1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Ethernet driver
3 *
4 * Copyright (C) 2020 Marvell.
5 *
6 */
7
8 #include <linux/interrupt.h>
9 #include <linux/pci.h>
10 #include <net/page_pool/helpers.h>
11 #include <net/tso.h>
12 #include <linux/bitfield.h>
13
14 #include "otx2_reg.h"
15 #include "otx2_common.h"
16 #include "otx2_struct.h"
17 #include "cn10k.h"
18
otx2_nix_rq_op_stats(struct queue_stats * stats,struct otx2_nic * pfvf,int qidx)19 static void otx2_nix_rq_op_stats(struct queue_stats *stats,
20 struct otx2_nic *pfvf, int qidx)
21 {
22 u64 incr = (u64)qidx << 32;
23 u64 *ptr;
24
25 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_OCTS);
26 stats->bytes = otx2_atomic64_add(incr, ptr);
27
28 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_PKTS);
29 stats->pkts = otx2_atomic64_add(incr, ptr);
30 }
31
otx2_nix_sq_op_stats(struct queue_stats * stats,struct otx2_nic * pfvf,int qidx)32 static void otx2_nix_sq_op_stats(struct queue_stats *stats,
33 struct otx2_nic *pfvf, int qidx)
34 {
35 u64 incr = (u64)qidx << 32;
36 u64 *ptr;
37
38 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_OCTS);
39 stats->bytes = otx2_atomic64_add(incr, ptr);
40
41 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_PKTS);
42 stats->pkts = otx2_atomic64_add(incr, ptr);
43 }
44
otx2_update_lmac_stats(struct otx2_nic * pfvf)45 void otx2_update_lmac_stats(struct otx2_nic *pfvf)
46 {
47 struct msg_req *req;
48
49 if (!netif_running(pfvf->netdev))
50 return;
51
52 mutex_lock(&pfvf->mbox.lock);
53 req = otx2_mbox_alloc_msg_cgx_stats(&pfvf->mbox);
54 if (!req) {
55 mutex_unlock(&pfvf->mbox.lock);
56 return;
57 }
58
59 otx2_sync_mbox_msg(&pfvf->mbox);
60 mutex_unlock(&pfvf->mbox.lock);
61 }
62
otx2_update_lmac_fec_stats(struct otx2_nic * pfvf)63 void otx2_update_lmac_fec_stats(struct otx2_nic *pfvf)
64 {
65 struct msg_req *req;
66
67 if (!netif_running(pfvf->netdev))
68 return;
69 mutex_lock(&pfvf->mbox.lock);
70 req = otx2_mbox_alloc_msg_cgx_fec_stats(&pfvf->mbox);
71 if (req)
72 otx2_sync_mbox_msg(&pfvf->mbox);
73 mutex_unlock(&pfvf->mbox.lock);
74 }
75
otx2_update_rq_stats(struct otx2_nic * pfvf,int qidx)76 int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx)
77 {
78 struct otx2_rcv_queue *rq = &pfvf->qset.rq[qidx];
79
80 if (!pfvf->qset.rq)
81 return 0;
82
83 otx2_nix_rq_op_stats(&rq->stats, pfvf, qidx);
84 return 1;
85 }
86
otx2_update_sq_stats(struct otx2_nic * pfvf,int qidx)87 int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx)
88 {
89 struct otx2_snd_queue *sq = &pfvf->qset.sq[qidx];
90
91 if (!pfvf->qset.sq)
92 return 0;
93
94 if (qidx >= pfvf->hw.non_qos_queues) {
95 if (!test_bit(qidx - pfvf->hw.non_qos_queues, pfvf->qos.qos_sq_bmap))
96 return 0;
97 }
98
99 otx2_nix_sq_op_stats(&sq->stats, pfvf, qidx);
100 return 1;
101 }
102
otx2_get_dev_stats(struct otx2_nic * pfvf)103 void otx2_get_dev_stats(struct otx2_nic *pfvf)
104 {
105 struct otx2_dev_stats *dev_stats = &pfvf->hw.dev_stats;
106
107 dev_stats->rx_bytes = OTX2_GET_RX_STATS(RX_OCTS);
108 dev_stats->rx_drops = OTX2_GET_RX_STATS(RX_DROP);
109 dev_stats->rx_bcast_frames = OTX2_GET_RX_STATS(RX_BCAST);
110 dev_stats->rx_mcast_frames = OTX2_GET_RX_STATS(RX_MCAST);
111 dev_stats->rx_ucast_frames = OTX2_GET_RX_STATS(RX_UCAST);
112 dev_stats->rx_frames = dev_stats->rx_bcast_frames +
113 dev_stats->rx_mcast_frames +
114 dev_stats->rx_ucast_frames;
115
116 dev_stats->tx_bytes = OTX2_GET_TX_STATS(TX_OCTS);
117 dev_stats->tx_drops = OTX2_GET_TX_STATS(TX_DROP);
118 dev_stats->tx_bcast_frames = OTX2_GET_TX_STATS(TX_BCAST);
119 dev_stats->tx_mcast_frames = OTX2_GET_TX_STATS(TX_MCAST);
120 dev_stats->tx_ucast_frames = OTX2_GET_TX_STATS(TX_UCAST);
121 dev_stats->tx_frames = dev_stats->tx_bcast_frames +
122 dev_stats->tx_mcast_frames +
123 dev_stats->tx_ucast_frames;
124 }
125
otx2_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)126 void otx2_get_stats64(struct net_device *netdev,
127 struct rtnl_link_stats64 *stats)
128 {
129 struct otx2_nic *pfvf = netdev_priv(netdev);
130 struct otx2_dev_stats *dev_stats;
131
132 otx2_get_dev_stats(pfvf);
133
134 dev_stats = &pfvf->hw.dev_stats;
135 stats->rx_bytes = dev_stats->rx_bytes;
136 stats->rx_packets = dev_stats->rx_frames;
137 stats->rx_dropped = dev_stats->rx_drops;
138 stats->multicast = dev_stats->rx_mcast_frames;
139
140 stats->tx_bytes = dev_stats->tx_bytes;
141 stats->tx_packets = dev_stats->tx_frames;
142 stats->tx_dropped = dev_stats->tx_drops;
143 }
144 EXPORT_SYMBOL(otx2_get_stats64);
145
146 /* Sync MAC address with RVU AF */
otx2_hw_set_mac_addr(struct otx2_nic * pfvf,u8 * mac)147 static int otx2_hw_set_mac_addr(struct otx2_nic *pfvf, u8 *mac)
148 {
149 struct nix_set_mac_addr *req;
150 int err;
151
152 mutex_lock(&pfvf->mbox.lock);
153 req = otx2_mbox_alloc_msg_nix_set_mac_addr(&pfvf->mbox);
154 if (!req) {
155 mutex_unlock(&pfvf->mbox.lock);
156 return -ENOMEM;
157 }
158
159 ether_addr_copy(req->mac_addr, mac);
160
161 err = otx2_sync_mbox_msg(&pfvf->mbox);
162 mutex_unlock(&pfvf->mbox.lock);
163 return err;
164 }
165
otx2_hw_get_mac_addr(struct otx2_nic * pfvf,struct net_device * netdev)166 static int otx2_hw_get_mac_addr(struct otx2_nic *pfvf,
167 struct net_device *netdev)
168 {
169 struct nix_get_mac_addr_rsp *rsp;
170 struct mbox_msghdr *msghdr;
171 struct msg_req *req;
172 int err;
173
174 mutex_lock(&pfvf->mbox.lock);
175 req = otx2_mbox_alloc_msg_nix_get_mac_addr(&pfvf->mbox);
176 if (!req) {
177 mutex_unlock(&pfvf->mbox.lock);
178 return -ENOMEM;
179 }
180
181 err = otx2_sync_mbox_msg(&pfvf->mbox);
182 if (err) {
183 mutex_unlock(&pfvf->mbox.lock);
184 return err;
185 }
186
187 msghdr = otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
188 if (IS_ERR(msghdr)) {
189 mutex_unlock(&pfvf->mbox.lock);
190 return PTR_ERR(msghdr);
191 }
192 rsp = (struct nix_get_mac_addr_rsp *)msghdr;
193 eth_hw_addr_set(netdev, rsp->mac_addr);
194 mutex_unlock(&pfvf->mbox.lock);
195
196 return 0;
197 }
198
otx2_set_mac_address(struct net_device * netdev,void * p)199 int otx2_set_mac_address(struct net_device *netdev, void *p)
200 {
201 struct otx2_nic *pfvf = netdev_priv(netdev);
202 struct sockaddr *addr = p;
203
204 if (!is_valid_ether_addr(addr->sa_data))
205 return -EADDRNOTAVAIL;
206
207 if (!otx2_hw_set_mac_addr(pfvf, addr->sa_data)) {
208 eth_hw_addr_set(netdev, addr->sa_data);
209 /* update dmac field in vlan offload rule */
210 if (netif_running(netdev) &&
211 pfvf->flags & OTX2_FLAG_RX_VLAN_SUPPORT)
212 otx2_install_rxvlan_offload_flow(pfvf);
213 /* update dmac address in ntuple and DMAC filter list */
214 if (pfvf->flags & OTX2_FLAG_DMACFLTR_SUPPORT)
215 otx2_dmacflt_update_pfmac_flow(pfvf);
216 } else {
217 return -EPERM;
218 }
219
220 return 0;
221 }
222 EXPORT_SYMBOL(otx2_set_mac_address);
223
otx2_hw_set_mtu(struct otx2_nic * pfvf,int mtu)224 int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu)
225 {
226 struct nix_frs_cfg *req;
227 u16 maxlen;
228 int err;
229
230 maxlen = otx2_get_max_mtu(pfvf) + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN;
231
232 mutex_lock(&pfvf->mbox.lock);
233 req = otx2_mbox_alloc_msg_nix_set_hw_frs(&pfvf->mbox);
234 if (!req) {
235 mutex_unlock(&pfvf->mbox.lock);
236 return -ENOMEM;
237 }
238
239 req->maxlen = pfvf->netdev->mtu + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN;
240
241 /* Use max receive length supported by hardware for loopback devices */
242 if (is_otx2_lbkvf(pfvf->pdev))
243 req->maxlen = maxlen;
244
245 err = otx2_sync_mbox_msg(&pfvf->mbox);
246 mutex_unlock(&pfvf->mbox.lock);
247 return err;
248 }
249
otx2_config_pause_frm(struct otx2_nic * pfvf)250 int otx2_config_pause_frm(struct otx2_nic *pfvf)
251 {
252 struct cgx_pause_frm_cfg *req;
253 int err;
254
255 if (is_otx2_lbkvf(pfvf->pdev))
256 return 0;
257
258 mutex_lock(&pfvf->mbox.lock);
