1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31
32 struct pagevec;
33
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition) \
38 do { \
39 if (WARN_ON(condition)) \
40 set_sbi_flag(sbi, SBI_NEED_FSCK); \
41 } while (0)
42 #endif
43
44 enum {
45 FAULT_KMALLOC,
46 FAULT_KVMALLOC,
47 FAULT_PAGE_ALLOC,
48 FAULT_PAGE_GET,
49 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */
50 FAULT_ALLOC_NID,
51 FAULT_ORPHAN,
52 FAULT_BLOCK,
53 FAULT_DIR_DEPTH,
54 FAULT_EVICT_INODE,
55 FAULT_TRUNCATE,
56 FAULT_READ_IO,
57 FAULT_CHECKPOINT,
58 FAULT_DISCARD,
59 FAULT_WRITE_IO,
60 FAULT_SLAB_ALLOC,
61 FAULT_DQUOT_INIT,
62 FAULT_LOCK_OP,
63 FAULT_BLKADDR,
64 FAULT_MAX,
65 };
66
67 #ifdef CONFIG_F2FS_FAULT_INJECTION
68 #define F2FS_ALL_FAULT_TYPE (GENMASK(FAULT_MAX - 1, 0))
69
70 struct f2fs_fault_info {
71 atomic_t inject_ops;
72 unsigned int inject_rate;
73 unsigned int inject_type;
74 };
75
76 extern const char *f2fs_fault_name[FAULT_MAX];
77 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
78 #endif
79
80 /*
81 * For mount options
82 */
83 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000001
84 #define F2FS_MOUNT_DISCARD 0x00000002
85 #define F2FS_MOUNT_NOHEAP 0x00000004
86 #define F2FS_MOUNT_XATTR_USER 0x00000008
87 #define F2FS_MOUNT_POSIX_ACL 0x00000010
88 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000020
89 #define F2FS_MOUNT_INLINE_XATTR 0x00000040
90 #define F2FS_MOUNT_INLINE_DATA 0x00000080
91 #define F2FS_MOUNT_INLINE_DENTRY 0x00000100
92 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200
93 #define F2FS_MOUNT_NOBARRIER 0x00000400
94 #define F2FS_MOUNT_FASTBOOT 0x00000800
95 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00001000
96 #define F2FS_MOUNT_DATA_FLUSH 0x00002000
97 #define F2FS_MOUNT_FAULT_INJECTION 0x00004000
98 #define F2FS_MOUNT_USRQUOTA 0x00008000
99 #define F2FS_MOUNT_GRPQUOTA 0x00010000
100 #define F2FS_MOUNT_PRJQUOTA 0x00020000
101 #define F2FS_MOUNT_QUOTA 0x00040000
102 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00080000
103 #define F2FS_MOUNT_RESERVE_ROOT 0x00100000
104 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x00200000
105 #define F2FS_MOUNT_NORECOVERY 0x00400000
106 #define F2FS_MOUNT_ATGC 0x00800000
107 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x01000000
108 #define F2FS_MOUNT_GC_MERGE 0x02000000
109 #define F2FS_MOUNT_COMPRESS_CACHE 0x04000000
110 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x08000000
111
112 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
113 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
114 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
115 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
116
117 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
118 typecheck(unsigned long long, b) && \
119 ((long long)((a) - (b)) > 0))
120
121 typedef u32 block_t; /*
122 * should not change u32, since it is the on-disk block
123 * address format, __le32.
124 */
125 typedef u32 nid_t;
126
127 #define COMPRESS_EXT_NUM 16
128
129 /*
130 * An implementation of an rwsem that is explicitly unfair to readers. This
131 * prevents priority inversion when a low-priority reader acquires the read lock
132 * while sleeping on the write lock but the write lock is needed by
133 * higher-priority clients.
134 */
135
136 struct f2fs_rwsem {
137 struct rw_semaphore internal_rwsem;
138 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
139 wait_queue_head_t read_waiters;
140 #endif
141 };
142
143 struct f2fs_mount_info {
144 unsigned int opt;
145 int write_io_size_bits; /* Write IO size bits */
146 block_t root_reserved_blocks; /* root reserved blocks */
147 kuid_t s_resuid; /* reserved blocks for uid */
148 kgid_t s_resgid; /* reserved blocks for gid */
149 int active_logs; /* # of active logs */
150 int inline_xattr_size; /* inline xattr size */
151 #ifdef CONFIG_F2FS_FAULT_INJECTION
152 struct f2fs_fault_info fault_info; /* For fault injection */
153 #endif
154 #ifdef CONFIG_QUOTA
155 /* Names of quota files with journalled quota */
156 char *s_qf_names[MAXQUOTAS];
157 int s_jquota_fmt; /* Format of quota to use */
158 #endif
159 /* For which write hints are passed down to block layer */
160 int alloc_mode; /* segment allocation policy */
161 int fsync_mode; /* fsync policy */
162 int fs_mode; /* fs mode: LFS or ADAPTIVE */
163 int bggc_mode; /* bggc mode: off, on or sync */
164 int memory_mode; /* memory mode */
165 int errors; /* errors parameter */
166 int discard_unit; /*
167 * discard command's offset/size should
168 * be aligned to this unit: block,
169 * segment or section
170 */
171 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
172 block_t unusable_cap_perc; /* percentage for cap */
173 block_t unusable_cap; /* Amount of space allowed to be
174 * unusable when disabling checkpoint
175 */
176
177 /* For compression */
178 unsigned char compress_algorithm; /* algorithm type */
179 unsigned char compress_log_size; /* cluster log size */
180 unsigned char compress_level; /* compress level */
181 bool compress_chksum; /* compressed data chksum */
182 unsigned char compress_ext_cnt; /* extension count */
183 unsigned char nocompress_ext_cnt; /* nocompress extension count */
184 int compress_mode; /* compression mode */
185 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
186 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
187 };
188
189 #define F2FS_FEATURE_ENCRYPT 0x00000001
190 #define F2FS_FEATURE_BLKZONED 0x00000002
191 #define F2FS_FEATURE_ATOMIC_WRITE 0x00000004
192 #define F2FS_FEATURE_EXTRA_ATTR 0x00000008
193 #define F2FS_FEATURE_PRJQUOTA 0x00000010
194 #define F2FS_FEATURE_INODE_CHKSUM 0x00000020
195 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040
196 #define F2FS_FEATURE_QUOTA_INO 0x00000080
197 #define F2FS_FEATURE_INODE_CRTIME 0x00000100
198 #define F2FS_FEATURE_LOST_FOUND 0x00000200
199 #define F2FS_FEATURE_VERITY 0x00000400
200 #define F2FS_FEATURE_SB_CHKSUM 0x00000800
201 #define F2FS_FEATURE_CASEFOLD 0x00001000
202 #define F2FS_FEATURE_COMPRESSION 0x00002000
203 #define F2FS_FEATURE_RO 0x00004000
204
205 #define __F2FS_HAS_FEATURE(raw_super, mask) \
206 ((raw_super->feature & cpu_to_le32(mask)) != 0)
207 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
208
209 /*
210 * Default values for user and/or group using reserved blocks
211 */
212 #define F2FS_DEF_RESUID 0
213 #define F2FS_DEF_RESGID 0
214
215 /*
216 * For checkpoint manager
217 */
218 enum {
219 NAT_BITMAP,
220 SIT_BITMAP
221 };
222
223 #define CP_UMOUNT 0x00000001
224 #define CP_FASTBOOT 0x00000002
225 #define CP_SYNC 0x00000004
226 #define CP_RECOVERY 0x00000008
227 #define CP_DISCARD 0x00000010
228 #define CP_TRIMMED 0x00000020
229 #define CP_PAUSE 0x00000040
230 #define CP_RESIZE 0x00000080
231
232 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
233 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
234 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
235 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
236 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
237 #define DEF_CP_INTERVAL 60 /* 60 secs */
238 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
239 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
240 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
241 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
242
243 struct cp_control {
244 int reason;
245 __u64 trim_start;
246 __u64 trim_end;
247 __u64 trim_minlen;
248 };
249
250 /*
251 * indicate meta/data type
252 */
253 enum {
254 META_CP,
255 META_NAT,
256 META_SIT,
257 META_SSA,
258 META_MAX,
259 META_POR,
260 DATA_GENERIC, /* check range only */
261 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
262 DATA_GENERIC_ENHANCE_READ, /*
263 * strong check on range and segment
264 * bitmap but no warning due to race
265 * condition of read on truncated area
266 * by extent_cache
267 */
268 DATA_GENERIC_ENHANCE_UPDATE, /*
269 * strong check on range and segment
270 * bitmap for update case
271 */
272 META_GENERIC,
273 };
274
275 /* for the list of ino */
276 enum {
277 ORPHAN_INO, /* for orphan ino list */
278 APPEND_INO, /* for append ino list */
279 UPDATE_INO, /* for update ino list */
280 TRANS_DIR_INO, /* for transactions dir ino list */
281 FLUSH_INO, /* for multiple device flushing */
282 MAX_INO_ENTRY, /* max. list */
283 };
284
285 struct ino_entry {
286 struct list_head list; /* list head */
287 nid_t ino; /* inode number */
288 unsigned int dirty_device; /* dirty device bitmap */
289 };
290
291 /* for the list of inodes to be GCed */
292 struct inode_entry {
293 struct list_head list; /* list head */
294 struct inode *inode; /* vfs inode pointer */
295 };
296
297 struct fsync_node_entry {
298 struct list_head list; /* list head */
299 struct page *page; /* warm node page pointer */
300 unsigned int seq_id; /* sequence id */
301 };
302
303 struct ckpt_req {
304 struct completion wait; /* completion for checkpoint done */
305 struct llist_node llnode; /* llist_node to be linked in wait queue */
306 int ret; /* return code of checkpoint */
307 ktime_t queue_time; /* request queued time */
308 };
309
310 struct ckpt_req_control {
311 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */
312 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */
313 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */
314 atomic_t issued_ckpt; /* # of actually issued ckpts */
315 atomic_t total_ckpt; /* # of total ckpts */
316 atomic_t queued_ckpt; /* # of queued ckpts */
317 struct llist_head issue_list; /* list for command issue */
318 spinlock_t stat_lock; /* lock for below checkpoint time stats */
319 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */
320 unsigned int peak_time; /* peak wait time in msec until now */
321 };
322
323 /* for the bitmap indicate blocks to be discarded */
324 struct discard_entry {
325 struct list_head list; /* list head */
326 block_t start_blkaddr; /* start blockaddr of current segment */
327 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
328 };
329
330 /* minimum discard granularity, unit: block count */
331 #define MIN_DISCARD_GRANULARITY 1
332 /* default discard granularity of inner discard thread, unit: block count */
333 #define DEFAULT_DISCARD_GRANULARITY 16
334 /* default maximum discard granularity of ordered discard, unit: block count */
335 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16
336
337 /* max discard pend list number */
338 #define MAX_PLIST_NUM 512
339 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
340 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
341
342 enum {
343 D_PREP, /* initial */
344 D_PARTIAL, /* partially submitted */
345 D_SUBMIT, /* all submitted */
346 D_DONE, /* finished */
347 };
348
349 struct discard_info {
350 block_t lstart; /* logical start address */
351 block_t len; /* length */
352 block_t start; /* actual start address in dev */
353 };
354
355 struct discard_cmd {
356 struct rb_node rb_node; /* rb node located in rb-tree */
357 struct discard_info di; /* discard info */
358 struct list_head list; /* command list */
359 struct completion wait; /* compleation */
360 struct block_device *bdev; /* bdev */
361 unsigned short ref; /* reference count */
362 unsigned char state; /* state */
363 unsigned char queued; /* queued discard */
364 int error; /* bio error */
365 spinlock_t lock; /* for state/bio_ref updating */
366 unsigned short bio_ref; /* bio reference count */
367 };
368
369 enum {
370 DPOLICY_BG,
371 DPOLICY_FORCE,
372 DPOLICY_FSTRIM,
373 DPOLICY_UMOUNT,
374 MAX_DPOLICY,
375 };
376
377 struct discard_policy {
378 int type; /* type of discard */
379 unsigned int min_interval; /* used for candidates exist */
380 unsigned int mid_interval; /* used for device busy */
381 unsigned int max_interval; /* used for candidates not exist */
382 unsigned int max_requests; /* # of discards issued per round */
383 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
384 bool io_aware; /* issue discard in idle time */
385 bool sync; /* submit discard with REQ_SYNC flag */
386 bool ordered; /* issue discard by lba order */
387 bool timeout; /* discard timeout for put_super */
388 unsigned int granularity; /* discard granularity */
389 };
390
391 struct discard_cmd_control {
392 struct task_struct *f2fs_issue_discard; /* discard thread */
393 struct list_head entry_list; /* 4KB discard entry list */
394 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
395 struct list_head wait_list; /* store on-flushing entries */
396 struct list_head fstrim_list; /* in-flight discard from fstrim */
397 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
398 struct mutex cmd_lock;
399 unsigned int nr_discards; /* # of discards in the list */
400 unsigned int max_discards; /* max. discards to be issued */
401 unsigned int max_discard_request; /* max. discard request per round */
402 unsigned int min_discard_issue_time; /* min. interval between discard issue */
403 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */
404 unsigned int max_discard_issue_time; /* max. interval between discard issue */
405 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
406 unsigned int discard_urgent_util; /* utilization which issue discard proactively */
407 unsigned int discard_granularity; /* discard granularity */
408 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */
409 unsigned int undiscard_blks; /* # of undiscard blocks */
410 unsigned int next_pos; /* next discard position */
411 atomic_t issued_discard; /* # of issued discard */
412 atomic_t queued_discard; /* # of queued discard */
413 atomic_t discard_cmd_cnt; /* # of cached cmd count */
414 struct rb_root_cached root; /* root of discard rb-tree */
415 bool rbtree_check; /* config for consistence check */
416 bool discard_wake; /* to wake up discard thread */
417 };
418
419 /* for the list of fsync inodes, used only during recovery */
420 struct fsync_inode_entry {
421 struct list_head list; /* list head */
422 struct inode *inode; /* vfs inode pointer */
423 block_t blkaddr; /* block address locating the last fsync */
424 block_t last_dentry; /* block address locating the last dentry */
425 };
426
427 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
428 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
429
430 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
431 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
432 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
433 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
434
435 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
436 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
437
update_nats_in_cursum(struct f2fs_journal * journal,int i)438 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
439 {
440 int before = nats_in_cursum(journal);
441
442 journal->n_nats = cpu_to_le16(before + i);
443 return before;
444 }
445
update_sits_in_cursum(struct f2fs_journal * journal,int i)446 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
447 {
448 int before = sits_in_cursum(journal);
449
450 journal->n_sits = cpu_to_le16(before + i);
451 return before;
452 }
453
__has_cursum_space(struct f2fs_journal * journal,int size,int type)454 static inline bool __has_cursum_space(struct f2fs_journal *journal,
455 int size, int type)
456 {
457 if (type == NAT_JOURNAL)
458 return size <= MAX_NAT_JENTRIES(journal);
459 return size <= MAX_SIT_JENTRIES(journal);
460 }
461
462 /* for inline stuff */
463 #define DEF_INLINE_RESERVED_SIZE 1
464 static inline int get_extra_isize(struct inode *inode);
465 static inline int get_inline_xattr_addrs(struct inode *inode);
466 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
467 (CUR_ADDRS_PER_INODE(inode) - \
468 get_inline_xattr_addrs(inode) - \
469 DEF_INLINE_RESERVED_SIZE))
470
471 /* for inline dir */
472 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
473 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
474 BITS_PER_BYTE + 1))
475 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
476 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
477 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
478 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
479 NR_INLINE_DENTRY(inode) + \
480 INLINE_DENTRY_BITMAP_SIZE(inode)))
481
482 /*
483 * For INODE and NODE manager
484 */
485 /* for directory operations */
486
487 struct f2fs_filename {
488 /*
489 * The filename the user specified. This is NULL for some
490 * filesystem-internal operations, e.g. converting an inline directory
491 * to a non-inline one, or roll-forward recovering an encrypted dentry.
