1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 /*
57 * reclaim_mode determines how the inactive list is shrunk
58 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
59 * RECLAIM_MODE_ASYNC: Do not block
60 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
61 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
62 * page from the LRU and reclaim all pages within a
63 * naturally aligned range
64 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
65 * order-0 pages and then compact the zone
66 */
67 typedef unsigned __bitwise__ reclaim_mode_t;
68 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
69 #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
70 #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
71 #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
72 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
73
74 struct scan_control {
75 /* Incremented by the number of inactive pages that were scanned */
76 unsigned long nr_scanned;
77
78 /* Number of pages freed so far during a call to shrink_zones() */
79 unsigned long nr_reclaimed;
80
81 /* How many pages shrink_list() should reclaim */
82 unsigned long nr_to_reclaim;
83
84 unsigned long hibernation_mode;
85
86 /* This context's GFP mask */
87 gfp_t gfp_mask;
88
89 int may_writepage;
90
91 /* Can mapped pages be reclaimed? */
92 int may_unmap;
93
94 /* Can pages be swapped as part of reclaim? */
95 int may_swap;
96
97 int swappiness;
98
99 int order;
100
101 /*
102 * Intend to reclaim enough continuous memory rather than reclaim
103 * enough amount of memory. i.e, mode for high order allocation.
104 */
105 reclaim_mode_t reclaim_mode;
106
107 /* Which cgroup do we reclaim from */
108 struct mem_cgroup *mem_cgroup;
109
110 /*
111 * Nodemask of nodes allowed by the caller. If NULL, all nodes
112 * are scanned.
113 */
114 nodemask_t *nodemask;
115 };
116
117 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
118
119 #ifdef ARCH_HAS_PREFETCH
120 #define prefetch_prev_lru_page(_page, _base, _field) \
121 do { \
122 if ((_page)->lru.prev != _base) { \
123 struct page *prev; \
124 \
125 prev = lru_to_page(&(_page->lru)); \
126 prefetch(&prev->_field); \
127 } \
128 } while (0)
129 #else
130 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
131 #endif
132
133 #ifdef ARCH_HAS_PREFETCHW
134 #define prefetchw_prev_lru_page(_page, _base, _field) \
135 do { \
136 if ((_page)->lru.prev != _base) { \
137 struct page *prev; \
138 \
139 prev = lru_to_page(&(_page->lru)); \
140 prefetchw(&prev->_field); \
141 } \
142 } while (0)
143 #else
144 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
145 #endif
146
147 /*
148 * From 0 .. 100. Higher means more swappy.
149 */
150 int vm_swappiness = 60;
151 long vm_total_pages; /* The total number of pages which the VM controls */
152
153 static LIST_HEAD(shrinker_list);
154 static DECLARE_RWSEM(shrinker_rwsem);
155
156 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
157 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
158 #else
159 #define scanning_global_lru(sc) (1)
160 #endif
161
get_reclaim_stat(struct zone * zone,struct scan_control * sc)162 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
163 struct scan_control *sc)
164 {
165 if (!scanning_global_lru(sc))
166 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
167
168 return &zone->reclaim_stat;
169 }
170
zone_nr_lru_pages(struct zone * zone,struct scan_control * sc,enum lru_list lru)171 static unsigned long zone_nr_lru_pages(struct zone *zone,
172 struct scan_control *sc, enum lru_list lru)
173 {
174 if (!scanning_global_lru(sc))
175 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
176
177 return zone_page_state(zone, NR_LRU_BASE + lru);
178 }
179
180
181 /*
182 * Add a shrinker callback to be called from the vm
183 */
register_shrinker(struct shrinker * shrinker)184 void register_shrinker(struct shrinker *shrinker)
185 {
186 shrinker->nr = 0;
187 down_write(&shrinker_rwsem);
188 list_add_tail(&shrinker->list, &shrinker_list);
189 up_write(&shrinker_rwsem);
190 }
191 EXPORT_SYMBOL(register_shrinker);
192
193 /*
194 * Remove one
195 */
unregister_shrinker(struct shrinker * shrinker)196 void unregister_shrinker(struct shrinker *shrinker)
197 {
198 down_write(&shrinker_rwsem);
199 list_del(&shrinker->list);
200 up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(unregister_shrinker);
203
204 #define SHRINK_BATCH 128
205 /*
206 * Call the shrink functions to age shrinkable caches
207 *
208 * Here we assume it costs one seek to replace a lru page and that it also
209 * takes a seek to recreate a cache object. With this in mind we age equal
210 * percentages of the lru and ageable caches. This should balance the seeks
211 * generated by these structures.
212 *
213 * If the vm encountered mapped pages on the LRU it increase the pressure on
214 * slab to avoid swapping.
215 *
216 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
217 *
218 * `lru_pages' represents the number of on-LRU pages in all the zones which
219 * are eligible for the caller's allocation attempt. It is used for balancing
220 * slab reclaim versus page reclaim.
221 *
222 * Returns the number of slab objects which we shrunk.
223 */
shrink_slab(unsigned long scanned,gfp_t gfp_mask,unsigned long lru_pages)224 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
225 unsigned long lru_pages)
226 {
227 struct shrinker *shrinker;
228 unsigned long ret = 0;
229
230 if (scanned == 0)
231 scanned = SWAP_CLUSTER_MAX;
232
233 if (!down_read_trylock(&shrinker_rwsem))
234 return 1; /* Assume we'll be able to shrink next time */
235
236 list_for_each_entry(shrinker, &shrinker_list, list) {
237 unsigned long long delta;
238 unsigned long total_scan;
239 unsigned long max_pass;
240
241 max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
242 delta = (4 * scanned) / shrinker->seeks;
243 delta *= max_pass;
244 do_div(delta, lru_pages + 1);
245 shrinker->nr += delta;
246 if (shrinker->nr < 0) {
247 printk(KERN_ERR "shrink_slab: %pF negative objects to "
248 "delete nr=%ld\n",
249 shrinker->shrink, shrinker->nr);
250 shrinker->nr = max_pass;
251 }
252
253 /*
254 * Avoid risking looping forever due to too large nr value:
255 * never try to free more than twice the estimate number of
256 * freeable entries.
257 */
258 if (shrinker->nr > max_pass * 2)
259 shrinker->nr = max_pass * 2;
260
261 total_scan = shrinker->nr;
262 shrinker->nr = 0;
263
264 while (total_scan >= SHRINK_BATCH) {
265 long this_scan = SHRINK_BATCH;
266 int shrink_ret;
267 int nr_before;
268
269 nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
270 shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
271 gfp_mask);
272 if (shrink_ret == -1)
273 break;
274 if (shrink_ret < nr_before)
275 ret += nr_before - shrink_ret;
276 count_vm_events(SLABS_SCANNED, this_scan);
277 total_scan -= this_scan;
278
279 cond_resched();
280 }
281
282 shrinker->nr += total_scan;
283 }
284 up_read(&shrinker_rwsem);
285 return ret;
286 }
287
set_reclaim_mode(int priority,struct scan_control * sc,bool sync)288 static void set_reclaim_mode(int priority, struct scan_control *sc,
289 bool sync)
290 {
291 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
292
293 /*
294 * Initially assume we are entering either lumpy reclaim or
295 * reclaim/compaction.Depending on the order, we will either set the
296 * sync mode or just reclaim order-0 pages later.
297 */
298 if (COMPACTION_BUILD)
299 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
300 else
301 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
302
303 /*
304 * Avoid using lumpy reclaim or reclaim/compaction if possible by
305 * restricting when its set to either costly allocations or when
306 * under memory pressure
307 */
308 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
309 sc->reclaim_mode |= syncmode;
310 else if (sc->order && priority < DEF_PRIORITY - 2)
311 sc->reclaim_mode |= syncmode;
312 else
313 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
314 }
315
reset_reclaim_mode(struct scan_control * sc)316 static void reset_reclaim_mode(struct scan_control *sc)
317 {
318 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
319 }
320
is_page_cache_freeable(struct page * page)321 static inline int is_page_cache_freeable(struct page *page)
322 {
323 /*
324 * A freeable page cache page is referenced only by the caller
325 * that isolated the page, the page cache radix tree and
326 * optional buffer heads at page->private.
327 */
328 return page_count(page) - page_has_private(page) == 2;
329 }
330
may_write_to_queue(struct backing_dev_info * bdi,struct scan_control * sc)331 static int may_write_to_queue(struct backing_dev_info *bdi,
332 struct scan_control *sc)
333 {
334 if (current->flags & PF_SWAPWRITE)
335 return 1;
336 if (!bdi_write_congested(bdi))
337 return 1;
338 if (bdi == current->backing_dev_info)
339 return 1;
340
341 /* lumpy reclaim for hugepage often need a lot of write */
342 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
343 return 1;
344 return 0;
345 }
346
347 /*
348 * We detected a synchronous write error writing a page out. Probably
349 * -ENOSPC. We need to propagate that into the address_space for a subsequent
350 * fsync(), msync() or close().
351 *
352 * The tricky part is that after writepage we cannot touch the mapping: nothing
353 * prevents it from being freed up. But we have a ref on the page and once
354 * that page is locked, the mapping is pinned.
355 *
356 * We're allowed to run sleeping lock_page() here because we know the caller has
357 * __GFP_FS.
358 */
handle_write_error(struct address_space * mapping,struct page * page,int error)359 static void handle_write_error(struct address_space *mapping,
360 struct page *page, int error)
361 {
362 lock_page(page);
363 if (page_mapping(page) == mapping)
364 mapping_set_error(mapping, error);
365 unlock_page(page);
366 }
367
368 /* possible outcome of pageout() */
369 typedef enum {
370 /* failed to write page out, page is locked */
371 PAGE_KEEP,
372 /* move page to the active list, page is locked */
373 PAGE_ACTIVATE,
374 /* page has been sent to the disk successfully, page is unlocked */
375 PAGE_SUCCESS,
376 /* page is clean and locked */
377 PAGE_CLEAN,
378 } pageout_t;
379
380 /*
381 * pageout is called by shrink_page_list() for each dirty page.
382 * Calls ->writepage().
383 */
pageout(struct page * page,struct address_space * mapping,struct scan_control * sc)384 static pageout_t pageout(struct page *page, struct address_space *mapping,
385 struct scan_control *sc)
386 {
387 /*
388 * If the page is dirty, only perform writeback if that write
389 * will be non-blocking. To prevent this allocation from being
390 * stalled by pagecache activity. But note that there may be
391 * stalls if we need to run get_block(). We could test
392 * PagePrivate for that.
393 *
394 * If this process is currently in __generic_file_aio_write() against
395 * this page's queue, we can perform writeback even if that
396 * will block.
397 *
398 * If the page is swapcache, write it back even if that would
399 * block, for some throttling. This happens by accident, because
400 * swap_backing_dev_info is bust: it doesn't reflect the
401 * congestion state of the swapdevs. Easy to fix, if needed.
402 */
403 if (!is_page_cache_freeable(page))
404 return PAGE_KEEP;
405 if (!mapping) {
406 /*
407 * Some data journaling orphaned pages can have
408 * page->mapping == NULL while being dirty with clean buffers.
409 */
410 if (page_has_private(page)) {
411 if (try_to_free_buffers(page)) {
412 ClearPageDirty(page);
413 printk("%s: orphaned page\n", __func__);
414 return PAGE_CLEAN;
415 }
416 }
417 return PAGE_KEEP;
418 }
419 if (mapping->a_ops->writepage == NULL)
420 return PAGE_ACTIVATE;
421 if (!may_write_to_queue(mapping->backing_dev_info, sc))
422 return PAGE_KEEP;
423
424 if (clear_page_dirty_for_io(page)) {
425 int res;
426 struct writeback_control wbc = {
427 .sync_mode = WB_SYNC_NONE,
428 .nr_to_write = SWAP_CLUSTER_MAX,
429 .range_start = 0,
430 .range_end = LLONG_MAX,
431 .for_reclaim = 1,
432 };
433
434 SetPageReclaim(page);
435 res = mapping->a_ops->writepage(page, &wbc);
436 if (res < 0)
437 handle_write_error(mapping, page, res);
438 if (res == AOP_WRITEPAGE_ACTIVATE) {
439 ClearPageReclaim(page);
440 return PAGE_ACTIVATE;
441 }
442
443 /*
444 * Wait on writeback if requested to. This happens when
445 * direct reclaiming a large contiguous area and the
446 * first attempt to free a range of pages fails.
447 */
448 if (PageWriteback(page) &&
449 (sc->reclaim_mode & RECLAIM_MODE_SYNC))
450 wait_on_page_writeback(page);
451
452 if (!PageWriteback(page)) {
453 /* synchronous write or broken a_ops? */
454 ClearPageReclaim(page);
455 }
456 trace_mm_vmscan_writepage(page,
457 trace_reclaim_flags(page, sc->reclaim_mode));
458 inc_zone_page_state(page, NR_VMSCAN_WRITE);
459 return PAGE_SUCCESS;
460 }
461
462 return PAGE_CLEAN;
463 }
464
465 /*
466 * Same as remove_mapping, but if the page is removed from the mapping, it
467 * gets returned with a refcount of 0.