259 req = otx2_mbox_alloc_msg_cgx_cfg_pause_frm(&pfvf->mbox);
260 if (!req) {
261 err = -ENOMEM;
262 goto unlock;
263 }
264
265 req->rx_pause = !!(pfvf->flags & OTX2_FLAG_RX_PAUSE_ENABLED);
266 req->tx_pause = !!(pfvf->flags & OTX2_FLAG_TX_PAUSE_ENABLED);
267 req->set = 1;
268
269 err = otx2_sync_mbox_msg(&pfvf->mbox);
270 unlock:
271 mutex_unlock(&pfvf->mbox.lock);
272 return err;
273 }
274 EXPORT_SYMBOL(otx2_config_pause_frm);
275
otx2_set_flowkey_cfg(struct otx2_nic * pfvf)276 int otx2_set_flowkey_cfg(struct otx2_nic *pfvf)
277 {
278 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
279 struct nix_rss_flowkey_cfg_rsp *rsp;
280 struct nix_rss_flowkey_cfg *req;
281 int err;
282
283 mutex_lock(&pfvf->mbox.lock);
284 req = otx2_mbox_alloc_msg_nix_rss_flowkey_cfg(&pfvf->mbox);
285 if (!req) {
286 mutex_unlock(&pfvf->mbox.lock);
287 return -ENOMEM;
288 }
289 req->mcam_index = -1; /* Default or reserved index */
290 req->flowkey_cfg = rss->flowkey_cfg;
291 req->group = DEFAULT_RSS_CONTEXT_GROUP;
292
293 err = otx2_sync_mbox_msg(&pfvf->mbox);
294 if (err)
295 goto fail;
296
297 rsp = (struct nix_rss_flowkey_cfg_rsp *)
298 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
299 if (IS_ERR(rsp)) {
300 err = PTR_ERR(rsp);
301 goto fail;
302 }
303
304 pfvf->hw.flowkey_alg_idx = rsp->alg_idx;
305 fail:
306 mutex_unlock(&pfvf->mbox.lock);
307 return err;
308 }
309
otx2_set_rss_table(struct otx2_nic * pfvf,int ctx_id)310 int otx2_set_rss_table(struct otx2_nic *pfvf, int ctx_id)
311 {
312 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
313 const int index = rss->rss_size * ctx_id;
314 struct mbox *mbox = &pfvf->mbox;
315 struct otx2_rss_ctx *rss_ctx;
316 struct nix_aq_enq_req *aq;
317 int idx, err;
318
319 mutex_lock(&mbox->lock);
320 rss_ctx = rss->rss_ctx[ctx_id];
321 /* Get memory to put this msg */
322 for (idx = 0; idx < rss->rss_size; idx++) {
323 aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
324 if (!aq) {
325 /* The shared memory buffer can be full.
326 * Flush it and retry
327 */
328 err = otx2_sync_mbox_msg(mbox);
329 if (err) {
330 mutex_unlock(&mbox->lock);
331 return err;
332 }
333 aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
334 if (!aq) {
335 mutex_unlock(&mbox->lock);
336 return -ENOMEM;
337 }
338 }
339
340 aq->rss.rq = rss_ctx->ind_tbl[idx];
341
342 /* Fill AQ info */
343 aq->qidx = index + idx;
344 aq->ctype = NIX_AQ_CTYPE_RSS;
345 aq->op = NIX_AQ_INSTOP_INIT;
346 }
347 err = otx2_sync_mbox_msg(mbox);
348 mutex_unlock(&mbox->lock);
349 return err;
350 }
351
otx2_set_rss_key(struct otx2_nic * pfvf)352 void otx2_set_rss_key(struct otx2_nic *pfvf)
353 {
354 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
355 u64 *key = (u64 *)&rss->key[4];
356 int idx;
357
358 /* 352bit or 44byte key needs to be configured as below
359 * NIX_LF_RX_SECRETX0 = key<351:288>
360 * NIX_LF_RX_SECRETX1 = key<287:224>
361 * NIX_LF_RX_SECRETX2 = key<223:160>
362 * NIX_LF_RX_SECRETX3 = key<159:96>
363 * NIX_LF_RX_SECRETX4 = key<95:32>
364 * NIX_LF_RX_SECRETX5<63:32> = key<31:0>
365 */
366 otx2_write64(pfvf, NIX_LF_RX_SECRETX(5),
367 (u64)(*((u32 *)&rss->key)) << 32);
368 idx = sizeof(rss->key) / sizeof(u64);
369 while (idx > 0) {
370 idx--;
371 otx2_write64(pfvf, NIX_LF_RX_SECRETX(idx), *key++);
372 }
373 }
374
otx2_rss_init(struct otx2_nic * pfvf)375 int otx2_rss_init(struct otx2_nic *pfvf)
376 {
377 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
378 struct otx2_rss_ctx *rss_ctx;
379 int idx, ret = 0;
380
381 rss->rss_size = sizeof(*rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP]);
382
383 /* Init RSS key if it is not setup already */
384 if (!rss->enable)
385 netdev_rss_key_fill(rss->key, sizeof(rss->key));
386 otx2_set_rss_key(pfvf);
387
388 if (!netif_is_rxfh_configured(pfvf->netdev)) {
389 /* Set RSS group 0 as default indirection table */
390 rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP] = kzalloc(rss->rss_size,
391 GFP_KERNEL);
392 if (!rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP])
393 return -ENOMEM;
394
395 rss_ctx = rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP];
396 for (idx = 0; idx < rss->rss_size; idx++)
397 rss_ctx->ind_tbl[idx] =
398 ethtool_rxfh_indir_default(idx,
399 pfvf->hw.rx_queues);
400 }
401 ret = otx2_set_rss_table(pfvf, DEFAULT_RSS_CONTEXT_GROUP);
402 if (ret)
403 return ret;
404
405 /* Flowkey or hash config to be used for generating flow tag */
406 rss->flowkey_cfg = rss->enable ? rss->flowkey_cfg :
407 NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6 |
408 NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_UDP |
409 NIX_FLOW_KEY_TYPE_SCTP | NIX_FLOW_KEY_TYPE_VLAN |
410 NIX_FLOW_KEY_TYPE_IPV4_PROTO;
411
412 ret = otx2_set_flowkey_cfg(pfvf);
413 if (ret)
414 return ret;
415
416 rss->enable = true;
417 return 0;
418 }
419
420 /* Setup UDP segmentation algorithm in HW */
otx2_setup_udp_segmentation(struct nix_lso_format_cfg * lso,bool v4)421 static void otx2_setup_udp_segmentation(struct nix_lso_format_cfg *lso, bool v4)
422 {
423 struct nix_lso_format *field;
424
425 field = (struct nix_lso_format *)&lso->fields[0];
426 lso->field_mask = GENMASK(18, 0);
427
428 /* IP's Length field */
429 field->layer = NIX_TXLAYER_OL3;
430 /* In ipv4, length field is at offset 2 bytes, for ipv6 it's 4 */
431 field->offset = v4 ? 2 : 4;
432 field->sizem1 = 1; /* i.e 2 bytes */
433 field->alg = NIX_LSOALG_ADD_PAYLEN;
434 field++;
435
436 /* No ID field in IPv6 header */
437 if (v4) {
438 /* Increment IPID */
439 field->layer = NIX_TXLAYER_OL3;
440 field->offset = 4;
441 field->sizem1 = 1; /* i.e 2 bytes */
442 field->alg = NIX_LSOALG_ADD_SEGNUM;
443 field++;
444 }
445
446 /* Update length in UDP header */
447 field->layer = NIX_TXLAYER_OL4;
448 field->offset = 4;
449 field->sizem1 = 1;
450 field->alg = NIX_LSOALG_ADD_PAYLEN;
451 }
452
453 /* Setup segmentation algorithms in HW and retrieve algorithm index */
otx2_setup_segmentation(struct otx2_nic * pfvf)454 void otx2_setup_segmentation(struct otx2_nic *pfvf)
455 {
456 struct nix_lso_format_cfg_rsp *rsp;
457 struct nix_lso_format_cfg *lso;
458 struct otx2_hw *hw = &pfvf->hw;
459 int err;
460
461 mutex_lock(&pfvf->mbox.lock);
462
463 /* UDPv4 segmentation */
464 lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
465 if (!lso)
466 goto fail;
467
468 /* Setup UDP/IP header fields that HW should update per segment */
469 otx2_setup_udp_segmentation(lso, true);
470
471 err = otx2_sync_mbox_msg(&pfvf->mbox);
472 if (err)
473 goto fail;
474
475 rsp = (struct nix_lso_format_cfg_rsp *)
476 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
477 if (IS_ERR(rsp))
478 goto fail;
479
480 hw->lso_udpv4_idx = rsp->lso_format_idx;
481
482 /* UDPv6 segmentation */
483 lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
484 if (!lso)
485 goto fail;
486
487 /* Setup UDP/IP header fields that HW should update per segment */
488 otx2_setup_udp_segmentation(lso, false);
489
490 err = otx2_sync_mbox_msg(&pfvf->mbox);
491 if (err)
492 goto fail;
493
494 rsp = (struct nix_lso_format_cfg_rsp *)
495 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
496 if (IS_ERR(rsp))
497 goto fail;
498
499 hw->lso_udpv6_idx = rsp->lso_format_idx;
500 mutex_unlock(&pfvf->mbox.lock);
501 return;
502 fail:
503 mutex_unlock(&pfvf->mbox.lock);
504 netdev_info(pfvf->netdev,
505 "Failed to get LSO index for UDP GSO offload, disabling\n");
506 pfvf->netdev->hw_features &= ~NETIF_F_GSO_UDP_L4;
507 }
508
otx2_config_irq_coalescing(struct otx2_nic * pfvf,int qidx)509 void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx)
510 {
511 /* Configure CQE interrupt coalescing parameters
512 *
513 * HW triggers an irq when ECOUNT > cq_ecount_wait, hence
514 * set 1 less than cq_ecount_wait. And cq_time_wait is in
515 * usecs, convert that to 100ns count.