492 */
493 const struct qstr *usr_fname;
494
495 /*
496 * The on-disk filename. For encrypted directories, this is encrypted.
497 * This may be NULL for lookups in an encrypted dir without the key.
498 */
499 struct fscrypt_str disk_name;
500
501 /* The dirhash of this filename */
502 f2fs_hash_t hash;
503
504 #ifdef CONFIG_FS_ENCRYPTION
505 /*
506 * For lookups in encrypted directories: either the buffer backing
507 * disk_name, or a buffer that holds the decoded no-key name.
508 */
509 struct fscrypt_str crypto_buf;
510 #endif
511 #if IS_ENABLED(CONFIG_UNICODE)
512 /*
513 * For casefolded directories: the casefolded name, but it's left NULL
514 * if the original name is not valid Unicode, if the original name is
515 * "." or "..", if the directory is both casefolded and encrypted and
516 * its encryption key is unavailable, or if the filesystem is doing an
517 * internal operation where usr_fname is also NULL. In all these cases
518 * we fall back to treating the name as an opaque byte sequence.
519 */
520 struct fscrypt_str cf_name;
521 #endif
522 };
523
524 struct f2fs_dentry_ptr {
525 struct inode *inode;
526 void *bitmap;
527 struct f2fs_dir_entry *dentry;
528 __u8 (*filename)[F2FS_SLOT_LEN];
529 int max;
530 int nr_bitmap;
531 };
532
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)533 static inline void make_dentry_ptr_block(struct inode *inode,
534 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
535 {
536 d->inode = inode;
537 d->max = NR_DENTRY_IN_BLOCK;
538 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
539 d->bitmap = t->dentry_bitmap;
540 d->dentry = t->dentry;
541 d->filename = t->filename;
542 }
543
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)544 static inline void make_dentry_ptr_inline(struct inode *inode,
545 struct f2fs_dentry_ptr *d, void *t)
546 {
547 int entry_cnt = NR_INLINE_DENTRY(inode);
548 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
549 int reserved_size = INLINE_RESERVED_SIZE(inode);
550
551 d->inode = inode;
552 d->max = entry_cnt;
553 d->nr_bitmap = bitmap_size;
554 d->bitmap = t;
555 d->dentry = t + bitmap_size + reserved_size;
556 d->filename = t + bitmap_size + reserved_size +
557 SIZE_OF_DIR_ENTRY * entry_cnt;
558 }
559
560 /*
561 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
562 * as its node offset to distinguish from index node blocks.
563 * But some bits are used to mark the node block.
564 */
565 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
566 >> OFFSET_BIT_SHIFT)
567 enum {
568 ALLOC_NODE, /* allocate a new node page if needed */
569 LOOKUP_NODE, /* look up a node without readahead */
570 LOOKUP_NODE_RA, /*
571 * look up a node with readahead called
572 * by get_data_block.
573 */
574 };
575
576 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */
577
578 /* congestion wait timeout value, default: 20ms */
579 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
580
581 /* maximum retry quota flush count */
582 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
583
584 /* maximum retry of EIO'ed page */
585 #define MAX_RETRY_PAGE_EIO 100
586
587 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
588
589 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
590
591 /* dirty segments threshold for triggering CP */
592 #define DEFAULT_DIRTY_THRESHOLD 4
593
594 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS
595 #define RECOVERY_MIN_RA_BLOCKS 1
596
597 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */
598
599 /* for in-memory extent cache entry */
600 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
601
602 /* number of extent info in extent cache we try to shrink */
603 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128
604
605 /* number of age extent info in extent cache we try to shrink */
606 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128
607 #define LAST_AGE_WEIGHT 30
608 #define SAME_AGE_REGION 1024
609
610 /*
611 * Define data block with age less than 1GB as hot data
612 * define data block with age less than 10GB but more than 1GB as warm data
613 */
614 #define DEF_HOT_DATA_AGE_THRESHOLD 262144
615 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440
616
617 /* extent cache type */
618 enum extent_type {
619 EX_READ,
620 EX_BLOCK_AGE,
621 NR_EXTENT_CACHES,
622 };
623
624 struct extent_info {
625 unsigned int fofs; /* start offset in a file */
626 unsigned int len; /* length of the extent */
627 union {
628 /* read extent_cache */
629 struct {
630 /* start block address of the extent */
631 block_t blk;
632 #ifdef CONFIG_F2FS_FS_COMPRESSION
633 /* physical extent length of compressed blocks */
634 unsigned int c_len;
635 #endif
636 };
637 /* block age extent_cache */
638 struct {
639 /* block age of the extent */
640 unsigned long long age;
641 /* last total blocks allocated */
642 unsigned long long last_blocks;
643 };
644 };
645 };
646
647 struct extent_node {
648 struct rb_node rb_node; /* rb node located in rb-tree */
649 struct extent_info ei; /* extent info */
650 struct list_head list; /* node in global extent list of sbi */
651 struct extent_tree *et; /* extent tree pointer */
652 };
653
654 struct extent_tree {
655 nid_t ino; /* inode number */
656 enum extent_type type; /* keep the extent tree type */
657 struct rb_root_cached root; /* root of extent info rb-tree */
658 struct extent_node *cached_en; /* recently accessed extent node */
659 struct list_head list; /* to be used by sbi->zombie_list */
660 rwlock_t lock; /* protect extent info rb-tree */
661 atomic_t node_cnt; /* # of extent node in rb-tree*/
662 bool largest_updated; /* largest extent updated */
663 struct extent_info largest; /* largest cached extent for EX_READ */
664 };
665
666 struct extent_tree_info {
667 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
668 struct mutex extent_tree_lock; /* locking extent radix tree */
669 struct list_head extent_list; /* lru list for shrinker */
670 spinlock_t extent_lock; /* locking extent lru list */
671 atomic_t total_ext_tree; /* extent tree count */
672 struct list_head zombie_list; /* extent zombie tree list */
673 atomic_t total_zombie_tree; /* extent zombie tree count */
674 atomic_t total_ext_node; /* extent info count */
675 };
676
677 /*
678 * State of block returned by f2fs_map_blocks.
679 */
680 #define F2FS_MAP_NEW (1U << 0)
681 #define F2FS_MAP_MAPPED (1U << 1)
682 #define F2FS_MAP_DELALLOC (1U << 2)
683 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
684 F2FS_MAP_DELALLOC)
685
686 struct f2fs_map_blocks {
687 struct block_device *m_bdev; /* for multi-device dio */
688 block_t m_pblk;
689 block_t m_lblk;
690 unsigned int m_len;
691 unsigned int m_flags;
692 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
693 pgoff_t *m_next_extent; /* point to next possible extent */
694 int m_seg_type;
695 bool m_may_create; /* indicate it is from write path */
696 bool m_multidev_dio; /* indicate it allows multi-device dio */
697 };
698
699 /* for flag in get_data_block */
700 enum {
701 F2FS_GET_BLOCK_DEFAULT,
702 F2FS_GET_BLOCK_FIEMAP,
703 F2FS_GET_BLOCK_BMAP,
704 F2FS_GET_BLOCK_DIO,
705 F2FS_GET_BLOCK_PRE_DIO,
706 F2FS_GET_BLOCK_PRE_AIO,
707 F2FS_GET_BLOCK_PRECACHE,
708 };
709
710 /*
711 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
712 */
713 #define FADVISE_COLD_BIT 0x01
714 #define FADVISE_LOST_PINO_BIT 0x02
715 #define FADVISE_ENCRYPT_BIT 0x04
716 #define FADVISE_ENC_NAME_BIT 0x08
717 #define FADVISE_KEEP_SIZE_BIT 0x10
718 #define FADVISE_HOT_BIT 0x20
719 #define FADVISE_VERITY_BIT 0x40
720 #define FADVISE_TRUNC_BIT 0x80
721
722 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
723
724 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
725 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
726 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
727
728 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
729 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
730 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
731
732 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
733 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
734
735 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
736 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
737
738 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
739 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
740
741 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
742 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
743 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
744
745 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
746 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
747
748 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT)
749 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT)
750 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT)
751
752 #define DEF_DIR_LEVEL 0
753
754 enum {
755 GC_FAILURE_PIN,
756 MAX_GC_FAILURE
757 };
758
759 /* used for f2fs_inode_info->flags */
760 enum {
761 FI_NEW_INODE, /* indicate newly allocated inode */
762 FI_DIRTY_INODE, /* indicate inode is dirty or not */
763 FI_AUTO_RECOVER, /* indicate inode is recoverable */
764 FI_DIRTY_DIR, /* indicate directory has dirty pages */
765 FI_INC_LINK, /* need to increment i_nlink */
766 FI_ACL_MODE, /* indicate acl mode */
767 FI_NO_ALLOC, /* should not allocate any blocks */
768 FI_FREE_NID, /* free allocated nide */
769 FI_NO_EXTENT, /* not to use the extent cache */
770 FI_INLINE_XATTR, /* used for inline xattr */
771 FI_INLINE_DATA, /* used for inline data*/
772 FI_INLINE_DENTRY, /* used for inline dentry */
773 FI_APPEND_WRITE, /* inode has appended data */
774 FI_UPDATE_WRITE, /* inode has in-place-update data */
775 FI_NEED_IPU, /* used for ipu per file */
776 FI_ATOMIC_FILE, /* indicate atomic file */
777 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
778 FI_DROP_CACHE, /* drop dirty page cache */
779 FI_DATA_EXIST, /* indicate data exists */
780 FI_INLINE_DOTS, /* indicate inline dot dentries */
781 FI_SKIP_WRITES, /* should skip data page writeback */
782 FI_OPU_WRITE, /* used for opu per file */
783 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
784 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */
785 FI_HOT_DATA, /* indicate file is hot */
786 FI_EXTRA_ATTR, /* indicate file has extra attribute */
787 FI_PROJ_INHERIT, /* indicate file inherits projectid */
788 FI_PIN_FILE, /* indicate file should not be gced */
789 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
790 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
791 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */
792 FI_MMAP_FILE, /* indicate file was mmapped */
793 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */
794 FI_COMPRESS_RELEASED, /* compressed blocks were released */
795 FI_ALIGNED_WRITE, /* enable aligned write */
796 FI_COW_FILE, /* indicate COW file */
797 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */
798 FI_ATOMIC_REPLACE, /* indicate atomic replace */
799 FI_MAX, /* max flag, never be used */
800 };
801
802 struct f2fs_inode_info {
803 struct inode vfs_inode; /* serve a vfs inode */
804 unsigned long i_flags; /* keep an inode flags for ioctl */
805 unsigned char i_advise; /* use to give file attribute hints */
806 unsigned char i_dir_level; /* use for dentry level for large dir */
807 unsigned int i_current_depth; /* only for directory depth */
808 /* for gc failure statistic */
809 unsigned int i_gc_failures[MAX_GC_FAILURE];
810 unsigned int i_pino; /* parent inode number */
811 umode_t i_acl_mode; /* keep file acl mode temporarily */
812
813 /* Use below internally in f2fs*/
814 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
815 struct f2fs_rwsem i_sem; /* protect fi info */
816 atomic_t dirty_pages; /* # of dirty pages */
817 f2fs_hash_t chash; /* hash value of given file name */
818 unsigned int clevel; /* maximum level of given file name */
819 struct task_struct *task; /* lookup and create consistency */
820 struct task_struct *cp_task; /* separate cp/wb IO stats*/
821 struct task_struct *wb_task; /* indicate inode is in context of writeback */
822 nid_t i_xattr_nid; /* node id that contains xattrs */
823 loff_t last_disk_size; /* lastly written file size */
824 spinlock_t i_size_lock; /* protect last_disk_size */
825
826 #ifdef CONFIG_QUOTA
827 struct dquot *i_dquot[MAXQUOTAS];
828
829 /* quota space reservation, managed internally by quota code */
830 qsize_t i_reserved_quota;
831 #endif
832 struct list_head dirty_list; /* dirty list for dirs and files */
833 struct list_head gdirty_list; /* linked in global dirty list */
834 struct task_struct *atomic_write_task; /* store atomic write task */
835 struct extent_tree *extent_tree[NR_EXTENT_CACHES];
836 /* cached extent_tree entry */
837 struct inode *cow_inode; /* copy-on-write inode for atomic write */
838
839 /* avoid racing between foreground op and gc */
840 struct f2fs_rwsem i_gc_rwsem[2];
841 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
842
843 int i_extra_isize; /* size of extra space located in i_addr */
844 kprojid_t i_projid; /* id for project quota */
845 int i_inline_xattr_size; /* inline xattr size */
846 struct timespec64 i_crtime; /* inode creation time */
847 struct timespec64 i_disk_time[3];/* inode disk times */
848
849 /* for file compress */
850 atomic_t i_compr_blocks; /* # of compressed blocks */
851 unsigned char i_compress_algorithm; /* algorithm type */
852 unsigned char i_log_cluster_size; /* log of cluster size */
853 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */
854 unsigned char i_compress_flag; /* compress flag */
855 unsigned int i_cluster_size; /* cluster size */
856
857 unsigned int atomic_write_cnt;
858 loff_t original_i_size; /* original i_size before atomic write */
859 };
860
get_read_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)861 static inline void get_read_extent_info(struct extent_info *ext,
862 struct f2fs_extent *i_ext)
863 {
864 ext->fofs = le32_to_cpu(i_ext->fofs);
865 ext->blk = le32_to_cpu(i_ext->blk);
866 ext->len = le32_to_cpu(i_ext->len);
867 }
868
set_raw_read_extent(struct extent_info * ext,struct f2fs_extent * i_ext)869 static inline void set_raw_read_extent(struct extent_info *ext,
870 struct f2fs_extent *i_ext)
871 {
872 i_ext->fofs = cpu_to_le32(ext->fofs);
873 i_ext->blk = cpu_to_le32(ext->blk);
874 i_ext->len = cpu_to_le32(ext->len);
875 }
876
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)877 static inline bool __is_discard_mergeable(struct discard_info *back,
878 struct discard_info *front, unsigned int max_len)
879 {
880 return (back->lstart + back->len == front->lstart) &&
881 (back->len + front->len <= max_len);
882 }
883
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)884 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
885 struct discard_info *back, unsigned int max_len)
886 {
887 return __is_discard_mergeable(back, cur, max_len);
888 }
889
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)890 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
891 struct discard_info *front, unsigned int max_len)
892 {
893 return __is_discard_mergeable(cur, front, max_len);
894 }
895
896 /*
897 * For free nid management
898 */
899 enum nid_state {
900 FREE_NID, /* newly added to free nid list */
901 PREALLOC_NID, /* it is preallocated */
902 MAX_NID_STATE,
903 };
904
905 enum nat_state {
906 TOTAL_NAT,
907 DIRTY_NAT,
908 RECLAIMABLE_NAT,
909 MAX_NAT_STATE,
910 };
911
912 struct f2fs_nm_info {
913 block_t nat_blkaddr; /* base disk address of NAT */
914 nid_t max_nid; /* maximum possible node ids */
915 nid_t available_nids; /* # of available node ids */
916 nid_t next_scan_nid; /* the next nid to be scanned */
917 nid_t max_rf_node_blocks; /* max # of nodes for recovery */
918 unsigned int ram_thresh; /* control the memory footprint */
919 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
920 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
921
922 /* NAT cache management */
923 struct radix_tree_root nat_root;/* root of the nat entry cache */
924 struct radix_tree_root nat_set_root;/* root of the nat set cache */
925 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */
926 struct list_head nat_entries; /* cached nat entry list (clean) */
927 spinlock_t nat_list_lock; /* protect clean nat entry list */
928 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
929 unsigned int nat_blocks; /* # of nat blocks */
930
931 /* free node ids management */
932 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
933 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
934 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
935 spinlock_t nid_list_lock; /* protect nid lists ops */
936 struct mutex build_lock; /* lock for build free nids */
937 unsigned char **free_nid_bitmap;
938 unsigned char *nat_block_bitmap;
939 unsigned short *free_nid_count; /* free nid count of NAT block */
940
941 /* for checkpoint */
942 char *nat_bitmap; /* NAT bitmap pointer */
943
944 unsigned int nat_bits_blocks; /* # of nat bits blocks */
945 unsigned char *nat_bits; /* NAT bits blocks */
946 unsigned char *full_nat_bits; /* full NAT pages */
947 unsigned char *empty_nat_bits; /* empty NAT pages */
948 #ifdef CONFIG_F2FS_CHECK_FS
949 char *nat_bitmap_mir; /* NAT bitmap mirror */
950 #endif
951 int bitmap_size; /* bitmap size */
952 };
953
954 /*
955 * this structure is used as one of function parameters.