468 */
__remove_mapping(struct address_space * mapping,struct page * page)469 static int __remove_mapping(struct address_space *mapping, struct page *page)
470 {
471 BUG_ON(!PageLocked(page));
472 BUG_ON(mapping != page_mapping(page));
473
474 spin_lock_irq(&mapping->tree_lock);
475 /*
476 * The non racy check for a busy page.
477 *
478 * Must be careful with the order of the tests. When someone has
479 * a ref to the page, it may be possible that they dirty it then
480 * drop the reference. So if PageDirty is tested before page_count
481 * here, then the following race may occur:
482 *
483 * get_user_pages(&page);
484 * [user mapping goes away]
485 * write_to(page);
486 * !PageDirty(page) [good]
487 * SetPageDirty(page);
488 * put_page(page);
489 * !page_count(page) [good, discard it]
490 *
491 * [oops, our write_to data is lost]
492 *
493 * Reversing the order of the tests ensures such a situation cannot
494 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
495 * load is not satisfied before that of page->_count.
496 *
497 * Note that if SetPageDirty is always performed via set_page_dirty,
498 * and thus under tree_lock, then this ordering is not required.
499 */
500 if (!page_freeze_refs(page, 2))
501 goto cannot_free;
502 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
503 if (unlikely(PageDirty(page))) {
504 page_unfreeze_refs(page, 2);
505 goto cannot_free;
506 }
507
508 if (PageSwapCache(page)) {
509 swp_entry_t swap = { .val = page_private(page) };
510 __delete_from_swap_cache(page);
511 spin_unlock_irq(&mapping->tree_lock);
512 swapcache_free(swap, page);
513 } else {
514 void (*freepage)(struct page *);
515
516 freepage = mapping->a_ops->freepage;
517
518 __delete_from_page_cache(page);
519 spin_unlock_irq(&mapping->tree_lock);
520 mem_cgroup_uncharge_cache_page(page);
521
522 if (freepage != NULL)
523 freepage(page);
524 }
525
526 return 1;
527
528 cannot_free:
529 spin_unlock_irq(&mapping->tree_lock);
530 return 0;
531 }
532
533 /*
534 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
535 * someone else has a ref on the page, abort and return 0. If it was
536 * successfully detached, return 1. Assumes the caller has a single ref on
537 * this page.
538 */
remove_mapping(struct address_space * mapping,struct page * page)539 int remove_mapping(struct address_space *mapping, struct page *page)
540 {
541 if (__remove_mapping(mapping, page)) {
542 /*
543 * Unfreezing the refcount with 1 rather than 2 effectively
544 * drops the pagecache ref for us without requiring another
545 * atomic operation.
546 */
547 page_unfreeze_refs(page, 1);
548 return 1;
549 }
550 return 0;
551 }
552
553 /**
554 * putback_lru_page - put previously isolated page onto appropriate LRU list
555 * @page: page to be put back to appropriate lru list
556 *
557 * Add previously isolated @page to appropriate LRU list.
558 * Page may still be unevictable for other reasons.
559 *
560 * lru_lock must not be held, interrupts must be enabled.
561 */
putback_lru_page(struct page * page)562 void putback_lru_page(struct page *page)
563 {
564 int lru;
565 int active = !!TestClearPageActive(page);
566 int was_unevictable = PageUnevictable(page);
567
568 VM_BUG_ON(PageLRU(page));
569
570 redo:
571 ClearPageUnevictable(page);
572
573 if (page_evictable(page, NULL)) {
574 /*
575 * For evictable pages, we can use the cache.
576 * In event of a race, worst case is we end up with an
577 * unevictable page on [in]active list.
578 * We know how to handle that.
579 */
580 lru = active + page_lru_base_type(page);
581 lru_cache_add_lru(page, lru);
582 } else {
583 /*
584 * Put unevictable pages directly on zone's unevictable
585 * list.
586 */
587 lru = LRU_UNEVICTABLE;
588 add_page_to_unevictable_list(page);
589 /*
590 * When racing with an mlock clearing (page is
591 * unlocked), make sure that if the other thread does
592 * not observe our setting of PG_lru and fails
593 * isolation, we see PG_mlocked cleared below and move
594 * the page back to the evictable list.
595 *
596 * The other side is TestClearPageMlocked().
597 */
598 smp_mb();
599 }
600
601 /*
602 * page's status can change while we move it among lru. If an evictable
603 * page is on unevictable list, it never be freed. To avoid that,
604 * check after we added it to the list, again.
605 */
606 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
607 if (!isolate_lru_page(page)) {
608 put_page(page);
609 goto redo;
610 }
611 /* This means someone else dropped this page from LRU
612 * So, it will be freed or putback to LRU again. There is
613 * nothing to do here.
614 */
615 }
616
617 if (was_unevictable && lru != LRU_UNEVICTABLE)
618 count_vm_event(UNEVICTABLE_PGRESCUED);
619 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
620 count_vm_event(UNEVICTABLE_PGCULLED);
621
622 put_page(page); /* drop ref from isolate */
623 }
624
625 enum page_references {
626 PAGEREF_RECLAIM,
627 PAGEREF_RECLAIM_CLEAN,
628 PAGEREF_KEEP,
629 PAGEREF_ACTIVATE,
630 };
631
page_check_references(struct page * page,struct scan_control * sc)632 static enum page_references page_check_references(struct page *page,
633 struct scan_control *sc)
634 {
635 int referenced_ptes, referenced_page;
636 unsigned long vm_flags;
637
638 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
639 referenced_page = TestClearPageReferenced(page);
640
641 /* Lumpy reclaim - ignore references */
642 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
643 return PAGEREF_RECLAIM;
644
645 /*
646 * Mlock lost the isolation race with us. Let try_to_unmap()
647 * move the page to the unevictable list.
648 */
649 if (vm_flags & VM_LOCKED)
650 return PAGEREF_RECLAIM;
651
652 if (referenced_ptes) {
653 if (PageAnon(page))
654 return PAGEREF_ACTIVATE;
655 /*
656 * All mapped pages start out with page table
657 * references from the instantiating fault, so we need
658 * to look twice if a mapped file page is used more
659 * than once.
660 *
661 * Mark it and spare it for another trip around the
662 * inactive list. Another page table reference will
663 * lead to its activation.
664 *
665 * Note: the mark is set for activated pages as well
666 * so that recently deactivated but used pages are
667 * quickly recovered.
668 */
669 SetPageReferenced(page);
670
671 if (referenced_page)
672 return PAGEREF_ACTIVATE;
673
674 return PAGEREF_KEEP;
675 }
676
677 /* Reclaim if clean, defer dirty pages to writeback */
678 if (referenced_page && !PageSwapBacked(page))
679 return PAGEREF_RECLAIM_CLEAN;
680
681 return PAGEREF_RECLAIM;
682 }
683
free_page_list(struct list_head * free_pages)684 static noinline_for_stack void free_page_list(struct list_head *free_pages)
685 {
686 struct pagevec freed_pvec;
687 struct page *page, *tmp;
688
689 pagevec_init(&freed_pvec, 1);
690
691 list_for_each_entry_safe(page, tmp, free_pages, lru) {
692 list_del(&page->lru);
693 if (!pagevec_add(&freed_pvec, page)) {
694 __pagevec_free(&freed_pvec);
695 pagevec_reinit(&freed_pvec);
696 }
697 }
698
699 pagevec_free(&freed_pvec);
700 }
701
702 /*
703 * shrink_page_list() returns the number of reclaimed pages
704 */
shrink_page_list(struct list_head * page_list,struct zone * zone,struct scan_control * sc)705 static unsigned long shrink_page_list(struct list_head *page_list,
706 struct zone *zone,
707 struct scan_control *sc)
708 {
709 LIST_HEAD(ret_pages);
710 LIST_HEAD(free_pages);
711 int pgactivate = 0;
712 unsigned long nr_dirty = 0;
713 unsigned long nr_congested = 0;
714 unsigned long nr_reclaimed = 0;
715
716 cond_resched();
717
718 while (!list_empty(page_list)) {
719 enum page_references references;
720 struct address_space *mapping;
721 struct page *page;
722 int may_enter_fs;
723
724 cond_resched();
725
726 page = lru_to_page(page_list);
727 list_del(&page->lru);
728
729 if (!trylock_page(page))
730 goto keep;
731
732 VM_BUG_ON(PageActive(page));
733 VM_BUG_ON(page_zone(page) != zone);
734
735 sc->nr_scanned++;
736
737 if (unlikely(!page_evictable(page, NULL)))
738 goto cull_mlocked;
739
740 if (!sc->may_unmap && page_mapped(page))
741 goto keep_locked;
742
743 /* Double the slab pressure for mapped and swapcache pages */
744 if (page_mapped(page) || PageSwapCache(page))
745 sc->nr_scanned++;
746
747 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
748 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
749
750 if (PageWriteback(page)) {
751 /*
752 * Synchronous reclaim is performed in two passes,
753 * first an asynchronous pass over the list to
754 * start parallel writeback, and a second synchronous
755 * pass to wait for the IO to complete. Wait here
756 * for any page for which writeback has already
757 * started.
758 */
759 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
760 may_enter_fs)
761 wait_on_page_writeback(page);
762 else {
763 unlock_page(page);
764 goto keep_lumpy;
765 }
766 }
767
768 references = page_check_references(page, sc);
769 switch (references) {
770 case PAGEREF_ACTIVATE:
771 goto activate_locked;
772 case PAGEREF_KEEP:
773 goto keep_locked;
774 case PAGEREF_RECLAIM:
775 case PAGEREF_RECLAIM_CLEAN:
776 ; /* try to reclaim the page below */
777 }
778
779 /*
780 * Anonymous process memory has backing store?
781 * Try to allocate it some swap space here.
782 */
783 if (PageAnon(page) && !PageSwapCache(page)) {
784 if (!(sc->gfp_mask & __GFP_IO))
785 goto keep_locked;
786 if (!add_to_swap(page))
787 goto activate_locked;
788 may_enter_fs = 1;
789 }
790
791 mapping = page_mapping(page);
792
793 /*
794 * The page is mapped into the page tables of one or more
795 * processes. Try to unmap it here.
796 */
797 if (page_mapped(page) && mapping) {
798 switch (try_to_unmap(page, TTU_UNMAP)) {
799 case SWAP_FAIL:
800 goto activate_locked;
801 case SWAP_AGAIN:
802 goto keep_locked;
803 case SWAP_MLOCK:
804 goto cull_mlocked;
805 case SWAP_SUCCESS:
806 ; /* try to free the page below */
807 }
808 }
809
810 if (PageDirty(page)) {
811 nr_dirty++;
812
813 if (references == PAGEREF_RECLAIM_CLEAN)
814 goto keep_locked;
815 if (!may_enter_fs)
816 goto keep_locked;
817 if (!sc->may_writepage)
818 goto keep_locked;
819
820 /* Page is dirty, try to write it out here */
821 switch (pageout(page, mapping, sc)) {
822 case PAGE_KEEP:
823 nr_congested++;
824 goto keep_locked;
825 case PAGE_ACTIVATE:
826 goto activate_locked;
827 case PAGE_SUCCESS:
828 if (PageWriteback(page))
829 goto keep_lumpy;
830 if (PageDirty(page))
831 goto keep;
832
833 /*
834 * A synchronous write - probably a ramdisk. Go
835 * ahead and try to reclaim the page.
836 */
837 if (!trylock_page(page))
838 goto keep;
839 if (PageDirty(page) || PageWriteback(page))
840 goto keep_locked;
841 mapping = page_mapping(page);
842 case PAGE_CLEAN:
843 ; /* try to free the page below */
844 }
845 }
846
847 /*
848 * If the page has buffers, try to free the buffer mappings
849 * associated with this page. If we succeed we try to free
850 * the page as well.
851 *
852 * We do this even if the page is PageDirty().
853 * try_to_release_page() does not perform I/O, but it is
854 * possible for a page to have PageDirty set, but it is actually
855 * clean (all its buffers are clean). This happens if the
856 * buffers were written out directly, with submit_bh(). ext3
857 * will do this, as well as the blockdev mapping.
858 * try_to_release_page() will discover that cleanness and will
859 * drop the buffers and mark the page clean - it can be freed.
860 *
861 * Rarely, pages can have buffers and no ->mapping. These are
862 * the pages which were not successfully invalidated in
863 * truncate_complete_page(). We try to drop those buffers here
864 * and if that worked, and the page is no longer mapped into
865 * process address space (page_count == 1) it can be freed.
866 * Otherwise, leave the page on the LRU so it is swappable.
867 */
868 if (page_has_private(page)) {
869 if (!try_to_release_page(page, sc->gfp_mask))
870 goto activate_locked;
871 if (!mapping && page_count(page) == 1) {
872 unlock_page(page);
873 if (put_page_testzero(page))
874 goto free_it;
875 else {
876 /*
877 * rare race with speculative reference.
878 * the speculative reference will free
879 * this page shortly, so we may
880 * increment nr_reclaimed here (and
881 * leave it off the LRU).
