1 /* linux/drivers/usb/gadget/s3c-hsotg.c
2 *
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 *
6 * Copyright 2008 Openmoko, Inc.
7 * Copyright 2008 Simtec Electronics
8 * Ben Dooks <ben@simtec.co.uk>
9 * http://armlinux.simtec.co.uk/
10 *
11 * S3C USB2.0 High-speed / OtG driver
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/spinlock.h>
21 #include <linux/interrupt.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/debugfs.h>
25 #include <linux/seq_file.h>
26 #include <linux/delay.h>
27 #include <linux/io.h>
28 #include <linux/slab.h>
29 #include <linux/clk.h>
30
31 #include <linux/usb/ch9.h>
32 #include <linux/usb/gadget.h>
33
34 #include <mach/map.h>
35
36 #include <plat/regs-usb-hsotg-phy.h>
37 #include <plat/regs-usb-hsotg.h>
38 #include <mach/regs-sys.h>
39 #include <plat/udc-hs.h>
40 #include <plat/cpu.h>
41
42 #define DMA_ADDR_INVALID (~((dma_addr_t)0))
43
44 /* EP0_MPS_LIMIT
45 *
46 * Unfortunately there seems to be a limit of the amount of data that can
47 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
48 * packets (which practically means 1 packet and 63 bytes of data) when the
49 * MPS is set to 64.
50 *
51 * This means if we are wanting to move >127 bytes of data, we need to
52 * split the transactions up, but just doing one packet at a time does
53 * not work (this may be an implicit DATA0 PID on first packet of the
54 * transaction) and doing 2 packets is outside the controller's limits.
55 *
56 * If we try to lower the MPS size for EP0, then no transfers work properly
57 * for EP0, and the system will fail basic enumeration. As no cause for this
58 * has currently been found, we cannot support any large IN transfers for
59 * EP0.
60 */
61 #define EP0_MPS_LIMIT 64
62
63 struct s3c_hsotg;
64 struct s3c_hsotg_req;
65
66 /**
67 * struct s3c_hsotg_ep - driver endpoint definition.
68 * @ep: The gadget layer representation of the endpoint.
69 * @name: The driver generated name for the endpoint.
70 * @queue: Queue of requests for this endpoint.
71 * @parent: Reference back to the parent device structure.
72 * @req: The current request that the endpoint is processing. This is
73 * used to indicate an request has been loaded onto the endpoint
74 * and has yet to be completed (maybe due to data move, or simply
75 * awaiting an ack from the core all the data has been completed).
76 * @debugfs: File entry for debugfs file for this endpoint.
77 * @lock: State lock to protect contents of endpoint.
78 * @dir_in: Set to true if this endpoint is of the IN direction, which
79 * means that it is sending data to the Host.
80 * @index: The index for the endpoint registers.
81 * @name: The name array passed to the USB core.
82 * @halted: Set if the endpoint has been halted.
83 * @periodic: Set if this is a periodic ep, such as Interrupt
84 * @sent_zlp: Set if we've sent a zero-length packet.
85 * @total_data: The total number of data bytes done.
86 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
87 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
88 * @last_load: The offset of data for the last start of request.
89 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
90 *
91 * This is the driver's state for each registered enpoint, allowing it
92 * to keep track of transactions that need doing. Each endpoint has a
93 * lock to protect the state, to try and avoid using an overall lock
94 * for the host controller as much as possible.
95 *
96 * For periodic IN endpoints, we have fifo_size and fifo_load to try
97 * and keep track of the amount of data in the periodic FIFO for each
98 * of these as we don't have a status register that tells us how much
99 * is in each of them. (note, this may actually be useless information
100 * as in shared-fifo mode periodic in acts like a single-frame packet
101 * buffer than a fifo)
102 */
103 struct s3c_hsotg_ep {
104 struct usb_ep ep;
105 struct list_head queue;
106 struct s3c_hsotg *parent;
107 struct s3c_hsotg_req *req;
108 struct dentry *debugfs;
109
110 spinlock_t lock;
111
112 unsigned long total_data;
113 unsigned int size_loaded;
114 unsigned int last_load;
115 unsigned int fifo_load;
116 unsigned short fifo_size;
117
118 unsigned char dir_in;
119 unsigned char index;
120
121 unsigned int halted:1;
122 unsigned int periodic:1;
123 unsigned int sent_zlp:1;
124
125 char name[10];
126 };
127
128 #define S3C_HSOTG_EPS (8+1) /* limit to 9 for the moment */
129
130 /**
131 * struct s3c_hsotg - driver state.
132 * @dev: The parent device supplied to the probe function
133 * @driver: USB gadget driver
134 * @plat: The platform specific configuration data.
135 * @regs: The memory area mapped for accessing registers.
136 * @regs_res: The resource that was allocated when claiming register space.
137 * @irq: The IRQ number we are using
138 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
139 * @debug_root: root directrory for debugfs.
140 * @debug_file: main status file for debugfs.
141 * @debug_fifo: FIFO status file for debugfs.
142 * @ep0_reply: Request used for ep0 reply.
143 * @ep0_buff: Buffer for EP0 reply data, if needed.
144 * @ctrl_buff: Buffer for EP0 control requests.
145 * @ctrl_req: Request for EP0 control packets.
146 * @eps: The endpoints being supplied to the gadget framework
147 */
148 struct s3c_hsotg {
149 struct device *dev;
150 struct usb_gadget_driver *driver;
151 struct s3c_hsotg_plat *plat;
152
153 void __iomem *regs;
154 struct resource *regs_res;
155 int irq;
156 struct clk *clk;
157
158 unsigned int dedicated_fifos:1;
159
160 struct dentry *debug_root;
161 struct dentry *debug_file;
162 struct dentry *debug_fifo;
163
164 struct usb_request *ep0_reply;
165 struct usb_request *ctrl_req;
166 u8 ep0_buff[8];
167 u8 ctrl_buff[8];
168
169 struct usb_gadget gadget;
170 struct s3c_hsotg_ep eps[];
171 };
172
173 /**
174 * struct s3c_hsotg_req - data transfer request
175 * @req: The USB gadget request
176 * @queue: The list of requests for the endpoint this is queued for.
177 * @in_progress: Has already had size/packets written to core
178 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
179 */
180 struct s3c_hsotg_req {
181 struct usb_request req;
182 struct list_head queue;
183 unsigned char in_progress;
184 unsigned char mapped;
185 };
186
187 /* conversion functions */
our_req(struct usb_request * req)188 static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
189 {
190 return container_of(req, struct s3c_hsotg_req, req);
191 }
192
our_ep(struct usb_ep * ep)193 static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
194 {
195 return container_of(ep, struct s3c_hsotg_ep, ep);
196 }
197
to_hsotg(struct usb_gadget * gadget)198 static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
199 {
200 return container_of(gadget, struct s3c_hsotg, gadget);
201 }
202
__orr32(void __iomem * ptr,u32 val)203 static inline void __orr32(void __iomem *ptr, u32 val)
204 {
205 writel(readl(ptr) | val, ptr);
206 }
207
__bic32(void __iomem * ptr,u32 val)208 static inline void __bic32(void __iomem *ptr, u32 val)
209 {
210 writel(readl(ptr) & ~val, ptr);
211 }
212
213 /* forward decleration of functions */
214 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
215
216 /**
217 * using_dma - return the DMA status of the driver.
218 * @hsotg: The driver state.
219 *
220 * Return true if we're using DMA.
221 *
222 * Currently, we have the DMA support code worked into everywhere
223 * that needs it, but the AMBA DMA implementation in the hardware can
224 * only DMA from 32bit aligned addresses. This means that gadgets such
225 * as the CDC Ethernet cannot work as they often pass packets which are
226 * not 32bit aligned.
227 *
228 * Unfortunately the choice to use DMA or not is global to the controller
229 * and seems to be only settable when the controller is being put through
230 * a core reset. This means we either need to fix the gadgets to take
231 * account of DMA alignment, or add bounce buffers (yuerk).
232 *
233 * Until this issue is sorted out, we always return 'false'.
234 */
using_dma(struct s3c_hsotg * hsotg)235 static inline bool using_dma(struct s3c_hsotg *hsotg)
236 {
237 return false; /* support is not complete */
238 }
239
240 /**
241 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
242 * @hsotg: The device state
243 * @ints: A bitmask of the interrupts to enable
244 */
s3c_hsotg_en_gsint(struct s3c_hsotg * hsotg,u32 ints)245 static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
246 {
247 u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
248 u32 new_gsintmsk;
249
250 new_gsintmsk = gsintmsk | ints;
251
252 if (new_gsintmsk != gsintmsk) {
253 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
254 writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
255 }
256 }
257
258 /**
259 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
260 * @hsotg: The device state
261 * @ints: A bitmask of the interrupts to enable
262 */
s3c_hsotg_disable_gsint(struct s3c_hsotg * hsotg,u32 ints)263 static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
264 {
265 u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
266 u32 new_gsintmsk;
267
268 new_gsintmsk = gsintmsk & ~ints;
269
270 if (new_gsintmsk != gsintmsk)
271 writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
272 }
273
274 /**
275 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
276 * @hsotg: The device state
277 * @ep: The endpoint index
278 * @dir_in: True if direction is in.
279 * @en: The enable value, true to enable
280 *
281 * Set or clear the mask for an individual endpoint's interrupt
282 * request.
283 */
s3c_hsotg_ctrl_epint(struct s3c_hsotg * hsotg,unsigned int ep,unsigned int dir_in,unsigned int en)284 static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
285 unsigned int ep, unsigned int dir_in,
286 unsigned int en)
287 {
288 unsigned long flags;
289 u32 bit = 1 << ep;
290 u32 daint;
291
292 if (!dir_in)
293 bit <<= 16;
294
295 local_irq_save(flags);
296 daint = readl(hsotg->regs + S3C_DAINTMSK);
297 if (en)
298 daint |= bit;
299 else
300 daint &= ~bit;
301 writel(daint, hsotg->regs + S3C_DAINTMSK);
302 local_irq_restore(flags);
303 }
304
305 /**
306 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
307 * @hsotg: The device instance.
308 */
s3c_hsotg_init_fifo(struct s3c_hsotg * hsotg)309 static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
310 {
311 unsigned int ep;
312 unsigned int addr;
313 unsigned int size;
314 int timeout;
315 u32 val;
316
317 /* the ryu 2.6.24 release ahs
318 writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
319 writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
320 S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
321 hsotg->regs + S3C_GNPTXFSIZ);
322 */
323
324 /* set FIFO sizes to 2048/1024 */
325
326 writel(2048, hsotg->regs + S3C_GRXFSIZ);
327 writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
328 S3C_GNPTXFSIZ_NPTxFDep(1024),
329 hsotg->regs + S3C_GNPTXFSIZ);
330
331 /* arange all the rest of the TX FIFOs, as some versions of this
332 * block have overlapping default addresses. This also ensures
333 * that if the settings have been changed, then they are set to
334 * known values. */
335
336 /* start at the end of the GNPTXFSIZ, rounded up */
337 addr = 2048 + 1024;
338 size = 768;
339
340 /* currently we allocate TX FIFOs for all possible endpoints,
341 * and assume that they are all the same size. */
342
343 for (ep = 1; ep <= 15; ep++) {
344 val = addr;
345 val |= size << S3C_DPTXFSIZn_DPTxFSize_SHIFT;
346 addr += size;
347
348 writel(val, hsotg->regs + S3C_DPTXFSIZn(ep));
349 }
350
351 /* according to p428 of the design guide, we need to ensure that
352 * all fifos are flushed before continuing */
353
354 writel(S3C_GRSTCTL_TxFNum(0x10) | S3C_GRSTCTL_TxFFlsh |
355 S3C_GRSTCTL_RxFFlsh, hsotg->regs + S3C_GRSTCTL);
356
357 /* wait until the fifos are both flushed */
358 timeout = 100;
359 while (1) {
360 val = readl(hsotg->regs + S3C_GRSTCTL);
361
362 if ((val & (S3C_GRSTCTL_TxFFlsh | S3C_GRSTCTL_RxFFlsh)) == 0)
363 break;
364
365 if (--timeout == 0) {
366 dev_err(hsotg->dev,
367 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
368 __func__, val);
369 }
370
371 udelay(1);
372 }
373
374 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
375 }
376
377 /**
378 * @ep: USB endpoint to allocate request for.
379 * @flags: Allocation flags
380 *
381 * Allocate a new USB request structure appropriate for the specified endpoint
382 */
s3c_hsotg_ep_alloc_request(struct usb_ep * ep,gfp_t flags)383 static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
384 gfp_t flags)
385 {
386 struct s3c_hsotg_req *req;
387
388 req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
389 if (!req)
390 return NULL;
391
392 INIT_LIST_HEAD(&req->queue);
393
394 req->req.dma = DMA_ADDR_INVALID;
395 return &req->req;
396 }
397
398 /**
399 * is_ep_periodic - return true if the endpoint is in periodic mode.
400 * @hs_ep: The endpoint to query.
401 *
402 * Returns true if the endpoint is in periodic mode, meaning it is being
403 * used for an Interrupt or ISO transfer.
404 */
is_ep_periodic(struct s3c_hsotg_ep * hs_ep)405 static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
406 {
407 return hs_ep->periodic;
408 }
409
410 /**
411 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
412 * @hsotg: The device state.
413 * @hs_ep: The endpoint for the request
414 * @hs_req: The request being processed.
415 *
416 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
417 * of a request to ensure the buffer is ready for access by the caller.
418 */
s3c_hsotg_unmap_dma(struct s3c_hsotg * hsotg,struct s3c_hsotg_ep * hs_ep,struct s3c_hsotg_req * hs_req)419 static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
420 struct s3c_hsotg_ep *hs_ep,
421 struct s3c_hsotg_req *hs_req)
422 {
423 struct usb_request *req = &hs_req->req;
424 enum dma_data_direction dir;
425
426 dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
427
428 /* ignore this if we're not moving any data */
429 if (hs_req->req.length == 0)
430 return;
431
432 if (hs_req->mapped) {
433 /* we mapped this, so unmap and remove the dma */
434
435 dma_unmap_single(hsotg->dev, req->dma, req->length, dir);
436
437 req->dma = DMA_ADDR_INVALID;
438 hs_req->mapped = 0;
439 } else {
440 dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
441 }
442 }
443
444 /**
445 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
446 * @hsotg: The controller state.
447 * @hs_ep: The endpoint we're going to write for.
