		= mce_syscore_resume,
1915 };
1916 
1917 /*
1918  * mce_device: Sysfs support
1919  */
1920 
mce_cpu_restart(void * data)1921 static void mce_cpu_restart(void *data)
1922 {
1923 	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1924 		return;
1925 	__mcheck_cpu_init_generic();
1926 	__mcheck_cpu_init_timer();
1927 }
1928 
1929 /* Reinit MCEs after user configuration changes */
mce_restart(void)1930 static void mce_restart(void)
1931 {
1932 	mce_timer_delete_all();
1933 	on_each_cpu(mce_cpu_restart, NULL, 1);
1934 }
1935 
1936 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)1937 static void mce_disable_cmci(void *data)
1938 {
1939 	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1940 		return;
1941 	cmci_clear();
1942 }
1943 
mce_enable_ce(void * all)1944 static void mce_enable_ce(void *all)
1945 {
1946 	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1947 		return;
1948 	cmci_reenable();
1949 	cmci_recheck();
1950 	if (all)
1951 		__mcheck_cpu_init_timer();
1952 }
1953 
1954 static struct bus_type mce_subsys = {
1955 	.name		= "machinecheck",
1956 	.dev_name	= "machinecheck",
1957 };
1958 
1959 DEFINE_PER_CPU(struct device *, mce_device);
1960 
1961 __cpuinitdata
1962 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1963 
attr_to_bank(struct device_attribute * attr)1964 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
1965 {
1966 	return container_of(attr, struct mce_bank, attr);
1967 }
1968 
show_bank(struct device * s,struct device_attribute * attr,char * buf)1969 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
1970 			 char *buf)
1971 {
1972 	return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1973 }
1974 
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)1975 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
1976 			const char *buf, size_t size)
1977 {
1978 	u64 new;
1979 
1980 	if (strict_strtoull(buf, 0, &new) < 0)
1981 		return -EINVAL;
1982 
1983 	attr_to_bank(attr)->ctl = new;
1984 	mce_restart();
1985 
1986 	return size;
1987 }
1988 
1989 static ssize_t
show_trigger(struct device * s,struct device_attribute * attr,char * buf)1990 show_trigger(struct device *s, struct device_attribute *attr, char *buf)
1991 {
1992 	strcpy(buf, mce_helper);
1993 	strcat(buf, "\n");
1994 	return strlen(mce_helper) + 1;
1995 }
1996 
set_trigger(struct device * s,struct device_attribute * attr,const char * buf,size_t siz)1997 static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
1998 				const char *buf, size_t siz)
1999 {
2000 	char *p;
2001 
2002 	strncpy(mce_helper, buf, sizeof(mce_helper));
2003 	mce_helper[sizeof(mce_helper)-1] = 0;
2004 	p = strchr(mce_helper, '\n');
2005 
2006 	if (p)
2007 		*p = 0;
2008 
2009 	return strlen(mce_helper) + !!p;
2010 }
2011 
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2012 static ssize_t set_ignore_ce(struct device *s,
2013 			     struct device_attribute *attr,
2014 			     const char *buf, size_t size)
2015 {
2016 	u64 new;
2017 
2018 	if (strict_strtoull(buf, 0, &new) < 0)
2019 		return -EINVAL;
2020 
2021 	if (mce_ignore_ce ^ !!new) {
2022 		if (new) {
2023 			/* disable ce features */
2024 			mce_timer_delete_all();
2025 			on_each_cpu(mce_disable_cmci, NULL, 1);
2026 			mce_ignore_ce = 1;
2027 		} else {
2028 			/* enable ce features */
2029 			mce_ignore_ce = 0;
2030 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2031 		}
2032 	}
2033 	return size;
2034 }
2035 
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2036 static ssize_t set_cmci_disabled(struct device *s,
2037 				 struct device_attribute *attr,
2038 				 const char *buf, size_t size)
2039 {
2040 	u64 new;
2041 
2042 	if (strict_strtoull(buf, 0, &new) < 0)
2043 		return -EINVAL;
2044 
2045 	if (mce_cmci_disabled ^ !!new) {
2046 		if (new) {
2047 			/* disable cmci */
2048 			on_each_cpu(mce_disable_cmci, NULL, 1);
2049 			mce_cmci_disabled = 1;
2050 		} else {
2051 			/* enable cmci */
2052 			mce_cmci_disabled = 0;
2053 			on_each_cpu(mce_enable_ce, NULL, 1);
2054 		}
2055 	}
2056 	return size;
2057 }
2058 
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2059 static ssize_t store_int_with_restart(struct device *s,
2060 				      struct device_attribute *attr,
2061 				      const char *buf, size_t size)