882 */
883 nr_reclaimed++;
884 continue;
885 }
886 }
887 }
888
889 if (!mapping || !__remove_mapping(mapping, page))
890 goto keep_locked;
891
892 /*
893 * At this point, we have no other references and there is
894 * no way to pick any more up (removed from LRU, removed
895 * from pagecache). Can use non-atomic bitops now (and
896 * we obviously don't have to worry about waking up a process
897 * waiting on the page lock, because there are no references.
898 */
899 __clear_page_locked(page);
900 free_it:
901 nr_reclaimed++;
902
903 /*
904 * Is there need to periodically free_page_list? It would
905 * appear not as the counts should be low
906 */
907 list_add(&page->lru, &free_pages);
908 continue;
909
910 cull_mlocked:
911 if (PageSwapCache(page))
912 try_to_free_swap(page);
913 unlock_page(page);
914 putback_lru_page(page);
915 reset_reclaim_mode(sc);
916 continue;
917
918 activate_locked:
919 /* Not a candidate for swapping, so reclaim swap space. */
920 if (PageSwapCache(page) && vm_swap_full())
921 try_to_free_swap(page);
922 VM_BUG_ON(PageActive(page));
923 SetPageActive(page);
924 pgactivate++;
925 keep_locked:
926 unlock_page(page);
927 keep:
928 reset_reclaim_mode(sc);
929 keep_lumpy:
930 list_add(&page->lru, &ret_pages);
931 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
932 }
933
934 /*
935 * Tag a zone as congested if all the dirty pages encountered were
936 * backed by a congested BDI. In this case, reclaimers should just
937 * back off and wait for congestion to clear because further reclaim
938 * will encounter the same problem
939 */
940 if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
941 zone_set_flag(zone, ZONE_CONGESTED);
942
943 free_page_list(&free_pages);
944
945 list_splice(&ret_pages, page_list);
946 count_vm_events(PGACTIVATE, pgactivate);
947 return nr_reclaimed;
948 }
949
950 /*
951 * Attempt to remove the specified page from its LRU. Only take this page
952 * if it is of the appropriate PageActive status. Pages which are being
953 * freed elsewhere are also ignored.
954 *
955 * page: page to consider
956 * mode: one of the LRU isolation modes defined above
957 *
958 * returns 0 on success, -ve errno on failure.
959 */
__isolate_lru_page(struct page * page,int mode,int file)960 int __isolate_lru_page(struct page *page, int mode, int file)
961 {
962 int ret = -EINVAL;
963
964 /* Only take pages on the LRU. */
965 if (!PageLRU(page))
966 return ret;
967
968 /*
969 * When checking the active state, we need to be sure we are
970 * dealing with comparible boolean values. Take the logical not
971 * of each.
972 */
973 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
974 return ret;
975
976 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
977 return ret;
978
979 /*
980 * When this function is being called for lumpy reclaim, we
981 * initially look into all LRU pages, active, inactive and
982 * unevictable; only give shrink_page_list evictable pages.
983 */
984 if (PageUnevictable(page))
985 return ret;
986
987 ret = -EBUSY;
988
989 if (likely(get_page_unless_zero(page))) {
990 /*
991 * Be careful not to clear PageLRU until after we're
992 * sure the page is not being freed elsewhere -- the
993 * page release code relies on it.
994 */
995 ClearPageLRU(page);
996 ret = 0;
997 }
998
999 return ret;
1000 }
1001
1002 /*
1003 * zone->lru_lock is heavily contended. Some of the functions that
1004 * shrink the lists perform better by taking out a batch of pages
1005 * and working on them outside the LRU lock.
1006 *
1007 * For pagecache intensive workloads, this function is the hottest
1008 * spot in the kernel (apart from copy_*_user functions).
1009 *
1010 * Appropriate locks must be held before calling this function.
1011 *
1012 * @nr_to_scan: The number of pages to look through on the list.
1013 * @src: The LRU list to pull pages off.
1014 * @dst: The temp list to put pages on to.
1015 * @scanned: The number of pages that were scanned.
1016 * @order: The caller's attempted allocation order
1017 * @mode: One of the LRU isolation modes
1018 * @file: True [1] if isolating file [!anon] pages
1019 *
1020 * returns how many pages were moved onto *@dst.
1021 */
isolate_lru_pages(unsigned long nr_to_scan,struct list_head * src,struct list_head * dst,unsigned long * scanned,int order,int mode,int file)1022 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1023 struct list_head *src, struct list_head *dst,
1024 unsigned long *scanned, int order, int mode, int file)
1025 {
1026 unsigned long nr_taken = 0;
1027 unsigned long nr_lumpy_taken = 0;
1028 unsigned long nr_lumpy_dirty = 0;
1029 unsigned long nr_lumpy_failed = 0;
1030 unsigned long scan;
1031
1032 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1033 struct page *page;
1034 unsigned long pfn;
1035 unsigned long end_pfn;
1036 unsigned long page_pfn;
1037 int zone_id;
1038
1039 page = lru_to_page(src);
1040 prefetchw_prev_lru_page(page, src, flags);
1041
1042 VM_BUG_ON(!PageLRU(page));
1043
1044 switch (__isolate_lru_page(page, mode, file)) {
1045 case 0:
1046 list_move(&page->lru, dst);
1047 mem_cgroup_del_lru(page);
1048 nr_taken += hpage_nr_pages(page);
1049 break;
1050
1051 case -EBUSY:
1052 /* else it is being freed elsewhere */
1053 list_move(&page->lru, src);
1054 mem_cgroup_rotate_lru_list(page, page_lru(page));
1055 continue;
1056
1057 default:
1058 BUG();
1059 }
1060
1061 if (!order)
1062 continue;
1063
1064 /*
1065 * Attempt to take all pages in the order aligned region
1066 * surrounding the tag page. Only take those pages of
1067 * the same active state as that tag page. We may safely
1068 * round the target page pfn down to the requested order
1069 * as the mem_map is guaranteed valid out to MAX_ORDER,
1070 * where that page is in a different zone we will detect
1071 * it from its zone id and abort this block scan.
1072 */
1073 zone_id = page_zone_id(page);
1074 page_pfn = page_to_pfn(page);
1075 pfn = page_pfn & ~((1 << order) - 1);
1076 end_pfn = pfn + (1 << order);
1077 for (; pfn < end_pfn; pfn++) {
1078 struct page *cursor_page;
1079
1080 /* The target page is in the block, ignore it. */
1081 if (unlikely(pfn == page_pfn))
1082 continue;
1083
1084 /* Avoid holes within the zone. */
1085 if (unlikely(!pfn_valid_within(pfn)))
1086 break;
1087
1088 cursor_page = pfn_to_page(pfn);
1089
1090 /* Check that we have not crossed a zone boundary. */
1091 if (unlikely(page_zone_id(cursor_page) != zone_id))
1092 break;
1093
1094 /*
1095 * If we don't have enough swap space, reclaiming of
1096 * anon page which don't already have a swap slot is
1097 * pointless.
1098 */
1099 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1100 !PageSwapCache(cursor_page))
1101 break;
1102
1103 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1104 list_move(&cursor_page->lru, dst);
1105 mem_cgroup_del_lru(cursor_page);
1106 nr_taken += hpage_nr_pages(page);
1107 nr_lumpy_taken++;
1108 if (PageDirty(cursor_page))
1109 nr_lumpy_dirty++;
1110 scan++;
1111 } else {
1112 /* the page is freed already. */
1113 if (!page_count(cursor_page))
1114 continue;
1115 break;
1116 }
1117 }
1118
1119 /* If we break out of the loop above, lumpy reclaim failed */
1120 if (pfn < end_pfn)
1121 nr_lumpy_failed++;
1122 }
1123
1124 *scanned = scan;
1125
1126 trace_mm_vmscan_lru_isolate(order,
1127 nr_to_scan, scan,
1128 nr_taken,
1129 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1130 mode);
1131 return nr_taken;
1132 }
1133
isolate_pages_global(unsigned long nr,struct list_head * dst,unsigned long * scanned,int order,int mode,struct zone * z,int active,int file)1134 static unsigned long isolate_pages_global(unsigned long nr,
1135 struct list_head *dst,
1136 unsigned long *scanned, int order,
1137 int mode, struct zone *z,
1138 int active, int file)
1139 {
1140 int lru = LRU_BASE;
1141 if (active)
1142 lru += LRU_ACTIVE;
1143 if (file)
1144 lru += LRU_FILE;
1145 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1146 mode, file);
1147 }
1148
1149 /*
1150 * clear_active_flags() is a helper for shrink_active_list(), clearing
1151 * any active bits from the pages in the list.
1152 */
clear_active_flags(struct list_head * page_list,unsigned int * count)1153 static unsigned long clear_active_flags(struct list_head *page_list,
1154 unsigned int *count)
1155 {
1156 int nr_active = 0;
1157 int lru;
1158 struct page *page;
1159
1160 list_for_each_entry(page, page_list, lru) {
1161 int numpages = hpage_nr_pages(page);
1162 lru = page_lru_base_type(page);
1163 if (PageActive(page)) {
1164 lru += LRU_ACTIVE;
1165 ClearPageActive(page);
1166 nr_active += numpages;
1167 }
1168 if (count)
1169 count[lru] += numpages;
1170 }
1171
1172 return nr_active;
1173 }
1174
1175 /**
1176 * isolate_lru_page - tries to isolate a page from its LRU list
1177 * @page: page to isolate from its LRU list
1178 *
1179 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1180 * vmstat statistic corresponding to whatever LRU list the page was on.
1181 *
1182 * Returns 0 if the page was removed from an LRU list.
1183 * Returns -EBUSY if the page was not on an LRU list.
1184 *
1185 * The returned page will have PageLRU() cleared. If it was found on
1186 * the active list, it will have PageActive set. If it was found on
1187 * the unevictable list, it will have the PageUnevictable bit set. That flag
1188 * may need to be cleared by the caller before letting the page go.
1189 *
1190 * The vmstat statistic corresponding to the list on which the page was
1191 * found will be decremented.
1192 *
1193 * Restrictions:
1194 * (1) Must be called with an elevated refcount on the page. This is a
1195 * fundamentnal difference from isolate_lru_pages (which is called
1196 * without a stable reference).
1197 * (2) the lru_lock must not be held.
1198 * (3) interrupts must be enabled.
1199 */
isolate_lru_page(struct page * page)1200 int isolate_lru_page(struct page *page)
1201 {
1202 int ret = -EBUSY;
1203
1204 if (PageLRU(page)) {
1205 struct zone *zone = page_zone(page);
1206
1207 spin_lock_irq(&zone->lru_lock);
1208 if (PageLRU(page) && get_page_unless_zero(page)) {
1209 int lru = page_lru(page);
1210 ret = 0;
1211 ClearPageLRU(page);
1212
1213 del_page_from_lru_list(zone, page, lru);
1214 }
1215 spin_unlock_irq(&zone->lru_lock);
1216 }
1217 return ret;
1218 }
1219
1220 /*
1221 * Are there way too many processes in the direct reclaim path already?
1222 */
too_many_isolated(struct zone * zone,int file,struct scan_control * sc)1223 static int too_many_isolated(struct zone *zone, int file,
1224 struct scan_control *sc)
1225 {
1226 unsigned long inactive, isolated;
1227
1228 if (current_is_kswapd())
1229 return 0;
1230
1231 if (!scanning_global_lru(sc))
1232 return 0;
1233
1234 if (file) {
1235 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1236 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1237 } else {
1238 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1239 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1240 }
1241
1242 return isolated > inactive;
1243 }
1244
1245 /*
1246 * TODO: Try merging with migrations version of putback_lru_pages
1247 */
1248 static noinline_for_stack void
putback_lru_pages(struct zone * zone,struct scan_control * sc,unsigned long nr_anon,unsigned long nr_file,struct list_head * page_list)1249 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1250 unsigned long nr_anon, unsigned long nr_file,
1251 struct list_head *page_list)
1252 {
1253 struct page *page;
1254 struct pagevec pvec;
1255 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1256
1257 pagevec_init(&pvec, 1);
1258
1259 /*
1260 * Put back any unfreeable pages.