956 * all the information are dedicated to a given direct node block determined
957 * by the data offset in a file.
958 */
959 struct dnode_of_data {
960 struct inode *inode; /* vfs inode pointer */
961 struct page *inode_page; /* its inode page, NULL is possible */
962 struct page *node_page; /* cached direct node page */
963 nid_t nid; /* node id of the direct node block */
964 unsigned int ofs_in_node; /* data offset in the node page */
965 bool inode_page_locked; /* inode page is locked or not */
966 bool node_changed; /* is node block changed */
967 char cur_level; /* level of hole node page */
968 char max_level; /* level of current page located */
969 block_t data_blkaddr; /* block address of the node block */
970 };
971
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)972 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
973 struct page *ipage, struct page *npage, nid_t nid)
974 {
975 memset(dn, 0, sizeof(*dn));
976 dn->inode = inode;
977 dn->inode_page = ipage;
978 dn->node_page = npage;
979 dn->nid = nid;
980 }
981
982 /*
983 * For SIT manager
984 *
985 * By default, there are 6 active log areas across the whole main area.
986 * When considering hot and cold data separation to reduce cleaning overhead,
987 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
988 * respectively.
989 * In the current design, you should not change the numbers intentionally.
990 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
991 * logs individually according to the underlying devices. (default: 6)
992 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
993 * data and 8 for node logs.
994 */
995 #define NR_CURSEG_DATA_TYPE (3)
996 #define NR_CURSEG_NODE_TYPE (3)
997 #define NR_CURSEG_INMEM_TYPE (2)
998 #define NR_CURSEG_RO_TYPE (2)
999 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1000 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1001
1002 enum {
1003 CURSEG_HOT_DATA = 0, /* directory entry blocks */
1004 CURSEG_WARM_DATA, /* data blocks */
1005 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
1006 CURSEG_HOT_NODE, /* direct node blocks of directory files */
1007 CURSEG_WARM_NODE, /* direct node blocks of normal files */
1008 CURSEG_COLD_NODE, /* indirect node blocks */
1009 NR_PERSISTENT_LOG, /* number of persistent log */
1010 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1011 /* pinned file that needs consecutive block address */
1012 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
1013 NO_CHECK_TYPE, /* number of persistent & inmem log */
1014 };
1015
1016 struct flush_cmd {
1017 struct completion wait;
1018 struct llist_node llnode;
1019 nid_t ino;
1020 int ret;
1021 };
1022
1023 struct flush_cmd_control {
1024 struct task_struct *f2fs_issue_flush; /* flush thread */
1025 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
1026 atomic_t issued_flush; /* # of issued flushes */
1027 atomic_t queued_flush; /* # of queued flushes */
1028 struct llist_head issue_list; /* list for command issue */
1029 struct llist_node *dispatch_list; /* list for command dispatch */
1030 };
1031
1032 struct f2fs_sm_info {
1033 struct sit_info *sit_info; /* whole segment information */
1034 struct free_segmap_info *free_info; /* free segment information */
1035 struct dirty_seglist_info *dirty_info; /* dirty segment information */
1036 struct curseg_info *curseg_array; /* active segment information */
1037
1038 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */
1039
1040 block_t seg0_blkaddr; /* block address of 0'th segment */
1041 block_t main_blkaddr; /* start block address of main area */
1042 block_t ssa_blkaddr; /* start block address of SSA area */
1043
1044 unsigned int segment_count; /* total # of segments */
1045 unsigned int main_segments; /* # of segments in main area */
1046 unsigned int reserved_segments; /* # of reserved segments */
1047 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1048 unsigned int ovp_segments; /* # of overprovision segments */
1049
1050 /* a threshold to reclaim prefree segments */
1051 unsigned int rec_prefree_segments;
1052
1053 struct list_head sit_entry_set; /* sit entry set list */
1054
1055 unsigned int ipu_policy; /* in-place-update policy */
1056 unsigned int min_ipu_util; /* in-place-update threshold */
1057 unsigned int min_fsync_blocks; /* threshold for fsync */
1058 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1059 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1060 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1061
1062 /* for flush command control */
1063 struct flush_cmd_control *fcc_info;
1064
1065 /* for discard command control */
1066 struct discard_cmd_control *dcc_info;
1067 };
1068
1069 /*
1070 * For superblock
1071 */
1072 /*
1073 * COUNT_TYPE for monitoring
1074 *
1075 * f2fs monitors the number of several block types such as on-writeback,
1076 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1077 */
1078 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1079 enum count_type {
1080 F2FS_DIRTY_DENTS,
1081 F2FS_DIRTY_DATA,
1082 F2FS_DIRTY_QDATA,
1083 F2FS_DIRTY_NODES,
1084 F2FS_DIRTY_META,
1085 F2FS_DIRTY_IMETA,
1086 F2FS_WB_CP_DATA,
1087 F2FS_WB_DATA,
1088 F2FS_RD_DATA,
1089 F2FS_RD_NODE,
1090 F2FS_RD_META,
1091 F2FS_DIO_WRITE,
1092 F2FS_DIO_READ,
1093 NR_COUNT_TYPE,
1094 };
1095
1096 /*
1097 * The below are the page types of bios used in submit_bio().
1098 * The available types are:
1099 * DATA User data pages. It operates as async mode.
1100 * NODE Node pages. It operates as async mode.
1101 * META FS metadata pages such as SIT, NAT, CP.
1102 * NR_PAGE_TYPE The number of page types.
1103 * META_FLUSH Make sure the previous pages are written
1104 * with waiting the bio's completion
1105 * ... Only can be used with META.
1106 */
1107 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1108 enum page_type {
1109 DATA = 0,
1110 NODE = 1, /* should not change this */
1111 META,
1112 NR_PAGE_TYPE,
1113 META_FLUSH,
1114 IPU, /* the below types are used by tracepoints only. */
1115 OPU,
1116 };
1117
1118 enum temp_type {
1119 HOT = 0, /* must be zero for meta bio */
1120 WARM,
1121 COLD,
1122 NR_TEMP_TYPE,
1123 };
1124
1125 enum need_lock_type {
1126 LOCK_REQ = 0,
1127 LOCK_DONE,
1128 LOCK_RETRY,
1129 };
1130
1131 enum cp_reason_type {
1132 CP_NO_NEEDED,
1133 CP_NON_REGULAR,
1134 CP_COMPRESSED,
1135 CP_HARDLINK,
1136 CP_SB_NEED_CP,
1137 CP_WRONG_PINO,
1138 CP_NO_SPC_ROLL,
1139 CP_NODE_NEED_CP,
1140 CP_FASTBOOT_MODE,
1141 CP_SPEC_LOG_NUM,
1142 CP_RECOVER_DIR,
1143 };
1144
1145 enum iostat_type {
1146 /* WRITE IO */
1147 APP_DIRECT_IO, /* app direct write IOs */
1148 APP_BUFFERED_IO, /* app buffered write IOs */
1149 APP_WRITE_IO, /* app write IOs */
1150 APP_MAPPED_IO, /* app mapped IOs */
1151 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */
1152 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */
1153 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1154 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */
1155 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1156 FS_META_IO, /* meta IOs from kworker/reclaimer */
1157 FS_GC_DATA_IO, /* data IOs from forground gc */
1158 FS_GC_NODE_IO, /* node IOs from forground gc */
1159 FS_CP_DATA_IO, /* data IOs from checkpoint */
1160 FS_CP_NODE_IO, /* node IOs from checkpoint */
1161 FS_CP_META_IO, /* meta IOs from checkpoint */
1162
1163 /* READ IO */
1164 APP_DIRECT_READ_IO, /* app direct read IOs */
1165 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1166 APP_READ_IO, /* app read IOs */
1167 APP_MAPPED_READ_IO, /* app mapped read IOs */
1168 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */
1169 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */
1170 FS_DATA_READ_IO, /* data read IOs */
1171 FS_GDATA_READ_IO, /* data read IOs from background gc */
1172 FS_CDATA_READ_IO, /* compressed data read IOs */
1173 FS_NODE_READ_IO, /* node read IOs */
1174 FS_META_READ_IO, /* meta read IOs */
1175
1176 /* other */
1177 FS_DISCARD_IO, /* discard */
1178 FS_FLUSH_IO, /* flush */
1179 FS_ZONE_RESET_IO, /* zone reset */
1180 NR_IO_TYPE,
1181 };
1182
1183 struct f2fs_io_info {
1184 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1185 nid_t ino; /* inode number */
1186 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1187 enum temp_type temp; /* contains HOT/WARM/COLD */
1188 enum req_op op; /* contains REQ_OP_ */
1189 blk_opf_t op_flags; /* req_flag_bits */
1190 block_t new_blkaddr; /* new block address to be written */
1191 block_t old_blkaddr; /* old block address before Cow */
1192 struct page *page; /* page to be written */
1193 struct page *encrypted_page; /* encrypted page */
1194 struct page *compressed_page; /* compressed page */
1195 struct list_head list; /* serialize IOs */
1196 unsigned int compr_blocks; /* # of compressed block addresses */
1197 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */
1198 unsigned int version:8; /* version of the node */
1199 unsigned int submitted:1; /* indicate IO submission */
1200 unsigned int in_list:1; /* indicate fio is in io_list */
1201 unsigned int is_por:1; /* indicate IO is from recovery or not */
1202 unsigned int retry:1; /* need to reallocate block address */
1203 unsigned int encrypted:1; /* indicate file is encrypted */
1204 unsigned int post_read:1; /* require post read */
1205 enum iostat_type io_type; /* io type */
1206 struct writeback_control *io_wbc; /* writeback control */
1207 struct bio **bio; /* bio for ipu */
1208 sector_t *last_block; /* last block number in bio */
1209 };
1210
1211 struct bio_entry {
1212 struct bio *bio;
1213 struct list_head list;
1214 };
1215
1216 #define is_read_io(rw) ((rw) == READ)
1217 struct f2fs_bio_info {
1218 struct f2fs_sb_info *sbi; /* f2fs superblock */
1219 struct bio *bio; /* bios to merge */
1220 sector_t last_block_in_bio; /* last block number */
1221 struct f2fs_io_info fio; /* store buffered io info. */
1222 #ifdef CONFIG_BLK_DEV_ZONED
1223 struct completion zone_wait; /* condition value for the previous open zone to close */
1224 struct bio *zone_pending_bio; /* pending bio for the previous zone */
1225 void *bi_private; /* previous bi_private for pending bio */
1226 #endif
1227 struct f2fs_rwsem io_rwsem; /* blocking op for bio */
1228 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1229 struct list_head io_list; /* track fios */
1230 struct list_head bio_list; /* bio entry list head */
1231 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */
1232 };
1233
1234 #define FDEV(i) (sbi->devs[i])
1235 #define RDEV(i) (raw_super->devs[i])
1236 struct f2fs_dev_info {
1237 struct block_device *bdev;
1238 char path[MAX_PATH_LEN];
1239 unsigned int total_segments;
1240 block_t start_blk;
1241 block_t end_blk;
1242 #ifdef CONFIG_BLK_DEV_ZONED
1243 unsigned int nr_blkz; /* Total number of zones */
1244 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1245 #endif
1246 };
1247
1248 enum inode_type {
1249 DIR_INODE, /* for dirty dir inode */
1250 FILE_INODE, /* for dirty regular/symlink inode */
1251 DIRTY_META, /* for all dirtied inode metadata */
1252 NR_INODE_TYPE,
1253 };
1254
1255 /* for inner inode cache management */
1256 struct inode_management {
1257 struct radix_tree_root ino_root; /* ino entry array */
1258 spinlock_t ino_lock; /* for ino entry lock */
1259 struct list_head ino_list; /* inode list head */
1260 unsigned long ino_num; /* number of entries */
1261 };
1262
1263 /* for GC_AT */
1264 struct atgc_management {
1265 bool atgc_enabled; /* ATGC is enabled or not */
1266 struct rb_root_cached root; /* root of victim rb-tree */
1267 struct list_head victim_list; /* linked with all victim entries */
1268 unsigned int victim_count; /* victim count in rb-tree */
1269 unsigned int candidate_ratio; /* candidate ratio */
1270 unsigned int max_candidate_count; /* max candidate count */
1271 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1272 unsigned long long age_threshold; /* age threshold */
1273 };
1274
1275 struct f2fs_gc_control {
1276 unsigned int victim_segno; /* target victim segment number */
1277 int init_gc_type; /* FG_GC or BG_GC */
1278 bool no_bg_gc; /* check the space and stop bg_gc */
1279 bool should_migrate_blocks; /* should migrate blocks */
1280 bool err_gc_skipped; /* return EAGAIN if GC skipped */
1281 unsigned int nr_free_secs; /* # of free sections to do GC */
1282 };
1283
1284 /*
1285 * For s_flag in struct f2fs_sb_info
1286 * Modification on enum should be synchronized with s_flag array
1287 */
1288 enum {
1289 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1290 SBI_IS_CLOSE, /* specify unmounting */
1291 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1292 SBI_POR_DOING, /* recovery is doing or not */
1293 SBI_NEED_SB_WRITE, /* need to recover superblock */
1294 SBI_NEED_CP, /* need to checkpoint */
1295 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1296 SBI_IS_RECOVERED, /* recovered orphan/data */
1297 SBI_CP_DISABLED, /* CP was disabled last mount */
1298 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1299 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1300 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1301 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1302 SBI_IS_RESIZEFS, /* resizefs is in process */
1303 SBI_IS_FREEZING, /* freezefs is in process */
1304 SBI_IS_WRITABLE, /* remove ro mountoption transiently */
1305 MAX_SBI_FLAG,
1306 };
1307
1308 enum {
1309 CP_TIME,
1310 REQ_TIME,
1311 DISCARD_TIME,
1312 GC_TIME,
1313 DISABLE_TIME,
1314 UMOUNT_DISCARD_TIMEOUT,
1315 MAX_TIME,
1316 };
1317
1318 /* Note that you need to keep synchronization with this gc_mode_names array */
1319 enum {
1320 GC_NORMAL,
1321 GC_IDLE_CB,
1322 GC_IDLE_GREEDY,
1323 GC_IDLE_AT,
1324 GC_URGENT_HIGH,
1325 GC_URGENT_LOW,
1326 GC_URGENT_MID,
1327 MAX_GC_MODE,
1328 };
1329
1330 enum {
1331 BGGC_MODE_ON, /* background gc is on */
1332 BGGC_MODE_OFF, /* background gc is off */
1333 BGGC_MODE_SYNC, /*
1334 * background gc is on, migrating blocks
1335 * like foreground gc
1336 */
1337 };
1338
1339 enum {
1340 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1341 FS_MODE_LFS, /* use lfs allocation only */
1342 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */
1343 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */
1344 };
1345
1346 enum {
1347 ALLOC_MODE_DEFAULT, /* stay default */
1348 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1349 };
1350
1351 enum fsync_mode {
1352 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1353 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1354 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1355 };
1356
1357 enum {
1358 COMPR_MODE_FS, /*
1359 * automatically compress compression
1360 * enabled files
1361 */
1362 COMPR_MODE_USER, /*
1363 * automatical compression is disabled.