516 */
517 otx2_write64(pfvf, NIX_LF_CINTX_WAIT(qidx),
518 ((u64)(pfvf->hw.cq_time_wait * 10) << 48) |
519 ((u64)pfvf->hw.cq_qcount_wait << 32) |
520 (pfvf->hw.cq_ecount_wait - 1));
521 }
522
otx2_alloc_pool_buf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma)523 static int otx2_alloc_pool_buf(struct otx2_nic *pfvf, struct otx2_pool *pool,
524 dma_addr_t *dma)
525 {
526 unsigned int offset = 0;
527 struct page *page;
528 size_t sz;
529
530 sz = SKB_DATA_ALIGN(pool->rbsize);
531 sz = ALIGN(sz, OTX2_ALIGN);
532
533 page = page_pool_alloc_frag(pool->page_pool, &offset, sz, GFP_ATOMIC);
534 if (unlikely(!page))
535 return -ENOMEM;
536
537 *dma = page_pool_get_dma_addr(page) + offset;
538 return 0;
539 }
540
__otx2_alloc_rbuf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma)541 static int __otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
542 dma_addr_t *dma)
543 {
544 u8 *buf;
545
546 if (pool->page_pool)
547 return otx2_alloc_pool_buf(pfvf, pool, dma);
548
549 buf = napi_alloc_frag_align(pool->rbsize, OTX2_ALIGN);
550 if (unlikely(!buf))
551 return -ENOMEM;
552
553 *dma = dma_map_single_attrs(pfvf->dev, buf, pool->rbsize,
554 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
555 if (unlikely(dma_mapping_error(pfvf->dev, *dma))) {
556 page_frag_free(buf);
557 return -ENOMEM;
558 }
559
560 return 0;
561 }
562
otx2_alloc_rbuf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma)563 int otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
564 dma_addr_t *dma)
565 {
566 int ret;
567
568 local_bh_disable();
569 ret = __otx2_alloc_rbuf(pfvf, pool, dma);
570 local_bh_enable();
571 return ret;
572 }
573
otx2_alloc_buffer(struct otx2_nic * pfvf,struct otx2_cq_queue * cq,dma_addr_t * dma)574 int otx2_alloc_buffer(struct otx2_nic *pfvf, struct otx2_cq_queue *cq,
575 dma_addr_t *dma)
576 {
577 if (unlikely(__otx2_alloc_rbuf(pfvf, cq->rbpool, dma)))
578 return -ENOMEM;
579 return 0;
580 }
581
otx2_tx_timeout(struct net_device * netdev,unsigned int txq)582 void otx2_tx_timeout(struct net_device *netdev, unsigned int txq)
583 {
584 struct otx2_nic *pfvf = netdev_priv(netdev);
585
586 schedule_work(&pfvf->reset_task);
587 }
588 EXPORT_SYMBOL(otx2_tx_timeout);
589
otx2_get_mac_from_af(struct net_device * netdev)590 void otx2_get_mac_from_af(struct net_device *netdev)
591 {
592 struct otx2_nic *pfvf = netdev_priv(netdev);
593 int err;
594
595 err = otx2_hw_get_mac_addr(pfvf, netdev);
596 if (err)
597 dev_warn(pfvf->dev, "Failed to read mac from hardware\n");
598
599 /* If AF doesn't provide a valid MAC, generate a random one */
600 if (!is_valid_ether_addr(netdev->dev_addr))
601 eth_hw_addr_random(netdev);
602 }
603 EXPORT_SYMBOL(otx2_get_mac_from_af);
604
otx2_txschq_config(struct otx2_nic * pfvf,int lvl,int prio,bool txschq_for_pfc)605 int otx2_txschq_config(struct otx2_nic *pfvf, int lvl, int prio, bool txschq_for_pfc)
606 {
607 u16 (*schq_list)[MAX_TXSCHQ_PER_FUNC];
608 struct otx2_hw *hw = &pfvf->hw;
609 struct nix_txschq_config *req;
610 u64 schq, parent;
611 u64 dwrr_val;
612
613 dwrr_val = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen);
614
615 req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
616 if (!req)
617 return -ENOMEM;
618
619 req->lvl = lvl;
620 req->num_regs = 1;
621
622 schq_list = hw->txschq_list;
623 #ifdef CONFIG_DCB
624 if (txschq_for_pfc)
625 schq_list = pfvf->pfc_schq_list;
626 #endif
627
628 schq = schq_list[lvl][prio];
629 /* Set topology e.t.c configuration */
630 if (lvl == NIX_TXSCH_LVL_SMQ) {
631 req->reg[0] = NIX_AF_SMQX_CFG(schq);
632 req->regval[0] = ((u64)pfvf->tx_max_pktlen << 8) | OTX2_MIN_MTU;
633 req->regval[0] |= (0x20ULL << 51) | (0x80ULL << 39) |
634 (0x2ULL << 36);
635 /* Set link type for DWRR MTU selection on CN10K silicons */
636 if (!is_dev_otx2(pfvf->pdev))
637 req->regval[0] |= FIELD_PREP(GENMASK_ULL(58, 57),
638 (u64)hw->smq_link_type);
639 req->num_regs++;
640 /* MDQ config */
641 parent = schq_list[NIX_TXSCH_LVL_TL4][prio];
642 req->reg[1] = NIX_AF_MDQX_PARENT(schq);
643 req->regval[1] = parent << 16;
644 req->num_regs++;
645 /* Set DWRR quantum */
646 req->reg[2] = NIX_AF_MDQX_SCHEDULE(schq);
647 req->regval[2] = dwrr_val;
648 } else if (lvl == NIX_TXSCH_LVL_TL4) {
649 parent = schq_list[NIX_TXSCH_LVL_TL3][prio];
650 req->reg[0] = NIX_AF_TL4X_PARENT(schq);
651 req->regval[0] = parent << 16;
652 req->num_regs++;
653 req->reg[1] = NIX_AF_TL4X_SCHEDULE(schq);
654 req->regval[1] = dwrr_val;
655 } else if (lvl == NIX_TXSCH_LVL_TL3) {
656 parent = schq_list[NIX_TXSCH_LVL_TL2][prio];
657 req->reg[0] = NIX_AF_TL3X_PARENT(schq);
658 req->regval[0] = parent << 16;
659 req->num_regs++;
660 req->reg[1] = NIX_AF_TL3X_SCHEDULE(schq);
661 req->regval[1] = dwrr_val;
662 if (lvl == hw->txschq_link_cfg_lvl) {
663 req->num_regs++;
664 req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link);
665 /* Enable this queue and backpressure
666 * and set relative channel
667 */
668 req->regval[2] = BIT_ULL(13) | BIT_ULL(12) | prio;
669 }
670 } else if (lvl == NIX_TXSCH_LVL_TL2) {
671 parent = schq_list[NIX_TXSCH_LVL_TL1][prio];
672 req->reg[0] = NIX_AF_TL2X_PARENT(schq);
673 req->regval[0] = parent << 16;
674
675 req->num_regs++;
676 req->reg[1] = NIX_AF_TL2X_SCHEDULE(schq);
677 req->regval[1] = TXSCH_TL1_DFLT_RR_PRIO << 24 | dwrr_val;
678
679 if (lvl == hw->txschq_link_cfg_lvl) {
680 req->num_regs++;
681 req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link);
682 /* Enable this queue and backpressure
683 * and set relative channel
684 */
685 req->regval[2] = BIT_ULL(13) | BIT_ULL(12) | prio;
686 }
687 } else if (lvl == NIX_TXSCH_LVL_TL1) {
688 /* Default config for TL1.
689 * For VF this is always ignored.
690 */
691
692 /* On CN10K, if RR_WEIGHT is greater than 16384, HW will
693 * clip it to 16384, so configuring a 24bit max value
694 * will work on both OTx2 and CN10K.