448 * @hs_req: The request to write data for.
449 *
450 * This is called when the TxFIFO has some space in it to hold a new
451 * transmission and we have something to give it. The actual setup of
452 * the data size is done elsewhere, so all we have to do is to actually
453 * write the data.
454 *
455 * The return value is zero if there is more space (or nothing was done)
456 * otherwise -ENOSPC is returned if the FIFO space was used up.
457 *
458 * This routine is only needed for PIO
459 */
s3c_hsotg_write_fifo(struct s3c_hsotg * hsotg,struct s3c_hsotg_ep * hs_ep,struct s3c_hsotg_req * hs_req)460 static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
461 struct s3c_hsotg_ep *hs_ep,
462 struct s3c_hsotg_req *hs_req)
463 {
464 bool periodic = is_ep_periodic(hs_ep);
465 u32 gnptxsts = readl(hsotg->regs + S3C_GNPTXSTS);
466 int buf_pos = hs_req->req.actual;
467 int to_write = hs_ep->size_loaded;
468 void *data;
469 int can_write;
470 int pkt_round;
471
472 to_write -= (buf_pos - hs_ep->last_load);
473
474 /* if there's nothing to write, get out early */
475 if (to_write == 0)
476 return 0;
477
478 if (periodic && !hsotg->dedicated_fifos) {
479 u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
480 int size_left;
481 int size_done;
482
483 /* work out how much data was loaded so we can calculate
484 * how much data is left in the fifo. */
485
486 size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
487
488 /* if shared fifo, we cannot write anything until the
489 * previous data has been completely sent.
490 */
491 if (hs_ep->fifo_load != 0) {
492 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
493 return -ENOSPC;
494 }
495
496 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
497 __func__, size_left,
498 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
499
500 /* how much of the data has moved */
501 size_done = hs_ep->size_loaded - size_left;
502
503 /* how much data is left in the fifo */
504 can_write = hs_ep->fifo_load - size_done;
505 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
506 __func__, can_write);
507
508 can_write = hs_ep->fifo_size - can_write;
509 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
510 __func__, can_write);
511
512 if (can_write <= 0) {
513 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
514 return -ENOSPC;
515 }
516 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
517 can_write = readl(hsotg->regs + S3C_DTXFSTS(hs_ep->index));
518
519 can_write &= 0xffff;
520 can_write *= 4;
521 } else {
522 if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
523 dev_dbg(hsotg->dev,
524 "%s: no queue slots available (0x%08x)\n",
525 __func__, gnptxsts);
526
527 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
528 return -ENOSPC;
529 }
530
531 can_write = S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
532 can_write *= 4; /* fifo size is in 32bit quantities. */
533 }
534
535 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
536 __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
537
538 /* limit to 512 bytes of data, it seems at least on the non-periodic
539 * FIFO, requests of >512 cause the endpoint to get stuck with a
540 * fragment of the end of the transfer in it.
541 */
542 if (can_write > 512)
543 can_write = 512;
544
545 /* limit the write to one max-packet size worth of data, but allow
546 * the transfer to return that it did not run out of fifo space
547 * doing it. */
548 if (to_write > hs_ep->ep.maxpacket) {
549 to_write = hs_ep->ep.maxpacket;
550
551 s3c_hsotg_en_gsint(hsotg,
552 periodic ? S3C_GINTSTS_PTxFEmp :
553 S3C_GINTSTS_NPTxFEmp);
554 }
555
556 /* see if we can write data */
557
558 if (to_write > can_write) {
559 to_write = can_write;
560 pkt_round = to_write % hs_ep->ep.maxpacket;
561
562 /* Not sure, but we probably shouldn't be writing partial
563 * packets into the FIFO, so round the write down to an
564 * exact number of packets.
565 *
566 * Note, we do not currently check to see if we can ever
567 * write a full packet or not to the FIFO.
568 */
569
570 if (pkt_round)
571 to_write -= pkt_round;
572
573 /* enable correct FIFO interrupt to alert us when there
574 * is more room left. */
575
576 s3c_hsotg_en_gsint(hsotg,
577 periodic ? S3C_GINTSTS_PTxFEmp :
578 S3C_GINTSTS_NPTxFEmp);
579 }
580
581 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
582 to_write, hs_req->req.length, can_write, buf_pos);
583
584 if (to_write <= 0)
585 return -ENOSPC;
586
587 hs_req->req.actual = buf_pos + to_write;
588 hs_ep->total_data += to_write;
589
590 if (periodic)
591 hs_ep->fifo_load += to_write;
592
593 to_write = DIV_ROUND_UP(to_write, 4);
594 data = hs_req->req.buf + buf_pos;
595
596 writesl(hsotg->regs + S3C_EPFIFO(hs_ep->index), data, to_write);
597
598 return (to_write >= can_write) ? -ENOSPC : 0;
599 }
600
601 /**
602 * get_ep_limit - get the maximum data legnth for this endpoint
603 * @hs_ep: The endpoint
604 *
605 * Return the maximum data that can be queued in one go on a given endpoint
606 * so that transfers that are too long can be split.
607 */
get_ep_limit(struct s3c_hsotg_ep * hs_ep)608 static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
609 {
610 int index = hs_ep->index;
611 unsigned maxsize;
612 unsigned maxpkt;
613
614 if (index != 0) {
615 maxsize = S3C_DxEPTSIZ_XferSize_LIMIT + 1;
616 maxpkt = S3C_DxEPTSIZ_PktCnt_LIMIT + 1;
617 } else {
618 maxsize = 64+64;
619 if (hs_ep->dir_in)
620 maxpkt = S3C_DIEPTSIZ0_PktCnt_LIMIT + 1;
621 else
622 maxpkt = 2;
623 }
624
625 /* we made the constant loading easier above by using +1 */
626 maxpkt--;
627 maxsize--;
628
629 /* constrain by packet count if maxpkts*pktsize is greater
630 * than the length register size. */
631
632 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
633 maxsize = maxpkt * hs_ep->ep.maxpacket;
634
635 return maxsize;
636 }
637
638 /**
639 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
640 * @hsotg: The controller state.
641 * @hs_ep: The endpoint to process a request for
642 * @hs_req: The request to start.
643 * @continuing: True if we are doing more for the current request.
644 *
645 * Start the given request running by setting the endpoint registers
646 * appropriately, and writing any data to the FIFOs.
647 */
s3c_hsotg_start_req(struct s3c_hsotg * hsotg,struct s3c_hsotg_ep * hs_ep,struct s3c_hsotg_req * hs_req,bool continuing)648 static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
649 struct s3c_hsotg_ep *hs_ep,
650 struct s3c_hsotg_req *hs_req,
651 bool continuing)
652 {
653 struct usb_request *ureq = &hs_req->req;
654 int index = hs_ep->index;
655 int dir_in = hs_ep->dir_in;
656 u32 epctrl_reg;
657 u32 epsize_reg;
658 u32 epsize;
659 u32 ctrl;
660 unsigned length;
661 unsigned packets;
662 unsigned maxreq;
663
664 if (index != 0) {
665 if (hs_ep->req && !continuing) {
666 dev_err(hsotg->dev, "%s: active request\n", __func__);
667 WARN_ON(1);
668 return;
669 } else if (hs_ep->req != hs_req && continuing) {
670 dev_err(hsotg->dev,
671 "%s: continue different req\n", __func__);
672 WARN_ON(1);
673 return;
674 }
675 }
676
677 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
678 epsize_reg = dir_in ? S3C_DIEPTSIZ(index) : S3C_DOEPTSIZ(index);
679
680 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
681 __func__, readl(hsotg->regs + epctrl_reg), index,
682 hs_ep->dir_in ? "in" : "out");
683
684 /* If endpoint is stalled, we will restart request later */
685 ctrl = readl(hsotg->regs + epctrl_reg);
686
687 if (ctrl & S3C_DxEPCTL_Stall) {
688 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
689 return;
690 }
691
692 length = ureq->length - ureq->actual;
693
694 if (0)
695 dev_dbg(hsotg->dev,
696 "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
697 ureq->buf, length, ureq->dma,
698 ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
699
700 maxreq = get_ep_limit(hs_ep);
701 if (length > maxreq) {
702 int round = maxreq % hs_ep->ep.maxpacket;
703
704 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
705 __func__, length, maxreq, round);
706
707 /* round down to multiple of packets */
708 if (round)
709 maxreq -= round;
710
711 length = maxreq;
712 }
713
714 if (length)
715 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
716 else
717 packets = 1; /* send one packet if length is zero. */
718
719 if (dir_in && index != 0)
720 epsize = S3C_DxEPTSIZ_MC(1);
721 else
722 epsize = 0;
723
724 if (index != 0 && ureq->zero) {
725 /* test for the packets being exactly right for the
726 * transfer */
727
728 if (length == (packets * hs_ep->ep.maxpacket))
729 packets++;
730 }
731
732 epsize |= S3C_DxEPTSIZ_PktCnt(packets);
733 epsize |= S3C_DxEPTSIZ_XferSize(length);
734
735 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
736 __func__, packets, length, ureq->length, epsize, epsize_reg);
737
738 /* store the request as the current one we're doing */
739 hs_ep->req = hs_req;
740
741 /* write size / packets */
742 writel(epsize, hsotg->regs + epsize_reg);
743
744 if (using_dma(hsotg) && !continuing) {
745 unsigned int dma_reg;
746
747 /* write DMA address to control register, buffer already
748 * synced by s3c_hsotg_ep_queue(). */
749
750 dma_reg = dir_in ? S3C_DIEPDMA(index) : S3C_DOEPDMA(index);
751 writel(ureq->dma, hsotg->regs + dma_reg);
752
753 dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
754 __func__, ureq->dma, dma_reg);
755 }
756
757 ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
758 ctrl |= S3C_DxEPCTL_USBActEp;
759 ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
760
761 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
762 writel(ctrl, hsotg->regs + epctrl_reg);
763
764 /* set these, it seems that DMA support increments past the end
765 * of the packet buffer so we need to calculate the length from
766 * this information. */
767 hs_ep->size_loaded = length;
768 hs_ep->last_load = ureq->actual;
769
770 if (dir_in && !using_dma(hsotg)) {
771 /* set these anyway, we may need them for non-periodic in */
772 hs_ep->fifo_load = 0;
773
774 s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
775 }
776
777 /* clear the INTknTXFEmpMsk when we start request, more as a aide
778 * to debugging to see what is going on. */
779 if (dir_in)
780 writel(S3C_DIEPMSK_INTknTXFEmpMsk,
781 hsotg->regs + S3C_DIEPINT(index));
782
783 /* Note, trying to clear the NAK here causes problems with transmit
784 * on the S3C6400 ending up with the TXFIFO becoming full. */
785
786 /* check ep is enabled */
787 if (!(readl(hsotg->regs + epctrl_reg) & S3C_DxEPCTL_EPEna))
788 dev_warn(hsotg->dev,
789 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
790 index, readl(hsotg->regs + epctrl_reg));
791
792 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
793 __func__, readl(hsotg->regs + epctrl_reg));
794 }
795
796 /**
797 * s3c_hsotg_map_dma - map the DMA memory being used for the request
798 * @hsotg: The device state.
799 * @hs_ep: The endpoint the request is on.
800 * @req: The request being processed.
801 *
802 * We've been asked to queue a request, so ensure that the memory buffer
803 * is correctly setup for DMA. If we've been passed an extant DMA address
804 * then ensure the buffer has been synced to memory. If our buffer has no
805 * DMA memory, then we map the memory and mark our request to allow us to
806 * cleanup on completion.
807 */
s3c_hsotg_map_dma(struct s3c_hsotg * hsotg,struct s3c_hsotg_ep * hs_ep,struct usb_request * req)808 static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
809 struct s3c_hsotg_ep *hs_ep,
810 struct usb_request *req)
811 {
812 enum dma_data_direction dir;
813 struct s3c_hsotg_req *hs_req = our_req(req);
814
815 dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
816
817 /* if the length is zero, ignore the DMA data */
818 if (hs_req->req.length == 0)
819 return 0;
820
821 if (req->dma == DMA_ADDR_INVALID) {
822 dma_addr_t dma;
823
824 dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);
825
826 if (unlikely(dma_mapping_error(hsotg->dev, dma)))
827 goto dma_error;
828
829 if (dma & 3) {
830 dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
831 __func__);
832
833 dma_unmap_single(hsotg->dev, dma, req->length, dir);
834 return -EINVAL;
835 }
836
837 hs_req->mapped = 1;
838 req->dma = dma;
839 } else {
840 dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
841 hs_req->mapped = 0;
842 }
843
844 return 0;
845
846 dma_error:
847 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
848 __func__, req->buf, req->length);
849
850 return -EIO;
851 }
852
s3c_hsotg_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)853 static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
854 gfp_t gfp_flags)
855 {
856 struct s3c_hsotg_req *hs_req = our_req(req);
857 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
858 struct s3c_hsotg *hs = hs_ep->parent;
859 unsigned long irqflags;
860 bool first;
861
862 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
863 ep->name, req, req->length, req->buf, req->no_interrupt,
864 req->zero, req->short_not_ok);
865
866 /* initialise status of the request */
867 INIT_LIST_HEAD(&hs_req->queue);
868 req->actual = 0;
869 req->status = -EINPROGRESS;
870
871 /* if we're using DMA, sync the buffers as necessary */
872 if (using_dma(hs)) {
873 int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
874 if (ret)
875 return ret;
876 }
877
878 spin_lock_irqsave(&hs_ep->lock, irqflags);
879
880 first = list_empty(&hs_ep->queue);
881 list_add_tail(&hs_req->queue, &hs_ep->queue);
882
883 if (first)
884 s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
885
886 spin_unlock_irqrestore(&hs_ep->lock, irqflags);
887
888 return 0;
889 }
890
s3c_hsotg_ep_free_request(struct usb_ep * ep,struct usb_request * req)891 static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
892 struct usb_request *req)
893 {
894 struct s3c_hsotg_req *hs_req = our_req(req);
895
896 kfree(hs_req);
897 }
898
899 /**
900 * s3c_hsotg_complete_oursetup - setup completion callback
901 * @ep: The endpoint the request was on.
902 * @req: The request completed.
903 *
904 * Called on completion of any requests the driver itself
905 * submitted that need cleaning up.