1261 */
1262 spin_lock(&zone->lru_lock);
1263 while (!list_empty(page_list)) {
1264 int lru;
1265 page = lru_to_page(page_list);
1266 VM_BUG_ON(PageLRU(page));
1267 list_del(&page->lru);
1268 if (unlikely(!page_evictable(page, NULL))) {
1269 spin_unlock_irq(&zone->lru_lock);
1270 putback_lru_page(page);
1271 spin_lock_irq(&zone->lru_lock);
1272 continue;
1273 }
1274 SetPageLRU(page);
1275 lru = page_lru(page);
1276 add_page_to_lru_list(zone, page, lru);
1277 if (is_active_lru(lru)) {
1278 int file = is_file_lru(lru);
1279 int numpages = hpage_nr_pages(page);
1280 reclaim_stat->recent_rotated[file] += numpages;
1281 }
1282 if (!pagevec_add(&pvec, page)) {
1283 spin_unlock_irq(&zone->lru_lock);
1284 __pagevec_release(&pvec);
1285 spin_lock_irq(&zone->lru_lock);
1286 }
1287 }
1288 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1289 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1290
1291 spin_unlock_irq(&zone->lru_lock);
1292 pagevec_release(&pvec);
1293 }
1294
update_isolated_counts(struct zone * zone,struct scan_control * sc,unsigned long * nr_anon,unsigned long * nr_file,struct list_head * isolated_list)1295 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1296 struct scan_control *sc,
1297 unsigned long *nr_anon,
1298 unsigned long *nr_file,
1299 struct list_head *isolated_list)
1300 {
1301 unsigned long nr_active;
1302 unsigned int count[NR_LRU_LISTS] = { 0, };
1303 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1304
1305 nr_active = clear_active_flags(isolated_list, count);
1306 __count_vm_events(PGDEACTIVATE, nr_active);
1307
1308 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1309 -count[LRU_ACTIVE_FILE]);
1310 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1311 -count[LRU_INACTIVE_FILE]);
1312 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1313 -count[LRU_ACTIVE_ANON]);
1314 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1315 -count[LRU_INACTIVE_ANON]);
1316
1317 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1318 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1319 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1320 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1321
1322 reclaim_stat->recent_scanned[0] += *nr_anon;
1323 reclaim_stat->recent_scanned[1] += *nr_file;
1324 }
1325
1326 /*
1327 * Returns true if the caller should wait to clean dirty/writeback pages.
1328 *
1329 * If we are direct reclaiming for contiguous pages and we do not reclaim
1330 * everything in the list, try again and wait for writeback IO to complete.
1331 * This will stall high-order allocations noticeably. Only do that when really
1332 * need to free the pages under high memory pressure.
1333 */
should_reclaim_stall(unsigned long nr_taken,unsigned long nr_freed,int priority,struct scan_control * sc)1334 static inline bool should_reclaim_stall(unsigned long nr_taken,
1335 unsigned long nr_freed,
1336 int priority,
1337 struct scan_control *sc)
1338 {
1339 int lumpy_stall_priority;
1340
1341 /* kswapd should not stall on sync IO */
1342 if (current_is_kswapd())
1343 return false;
1344
1345 /* Only stall on lumpy reclaim */
1346 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1347 return false;
1348
1349 /* If we have relaimed everything on the isolated list, no stall */
1350 if (nr_freed == nr_taken)
1351 return false;
1352
1353 /*
1354 * For high-order allocations, there are two stall thresholds.
1355 * High-cost allocations stall immediately where as lower
1356 * order allocations such as stacks require the scanning
1357 * priority to be much higher before stalling.
1358 */
1359 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1360 lumpy_stall_priority = DEF_PRIORITY;
1361 else
1362 lumpy_stall_priority = DEF_PRIORITY / 3;
1363
1364 return priority <= lumpy_stall_priority;
1365 }
1366
1367 /*
1368 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1369 * of reclaimed pages
1370 */
1371 static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan,struct zone * zone,struct scan_control * sc,int priority,int file)1372 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1373 struct scan_control *sc, int priority, int file)
1374 {
1375 LIST_HEAD(page_list);
1376 unsigned long nr_scanned;
1377 unsigned long nr_reclaimed = 0;
1378 unsigned long nr_taken;
1379 unsigned long nr_anon;
1380 unsigned long nr_file;
1381
1382 while (unlikely(too_many_isolated(zone, file, sc))) {
1383 congestion_wait(BLK_RW_ASYNC, HZ/10);
1384
1385 /* We are about to die and free our memory. Return now. */
1386 if (fatal_signal_pending(current))
1387 return SWAP_CLUSTER_MAX;
1388 }
1389
1390 set_reclaim_mode(priority, sc, false);
1391 lru_add_drain();
1392 spin_lock_irq(&zone->lru_lock);
1393
1394 if (scanning_global_lru(sc)) {
1395 nr_taken = isolate_pages_global(nr_to_scan,
1396 &page_list, &nr_scanned, sc->order,
1397 sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1398 ISOLATE_BOTH : ISOLATE_INACTIVE,
1399 zone, 0, file);
1400 zone->pages_scanned += nr_scanned;
1401 if (current_is_kswapd())
1402 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1403 nr_scanned);
1404 else
1405 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1406 nr_scanned);
1407 } else {
1408 nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1409 &page_list, &nr_scanned, sc->order,
1410 sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1411 ISOLATE_BOTH : ISOLATE_INACTIVE,
1412 zone, sc->mem_cgroup,
1413 0, file);
1414 /*
1415 * mem_cgroup_isolate_pages() keeps track of
1416 * scanned pages on its own.
1417 */
1418 }
1419
1420 if (nr_taken == 0) {
1421 spin_unlock_irq(&zone->lru_lock);
1422 return 0;
1423 }
1424
1425 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1426
1427 spin_unlock_irq(&zone->lru_lock);
1428
1429 nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1430
1431 /* Check if we should syncronously wait for writeback */
1432 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1433 set_reclaim_mode(priority, sc, true);
1434 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1435 }
1436
1437 local_irq_disable();
1438 if (current_is_kswapd())
1439 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1440 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1441
1442 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1443
1444 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1445 zone_idx(zone),
1446 nr_scanned, nr_reclaimed,
1447 priority,
1448 trace_shrink_flags(file, sc->reclaim_mode));
1449 return nr_reclaimed;
1450 }
1451
1452 /*
1453 * This moves pages from the active list to the inactive list.
1454 *
1455 * We move them the other way if the page is referenced by one or more
1456 * processes, from rmap.
1457 *
1458 * If the pages are mostly unmapped, the processing is fast and it is
1459 * appropriate to hold zone->lru_lock across the whole operation. But if
1460 * the pages are mapped, the processing is slow (page_referenced()) so we
1461 * should drop zone->lru_lock around each page. It's impossible to balance
1462 * this, so instead we remove the pages from the LRU while processing them.
1463 * It is safe to rely on PG_active against the non-LRU pages in here because
1464 * nobody will play with that bit on a non-LRU page.
1465 *
1466 * The downside is that we have to touch page->_count against each page.
1467 * But we had to alter page->flags anyway.
1468 */
1469
move_active_pages_to_lru(struct zone * zone,struct list_head * list,enum lru_list lru)1470 static void move_active_pages_to_lru(struct zone *zone,
1471 struct list_head *list,
1472 enum lru_list lru)
1473 {
1474 unsigned long pgmoved = 0;
1475 struct pagevec pvec;
1476 struct page *page;
1477
1478 pagevec_init(&pvec, 1);
1479
1480 while (!list_empty(list)) {
1481 page = lru_to_page(list);
1482
1483 VM_BUG_ON(PageLRU(page));
1484 SetPageLRU(page);
1485
1486 list_move(&page->lru, &zone->lru[lru].list);
1487 mem_cgroup_add_lru_list(page, lru);
1488 pgmoved += hpage_nr_pages(page);
1489
1490 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1491 spin_unlock_irq(&zone->lru_lock);
1492 if (buffer_heads_over_limit)
1493 pagevec_strip(&pvec);
1494 __pagevec_release(&pvec);
1495 spin_lock_irq(&zone->lru_lock);
1496 }
1497 }
1498 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1499 if (!is_active_lru(lru))
1500 __count_vm_events(PGDEACTIVATE, pgmoved);
1501 }
1502
shrink_active_list(unsigned long nr_pages,struct zone * zone,struct scan_control * sc,int priority,int file)1503 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1504 struct scan_control *sc, int priority, int file)
1505 {
1506 unsigned long nr_taken;
1507 unsigned long pgscanned;
1508 unsigned long vm_flags;
1509 LIST_HEAD(l_hold); /* The pages which were snipped off */
1510 LIST_HEAD(l_active);
1511 LIST_HEAD(l_inactive);
1512 struct page *page;
1513 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1514 unsigned long nr_rotated = 0;
1515
1516 lru_add_drain();
1517 spin_lock_irq(&zone->lru_lock);
1518 if (scanning_global_lru(sc)) {
1519 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1520 &pgscanned, sc->order,
1521 ISOLATE_ACTIVE, zone,
1522 1, file);
1523 zone->pages_scanned += pgscanned;
1524 } else {
1525 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1526 &pgscanned, sc->order,
1527 ISOLATE_ACTIVE, zone,
1528 sc->mem_cgroup, 1, file);
1529 /*
1530 * mem_cgroup_isolate_pages() keeps track of
1531 * scanned pages on its own.
1532 */
1533 }
1534
1535 reclaim_stat->recent_scanned[file] += nr_taken;
1536
1537 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1538 if (file)
1539 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1540 else
1541 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1542 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1543 spin_unlock_irq(&zone->lru_lock);
1544
1545 while (!list_empty(&l_hold)) {
1546 cond_resched();
1547 page = lru_to_page(&l_hold);
1548 list_del(&page->lru);
1549
1550 if (unlikely(!page_evictable(page, NULL))) {
1551 putback_lru_page(page);
1552 continue;
1553 }
1554
1555 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1556 nr_rotated += hpage_nr_pages(page);
1557 /*
1558 * Identify referenced, file-backed active pages and
1559 * give them one more trip around the active list. So
1560 * that executable code get better chances to stay in
1561 * memory under moderate memory pressure. Anon pages
1562 * are not likely to be evicted by use-once streaming
1563 * IO, plus JVM can create lots of anon VM_EXEC pages,
1564 * so we ignore them here.
1565 */
1566 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1567 list_add(&page->lru, &l_active);
1568 continue;
1569 }
1570 }
1571
1572 ClearPageActive(page); /* we are de-activating */
1573 list_add(&page->lru, &l_inactive);
1574 }
1575
1576 /*
1577 * Move pages back to the lru list.
1578 */
1579 spin_lock_irq(&zone->lru_lock);
1580 /*
1581 * Count referenced pages from currently used mappings as rotated,
1582 * even though only some of them are actually re-activated. This
1583 * helps balance scan pressure between file and anonymous pages in
1584 * get_scan_ratio.
1585 */
1586 reclaim_stat->recent_rotated[file] += nr_rotated;
1587
1588 move_active_pages_to_lru(zone, &l_active,
1589 LRU_ACTIVE + file * LRU_FILE);
1590 move_active_pages_to_lru(zone, &l_inactive,
1591 LRU_BASE + file * LRU_FILE);
1592 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1593 spin_unlock_irq(&zone->lru_lock);
1594 }
1595
1596 #ifdef CONFIG_SWAP
inactive_anon_is_low_global(struct zone * zone)1597 static int inactive_anon_is_low_global(struct zone *zone)
1598 {
1599 unsigned long active, inactive;
1600
1601 active = zone_page_state(zone, NR_ACTIVE_ANON);
1602 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1603
1604 if (inactive * zone->inactive_ratio < active)
1605 return 1;
1606
1607 return 0;
1608 }
1609
1610 /**
1611 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1612 * @zone: zone to check
1613 * @sc: scan control of this context
1614 *
1615 * Returns true if the zone does not have enough inactive anon pages,
1616 * meaning some active anon pages need to be deactivated.
1617 */
inactive_anon_is_low(struct zone * zone,struct scan_control * sc)1618 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1619 {
1620 int low;
1621
1622 /*
1623 * If we don't have swap space, anonymous page deactivation
1624 * is pointless.
1625 */
1626 if (!total_swap_pages)
1627 return 0;
1628
1629 if (scanning_global_lru(sc))
1630 low = inactive_anon_is_low_global(zone);
1631 else
1632 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1633 return low;
1634 }
1635 #else
inactive_anon_is_low(struct zone * zone,struct scan_control * sc)1636 static inline int inactive_anon_is_low(struct zone *zone,
1637 struct scan_control *sc)
1638 {
1639 return 0;
1640 }
1641 #endif
1642
inactive_file_is_low_global(struct zone * zone)1643 static int inactive_file_is_low_global(struct zone *zone)
1644 {
1645 unsigned long active, inactive;
1646
1647 active = zone_page_state(zone, NR_ACTIVE_FILE);
1648 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1649
1650 return (active > inactive);
1651 }
1652
1653 /**
1654 * inactive_file_is_low - check if file pages need to be deactivated
1655 * @zone: zone to check
1656 * @sc: scan control of this context
1657 *
1658 * When the system is doing streaming IO, memory pressure here
1659 * ensures that active file pages get deactivated, until more
1660 * than half of the file pages are on the inactive list.
1661 *
1662 * Once we get to that situation, protect the system's working
1663 * set from being evicted by disabling active file page aging.
1664 *
1665 * This uses a different ratio than the anonymous pages, because
1666 * the page cache uses a use-once replacement algorithm.
1667 */
inactive_file_is_low(struct zone * zone,struct scan_control * sc)1668 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1669 {
1670 int low;
1671
1672 if (scanning_global_lru(sc))
1673 low = inactive_file_is_low_global(zone);
1674 else
1675 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1676 return low;
1677 }
1678
inactive_list_is_low(struct zone * zone,struct scan_control * sc,int file)1679 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1680 int file)
1681 {
1682 if (file)
1683 return inactive_file_is_low(zone, sc);
1684 else
1685 return inactive_anon_is_low(zone, sc);
1686 }
1687
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct zone * zone,struct scan_control * sc,int priority)1688 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1689 struct zone *zone, struct scan_control *sc, int priority)
1690 {
1691 int file = is_file_lru(lru);
1692
1693 if (is_active_lru(lru)) {
1694 if (inactive_list_is_low(zone, sc, file))
1695 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1696 return 0;
1697 }
1698
1699 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1700 }
1701
1702 /*
1703 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1704 * until we collected @swap_cluster_max pages to scan.