695 */
696 req->reg[0] = NIX_AF_TL1X_SCHEDULE(schq);
697 req->regval[0] = TXSCH_TL1_DFLT_RR_QTM;
698
699 req->num_regs++;
700 req->reg[1] = NIX_AF_TL1X_TOPOLOGY(schq);
701 req->regval[1] = (TXSCH_TL1_DFLT_RR_PRIO << 1);
702
703 req->num_regs++;
704 req->reg[2] = NIX_AF_TL1X_CIR(schq);
705 req->regval[2] = 0;
706 }
707
708 return otx2_sync_mbox_msg(&pfvf->mbox);
709 }
710 EXPORT_SYMBOL(otx2_txschq_config);
711
otx2_smq_flush(struct otx2_nic * pfvf,int smq)712 int otx2_smq_flush(struct otx2_nic *pfvf, int smq)
713 {
714 struct nix_txschq_config *req;
715 int rc;
716
717 mutex_lock(&pfvf->mbox.lock);
718
719 req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
720 if (!req) {
721 mutex_unlock(&pfvf->mbox.lock);
722 return -ENOMEM;
723 }
724
725 req->lvl = NIX_TXSCH_LVL_SMQ;
726 req->reg[0] = NIX_AF_SMQX_CFG(smq);
727 req->regval[0] |= BIT_ULL(49);
728 req->num_regs++;
729
730 rc = otx2_sync_mbox_msg(&pfvf->mbox);
731 mutex_unlock(&pfvf->mbox.lock);
732 return rc;
733 }
734 EXPORT_SYMBOL(otx2_smq_flush);
735
otx2_txsch_alloc(struct otx2_nic * pfvf)736 int otx2_txsch_alloc(struct otx2_nic *pfvf)
737 {
738 struct nix_txsch_alloc_req *req;
739 struct nix_txsch_alloc_rsp *rsp;
740 int lvl, schq, rc;
741
742 /* Get memory to put this msg */
743 req = otx2_mbox_alloc_msg_nix_txsch_alloc(&pfvf->mbox);
744 if (!req)
745 return -ENOMEM;
746
747 /* Request one schq per level */
748 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
749 req->schq[lvl] = 1;
750 rc = otx2_sync_mbox_msg(&pfvf->mbox);
751 if (rc)
752 return rc;
753
754 rsp = (struct nix_txsch_alloc_rsp *)
755 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
756 if (IS_ERR(rsp))
757 return PTR_ERR(rsp);
758
759 /* Setup transmit scheduler list */
760 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
761 for (schq = 0; schq < rsp->schq[lvl]; schq++)
762 pfvf->hw.txschq_list[lvl][schq] =
763 rsp->schq_list[lvl][schq];
764
765 pfvf->hw.txschq_link_cfg_lvl = rsp->link_cfg_lvl;
766 pfvf->hw.txschq_aggr_lvl_rr_prio = rsp->aggr_lvl_rr_prio;
767
768 return 0;
769 }
770
otx2_txschq_free_one(struct otx2_nic * pfvf,u16 lvl,u16 schq)771 void otx2_txschq_free_one(struct otx2_nic *pfvf, u16 lvl, u16 schq)
772 {
773 struct nix_txsch_free_req *free_req;
774 int err;
775
776 mutex_lock(&pfvf->mbox.lock);
777
778 free_req = otx2_mbox_alloc_msg_nix_txsch_free(&pfvf->mbox);
779 if (!free_req) {
780 mutex_unlock(&pfvf->mbox.lock);
781 netdev_err(pfvf->netdev,
782 "Failed alloc txschq free req\n");
783 return;
784 }
785
786 free_req->schq_lvl = lvl;
787 free_req->schq = schq;
788
789 err = otx2_sync_mbox_msg(&pfvf->mbox);
790 if (err) {
791 netdev_err(pfvf->netdev,
792 "Failed stop txschq %d at level %d\n", schq, lvl);
793 }
794
795 mutex_unlock(&pfvf->mbox.lock);
796 }
797 EXPORT_SYMBOL(otx2_txschq_free_one);
798
otx2_txschq_stop(struct otx2_nic * pfvf)799 void otx2_txschq_stop(struct otx2_nic *pfvf)
800 {
801 int lvl, schq;
802
803 /* free non QOS TLx nodes */
804 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
805 otx2_txschq_free_one(pfvf, lvl,
806 pfvf->hw.txschq_list[lvl][0]);
807
808 /* Clear the txschq list */
809 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
810 for (schq = 0; schq < MAX_TXSCHQ_PER_FUNC; schq++)
811 pfvf->hw.txschq_list[lvl][schq] = 0;
812 }
813
814 }
815
otx2_sqb_flush(struct otx2_nic * pfvf)816 void otx2_sqb_flush(struct otx2_nic *pfvf)
817 {
818 int qidx, sqe_tail, sqe_head;
819 struct otx2_snd_queue *sq;
820 u64 incr, *ptr, val;
821
822 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_STATUS);
823 for (qidx = 0; qidx < otx2_get_total_tx_queues(pfvf); qidx++) {
824 sq = &pfvf->qset.sq[qidx];
825 if (!sq->sqb_ptrs)
826 continue;
827
828 incr = (u64)qidx << 32;
829 val = otx2_atomic64_add(incr, ptr);
830 sqe_head = (val >> 20) & 0x3F;
831 sqe_tail = (val >> 28) & 0x3F;
832 if (sqe_head != sqe_tail)
833 usleep_range(50, 60);
834 }
835 }
836
837 /* RED and drop levels of CQ on packet reception.
838 * For CQ level is measure of emptiness ( 0x0 = full, 255 = empty).
839 */
840 #define RQ_PASS_LVL_CQ(skid, qsize) ((((skid) + 16) * 256) / (qsize))
841 #define RQ_DROP_LVL_CQ(skid, qsize) (((skid) * 256) / (qsize))
842
843 /* RED and drop levels of AURA for packet reception.
844 * For AURA level is measure of fullness (0x0 = empty, 255 = full).
845 * Eg: For RQ length 1K, for pass/drop level 204/230.
846 * RED accepts pkts if free pointers > 102 & <= 205.
847 * Drops pkts if free pointers < 102.
848 */
849 #define RQ_BP_LVL_AURA (255 - ((85 * 256) / 100)) /* BP when 85% is full */
850 #define RQ_PASS_LVL_AURA (255 - ((95 * 256) / 100)) /* RED when 95% is full */
851 #define RQ_DROP_LVL_AURA (255 - ((99 * 256) / 100)) /* Drop when 99% is full */
852
otx2_rq_init(struct otx2_nic * pfvf,u16 qidx,u16 lpb_aura)853 static int otx2_rq_init(struct otx2_nic *pfvf, u16 qidx, u16 lpb_aura)
854 {
855 struct otx2_qset *qset = &pfvf->qset;
856 struct nix_aq_enq_req *aq;
857
858 /* Get memory to put this msg */
859 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
860 if (!aq)
861 return -ENOMEM;
862
863 aq->rq.cq = qidx;
864 aq->rq.ena = 1;
865 aq->rq.pb_caching = 1;
866 aq->rq.lpb_aura = lpb_aura; /* Use large packet buffer aura */
867 aq->rq.lpb_sizem1 = (DMA_BUFFER_LEN(pfvf->rbsize) / 8) - 1;
868 aq->rq.xqe_imm_size = 0; /* Copying of packet to CQE not needed */
869 aq->rq.flow_tagw = 32; /* Copy full 32bit flow_tag to CQE header */
870 aq->rq.qint_idx = 0;
871 aq->rq.lpb_drop_ena = 1; /* Enable RED dropping for AURA */
872 aq->rq.xqe_drop_ena = 1; /* Enable RED dropping for CQ/SSO */
873 aq->rq.xqe_pass = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
874 aq->rq.xqe_drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
875 aq->rq.lpb_aura_pass = RQ_PASS_LVL_AURA;
876 aq->rq.lpb_aura_drop = RQ_DROP_LVL_AURA;
877
878 /* Fill AQ info */
879 aq->qidx = qidx;
880 aq->ctype = NIX_AQ_CTYPE_RQ;
881 aq->op = NIX_AQ_INSTOP_INIT;
882
883 return otx2_sync_mbox_msg(&pfvf->mbox);
884 }
885
otx2_sq_aq_init(void * dev,u16 qidx,u16 sqb_aura)886 int otx2_sq_aq_init(void *dev, u16 qidx, u16 sqb_aura)
887 {
888 struct otx2_nic *pfvf = dev;
889 struct otx2_snd_queue *sq;
890 struct nix_aq_enq_req *aq;
891
892 sq = &pfvf->qset.sq[qidx];
893 sq->lmt_addr = (__force u64 *)(pfvf->reg_base + LMT_LF_LMTLINEX(qidx));
894 /* Get memory to put this msg */
895 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
896 if (!aq)
897 return -ENOMEM;
898
899 aq->sq.cq = pfvf->hw.rx_queues + qidx;
900 aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */
901 aq->sq.cq_ena = 1;
902 aq->sq.ena = 1;
903 aq->sq.smq = otx2_get_smq_idx(pfvf, qidx);
904 aq->sq.smq_rr_quantum = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen);
905 aq->sq.default_chan = pfvf->hw.tx_chan_base;
906 aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */
907 aq->sq.sqb_aura = sqb_aura;
908 aq->sq.sq_int_ena = NIX_SQINT_BITS;
909 aq->sq.qint_idx = 0;
910 /* Due pipelining impact minimum 2000 unused SQ CQE's
911 * need to maintain to avoid CQ overflow.
912 */
913 aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (pfvf->qset.sqe_cnt));
914
915 /* Fill AQ info */
916 aq->qidx = qidx;
917 aq->ctype = NIX_AQ_CTYPE_SQ;
918 aq->op = NIX_AQ_INSTOP_INIT;
919
920 return otx2_sync_mbox_msg(&pfvf->mbox);
921 }
922
otx2_sq_init(struct otx2_nic * pfvf,u16 qidx,u16 sqb_aura)923 int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura)
924 {
925 struct otx2_qset *qset = &pfvf->qset;
926 struct otx2_snd_queue *sq;
927 struct otx2_pool *pool;
928 int err;
929
930 pool = &pfvf->qset.pool[sqb_aura];
931 sq = &qset->sq[qidx];
932 sq->sqe_size = NIX_SQESZ_W16 ? 64 : 128;
933 sq->sqe_cnt = qset->sqe_cnt;
934
935 err = qmem_alloc(pfvf->dev, &sq->sqe, 1, sq->sqe_size);
936 if (err)
937 return err;
938
939 if (qidx < pfvf->hw.tx_queues) {
940 err = qmem_alloc(pfvf->dev, &sq->tso_hdrs, qset->sqe_cnt,
941 TSO_HEADER_SIZE);
942 if (err)
943 return err;
944 }
945
946 sq->sqe_base = sq->sqe->base;
947 sq->sg = kcalloc(qset->sqe_cnt, sizeof(struct sg_list), GFP_KERNEL);
948 if (!sq->sg)
949 return -ENOMEM;
950
951 if (pfvf->ptp && qidx < pfvf->hw.tx_queues) {
952 err = qmem_alloc(pfvf->dev, &sq->timestamps, qset->sqe_cnt,
953 sizeof(*sq->timestamps));
954 if (err) {
955 kfree(sq->sg);
956 sq->sg = NULL;
957 return err;
958 }
959 }
960
961 sq->head = 0;
962 sq->cons_head = 0;
963 sq->sqe_per_sqb = (pfvf->hw.sqb_size / sq->sqe_size) - 1;
964 sq->num_sqbs = (qset->sqe_cnt + sq->sqe_per_sqb) / sq->sqe_per_sqb;
965 /* Set SQE threshold to 10% of total SQEs */
966 sq->sqe_thresh = ((sq->num_sqbs * sq->sqe_per_sqb) * 10) / 100;
967 sq->aura_id = sqb_aura;
968 sq->aura_fc_addr = pool->fc_addr->base;
969 sq->io_addr = (__force u64)otx2_get_regaddr(pfvf, NIX_LF_OP_SENDX(0));
970
971 sq->stats.bytes = 0;
972 sq->stats.pkts = 0;
973
974 err = pfvf->hw_ops->sq_aq_init(pfvf, qidx, sqb_aura);
975 if (err) {
976 kfree(sq->sg);
977 sq->sg = NULL;
978 return err;
979 }
980
981 return 0;
982
983 }
984
otx2_cq_init(struct otx2_nic * pfvf,u16 qidx)985 static int otx2_cq_init(struct otx2_nic *pfvf, u16 qidx)
986 {
987 struct otx2_qset *qset = &pfvf->qset;
988 int err, pool_id, non_xdp_queues;
989 struct nix_aq_enq_req *aq;
990 struct otx2_cq_queue *cq;
991
992 cq = &qset->cq[qidx];
993 cq->cq_idx = qidx;
994 non_xdp_queues = pfvf->hw.rx_queues + pfvf->hw.tx_queues;
995 if (qidx < pfvf->hw.rx_queues) {
996 cq->cq_type = CQ_RX;
997 cq->cint_idx = qidx;
998 cq->cqe_cnt = qset->rqe_cnt;
999 if (pfvf->xdp_prog)
1000 xdp_rxq_info_reg(&cq->xdp_rxq, pfvf->netdev, qidx, 0);
1001 } else if (qidx < non_xdp_queues) {
1002 cq->cq_type = CQ_TX;
1003 cq->cint_idx = qidx - pfvf->hw.rx_queues;
1004 cq->cqe_cnt = qset->sqe_cnt;
1005 } else {
1006 if (pfvf->hw.xdp_queues &&
1007 qidx < non_xdp_queues + pfvf->hw.xdp_queues) {
1008 cq->cq_type = CQ_XDP;
1009 cq->cint_idx = qidx - non_xdp_queues;
1010 cq->cqe_cnt = qset->sqe_cnt;
1011 } else {
1012 cq->cq_type = CQ_QOS;
1013 cq->cint_idx = qidx - non_xdp_queues -
1014 pfvf->hw.xdp_queues;
1015 cq->cqe_cnt = qset->sqe_cnt;
1016 }
1017 }
1018 cq->cqe_size = pfvf->qset.xqe_size;
1019
1020 /* Allocate memory for CQEs */
1021 err = qmem_alloc(pfvf->dev, &cq->cqe, cq->cqe_cnt, cq->cqe_size);
1022 if (err)
1023 return err;
1024
1025 /* Save CQE CPU base for faster reference */
1026 cq->cqe_base = cq->cqe->base;
1027 /* In case where all RQs auras point to single pool,
1028 * all CQs receive buffer pool also point to same pool.