1364 * user can control the file compression
1365 * using ioctls
1366 */
1367 };
1368
1369 enum {
1370 DISCARD_UNIT_BLOCK, /* basic discard unit is block */
1371 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */
1372 DISCARD_UNIT_SECTION, /* basic discard unit is section */
1373 };
1374
1375 enum {
1376 MEMORY_MODE_NORMAL, /* memory mode for normal devices */
1377 MEMORY_MODE_LOW, /* memory mode for low memry devices */
1378 };
1379
1380 enum errors_option {
1381 MOUNT_ERRORS_READONLY, /* remount fs ro on errors */
1382 MOUNT_ERRORS_CONTINUE, /* continue on errors */
1383 MOUNT_ERRORS_PANIC, /* panic on errors */
1384 };
1385
1386 enum {
1387 BACKGROUND,
1388 FOREGROUND,
1389 MAX_CALL_TYPE,
1390 TOTAL_CALL = FOREGROUND,
1391 };
1392
1393 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1394 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1395 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1396
1397 /*
1398 * Layout of f2fs page.private:
1399 *
1400 * Layout A: lowest bit should be 1
1401 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1402 * bit 0 PAGE_PRIVATE_NOT_POINTER
1403 * bit 1 PAGE_PRIVATE_DUMMY_WRITE
1404 * bit 2 PAGE_PRIVATE_ONGOING_MIGRATION
1405 * bit 3 PAGE_PRIVATE_INLINE_INODE
1406 * bit 4 PAGE_PRIVATE_REF_RESOURCE
1407 * bit 5- f2fs private data
1408 *
1409 * Layout B: lowest bit should be 0
1410 * page.private is a wrapped pointer.
1411 */
1412 enum {
1413 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */
1414 PAGE_PRIVATE_DUMMY_WRITE, /* data page for padding aligned IO */
1415 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */
1416 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */
1417 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */
1418 PAGE_PRIVATE_MAX
1419 };
1420
1421 /* For compression */
1422 enum compress_algorithm_type {
1423 COMPRESS_LZO,
1424 COMPRESS_LZ4,
1425 COMPRESS_ZSTD,
1426 COMPRESS_LZORLE,
1427 COMPRESS_MAX,
1428 };
1429
1430 enum compress_flag {
1431 COMPRESS_CHKSUM,
1432 COMPRESS_MAX_FLAG,
1433 };
1434
1435 #define COMPRESS_WATERMARK 20
1436 #define COMPRESS_PERCENT 20
1437
1438 #define COMPRESS_DATA_RESERVED_SIZE 4
1439 struct compress_data {
1440 __le32 clen; /* compressed data size */
1441 __le32 chksum; /* compressed data chksum */
1442 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1443 u8 cdata[]; /* compressed data */
1444 };
1445
1446 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1447
1448 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1449
1450 #define F2FS_ZSTD_DEFAULT_CLEVEL 1
1451
1452 #define COMPRESS_LEVEL_OFFSET 8
1453
1454 /* compress context */
1455 struct compress_ctx {
1456 struct inode *inode; /* inode the context belong to */
1457 pgoff_t cluster_idx; /* cluster index number */
1458 unsigned int cluster_size; /* page count in cluster */
1459 unsigned int log_cluster_size; /* log of cluster size */
1460 struct page **rpages; /* pages store raw data in cluster */
1461 unsigned int nr_rpages; /* total page number in rpages */
1462 struct page **cpages; /* pages store compressed data in cluster */
1463 unsigned int nr_cpages; /* total page number in cpages */
1464 unsigned int valid_nr_cpages; /* valid page number in cpages */
1465 void *rbuf; /* virtual mapped address on rpages */
1466 struct compress_data *cbuf; /* virtual mapped address on cpages */
1467 size_t rlen; /* valid data length in rbuf */
1468 size_t clen; /* valid data length in cbuf */
1469 void *private; /* payload buffer for specified compression algorithm */
1470 void *private2; /* extra payload buffer */
1471 };
1472
1473 /* compress context for write IO path */
1474 struct compress_io_ctx {
1475 u32 magic; /* magic number to indicate page is compressed */
1476 struct inode *inode; /* inode the context belong to */
1477 struct page **rpages; /* pages store raw data in cluster */
1478 unsigned int nr_rpages; /* total page number in rpages */
1479 atomic_t pending_pages; /* in-flight compressed page count */
1480 };
1481
1482 /* Context for decompressing one cluster on the read IO path */
1483 struct decompress_io_ctx {
1484 u32 magic; /* magic number to indicate page is compressed */
1485 struct inode *inode; /* inode the context belong to */
1486 pgoff_t cluster_idx; /* cluster index number */
1487 unsigned int cluster_size; /* page count in cluster */
1488 unsigned int log_cluster_size; /* log of cluster size */
1489 struct page **rpages; /* pages store raw data in cluster */
1490 unsigned int nr_rpages; /* total page number in rpages */
1491 struct page **cpages; /* pages store compressed data in cluster */
1492 unsigned int nr_cpages; /* total page number in cpages */
1493 struct page **tpages; /* temp pages to pad holes in cluster */
1494 void *rbuf; /* virtual mapped address on rpages */
1495 struct compress_data *cbuf; /* virtual mapped address on cpages */
1496 size_t rlen; /* valid data length in rbuf */
1497 size_t clen; /* valid data length in cbuf */
1498
1499 /*
1500 * The number of compressed pages remaining to be read in this cluster.
1501 * This is initially nr_cpages. It is decremented by 1 each time a page
1502 * has been read (or failed to be read). When it reaches 0, the cluster
1503 * is decompressed (or an error is reported).
1504 *
1505 * If an error occurs before all the pages have been submitted for I/O,
1506 * then this will never reach 0. In this case the I/O submitter is
1507 * responsible for calling f2fs_decompress_end_io() instead.
1508 */
1509 atomic_t remaining_pages;
1510
1511 /*
1512 * Number of references to this decompress_io_ctx.
1513 *
1514 * One reference is held for I/O completion. This reference is dropped
1515 * after the pagecache pages are updated and unlocked -- either after
1516 * decompression (and verity if enabled), or after an error.
1517 *
1518 * In addition, each compressed page holds a reference while it is in a
1519 * bio. These references are necessary prevent compressed pages from
1520 * being freed while they are still in a bio.
1521 */
1522 refcount_t refcnt;
1523
1524 bool failed; /* IO error occurred before decompression? */
1525 bool need_verity; /* need fs-verity verification after decompression? */
1526 void *private; /* payload buffer for specified decompression algorithm */
1527 void *private2; /* extra payload buffer */
1528 struct work_struct verity_work; /* work to verify the decompressed pages */
1529 struct work_struct free_work; /* work for late free this structure itself */
1530 };
1531
1532 #define NULL_CLUSTER ((unsigned int)(~0))
1533 #define MIN_COMPRESS_LOG_SIZE 2
1534 #define MAX_COMPRESS_LOG_SIZE 8
1535 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1536
1537 struct f2fs_sb_info {
1538 struct super_block *sb; /* pointer to VFS super block */
1539 struct proc_dir_entry *s_proc; /* proc entry */
1540 struct f2fs_super_block *raw_super; /* raw super block pointer */
1541 struct f2fs_rwsem sb_lock; /* lock for raw super block */
1542 int valid_super_block; /* valid super block no */
1543 unsigned long s_flag; /* flags for sbi */
1544 struct mutex writepages; /* mutex for writepages() */
1545
1546 #ifdef CONFIG_BLK_DEV_ZONED
1547 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1548 #endif
1549
1550 /* for node-related operations */
1551 struct f2fs_nm_info *nm_info; /* node manager */
1552 struct inode *node_inode; /* cache node blocks */
1553
1554 /* for segment-related operations */
1555 struct f2fs_sm_info *sm_info; /* segment manager */
1556
1557 /* for bio operations */
1558 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1559 /* keep migration IO order for LFS mode */
1560 struct f2fs_rwsem io_order_lock;
1561 mempool_t *write_io_dummy; /* Dummy pages */
1562 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */
1563 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */
1564
1565 /* for checkpoint */
1566 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1567 int cur_cp_pack; /* remain current cp pack */
1568 spinlock_t cp_lock; /* for flag in ckpt */
1569 struct inode *meta_inode; /* cache meta blocks */
1570 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */
1571 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */
1572 struct f2fs_rwsem node_write; /* locking node writes */
1573 struct f2fs_rwsem node_change; /* locking node change */
1574 wait_queue_head_t cp_wait;
1575 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1576 long interval_time[MAX_TIME]; /* to store thresholds */
1577 struct ckpt_req_control cprc_info; /* for checkpoint request control */
1578
1579 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1580
1581 spinlock_t fsync_node_lock; /* for node entry lock */
1582 struct list_head fsync_node_list; /* node list head */
1583 unsigned int fsync_seg_id; /* sequence id */
1584 unsigned int fsync_node_num; /* number of node entries */
1585
1586 /* for orphan inode, use 0'th array */
1587 unsigned int max_orphans; /* max orphan inodes */
1588
1589 /* for inode management */
1590 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1591 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1592 struct mutex flush_lock; /* for flush exclusion */
1593
1594 /* for extent tree cache */
1595 struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1596 atomic64_t allocated_data_blocks; /* for block age extent_cache */
1597
1598 /* The threshold used for hot and warm data seperation*/
1599 unsigned int hot_data_age_threshold;
1600 unsigned int warm_data_age_threshold;
1601 unsigned int last_age_weight;
1602
1603 /* basic filesystem units */
1604 unsigned int log_sectors_per_block; /* log2 sectors per block */
1605 unsigned int log_blocksize; /* log2 block size */
1606 unsigned int blocksize; /* block size */
1607 unsigned int root_ino_num; /* root inode number*/
1608 unsigned int node_ino_num; /* node inode number*/
1609 unsigned int meta_ino_num; /* meta inode number*/
1610 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1611 unsigned int blocks_per_seg; /* blocks per segment */
1612 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */
1613 unsigned int segs_per_sec; /* segments per section */
1614 unsigned int secs_per_zone; /* sections per zone */
1615 unsigned int total_sections; /* total section count */
1616 unsigned int total_node_count; /* total node block count */
1617 unsigned int total_valid_node_count; /* valid node block count */
1618 int dir_level; /* directory level */
1619 bool readdir_ra; /* readahead inode in readdir */
1620 u64 max_io_bytes; /* max io bytes to merge IOs */
1621
1622 block_t user_block_count; /* # of user blocks */
1623 block_t total_valid_block_count; /* # of valid blocks */
1624 block_t discard_blks; /* discard command candidats */
1625 block_t last_valid_block_count; /* for recovery */
1626 block_t reserved_blocks; /* configurable reserved blocks */
1627 block_t current_reserved_blocks; /* current reserved blocks */
1628
1629 /* Additional tracking for no checkpoint mode */
1630 block_t unusable_block_count; /* # of blocks saved by last cp */
1631
1632 unsigned int nquota_files; /* # of quota sysfile */
1633 struct f2fs_rwsem quota_sem; /* blocking cp for flags */
1634
1635 /* # of pages, see count_type */
1636 atomic_t nr_pages[NR_COUNT_TYPE];
1637 /* # of allocated blocks */
1638 struct percpu_counter alloc_valid_block_count;
1639 /* # of node block writes as roll forward recovery */
1640 struct percpu_counter rf_node_block_count;
1641
1642 /* writeback control */
1643 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1644
1645 /* valid inode count */
1646 struct percpu_counter total_valid_inode_count;
1647
1648 struct f2fs_mount_info mount_opt; /* mount options */
1649
1650 /* for cleaning operations */
1651 struct f2fs_rwsem gc_lock; /*
1652 * semaphore for GC, avoid
1653 * race between GC and GC or CP
1654 */
1655 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1656 struct atgc_management am; /* atgc management */
1657 unsigned int cur_victim_sec; /* current victim section num */
1658 unsigned int gc_mode; /* current GC state */
1659 unsigned int next_victim_seg[2]; /* next segment in victim section */
1660 spinlock_t gc_remaining_trials_lock;
1661 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1662 unsigned int gc_remaining_trials;
1663
1664 /* for skip statistic */
1665 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1666
1667 /* threshold for gc trials on pinned files */
1668 u64 gc_pin_file_threshold;
1669 struct f2fs_rwsem pin_sem;
1670
1671 /* maximum # of trials to find a victim segment for SSR and GC */
1672 unsigned int max_victim_search;
1673 /* migration granularity of garbage collection, unit: segment */
1674 unsigned int migration_granularity;
1675
1676 /*
1677 * for stat information.