1705 */
nr_scan_try_batch(unsigned long nr_to_scan,unsigned long * nr_saved_scan)1706 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1707 unsigned long *nr_saved_scan)
1708 {
1709 unsigned long nr;
1710
1711 *nr_saved_scan += nr_to_scan;
1712 nr = *nr_saved_scan;
1713
1714 if (nr >= SWAP_CLUSTER_MAX)
1715 *nr_saved_scan = 0;
1716 else
1717 nr = 0;
1718
1719 return nr;
1720 }
1721
1722 /*
1723 * Determine how aggressively the anon and file LRU lists should be
1724 * scanned. The relative value of each set of LRU lists is determined
1725 * by looking at the fraction of the pages scanned we did rotate back
1726 * onto the active list instead of evict.
1727 *
1728 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1729 */
get_scan_count(struct zone * zone,struct scan_control * sc,unsigned long * nr,int priority)1730 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1731 unsigned long *nr, int priority)
1732 {
1733 unsigned long anon, file, free;
1734 unsigned long anon_prio, file_prio;
1735 unsigned long ap, fp;
1736 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1737 u64 fraction[2], denominator;
1738 enum lru_list l;
1739 int noswap = 0;
1740
1741 /* If we have no swap space, do not bother scanning anon pages. */
1742 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1743 noswap = 1;
1744 fraction[0] = 0;
1745 fraction[1] = 1;
1746 denominator = 1;
1747 goto out;
1748 }
1749
1750 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1751 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1752 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1753 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1754
1755 if (scanning_global_lru(sc)) {
1756 free = zone_page_state(zone, NR_FREE_PAGES);
1757 /* If we have very few page cache pages,
1758 force-scan anon pages. */
1759 if (unlikely(file + free <= high_wmark_pages(zone))) {
1760 fraction[0] = 1;
1761 fraction[1] = 0;
1762 denominator = 1;
1763 goto out;
1764 }
1765 }
1766
1767 /*
1768 * With swappiness at 100, anonymous and file have the same priority.
1769 * This scanning priority is essentially the inverse of IO cost.
1770 */
1771 anon_prio = sc->swappiness;
1772 file_prio = 200 - sc->swappiness;
1773
1774 /*
1775 * OK, so we have swap space and a fair amount of page cache
1776 * pages. We use the recently rotated / recently scanned
1777 * ratios to determine how valuable each cache is.
1778 *
1779 * Because workloads change over time (and to avoid overflow)
1780 * we keep these statistics as a floating average, which ends
1781 * up weighing recent references more than old ones.
1782 *
1783 * anon in [0], file in [1]
1784 */
1785 spin_lock_irq(&zone->lru_lock);
1786 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1787 reclaim_stat->recent_scanned[0] /= 2;
1788 reclaim_stat->recent_rotated[0] /= 2;
1789 }
1790
1791 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1792 reclaim_stat->recent_scanned[1] /= 2;
1793 reclaim_stat->recent_rotated[1] /= 2;
1794 }
1795
1796 /*
1797 * The amount of pressure on anon vs file pages is inversely
1798 * proportional to the fraction of recently scanned pages on
1799 * each list that were recently referenced and in active use.
1800 */
1801 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1802 ap /= reclaim_stat->recent_rotated[0] + 1;
1803
1804 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1805 fp /= reclaim_stat->recent_rotated[1] + 1;
1806 spin_unlock_irq(&zone->lru_lock);
1807
1808 fraction[0] = ap;
1809 fraction[1] = fp;
1810 denominator = ap + fp + 1;
1811 out:
1812 for_each_evictable_lru(l) {
1813 int file = is_file_lru(l);
1814 unsigned long scan;
1815
1816 scan = zone_nr_lru_pages(zone, sc, l);
1817 if (priority || noswap) {
1818 scan >>= priority;
1819 scan = div64_u64(scan * fraction[file], denominator);
1820 }
1821 nr[l] = nr_scan_try_batch(scan,
1822 &reclaim_stat->nr_saved_scan[l]);
1823 }
1824 }
1825
1826 /*
1827 * Reclaim/compaction depends on a number of pages being freed. To avoid
1828 * disruption to the system, a small number of order-0 pages continue to be
1829 * rotated and reclaimed in the normal fashion. However, by the time we get
1830 * back to the allocator and call try_to_compact_zone(), we ensure that
1831 * there are enough free pages for it to be likely successful
1832 */
should_continue_reclaim(struct zone * zone,unsigned long nr_reclaimed,unsigned long nr_scanned,struct scan_control * sc)1833 static inline bool should_continue_reclaim(struct zone *zone,
1834 unsigned long nr_reclaimed,
1835 unsigned long nr_scanned,
1836 struct scan_control *sc)
1837 {
1838 unsigned long pages_for_compaction;
1839 unsigned long inactive_lru_pages;
1840
1841 /* If not in reclaim/compaction mode, stop */
1842 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1843 return false;
1844
1845 /* Consider stopping depending on scan and reclaim activity */
1846 if (sc->gfp_mask & __GFP_REPEAT) {
1847 /*
1848 * For __GFP_REPEAT allocations, stop reclaiming if the
1849 * full LRU list has been scanned and we are still failing
1850 * to reclaim pages. This full LRU scan is potentially
1851 * expensive but a __GFP_REPEAT caller really wants to succeed
1852 */
1853 if (!nr_reclaimed && !nr_scanned)
1854 return false;
1855 } else {
1856 /*
1857 * For non-__GFP_REPEAT allocations which can presumably
1858 * fail without consequence, stop if we failed to reclaim
1859 * any pages from the last SWAP_CLUSTER_MAX number of
1860 * pages that were scanned. This will return to the
1861 * caller faster at the risk reclaim/compaction and
1862 * the resulting allocation attempt fails
1863 */
1864 if (!nr_reclaimed)
1865 return false;
1866 }
1867
1868 /*
1869 * If we have not reclaimed enough pages for compaction and the
1870 * inactive lists are large enough, continue reclaiming
1871 */
1872 pages_for_compaction = (2UL << sc->order);
1873 inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1874 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1875 if (sc->nr_reclaimed < pages_for_compaction &&
1876 inactive_lru_pages > pages_for_compaction)
1877 return true;
1878
1879 /* If compaction would go ahead or the allocation would succeed, stop */
1880 switch (compaction_suitable(zone, sc->order)) {
1881 case COMPACT_PARTIAL:
1882 case COMPACT_CONTINUE:
1883 return false;
1884 default:
1885 return true;
1886 }
1887 }
1888
1889 /*
1890 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1891 */
shrink_zone(int priority,struct zone * zone,struct scan_control * sc)1892 static void shrink_zone(int priority, struct zone *zone,
1893 struct scan_control *sc)
1894 {
1895 unsigned long nr[NR_LRU_LISTS];
1896 unsigned long nr_to_scan;
1897 enum lru_list l;
1898 unsigned long nr_reclaimed, nr_scanned;
1899 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1900
1901 restart:
1902 nr_reclaimed = 0;
1903 nr_scanned = sc->nr_scanned;
1904 get_scan_count(zone, sc, nr, priority);
1905
1906 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1907 nr[LRU_INACTIVE_FILE]) {
1908 for_each_evictable_lru(l) {
1909 if (nr[l]) {
1910 nr_to_scan = min_t(unsigned long,
1911 nr[l], SWAP_CLUSTER_MAX);
1912 nr[l] -= nr_to_scan;
1913
1914 nr_reclaimed += shrink_list(l, nr_to_scan,
1915 zone, sc, priority);
1916 }
1917 }
1918 /*
1919 * On large memory systems, scan >> priority can become
1920 * really large. This is fine for the starting priority;
1921 * we want to put equal scanning pressure on each zone.
1922 * However, if the VM has a harder time of freeing pages,
1923 * with multiple processes reclaiming pages, the total
1924 * freeing target can get unreasonably large.
1925 */
1926 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1927 break;
1928 }
1929 sc->nr_reclaimed += nr_reclaimed;
1930
1931 /*
1932 * Even if we did not try to evict anon pages at all, we want to
1933 * rebalance the anon lru active/inactive ratio.
1934 */
1935 if (inactive_anon_is_low(zone, sc))
1936 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1937
1938 /* reclaim/compaction might need reclaim to continue */
1939 if (should_continue_reclaim(zone, nr_reclaimed,
1940 sc->nr_scanned - nr_scanned, sc))
1941 goto restart;
1942
1943 throttle_vm_writeout(sc->gfp_mask);
1944 }
1945
1946 /*
1947 * This is the direct reclaim path, for page-allocating processes. We only
1948 * try to reclaim pages from zones which will satisfy the caller's allocation
1949 * request.
1950 *
1951 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1952 * Because:
1953 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1954 * allocation or
1955 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1956 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1957 * zone defense algorithm.
1958 *
1959 * If a zone is deemed to be full of pinned pages then just give it a light
1960 * scan then give up on it.
1961 */
shrink_zones(int priority,struct zonelist * zonelist,struct scan_control * sc)1962 static void shrink_zones(int priority, struct zonelist *zonelist,
1963 struct scan_control *sc)
1964 {
1965 struct zoneref *z;
1966 struct zone *zone;
1967
1968 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1969 gfp_zone(sc->gfp_mask), sc->nodemask) {
1970 if (!populated_zone(zone))
1971 continue;
1972 /*
1973 * Take care memory controller reclaiming has small influence
1974 * to global LRU.
1975 */
1976 if (scanning_global_lru(sc)) {
1977 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1978 continue;
1979 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1980 continue; /* Let kswapd poll it */
1981 }
1982
1983 shrink_zone(priority, zone, sc);
1984 }
1985 }
1986
zone_reclaimable(struct zone * zone)1987 static bool zone_reclaimable(struct zone *zone)
1988 {
1989 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1990 }
1991
1992 /* All zones in zonelist are unreclaimable? */
all_unreclaimable(struct zonelist * zonelist,struct scan_control * sc)1993 static bool all_unreclaimable(struct zonelist *zonelist,
1994 struct scan_control *sc)
1995 {
1996 struct zoneref *z;
1997 struct zone *zone;
1998
1999 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2000 gfp_zone(sc->gfp_mask), sc->nodemask) {
2001 if (!populated_zone(zone))
2002 continue;
2003 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2004 continue;
2005 if (!zone->all_unreclaimable)
2006 return false;
2007 }
2008
2009 return true;
2010 }
2011
2012 /*
2013 * This is the main entry point to direct page reclaim.
2014 *
2015 * If a full scan of the inactive list fails to free enough memory then we
2016 * are "out of memory" and something needs to be killed.
2017 *
2018 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2019 * high - the zone may be full of dirty or under-writeback pages, which this
2020 * caller can't do much about. We kick the writeback threads and take explicit
2021 * naps in the hope that some of these pages can be written. But if the
2022 * allocating task holds filesystem locks which prevent writeout this might not
2023 * work, and the allocation attempt will fail.
2024 *
2025 * returns: 0, if no pages reclaimed
2026 * else, the number of pages reclaimed
2027 */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)2028 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2029 struct scan_control *sc)
2030 {
2031 int priority;
2032 unsigned long total_scanned = 0;
2033 struct reclaim_state *reclaim_state = current->reclaim_state;
2034 struct zoneref *z;
2035 struct zone *zone;
2036 unsigned long writeback_threshold;
2037
2038 get_mems_allowed();
2039 delayacct_freepages_start();
2040
2041 if (scanning_global_lru(sc))
2042 count_vm_event(ALLOCSTALL);
2043
2044 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2045 sc->nr_scanned = 0;
2046 if (!priority)
2047 disable_swap_token();
2048 shrink_zones(priority, zonelist, sc);
2049 /*
2050 * Don't shrink slabs when reclaiming memory from
2051 * over limit cgroups
2052 */
2053 if (scanning_global_lru(sc)) {
2054 unsigned long lru_pages = 0;
2055 for_each_zone_zonelist(zone, z, zonelist,
2056 gfp_zone(sc->gfp_mask)) {
2057 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2058 continue;
2059
2060 lru_pages += zone_reclaimable_pages(zone);
2061 }
2062
2063 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
2064 if (reclaim_state) {
2065 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2066 reclaim_state->reclaimed_slab = 0;
2067 }
2068 }
2069 total_scanned += sc->nr_scanned;
2070 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2071 goto out;
2072
2073 /*
2074 * Try to write back as many pages as we just scanned. This
2075 * tends to cause slow streaming writers to write data to the
2076 * disk smoothly, at the dirtying rate, which is nice. But
2077 * that's undesirable in laptop mode, where we *want* lumpy
2078 * writeout. So in laptop mode, write out the whole world.