1029 */
1030 pool_id = ((cq->cq_type == CQ_RX) &&
1031 (pfvf->hw.rqpool_cnt != pfvf->hw.rx_queues)) ? 0 : qidx;
1032 cq->rbpool = &qset->pool[pool_id];
1033 cq->refill_task_sched = false;
1034
1035 /* Get memory to put this msg */
1036 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
1037 if (!aq)
1038 return -ENOMEM;
1039
1040 aq->cq.ena = 1;
1041 aq->cq.qsize = Q_SIZE(cq->cqe_cnt, 4);
1042 aq->cq.caching = 1;
1043 aq->cq.base = cq->cqe->iova;
1044 aq->cq.cint_idx = cq->cint_idx;
1045 aq->cq.cq_err_int_ena = NIX_CQERRINT_BITS;
1046 aq->cq.qint_idx = 0;
1047 aq->cq.avg_level = 255;
1048
1049 if (qidx < pfvf->hw.rx_queues) {
1050 aq->cq.drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, cq->cqe_cnt);
1051 aq->cq.drop_ena = 1;
1052
1053 if (!is_otx2_lbkvf(pfvf->pdev)) {
1054 /* Enable receive CQ backpressure */
1055 aq->cq.bp_ena = 1;
1056 #ifdef CONFIG_DCB
1057 aq->cq.bpid = pfvf->bpid[pfvf->queue_to_pfc_map[qidx]];
1058 #else
1059 aq->cq.bpid = pfvf->bpid[0];
1060 #endif
1061
1062 /* Set backpressure level is same as cq pass level */
1063 aq->cq.bp = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
1064 }
1065 }
1066
1067 /* Fill AQ info */
1068 aq->qidx = qidx;
1069 aq->ctype = NIX_AQ_CTYPE_CQ;
1070 aq->op = NIX_AQ_INSTOP_INIT;
1071
1072 return otx2_sync_mbox_msg(&pfvf->mbox);
1073 }
1074
otx2_pool_refill_task(struct work_struct * work)1075 static void otx2_pool_refill_task(struct work_struct *work)
1076 {
1077 struct otx2_cq_queue *cq;
1078 struct refill_work *wrk;
1079 struct otx2_nic *pfvf;
1080 int qidx;
1081
1082 wrk = container_of(work, struct refill_work, pool_refill_work.work);
1083 pfvf = wrk->pf;
1084 qidx = wrk - pfvf->refill_wrk;
1085 cq = &pfvf->qset.cq[qidx];
1086
1087 cq->refill_task_sched = false;
1088
1089 local_bh_disable();
1090 napi_schedule(wrk->napi);
1091 local_bh_enable();
1092 }
1093
otx2_config_nix_queues(struct otx2_nic * pfvf)1094 int otx2_config_nix_queues(struct otx2_nic *pfvf)
1095 {
1096 int qidx, err;
1097
1098 /* Initialize RX queues */
1099 for (qidx = 0; qidx < pfvf->hw.rx_queues; qidx++) {
1100 u16 lpb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx);
1101
1102 err = otx2_rq_init(pfvf, qidx, lpb_aura);
1103 if (err)
1104 return err;
1105 }
1106
1107 /* Initialize TX queues */
1108 for (qidx = 0; qidx < pfvf->hw.non_qos_queues; qidx++) {
1109 u16 sqb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1110
1111 err = otx2_sq_init(pfvf, qidx, sqb_aura);
1112 if (err)
1113 return err;
1114 }
1115
1116 /* Initialize completion queues */
1117 for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1118 err = otx2_cq_init(pfvf, qidx);
1119 if (err)
1120 return err;
1121 }
1122
1123 pfvf->cq_op_addr = (__force u64 *)otx2_get_regaddr(pfvf,
1124 NIX_LF_CQ_OP_STATUS);
1125
1126 /* Initialize work queue for receive buffer refill */
1127 pfvf->refill_wrk = devm_kcalloc(pfvf->dev, pfvf->qset.cq_cnt,
1128 sizeof(struct refill_work), GFP_KERNEL);
1129 if (!pfvf->refill_wrk)
1130 return -ENOMEM;
1131
1132 for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1133 pfvf->refill_wrk[qidx].pf = pfvf;
1134 INIT_DELAYED_WORK(&pfvf->refill_wrk[qidx].pool_refill_work,
1135 otx2_pool_refill_task);
1136 }
1137 return 0;
1138 }
1139
otx2_config_nix(struct otx2_nic * pfvf)1140 int otx2_config_nix(struct otx2_nic *pfvf)
1141 {
1142 struct nix_lf_alloc_req *nixlf;
1143 struct nix_lf_alloc_rsp *rsp;
1144 int err;
1145
1146 pfvf->qset.xqe_size = pfvf->hw.xqe_size;
1147
1148 /* Get memory to put this msg */
1149 nixlf = otx2_mbox_alloc_msg_nix_lf_alloc(&pfvf->mbox);
1150 if (!nixlf)
1151 return -ENOMEM;
1152
1153 /* Set RQ/SQ/CQ counts */
1154 nixlf->rq_cnt = pfvf->hw.rx_queues;
1155 nixlf->sq_cnt = otx2_get_total_tx_queues(pfvf);
1156 nixlf->cq_cnt = pfvf->qset.cq_cnt;
1157 nixlf->rss_sz = MAX_RSS_INDIR_TBL_SIZE;
1158 nixlf->rss_grps = MAX_RSS_GROUPS;
1159 nixlf->xqe_sz = pfvf->hw.xqe_size == 128 ? NIX_XQESZ_W16 : NIX_XQESZ_W64;
1160 /* We don't know absolute NPA LF idx attached.
1161 * AF will replace 'RVU_DEFAULT_PF_FUNC' with
1162 * NPA LF attached to this RVU PF/VF.
1163 */
1164 nixlf->npa_func = RVU_DEFAULT_PF_FUNC;
1165 /* Disable alignment pad, enable L2 length check,
1166 * enable L4 TCP/UDP checksum verification.