906 */
s3c_hsotg_complete_oursetup(struct usb_ep * ep,struct usb_request * req)907 static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
908 struct usb_request *req)
909 {
910 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
911 struct s3c_hsotg *hsotg = hs_ep->parent;
912
913 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
914
915 s3c_hsotg_ep_free_request(ep, req);
916 }
917
918 /**
919 * ep_from_windex - convert control wIndex value to endpoint
920 * @hsotg: The driver state.
921 * @windex: The control request wIndex field (in host order).
922 *
923 * Convert the given wIndex into a pointer to an driver endpoint
924 * structure, or return NULL if it is not a valid endpoint.
925 */
ep_from_windex(struct s3c_hsotg * hsotg,u32 windex)926 static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
927 u32 windex)
928 {
929 struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
930 int dir = (windex & USB_DIR_IN) ? 1 : 0;
931 int idx = windex & 0x7F;
932
933 if (windex >= 0x100)
934 return NULL;
935
936 if (idx > S3C_HSOTG_EPS)
937 return NULL;
938
939 if (idx && ep->dir_in != dir)
940 return NULL;
941
942 return ep;
943 }
944
945 /**
946 * s3c_hsotg_send_reply - send reply to control request
947 * @hsotg: The device state
948 * @ep: Endpoint 0
949 * @buff: Buffer for request
950 * @length: Length of reply.
951 *
952 * Create a request and queue it on the given endpoint. This is useful as
953 * an internal method of sending replies to certain control requests, etc.
954 */
s3c_hsotg_send_reply(struct s3c_hsotg * hsotg,struct s3c_hsotg_ep * ep,void * buff,int length)955 static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
956 struct s3c_hsotg_ep *ep,
957 void *buff,
958 int length)
959 {
960 struct usb_request *req;
961 int ret;
962
963 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
964
965 req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
966 hsotg->ep0_reply = req;
967 if (!req) {
968 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
969 return -ENOMEM;
970 }
971
972 req->buf = hsotg->ep0_buff;
973 req->length = length;
974 req->zero = 1; /* always do zero-length final transfer */
975 req->complete = s3c_hsotg_complete_oursetup;
976
977 if (length)
978 memcpy(req->buf, buff, length);
979 else
980 ep->sent_zlp = 1;
981
982 ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
983 if (ret) {
984 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
985 return ret;
986 }
987
988 return 0;
989 }
990
991 /**
992 * s3c_hsotg_process_req_status - process request GET_STATUS
993 * @hsotg: The device state
994 * @ctrl: USB control request
995 */
s3c_hsotg_process_req_status(struct s3c_hsotg * hsotg,struct usb_ctrlrequest * ctrl)996 static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
997 struct usb_ctrlrequest *ctrl)
998 {
999 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1000 struct s3c_hsotg_ep *ep;
1001 __le16 reply;
1002 int ret;
1003
1004 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1005
1006 if (!ep0->dir_in) {
1007 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1008 return -EINVAL;
1009 }
1010
1011 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1012 case USB_RECIP_DEVICE:
1013 reply = cpu_to_le16(0); /* bit 0 => self powered,
1014 * bit 1 => remote wakeup */
1015 break;
1016
1017 case USB_RECIP_INTERFACE:
1018 /* currently, the data result should be zero */
1019 reply = cpu_to_le16(0);
1020 break;
1021
1022 case USB_RECIP_ENDPOINT:
1023 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1024 if (!ep)
1025 return -ENOENT;
1026
1027 reply = cpu_to_le16(ep->halted ? 1 : 0);
1028 break;
1029
1030 default:
1031 return 0;
1032 }
1033
1034 if (le16_to_cpu(ctrl->wLength) != 2)
1035 return -EINVAL;
1036
1037 ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
1038 if (ret) {
1039 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1040 return ret;
1041 }
1042
1043 return 1;
1044 }
1045
1046 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1047
1048 /**
1049 * get_ep_head - return the first request on the endpoint
1050 * @hs_ep: The controller endpoint to get
1051 *
1052 * Get the first request on the endpoint.
1053 */
get_ep_head(struct s3c_hsotg_ep * hs_ep)1054 static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1055 {
1056 if (list_empty(&hs_ep->queue))
1057 return NULL;
1058
1059 return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1060 }
1061
1062 /**
1063 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
1064 * @hsotg: The device state
1065 * @ctrl: USB control request
1066 */
s3c_hsotg_process_req_feature(struct s3c_hsotg * hsotg,struct usb_ctrlrequest * ctrl)1067 static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
1068 struct usb_ctrlrequest *ctrl)
1069 {
1070 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1071 struct s3c_hsotg_req *hs_req;
1072 bool restart;
1073 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1074 struct s3c_hsotg_ep *ep;
1075 int ret;
1076
1077 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1078 __func__, set ? "SET" : "CLEAR");
1079
1080 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
1081 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1082 if (!ep) {
1083 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1084 __func__, le16_to_cpu(ctrl->wIndex));
1085 return -ENOENT;
1086 }
1087
1088 switch (le16_to_cpu(ctrl->wValue)) {
1089 case USB_ENDPOINT_HALT:
1090 s3c_hsotg_ep_sethalt(&ep->ep, set);
1091
1092 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1093 if (ret) {
1094 dev_err(hsotg->dev,
1095 "%s: failed to send reply\n", __func__);
1096 return ret;
1097 }
1098
1099 if (!set) {
1100 /*
1101 * If we have request in progress,
1102 * then complete it
1103 */
1104 if (ep->req) {
1105 hs_req = ep->req;
1106 ep->req = NULL;
1107 list_del_init(&hs_req->queue);
1108 hs_req->req.complete(&ep->ep,
1109 &hs_req->req);
1110 }
1111
1112 /* If we have pending request, then start it */
1113 restart = !list_empty(&ep->queue);
1114 if (restart) {
1115 hs_req = get_ep_head(ep);
1116 s3c_hsotg_start_req(hsotg, ep,
1117 hs_req, false);
1118 }
1119 }
1120
1121 break;
1122
1123 default:
1124 return -ENOENT;
1125 }
1126 } else
1127 return -ENOENT; /* currently only deal with endpoint */
1128
1129 return 1;
1130 }
1131
1132 /**
1133 * s3c_hsotg_process_control - process a control request
1134 * @hsotg: The device state
1135 * @ctrl: The control request received
1136 *
1137 * The controller has received the SETUP phase of a control request, and
1138 * needs to work out what to do next (and whether to pass it on to the
1139 * gadget driver).
1140 */
s3c_hsotg_process_control(struct s3c_hsotg * hsotg,struct usb_ctrlrequest * ctrl)1141 static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1142 struct usb_ctrlrequest *ctrl)
1143 {
1144 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1145 int ret = 0;
1146 u32 dcfg;
1147
1148 ep0->sent_zlp = 0;
1149
1150 dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1151 ctrl->bRequest, ctrl->bRequestType,
1152 ctrl->wValue, ctrl->wLength);
1153
1154 /* record the direction of the request, for later use when enquing
1155 * packets onto EP0. */
1156
1157 ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1158 dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1159
1160 /* if we've no data with this request, then the last part of the
1161 * transaction is going to implicitly be IN. */
1162 if (ctrl->wLength == 0)
1163 ep0->dir_in = 1;
1164
1165 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1166 switch (ctrl->bRequest) {
1167 case USB_REQ_SET_ADDRESS:
1168 dcfg = readl(hsotg->regs + S3C_DCFG);
1169 dcfg &= ~S3C_DCFG_DevAddr_MASK;
1170 dcfg |= ctrl->wValue << S3C_DCFG_DevAddr_SHIFT;
1171 writel(dcfg, hsotg->regs + S3C_DCFG);
1172
1173 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1174
1175 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1176 return;
1177
1178 case USB_REQ_GET_STATUS:
1179 ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1180 break;
1181
1182 case USB_REQ_CLEAR_FEATURE:
1183 case USB_REQ_SET_FEATURE:
1184 ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1185 break;
1186 }
1187 }
1188
1189 /* as a fallback, try delivering it to the driver to deal with */
1190
1191 if (ret == 0 && hsotg->driver) {
1192 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1193 if (ret < 0)
1194 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1195 }
1196
1197 /* the request is either unhandlable, or is not formatted correctly
1198 * so respond with a STALL for the status stage to indicate failure.
1199 */
1200
1201 if (ret < 0) {
1202 u32 reg;
1203 u32 ctrl;
1204
1205 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1206 reg = (ep0->dir_in) ? S3C_DIEPCTL0 : S3C_DOEPCTL0;
1207
1208 /* S3C_DxEPCTL_Stall will be cleared by EP once it has
1209 * taken effect, so no need to clear later. */
1210
1211 ctrl = readl(hsotg->regs + reg);
1212 ctrl |= S3C_DxEPCTL_Stall;
1213 ctrl |= S3C_DxEPCTL_CNAK;
1214 writel(ctrl, hsotg->regs + reg);
1215
1216 dev_dbg(hsotg->dev,
1217 "written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1218 ctrl, reg, readl(hsotg->regs + reg));
1219
1220 /* don't believe we need to anything more to get the EP
1221 * to reply with a STALL packet */
1222 }
1223 }
1224
1225 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1226
1227 /**
1228 * s3c_hsotg_complete_setup - completion of a setup transfer
1229 * @ep: The endpoint the request was on.
1230 * @req: The request completed.
1231 *
1232 * Called on completion of any requests the driver itself submitted for
1233 * EP0 setup packets
1234 */
s3c_hsotg_complete_setup(struct usb_ep * ep,struct usb_request * req)1235 static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1236 struct usb_request *req)
1237 {
1238 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1239 struct s3c_hsotg *hsotg = hs_ep->parent;
1240
1241 if (req->status < 0) {
1242 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1243 return;
1244 }
1245
1246 if (req->actual == 0)
1247 s3c_hsotg_enqueue_setup(hsotg);
1248 else
1249 s3c_hsotg_process_control(hsotg, req->buf);
1250 }
1251
1252 /**
1253 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1254 * @hsotg: The device state.
1255 *
1256 * Enqueue a request on EP0 if necessary to received any SETUP packets
1257 * received from the host.
1258 */
s3c_hsotg_enqueue_setup(struct s3c_hsotg * hsotg)1259 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1260 {
1261 struct usb_request *req = hsotg->ctrl_req;
1262 struct s3c_hsotg_req *hs_req = our_req(req);
1263 int ret;
1264
1265 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1266
1267 req->zero = 0;
1268 req->length = 8;
1269 req->buf = hsotg->ctrl_buff;
1270 req->complete = s3c_hsotg_complete_setup;
1271
1272 if (!list_empty(&hs_req->queue)) {
1273 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1274 return;
1275 }
1276
1277 hsotg->eps[0].dir_in = 0;
1278
1279 ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1280 if (ret < 0) {
1281 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1282 /* Don't think there's much we can do other than watch the
1283 * driver fail. */
1284 }
1285 }
1286
1287 /**
1288 * s3c_hsotg_complete_request - complete a request given to us
1289 * @hsotg: The device state.
1290 * @hs_ep: The endpoint the request was on.
1291 * @hs_req: The request to complete.
1292 * @result: The result code (0 => Ok, otherwise errno)
1293 *
1294 * The given request has finished, so call the necessary completion
1295 * if it has one and then look to see if we can start a new request
1296 * on the endpoint.
1297 *
1298 * Note, expects the ep to already be locked as appropriate.
1299 */
s3c_hsotg_complete_request(struct s3c_hsotg * hsotg,struct s3c_hsotg_ep * hs_ep,struct s3c_hsotg_req * hs_req,int result)1300 static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1301 struct s3c_hsotg_ep *hs_ep,
1302 struct s3c_hsotg_req *hs_req,
1303 int result)
1304 {
1305 bool restart;
1306
1307 if (!hs_req) {
1308 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1309 return;
1310 }
1311
1312 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1313 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1314
1315 /* only replace the status if we've not already set an error
1316 * from a previous transaction */
1317
1318 if (hs_req->req.status == -EINPROGRESS)
1319 hs_req->req.status = result;
1320
1321 hs_ep->req = NULL;
1322 list_del_init(&hs_req->queue);
1323
1324 if (using_dma(hsotg))
1325 s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1326
1327 /* call the complete request with the locks off, just in case the
1328 * request tries to queue more work for this endpoint. */
1329
1330 if (hs_req->req.complete) {
1331 spin_unlock(&hs_ep->lock);
1332 hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1333 spin_lock(&hs_ep->lock);
1334 }
1335
1336 /* Look to see if there is anything else to do. Note, the completion
1337 * of the previous request may have caused a new request to be started
1338 * so be careful when doing this. */
1339
1340 if (!hs_ep->req && result >= 0) {
1341 restart = !list_empty(&hs_ep->queue);
1342 if (restart) {
1343 hs_req = get_ep_head(hs_ep);
1344 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1345 }
1346 }
1347 }
1348
1349 /**
1350 * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
1351 * @hsotg: The device state.
1352 * @hs_ep: The endpoint the request was on.
1353 * @hs_req: The request to complete.
1354 * @result: The result code (0 => Ok, otherwise errno)
1355 *
1356 * See s3c_hsotg_complete_request(), but called with the endpoint's
1357 * lock held.
1358 */
s3c_hsotg_complete_request_lock(struct s3c_hsotg * hsotg,struct s3c_hsotg_ep * hs_ep,struct s3c_hsotg_req * hs_req,int result)1359 static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg,
1360 struct s3c_hsotg_ep *hs_ep,
1361 struct s3c_hsotg_req *hs_req,
1362 int result)
1363 {
1364 unsigned long flags;
1365
1366 spin_lock_irqsave(&hs_ep->lock, flags);
1367 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1368 spin_unlock_irqrestore(&hs_ep->lock, flags);
1369 }
1370
1371 /**
1372 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1373 * @hsotg: The device state.
1374 * @ep_idx: The endpoint index for the data
1375 * @size: The size of data in the fifo, in bytes
1376 *
1377 * The FIFO status shows there is data to read from the FIFO for a given
1378 * endpoint, so sort out whether we need to read the data into a request
1379 * that has been made for that endpoint.