2062 {
2063 	ssize_t ret = device_store_int(s, attr, buf, size);
2064 	mce_restart();
2065 	return ret;
2066 }
2067 
2068 static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
2069 static DEVICE_INT_ATTR(tolerant, 0644, tolerant);
2070 static DEVICE_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
2071 static DEVICE_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
2072 
2073 static struct dev_ext_attribute dev_attr_check_interval = {
2074 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2075 	&check_interval
2076 };
2077 
2078 static struct dev_ext_attribute dev_attr_ignore_ce = {
2079 	__ATTR(ignore_ce, 0644, device_show_int, set_ignore_ce),
2080 	&mce_ignore_ce
2081 };
2082 
2083 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2084 	__ATTR(cmci_disabled, 0644, device_show_int, set_cmci_disabled),
2085 	&mce_cmci_disabled
2086 };
2087 
2088 static struct device_attribute *mce_device_attrs[] = {
2089 	&dev_attr_tolerant.attr,
2090 	&dev_attr_check_interval.attr,
2091 	&dev_attr_trigger,
2092 	&dev_attr_monarch_timeout.attr,
2093 	&dev_attr_dont_log_ce.attr,
2094 	&dev_attr_ignore_ce.attr,
2095 	&dev_attr_cmci_disabled.attr,
2096 	NULL
2097 };
2098 
2099 static cpumask_var_t mce_device_initialized;
2100 
mce_device_release(struct device * dev)2101 static void mce_device_release(struct device *dev)
2102 {
2103 	kfree(dev);
2104 }
2105 
2106 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
mce_device_create(unsigned int cpu)2107 static __cpuinit int mce_device_create(unsigned int cpu)
2108 {
2109 	struct device *dev;
2110 	int err;
2111 	int i, j;
2112 
2113 	if (!mce_available(&boot_cpu_data))
2114 		return -EIO;
2115 
2116 	dev = kzalloc(sizeof *dev, GFP_KERNEL);
2117 	if (!dev)
2118 		return -ENOMEM;
2119 	dev->id  = cpu;
2120 	dev->bus = &mce_subsys;
2121 	dev->release = &mce_device_release;
2122 
2123 	err = device_register(dev);
2124 	if (err)
2125 		return err;
2126 
2127 	for (i = 0; mce_device_attrs[i]; i++) {
2128 		err = device_create_file(dev, mce_device_attrs[i]);
2129 		if (err)
2130 			goto error;
2131 	}
2132 	for (j = 0; j < banks; j++) {
2133 		err = device_create_file(dev, &mce_banks[j].attr);
2134 		if (err)
2135 			goto error2;
2136 	}
2137 	cpumask_set_cpu(cpu, mce_device_initialized);
2138 	per_cpu(mce_device, cpu) = dev;
2139 
2140 	return 0;
2141 error2:
2142 	while (--j >= 0)
2143 		device_remove_file(dev, &mce_banks[j].attr);
2144 error:
2145 	while (--i >= 0)
2146 		device_remove_file(dev, mce_device_attrs[i]);
2147 
2148 	device_unregister(dev);
2149 
2150 	return err;
2151 }
2152 
mce_device_remove(unsigned int cpu)2153 static __cpuinit void mce_device_remove(unsigned int cpu)
2154 {
2155 	struct device *dev = per_cpu(mce_device, cpu);
2156 	int i;
2157 
2158 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2159 		return;
2160 
2161 	for (i = 0; mce_device_attrs[i]; i++)
2162 		device_remove_file(dev, mce_device_attrs[i]);
2163 
2164 	for (i = 0; i < banks; i++)
2165 		device_remove_file(dev, &mce_banks[i].attr);
2166 
2167 	device_unregister(dev);
2168 	cpumask_clear_cpu(cpu, mce_device_initialized);
2169 	per_cpu(mce_device, cpu) = NULL;
2170 }
2171 
2172 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void * h)2173 static void __cpuinit mce_disable_cpu(void *h)
2174 {
2175 	unsigned long action = *(unsigned long *)h;
2176 	int i;
2177 
2178 	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2179 		return;
2180 
2181 	if (!(action & CPU_TASKS_FROZEN))
2182 		cmci_clear();
2183 	for (i = 0; i < banks; i++) {
2184 		struct mce_bank *b = &mce_banks[i];
2185 
2186 		if (b->init)
2187 			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2188 	}
2189 }
2190 
mce_reenable_cpu(void * h)2191 static void __cpuinit mce_reenable_cpu(void *h)
2192 {
2193 	unsigned long action = *(unsigned long *)h;
2194 	int i;
2195 
2196 	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2197 		return;
2198 
2199 	if (!(action & CPU_TASKS_FROZEN))
2200 		cmci_reenable();
2201 	for (i = 0; i < banks; i++) {
2202 		struct mce_bank *b = &mce_banks[i];
2203 
2204 		if (b->init)
2205 			wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2206 	}
2207 }
2208 