1167 */
1168 nixlf->rx_cfg = BIT_ULL(33) | BIT_ULL(35) | BIT_ULL(37);
1169
1170 err = otx2_sync_mbox_msg(&pfvf->mbox);
1171 if (err)
1172 return err;
1173
1174 rsp = (struct nix_lf_alloc_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0,
1175 &nixlf->hdr);
1176 if (IS_ERR(rsp))
1177 return PTR_ERR(rsp);
1178
1179 if (rsp->qints < 1)
1180 return -ENXIO;
1181
1182 return rsp->hdr.rc;
1183 }
1184
otx2_sq_free_sqbs(struct otx2_nic * pfvf)1185 void otx2_sq_free_sqbs(struct otx2_nic *pfvf)
1186 {
1187 struct otx2_qset *qset = &pfvf->qset;
1188 struct otx2_hw *hw = &pfvf->hw;
1189 struct otx2_snd_queue *sq;
1190 int sqb, qidx;
1191 u64 iova, pa;
1192
1193 for (qidx = 0; qidx < otx2_get_total_tx_queues(pfvf); qidx++) {
1194 sq = &qset->sq[qidx];
1195 if (!sq->sqb_ptrs)
1196 continue;
1197 for (sqb = 0; sqb < sq->sqb_count; sqb++) {
1198 if (!sq->sqb_ptrs[sqb])
1199 continue;
1200 iova = sq->sqb_ptrs[sqb];
1201 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1202 dma_unmap_page_attrs(pfvf->dev, iova, hw->sqb_size,
1203 DMA_FROM_DEVICE,
1204 DMA_ATTR_SKIP_CPU_SYNC);
1205 put_page(virt_to_page(phys_to_virt(pa)));
1206 }
1207 sq->sqb_count = 0;
1208 }
1209 }
1210
otx2_free_bufs(struct otx2_nic * pfvf,struct otx2_pool * pool,u64 iova,int size)1211 void otx2_free_bufs(struct otx2_nic *pfvf, struct otx2_pool *pool,
1212 u64 iova, int size)
1213 {
1214 struct page *page;
1215 u64 pa;
1216
1217 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1218 page = virt_to_head_page(phys_to_virt(pa));
1219
1220 if (pool->page_pool) {
1221 page_pool_put_full_page(pool->page_pool, page, true);
1222 } else {
1223 dma_unmap_page_attrs(pfvf->dev, iova, size,
1224 DMA_FROM_DEVICE,
1225 DMA_ATTR_SKIP_CPU_SYNC);
1226
1227 put_page(page);
1228 }
1229 }
1230
otx2_free_aura_ptr(struct otx2_nic * pfvf,int type)1231 void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type)
1232 {
1233 int pool_id, pool_start = 0, pool_end = 0, size = 0;
1234 struct otx2_pool *pool;
1235 u64 iova;
1236
1237 if (type == AURA_NIX_SQ) {
1238 pool_start = otx2_get_pool_idx(pfvf, type, 0);
1239 pool_end = pool_start + pfvf->hw.sqpool_cnt;
1240 size = pfvf->hw.sqb_size;
1241 }
1242 if (type == AURA_NIX_RQ) {
1243 pool_start = otx2_get_pool_idx(pfvf, type, 0);
1244 pool_end = pfvf->hw.rqpool_cnt;
1245 size = pfvf->rbsize;
1246 }
1247
1248 /* Free SQB and RQB pointers from the aura pool */
1249 for (pool_id = pool_start; pool_id < pool_end; pool_id++) {
1250 iova = otx2_aura_allocptr(pfvf, pool_id);
1251 pool = &pfvf->qset.pool[pool_id];
1252 while (iova) {
1253 if (type == AURA_NIX_RQ)
1254 iova -= OTX2_HEAD_ROOM;
1255
1256 otx2_free_bufs(pfvf, pool, iova, size);
1257
1258 iova = otx2_aura_allocptr(pfvf, pool_id);
1259 }
1260 }
1261 }
1262
otx2_aura_pool_free(struct otx2_nic * pfvf)1263 void otx2_aura_pool_free(struct otx2_nic *pfvf)
1264 {
1265 struct otx2_pool *pool;
1266 int pool_id;
1267
1268 if (!pfvf->qset.pool)
1269 return;
1270
1271 for (pool_id = 0; pool_id < pfvf->hw.pool_cnt; pool_id++) {
1272 pool = &pfvf->qset.pool[pool_id];
1273 qmem_free(pfvf->dev, pool->stack);
1274 qmem_free(pfvf->dev, pool->fc_addr);
1275 page_pool_destroy(pool->page_pool);
1276 pool->page_pool = NULL;
1277 }
1278 devm_kfree(pfvf->dev, pfvf->qset.pool);
1279 pfvf->qset.pool = NULL;
1280 }
1281
otx2_aura_init(struct otx2_nic * pfvf,int aura_id,int pool_id,int numptrs)1282 int otx2_aura_init(struct otx2_nic *pfvf, int aura_id,
1283 int pool_id, int numptrs)
1284 {
1285 struct npa_aq_enq_req *aq;
1286 struct otx2_pool *pool;
1287 int err;
1288
1289 pool = &pfvf->qset.pool[pool_id];
1290
1291 /* Allocate memory for HW to update Aura count.
1292 * Alloc one cache line, so that it fits all FC_STYPE modes.
1293 */
1294 if (!pool->fc_addr) {
1295 err = qmem_alloc(pfvf->dev, &pool->fc_addr, 1, OTX2_ALIGN);
1296 if (err)
1297 return err;
1298 }
1299
1300 /* Initialize this aura's context via AF */
1301 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1302 if (!aq) {
1303 /* Shared mbox memory buffer is full, flush it and retry */
1304 err = otx2_sync_mbox_msg(&pfvf->mbox);
1305 if (err)
1306 return err;
1307 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1308 if (!aq)
1309 return -ENOMEM;
1310 }
1311
1312 aq->aura_id = aura_id;
1313 /* Will be filled by AF with correct pool context address */
1314 aq->aura.pool_addr = pool_id;
1315 aq->aura.pool_caching = 1;
1316 aq->aura.shift = ilog2(numptrs) - 8;
1317 aq->aura.count = numptrs;
1318 aq->aura.limit = numptrs;
1319 aq->aura.avg_level = 255;
1320 aq->aura.ena = 1;
1321 aq->aura.fc_ena = 1;
1322 aq->aura.fc_addr = pool->fc_addr->iova;
1323 aq->aura.fc_hyst_bits = 0; /* Store count on all updates */
1324
1325 /* Enable backpressure for RQ aura */
1326 if (aura_id < pfvf->hw.rqpool_cnt && !is_otx2_lbkvf(pfvf->pdev)) {
1327 aq->aura.bp_ena = 0;
1328 /* If NIX1 LF is attached then specify NIX1_RX.
1329 *
1330 * Below NPA_AURA_S[BP_ENA] is set according to the
1331 * NPA_BPINTF_E enumeration given as:
1332 * 0x0 + a*0x1 where 'a' is 0 for NIX0_RX and 1 for NIX1_RX so
1333 * NIX0_RX is 0x0 + 0*0x1 = 0
1334 * NIX1_RX is 0x0 + 1*0x1 = 1
1335 * But in HRM it is given that
1336 * "NPA_AURA_S[BP_ENA](w1[33:32]) - Enable aura backpressure to
1337 * NIX-RX based on [BP] level. One bit per NIX-RX; index
1338 * enumerated by NPA_BPINTF_E."
1339 */
1340 if (pfvf->nix_blkaddr == BLKADDR_NIX1)
1341 aq->aura.bp_ena = 1;
1342 #ifdef CONFIG_DCB
1343 aq->aura.nix0_bpid = pfvf->bpid[pfvf->queue_to_pfc_map[aura_id]];
1344 #else
1345 aq->aura.nix0_bpid = pfvf->bpid[0];
1346 #endif
1347
1348 /* Set backpressure level for RQ's Aura */
1349 aq->aura.bp = RQ_BP_LVL_AURA;
1350 }
1351
1352 /* Fill AQ info */
1353 aq->ctype = NPA_AQ_CTYPE_AURA;
1354 aq->op = NPA_AQ_INSTOP_INIT;
1355
1356 return 0;
1357 }
1358
otx2_pool_init(struct otx2_nic * pfvf,u16 pool_id,int stack_pages,int numptrs,int buf_size,int type)1359 int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id,
1360 int stack_pages, int numptrs, int buf_size, int type)
1361 {
1362 struct page_pool_params pp_params = { 0 };
1363 struct npa_aq_enq_req *aq;
1364 struct otx2_pool *pool;
1365 int err;
1366
1367 pool = &pfvf->qset.pool[pool_id];
1368 /* Alloc memory for stack which is used to store buffer pointers */
1369 err = qmem_alloc(pfvf->dev, &pool->stack,
1370 stack_pages, pfvf->hw.stack_pg_bytes);
1371 if (err)
1372 return err;
1373
1374 pool->rbsize = buf_size;
1375
1376 /* Initialize this pool's context via AF */
1377 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1378 if (!aq) {
1379 /* Shared mbox memory buffer is full, flush it and retry */
1380 err = otx2_sync_mbox_msg(&pfvf->mbox);
1381 if (err) {
1382 qmem_free(pfvf->dev, pool->stack);
1383 return err;
1384 }
1385 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1386 if (!aq) {
1387 qmem_free(pfvf->dev, pool->stack);
1388 return -ENOMEM;
1389 }
1390 }
1391
1392 aq->aura_id = pool_id;
1393 aq->pool.stack_base = pool->stack->iova;
1394 aq->pool.stack_caching = 1;
1395 aq->pool.ena = 1;
1396 aq->pool.buf_size = buf_size / 128;
1397 aq->pool.stack_max_pages = stack_pages;
1398 aq->pool.shift = ilog2(numptrs) - 8;
1399 aq->pool.ptr_start = 0;
1400 aq->pool.ptr_end = ~0ULL;
1401
1402 /* Fill AQ info */
1403 aq->ctype = NPA_AQ_CTYPE_POOL;
1404 aq->op = NPA_AQ_INSTOP_INIT;
1405
1406 if (type != AURA_NIX_RQ) {
1407 pool->page_pool = NULL;
1408 return 0;
1409 }
1410
1411 pp_params.order = get_order(buf_size);
1412 pp_params.flags = PP_FLAG_PAGE_FRAG | PP_FLAG_DMA_MAP;
1413 pp_params.pool_size = min(OTX2_PAGE_POOL_SZ, numptrs);
1414 pp_params.nid = NUMA_NO_NODE;
1415 pp_params.dev = pfvf->dev;
1416 pp_params.dma_dir = DMA_FROM_DEVICE;
1417 pool->page_pool = page_pool_create(&pp_params);
1418 if (IS_ERR(pool->page_pool)) {
1419 netdev_err(pfvf->netdev, "Creation of page pool failed\n");
1420 return PTR_ERR(pool->page_pool);
1421 }
1422
1423 return 0;
1424 }
1425
otx2_sq_aura_pool_init(struct otx2_nic * pfvf)1426 int otx2_sq_aura_pool_init(struct otx2_nic *pfvf)
1427 {
1428 int qidx, pool_id, stack_pages, num_sqbs;
1429 struct otx2_qset *qset = &pfvf->qset;
1430 struct otx2_hw *hw = &pfvf->hw;
1431 struct otx2_snd_queue *sq;
1432 struct otx2_pool *pool;
1433 dma_addr_t bufptr;
1434 int err, ptr;
1435
1436 /* Calculate number of SQBs needed.
1437 *
1438 * For a 128byte SQE, and 4K size SQB, 31 SQEs will fit in one SQB.
1439 * Last SQE is used for pointing to next SQB.