1678 * one is for the LFS mode, and the other is for the SSR mode.
1679 */
1680 #ifdef CONFIG_F2FS_STAT_FS
1681 struct f2fs_stat_info *stat_info; /* FS status information */
1682 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1683 unsigned int segment_count[2]; /* # of allocated segments */
1684 unsigned int block_count[2]; /* # of allocated blocks */
1685 atomic_t inplace_count; /* # of inplace update */
1686 /* # of lookup extent cache */
1687 atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1688 /* # of hit rbtree extent node */
1689 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1690 /* # of hit cached extent node */
1691 atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1692 /* # of hit largest extent node in read extent cache */
1693 atomic64_t read_hit_largest;
1694 atomic_t inline_xattr; /* # of inline_xattr inodes */
1695 atomic_t inline_inode; /* # of inline_data inodes */
1696 atomic_t inline_dir; /* # of inline_dentry inodes */
1697 atomic_t compr_inode; /* # of compressed inodes */
1698 atomic64_t compr_blocks; /* # of compressed blocks */
1699 atomic_t swapfile_inode; /* # of swapfile inodes */
1700 atomic_t atomic_files; /* # of opened atomic file */
1701 atomic_t max_aw_cnt; /* max # of atomic writes */
1702 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1703 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1704 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1705 atomic_t cp_call_count[MAX_CALL_TYPE]; /* # of cp call */
1706 #endif
1707 spinlock_t stat_lock; /* lock for stat operations */
1708
1709 /* to attach REQ_META|REQ_FUA flags */
1710 unsigned int data_io_flag;
1711 unsigned int node_io_flag;
1712
1713 /* For sysfs support */
1714 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */
1715 struct completion s_kobj_unregister;
1716
1717 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */
1718 struct completion s_stat_kobj_unregister;
1719
1720 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */
1721 struct completion s_feature_list_kobj_unregister;
1722
1723 /* For shrinker support */
1724 struct list_head s_list;
1725 struct mutex umount_mutex;
1726 unsigned int shrinker_run_no;
1727
1728 /* For multi devices */
1729 int s_ndevs; /* number of devices */
1730 struct f2fs_dev_info *devs; /* for device list */
1731 unsigned int dirty_device; /* for checkpoint data flush */
1732 spinlock_t dev_lock; /* protect dirty_device */
1733 bool aligned_blksize; /* all devices has the same logical blksize */
1734
1735 /* For write statistics */
1736 u64 sectors_written_start;
1737 u64 kbytes_written;
1738
1739 /* Reference to checksum algorithm driver via cryptoapi */
1740 struct crypto_shash *s_chksum_driver;
1741
1742 /* Precomputed FS UUID checksum for seeding other checksums */
1743 __u32 s_chksum_seed;
1744
1745 struct workqueue_struct *post_read_wq; /* post read workqueue */
1746
1747 /*
1748 * If we are in irq context, let's update error information into
1749 * on-disk superblock in the work.
1750 */
1751 struct work_struct s_error_work;
1752 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */
1753 unsigned char stop_reason[MAX_STOP_REASON]; /* stop reason */
1754 spinlock_t error_lock; /* protect errors/stop_reason array */
1755 bool error_dirty; /* errors of sb is dirty */
1756
1757 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1758 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1759
1760 /* For reclaimed segs statistics per each GC mode */
1761 unsigned int gc_segment_mode; /* GC state for reclaimed segments */
1762 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */
1763
1764 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */
1765
1766 int max_fragment_chunk; /* max chunk size for block fragmentation mode */
1767 int max_fragment_hole; /* max hole size for block fragmentation mode */
1768
1769 /* For atomic write statistics */
1770 atomic64_t current_atomic_write;
1771 s64 peak_atomic_write;
1772 u64 committed_atomic_block;
1773 u64 revoked_atomic_block;
1774
1775 #ifdef CONFIG_F2FS_FS_COMPRESSION
1776 struct kmem_cache *page_array_slab; /* page array entry */
1777 unsigned int page_array_slab_size; /* default page array slab size */
1778
1779 /* For runtime compression statistics */
1780 u64 compr_written_block;
1781 u64 compr_saved_block;
1782 u32 compr_new_inode;
1783
1784 /* For compressed block cache */
1785 struct inode *compress_inode; /* cache compressed blocks */
1786 unsigned int compress_percent; /* cache page percentage */
1787 unsigned int compress_watermark; /* cache page watermark */
1788 atomic_t compress_page_hit; /* cache hit count */
1789 #endif
1790
1791 #ifdef CONFIG_F2FS_IOSTAT
1792 /* For app/fs IO statistics */
1793 spinlock_t iostat_lock;
1794 unsigned long long iostat_count[NR_IO_TYPE];
1795 unsigned long long iostat_bytes[NR_IO_TYPE];
1796 unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1797 bool iostat_enable;
1798 unsigned long iostat_next_period;
1799 unsigned int iostat_period_ms;
1800
1801 /* For io latency related statistics info in one iostat period */
1802 spinlock_t iostat_lat_lock;
1803 struct iostat_lat_info *iostat_io_lat;
1804 #endif
1805 };
1806
1807 #ifdef CONFIG_F2FS_FAULT_INJECTION
1808 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \
1809 __builtin_return_address(0))
__time_to_inject(struct f2fs_sb_info * sbi,int type,const char * func,const char * parent_func)1810 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1811 const char *func, const char *parent_func)
1812 {
1813 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1814
1815 if (!ffi->inject_rate)
1816 return false;
1817
1818 if (!IS_FAULT_SET(ffi, type))
1819 return false;
1820
1821 atomic_inc(&ffi->inject_ops);
1822 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1823 atomic_set(&ffi->inject_ops, 0);
1824 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",
1825 KERN_INFO, sbi->sb->s_id, f2fs_fault_name[type],
1826 func, parent_func);
1827 return true;
1828 }
1829 return false;
1830 }
1831 #else
time_to_inject(struct f2fs_sb_info * sbi,int type)1832 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1833 {
1834 return false;
1835 }
1836 #endif
1837
1838 /*
1839 * Test if the mounted volume is a multi-device volume.
1840 * - For a single regular disk volume, sbi->s_ndevs is 0.
1841 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1842 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1843 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1844 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1845 {
1846 return sbi->s_ndevs > 1;
1847 }
1848
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1849 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1850 {
1851 unsigned long now = jiffies;
1852
1853 sbi->last_time[type] = now;
1854
1855 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1856 if (type == REQ_TIME) {
1857 sbi->last_time[DISCARD_TIME] = now;
1858 sbi->last_time[GC_TIME] = now;
1859 }
1860 }
1861
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1862 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1863 {
1864 unsigned long interval = sbi->interval_time[type] * HZ;
1865
1866 return time_after(jiffies, sbi->last_time[type] + interval);
1867 }
1868
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1869 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1870 int type)
1871 {
1872 unsigned long interval = sbi->interval_time[type] * HZ;
1873 unsigned int wait_ms = 0;
1874 long delta;
1875
1876 delta = (sbi->last_time[type] + interval) - jiffies;
1877 if (delta > 0)
1878 wait_ms = jiffies_to_msecs(delta);
1879
1880 return wait_ms;
1881 }
1882
1883 /*
1884 * Inline functions
1885 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1886 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1887 const void *address, unsigned int length)
1888 {
1889 struct {
1890 struct shash_desc shash;
1891 char ctx[4];
1892 } desc;
1893 int err;
1894
1895 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1896
1897 desc.shash.tfm = sbi->s_chksum_driver;
1898 *(u32 *)desc.ctx = crc;
1899
1900 err = crypto_shash_update(&desc.shash, address, length);
1901 BUG_ON(err);
1902
1903 return *(u32 *)desc.ctx;
1904 }
1905
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1906 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1907 unsigned int length)
1908 {
1909 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1910 }
1911
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1912 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1913 void *buf, size_t buf_size)
1914 {
1915 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1916 }
1917
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1918 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1919 const void *address, unsigned int length)
1920 {
1921 return __f2fs_crc32(sbi, crc, address, length);
1922 }
1923
F2FS_I(struct inode * inode)1924 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1925 {
1926 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1927 }
1928
F2FS_SB(struct super_block * sb)1929 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1930 {
1931 return sb->s_fs_info;
1932 }
1933
F2FS_I_SB(struct inode * inode)1934 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1935 {
1936 return F2FS_SB(inode->i_sb);
1937 }
1938
F2FS_M_SB(struct address_space * mapping)1939 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1940 {
1941 return F2FS_I_SB(mapping->host);
1942 }
1943
F2FS_P_SB(struct page * page)1944 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1945 {
1946 return F2FS_M_SB(page_file_mapping(page));
1947 }
1948
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1949 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1950 {
1951 return (struct f2fs_super_block *)(sbi->raw_super);
1952 }
1953
F2FS_CKPT(struct f2fs_sb_info * sbi)1954 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1955 {
1956 return (struct f2fs_checkpoint *)(sbi->ckpt);
1957 }
1958
F2FS_NODE(struct page * page)1959 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1960 {
1961 return (struct f2fs_node *)page_address(page);
1962 }
1963
F2FS_INODE(struct page * page)1964 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1965 {
1966 return &((struct f2fs_node *)page_address(page))->i;
1967 }
1968
NM_I(struct f2fs_sb_info * sbi)1969 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1970 {
1971 return (struct f2fs_nm_info *)(sbi->nm_info);
1972 }
1973
SM_I(struct f2fs_sb_info * sbi)1974 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1975 {
1976 return (struct f2fs_sm_info *)(sbi->sm_info);
1977 }
1978
SIT_I(struct f2fs_sb_info * sbi)1979 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1980 {
1981 return (struct sit_info *)(SM_I(sbi)->sit_info);
1982 }
1983
FREE_I(struct f2fs_sb_info * sbi)1984 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1985 {
1986 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1987 }
1988
DIRTY_I(struct f2fs_sb_info * sbi)1989 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1990 {
1991 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1992 }
1993
META_MAPPING(struct f2fs_sb_info * sbi)1994 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1995 {
1996 return sbi->meta_inode->i_mapping;
1997 }
1998
NODE_MAPPING(struct f2fs_sb_info * sbi)1999 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2000 {
2001 return sbi->node_inode->i_mapping;
2002 }
2003
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2004 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2005 {
2006 return test_bit(type, &sbi->s_flag);
2007 }
2008
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2009 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2010 {
2011 set_bit(type, &sbi->s_flag);
2012 }
2013
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2014 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2015 {
2016 clear_bit(type, &sbi->s_flag);
2017 }
2018
cur_cp_version(struct f2fs_checkpoint * cp)2019 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2020 {
2021 return le64_to_cpu(cp->checkpoint_ver);
2022 }
2023
f2fs_qf_ino(struct super_block * sb,int type)2024 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2025 {
2026 if (type < F2FS_MAX_QUOTAS)
2027 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2028 return 0;
2029 }
2030
cur_cp_crc(struct f2fs_checkpoint * cp)2031 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2032 {
2033 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2034 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2035 }
2036
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2037 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2038 {
2039 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2040
2041 return ckpt_flags & f;
2042 }
2043
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2044 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2045 {
2046 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2047 }
2048
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2049 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2050 {
2051 unsigned int ckpt_flags;
2052
2053 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2054 ckpt_flags |= f;
2055 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2056 }
2057
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2058 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2059 {
2060 unsigned long flags;
2061
2062 spin_lock_irqsave(&sbi->cp_lock, flags);
2063 __set_ckpt_flags(F2FS_CKPT(sbi), f);
2064 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2065 }
2066
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2067 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2068 {
2069 unsigned int ckpt_flags;
2070
2071 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2072 ckpt_flags &= (~f);
2073 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2074 }
2075
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2076 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2077 {
2078 unsigned long flags;
2079
2080 spin_lock_irqsave(&sbi->cp_lock, flags);
2081 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
2082 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2083 }
2084
2085 #define init_f2fs_rwsem(sem) \
2086 do { \
2087 static struct lock_class_key __key; \
2088 \
2089 __init_f2fs_rwsem((sem), #sem, &__key); \
2090 } while (0)
2091
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2092 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2093 const char *sem_name, struct lock_class_key *key)
2094 {
2095 __init_rwsem(&sem->internal_rwsem, sem_name, key);
2096 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2097 init_waitqueue_head(&sem->read_waiters);
2098 #endif
2099 }
2100
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2101 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2102 {
2103 return rwsem_is_locked(&sem->internal_rwsem);
2104 }
2105
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2106 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2107 {
2108 return rwsem_is_contended(&sem->internal_rwsem);
2109 }
2110
f2fs_down_read(struct f2fs_rwsem * sem)2111 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2112 {
2113 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2114 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2115 #else