1380 */
s3c_hsotg_rx_data(struct s3c_hsotg * hsotg,int ep_idx,int size)1381 static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1382 {
1383 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1384 struct s3c_hsotg_req *hs_req = hs_ep->req;
1385 void __iomem *fifo = hsotg->regs + S3C_EPFIFO(ep_idx);
1386 int to_read;
1387 int max_req;
1388 int read_ptr;
1389
1390 if (!hs_req) {
1391 u32 epctl = readl(hsotg->regs + S3C_DOEPCTL(ep_idx));
1392 int ptr;
1393
1394 dev_warn(hsotg->dev,
1395 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1396 __func__, size, ep_idx, epctl);
1397
1398 /* dump the data from the FIFO, we've nothing we can do */
1399 for (ptr = 0; ptr < size; ptr += 4)
1400 (void)readl(fifo);
1401
1402 return;
1403 }
1404
1405 spin_lock(&hs_ep->lock);
1406
1407 to_read = size;
1408 read_ptr = hs_req->req.actual;
1409 max_req = hs_req->req.length - read_ptr;
1410
1411 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1412 __func__, to_read, max_req, read_ptr, hs_req->req.length);
1413
1414 if (to_read > max_req) {
1415 /* more data appeared than we where willing
1416 * to deal with in this request.
1417 */
1418
1419 /* currently we don't deal this */
1420 WARN_ON_ONCE(1);
1421 }
1422
1423 hs_ep->total_data += to_read;
1424 hs_req->req.actual += to_read;
1425 to_read = DIV_ROUND_UP(to_read, 4);
1426
1427 /* note, we might over-write the buffer end by 3 bytes depending on
1428 * alignment of the data. */
1429 readsl(fifo, hs_req->req.buf + read_ptr, to_read);
1430
1431 spin_unlock(&hs_ep->lock);
1432 }
1433
1434 /**
1435 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1436 * @hsotg: The device instance
1437 * @req: The request currently on this endpoint
1438 *
1439 * Generate a zero-length IN packet request for terminating a SETUP
1440 * transaction.
1441 *
1442 * Note, since we don't write any data to the TxFIFO, then it is
1443 * currently believed that we do not need to wait for any space in
1444 * the TxFIFO.
1445 */
s3c_hsotg_send_zlp(struct s3c_hsotg * hsotg,struct s3c_hsotg_req * req)1446 static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1447 struct s3c_hsotg_req *req)
1448 {
1449 u32 ctrl;
1450
1451 if (!req) {
1452 dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1453 return;
1454 }
1455
1456 if (req->req.length == 0) {
1457 hsotg->eps[0].sent_zlp = 1;
1458 s3c_hsotg_enqueue_setup(hsotg);
1459 return;
1460 }
1461
1462 hsotg->eps[0].dir_in = 1;
1463 hsotg->eps[0].sent_zlp = 1;
1464
1465 dev_dbg(hsotg->dev, "sending zero-length packet\n");
1466
1467 /* issue a zero-sized packet to terminate this */
1468 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
1469 S3C_DxEPTSIZ_XferSize(0), hsotg->regs + S3C_DIEPTSIZ(0));
1470
1471 ctrl = readl(hsotg->regs + S3C_DIEPCTL0);
1472 ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
1473 ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
1474 ctrl |= S3C_DxEPCTL_USBActEp;
1475 writel(ctrl, hsotg->regs + S3C_DIEPCTL0);
1476 }
1477
1478 /**
1479 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1480 * @hsotg: The device instance
1481 * @epnum: The endpoint received from
1482 * @was_setup: Set if processing a SetupDone event.
1483 *
1484 * The RXFIFO has delivered an OutDone event, which means that the data
1485 * transfer for an OUT endpoint has been completed, either by a short
1486 * packet or by the finish of a transfer.
1487 */
s3c_hsotg_handle_outdone(struct s3c_hsotg * hsotg,int epnum,bool was_setup)1488 static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1489 int epnum, bool was_setup)
1490 {
1491 u32 epsize = readl(hsotg->regs + S3C_DOEPTSIZ(epnum));
1492 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1493 struct s3c_hsotg_req *hs_req = hs_ep->req;
1494 struct usb_request *req = &hs_req->req;
1495 unsigned size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1496 int result = 0;
1497
1498 if (!hs_req) {
1499 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1500 return;
1501 }
1502
1503 if (using_dma(hsotg)) {
1504 unsigned size_done;
1505
1506 /* Calculate the size of the transfer by checking how much
1507 * is left in the endpoint size register and then working it
1508 * out from the amount we loaded for the transfer.
1509 *
1510 * We need to do this as DMA pointers are always 32bit aligned
1511 * so may overshoot/undershoot the transfer.
1512 */
1513
1514 size_done = hs_ep->size_loaded - size_left;
1515 size_done += hs_ep->last_load;
1516
1517 req->actual = size_done;
1518 }
1519
1520 /* if there is more request to do, schedule new transfer */
1521 if (req->actual < req->length && size_left == 0) {
1522 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1523 return;
1524 }
1525
1526 if (req->actual < req->length && req->short_not_ok) {
1527 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1528 __func__, req->actual, req->length);
1529
1530 /* todo - what should we return here? there's no one else
1531 * even bothering to check the status. */
1532 }
1533
1534 if (epnum == 0) {
1535 if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1536 s3c_hsotg_send_zlp(hsotg, hs_req);
1537 }
1538
1539 s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result);
1540 }
1541
1542 /**
1543 * s3c_hsotg_read_frameno - read current frame number
1544 * @hsotg: The device instance
1545 *
1546 * Return the current frame number
1547 */
s3c_hsotg_read_frameno(struct s3c_hsotg * hsotg)1548 static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1549 {
1550 u32 dsts;
1551
1552 dsts = readl(hsotg->regs + S3C_DSTS);
1553 dsts &= S3C_DSTS_SOFFN_MASK;
1554 dsts >>= S3C_DSTS_SOFFN_SHIFT;
1555
1556 return dsts;
1557 }
1558
1559 /**
1560 * s3c_hsotg_handle_rx - RX FIFO has data
1561 * @hsotg: The device instance
1562 *
1563 * The IRQ handler has detected that the RX FIFO has some data in it
1564 * that requires processing, so find out what is in there and do the
1565 * appropriate read.
1566 *
1567 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1568 * chunks, so if you have x packets received on an endpoint you'll get x
1569 * FIFO events delivered, each with a packet's worth of data in it.
1570 *
1571 * When using DMA, we should not be processing events from the RXFIFO
1572 * as the actual data should be sent to the memory directly and we turn
1573 * on the completion interrupts to get notifications of transfer completion.
1574 */
s3c_hsotg_handle_rx(struct s3c_hsotg * hsotg)1575 static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1576 {
1577 u32 grxstsr = readl(hsotg->regs + S3C_GRXSTSP);
1578 u32 epnum, status, size;
1579
1580 WARN_ON(using_dma(hsotg));
1581
1582 epnum = grxstsr & S3C_GRXSTS_EPNum_MASK;
1583 status = grxstsr & S3C_GRXSTS_PktSts_MASK;
1584
1585 size = grxstsr & S3C_GRXSTS_ByteCnt_MASK;
1586 size >>= S3C_GRXSTS_ByteCnt_SHIFT;
1587
1588 if (1)
1589 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1590 __func__, grxstsr, size, epnum);
1591
1592 #define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
1593
1594 switch (status >> S3C_GRXSTS_PktSts_SHIFT) {
1595 case __status(S3C_GRXSTS_PktSts_GlobalOutNAK):
1596 dev_dbg(hsotg->dev, "GlobalOutNAK\n");
1597 break;
1598
1599 case __status(S3C_GRXSTS_PktSts_OutDone):
1600 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1601 s3c_hsotg_read_frameno(hsotg));
1602
1603 if (!using_dma(hsotg))
1604 s3c_hsotg_handle_outdone(hsotg, epnum, false);
1605 break;
1606
1607 case __status(S3C_GRXSTS_PktSts_SetupDone):
1608 dev_dbg(hsotg->dev,
1609 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1610 s3c_hsotg_read_frameno(hsotg),
1611 readl(hsotg->regs + S3C_DOEPCTL(0)));
1612
1613 s3c_hsotg_handle_outdone(hsotg, epnum, true);
1614 break;
1615
1616 case __status(S3C_GRXSTS_PktSts_OutRX):
1617 s3c_hsotg_rx_data(hsotg, epnum, size);
1618 break;
1619
1620 case __status(S3C_GRXSTS_PktSts_SetupRX):
1621 dev_dbg(hsotg->dev,
1622 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1623 s3c_hsotg_read_frameno(hsotg),
1624 readl(hsotg->regs + S3C_DOEPCTL(0)));
1625
1626 s3c_hsotg_rx_data(hsotg, epnum, size);
1627 break;
1628
1629 default:
1630 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1631 __func__, grxstsr);
1632
1633 s3c_hsotg_dump(hsotg);
1634 break;
1635 }
1636 }
1637
1638 /**
1639 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1640 * @mps: The maximum packet size in bytes.
1641 */
s3c_hsotg_ep0_mps(unsigned int mps)1642 static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1643 {
1644 switch (mps) {
1645 case 64:
1646 return S3C_D0EPCTL_MPS_64;
1647 case 32:
1648 return S3C_D0EPCTL_MPS_32;
1649 case 16:
1650 return S3C_D0EPCTL_MPS_16;
1651 case 8:
1652 return S3C_D0EPCTL_MPS_8;
1653 }
1654
1655 /* bad max packet size, warn and return invalid result */
1656 WARN_ON(1);
1657 return (u32)-1;
1658 }
1659
1660 /**
1661 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1662 * @hsotg: The driver state.
1663 * @ep: The index number of the endpoint
1664 * @mps: The maximum packet size in bytes
1665 *
1666 * Configure the maximum packet size for the given endpoint, updating
1667 * the hardware control registers to reflect this.
1668 */
s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg * hsotg,unsigned int ep,unsigned int mps)1669 static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1670 unsigned int ep, unsigned int mps)
1671 {
1672 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1673 void __iomem *regs = hsotg->regs;
1674 u32 mpsval;
1675 u32 reg;
1676
1677 if (ep == 0) {
1678 /* EP0 is a special case */
1679 mpsval = s3c_hsotg_ep0_mps(mps);
1680 if (mpsval > 3)
1681 goto bad_mps;
1682 } else {
1683 if (mps >= S3C_DxEPCTL_MPS_LIMIT+1)
1684 goto bad_mps;
1685
1686 mpsval = mps;
1687 }
1688
1689 hs_ep->ep.maxpacket = mps;
1690
1691 /* update both the in and out endpoint controldir_ registers, even
1692 * if one of the directions may not be in use. */
1693
1694 reg = readl(regs + S3C_DIEPCTL(ep));
1695 reg &= ~S3C_DxEPCTL_MPS_MASK;
1696 reg |= mpsval;
1697 writel(reg, regs + S3C_DIEPCTL(ep));
1698
1699 if (ep) {
1700 reg = readl(regs + S3C_DOEPCTL(ep));
1701 reg &= ~S3C_DxEPCTL_MPS_MASK;
1702 reg |= mpsval;
1703 writel(reg, regs + S3C_DOEPCTL(ep));
1704 }
1705
1706 return;
1707
1708 bad_mps:
1709 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1710 }
1711
1712 /**
1713 * s3c_hsotg_txfifo_flush - flush Tx FIFO
1714 * @hsotg: The driver state
1715 * @idx: The index for the endpoint (0..15)
1716 */
s3c_hsotg_txfifo_flush(struct s3c_hsotg * hsotg,unsigned int idx)1717 static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
1718 {
1719 int timeout;
1720 int val;
1721
1722 writel(S3C_GRSTCTL_TxFNum(idx) | S3C_GRSTCTL_TxFFlsh,
1723 hsotg->regs + S3C_GRSTCTL);
1724
1725 /* wait until the fifo is flushed */
1726 timeout = 100;
1727
1728 while (1) {
1729 val = readl(hsotg->regs + S3C_GRSTCTL);
1730
1731 if ((val & (S3C_GRSTCTL_TxFFlsh)) == 0)
1732 break;
1733
1734 if (--timeout == 0) {
1735 dev_err(hsotg->dev,
1736 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1737 __func__, val);
1738 }
1739
1740 udelay(1);
1741 }
1742 }
1743
1744 /**
1745 * s3c_hsotg_trytx - check to see if anything needs transmitting
1746 * @hsotg: The driver state
1747 * @hs_ep: The driver endpoint to check.
1748 *
1749 * Check to see if there is a request that has data to send, and if so
1750 * make an attempt to write data into the FIFO.
1751 */
s3c_hsotg_trytx(struct s3c_hsotg * hsotg,struct s3c_hsotg_ep * hs_ep)1752 static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1753 struct s3c_hsotg_ep *hs_ep)
1754 {
1755 struct s3c_hsotg_req *hs_req = hs_ep->req;
1756
1757 if (!hs_ep->dir_in || !hs_req)
1758 return 0;
1759
1760 if (hs_req->req.actual < hs_req->req.length) {
1761 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1762 hs_ep->index);
1763 return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1764 }
1765
1766 return 0;
1767 }
1768
1769 /**
1770 * s3c_hsotg_complete_in - complete IN transfer
1771 * @hsotg: The device state.
1772 * @hs_ep: The endpoint that has just completed.
1773 *
1774 * An IN transfer has been completed, update the transfer's state and then
1775 * call the relevant completion routines.
1776 */
s3c_hsotg_complete_in(struct s3c_hsotg * hsotg,struct s3c_hsotg_ep * hs_ep)1777 static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1778 struct s3c_hsotg_ep *hs_ep)
1779 {
1780 struct s3c_hsotg_req *hs_req = hs_ep->req;
1781 u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
1782 int size_left, size_done;
1783
1784 if (!hs_req) {
1785 dev_dbg(hsotg->dev, "XferCompl but no req\n");
1786 return;
1787 }
1788
1789 /* Calculate the size of the transfer by checking how much is left
1790 * in the endpoint size register and then working it out from
1791 * the amount we loaded for the transfer.
1792 *
1793 * We do this even for DMA, as the transfer may have incremented
1794 * past the end of the buffer (DMA transfers are always 32bit
1795 * aligned).