1440 */
1441 num_sqbs = (hw->sqb_size / 128) - 1;
1442 num_sqbs = (qset->sqe_cnt + num_sqbs) / num_sqbs;
1443
1444 /* Get no of stack pages needed */
1445 stack_pages =
1446 (num_sqbs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1447
1448 for (qidx = 0; qidx < hw->non_qos_queues; qidx++) {
1449 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1450 /* Initialize aura context */
1451 err = otx2_aura_init(pfvf, pool_id, pool_id, num_sqbs);
1452 if (err)
1453 goto fail;
1454
1455 /* Initialize pool context */
1456 err = otx2_pool_init(pfvf, pool_id, stack_pages,
1457 num_sqbs, hw->sqb_size, AURA_NIX_SQ);
1458 if (err)
1459 goto fail;
1460 }
1461
1462 /* Flush accumulated messages */
1463 err = otx2_sync_mbox_msg(&pfvf->mbox);
1464 if (err)
1465 goto fail;
1466
1467 /* Allocate pointers and free them to aura/pool */
1468 for (qidx = 0; qidx < hw->non_qos_queues; qidx++) {
1469 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1470 pool = &pfvf->qset.pool[pool_id];
1471
1472 sq = &qset->sq[qidx];
1473 sq->sqb_count = 0;
1474 sq->sqb_ptrs = kcalloc(num_sqbs, sizeof(*sq->sqb_ptrs), GFP_KERNEL);
1475 if (!sq->sqb_ptrs) {
1476 err = -ENOMEM;
1477 goto err_mem;
1478 }
1479
1480 for (ptr = 0; ptr < num_sqbs; ptr++) {
1481 err = otx2_alloc_rbuf(pfvf, pool, &bufptr);
1482 if (err)
1483 goto err_mem;
1484 pfvf->hw_ops->aura_freeptr(pfvf, pool_id, bufptr);
1485 sq->sqb_ptrs[sq->sqb_count++] = (u64)bufptr;
1486 }
1487 }
1488
1489 err_mem:
1490 return err ? -ENOMEM : 0;
1491
1492 fail:
1493 otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1494 otx2_aura_pool_free(pfvf);
1495 return err;
1496 }
1497
otx2_rq_aura_pool_init(struct otx2_nic * pfvf)1498 int otx2_rq_aura_pool_init(struct otx2_nic *pfvf)
1499 {
1500 struct otx2_hw *hw = &pfvf->hw;
1501 int stack_pages, pool_id, rq;
1502 struct otx2_pool *pool;
1503 int err, ptr, num_ptrs;
1504 dma_addr_t bufptr;
1505
1506 num_ptrs = pfvf->qset.rqe_cnt;
1507
1508 stack_pages =
1509 (num_ptrs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1510
1511 for (rq = 0; rq < hw->rx_queues; rq++) {
1512 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, rq);
1513 /* Initialize aura context */
1514 err = otx2_aura_init(pfvf, pool_id, pool_id, num_ptrs);
1515 if (err)
1516 goto fail;
1517 }
1518 for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1519 err = otx2_pool_init(pfvf, pool_id, stack_pages,
1520 num_ptrs, pfvf->rbsize, AURA_NIX_RQ);
1521 if (err)
1522 goto fail;
1523 }
1524
1525 /* Flush accumulated messages */
1526 err = otx2_sync_mbox_msg(&pfvf->mbox);
1527 if (err)
1528 goto fail;
1529
1530 /* Allocate pointers and free them to aura/pool */
1531 for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1532 pool = &pfvf->qset.pool[pool_id];
1533 for (ptr = 0; ptr < num_ptrs; ptr++) {
1534 err = otx2_alloc_rbuf(pfvf, pool, &bufptr);
1535 if (err)
1536 return -ENOMEM;
1537 pfvf->hw_ops->aura_freeptr(pfvf, pool_id,
1538 bufptr + OTX2_HEAD_ROOM);
1539 }
1540 }
1541 return 0;
1542 fail:
1543 otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1544 otx2_aura_pool_free(pfvf);
1545 return err;
1546 }
1547
otx2_config_npa(struct otx2_nic * pfvf)1548 int otx2_config_npa(struct otx2_nic *pfvf)
1549 {
1550 struct otx2_qset *qset = &pfvf->qset;
1551 struct npa_lf_alloc_req *npalf;
1552 struct otx2_hw *hw = &pfvf->hw;
1553 int aura_cnt;
1554
1555 /* Pool - Stack of free buffer pointers
1556 * Aura - Alloc/frees pointers from/to pool for NIX DMA.
1557 */
1558
1559 if (!hw->pool_cnt)
1560 return -EINVAL;
1561
1562 qset->pool = devm_kcalloc(pfvf->dev, hw->pool_cnt,
1563 sizeof(struct otx2_pool), GFP_KERNEL);
1564 if (!qset->pool)
1565 return -ENOMEM;
1566
1567 /* Get memory to put this msg */
1568 npalf = otx2_mbox_alloc_msg_npa_lf_alloc(&pfvf->mbox);
1569 if (!npalf)
1570 return -ENOMEM;
1571
1572 /* Set aura and pool counts */
1573 npalf->nr_pools = hw->pool_cnt;
1574 aura_cnt = ilog2(roundup_pow_of_two(hw->pool_cnt));
1575 npalf->aura_sz = (aura_cnt >= ilog2(128)) ? (aura_cnt - 6) : 1;
1576
1577 return otx2_sync_mbox_msg(&pfvf->mbox);
1578 }
1579
otx2_detach_resources(struct mbox * mbox)1580 int otx2_detach_resources(struct mbox *mbox)
1581 {
1582 struct rsrc_detach *detach;
1583
1584 mutex_lock(&mbox->lock);
1585 detach = otx2_mbox_alloc_msg_detach_resources(mbox);
1586 if (!detach) {
1587 mutex_unlock(&mbox->lock);
1588 return -ENOMEM;
1589 }
1590
1591 /* detach all */
1592 detach->partial = false;
1593
1594 /* Send detach request to AF */
1595 otx2_mbox_msg_send(&mbox->mbox, 0);
1596 mutex_unlock(&mbox->lock);
1597 return 0;
1598 }
1599 EXPORT_SYMBOL(otx2_detach_resources);
1600
otx2_attach_npa_nix(struct otx2_nic * pfvf)1601 int otx2_attach_npa_nix(struct otx2_nic *pfvf)
1602 {
1603 struct rsrc_attach *attach;
1604 struct msg_req *msix;
1605 int err;
1606
1607 mutex_lock(&pfvf->mbox.lock);
1608 /* Get memory to put this msg */
1609 attach = otx2_mbox_alloc_msg_attach_resources(&pfvf->mbox);
1610 if (!attach) {
1611 mutex_unlock(&pfvf->mbox.lock);
1612 return -ENOMEM;
1613 }
1614
1615 attach->npalf = true;
1616 attach->nixlf = true;
1617
1618 /* Send attach request to AF */
1619 err = otx2_sync_mbox_msg(&pfvf->mbox);
1620 if (err) {
1621 mutex_unlock(&pfvf->mbox.lock);
1622 return err;
1623 }
1624
1625 pfvf->nix_blkaddr = BLKADDR_NIX0;
1626
1627 /* If the platform has two NIX blocks then LF may be
1628 * allocated from NIX1.
1629 */
1630 if (otx2_read64(pfvf, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_NIX1)) & 0x1FFULL)
1631 pfvf->nix_blkaddr = BLKADDR_NIX1;
1632
1633 /* Get NPA and NIX MSIX vector offsets */
1634 msix = otx2_mbox_alloc_msg_msix_offset(&pfvf->mbox);
1635 if (!msix) {
1636 mutex_unlock(&pfvf->mbox.lock);
1637 return -ENOMEM;
1638 }
1639
1640 err = otx2_sync_mbox_msg(&pfvf->mbox);
1641 if (err) {
1642 mutex_unlock(&pfvf->mbox.lock);
1643 return err;
1644 }
1645 mutex_unlock(&pfvf->mbox.lock);
1646
1647 if (pfvf->hw.npa_msixoff == MSIX_VECTOR_INVALID ||
1648 pfvf->hw.nix_msixoff == MSIX_VECTOR_INVALID) {
1649 dev_err(pfvf->dev,
1650 "RVUPF: Invalid MSIX vector offset for NPA/NIX\n");
1651 return -EINVAL;
1652 }
1653
1654 return 0;
1655 }
1656 EXPORT_SYMBOL(otx2_attach_npa_nix);
1657
otx2_ctx_disable(struct mbox * mbox,int type,bool npa)1658 void otx2_ctx_disable(struct mbox *mbox, int type, bool npa)
1659 {
1660 struct hwctx_disable_req *req;
1661
1662 mutex_lock(&mbox->lock);
1663 /* Request AQ to disable this context */
1664 if (npa)
1665 req = otx2_mbox_alloc_msg_npa_hwctx_disable(mbox);
1666 else
1667 req = otx2_mbox_alloc_msg_nix_hwctx_disable(mbox);
1668
1669 if (!req) {
1670 mutex_unlock(&mbox->lock);
1671 return;
1672 }
1673
1674 req->ctype = type;
1675
1676 if (otx2_sync_mbox_msg(mbox))
1677 dev_err(mbox->pfvf->dev, "%s failed to disable context\n",
1678 __func__);
1679
1680 mutex_unlock(&mbox->lock);
1681 }
1682
otx2_nix_config_bp(struct otx2_nic * pfvf,bool enable)1683 int otx2_nix_config_bp(struct otx2_nic *pfvf, bool enable)
1684 {
1685 struct nix_bp_cfg_req *req;
1686
1687 if (enable)
1688 req = otx2_mbox_alloc_msg_nix_bp_enable(&pfvf->mbox);
1689 else
1690 req = otx2_mbox_alloc_msg_nix_bp_disable(&pfvf->mbox);
1691
1692 if (!req)
1693 return -ENOMEM;
1694
1695 req->chan_base = 0;
1696 #ifdef CONFIG_DCB
1697 req->chan_cnt = pfvf->pfc_en ? IEEE_8021QAZ_MAX_TCS : 1;