2079 */
2080 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2081 if (total_scanned > writeback_threshold) {
2082 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2083 sc->may_writepage = 1;
2084 }
2085
2086 /* Take a nap, wait for some writeback to complete */
2087 if (!sc->hibernation_mode && sc->nr_scanned &&
2088 priority < DEF_PRIORITY - 2) {
2089 struct zone *preferred_zone;
2090
2091 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2092 &cpuset_current_mems_allowed,
2093 &preferred_zone);
2094 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2095 }
2096 }
2097
2098 out:
2099 delayacct_freepages_end();
2100 put_mems_allowed();
2101
2102 if (sc->nr_reclaimed)
2103 return sc->nr_reclaimed;
2104
2105 /*
2106 * As hibernation is going on, kswapd is freezed so that it can't mark
2107 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2108 * check.
2109 */
2110 if (oom_killer_disabled)
2111 return 0;
2112
2113 /* top priority shrink_zones still had more to do? don't OOM, then */
2114 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2115 return 1;
2116
2117 return 0;
2118 }
2119
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)2120 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2121 gfp_t gfp_mask, nodemask_t *nodemask)
2122 {
2123 unsigned long nr_reclaimed;
2124 struct scan_control sc = {
2125 .gfp_mask = gfp_mask,
2126 .may_writepage = !laptop_mode,
2127 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2128 .may_unmap = 1,
2129 .may_swap = 1,
2130 .swappiness = vm_swappiness,
2131 .order = order,
2132 .mem_cgroup = NULL,
2133 .nodemask = nodemask,
2134 };
2135
2136 trace_mm_vmscan_direct_reclaim_begin(order,
2137 sc.may_writepage,
2138 gfp_mask);
2139
2140 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2141
2142 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2143
2144 return nr_reclaimed;
2145 }
2146
2147 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2148
mem_cgroup_shrink_node_zone(struct mem_cgroup * mem,gfp_t gfp_mask,bool noswap,unsigned int swappiness,struct zone * zone)2149 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2150 gfp_t gfp_mask, bool noswap,
2151 unsigned int swappiness,
2152 struct zone *zone)
2153 {
2154 struct scan_control sc = {
2155 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2156 .may_writepage = !laptop_mode,
2157 .may_unmap = 1,
2158 .may_swap = !noswap,
2159 .swappiness = swappiness,
2160 .order = 0,
2161 .mem_cgroup = mem,
2162 };
2163 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2164 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2165
2166 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2167 sc.may_writepage,
2168 sc.gfp_mask);
2169
2170 /*
2171 * NOTE: Although we can get the priority field, using it
2172 * here is not a good idea, since it limits the pages we can scan.
2173 * if we don't reclaim here, the shrink_zone from balance_pgdat
2174 * will pick up pages from other mem cgroup's as well. We hack
2175 * the priority and make it zero.
2176 */
2177 shrink_zone(0, zone, &sc);
2178
2179 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2180
2181 return sc.nr_reclaimed;
2182 }
2183
try_to_free_mem_cgroup_pages(struct mem_cgroup * mem_cont,gfp_t gfp_mask,bool noswap,unsigned int swappiness)2184 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2185 gfp_t gfp_mask,
2186 bool noswap,
2187 unsigned int swappiness)
2188 {
2189 struct zonelist *zonelist;
2190 unsigned long nr_reclaimed;
2191 struct scan_control sc = {
2192 .may_writepage = !laptop_mode,
2193 .may_unmap = 1,
2194 .may_swap = !noswap,
2195 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2196 .swappiness = swappiness,
2197 .order = 0,
2198 .mem_cgroup = mem_cont,
2199 .nodemask = NULL, /* we don't care the placement */
2200 };
2201
2202 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2203 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2204 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2205
2206 trace_mm_vmscan_memcg_reclaim_begin(0,
2207 sc.may_writepage,
2208 sc.gfp_mask);
2209
2210 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2211
2212 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2213
2214 return nr_reclaimed;
2215 }
2216 #endif
2217
2218 /*
2219 * pgdat_balanced is used when checking if a node is balanced for high-order
2220 * allocations. Only zones that meet watermarks and are in a zone allowed
2221 * by the callers classzone_idx are added to balanced_pages. The total of
2222 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2223 * for the node to be considered balanced. Forcing all zones to be balanced
2224 * for high orders can cause excessive reclaim when there are imbalanced zones.
2225 * The choice of 25% is due to
2226 * o a 16M DMA zone that is balanced will not balance a zone on any
2227 * reasonable sized machine
2228 * o On all other machines, the top zone must be at least a reasonable
2229 * percentage of the middle zones. For example, on 32-bit x86, highmem
2230 * would need to be at least 256M for it to be balance a whole node.
2231 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2232 * to balance a node on its own. These seemed like reasonable ratios.
2233 */
pgdat_balanced(pg_data_t * pgdat,unsigned long balanced_pages,int classzone_idx)2234 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2235 int classzone_idx)
2236 {
2237 unsigned long present_pages = 0;
2238 int i;
2239
2240 for (i = 0; i <= classzone_idx; i++)
2241 present_pages += pgdat->node_zones[i].present_pages;
2242
2243 return balanced_pages > (present_pages >> 2);
2244 }
2245
2246 /* is kswapd sleeping prematurely? */
sleeping_prematurely(pg_data_t * pgdat,int order,long remaining,int classzone_idx)2247 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2248 int classzone_idx)
2249 {
2250 int i;
2251 unsigned long balanced = 0;
2252 bool all_zones_ok = true;
2253
2254 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2255 if (remaining)
2256 return true;
2257
2258 /* Check the watermark levels */
2259 for (i = 0; i < pgdat->nr_zones; i++) {
2260 struct zone *zone = pgdat->node_zones + i;
2261
2262 if (!populated_zone(zone))
2263 continue;
2264
2265 /*
2266 * balance_pgdat() skips over all_unreclaimable after
2267 * DEF_PRIORITY. Effectively, it considers them balanced so
2268 * they must be considered balanced here as well if kswapd
2269 * is to sleep
2270 */
2271 if (zone->all_unreclaimable) {
2272 balanced += zone->present_pages;
2273 continue;
2274 }
2275
2276 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2277 classzone_idx, 0))
2278 all_zones_ok = false;
2279 else
2280 balanced += zone->present_pages;
2281 }
2282
2283 /*
2284 * For high-order requests, the balanced zones must contain at least
2285 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2286 * must be balanced
2287 */
2288 if (order)
2289 return pgdat_balanced(pgdat, balanced, classzone_idx);
2290 else
2291 return !all_zones_ok;
2292 }
2293
2294 /*
2295 * For kswapd, balance_pgdat() will work across all this node's zones until
2296 * they are all at high_wmark_pages(zone).
2297 *
2298 * Returns the final order kswapd was reclaiming at
2299 *
2300 * There is special handling here for zones which are full of pinned pages.
2301 * This can happen if the pages are all mlocked, or if they are all used by
2302 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2303 * What we do is to detect the case where all pages in the zone have been
2304 * scanned twice and there has been zero successful reclaim. Mark the zone as
2305 * dead and from now on, only perform a short scan. Basically we're polling
2306 * the zone for when the problem goes away.
2307 *
2308 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2309 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2310 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2311 * lower zones regardless of the number of free pages in the lower zones. This
2312 * interoperates with the page allocator fallback scheme to ensure that aging
2313 * of pages is balanced across the zones.
2314 */
balance_pgdat(pg_data_t * pgdat,int order,int * classzone_idx)2315 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2316 int *classzone_idx)
2317 {
2318 int all_zones_ok;
2319 unsigned long balanced;
2320 int priority;
2321 int i;
2322 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2323 unsigned long total_scanned;
2324 struct reclaim_state *reclaim_state = current->reclaim_state;
2325 struct scan_control sc = {
2326 .gfp_mask = GFP_KERNEL,
2327 .may_unmap = 1,
2328 .may_swap = 1,
2329 /*
2330 * kswapd doesn't want to be bailed out while reclaim. because
2331 * we want to put equal scanning pressure on each zone.
2332 */
2333 .nr_to_reclaim = ULONG_MAX,
2334 .swappiness = vm_swappiness,
2335 .order = order,
2336 .mem_cgroup = NULL,
2337 };
2338 loop_again:
2339 total_scanned = 0;
2340 sc.nr_reclaimed = 0;
2341 sc.may_writepage = !laptop_mode;
2342 count_vm_event(PAGEOUTRUN);
2343
2344 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2345 unsigned long lru_pages = 0;
2346 int has_under_min_watermark_zone = 0;
2347
2348 /* The swap token gets in the way of swapout... */
2349 if (!priority)
2350 disable_swap_token();
2351
2352 all_zones_ok = 1;
2353 balanced = 0;
2354
2355 /*
2356 * Scan in the highmem->dma direction for the highest
2357 * zone which needs scanning
2358 */
2359 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2360 struct zone *zone = pgdat->node_zones + i;
2361
2362 if (!populated_zone(zone))
2363 continue;
2364
2365 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2366 continue;
2367
2368 /*
2369 * Do some background aging of the anon list, to give
2370 * pages a chance to be referenced before reclaiming.
2371 */
2372 if (inactive_anon_is_low(zone, &sc))
2373 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2374 &sc, priority, 0);
2375
2376 if (!zone_watermark_ok_safe(zone, order,
2377 high_wmark_pages(zone), 0, 0)) {
2378 end_zone = i;
2379 *classzone_idx = i;
2380 break;
2381 }
2382 }
2383 if (i < 0)
2384 goto out;
2385
2386 for (i = 0; i <= end_zone; i++) {
2387 struct zone *zone = pgdat->node_zones + i;
2388
2389 lru_pages += zone_reclaimable_pages(zone);
2390 }
2391
2392 /*
2393 * Now scan the zone in the dma->highmem direction, stopping
2394 * at the last zone which needs scanning.
2395 *
2396 * We do this because the page allocator works in the opposite
2397 * direction. This prevents the page allocator from allocating
2398 * pages behind kswapd's direction of progress, which would
2399 * cause too much scanning of the lower zones.
2400 */
2401 for (i = 0; i <= end_zone; i++) {
2402 struct zone *zone = pgdat->node_zones + i;
2403 int nr_slab;
2404 unsigned long balance_gap;
2405
2406 if (!populated_zone(zone))
2407 continue;
2408
2409 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2410 continue;
2411
2412 sc.nr_scanned = 0;
2413
2414 /*
2415 * Call soft limit reclaim before calling shrink_zone.
2416 * For now we ignore the return value
2417 */
2418 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2419
2420 /*
2421 * We put equal pressure on every zone, unless
2422 * one zone has way too many pages free
2423 * already. The "too many pages" is defined
2424 * as the high wmark plus a "gap" where the
2425 * gap is either the low watermark or 1%
2426 * of the zone, whichever is smaller.
2427 */
2428 balance_gap = min(low_wmark_pages(zone),
2429 (zone->present_pages +
2430 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2431 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2432 if (!zone_watermark_ok_safe(zone, order,
2433 high_wmark_pages(zone) + balance_gap,
2434 end_zone, 0))
2435 shrink_zone(priority, zone, &sc);
2436 reclaim_state->reclaimed_slab = 0;
2437 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2438 lru_pages);
2439 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2440 total_scanned += sc.nr_scanned;
2441
2442 if (zone->all_unreclaimable)
2443 continue;
2444 if (nr_slab == 0 &&
2445 !zone_reclaimable(zone))
2446 zone->all_unreclaimable = 1;
2447 /*
2448 * If we've done a decent amount of scanning and
2449 * the reclaim ratio is low, start doing writepage
2450 * even in laptop mode
2451 */
2452 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2453 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2454 sc.may_writepage = 1;
2455
2456 if (!zone_watermark_ok_safe(zone, order,
2457 high_wmark_pages(zone), end_zone, 0)) {
2458 all_zones_ok = 0;
2459 /*
2460 * We are still under min water mark. This
2461 * means that we have a GFP_ATOMIC allocation
2462 * failure risk. Hurry up!
2463 */
2464 if (!zone_watermark_ok_safe(zone, order,
2465 min_wmark_pages(zone), end_zone, 0))
2466 has_under_min_watermark_zone = 1;
2467 } else {
2468 /*
2469 * If a zone reaches its high watermark,
2470 * consider it to be no longer congested. It's
2471 * possible there are dirty pages backed by
2472 * congested BDIs but as pressure is relieved,
2473 * spectulatively avoid congestion waits
2474 */
2475 zone_clear_flag(zone, ZONE_CONGESTED);
2476 if (i <= *classzone_idx)
2477 balanced += zone->present_pages;
2478 }
2479
2480 }
2481 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2482 break; /* kswapd: all done */
2483 /*
2484 * OK, kswapd is getting into trouble. Take a nap, then take
2485 * another pass across the zones.
2486 */
2487 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2488 if (has_under_min_watermark_zone)
2489 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2490 else
2491 congestion_wait(BLK_RW_ASYNC, HZ/10);
2492 }
2493
2494 /*
2495 * We do this so kswapd doesn't build up large priorities for
2496 * example when it is freeing in parallel with allocators. It
2497 * matches the direct reclaim path behaviour in terms of impact
2498 * on zone->*_priority.