1796 */
1797
1798 size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1799
1800 size_done = hs_ep->size_loaded - size_left;
1801 size_done += hs_ep->last_load;
1802
1803 if (hs_req->req.actual != size_done)
1804 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1805 __func__, hs_req->req.actual, size_done);
1806
1807 hs_req->req.actual = size_done;
1808
1809 /* if we did all of the transfer, and there is more data left
1810 * around, then try restarting the rest of the request */
1811
1812 if (!size_left && hs_req->req.actual < hs_req->req.length) {
1813 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1814 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1815 } else
1816 s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
1817 }
1818
1819 /**
1820 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1821 * @hsotg: The driver state
1822 * @idx: The index for the endpoint (0..15)
1823 * @dir_in: Set if this is an IN endpoint
1824 *
1825 * Process and clear any interrupt pending for an individual endpoint
1826 */
s3c_hsotg_epint(struct s3c_hsotg * hsotg,unsigned int idx,int dir_in)1827 static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1828 int dir_in)
1829 {
1830 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1831 u32 epint_reg = dir_in ? S3C_DIEPINT(idx) : S3C_DOEPINT(idx);
1832 u32 epctl_reg = dir_in ? S3C_DIEPCTL(idx) : S3C_DOEPCTL(idx);
1833 u32 epsiz_reg = dir_in ? S3C_DIEPTSIZ(idx) : S3C_DOEPTSIZ(idx);
1834 u32 ints;
1835
1836 ints = readl(hsotg->regs + epint_reg);
1837
1838 /* Clear endpoint interrupts */
1839 writel(ints, hsotg->regs + epint_reg);
1840
1841 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1842 __func__, idx, dir_in ? "in" : "out", ints);
1843
1844 if (ints & S3C_DxEPINT_XferCompl) {
1845 dev_dbg(hsotg->dev,
1846 "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1847 __func__, readl(hsotg->regs + epctl_reg),
1848 readl(hsotg->regs + epsiz_reg));
1849
1850 /* we get OutDone from the FIFO, so we only need to look
1851 * at completing IN requests here */
1852 if (dir_in) {
1853 s3c_hsotg_complete_in(hsotg, hs_ep);
1854
1855 if (idx == 0 && !hs_ep->req)
1856 s3c_hsotg_enqueue_setup(hsotg);
1857 } else if (using_dma(hsotg)) {
1858 /* We're using DMA, we need to fire an OutDone here
1859 * as we ignore the RXFIFO. */
1860
1861 s3c_hsotg_handle_outdone(hsotg, idx, false);
1862 }
1863 }
1864
1865 if (ints & S3C_DxEPINT_EPDisbld) {
1866 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1867
1868 if (dir_in) {
1869 int epctl = readl(hsotg->regs + epctl_reg);
1870
1871 s3c_hsotg_txfifo_flush(hsotg, idx);
1872
1873 if ((epctl & S3C_DxEPCTL_Stall) &&
1874 (epctl & S3C_DxEPCTL_EPType_Bulk)) {
1875 int dctl = readl(hsotg->regs + S3C_DCTL);
1876
1877 dctl |= S3C_DCTL_CGNPInNAK;
1878 writel(dctl, hsotg->regs + S3C_DCTL);
1879 }
1880 }
1881 }
1882
1883 if (ints & S3C_DxEPINT_AHBErr)
1884 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
1885
1886 if (ints & S3C_DxEPINT_Setup) { /* Setup or Timeout */
1887 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
1888
1889 if (using_dma(hsotg) && idx == 0) {
1890 /* this is the notification we've received a
1891 * setup packet. In non-DMA mode we'd get this
1892 * from the RXFIFO, instead we need to process
1893 * the setup here. */
1894
1895 if (dir_in)
1896 WARN_ON_ONCE(1);
1897 else
1898 s3c_hsotg_handle_outdone(hsotg, 0, true);
1899 }
1900 }
1901
1902 if (ints & S3C_DxEPINT_Back2BackSetup)
1903 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
1904
1905 if (dir_in) {
1906 /* not sure if this is important, but we'll clear it anyway
1907 */
1908 if (ints & S3C_DIEPMSK_INTknTXFEmpMsk) {
1909 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1910 __func__, idx);
1911 }
1912
1913 /* this probably means something bad is happening */
1914 if (ints & S3C_DIEPMSK_INTknEPMisMsk) {
1915 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1916 __func__, idx);
1917 }
1918
1919 /* FIFO has space or is empty (see GAHBCFG) */
1920 if (hsotg->dedicated_fifos &&
1921 ints & S3C_DIEPMSK_TxFIFOEmpty) {
1922 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
1923 __func__, idx);
1924 if (!using_dma(hsotg))
1925 s3c_hsotg_trytx(hsotg, hs_ep);
1926 }
1927 }
1928 }
1929
1930 /**
1931 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1932 * @hsotg: The device state.
1933 *
1934 * Handle updating the device settings after the enumeration phase has
1935 * been completed.
1936 */
s3c_hsotg_irq_enumdone(struct s3c_hsotg * hsotg)1937 static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
1938 {
1939 u32 dsts = readl(hsotg->regs + S3C_DSTS);
1940 int ep0_mps = 0, ep_mps;
1941
1942 /* This should signal the finish of the enumeration phase
1943 * of the USB handshaking, so we should now know what rate
1944 * we connected at. */
1945
1946 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
1947
1948 /* note, since we're limited by the size of transfer on EP0, and
1949 * it seems IN transfers must be a even number of packets we do
1950 * not advertise a 64byte MPS on EP0. */
1951
1952 /* catch both EnumSpd_FS and EnumSpd_FS48 */
1953 switch (dsts & S3C_DSTS_EnumSpd_MASK) {
1954 case S3C_DSTS_EnumSpd_FS:
1955 case S3C_DSTS_EnumSpd_FS48:
1956 hsotg->gadget.speed = USB_SPEED_FULL;
1957 ep0_mps = EP0_MPS_LIMIT;
1958 ep_mps = 64;
1959 break;
1960
1961 case S3C_DSTS_EnumSpd_HS:
1962 hsotg->gadget.speed = USB_SPEED_HIGH;
1963 ep0_mps = EP0_MPS_LIMIT;
1964 ep_mps = 512;
1965 break;
1966
1967 case S3C_DSTS_EnumSpd_LS:
1968 hsotg->gadget.speed = USB_SPEED_LOW;
1969 /* note, we don't actually support LS in this driver at the
1970 * moment, and the documentation seems to imply that it isn't
1971 * supported by the PHYs on some of the devices.
1972 */
1973 break;
1974 }
1975 dev_info(hsotg->dev, "new device is %s\n",
1976 usb_speed_string(hsotg->gadget.speed));
1977
1978 /* we should now know the maximum packet size for an
1979 * endpoint, so set the endpoints to a default value. */
1980
1981 if (ep0_mps) {
1982 int i;
1983 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1984 for (i = 1; i < S3C_HSOTG_EPS; i++)
1985 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
1986 }
1987
1988 /* ensure after enumeration our EP0 is active */
1989
1990 s3c_hsotg_enqueue_setup(hsotg);
1991
1992 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1993 readl(hsotg->regs + S3C_DIEPCTL0),
1994 readl(hsotg->regs + S3C_DOEPCTL0));
1995 }
1996
1997 /**
1998 * kill_all_requests - remove all requests from the endpoint's queue
1999 * @hsotg: The device state.
2000 * @ep: The endpoint the requests may be on.
2001 * @result: The result code to use.
2002 * @force: Force removal of any current requests
2003 *
2004 * Go through the requests on the given endpoint and mark them
2005 * completed with the given result code.
2006 */
kill_all_requests(struct s3c_hsotg * hsotg,struct s3c_hsotg_ep * ep,int result,bool force)2007 static void kill_all_requests(struct s3c_hsotg *hsotg,
2008 struct s3c_hsotg_ep *ep,
2009 int result, bool force)
2010 {
2011 struct s3c_hsotg_req *req, *treq;
2012 unsigned long flags;
2013
2014 spin_lock_irqsave(&ep->lock, flags);
2015
2016 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2017 /* currently, we can't do much about an already
2018 * running request on an in endpoint */
2019
2020 if (ep->req == req && ep->dir_in && !force)
2021 continue;
2022
2023 s3c_hsotg_complete_request(hsotg, ep, req,
2024 result);
2025 }
2026
2027 spin_unlock_irqrestore(&ep->lock, flags);
2028 }
2029
2030 #define call_gadget(_hs, _entry) \
2031 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
2032 (_hs)->driver && (_hs)->driver->_entry) \
2033 (_hs)->driver->_entry(&(_hs)->gadget);
2034
2035 /**
2036 * s3c_hsotg_disconnect_irq - disconnect irq service
2037 * @hsotg: The device state.
2038 *
2039 * A disconnect IRQ has been received, meaning that the host has
2040 * lost contact with the bus. Remove all current transactions
2041 * and signal the gadget driver that this has happened.
2042 */
s3c_hsotg_disconnect_irq(struct s3c_hsotg * hsotg)2043 static void s3c_hsotg_disconnect_irq(struct s3c_hsotg *hsotg)
2044 {
2045 unsigned ep;
2046
2047 for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
2048 kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
2049
2050 call_gadget(hsotg, disconnect);
2051 }
2052
2053 /**
2054 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2055 * @hsotg: The device state:
2056 * @periodic: True if this is a periodic FIFO interrupt
2057 */
s3c_hsotg_irq_fifoempty(struct s3c_hsotg * hsotg,bool periodic)2058 static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
2059 {
2060 struct s3c_hsotg_ep *ep;
2061 int epno, ret;
2062
2063 /* look through for any more data to transmit */
2064
2065 for (epno = 0; epno < S3C_HSOTG_EPS; epno++) {
2066 ep = &hsotg->eps[epno];
2067
2068 if (!ep->dir_in)
2069 continue;
2070
2071 if ((periodic && !ep->periodic) ||
2072 (!periodic && ep->periodic))
2073 continue;
2074
2075 ret = s3c_hsotg_trytx(hsotg, ep);
2076 if (ret < 0)
2077 break;
2078 }
2079 }
2080
2081 static struct s3c_hsotg *our_hsotg;
2082
2083 /* IRQ flags which will trigger a retry around the IRQ loop */
2084 #define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
2085 S3C_GINTSTS_PTxFEmp | \
2086 S3C_GINTSTS_RxFLvl)
2087
2088 /**
2089 * s3c_hsotg_irq - handle device interrupt
2090 * @irq: The IRQ number triggered
2091 * @pw: The pw value when registered the handler.
2092 */
s3c_hsotg_irq(int irq,void * pw)2093 static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2094 {
2095 struct s3c_hsotg *hsotg = pw;
2096 int retry_count = 8;
2097 u32 gintsts;
2098 u32 gintmsk;
2099
2100 irq_retry:
2101 gintsts = readl(hsotg->regs + S3C_GINTSTS);
2102 gintmsk = readl(hsotg->regs + S3C_GINTMSK);
2103
2104 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2105 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2106
2107 gintsts &= gintmsk;
2108
2109 if (gintsts & S3C_GINTSTS_OTGInt) {
2110 u32 otgint = readl(hsotg->regs + S3C_GOTGINT);
2111
2112 dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2113
2114 writel(otgint, hsotg->regs + S3C_GOTGINT);
2115 }
2116
2117 if (gintsts & S3C_GINTSTS_DisconnInt) {
2118 dev_dbg(hsotg->dev, "%s: DisconnInt\n", __func__);
2119 writel(S3C_GINTSTS_DisconnInt, hsotg->regs + S3C_GINTSTS);
2120
2121 s3c_hsotg_disconnect_irq(hsotg);
2122 }
2123
2124 if (gintsts & S3C_GINTSTS_SessReqInt) {
2125 dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2126 writel(S3C_GINTSTS_SessReqInt, hsotg->regs + S3C_GINTSTS);
2127 }
2128
2129 if (gintsts & S3C_GINTSTS_EnumDone) {
2130 writel(S3C_GINTSTS_EnumDone, hsotg->regs + S3C_GINTSTS);
2131
2132 s3c_hsotg_irq_enumdone(hsotg);
2133 }
2134
2135 if (gintsts & S3C_GINTSTS_ConIDStsChng) {
2136 dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2137 readl(hsotg->regs + S3C_DSTS),
2138 readl(hsotg->regs + S3C_GOTGCTL));
2139
2140 writel(S3C_GINTSTS_ConIDStsChng, hsotg->regs + S3C_GINTSTS);
2141 }
2142
2143 if (gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt)) {
2144 u32 daint = readl(hsotg->regs + S3C_DAINT);
2145 u32 daint_out = daint >> S3C_DAINT_OutEP_SHIFT;
2146 u32 daint_in = daint & ~(daint_out << S3C_DAINT_OutEP_SHIFT);
2147 int ep;
2148
2149 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2150
2151 for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2152 if (daint_out & 1)
2153 s3c_hsotg_epint(hsotg, ep, 0);
2154 }
2155
2156 for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2157 if (daint_in & 1)
2158 s3c_hsotg_epint(hsotg, ep, 1);
2159 }
2160 }
2161
2162 if (gintsts & S3C_GINTSTS_USBRst) {
2163 dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2164 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2165 readl(hsotg->regs + S3C_GNPTXSTS));
2166
2167 writel(S3C_GINTSTS_USBRst, hsotg->regs + S3C_GINTSTS);
2168
2169 kill_all_requests(hsotg, &hsotg->eps[0], -ECONNRESET, true);
2170
2171 /* it seems after a reset we can end up with a situation
2172 * where the TXFIFO still has data in it... the docs
2173 * suggest resetting all the fifos, so use the init_fifo
2174 * code to relayout and flush the fifos.