2116 down_read(&sem->internal_rwsem);
2117 #endif
2118 }
2119
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2120 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2121 {
2122 return down_read_trylock(&sem->internal_rwsem);
2123 }
2124
f2fs_up_read(struct f2fs_rwsem * sem)2125 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2126 {
2127 up_read(&sem->internal_rwsem);
2128 }
2129
f2fs_down_write(struct f2fs_rwsem * sem)2130 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2131 {
2132 down_write(&sem->internal_rwsem);
2133 }
2134
2135 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2136 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2137 {
2138 down_read_nested(&sem->internal_rwsem, subclass);
2139 }
2140
f2fs_down_write_nested(struct f2fs_rwsem * sem,int subclass)2141 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2142 {
2143 down_write_nested(&sem->internal_rwsem, subclass);
2144 }
2145 #else
2146 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2147 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2148 #endif
2149
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2150 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2151 {
2152 return down_write_trylock(&sem->internal_rwsem);
2153 }
2154
f2fs_up_write(struct f2fs_rwsem * sem)2155 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2156 {
2157 up_write(&sem->internal_rwsem);
2158 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2159 wake_up_all(&sem->read_waiters);
2160 #endif
2161 }
2162
f2fs_lock_op(struct f2fs_sb_info * sbi)2163 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2164 {
2165 f2fs_down_read(&sbi->cp_rwsem);
2166 }
2167
f2fs_trylock_op(struct f2fs_sb_info * sbi)2168 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2169 {
2170 if (time_to_inject(sbi, FAULT_LOCK_OP))
2171 return 0;
2172 return f2fs_down_read_trylock(&sbi->cp_rwsem);
2173 }
2174
f2fs_unlock_op(struct f2fs_sb_info * sbi)2175 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2176 {
2177 f2fs_up_read(&sbi->cp_rwsem);
2178 }
2179
f2fs_lock_all(struct f2fs_sb_info * sbi)2180 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2181 {
2182 f2fs_down_write(&sbi->cp_rwsem);
2183 }
2184
f2fs_unlock_all(struct f2fs_sb_info * sbi)2185 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2186 {
2187 f2fs_up_write(&sbi->cp_rwsem);
2188 }
2189
__get_cp_reason(struct f2fs_sb_info * sbi)2190 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2191 {
2192 int reason = CP_SYNC;
2193
2194 if (test_opt(sbi, FASTBOOT))
2195 reason = CP_FASTBOOT;
2196 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2197 reason = CP_UMOUNT;
2198 return reason;
2199 }
2200
__remain_node_summaries(int reason)2201 static inline bool __remain_node_summaries(int reason)
2202 {
2203 return (reason & (CP_UMOUNT | CP_FASTBOOT));
2204 }
2205
__exist_node_summaries(struct f2fs_sb_info * sbi)2206 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2207 {
2208 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2209 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2210 }
2211
2212 /*
2213 * Check whether the inode has blocks or not
2214 */
F2FS_HAS_BLOCKS(struct inode * inode)2215 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2216 {
2217 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2218
2219 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2220 }
2221
f2fs_has_xattr_block(unsigned int ofs)2222 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2223 {
2224 return ofs == XATTR_NODE_OFFSET;
2225 }
2226
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2227 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2228 struct inode *inode, bool cap)
2229 {
2230 if (!inode)
2231 return true;
2232 if (!test_opt(sbi, RESERVE_ROOT))
2233 return false;
2234 if (IS_NOQUOTA(inode))
2235 return true;
2236 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2237 return true;
2238 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2239 in_group_p(F2FS_OPTION(sbi).s_resgid))
2240 return true;
2241 if (cap && capable(CAP_SYS_RESOURCE))
2242 return true;
2243 return false;
2244 }
2245
2246 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)2247 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2248 struct inode *inode, blkcnt_t *count)
2249 {
2250 blkcnt_t diff = 0, release = 0;
2251 block_t avail_user_block_count;
2252 int ret;
2253
2254 ret = dquot_reserve_block(inode, *count);
2255 if (ret)
2256 return ret;
2257
2258 if (time_to_inject(sbi, FAULT_BLOCK)) {
2259 release = *count;
2260 goto release_quota;
2261 }
2262
2263 /*
2264 * let's increase this in prior to actual block count change in order
2265 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2266 */
2267 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2268
2269 spin_lock(&sbi->stat_lock);
2270 sbi->total_valid_block_count += (block_t)(*count);
2271 avail_user_block_count = sbi->user_block_count -
2272 sbi->current_reserved_blocks;
2273
2274 if (!__allow_reserved_blocks(sbi, inode, true))
2275 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2276
2277 if (F2FS_IO_ALIGNED(sbi))
2278 avail_user_block_count -= sbi->blocks_per_seg *
2279 SM_I(sbi)->additional_reserved_segments;
2280
2281 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2282 if (avail_user_block_count > sbi->unusable_block_count)
2283 avail_user_block_count -= sbi->unusable_block_count;
2284 else
2285 avail_user_block_count = 0;
2286 }
2287 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2288 diff = sbi->total_valid_block_count - avail_user_block_count;
2289 if (diff > *count)
2290 diff = *count;
2291 *count -= diff;
2292 release = diff;
2293 sbi->total_valid_block_count -= diff;
2294 if (!*count) {
2295 spin_unlock(&sbi->stat_lock);
2296 goto enospc;
2297 }
2298 }
2299 spin_unlock(&sbi->stat_lock);
2300
2301 if (unlikely(release)) {
2302 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2303 dquot_release_reservation_block(inode, release);
2304 }
2305 f2fs_i_blocks_write(inode, *count, true, true);
2306 return 0;
2307
2308 enospc:
2309 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2310 release_quota:
2311 dquot_release_reservation_block(inode, release);
2312 return -ENOSPC;
2313 }
2314
2315 __printf(2, 3)
2316 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2317
2318 #define f2fs_err(sbi, fmt, ...) \
2319 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2320 #define f2fs_warn(sbi, fmt, ...) \
2321 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2322 #define f2fs_notice(sbi, fmt, ...) \
2323 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2324 #define f2fs_info(sbi, fmt, ...) \
2325 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2326 #define f2fs_debug(sbi, fmt, ...) \
2327 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2328
2329 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2330 static inline bool page_private_##name(struct page *page) \
2331 { \
2332 return PagePrivate(page) && \
2333 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2334 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2335 }
2336
2337 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2338 static inline void set_page_private_##name(struct page *page) \
2339 { \
2340 if (!PagePrivate(page)) \
2341 attach_page_private(page, (void *)0); \
2342 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2343 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2344 }
2345
2346 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2347 static inline void clear_page_private_##name(struct page *page) \
2348 { \
2349 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2350 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2351 detach_page_private(page); \
2352 }
2353
2354 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2355 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2356 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2357 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
2358
2359 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2360 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2361 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2362 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
2363
2364 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2365 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2366 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2367 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
2368
get_page_private_data(struct page * page)2369 static inline unsigned long get_page_private_data(struct page *page)
2370 {
2371 unsigned long data = page_private(page);
2372
2373 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2374 return 0;
2375 return data >> PAGE_PRIVATE_MAX;
2376 }
2377
set_page_private_data(struct page * page,unsigned long data)2378 static inline void set_page_private_data(struct page *page, unsigned long data)
2379 {
2380 if (!PagePrivate(page))
2381 attach_page_private(page, (void *)0);
2382 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2383 page_private(page) |= data << PAGE_PRIVATE_MAX;
2384 }
2385
clear_page_private_data(struct page * page)2386 static inline void clear_page_private_data(struct page *page)
2387 {
2388 page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2389 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2390 detach_page_private(page);
2391 }
2392
clear_page_private_all(struct page * page)2393 static inline void clear_page_private_all(struct page *page)
2394 {
2395 clear_page_private_data(page);
2396 clear_page_private_reference(page);
2397 clear_page_private_gcing(page);
2398 clear_page_private_inline(page);
2399
2400 f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2401 }
2402
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2403 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2404 struct inode *inode,
2405 block_t count)
2406 {
2407 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2408
2409 spin_lock(&sbi->stat_lock);
2410 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2411 sbi->total_valid_block_count -= (block_t)count;
2412 if (sbi->reserved_blocks &&
2413 sbi->current_reserved_blocks < sbi->reserved_blocks)
2414 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2415 sbi->current_reserved_blocks + count);
2416 spin_unlock(&sbi->stat_lock);
2417 if (unlikely(inode->i_blocks < sectors)) {
2418 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2419 inode->i_ino,
2420 (unsigned long long)inode->i_blocks,
2421 (unsigned long long)sectors);
2422 set_sbi_flag(sbi, SBI_NEED_FSCK);
2423 return;
2424 }
2425 f2fs_i_blocks_write(inode, count, false, true);
2426 }
2427
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2428 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2429 {
2430 atomic_inc(&sbi->nr_pages[count_type]);
2431
2432 if (count_type == F2FS_DIRTY_DENTS ||
2433 count_type == F2FS_DIRTY_NODES ||
2434 count_type == F2FS_DIRTY_META ||
2435 count_type == F2FS_DIRTY_QDATA ||
2436 count_type == F2FS_DIRTY_IMETA)
2437 set_sbi_flag(sbi, SBI_IS_DIRTY);
2438 }
2439
inode_inc_dirty_pages(struct inode * inode)2440 static inline void inode_inc_dirty_pages(struct inode *inode)
2441 {
2442 atomic_inc(&F2FS_I(inode)->dirty_pages);
2443 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2444 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2445 if (IS_NOQUOTA(inode))
2446 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2447 }
2448
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2449 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2450 {
2451 atomic_dec(&sbi->nr_pages[count_type]);
2452 }
2453
inode_dec_dirty_pages(struct inode * inode)2454 static inline void inode_dec_dirty_pages(struct inode *inode)
2455 {
2456 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2457 !S_ISLNK(inode->i_mode))
2458 return;
2459
2460 atomic_dec(&F2FS_I(inode)->dirty_pages);
2461 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2462 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2463 if (IS_NOQUOTA(inode))
2464 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2465 }
2466
inc_atomic_write_cnt(struct inode * inode)2467 static inline void inc_atomic_write_cnt(struct inode *inode)
2468 {
2469 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2470 struct f2fs_inode_info *fi = F2FS_I(inode);
2471 u64 current_write;
2472
2473 fi->atomic_write_cnt++;
2474 atomic64_inc(&sbi->current_atomic_write);
2475 current_write = atomic64_read(&sbi->current_atomic_write);
2476 if (current_write > sbi->peak_atomic_write)
2477 sbi->peak_atomic_write = current_write;
2478 }
2479
release_atomic_write_cnt(struct inode * inode)2480 static inline void release_atomic_write_cnt(struct inode *inode)
2481 {
2482 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2483 struct f2fs_inode_info *fi = F2FS_I(inode);
2484
2485 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2486 fi->atomic_write_cnt = 0;
2487 }
2488
get_pages(struct f2fs_sb_info * sbi,int count_type)2489 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2490 {
2491 return atomic_read(&sbi->nr_pages[count_type]);
2492 }
2493
get_dirty_pages(struct inode * inode)2494 static inline int get_dirty_pages(struct inode *inode)
2495 {
2496 return atomic_read(&F2FS_I(inode)->dirty_pages);
2497 }
2498
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2499 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2500 {
2501 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2502 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2503 sbi->log_blocks_per_seg;
2504
2505 return segs / sbi->segs_per_sec;
2506 }
2507
valid_user_blocks(struct f2fs_sb_info * sbi)2508 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2509 {
2510 return sbi->total_valid_block_count;
2511 }
2512
discard_blocks(struct f2fs_sb_info * sbi)2513 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2514 {
2515 return sbi->discard_blks;
2516 }
2517
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2518 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2519 {
2520 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2521
2522 /* return NAT or SIT bitmap */
2523 if (flag == NAT_BITMAP)
2524 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2525 else if (flag == SIT_BITMAP)
2526 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2527
2528 return 0;
2529 }
2530
__cp_payload(struct f2fs_sb_info * sbi)2531 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2532 {
2533 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2534 }
2535
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2536 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2537 {
2538 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2539 void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2540 int offset;
2541
2542 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2543 offset = (flag == SIT_BITMAP) ?
2544 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2545 /*
2546 * if large_nat_bitmap feature is enabled, leave checksum
2547 * protection for all nat/sit bitmaps.
2548 */
2549 return tmp_ptr + offset + sizeof(__le32);
2550 }
2551
2552 if (__cp_payload(sbi) > 0) {
2553 if (flag == NAT_BITMAP)
2554 return tmp_ptr;
2555 else
2556 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2557 } else {
2558 offset = (flag == NAT_BITMAP) ?