2499 */
2500 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2501 break;
2502 }
2503 out:
2504
2505 /*
2506 * order-0: All zones must meet high watermark for a balanced node
2507 * high-order: Balanced zones must make up at least 25% of the node
2508 * for the node to be balanced
2509 */
2510 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2511 cond_resched();
2512
2513 try_to_freeze();
2514
2515 /*
2516 * Fragmentation may mean that the system cannot be
2517 * rebalanced for high-order allocations in all zones.
2518 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2519 * it means the zones have been fully scanned and are still
2520 * not balanced. For high-order allocations, there is
2521 * little point trying all over again as kswapd may
2522 * infinite loop.
2523 *
2524 * Instead, recheck all watermarks at order-0 as they
2525 * are the most important. If watermarks are ok, kswapd will go
2526 * back to sleep. High-order users can still perform direct
2527 * reclaim if they wish.
2528 */
2529 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2530 order = sc.order = 0;
2531
2532 goto loop_again;
2533 }
2534
2535 /*
2536 * If kswapd was reclaiming at a higher order, it has the option of
2537 * sleeping without all zones being balanced. Before it does, it must
2538 * ensure that the watermarks for order-0 on *all* zones are met and
2539 * that the congestion flags are cleared. The congestion flag must
2540 * be cleared as kswapd is the only mechanism that clears the flag
2541 * and it is potentially going to sleep here.
2542 */
2543 if (order) {
2544 for (i = 0; i <= end_zone; i++) {
2545 struct zone *zone = pgdat->node_zones + i;
2546
2547 if (!populated_zone(zone))
2548 continue;
2549
2550 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2551 continue;
2552
2553 /* Confirm the zone is balanced for order-0 */
2554 if (!zone_watermark_ok(zone, 0,
2555 high_wmark_pages(zone), 0, 0)) {
2556 order = sc.order = 0;
2557 goto loop_again;
2558 }
2559
2560 /* If balanced, clear the congested flag */
2561 zone_clear_flag(zone, ZONE_CONGESTED);
2562 }
2563 }
2564
2565 /*
2566 * Return the order we were reclaiming at so sleeping_prematurely()
2567 * makes a decision on the order we were last reclaiming at. However,
2568 * if another caller entered the allocator slow path while kswapd
2569 * was awake, order will remain at the higher level
2570 */
2571 *classzone_idx = end_zone;
2572 return order;
2573 }
2574
kswapd_try_to_sleep(pg_data_t * pgdat,int order,int classzone_idx)2575 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2576 {
2577 long remaining = 0;
2578 DEFINE_WAIT(wait);
2579
2580 if (freezing(current) || kthread_should_stop())
2581 return;
2582
2583 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2584
2585 /* Try to sleep for a short interval */
2586 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2587 remaining = schedule_timeout(HZ/10);
2588 finish_wait(&pgdat->kswapd_wait, &wait);
2589 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2590 }
2591
2592 /*
2593 * After a short sleep, check if it was a premature sleep. If not, then
2594 * go fully to sleep until explicitly woken up.
2595 */
2596 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2597 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2598
2599 /*
2600 * vmstat counters are not perfectly accurate and the estimated
2601 * value for counters such as NR_FREE_PAGES can deviate from the
2602 * true value by nr_online_cpus * threshold. To avoid the zone
2603 * watermarks being breached while under pressure, we reduce the
2604 * per-cpu vmstat threshold while kswapd is awake and restore
2605 * them before going back to sleep.
2606 */
2607 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2608 schedule();
2609 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2610 } else {
2611 if (remaining)
2612 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2613 else
2614 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2615 }
2616 finish_wait(&pgdat->kswapd_wait, &wait);
2617 }
2618
2619 /*
2620 * The background pageout daemon, started as a kernel thread
2621 * from the init process.
2622 *
2623 * This basically trickles out pages so that we have _some_
2624 * free memory available even if there is no other activity
2625 * that frees anything up. This is needed for things like routing
2626 * etc, where we otherwise might have all activity going on in
2627 * asynchronous contexts that cannot page things out.
2628 *
2629 * If there are applications that are active memory-allocators
2630 * (most normal use), this basically shouldn't matter.
2631 */
kswapd(void * p)2632 static int kswapd(void *p)
2633 {
2634 unsigned long order;
2635 int classzone_idx;
2636 pg_data_t *pgdat = (pg_data_t*)p;
2637 struct task_struct *tsk = current;
2638
2639 struct reclaim_state reclaim_state = {
2640 .reclaimed_slab = 0,
2641 };
2642 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2643
2644 lockdep_set_current_reclaim_state(GFP_KERNEL);
2645
2646 if (!cpumask_empty(cpumask))
2647 set_cpus_allowed_ptr(tsk, cpumask);
2648 current->reclaim_state = &reclaim_state;
2649
2650 /*
2651 * Tell the memory management that we're a "memory allocator",
2652 * and that if we need more memory we should get access to it
2653 * regardless (see "__alloc_pages()"). "kswapd" should
2654 * never get caught in the normal page freeing logic.
2655 *
2656 * (Kswapd normally doesn't need memory anyway, but sometimes
2657 * you need a small amount of memory in order to be able to
2658 * page out something else, and this flag essentially protects
2659 * us from recursively trying to free more memory as we're
2660 * trying to free the first piece of memory in the first place).
2661 */
2662 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2663 set_freezable();
2664
2665 order = 0;
2666 classzone_idx = MAX_NR_ZONES - 1;
2667 for ( ; ; ) {
2668 unsigned long new_order;
2669 int new_classzone_idx;
2670 int ret;
2671
2672 new_order = pgdat->kswapd_max_order;
2673 new_classzone_idx = pgdat->classzone_idx;
2674 pgdat->kswapd_max_order = 0;
2675 pgdat->classzone_idx = MAX_NR_ZONES - 1;
2676 if (order < new_order || classzone_idx > new_classzone_idx) {
2677 /*
2678 * Don't sleep if someone wants a larger 'order'
2679 * allocation or has tigher zone constraints
2680 */
2681 order = new_order;
2682 classzone_idx = new_classzone_idx;
2683 } else {
2684 kswapd_try_to_sleep(pgdat, order, classzone_idx);
2685 order = pgdat->kswapd_max_order;
2686 classzone_idx = pgdat->classzone_idx;
2687 pgdat->kswapd_max_order = 0;
2688 pgdat->classzone_idx = MAX_NR_ZONES - 1;
2689 }
2690
2691 ret = try_to_freeze();
2692 if (kthread_should_stop())
2693 break;
2694
2695 /*
2696 * We can speed up thawing tasks if we don't call balance_pgdat
2697 * after returning from the refrigerator
2698 */
2699 if (!ret) {
2700 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2701 order = balance_pgdat(pgdat, order, &classzone_idx);
2702 }
2703 }
2704 return 0;
2705 }
2706
2707 /*
2708 * A zone is low on free memory, so wake its kswapd task to service it.
2709 */
wakeup_kswapd(struct zone * zone,int order,enum zone_type classzone_idx)2710 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2711 {
2712 pg_data_t *pgdat;
2713
2714 if (!populated_zone(zone))
2715 return;
2716
2717 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2718 return;
2719 pgdat = zone->zone_pgdat;
2720 if (pgdat->kswapd_max_order < order) {
2721 pgdat->kswapd_max_order = order;
2722 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2723 }
2724 if (!waitqueue_active(&pgdat->kswapd_wait))
2725 return;
2726 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2727 return;
2728
2729 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2730 wake_up_interruptible(&pgdat->kswapd_wait);
2731 }
2732
2733 /*
2734 * The reclaimable count would be mostly accurate.
2735 * The less reclaimable pages may be
2736 * - mlocked pages, which will be moved to unevictable list when encountered
2737 * - mapped pages, which may require several travels to be reclaimed
2738 * - dirty pages, which is not "instantly" reclaimable
2739 */
global_reclaimable_pages(void)2740 unsigned long global_reclaimable_pages(void)
2741 {
2742 int nr;
2743
2744 nr = global_page_state(NR_ACTIVE_FILE) +
2745 global_page_state(NR_INACTIVE_FILE);
2746
2747 if (nr_swap_pages > 0)
2748 nr += global_page_state(NR_ACTIVE_ANON) +
2749 global_page_state(NR_INACTIVE_ANON);
2750
2751 return nr;
2752 }
2753
zone_reclaimable_pages(struct zone * zone)2754 unsigned long zone_reclaimable_pages(struct zone *zone)
2755 {
2756 int nr;
2757
2758 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2759 zone_page_state(zone, NR_INACTIVE_FILE);
2760
2761 if (nr_swap_pages > 0)
2762 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2763 zone_page_state(zone, NR_INACTIVE_ANON);
2764
2765 return nr;
2766 }
2767
2768 #ifdef CONFIG_HIBERNATION
2769 /*
2770 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2771 * freed pages.
2772 *
2773 * Rather than trying to age LRUs the aim is to preserve the overall
2774 * LRU order by reclaiming preferentially
2775 * inactive > active > active referenced > active mapped
2776 */
shrink_all_memory(unsigned long nr_to_reclaim)2777 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2778 {
2779 struct reclaim_state reclaim_state;
2780 struct scan_control sc = {
2781 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2782 .may_swap = 1,
2783 .may_unmap = 1,
2784 .may_writepage = 1,
2785 .nr_to_reclaim = nr_to_reclaim,
2786 .hibernation_mode = 1,
2787 .swappiness = vm_swappiness,
2788 .order = 0,
2789 };
2790 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2791 struct task_struct *p = current;
2792 unsigned long nr_reclaimed;
2793
2794 p->flags |= PF_MEMALLOC;
2795 lockdep_set_current_reclaim_state(sc.gfp_mask);
2796 reclaim_state.reclaimed_slab = 0;
2797 p->reclaim_state = &reclaim_state;
2798
2799 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2800
2801 p->reclaim_state = NULL;
2802 lockdep_clear_current_reclaim_state();
2803 p->flags &= ~PF_MEMALLOC;
2804
2805 return nr_reclaimed;
2806 }
2807 #endif /* CONFIG_HIBERNATION */
2808
2809 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2810 not required for correctness. So if the last cpu in a node goes
2811 away, we get changed to run anywhere: as the first one comes back,
2812 restore their cpu bindings. */
cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)2813 static int __devinit cpu_callback(struct notifier_block *nfb,
2814 unsigned long action, void *hcpu)
2815 {
2816 int nid;
2817
2818 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2819 for_each_node_state(nid, N_HIGH_MEMORY) {
2820 pg_data_t *pgdat = NODE_DATA(nid);
2821 const struct cpumask *mask;
2822
2823 mask = cpumask_of_node(pgdat->node_id);
2824
2825 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2826 /* One of our CPUs online: restore mask */
2827 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2828 }
2829 }
2830 return NOTIFY_OK;
2831 }
2832
2833 /*
2834 * This kswapd start function will be called by init and node-hot-add.
2835 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2836 */
kswapd_run(int nid)2837 int kswapd_run(int nid)
2838 {
2839 pg_data_t *pgdat = NODE_DATA(nid);
2840 int ret = 0;
2841
2842 if (pgdat->kswapd)
2843 return 0;
2844
2845 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2846 if (IS_ERR(pgdat->kswapd)) {
2847 /* failure at boot is fatal */
2848 BUG_ON(system_state == SYSTEM_BOOTING);
2849 printk("Failed to start kswapd on node %d\n",nid);
2850 ret = -1;
2851 }
2852 return ret;
2853 }
2854
2855 /*
2856 * Called by memory hotplug when all memory in a node is offlined.
2857 */
kswapd_stop(int nid)2858 void kswapd_stop(int nid)
2859 {
2860 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2861
2862 if (kswapd)
2863 kthread_stop(kswapd);
2864 }
2865
kswapd_init(void)2866 static int __init kswapd_init(void)
2867 {
2868 int nid;
2869
2870 swap_setup();
2871 for_each_node_state(nid, N_HIGH_MEMORY)
2872 kswapd_run(nid);
2873 hotcpu_notifier(cpu_callback, 0);
2874 return 0;
2875 }
2876
2877 module_init(kswapd_init)
2878
2879 #ifdef CONFIG_NUMA
2880 /*
2881 * Zone reclaim mode
2882 *
2883 * If non-zero call zone_reclaim when the number of free pages falls below
2884 * the watermarks.
2885 */
2886 int zone_reclaim_mode __read_mostly;
2887
2888 #define RECLAIM_OFF 0
2889 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2890 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2891 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2892
2893 /*
2894 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2895 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2896 * a zone.
2897 */
2898 #define ZONE_RECLAIM_PRIORITY 4
2899
2900 /*
2901 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2902 * occur.
2903 */
2904 int sysctl_min_unmapped_ratio = 1;
2905
2906 /*
2907 * If the number of slab pages in a zone grows beyond this percentage then
2908 * slab reclaim needs to occur.