2175 */
2176
2177 s3c_hsotg_init_fifo(hsotg);
2178
2179 s3c_hsotg_enqueue_setup(hsotg);
2180 }
2181
2182 /* check both FIFOs */
2183
2184 if (gintsts & S3C_GINTSTS_NPTxFEmp) {
2185 dev_dbg(hsotg->dev, "NPTxFEmp\n");
2186
2187 /* Disable the interrupt to stop it happening again
2188 * unless one of these endpoint routines decides that
2189 * it needs re-enabling */
2190
2191 s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
2192 s3c_hsotg_irq_fifoempty(hsotg, false);
2193 }
2194
2195 if (gintsts & S3C_GINTSTS_PTxFEmp) {
2196 dev_dbg(hsotg->dev, "PTxFEmp\n");
2197
2198 /* See note in S3C_GINTSTS_NPTxFEmp */
2199
2200 s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
2201 s3c_hsotg_irq_fifoempty(hsotg, true);
2202 }
2203
2204 if (gintsts & S3C_GINTSTS_RxFLvl) {
2205 /* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2206 * we need to retry s3c_hsotg_handle_rx if this is still
2207 * set. */
2208
2209 s3c_hsotg_handle_rx(hsotg);
2210 }
2211
2212 if (gintsts & S3C_GINTSTS_ModeMis) {
2213 dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2214 writel(S3C_GINTSTS_ModeMis, hsotg->regs + S3C_GINTSTS);
2215 }
2216
2217 if (gintsts & S3C_GINTSTS_USBSusp) {
2218 dev_info(hsotg->dev, "S3C_GINTSTS_USBSusp\n");
2219 writel(S3C_GINTSTS_USBSusp, hsotg->regs + S3C_GINTSTS);
2220
2221 call_gadget(hsotg, suspend);
2222 }
2223
2224 if (gintsts & S3C_GINTSTS_WkUpInt) {
2225 dev_info(hsotg->dev, "S3C_GINTSTS_WkUpIn\n");
2226 writel(S3C_GINTSTS_WkUpInt, hsotg->regs + S3C_GINTSTS);
2227
2228 call_gadget(hsotg, resume);
2229 }
2230
2231 if (gintsts & S3C_GINTSTS_ErlySusp) {
2232 dev_dbg(hsotg->dev, "S3C_GINTSTS_ErlySusp\n");
2233 writel(S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTSTS);
2234 }
2235
2236 /* these next two seem to crop-up occasionally causing the core
2237 * to shutdown the USB transfer, so try clearing them and logging
2238 * the occurrence. */
2239
2240 if (gintsts & S3C_GINTSTS_GOUTNakEff) {
2241 dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2242
2243 writel(S3C_DCTL_CGOUTNak, hsotg->regs + S3C_DCTL);
2244
2245 s3c_hsotg_dump(hsotg);
2246 }
2247
2248 if (gintsts & S3C_GINTSTS_GINNakEff) {
2249 dev_info(hsotg->dev, "GINNakEff triggered\n");
2250
2251 writel(S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL);
2252
2253 s3c_hsotg_dump(hsotg);
2254 }
2255
2256 /* if we've had fifo events, we should try and go around the
2257 * loop again to see if there's any point in returning yet. */
2258
2259 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2260 goto irq_retry;
2261
2262 return IRQ_HANDLED;
2263 }
2264
2265 /**
2266 * s3c_hsotg_ep_enable - enable the given endpoint
2267 * @ep: The USB endpint to configure
2268 * @desc: The USB endpoint descriptor to configure with.
2269 *
2270 * This is called from the USB gadget code's usb_ep_enable().
2271 */
s3c_hsotg_ep_enable(struct usb_ep * ep,const struct usb_endpoint_descriptor * desc)2272 static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2273 const struct usb_endpoint_descriptor *desc)
2274 {
2275 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2276 struct s3c_hsotg *hsotg = hs_ep->parent;
2277 unsigned long flags;
2278 int index = hs_ep->index;
2279 u32 epctrl_reg;
2280 u32 epctrl;
2281 u32 mps;
2282 int dir_in;
2283 int ret = 0;
2284
2285 dev_dbg(hsotg->dev,
2286 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2287 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2288 desc->wMaxPacketSize, desc->bInterval);
2289
2290 /* not to be called for EP0 */
2291 WARN_ON(index == 0);
2292
2293 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2294 if (dir_in != hs_ep->dir_in) {
2295 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2296 return -EINVAL;
2297 }
2298
2299 mps = usb_endpoint_maxp(desc);
2300
2301 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2302
2303 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2304 epctrl = readl(hsotg->regs + epctrl_reg);
2305
2306 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2307 __func__, epctrl, epctrl_reg);
2308
2309 spin_lock_irqsave(&hs_ep->lock, flags);
2310
2311 epctrl &= ~(S3C_DxEPCTL_EPType_MASK | S3C_DxEPCTL_MPS_MASK);
2312 epctrl |= S3C_DxEPCTL_MPS(mps);
2313
2314 /* mark the endpoint as active, otherwise the core may ignore
2315 * transactions entirely for this endpoint */
2316 epctrl |= S3C_DxEPCTL_USBActEp;
2317
2318 /* set the NAK status on the endpoint, otherwise we might try and
2319 * do something with data that we've yet got a request to process
2320 * since the RXFIFO will take data for an endpoint even if the
2321 * size register hasn't been set.
2322 */
2323
2324 epctrl |= S3C_DxEPCTL_SNAK;
2325
2326 /* update the endpoint state */
2327 hs_ep->ep.maxpacket = mps;
2328
2329 /* default, set to non-periodic */
2330 hs_ep->periodic = 0;
2331
2332 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2333 case USB_ENDPOINT_XFER_ISOC:
2334 dev_err(hsotg->dev, "no current ISOC support\n");
2335 ret = -EINVAL;
2336 goto out;
2337
2338 case USB_ENDPOINT_XFER_BULK:
2339 epctrl |= S3C_DxEPCTL_EPType_Bulk;
2340 break;
2341
2342 case USB_ENDPOINT_XFER_INT:
2343 if (dir_in) {
2344 /* Allocate our TxFNum by simply using the index
2345 * of the endpoint for the moment. We could do
2346 * something better if the host indicates how
2347 * many FIFOs we are expecting to use. */
2348
2349 hs_ep->periodic = 1;
2350 epctrl |= S3C_DxEPCTL_TxFNum(index);
2351 }
2352
2353 epctrl |= S3C_DxEPCTL_EPType_Intterupt;
2354 break;
2355
2356 case USB_ENDPOINT_XFER_CONTROL:
2357 epctrl |= S3C_DxEPCTL_EPType_Control;
2358 break;
2359 }
2360
2361 /* if the hardware has dedicated fifos, we must give each IN EP
2362 * a unique tx-fifo even if it is non-periodic.
2363 */
2364 if (dir_in && hsotg->dedicated_fifos)
2365 epctrl |= S3C_DxEPCTL_TxFNum(index);
2366
2367 /* for non control endpoints, set PID to D0 */
2368 if (index)
2369 epctrl |= S3C_DxEPCTL_SetD0PID;
2370
2371 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2372 __func__, epctrl);
2373
2374 writel(epctrl, hsotg->regs + epctrl_reg);
2375 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2376 __func__, readl(hsotg->regs + epctrl_reg));
2377
2378 /* enable the endpoint interrupt */
2379 s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2380
2381 out:
2382 spin_unlock_irqrestore(&hs_ep->lock, flags);
2383 return ret;
2384 }
2385
s3c_hsotg_ep_disable(struct usb_ep * ep)2386 static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2387 {
2388 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2389 struct s3c_hsotg *hsotg = hs_ep->parent;
2390 int dir_in = hs_ep->dir_in;
2391 int index = hs_ep->index;
2392 unsigned long flags;
2393 u32 epctrl_reg;
2394 u32 ctrl;
2395
2396 dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2397
2398 if (ep == &hsotg->eps[0].ep) {
2399 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2400 return -EINVAL;
2401 }
2402
2403 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2404
2405 /* terminate all requests with shutdown */
2406 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2407
2408 spin_lock_irqsave(&hs_ep->lock, flags);
2409
2410 ctrl = readl(hsotg->regs + epctrl_reg);
2411 ctrl &= ~S3C_DxEPCTL_EPEna;
2412 ctrl &= ~S3C_DxEPCTL_USBActEp;
2413 ctrl |= S3C_DxEPCTL_SNAK;
2414
2415 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2416 writel(ctrl, hsotg->regs + epctrl_reg);
2417
2418 /* disable endpoint interrupts */
2419 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2420
2421 spin_unlock_irqrestore(&hs_ep->lock, flags);
2422 return 0;
2423 }
2424
2425 /**
2426 * on_list - check request is on the given endpoint
2427 * @ep: The endpoint to check.
2428 * @test: The request to test if it is on the endpoint.
2429 */
on_list(struct s3c_hsotg_ep * ep,struct s3c_hsotg_req * test)2430 static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2431 {
2432 struct s3c_hsotg_req *req, *treq;
2433
2434 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2435 if (req == test)
2436 return true;
2437 }
2438
2439 return false;
2440 }
2441
s3c_hsotg_ep_dequeue(struct usb_ep * ep,struct usb_request * req)2442 static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2443 {
2444 struct s3c_hsotg_req *hs_req = our_req(req);
2445 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2446 struct s3c_hsotg *hs = hs_ep->parent;
2447 unsigned long flags;
2448
2449 dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2450
2451 spin_lock_irqsave(&hs_ep->lock, flags);
2452
2453 if (!on_list(hs_ep, hs_req)) {
2454 spin_unlock_irqrestore(&hs_ep->lock, flags);
2455 return -EINVAL;
2456 }
2457
2458 s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2459 spin_unlock_irqrestore(&hs_ep->lock, flags);
2460
2461 return 0;
2462 }
2463
s3c_hsotg_ep_sethalt(struct usb_ep * ep,int value)2464 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2465 {
2466 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2467 struct s3c_hsotg *hs = hs_ep->parent;
2468 int index = hs_ep->index;
2469 unsigned long irqflags;
2470 u32 epreg;
2471 u32 epctl;
2472 u32 xfertype;
2473
2474 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2475
2476 spin_lock_irqsave(&hs_ep->lock, irqflags);
2477
2478 /* write both IN and OUT control registers */
2479
2480 epreg = S3C_DIEPCTL(index);
2481 epctl = readl(hs->regs + epreg);
2482
2483 if (value) {
2484 epctl |= S3C_DxEPCTL_Stall + S3C_DxEPCTL_SNAK;
2485 if (epctl & S3C_DxEPCTL_EPEna)
2486 epctl |= S3C_DxEPCTL_EPDis;
2487 } else {
2488 epctl &= ~S3C_DxEPCTL_Stall;
2489 xfertype = epctl & S3C_DxEPCTL_EPType_MASK;
2490 if (xfertype == S3C_DxEPCTL_EPType_Bulk ||
2491 xfertype == S3C_DxEPCTL_EPType_Intterupt)
2492 epctl |= S3C_DxEPCTL_SetD0PID;
2493 }
2494
2495 writel(epctl, hs->regs + epreg);
2496
2497 epreg = S3C_DOEPCTL(index);
2498 epctl = readl(hs->regs + epreg);
2499
2500 if (value)
2501 epctl |= S3C_DxEPCTL_Stall;
2502 else {
2503 epctl &= ~S3C_DxEPCTL_Stall;
2504 xfertype = epctl & S3C_DxEPCTL_EPType_MASK;
2505 if (xfertype == S3C_DxEPCTL_EPType_Bulk ||
2506 xfertype == S3C_DxEPCTL_EPType_Intterupt)
2507 epctl |= S3C_DxEPCTL_SetD0PID;
2508 }
2509
2510 writel(epctl, hs->regs + epreg);
2511
2512 spin_unlock_irqrestore(&hs_ep->lock, irqflags);
2513
2514 return 0;
2515 }
2516
2517 static struct usb_ep_ops s3c_hsotg_ep_ops = {
2518 .enable = s3c_hsotg_ep_enable,
2519 .disable = s3c_hsotg_ep_disable,
2520 .alloc_request = s3c_hsotg_ep_alloc_request,
2521 .free_request = s3c_hsotg_ep_free_request,
2522 .queue = s3c_hsotg_ep_queue,
2523 .dequeue = s3c_hsotg_ep_dequeue,
2524 .set_halt = s3c_hsotg_ep_sethalt,
2525 /* note, don't believe we have any call for the fifo routines */
2526 };
2527
2528 /**
2529 * s3c_hsotg_corereset - issue softreset to the core
2530 * @hsotg: The device state
2531 *
2532 * Issue a soft reset to the core, and await the core finishing it.