2559 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2560 return tmp_ptr + offset;
2561 }
2562 }
2563
__start_cp_addr(struct f2fs_sb_info * sbi)2564 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2565 {
2566 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2567
2568 if (sbi->cur_cp_pack == 2)
2569 start_addr += sbi->blocks_per_seg;
2570 return start_addr;
2571 }
2572
__start_cp_next_addr(struct f2fs_sb_info * sbi)2573 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2574 {
2575 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2576
2577 if (sbi->cur_cp_pack == 1)
2578 start_addr += sbi->blocks_per_seg;
2579 return start_addr;
2580 }
2581
__set_cp_next_pack(struct f2fs_sb_info * sbi)2582 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2583 {
2584 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2585 }
2586
__start_sum_addr(struct f2fs_sb_info * sbi)2587 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2588 {
2589 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2590 }
2591
2592 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2593 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2594 struct inode *inode, bool is_inode)
2595 {
2596 block_t valid_block_count;
2597 unsigned int valid_node_count, user_block_count;
2598 int err;
2599
2600 if (is_inode) {
2601 if (inode) {
2602 err = dquot_alloc_inode(inode);
2603 if (err)
2604 return err;
2605 }
2606 } else {
2607 err = dquot_reserve_block(inode, 1);
2608 if (err)
2609 return err;
2610 }
2611
2612 if (time_to_inject(sbi, FAULT_BLOCK))
2613 goto enospc;
2614
2615 spin_lock(&sbi->stat_lock);
2616
2617 valid_block_count = sbi->total_valid_block_count +
2618 sbi->current_reserved_blocks + 1;
2619
2620 if (!__allow_reserved_blocks(sbi, inode, false))
2621 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2622
2623 if (F2FS_IO_ALIGNED(sbi))
2624 valid_block_count += sbi->blocks_per_seg *
2625 SM_I(sbi)->additional_reserved_segments;
2626
2627 user_block_count = sbi->user_block_count;
2628 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2629 user_block_count -= sbi->unusable_block_count;
2630
2631 if (unlikely(valid_block_count > user_block_count)) {
2632 spin_unlock(&sbi->stat_lock);
2633 goto enospc;
2634 }
2635
2636 valid_node_count = sbi->total_valid_node_count + 1;
2637 if (unlikely(valid_node_count > sbi->total_node_count)) {
2638 spin_unlock(&sbi->stat_lock);
2639 goto enospc;
2640 }
2641
2642 sbi->total_valid_node_count++;
2643 sbi->total_valid_block_count++;
2644 spin_unlock(&sbi->stat_lock);
2645
2646 if (inode) {
2647 if (is_inode)
2648 f2fs_mark_inode_dirty_sync(inode, true);
2649 else
2650 f2fs_i_blocks_write(inode, 1, true, true);
2651 }
2652
2653 percpu_counter_inc(&sbi->alloc_valid_block_count);
2654 return 0;
2655
2656 enospc:
2657 if (is_inode) {
2658 if (inode)
2659 dquot_free_inode(inode);
2660 } else {
2661 dquot_release_reservation_block(inode, 1);
2662 }
2663 return -ENOSPC;
2664 }
2665
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2666 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2667 struct inode *inode, bool is_inode)
2668 {
2669 spin_lock(&sbi->stat_lock);
2670
2671 if (unlikely(!sbi->total_valid_block_count ||
2672 !sbi->total_valid_node_count)) {
2673 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2674 sbi->total_valid_block_count,
2675 sbi->total_valid_node_count);
2676 set_sbi_flag(sbi, SBI_NEED_FSCK);
2677 } else {
2678 sbi->total_valid_block_count--;
2679 sbi->total_valid_node_count--;
2680 }
2681
2682 if (sbi->reserved_blocks &&
2683 sbi->current_reserved_blocks < sbi->reserved_blocks)
2684 sbi->current_reserved_blocks++;
2685
2686 spin_unlock(&sbi->stat_lock);
2687
2688 if (is_inode) {
2689 dquot_free_inode(inode);
2690 } else {
2691 if (unlikely(inode->i_blocks == 0)) {
2692 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2693 inode->i_ino,
2694 (unsigned long long)inode->i_blocks);
2695 set_sbi_flag(sbi, SBI_NEED_FSCK);
2696 return;
2697 }
2698 f2fs_i_blocks_write(inode, 1, false, true);
2699 }
2700 }
2701
valid_node_count(struct f2fs_sb_info * sbi)2702 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2703 {
2704 return sbi->total_valid_node_count;
2705 }
2706
inc_valid_inode_count(struct f2fs_sb_info * sbi)2707 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2708 {
2709 percpu_counter_inc(&sbi->total_valid_inode_count);
2710 }
2711
dec_valid_inode_count(struct f2fs_sb_info * sbi)2712 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2713 {
2714 percpu_counter_dec(&sbi->total_valid_inode_count);
2715 }
2716
valid_inode_count(struct f2fs_sb_info * sbi)2717 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2718 {
2719 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2720 }
2721
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2722 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2723 pgoff_t index, bool for_write)
2724 {
2725 struct page *page;
2726 unsigned int flags;
2727
2728 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2729 if (!for_write)
2730 page = find_get_page_flags(mapping, index,
2731 FGP_LOCK | FGP_ACCESSED);
2732 else
2733 page = find_lock_page(mapping, index);
2734 if (page)
2735 return page;
2736
2737 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2738 return NULL;
2739 }
2740
2741 if (!for_write)
2742 return grab_cache_page(mapping, index);
2743
2744 flags = memalloc_nofs_save();
2745 page = grab_cache_page_write_begin(mapping, index);
2746 memalloc_nofs_restore(flags);
2747
2748 return page;
2749 }
2750
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp_mask)2751 static inline struct page *f2fs_pagecache_get_page(
2752 struct address_space *mapping, pgoff_t index,
2753 fgf_t fgp_flags, gfp_t gfp_mask)
2754 {
2755 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2756 return NULL;
2757
2758 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2759 }
2760
f2fs_put_page(struct page * page,int unlock)2761 static inline void f2fs_put_page(struct page *page, int unlock)
2762 {
2763 if (!page)
2764 return;
2765
2766 if (unlock) {
2767 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2768 unlock_page(page);
2769 }
2770 put_page(page);
2771 }
2772
f2fs_put_dnode(struct dnode_of_data * dn)2773 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2774 {
2775 if (dn->node_page)
2776 f2fs_put_page(dn->node_page, 1);
2777 if (dn->inode_page && dn->node_page != dn->inode_page)
2778 f2fs_put_page(dn->inode_page, 0);
2779 dn->node_page = NULL;
2780 dn->inode_page = NULL;
2781 }
2782
f2fs_kmem_cache_create(const char * name,size_t size)2783 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2784 size_t size)
2785 {
2786 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2787 }
2788
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2789 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2790 gfp_t flags)
2791 {
2792 void *entry;
2793
2794 entry = kmem_cache_alloc(cachep, flags);
2795 if (!entry)
2796 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2797 return entry;
2798 }
2799
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2800 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2801 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2802 {
2803 if (nofail)
2804 return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2805
2806 if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2807 return NULL;
2808
2809 return kmem_cache_alloc(cachep, flags);
2810 }
2811
is_inflight_io(struct f2fs_sb_info * sbi,int type)2812 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2813 {
2814 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2815 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2816 get_pages(sbi, F2FS_WB_CP_DATA) ||
2817 get_pages(sbi, F2FS_DIO_READ) ||
2818 get_pages(sbi, F2FS_DIO_WRITE))
2819 return true;
2820
2821 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2822 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2823 return true;
2824
2825 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2826 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2827 return true;
2828 return false;
2829 }
2830
is_idle(struct f2fs_sb_info * sbi,int type)2831 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2832 {
2833 if (sbi->gc_mode == GC_URGENT_HIGH)
2834 return true;
2835
2836 if (is_inflight_io(sbi, type))
2837 return false;
2838
2839 if (sbi->gc_mode == GC_URGENT_MID)
2840 return true;
2841
2842 if (sbi->gc_mode == GC_URGENT_LOW &&
2843 (type == DISCARD_TIME || type == GC_TIME))
2844 return true;
2845
2846 return f2fs_time_over(sbi, type);
2847 }
2848
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2849 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2850 unsigned long index, void *item)
2851 {
2852 while (radix_tree_insert(root, index, item))
2853 cond_resched();
2854 }
2855
2856 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2857
IS_INODE(struct page * page)2858 static inline bool IS_INODE(struct page *page)
2859 {
2860 struct f2fs_node *p = F2FS_NODE(page);
2861
2862 return RAW_IS_INODE(p);
2863 }
2864
offset_in_addr(struct f2fs_inode * i)2865 static inline int offset_in_addr(struct f2fs_inode *i)
2866 {
2867 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2868 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2869 }
2870
blkaddr_in_node(struct f2fs_node * node)2871 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2872 {
2873 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2874 }
2875
2876 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2877 static inline block_t data_blkaddr(struct inode *inode,
2878 struct page *node_page, unsigned int offset)
2879 {
2880 struct f2fs_node *raw_node;
2881 __le32 *addr_array;
2882 int base = 0;
2883 bool is_inode = IS_INODE(node_page);
2884
2885 raw_node = F2FS_NODE(node_page);
2886
2887 if (is_inode) {
2888 if (!inode)
2889 /* from GC path only */
2890 base = offset_in_addr(&raw_node->i);
2891 else if (f2fs_has_extra_attr(inode))
2892 base = get_extra_isize(inode);
2893 }
2894
2895 addr_array = blkaddr_in_node(raw_node);
2896 return le32_to_cpu(addr_array[base + offset]);
2897 }
2898
f2fs_data_blkaddr(struct dnode_of_data * dn)2899 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2900 {
2901 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2902 }
2903
f2fs_test_bit(unsigned int nr,char * addr)2904 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2905 {
2906 int mask;
2907
2908 addr += (nr >> 3);
2909 mask = BIT(7 - (nr & 0x07));
2910 return mask & *addr;
2911 }
2912
f2fs_set_bit(unsigned int nr,char * addr)2913 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2914 {
2915 int mask;
2916
2917 addr += (nr >> 3);
2918 mask = BIT(7 - (nr & 0x07));
2919 *addr |= mask;
2920 }
2921
f2fs_clear_bit(unsigned int nr,char * addr)2922 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2923 {
2924 int mask;
2925
2926 addr += (nr >> 3);
2927 mask = BIT(7 - (nr & 0x07));
2928 *addr &= ~mask;
2929 }
2930
f2fs_test_and_set_bit(unsigned int nr,char * addr)2931 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2932 {
2933 int mask;
2934 int ret;
2935
2936 addr += (nr >> 3);
2937 mask = BIT(7 - (nr & 0x07));
2938 ret = mask & *addr;
2939 *addr |= mask;
2940 return ret;
2941 }
2942
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2943 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2944 {
2945 int mask;
2946 int ret;
2947
2948 addr += (nr >> 3);
2949 mask = BIT(7 - (nr & 0x07));
2950 ret = mask & *addr;
2951 *addr &= ~mask;
2952 return ret;
2953 }
2954
f2fs_change_bit(unsigned int nr,char * addr)2955 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2956 {
2957 int mask;
2958
2959 addr += (nr >> 3);
2960 mask = BIT(7 - (nr & 0x07));
2961 *addr ^= mask;
2962 }
2963
2964 /*
2965 * On-disk inode flags (f2fs_inode::i_flags)
2966 */
2967 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2968 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2969 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2970 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2971 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2972 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2973 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
2974 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2975 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2976 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2977 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
2978
2979 #define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
2980
2981 /* Flags that should be inherited by new inodes from their parent. */
2982 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2983 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2984 F2FS_CASEFOLD_FL)
2985
2986 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2987 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2988 F2FS_CASEFOLD_FL))
2989
2990 /* Flags that are appropriate for non-directories/regular files. */
2991 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2992
f2fs_mask_flags(umode_t mode,__u32 flags)2993 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2994 {
2995 if (S_ISDIR(mode))
2996 return flags;
2997 else if (S_ISREG(mode))
2998 return flags & F2FS_REG_FLMASK;
2999 else
3000 return flags & F2FS_OTHER_FLMASK;
3001 }
3002
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)3003 static inline void __mark_inode_dirty_flag(struct inode *inode,
3004 int flag, bool set)
3005 {
3006 switch (flag) {
3007 case FI_INLINE_XATTR:
3008 case FI_INLINE_DATA:
3009 case FI_INLINE_DENTRY:
3010 case FI_NEW_INODE:
3011 if (set)
3012 return;
3013 fallthrough;
3014 case FI_DATA_EXIST:
3015 case FI_INLINE_DOTS:
3016 case FI_PIN_FILE:
3017 case FI_COMPRESS_RELEASED:
3018 f2fs_mark_inode_dirty_sync(inode, true);
3019 }
3020 }
3021
set_inode_flag(struct inode * inode,int flag)3022 static inline void set_inode_flag(struct inode *inode, int flag)
3023 {
3024 set_bit(flag, F2FS_I(inode)->flags);
3025 __mark_inode_dirty_flag(inode, flag, true);
3026 }
3027
is_inode_flag_set(struct inode * inode,int flag)3028 static inline int is_inode_flag_set(struct inode *inode, int flag)
3029 {
3030 return test_bit(flag, F2FS_I(inode)->flags);
3031 }
3032
clear_inode_flag(struct inode * inode,int flag)3033 static inline void clear_inode_flag(struct inode *inode, int flag)
3034 {
3035 clear_bit(flag, F2FS_I(inode)->flags);
3036 __mark_inode_dirty_flag(inode, flag, false);
3037 }
3038
f2fs_verity_in_progress(struct inode * inode)3039 static inline bool f2fs_verity_in_progress(struct inode *inode)
3040 {
3041 return IS_ENABLED(CONFIG_FS_VERITY) &&
3042 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3043 }
3044
set_acl_inode(struct inode * inode,umode_t mode)3045 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3046 {
3047 F2FS_I(inode)->i_acl_mode = mode;
3048 set_inode_flag(inode, FI_ACL_MODE);
3049 f2fs_mark_inode_dirty_sync(inode, false);
3050 }
3051
f2fs_i_links_write(struct inode * inode,bool inc)3052 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3053 {
3054 if (inc)
3055 inc_nlink(inode);
3056 else
3057 drop_nlink(inode);
3058 f2fs_mark_inode_dirty_sync(inode, true);
3059 }
3060
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3061 static inline void f2fs_i_blocks_write(struct inode *inode,
3062 block_t diff, bool add, bool claim)
3063 {
3064 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3065 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3066
3067 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
3068 if (add) {
3069 if (claim)
3070 dquot_claim_block(inode, diff);
3071 else
3072 dquot_alloc_block_nofail(inode, diff);
3073 } else {
3074 dquot_free_block(inode, diff);
3075 }
3076
3077 f2fs_mark_inode_dirty_sync(inode, true);
3078 if (clean || recover)
3079 set_inode_flag(inode, FI_AUTO_RECOVER);
3080 }
3081
3082 static inline bool f2fs_is_atomic_file(struct inode *inode);
3083
f2fs_i_size_write(struct inode * inode,loff_t i_size)3084 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3085 {
3086 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3087 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3088
3089 if (i_size_read(inode) == i_size)
3090 return;
3091
3092 i_size_write(inode, i_size);
3093
3094 if (f2fs_is_atomic_file(inode))
3095 return;
3096
3097 f2fs_mark_inode_dirty_sync(inode, true);
3098 if (clean || recover)
3099 set_inode_flag(inode, FI_AUTO_RECOVER);
3100 }
3101
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3102 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3103 {
3104 F2FS_I(inode)->i_current_depth = depth;
3105 f2fs_mark_inode_dirty_sync(inode, true);
3106 }
3107
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3108 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3109 unsigned int count)
3110 {
3111 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3112 f2fs_mark_inode_dirty_sync(inode, true);
3113 }
3114
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3115 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3116 {
3117 F2FS_I(inode)->i_xattr_nid = xnid;
3118 f2fs_mark_inode_dirty_sync(inode, true);
3119 }
3120
f2fs_i_pino_write(struct inode * inode,nid_t pino)3121 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3122 {
3123 F2FS_I(inode)->i_pino = pino;
3124 f2fs_mark_inode_dirty_sync(inode, true);
3125 }
3126
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3127 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3128 {
3129 struct f2fs_inode_info *fi = F2FS_I(inode);
3130
3131 if (ri->i_inline & F2FS_INLINE_XATTR)
3132 set_bit(FI_INLINE_XATTR, fi->flags);
3133 if (ri->i_inline & F2FS_INLINE_DATA)
3134 set_bit(FI_INLINE_DATA, fi->flags);
3135 if (ri->i_inline & F2FS_INLINE_DENTRY)
3136 set_bit(FI_INLINE_DENTRY, fi->flags);
3137 if (ri->i_inline & F2FS_DATA_EXIST)
3138 set_bit(FI_DATA_EXIST, fi->flags);
3139 if (ri->i_inline & F2FS_INLINE_DOTS)
3140 set_bit(FI_INLINE_DOTS, fi->flags);
3141 if (ri->i_inline & F2FS_EXTRA_ATTR)
3142 set_bit(FI_EXTRA_ATTR, fi->flags);
3143 if (ri->i_inline & F2FS_PIN_FILE)
3144 set_bit(FI_PIN_FILE, fi->flags);
3145 if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3146 set_bit(FI_COMPRESS_RELEASED, fi->flags);
3147 }
3148
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3149 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3150 {
3151 ri->i_inline = 0;
3152
3153 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3154 ri->i_inline |= F2FS_INLINE_XATTR;
3155 if (is_inode_flag_set(inode, FI_INLINE_DATA))
3156 ri->i_inline |= F2FS_INLINE_DATA;
3157 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3158 ri->i_inline |= F2FS_INLINE_DENTRY;
3159 if (is_inode_flag_set(inode, FI_DATA_EXIST))
3160 ri->i_inline |= F2FS_DATA_EXIST;
3161 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3162 ri->i_inline |= F2FS_INLINE_DOTS;
3163 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3164 ri->i_inline |= F2FS_EXTRA_ATTR;
3165 if (is_inode_flag_set(inode, FI_PIN_FILE))
3166 ri->i_inline |= F2FS_PIN_FILE;
3167 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3168 ri->i_inline |= F2FS_COMPRESS_RELEASED;
3169 }
3170
f2fs_has_extra_attr(struct inode * inode)3171 static inline int f2fs_has_extra_attr(struct inode *inode)
3172 {
3173 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3174 }
3175
f2fs_has_inline_xattr(struct inode * inode)3176 static inline int f2fs_has_inline_xattr(struct inode *inode)
3177 {
3178 return is_inode_flag_set(inode, FI_INLINE_XATTR);
3179 }
3180
f2fs_compressed_file(struct inode * inode)3181 static inline int f2fs_compressed_file(struct inode *inode)
3182 {
3183 return S_ISREG(inode->i_mode) &&
3184 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3185 }
3186
f2fs_need_compress_data(struct inode * inode)3187 static inline bool f2fs_need_compress_data(struct inode *inode)
3188 {
3189 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3190
3191 if (!f2fs_compressed_file(inode))
3192 return false;
3193
3194 if (compress_mode == COMPR_MODE_FS)
3195 return true;
3196 else if (compress_mode == COMPR_MODE_USER &&
3197 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3198 return true;
3199
3200 return false;
3201 }
3202
addrs_per_inode(struct inode * inode)3203 static inline unsigned int addrs_per_inode(struct inode *inode)
3204 {
3205 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3206 get_inline_xattr_addrs(inode);
3207
3208 if (!f2fs_compressed_file(inode))
3209 return addrs;
3210 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3211 }
3212
addrs_per_block(struct inode * inode)3213 static inline unsigned int addrs_per_block(struct inode *inode)
3214 {
3215 if (!f2fs_compressed_file(inode))
3216 return DEF_ADDRS_PER_BLOCK;
3217 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3218 }
3219
inline_xattr_addr(struct inode * inode,struct page * page)3220 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3221 {
3222 struct f2fs_inode *ri = F2FS_INODE(page);
3223
3224 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3225 get_inline_xattr_addrs(inode)]);
3226 }
3227
inline_xattr_size(struct inode * inode)3228 static inline int inline_xattr_size(struct inode *inode)
3229 {
3230 if (f2fs_has_inline_xattr(inode))
3231 return get_inline_xattr_addrs(inode) * sizeof(__le32);
3232 return 0;
3233 }
3234
3235 /*
3236 * Notice: check inline_data flag without inode page lock is unsafe.