2909 */
2910 int sysctl_min_slab_ratio = 5;
2911
zone_unmapped_file_pages(struct zone * zone)2912 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2913 {
2914 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2915 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2916 zone_page_state(zone, NR_ACTIVE_FILE);
2917
2918 /*
2919 * It's possible for there to be more file mapped pages than
2920 * accounted for by the pages on the file LRU lists because
2921 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2922 */
2923 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2924 }
2925
2926 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
zone_pagecache_reclaimable(struct zone * zone)2927 static long zone_pagecache_reclaimable(struct zone *zone)
2928 {
2929 long nr_pagecache_reclaimable;
2930 long delta = 0;
2931
2932 /*
2933 * If RECLAIM_SWAP is set, then all file pages are considered
2934 * potentially reclaimable. Otherwise, we have to worry about
2935 * pages like swapcache and zone_unmapped_file_pages() provides
2936 * a better estimate
2937 */
2938 if (zone_reclaim_mode & RECLAIM_SWAP)
2939 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2940 else
2941 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2942
2943 /* If we can't clean pages, remove dirty pages from consideration */
2944 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2945 delta += zone_page_state(zone, NR_FILE_DIRTY);
2946
2947 /* Watch for any possible underflows due to delta */
2948 if (unlikely(delta > nr_pagecache_reclaimable))
2949 delta = nr_pagecache_reclaimable;
2950
2951 return nr_pagecache_reclaimable - delta;
2952 }
2953
2954 /*
2955 * Try to free up some pages from this zone through reclaim.
2956 */
__zone_reclaim(struct zone * zone,gfp_t gfp_mask,unsigned int order)2957 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2958 {
2959 /* Minimum pages needed in order to stay on node */
2960 const unsigned long nr_pages = 1 << order;
2961 struct task_struct *p = current;
2962 struct reclaim_state reclaim_state;
2963 int priority;
2964 struct scan_control sc = {
2965 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2966 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2967 .may_swap = 1,
2968 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2969 SWAP_CLUSTER_MAX),
2970 .gfp_mask = gfp_mask,
2971 .swappiness = vm_swappiness,
2972 .order = order,
2973 };
2974 unsigned long nr_slab_pages0, nr_slab_pages1;
2975
2976 cond_resched();
2977 /*
2978 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2979 * and we also need to be able to write out pages for RECLAIM_WRITE
2980 * and RECLAIM_SWAP.
2981 */
2982 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2983 lockdep_set_current_reclaim_state(gfp_mask);
2984 reclaim_state.reclaimed_slab = 0;
2985 p->reclaim_state = &reclaim_state;
2986
2987 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2988 /*
2989 * Free memory by calling shrink zone with increasing
2990 * priorities until we have enough memory freed.
2991 */
2992 priority = ZONE_RECLAIM_PRIORITY;
2993 do {
2994 shrink_zone(priority, zone, &sc);
2995 priority--;
2996 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2997 }
2998
2999 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3000 if (nr_slab_pages0 > zone->min_slab_pages) {
3001 /*
3002 * shrink_slab() does not currently allow us to determine how
3003 * many pages were freed in this zone. So we take the current
3004 * number of slab pages and shake the slab until it is reduced
3005 * by the same nr_pages that we used for reclaiming unmapped
3006 * pages.
3007 *
3008 * Note that shrink_slab will free memory on all zones and may
3009 * take a long time.
3010 */
3011 for (;;) {
3012 unsigned long lru_pages = zone_reclaimable_pages(zone);
3013
3014 /* No reclaimable slab or very low memory pressure */
3015 if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
3016 break;
3017
3018 /* Freed enough memory */
3019 nr_slab_pages1 = zone_page_state(zone,
3020 NR_SLAB_RECLAIMABLE);
3021 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3022 break;
3023 }
3024
3025 /*
3026 * Update nr_reclaimed by the number of slab pages we
3027 * reclaimed from this zone.
3028 */
3029 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3030 if (nr_slab_pages1 < nr_slab_pages0)
3031 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3032 }
3033
3034 p->reclaim_state = NULL;
3035 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3036 lockdep_clear_current_reclaim_state();
3037 return sc.nr_reclaimed >= nr_pages;
3038 }
3039
zone_reclaim(struct zone * zone,gfp_t gfp_mask,unsigned int order)3040 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3041 {
3042 int node_id;
3043 int ret;
3044
3045 /*
3046 * Zone reclaim reclaims unmapped file backed pages and
3047 * slab pages if we are over the defined limits.
3048 *
3049 * A small portion of unmapped file backed pages is needed for
3050 * file I/O otherwise pages read by file I/O will be immediately
3051 * thrown out if the zone is overallocated. So we do not reclaim
3052 * if less than a specified percentage of the zone is used by
3053 * unmapped file backed pages.
3054 */
3055 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3056 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3057 return ZONE_RECLAIM_FULL;
3058
3059 if (zone->all_unreclaimable)
3060 return ZONE_RECLAIM_FULL;
3061
3062 /*
3063 * Do not scan if the allocation should not be delayed.
3064 */
3065 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3066 return ZONE_RECLAIM_NOSCAN;
3067
3068 /*
3069 * Only run zone reclaim on the local zone or on zones that do not
3070 * have associated processors. This will favor the local processor
3071 * over remote processors and spread off node memory allocations
3072 * as wide as possible.
3073 */
3074 node_id = zone_to_nid(zone);
3075 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3076 return ZONE_RECLAIM_NOSCAN;
3077
3078 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3079 return ZONE_RECLAIM_NOSCAN;
3080
3081 ret = __zone_reclaim(zone, gfp_mask, order);
3082 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3083
3084 if (!ret)
3085 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3086
3087 return ret;
3088 }
3089 #endif
3090
3091 /*
3092 * page_evictable - test whether a page is evictable
3093 * @page: the page to test
3094 * @vma: the VMA in which the page is or will be mapped, may be NULL
3095 *
3096 * Test whether page is evictable--i.e., should be placed on active/inactive
3097 * lists vs unevictable list. The vma argument is !NULL when called from the
3098 * fault path to determine how to instantate a new page.
3099 *
3100 * Reasons page might not be evictable:
3101 * (1) page's mapping marked unevictable
3102 * (2) page is part of an mlocked VMA
3103 *
3104 */
page_evictable(struct page * page,struct vm_area_struct * vma)3105 int page_evictable(struct page *page, struct vm_area_struct *vma)
3106 {
3107
3108 if (mapping_unevictable(page_mapping(page)))
3109 return 0;
3110
3111 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3112 return 0;
3113
3114 return 1;
3115 }
3116
3117 /**
3118 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3119 * @page: page to check evictability and move to appropriate lru list
3120 * @zone: zone page is in
3121 *
3122 * Checks a page for evictability and moves the page to the appropriate
3123 * zone lru list.
3124 *
3125 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3126 * have PageUnevictable set.
3127 */
check_move_unevictable_page(struct page * page,struct zone * zone)3128 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3129 {
3130 VM_BUG_ON(PageActive(page));
3131
3132 retry:
3133 ClearPageUnevictable(page);
3134 if (page_evictable(page, NULL)) {
3135 enum lru_list l = page_lru_base_type(page);
3136
3137 __dec_zone_state(zone, NR_UNEVICTABLE);
3138 list_move(&page->lru, &zone->lru[l].list);
3139 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3140 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3141 __count_vm_event(UNEVICTABLE_PGRESCUED);
3142 } else {
3143 /*
3144 * rotate unevictable list
3145 */
3146 SetPageUnevictable(page);
3147 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3148 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3149 if (page_evictable(page, NULL))
3150 goto retry;
3151 }
3152 }
3153
3154 /**
3155 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3156 * @mapping: struct address_space to scan for evictable pages
3157 *
3158 * Scan all pages in mapping. Check unevictable pages for
3159 * evictability and move them to the appropriate zone lru list.
3160 */
scan_mapping_unevictable_pages(struct address_space * mapping)3161 void scan_mapping_unevictable_pages(struct address_space *mapping)
3162 {
3163 pgoff_t next = 0;
3164 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3165 PAGE_CACHE_SHIFT;
3166 struct zone *zone;
3167 struct pagevec pvec;
3168
3169 if (mapping->nrpages == 0)
3170 return;
3171
3172 pagevec_init(&pvec, 0);
3173 while (next < end &&
3174 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3175 int i;
3176 int pg_scanned = 0;
3177
3178 zone = NULL;
3179
3180 for (i = 0; i < pagevec_count(&pvec); i++) {
3181 struct page *page = pvec.pages[i];
3182 pgoff_t page_index = page->index;
3183 struct zone *pagezone = page_zone(page);
3184
3185 pg_scanned++;
3186 if (page_index > next)
3187 next = page_index;
3188 next++;
3189
3190 if (pagezone != zone) {
3191 if (zone)
3192 spin_unlock_irq(&zone->lru_lock);
3193 zone = pagezone;
3194 spin_lock_irq(&zone->lru_lock);
3195 }
3196
3197 if (PageLRU(page) && PageUnevictable(page))
3198 check_move_unevictable_page(page, zone);
3199 }
3200 if (zone)
3201 spin_unlock_irq(&zone->lru_lock);
3202 pagevec_release(&pvec);
3203
3204 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3205 }
3206
3207 }
3208
3209 /**
3210 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3211 * @zone - zone of which to scan the unevictable list
3212 *
3213 * Scan @zone's unevictable LRU lists to check for pages that have become
3214 * evictable. Move those that have to @zone's inactive list where they
3215 * become candidates for reclaim, unless shrink_inactive_zone() decides
3216 * to reactivate them. Pages that are still unevictable are rotated
3217 * back onto @zone's unevictable list.
3218 */
3219 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
scan_zone_unevictable_pages(struct zone * zone)3220 static void scan_zone_unevictable_pages(struct zone *zone)
3221 {
3222 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3223 unsigned long scan;
3224 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3225
3226 while (nr_to_scan > 0) {
3227 unsigned long batch_size = min(nr_to_scan,
3228 SCAN_UNEVICTABLE_BATCH_SIZE);
3229
3230 spin_lock_irq(&zone->lru_lock);
3231 for (scan = 0; scan < batch_size; scan++) {
3232 struct page *page = lru_to_page(l_unevictable);
3233
3234 if (!trylock_page(page))
3235 continue;
3236
3237 prefetchw_prev_lru_page(page, l_unevictable, flags);
3238
3239 if (likely(PageLRU(page) && PageUnevictable(page)))
3240 check_move_unevictable_page(page, zone);
3241
3242 unlock_page(page);
3243 }
3244 spin_unlock_irq(&zone->lru_lock);
3245
3246 nr_to_scan -= batch_size;
3247 }
3248 }
3249
3250
3251 /**
3252 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3253 *
3254 * A really big hammer: scan all zones' unevictable LRU lists to check for
3255 * pages that have become evictable. Move those back to the zones'
3256 * inactive list where they become candidates for reclaim.
3257 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3258 * and we add swap to the system. As such, it runs in the context of a task
3259 * that has possibly/probably made some previously unevictable pages
3260 * evictable.
3261 */
scan_all_zones_unevictable_pages(void)3262 static void scan_all_zones_unevictable_pages(void)
3263 {
3264 struct zone *zone;
3265
3266 for_each_zone(zone) {
3267 scan_zone_unevictable_pages(zone);
3268 }
3269 }
3270
3271 /*
3272 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3273 * all nodes' unevictable lists for evictable pages
3274 */
3275 unsigned long scan_unevictable_pages;
3276
scan_unevictable_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)3277 int scan_unevictable_handler(struct ctl_table *table, int write,
3278 void __user *buffer,
3279 size_t *length, loff_t *ppos)
3280 {
3281 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3282
3283 if (write && *(unsigned long *)table->data)
3284 scan_all_zones_unevictable_pages();
3285
3286 scan_unevictable_pages = 0;
3287 return 0;
3288 }
3289
3290 #ifdef CONFIG_NUMA
3291 /*
3292 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3293 * a specified node's per zone unevictable lists for evictable pages.
3294 */
3295
read_scan_unevictable_node(struct sys_device * dev,struct sysdev_attribute * attr,char * buf)3296 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3297 struct sysdev_attribute *attr,
3298 char *buf)
3299 {
3300 return sprintf(buf, "0\n"); /* always zero; should fit... */
3301 }
3302
write_scan_unevictable_node(struct sys_device * dev,struct sysdev_attribute * attr,const char * buf,size_t count)3303 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3304 struct sysdev_attribute *attr,
3305 const char *buf, size_t count)
3306 {
3307 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3308 struct zone *zone;
3309 unsigned long res;
3310 unsigned long req = strict_strtoul(buf, 10, &res);
3311
3312 if (!req)
3313 return 1; /* zero is no-op */
3314
3315 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3316 if (!populated_zone(zone))
3317 continue;
3318 scan_zone_unevictable_pages(zone);
3319 }
3320 return 1;
3321 }
3322
3323
3324 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3325 read_scan_unevictable_node,
3326 write_scan_unevictable_node);
3327
scan_unevictable_register_node(struct node * node)3328 int scan_unevictable_register_node(struct node *node)
3329 {
3330 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3331 }
3332
scan_unevictable_unregister_node(struct node * node)3333 void scan_unevictable_unregister_node(struct node *node)
3334 {
3335 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3336 }
3337 #endif
3338