2533 */
s3c_hsotg_corereset(struct s3c_hsotg * hsotg)2534 static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2535 {
2536 int timeout;
2537 u32 grstctl;
2538
2539 dev_dbg(hsotg->dev, "resetting core\n");
2540
2541 /* issue soft reset */
2542 writel(S3C_GRSTCTL_CSftRst, hsotg->regs + S3C_GRSTCTL);
2543
2544 timeout = 1000;
2545 do {
2546 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2547 } while ((grstctl & S3C_GRSTCTL_CSftRst) && timeout-- > 0);
2548
2549 if (grstctl & S3C_GRSTCTL_CSftRst) {
2550 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2551 return -EINVAL;
2552 }
2553
2554 timeout = 1000;
2555
2556 while (1) {
2557 u32 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2558
2559 if (timeout-- < 0) {
2560 dev_info(hsotg->dev,
2561 "%s: reset failed, GRSTCTL=%08x\n",
2562 __func__, grstctl);
2563 return -ETIMEDOUT;
2564 }
2565
2566 if (!(grstctl & S3C_GRSTCTL_AHBIdle))
2567 continue;
2568
2569 break; /* reset done */
2570 }
2571
2572 dev_dbg(hsotg->dev, "reset successful\n");
2573 return 0;
2574 }
2575
s3c_hsotg_start(struct usb_gadget_driver * driver,int (* bind)(struct usb_gadget *))2576 static int s3c_hsotg_start(struct usb_gadget_driver *driver,
2577 int (*bind)(struct usb_gadget *))
2578 {
2579 struct s3c_hsotg *hsotg = our_hsotg;
2580 int ret;
2581
2582 if (!hsotg) {
2583 printk(KERN_ERR "%s: called with no device\n", __func__);
2584 return -ENODEV;
2585 }
2586
2587 if (!driver) {
2588 dev_err(hsotg->dev, "%s: no driver\n", __func__);
2589 return -EINVAL;
2590 }
2591
2592 if (driver->max_speed < USB_SPEED_FULL)
2593 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2594
2595 if (!bind || !driver->setup) {
2596 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2597 return -EINVAL;
2598 }
2599
2600 WARN_ON(hsotg->driver);
2601
2602 driver->driver.bus = NULL;
2603 hsotg->driver = driver;
2604 hsotg->gadget.dev.driver = &driver->driver;
2605 hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
2606 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2607
2608 ret = device_add(&hsotg->gadget.dev);
2609 if (ret) {
2610 dev_err(hsotg->dev, "failed to register gadget device\n");
2611 goto err;
2612 }
2613
2614 ret = bind(&hsotg->gadget);
2615 if (ret) {
2616 dev_err(hsotg->dev, "failed bind %s\n", driver->driver.name);
2617
2618 hsotg->gadget.dev.driver = NULL;
2619 hsotg->driver = NULL;
2620 goto err;
2621 }
2622
2623 /* we must now enable ep0 ready for host detection and then
2624 * set configuration. */
2625
2626 s3c_hsotg_corereset(hsotg);
2627
2628 /* set the PLL on, remove the HNP/SRP and set the PHY */
2629 writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) |
2630 (0x5 << 10), hsotg->regs + S3C_GUSBCFG);
2631
2632 /* looks like soft-reset changes state of FIFOs */
2633 s3c_hsotg_init_fifo(hsotg);
2634
2635 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2636
2637 writel(1 << 18 | S3C_DCFG_DevSpd_HS, hsotg->regs + S3C_DCFG);
2638
2639 /* Clear any pending OTG interrupts */
2640 writel(0xffffffff, hsotg->regs + S3C_GOTGINT);
2641
2642 /* Clear any pending interrupts */
2643 writel(0xffffffff, hsotg->regs + S3C_GINTSTS);
2644
2645 writel(S3C_GINTSTS_DisconnInt | S3C_GINTSTS_SessReqInt |
2646 S3C_GINTSTS_ConIDStsChng | S3C_GINTSTS_USBRst |
2647 S3C_GINTSTS_EnumDone | S3C_GINTSTS_OTGInt |
2648 S3C_GINTSTS_USBSusp | S3C_GINTSTS_WkUpInt |
2649 S3C_GINTSTS_GOUTNakEff | S3C_GINTSTS_GINNakEff |
2650 S3C_GINTSTS_ErlySusp,
2651 hsotg->regs + S3C_GINTMSK);
2652
2653 if (using_dma(hsotg))
2654 writel(S3C_GAHBCFG_GlblIntrEn | S3C_GAHBCFG_DMAEn |
2655 S3C_GAHBCFG_HBstLen_Incr4,
2656 hsotg->regs + S3C_GAHBCFG);
2657 else
2658 writel(S3C_GAHBCFG_GlblIntrEn, hsotg->regs + S3C_GAHBCFG);
2659
2660 /* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
2661 * up being flooded with interrupts if the host is polling the
2662 * endpoint to try and read data. */
2663
2664 writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2665 S3C_DIEPMSK_INTknEPMisMsk |
2666 S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk |
2667 ((hsotg->dedicated_fifos) ? S3C_DIEPMSK_TxFIFOEmpty : 0),
2668 hsotg->regs + S3C_DIEPMSK);
2669
2670 /* don't need XferCompl, we get that from RXFIFO in slave mode. In
2671 * DMA mode we may need this. */
2672 writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2673 S3C_DOEPMSK_EPDisbldMsk |
2674 (using_dma(hsotg) ? (S3C_DIEPMSK_XferComplMsk |
2675 S3C_DIEPMSK_TimeOUTMsk) : 0),
2676 hsotg->regs + S3C_DOEPMSK);
2677
2678 writel(0, hsotg->regs + S3C_DAINTMSK);
2679
2680 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2681 readl(hsotg->regs + S3C_DIEPCTL0),
2682 readl(hsotg->regs + S3C_DOEPCTL0));
2683
2684 /* enable in and out endpoint interrupts */
2685 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt);
2686
2687 /* Enable the RXFIFO when in slave mode, as this is how we collect
2688 * the data. In DMA mode, we get events from the FIFO but also
2689 * things we cannot process, so do not use it. */
2690 if (!using_dma(hsotg))
2691 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_RxFLvl);
2692
2693 /* Enable interrupts for EP0 in and out */
2694 s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2695 s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2696
2697 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2698 udelay(10); /* see openiboot */
2699 __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2700
2701 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + S3C_DCTL));
2702
2703 /* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
2704 writing to the EPCTL register.. */
2705
2706 /* set to read 1 8byte packet */
2707 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
2708 S3C_DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2709
2710 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2711 S3C_DxEPCTL_CNAK | S3C_DxEPCTL_EPEna |
2712 S3C_DxEPCTL_USBActEp,
2713 hsotg->regs + S3C_DOEPCTL0);
2714
2715 /* enable, but don't activate EP0in */
2716 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2717 S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DIEPCTL0);
2718
2719 s3c_hsotg_enqueue_setup(hsotg);
2720
2721 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2722 readl(hsotg->regs + S3C_DIEPCTL0),
2723 readl(hsotg->regs + S3C_DOEPCTL0));
2724
2725 /* clear global NAKs */
2726 writel(S3C_DCTL_CGOUTNak | S3C_DCTL_CGNPInNAK,
2727 hsotg->regs + S3C_DCTL);
2728
2729 /* must be at-least 3ms to allow bus to see disconnect */
2730 msleep(3);
2731
2732 /* remove the soft-disconnect and let's go */
2733 __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2734
2735 /* report to the user, and return */
2736
2737 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2738 return 0;
2739
2740 err:
2741 hsotg->driver = NULL;
2742 hsotg->gadget.dev.driver = NULL;
2743 return ret;
2744 }
2745
s3c_hsotg_stop(struct usb_gadget_driver * driver)2746 static int s3c_hsotg_stop(struct usb_gadget_driver *driver)
2747 {
2748 struct s3c_hsotg *hsotg = our_hsotg;
2749 int ep;
2750
2751 if (!hsotg)
2752 return -ENODEV;
2753
2754 if (!driver || driver != hsotg->driver || !driver->unbind)
2755 return -EINVAL;
2756
2757 /* all endpoints should be shutdown */
2758 for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
2759 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2760
2761 call_gadget(hsotg, disconnect);
2762
2763 driver->unbind(&hsotg->gadget);
2764 hsotg->driver = NULL;
2765 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2766
2767 device_del(&hsotg->gadget.dev);
2768
2769 dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
2770 driver->driver.name);
2771
2772 return 0;
2773 }
2774
s3c_hsotg_gadget_getframe(struct usb_gadget * gadget)2775 static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2776 {
2777 return s3c_hsotg_read_frameno(to_hsotg(gadget));
2778 }
2779
2780 static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2781 .get_frame = s3c_hsotg_gadget_getframe,
2782 .start = s3c_hsotg_start,
2783 .stop = s3c_hsotg_stop,
2784 };
2785
2786 /**
2787 * s3c_hsotg_initep - initialise a single endpoint
2788 * @hsotg: The device state.
2789 * @hs_ep: The endpoint to be initialised.
2790 * @epnum: The endpoint number
2791 *
2792 * Initialise the given endpoint (as part of the probe and device state
2793 * creation) to give to the gadget driver. Setup the endpoint name, any
2794 * direction information and other state that may be required.
2795 */
s3c_hsotg_initep(struct s3c_hsotg * hsotg,struct s3c_hsotg_ep * hs_ep,int epnum)2796 static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
2797 struct s3c_hsotg_ep *hs_ep,
2798 int epnum)
2799 {
2800 u32 ptxfifo;
2801 char *dir;
2802
2803 if (epnum == 0)
2804 dir = "";
2805 else if ((epnum % 2) == 0) {
2806 dir = "out";
2807 } else {
2808 dir = "in";
2809 hs_ep->dir_in = 1;
2810 }
2811
2812 hs_ep->index = epnum;
2813
2814 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
2815
2816 INIT_LIST_HEAD(&hs_ep->queue);
2817 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
2818
2819 spin_lock_init(&hs_ep->lock);
2820
2821 /* add to the list of endpoints known by the gadget driver */
2822 if (epnum)
2823 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
2824
2825 hs_ep->parent = hsotg;
2826 hs_ep->ep.name = hs_ep->name;
2827 hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
2828 hs_ep->ep.ops = &s3c_hsotg_ep_ops;
2829
2830 /* Read the FIFO size for the Periodic TX FIFO, even if we're
2831 * an OUT endpoint, we may as well do this if in future the
2832 * code is changed to make each endpoint's direction changeable.
2833 */
2834
2835 ptxfifo = readl(hsotg->regs + S3C_DPTXFSIZn(epnum));
2836 hs_ep->fifo_size = S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
2837
2838 /* if we're using dma, we need to set the next-endpoint pointer
2839 * to be something valid.
2840 */
2841
2842 if (using_dma(hsotg)) {
2843 u32 next = S3C_DxEPCTL_NextEp((epnum + 1) % 15);
2844 writel(next, hsotg->regs + S3C_DIEPCTL(epnum));
2845 writel(next, hsotg->regs + S3C_DOEPCTL(epnum));
2846 }
2847 }
2848
2849 /**
2850 * s3c_hsotg_otgreset - reset the OtG phy block
2851 * @hsotg: The host state.
2852 *
2853 * Power up the phy, set the basic configuration and start the PHY.
2854 */
s3c_hsotg_otgreset(struct s3c_hsotg * hsotg)2855 static void s3c_hsotg_otgreset(struct s3c_hsotg *hsotg)
2856 {
2857 struct clk *xusbxti;
2858 u32 pwr, osc;
2859
2860 pwr = readl(S3C_PHYPWR);
2861 pwr &= ~0x19;
2862 writel(pwr, S3C_PHYPWR);
2863 mdelay(1);
2864
2865 osc = hsotg->plat->is_osc ? S3C_PHYCLK_EXT_OSC : 0;
2866
2867 xusbxti = clk_get(hsotg->dev, "xusbxti");
2868 if (xusbxti && !IS_ERR(xusbxti)) {
2869 switch (clk_get_rate(xusbxti)) {
2870 case 12*MHZ:
2871 osc |= S3C_PHYCLK_CLKSEL_12M;
2872 break;
2873 case 24*MHZ:
2874 osc |= S3C_PHYCLK_CLKSEL_24M;
2875 break;
2876 default:
2877 case 48*MHZ:
2878 /* default reference clock */
2879 break;
2880 }
2881 clk_put(xusbxti);
2882 }
2883
2884 writel(osc | 0x10, S3C_PHYCLK);
2885
2886 /* issue a full set of resets to the otg and core */
2887
2888 writel(S3C_RSTCON_PHY, S3C_RSTCON);
2889 udelay(20); /* at-least 10uS */
2890 writel(0, S3C_RSTCON);
2891 }
2892
2893
s3c_hsotg_init(struct s3c_hsotg * hsotg)2894 static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2895 {
2896 u32 cfg4;
2897
2898 /* unmask subset of endpoint interrupts */
2899
2900 writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2901 S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
2902 hsotg->regs + S3C_DIEPMSK);
2903
2904 writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2905 S3C_DOEPMSK_EPDisbldMsk | S3C_DOEPMSK_XferComplMsk,
2906 hsotg->regs + S3C_DOEPMSK);
2907
2908 writel(0, hsotg->regs + S3C_DAINTMSK);
2909
2910 /* Be in disconnected state until gadget is registered */
2911 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2912
2913 if (0) {
2914 /* post global nak until we're ready */
2915 writel(S3C_DCTL_SGNPInNAK | S3C_DCTL_SGOUTNak,
2916 hsotg->regs + S3C_DCTL);
2917 }
2918
2919 /* setup fifos */
2920
2921 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2922 readl(hsotg->regs + S3C_GRXFSIZ),
2923 readl(hsotg->regs + S3C_GNPTXFSIZ));
2924
2925 s3c_hsotg_init_fifo(hsotg);
2926
2927 /* set the PLL on, remove the HNP/SRP and set the PHY */
2928 writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
2929 hsotg->regs + S3C_GUSBCFG);
2930
2931 writel(using_dma(hsotg) ? S3C_GAHBCFG_DMAEn : 0x0,
2932 hsotg->regs + S3C_GAHBCFG);
2933
2934 /* check hardware configuration */
2935
2936 cfg4 = readl(hsotg->regs + 0x50);
2937 hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
2938
2939 dev_info(hsotg->dev, "%s fifos\n",
2940 hsotg->dedicated_fifos ? "dedicated" : "shared");
2941 }
2942
s3c_hsotg_dump(struct s3c_hsotg * hsotg)2943 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
2944 {
2945 #ifdef DEBUG
2946 struct device *dev = hsotg->dev;
2947 void __iomem *regs = hsotg->regs;
2948 u32 val;
2949 int idx;
2950
2951 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
2952 readl(regs + S3C_DCFG), readl(regs + S3C_DCTL),
2953 readl(regs + S3C_DIEPMSK));
2954
2955 dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
2956 readl(regs + S3C_GAHBCFG), readl(regs + 0x44));
2957
2958 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2959 readl(regs + S3C_GRXFSIZ), readl(regs + S3C_GNPTXFSIZ));
2960
2961 /* show periodic fifo settings */
2962
2963 for (idx = 1; idx <= 15; idx++) {
2964 val = readl(regs + S3C_DPTXFSIZn(idx));
2965 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
2966 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
2967 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
2968 }
2969
2970 for (idx = 0; idx < 15; idx++) {
2971 dev_info(dev,
2972 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
2973 readl(regs + S3C_DIEPCTL(idx)),
2974 readl(regs + S3C_DIEPTSIZ(idx)),
2975 readl(regs + S3C_DIEPDMA(idx)));
2976
2977 val = readl(regs + S3C_DOEPCTL(idx));
2978 dev_info(dev,
2979 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
2980 idx, readl(regs + S3C_DOEPCTL(idx)),
2981 readl(regs + S3C_DOEPTSIZ(idx)),
2982 readl(regs + S3C_DOEPDMA(idx)));
2983
2984 }
2985
2986 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
2987 readl(regs + S3C_DVBUSDIS), readl(regs + S3C_DVBUSPULSE));
2988 #endif
2989 }
2990
2991
2992 /**
2993 * state_show - debugfs: show overall driver and device state.
2994 * @seq: The seq file to write to.
2995 * @v: Unused parameter.
2996 *
2997 * This debugfs entry shows the overall state of the hardware and
2998 * some general information about each of the endpoints available
2999 * to the system.
3000 */
state_show(struct seq_file * seq,void * v)3001 static int state_show(struct seq_file *seq, void *v)
3002 {
3003 struct s3c_hsotg *hsotg = seq->private;
3004 void __iomem *regs = hsotg->regs;
3005 int idx;
3006
3007 seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3008 readl(regs + S3C_DCFG),
3009 readl(regs + S3C_DCTL),
3010 readl(regs + S3C_DSTS));
3011
3012 seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3013 readl(regs + S3C_DIEPMSK), readl(regs + S3C_DOEPMSK));
3014
3015 seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3016 readl(regs + S3C_GINTMSK),
3017 readl(regs + S3C_GINTSTS));
3018
3019 seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3020 readl(regs + S3C_DAINTMSK),
3021 readl(regs + S3C_DAINT));
3022
3023 seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3024 readl(regs + S3C_GNPTXSTS),
3025 readl(regs + S3C_GRXSTSR));
3026
3027 seq_printf(seq, "\nEndpoint status:\n");
3028
3029 for (idx = 0; idx < 15; idx++) {
3030 u32 in, out;
3031
3032 in = readl(regs + S3C_DIEPCTL(idx));
3033 out = readl(regs + S3C_DOEPCTL(idx));
3034
3035 seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3036 idx, in, out);
3037
3038 in = readl(regs + S3C_DIEPTSIZ(idx));
3039 out = readl(regs + S3C_DOEPTSIZ(idx));
3040
3041 seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3042 in, out);
3043
3044 seq_printf(seq, "\n");
3045 }
3046
3047 return 0;
3048 }
3049
state_open(struct inode * inode,struct file * file)3050 static int state_open(struct inode *inode, struct file *file)
3051 {
3052 return single_open(file, state_show, inode->i_private);
3053 }
3054
3055 static const struct file_operations state_fops = {
3056 .owner = THIS_MODULE,
3057 .open = state_open,
3058 .read = seq_read,
3059 .llseek = seq_lseek,
3060 .release = single_release,
3061 };
3062
3063 /**
3064 * fifo_show - debugfs: show the fifo information
3065 * @seq: The seq_file to write data to.