1698 req->bpid_per_chan = pfvf->pfc_en ? 1 : 0;
1699 #else
1700 req->chan_cnt = 1;
1701 req->bpid_per_chan = 0;
1702 #endif
1703
1704 return otx2_sync_mbox_msg(&pfvf->mbox);
1705 }
1706 EXPORT_SYMBOL(otx2_nix_config_bp);
1707
1708 /* Mbox message handlers */
mbox_handler_cgx_stats(struct otx2_nic * pfvf,struct cgx_stats_rsp * rsp)1709 void mbox_handler_cgx_stats(struct otx2_nic *pfvf,
1710 struct cgx_stats_rsp *rsp)
1711 {
1712 int id;
1713
1714 for (id = 0; id < CGX_RX_STATS_COUNT; id++)
1715 pfvf->hw.cgx_rx_stats[id] = rsp->rx_stats[id];
1716 for (id = 0; id < CGX_TX_STATS_COUNT; id++)
1717 pfvf->hw.cgx_tx_stats[id] = rsp->tx_stats[id];
1718 }
1719
mbox_handler_cgx_fec_stats(struct otx2_nic * pfvf,struct cgx_fec_stats_rsp * rsp)1720 void mbox_handler_cgx_fec_stats(struct otx2_nic *pfvf,
1721 struct cgx_fec_stats_rsp *rsp)
1722 {
1723 pfvf->hw.cgx_fec_corr_blks += rsp->fec_corr_blks;
1724 pfvf->hw.cgx_fec_uncorr_blks += rsp->fec_uncorr_blks;
1725 }
1726
mbox_handler_npa_lf_alloc(struct otx2_nic * pfvf,struct npa_lf_alloc_rsp * rsp)1727 void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf,
1728 struct npa_lf_alloc_rsp *rsp)
1729 {
1730 pfvf->hw.stack_pg_ptrs = rsp->stack_pg_ptrs;
1731 pfvf->hw.stack_pg_bytes = rsp->stack_pg_bytes;
1732 }
1733 EXPORT_SYMBOL(mbox_handler_npa_lf_alloc);
1734
mbox_handler_nix_lf_alloc(struct otx2_nic * pfvf,struct nix_lf_alloc_rsp * rsp)1735 void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf,
1736 struct nix_lf_alloc_rsp *rsp)
1737 {
1738 pfvf->hw.sqb_size = rsp->sqb_size;
1739 pfvf->hw.rx_chan_base = rsp->rx_chan_base;
1740 pfvf->hw.tx_chan_base = rsp->tx_chan_base;
1741 pfvf->hw.lso_tsov4_idx = rsp->lso_tsov4_idx;
1742 pfvf->hw.lso_tsov6_idx = rsp->lso_tsov6_idx;
1743 pfvf->hw.cgx_links = rsp->cgx_links;
1744 pfvf->hw.lbk_links = rsp->lbk_links;
1745 pfvf->hw.tx_link = rsp->tx_link;
1746 }
1747 EXPORT_SYMBOL(mbox_handler_nix_lf_alloc);
1748
mbox_handler_msix_offset(struct otx2_nic * pfvf,struct msix_offset_rsp * rsp)1749 void mbox_handler_msix_offset(struct otx2_nic *pfvf,
1750 struct msix_offset_rsp *rsp)
1751 {
1752 pfvf->hw.npa_msixoff = rsp->npa_msixoff;
1753 pfvf->hw.nix_msixoff = rsp->nix_msixoff;
1754 }
1755 EXPORT_SYMBOL(mbox_handler_msix_offset);
1756
mbox_handler_nix_bp_enable(struct otx2_nic * pfvf,struct nix_bp_cfg_rsp * rsp)1757 void mbox_handler_nix_bp_enable(struct otx2_nic *pfvf,
1758 struct nix_bp_cfg_rsp *rsp)
1759 {
1760 int chan, chan_id;
1761
1762 for (chan = 0; chan < rsp->chan_cnt; chan++) {
1763 chan_id = ((rsp->chan_bpid[chan] >> 10) & 0x7F);
1764 pfvf->bpid[chan_id] = rsp->chan_bpid[chan] & 0x3FF;
1765 }
1766 }
1767 EXPORT_SYMBOL(mbox_handler_nix_bp_enable);
1768
otx2_free_cints(struct otx2_nic * pfvf,int n)1769 void otx2_free_cints(struct otx2_nic *pfvf, int n)
1770 {
1771 struct otx2_qset *qset = &pfvf->qset;
1772 struct otx2_hw *hw = &pfvf->hw;
1773 int irq, qidx;
1774
1775 for (qidx = 0, irq = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1776 qidx < n;
1777 qidx++, irq++) {
1778 int vector = pci_irq_vector(pfvf->pdev, irq);
1779
1780 irq_set_affinity_hint(vector, NULL);
1781 free_cpumask_var(hw->affinity_mask[irq]);
1782 free_irq(vector, &qset->napi[qidx]);
1783 }
1784 }
1785
otx2_set_cints_affinity(struct otx2_nic * pfvf)1786 void otx2_set_cints_affinity(struct otx2_nic *pfvf)
1787 {
1788 struct otx2_hw *hw = &pfvf->hw;
1789 int vec, cpu, irq, cint;
1790
1791 vec = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1792 cpu = cpumask_first(cpu_online_mask);
1793
1794 /* CQ interrupts */
1795 for (cint = 0; cint < pfvf->hw.cint_cnt; cint++, vec++) {
1796 if (!alloc_cpumask_var(&hw->affinity_mask[vec], GFP_KERNEL))
1797 return;
1798
1799 cpumask_set_cpu(cpu, hw->affinity_mask[vec]);
1800
1801 irq = pci_irq_vector(pfvf->pdev, vec);
1802 irq_set_affinity_hint(irq, hw->affinity_mask[vec]);
1803
1804 cpu = cpumask_next(cpu, cpu_online_mask);
1805 if (unlikely(cpu >= nr_cpu_ids))
1806 cpu = 0;
1807 }
1808 }
1809
get_dwrr_mtu(struct otx2_nic * pfvf,struct nix_hw_info * hw)1810 static u32 get_dwrr_mtu(struct otx2_nic *pfvf, struct nix_hw_info *hw)
1811 {
1812 if (is_otx2_lbkvf(pfvf->pdev)) {
1813 pfvf->hw.smq_link_type = SMQ_LINK_TYPE_LBK;
1814 return hw->lbk_dwrr_mtu;
1815 }
1816
1817 pfvf->hw.smq_link_type = SMQ_LINK_TYPE_RPM;
1818 return hw->rpm_dwrr_mtu;
1819 }
1820
otx2_get_max_mtu(struct otx2_nic * pfvf)1821 u16 otx2_get_max_mtu(struct otx2_nic *pfvf)
1822 {
1823 struct nix_hw_info *rsp;
1824 struct msg_req *req;
1825 u16 max_mtu;
1826 int rc;
1827
1828 mutex_lock(&pfvf->mbox.lock);
1829
1830 req = otx2_mbox_alloc_msg_nix_get_hw_info(&pfvf->mbox);
1831 if (!req) {
1832 rc = -ENOMEM;
1833 goto out;
1834 }
1835
1836 rc = otx2_sync_mbox_msg(&pfvf->mbox);
1837 if (!rc) {
1838 rsp = (struct nix_hw_info *)
1839 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
1840
1841 /* HW counts VLAN insertion bytes (8 for double tag)
1842 * irrespective of whether SQE is requesting to insert VLAN
1843 * in the packet or not. Hence these 8 bytes have to be
1844 * discounted from max packet size otherwise HW will throw
1845 * SMQ errors
1846 */
1847 max_mtu = rsp->max_mtu - 8 - OTX2_ETH_HLEN;
1848
1849 /* Also save DWRR MTU, needed for DWRR weight calculation */
1850 pfvf->hw.dwrr_mtu = get_dwrr_mtu(pfvf, rsp);
1851 if (!pfvf->hw.dwrr_mtu)
1852 pfvf->hw.dwrr_mtu = 1;
1853 }
1854
1855 out:
1856 mutex_unlock(&pfvf->mbox.lock);
1857 if (rc) {
1858 dev_warn(pfvf->dev,
1859 "Failed to get MTU from hardware setting default value(1500)\n");
1860 max_mtu = 1500;
1861 }
1862 return max_mtu;
1863 }
1864 EXPORT_SYMBOL(otx2_get_max_mtu);
1865
otx2_handle_ntuple_tc_features(struct net_device * netdev,netdev_features_t features)1866 int otx2_handle_ntuple_tc_features(struct net_device *netdev, netdev_features_t features)
1867 {
1868 netdev_features_t changed = features ^ netdev->features;
1869 struct otx2_nic *pfvf = netdev_priv(netdev);
1870 bool ntuple = !!(features & NETIF_F_NTUPLE);
1871 bool tc = !!(features & NETIF_F_HW_TC);
1872
1873 if ((changed & NETIF_F_NTUPLE) && !ntuple)
1874 otx2_destroy_ntuple_flows(pfvf);
1875
1876 if ((changed & NETIF_F_NTUPLE) && ntuple) {
1877 if (!pfvf->flow_cfg->max_flows) {
1878 netdev_err(netdev,
1879 "Can't enable NTUPLE, MCAM entries not allocated\n");
1880 return -EINVAL;
1881 }
1882 }
1883
1884 if ((changed & NETIF_F_HW_TC) && !tc &&
1885 otx2_tc_flower_rule_cnt(pfvf)) {
1886 netdev_err(netdev, "Can't disable TC hardware offload while flows are active\n");
1887 return -EBUSY;
1888 }
1889
1890 if ((changed & NETIF_F_NTUPLE) && ntuple &&
1891 otx2_tc_flower_rule_cnt(pfvf) && !(changed & NETIF_F_HW_TC)) {
1892 netdev_err(netdev,
1893 "Can't enable NTUPLE when TC flower offload is active, disable TC rules and retry\n");
1894 return -EINVAL;
1895 }
1896
1897 return 0;
1898 }
1899 EXPORT_SYMBOL(otx2_handle_ntuple_tc_features);
1900
1901 #define M(_name, _id, _fn_name, _req_type, _rsp_type) \
1902 int __weak \
1903 otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf, \
1904 struct _req_type *req, \
1905 struct _rsp_type *rsp) \
1906 { \
1907 /* Nothing to do here */ \
1908 return 0; \
1909 } \
1910 EXPORT_SYMBOL(otx2_mbox_up_handler_ ## _fn_name);
1911 MBOX_UP_CGX_MESSAGES
1912 MBOX_UP_MCS_MESSAGES
1913 #undef M
1914