2209 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2210 static int __cpuinit
mce_cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)2211 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2212 {
2213 	unsigned int cpu = (unsigned long)hcpu;
2214 	struct timer_list *t = &per_cpu(mce_timer, cpu);
2215 
2216 	switch (action) {
2217 	case CPU_ONLINE:
2218 	case CPU_ONLINE_FROZEN:
2219 		mce_device_create(cpu);
2220 		if (threshold_cpu_callback)
2221 			threshold_cpu_callback(action, cpu);
2222 		break;
2223 	case CPU_DEAD:
2224 	case CPU_DEAD_FROZEN:
2225 		if (threshold_cpu_callback)
2226 			threshold_cpu_callback(action, cpu);
2227 		mce_device_remove(cpu);
2228 		break;
2229 	case CPU_DOWN_PREPARE:
2230 	case CPU_DOWN_PREPARE_FROZEN:
2231 		del_timer_sync(t);
2232 		smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2233 		break;
2234 	case CPU_DOWN_FAILED:
2235 	case CPU_DOWN_FAILED_FROZEN:
2236 		if (!mce_ignore_ce && check_interval) {
2237 			t->expires = round_jiffies(jiffies +
2238 					   __get_cpu_var(mce_next_interval));
2239 			add_timer_on(t, cpu);
2240 		}
2241 		smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2242 		break;
2243 	case CPU_POST_DEAD:
2244 		/* intentionally ignoring frozen here */
2245 		cmci_rediscover(cpu);
2246 		break;
2247 	}
2248 	return NOTIFY_OK;
2249 }
2250 
2251 static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2252 	.notifier_call = mce_cpu_callback,
2253 };
2254 
mce_init_banks(void)2255 static __init void mce_init_banks(void)
2256 {
2257 	int i;
2258 
2259 	for (i = 0; i < banks; i++) {
2260 		struct mce_bank *b = &mce_banks[i];
2261 		struct device_attribute *a = &b->attr;
2262 
2263 		sysfs_attr_init(&a->attr);
2264 		a->attr.name	= b->attrname;
2265 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2266 
2267 		a->attr.mode	= 0644;
2268 		a->show		= show_bank;
2269 		a->store	= set_bank;
2270 	}
2271 }
2272 
mcheck_init_device(void)2273 static __init int mcheck_init_device(void)
2274 {
2275 	int err;
2276 	int i = 0;
2277 
2278 	if (!mce_available(&boot_cpu_data))
2279 		return -EIO;
2280 
2281 	zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL);
2282 
2283 	mce_init_banks();
2284 
2285 	err = subsys_system_register(&mce_subsys, NULL);
2286 	if (err)
2287 		return err;
2288 
2289 	for_each_online_cpu(i) {
2290 		err = mce_device_create(i);
2291 		if (err)
2292 			return err;
2293 	}
2294 
2295 	register_syscore_ops(&mce_syscore_ops);
2296 	register_hotcpu_notifier(&mce_cpu_notifier);
2297 
2298 	/* register character device /dev/mcelog */
2299 	misc_register(&mce_chrdev_device);
2300 
2301 	return err;
2302 }
2303 device_initcall(mcheck_init_device);
2304 
2305 /*
2306  * Old style boot options parsing. Only for compatibility.
2307  */
mcheck_disable(char * str)2308 static int __init mcheck_disable(char *str)
2309 {
2310 	mce_disabled = 1;
2311 	return 1;
2312 }
2313 __setup("nomce", mcheck_disable);
2314 
2315 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2316 struct dentry *mce_get_debugfs_dir(void)
2317 {
2318 	static struct dentry *dmce;
2319 
2320 	if (!dmce)
2321 		dmce = debugfs_create_dir("mce", NULL);
2322 
2323 	return dmce;
2324 }
2325 
mce_reset(void)2326 static void mce_reset(void)
2327 {
2328 	cpu_missing = 0;
2329 	atomic_set(&mce_fake_paniced, 0);
2330 	atomic_set(&mce_executing, 0);
2331 	atomic_set(&mce_callin, 0);
2332 	atomic_set(&global_nwo, 0);
2333 }
2334 
fake_panic_get(void * data,u64 * val)2335 static int fake_panic_get(void *data, u64 *val)
2336 {
2337 	*val = fake_panic;
2338 	return 0;
2339 }
2340 
fake_panic_set(void * data,u64 val)2341 static int fake_panic_set(void *data, u64 val)
2342 {
2343 	mce_reset();
2344 	fake_panic = val;
2345 	return 0;
2346 }
2347 
2348 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2349 			fake_panic_set, "%llu\n");
2350 
mcheck_debugfs_init(void)2351 static int __init mcheck_debugfs_init(void)
2352 {
2353 	struct dentry *dmce, *ffake_panic;
2354 
2355 	dmce = mce_get_debugfs_dir();
2356 	if (!dmce)
2357 		return -ENOMEM;
2358 	ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2359 					  &fake_panic_fops);
2360 	if (!ffake_panic)
2361 		return -ENOMEM;
2362 
2363 	return 0;
2364 }
2365 late_initcall(mcheck_debugfs_init);
2366 #endif
2367