3066 * @v: Unused parameter.
3067 *
3068 * Show the FIFO information for the overall fifo and all the
3069 * periodic transmission FIFOs.
3070 */
fifo_show(struct seq_file * seq,void * v)3071 static int fifo_show(struct seq_file *seq, void *v)
3072 {
3073 struct s3c_hsotg *hsotg = seq->private;
3074 void __iomem *regs = hsotg->regs;
3075 u32 val;
3076 int idx;
3077
3078 seq_printf(seq, "Non-periodic FIFOs:\n");
3079 seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + S3C_GRXFSIZ));
3080
3081 val = readl(regs + S3C_GNPTXFSIZ);
3082 seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3083 val >> S3C_GNPTXFSIZ_NPTxFDep_SHIFT,
3084 val & S3C_GNPTXFSIZ_NPTxFStAddr_MASK);
3085
3086 seq_printf(seq, "\nPeriodic TXFIFOs:\n");
3087
3088 for (idx = 1; idx <= 15; idx++) {
3089 val = readl(regs + S3C_DPTXFSIZn(idx));
3090
3091 seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3092 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
3093 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
3094 }
3095
3096 return 0;
3097 }
3098
fifo_open(struct inode * inode,struct file * file)3099 static int fifo_open(struct inode *inode, struct file *file)
3100 {
3101 return single_open(file, fifo_show, inode->i_private);
3102 }
3103
3104 static const struct file_operations fifo_fops = {
3105 .owner = THIS_MODULE,
3106 .open = fifo_open,
3107 .read = seq_read,
3108 .llseek = seq_lseek,
3109 .release = single_release,
3110 };
3111
3112
decode_direction(int is_in)3113 static const char *decode_direction(int is_in)
3114 {
3115 return is_in ? "in" : "out";
3116 }
3117
3118 /**
3119 * ep_show - debugfs: show the state of an endpoint.
3120 * @seq: The seq_file to write data to.
3121 * @v: Unused parameter.
3122 *
3123 * This debugfs entry shows the state of the given endpoint (one is
3124 * registered for each available).
3125 */
ep_show(struct seq_file * seq,void * v)3126 static int ep_show(struct seq_file *seq, void *v)
3127 {
3128 struct s3c_hsotg_ep *ep = seq->private;
3129 struct s3c_hsotg *hsotg = ep->parent;
3130 struct s3c_hsotg_req *req;
3131 void __iomem *regs = hsotg->regs;
3132 int index = ep->index;
3133 int show_limit = 15;
3134 unsigned long flags;
3135
3136 seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
3137 ep->index, ep->ep.name, decode_direction(ep->dir_in));
3138
3139 /* first show the register state */
3140
3141 seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3142 readl(regs + S3C_DIEPCTL(index)),
3143 readl(regs + S3C_DOEPCTL(index)));
3144
3145 seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3146 readl(regs + S3C_DIEPDMA(index)),
3147 readl(regs + S3C_DOEPDMA(index)));
3148
3149 seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3150 readl(regs + S3C_DIEPINT(index)),
3151 readl(regs + S3C_DOEPINT(index)));
3152
3153 seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3154 readl(regs + S3C_DIEPTSIZ(index)),
3155 readl(regs + S3C_DOEPTSIZ(index)));
3156
3157 seq_printf(seq, "\n");
3158 seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3159 seq_printf(seq, "total_data=%ld\n", ep->total_data);
3160
3161 seq_printf(seq, "request list (%p,%p):\n",
3162 ep->queue.next, ep->queue.prev);
3163
3164 spin_lock_irqsave(&ep->lock, flags);
3165
3166 list_for_each_entry(req, &ep->queue, queue) {
3167 if (--show_limit < 0) {
3168 seq_printf(seq, "not showing more requests...\n");
3169 break;
3170 }
3171
3172 seq_printf(seq, "%c req %p: %d bytes @%p, ",
3173 req == ep->req ? '*' : ' ',
3174 req, req->req.length, req->req.buf);
3175 seq_printf(seq, "%d done, res %d\n",
3176 req->req.actual, req->req.status);
3177 }
3178
3179 spin_unlock_irqrestore(&ep->lock, flags);
3180
3181 return 0;
3182 }
3183
ep_open(struct inode * inode,struct file * file)3184 static int ep_open(struct inode *inode, struct file *file)
3185 {
3186 return single_open(file, ep_show, inode->i_private);
3187 }
3188
3189 static const struct file_operations ep_fops = {
3190 .owner = THIS_MODULE,
3191 .open = ep_open,
3192 .read = seq_read,
3193 .llseek = seq_lseek,
3194 .release = single_release,
3195 };
3196
3197 /**
3198 * s3c_hsotg_create_debug - create debugfs directory and files
3199 * @hsotg: The driver state
3200 *
3201 * Create the debugfs files to allow the user to get information
3202 * about the state of the system. The directory name is created
3203 * with the same name as the device itself, in case we end up
3204 * with multiple blocks in future systems.
3205 */
s3c_hsotg_create_debug(struct s3c_hsotg * hsotg)3206 static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3207 {
3208 struct dentry *root;
3209 unsigned epidx;
3210
3211 root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3212 hsotg->debug_root = root;
3213 if (IS_ERR(root)) {
3214 dev_err(hsotg->dev, "cannot create debug root\n");
3215 return;
3216 }
3217
3218 /* create general state file */
3219
3220 hsotg->debug_file = debugfs_create_file("state", 0444, root,
3221 hsotg, &state_fops);
3222
3223 if (IS_ERR(hsotg->debug_file))
3224 dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3225
3226 hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3227 hsotg, &fifo_fops);
3228
3229 if (IS_ERR(hsotg->debug_fifo))
3230 dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3231
3232 /* create one file for each endpoint */
3233
3234 for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3235 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3236
3237 ep->debugfs = debugfs_create_file(ep->name, 0444,
3238 root, ep, &ep_fops);
3239
3240 if (IS_ERR(ep->debugfs))
3241 dev_err(hsotg->dev, "failed to create %s debug file\n",
3242 ep->name);
3243 }
3244 }
3245
3246 /**
3247 * s3c_hsotg_delete_debug - cleanup debugfs entries
3248 * @hsotg: The driver state
3249 *
3250 * Cleanup (remove) the debugfs files for use on module exit.
3251 */
s3c_hsotg_delete_debug(struct s3c_hsotg * hsotg)3252 static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3253 {
3254 unsigned epidx;
3255
3256 for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3257 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3258 debugfs_remove(ep->debugfs);
3259 }
3260
3261 debugfs_remove(hsotg->debug_file);
3262 debugfs_remove(hsotg->debug_fifo);
3263 debugfs_remove(hsotg->debug_root);
3264 }
3265
3266 /**
3267 * s3c_hsotg_gate - set the hardware gate for the block
3268 * @pdev: The device we bound to
3269 * @on: On or off.
3270 *
3271 * Set the hardware gate setting into the block. If we end up on
3272 * something other than an S3C64XX, then we might need to change this
3273 * to using a platform data callback, or some other mechanism.
3274 */
s3c_hsotg_gate(struct platform_device * pdev,bool on)3275 static void s3c_hsotg_gate(struct platform_device *pdev, bool on)
3276 {
3277 unsigned long flags;
3278 u32 others;
3279
3280 local_irq_save(flags);
3281
3282 others = __raw_readl(S3C64XX_OTHERS);
3283 if (on)
3284 others |= S3C64XX_OTHERS_USBMASK;
3285 else
3286 others &= ~S3C64XX_OTHERS_USBMASK;
3287 __raw_writel(others, S3C64XX_OTHERS);
3288
3289 local_irq_restore(flags);
3290 }
3291
3292 static struct s3c_hsotg_plat s3c_hsotg_default_pdata;
3293
s3c_hsotg_probe(struct platform_device * pdev)3294 static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
3295 {
3296 struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
3297 struct device *dev = &pdev->dev;
3298 struct s3c_hsotg *hsotg;
3299 struct resource *res;
3300 int epnum;
3301 int ret;
3302
3303 if (!plat)
3304 plat = &s3c_hsotg_default_pdata;
3305
3306 hsotg = kzalloc(sizeof(struct s3c_hsotg) +
3307 sizeof(struct s3c_hsotg_ep) * S3C_HSOTG_EPS,
3308 GFP_KERNEL);
3309 if (!hsotg) {
3310 dev_err(dev, "cannot get memory\n");
3311 return -ENOMEM;
3312 }
3313
3314 hsotg->dev = dev;
3315 hsotg->plat = plat;
3316
3317 hsotg->clk = clk_get(&pdev->dev, "otg");
3318 if (IS_ERR(hsotg->clk)) {
3319 dev_err(dev, "cannot get otg clock\n");
3320 ret = PTR_ERR(hsotg->clk);
3321 goto err_mem;
3322 }
3323
3324 platform_set_drvdata(pdev, hsotg);
3325
3326 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3327 if (!res) {
3328 dev_err(dev, "cannot find register resource 0\n");
3329 ret = -EINVAL;
3330 goto err_clk;
3331 }
3332
3333 hsotg->regs_res = request_mem_region(res->start, resource_size(res),
3334 dev_name(dev));
3335 if (!hsotg->regs_res) {
3336 dev_err(dev, "cannot reserve registers\n");
3337 ret = -ENOENT;
3338 goto err_clk;
3339 }
3340
3341 hsotg->regs = ioremap(res->start, resource_size(res));
3342 if (!hsotg->regs) {
3343 dev_err(dev, "cannot map registers\n");
3344 ret = -ENXIO;
3345 goto err_regs_res;
3346 }
3347
3348 ret = platform_get_irq(pdev, 0);
3349 if (ret < 0) {
3350 dev_err(dev, "cannot find IRQ\n");
3351 goto err_regs;
3352 }
3353
3354 hsotg->irq = ret;
3355
3356 ret = request_irq(ret, s3c_hsotg_irq, 0, dev_name(dev), hsotg);
3357 if (ret < 0) {
3358 dev_err(dev, "cannot claim IRQ\n");
3359 goto err_regs;
3360 }
3361
3362 dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3363
3364 device_initialize(&hsotg->gadget.dev);
3365
3366 dev_set_name(&hsotg->gadget.dev, "gadget");
3367
3368 hsotg->gadget.max_speed = USB_SPEED_HIGH;
3369 hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3370 hsotg->gadget.name = dev_name(dev);
3371
3372 hsotg->gadget.dev.parent = dev;
3373 hsotg->gadget.dev.dma_mask = dev->dma_mask;
3374
3375 /* setup endpoint information */
3376
3377 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3378 hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3379
3380 /* allocate EP0 request */
3381
3382 hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3383 GFP_KERNEL);
3384 if (!hsotg->ctrl_req) {
3385 dev_err(dev, "failed to allocate ctrl req\n");
3386 goto err_regs;
3387 }
3388
3389 /* reset the system */
3390
3391 clk_enable(hsotg->clk);
3392
3393 s3c_hsotg_gate(pdev, true);
3394
3395 s3c_hsotg_otgreset(hsotg);
3396 s3c_hsotg_corereset(hsotg);
3397 s3c_hsotg_init(hsotg);
3398
3399 /* initialise the endpoints now the core has been initialised */
3400 for (epnum = 0; epnum < S3C_HSOTG_EPS; epnum++)
3401 s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3402
3403 ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
3404 if (ret)
3405 goto err_add_udc;
3406
3407 s3c_hsotg_create_debug(hsotg);
3408
3409 s3c_hsotg_dump(hsotg);
3410
3411 our_hsotg = hsotg;
3412 return 0;
3413
3414 err_add_udc:
3415 s3c_hsotg_gate(pdev, false);
3416 clk_disable(hsotg->clk);
3417 clk_put(hsotg->clk);
3418
3419 err_regs:
3420 iounmap(hsotg->regs);
3421
3422 err_regs_res:
3423 release_resource(hsotg->regs_res);
3424 kfree(hsotg->regs_res);
3425 err_clk:
3426 clk_put(hsotg->clk);
3427 err_mem:
3428 kfree(hsotg);
3429 return ret;
3430 }
3431
s3c_hsotg_remove(struct platform_device * pdev)3432 static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
3433 {
3434 struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3435
3436 usb_del_gadget_udc(&hsotg->gadget);
3437
3438 s3c_hsotg_delete_debug(hsotg);
3439
3440 usb_gadget_unregister_driver(hsotg->driver);
3441
3442 free_irq(hsotg->irq, hsotg);
3443 iounmap(hsotg->regs);
3444
3445 release_resource(hsotg->regs_res);
3446 kfree(hsotg->regs_res);
3447
3448 s3c_hsotg_gate(pdev, false);
3449
3450 clk_disable(hsotg->clk);
3451 clk_put(hsotg->clk);
3452
3453 kfree(hsotg);
3454 return 0;
3455 }
3456
3457 #if 1
3458 #define s3c_hsotg_suspend NULL
3459 #define s3c_hsotg_resume NULL
3460 #endif
3461
3462 static struct platform_driver s3c_hsotg_driver = {
3463 .driver = {
3464 .name = "s3c-hsotg",
3465 .owner = THIS_MODULE,
3466 },
3467 .probe = s3c_hsotg_probe,
3468 .remove = __devexit_p(s3c_hsotg_remove),
3469 .suspend = s3c_hsotg_suspend,
3470 .resume = s3c_hsotg_resume,
3471 };
3472
3473 module_platform_driver(s3c_hsotg_driver);
3474
3475 MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3476 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3477 MODULE_LICENSE("GPL");
3478 MODULE_ALIAS("platform:s3c-hsotg");
3479