3237 * It could change at any time by f2fs_convert_inline_page().
3238 */
f2fs_has_inline_data(struct inode * inode)3239 static inline int f2fs_has_inline_data(struct inode *inode)
3240 {
3241 return is_inode_flag_set(inode, FI_INLINE_DATA);
3242 }
3243
f2fs_exist_data(struct inode * inode)3244 static inline int f2fs_exist_data(struct inode *inode)
3245 {
3246 return is_inode_flag_set(inode, FI_DATA_EXIST);
3247 }
3248
f2fs_has_inline_dots(struct inode * inode)3249 static inline int f2fs_has_inline_dots(struct inode *inode)
3250 {
3251 return is_inode_flag_set(inode, FI_INLINE_DOTS);
3252 }
3253
f2fs_is_mmap_file(struct inode * inode)3254 static inline int f2fs_is_mmap_file(struct inode *inode)
3255 {
3256 return is_inode_flag_set(inode, FI_MMAP_FILE);
3257 }
3258
f2fs_is_pinned_file(struct inode * inode)3259 static inline bool f2fs_is_pinned_file(struct inode *inode)
3260 {
3261 return is_inode_flag_set(inode, FI_PIN_FILE);
3262 }
3263
f2fs_is_atomic_file(struct inode * inode)3264 static inline bool f2fs_is_atomic_file(struct inode *inode)
3265 {
3266 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3267 }
3268
f2fs_is_cow_file(struct inode * inode)3269 static inline bool f2fs_is_cow_file(struct inode *inode)
3270 {
3271 return is_inode_flag_set(inode, FI_COW_FILE);
3272 }
3273
f2fs_is_first_block_written(struct inode * inode)3274 static inline bool f2fs_is_first_block_written(struct inode *inode)
3275 {
3276 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3277 }
3278
f2fs_is_drop_cache(struct inode * inode)3279 static inline bool f2fs_is_drop_cache(struct inode *inode)
3280 {
3281 return is_inode_flag_set(inode, FI_DROP_CACHE);
3282 }
3283
inline_data_addr(struct inode * inode,struct page * page)3284 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3285 {
3286 struct f2fs_inode *ri = F2FS_INODE(page);
3287 int extra_size = get_extra_isize(inode);
3288
3289 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3290 }
3291
f2fs_has_inline_dentry(struct inode * inode)3292 static inline int f2fs_has_inline_dentry(struct inode *inode)
3293 {
3294 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3295 }
3296
is_file(struct inode * inode,int type)3297 static inline int is_file(struct inode *inode, int type)
3298 {
3299 return F2FS_I(inode)->i_advise & type;
3300 }
3301
set_file(struct inode * inode,int type)3302 static inline void set_file(struct inode *inode, int type)
3303 {
3304 if (is_file(inode, type))
3305 return;
3306 F2FS_I(inode)->i_advise |= type;
3307 f2fs_mark_inode_dirty_sync(inode, true);
3308 }
3309
clear_file(struct inode * inode,int type)3310 static inline void clear_file(struct inode *inode, int type)
3311 {
3312 if (!is_file(inode, type))
3313 return;
3314 F2FS_I(inode)->i_advise &= ~type;
3315 f2fs_mark_inode_dirty_sync(inode, true);
3316 }
3317
f2fs_is_time_consistent(struct inode * inode)3318 static inline bool f2fs_is_time_consistent(struct inode *inode)
3319 {
3320 struct timespec64 ctime = inode_get_ctime(inode);
3321
3322 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3323 return false;
3324 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ctime))
3325 return false;
3326 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3327 return false;
3328 return true;
3329 }
3330
f2fs_skip_inode_update(struct inode * inode,int dsync)3331 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3332 {
3333 bool ret;
3334
3335 if (dsync) {
3336 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3337
3338 spin_lock(&sbi->inode_lock[DIRTY_META]);
3339 ret = list_empty(&F2FS_I(inode)->gdirty_list);
3340 spin_unlock(&sbi->inode_lock[DIRTY_META]);
3341 return ret;
3342 }
3343 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3344 file_keep_isize(inode) ||
3345 i_size_read(inode) & ~PAGE_MASK)
3346 return false;
3347
3348 if (!f2fs_is_time_consistent(inode))
3349 return false;
3350
3351 spin_lock(&F2FS_I(inode)->i_size_lock);
3352 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3353 spin_unlock(&F2FS_I(inode)->i_size_lock);
3354
3355 return ret;
3356 }
3357
f2fs_readonly(struct super_block * sb)3358 static inline bool f2fs_readonly(struct super_block *sb)
3359 {
3360 return sb_rdonly(sb);
3361 }
3362
f2fs_cp_error(struct f2fs_sb_info * sbi)3363 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3364 {
3365 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3366 }
3367
is_dot_dotdot(const u8 * name,size_t len)3368 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3369 {
3370 if (len == 1 && name[0] == '.')
3371 return true;
3372
3373 if (len == 2 && name[0] == '.' && name[1] == '.')
3374 return true;
3375
3376 return false;
3377 }
3378
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3379 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3380 size_t size, gfp_t flags)
3381 {
3382 if (time_to_inject(sbi, FAULT_KMALLOC))
3383 return NULL;
3384
3385 return kmalloc(size, flags);
3386 }
3387
f2fs_getname(struct f2fs_sb_info * sbi)3388 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3389 {
3390 if (time_to_inject(sbi, FAULT_KMALLOC))
3391 return NULL;
3392
3393 return __getname();
3394 }
3395
f2fs_putname(char * buf)3396 static inline void f2fs_putname(char *buf)
3397 {
3398 __putname(buf);
3399 }
3400
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3401 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3402 size_t size, gfp_t flags)
3403 {
3404 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3405 }
3406
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3407 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3408 size_t size, gfp_t flags)
3409 {
3410 if (time_to_inject(sbi, FAULT_KVMALLOC))
3411 return NULL;
3412
3413 return kvmalloc(size, flags);
3414 }
3415
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3416 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3417 size_t size, gfp_t flags)
3418 {
3419 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3420 }
3421
get_extra_isize(struct inode * inode)3422 static inline int get_extra_isize(struct inode *inode)
3423 {
3424 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3425 }
3426
get_inline_xattr_addrs(struct inode * inode)3427 static inline int get_inline_xattr_addrs(struct inode *inode)
3428 {
3429 return F2FS_I(inode)->i_inline_xattr_size;
3430 }
3431
3432 #define f2fs_get_inode_mode(i) \
3433 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3434 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3435
3436 #define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32))
3437
3438 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3439 (offsetof(struct f2fs_inode, i_extra_end) - \
3440 offsetof(struct f2fs_inode, i_extra_isize)) \
3441
3442 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3443 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3444 ((offsetof(typeof(*(f2fs_inode)), field) + \
3445 sizeof((f2fs_inode)->field)) \
3446 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3447
3448 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
3449
3450 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3451
3452 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3453 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3454 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3455 block_t blkaddr, int type)
3456 {
3457 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3458 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3459 blkaddr, type);
3460 f2fs_bug_on(sbi, 1);
3461 }
3462 }
3463
__is_valid_data_blkaddr(block_t blkaddr)3464 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3465 {
3466 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3467 blkaddr == COMPRESS_ADDR)
3468 return false;
3469 return true;
3470 }
3471
3472 /*
3473 * file.c
3474 */
3475 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3476 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3477 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3478 int f2fs_truncate(struct inode *inode);
3479 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3480 struct kstat *stat, u32 request_mask, unsigned int flags);
3481 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3482 struct iattr *attr);
3483 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3484 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3485 int f2fs_precache_extents(struct inode *inode);
3486 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3487 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3488 struct dentry *dentry, struct fileattr *fa);
3489 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3490 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3491 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3492 int f2fs_pin_file_control(struct inode *inode, bool inc);
3493
3494 /*
3495 * inode.c
3496 */
3497 void f2fs_set_inode_flags(struct inode *inode);
3498 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3499 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3500 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3501 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3502 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3503 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3504 void f2fs_update_inode_page(struct inode *inode);
3505 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3506 void f2fs_evict_inode(struct inode *inode);
3507 void f2fs_handle_failed_inode(struct inode *inode);
3508
3509 /*
3510 * namei.c
3511 */
3512 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3513 bool hot, bool set);
3514 struct dentry *f2fs_get_parent(struct dentry *child);
3515 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3516 struct inode **new_inode);
3517
3518 /*
3519 * dir.c
3520 */
3521 int f2fs_init_casefolded_name(const struct inode *dir,
3522 struct f2fs_filename *fname);
3523 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3524 int lookup, struct f2fs_filename *fname);
3525 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3526 struct f2fs_filename *fname);
3527 void f2fs_free_filename(struct f2fs_filename *fname);
3528 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3529 const struct f2fs_filename *fname, int *max_slots);
3530 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3531 unsigned int start_pos, struct fscrypt_str *fstr);
3532 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3533 struct f2fs_dentry_ptr *d);
3534 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3535 const struct f2fs_filename *fname, struct page *dpage);
3536 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3537 unsigned int current_depth);
3538 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3539 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3540 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3541 const struct f2fs_filename *fname,
3542 struct page **res_page);
3543 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3544 const struct qstr *child, struct page **res_page);
3545 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3546 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3547 struct page **page);
3548 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3549 struct page *page, struct inode *inode);
3550 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3551 const struct f2fs_filename *fname);
3552 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3553 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3554 unsigned int bit_pos);
3555 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3556 struct inode *inode, nid_t ino, umode_t mode);
3557 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3558 struct inode *inode, nid_t ino, umode_t mode);
3559 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3560 struct inode *inode, nid_t ino, umode_t mode);
3561 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3562 struct inode *dir, struct inode *inode);
3563 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3564 bool f2fs_empty_dir(struct inode *dir);
3565
f2fs_add_link(struct dentry * dentry,struct inode * inode)3566 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3567 {
3568 if (fscrypt_is_nokey_name(dentry))
3569 return -ENOKEY;
3570 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3571 inode, inode->i_ino, inode->i_mode);
3572 }
3573
3574 /*
3575 * super.c
3576 */
3577 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3578 void f2fs_inode_synced(struct inode *inode);
3579 int f2fs_dquot_initialize(struct inode *inode);
3580 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3581 int f2fs_quota_sync(struct super_block *sb, int type);
3582 loff_t max_file_blocks(struct inode *inode);
3583 void f2fs_quota_off_umount(struct super_block *sb);
3584 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3585 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason,
3586 bool irq_context);
3587 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3588 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3589 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3590 int f2fs_sync_fs(struct super_block *sb, int sync);
3591 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3592
3593 /*
3594 * hash.c
3595 */
3596 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3597
3598 /*
3599 * node.c
3600 */
3601 struct node_info;
3602
3603 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3604 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3605 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3606 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3607 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3608 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3609 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3610 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3611 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3612 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3613 struct node_info *ni, bool checkpoint_context);
3614 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3615 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3616 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3617 int f2fs_truncate_xattr_node(struct inode *inode);
3618 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3619 unsigned int seq_id);
3620 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3621 int f2fs_remove_inode_page(struct inode *inode);
3622 struct page *f2fs_new_inode_page(struct inode *inode);
3623 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3624 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3625 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3626 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3627 int f2fs_move_node_page(struct page *node_page, int gc_type);
3628 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3629 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3630 struct writeback_control *wbc, bool atomic,
3631 unsigned int *seq_id);
3632 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3633 struct writeback_control *wbc,
3634 bool do_balance, enum iostat_type io_type);
3635 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3636 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3637 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3638 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3639 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3640 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3641 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3642 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3643 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3644 unsigned int segno, struct f2fs_summary_block *sum);
3645 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3646 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3647 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3648 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3649 int __init f2fs_create_node_manager_caches(void);
3650 void f2fs_destroy_node_manager_caches(void);
3651
3652 /*
3653 * segment.c
3654 */
3655 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3656 int f2fs_commit_atomic_write(struct inode *inode);
3657 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3658 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3659 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3660 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3661 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3662 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3663 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3664 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3665 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3666 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3667 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3668 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3669 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3670 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3671 struct cp_control *cpc);
3672 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3673 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3674 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3675 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3676 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3677 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3678 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3679 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3680 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3681 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3682 unsigned int *newseg, bool new_sec, int dir);
3683 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3684 unsigned int start, unsigned int end);
3685 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3686 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3687 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3688 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3689 struct cp_control *cpc);
3690 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3691 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3692 block_t blk_addr);
3693 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3694 enum iostat_type io_type);
3695 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3696 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3697 struct f2fs_io_info *fio);
3698 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3699 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3700 block_t old_blkaddr, block_t new_blkaddr,
3701 bool recover_curseg, bool recover_newaddr,
3702 bool from_gc);
3703 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3704 block_t old_addr, block_t new_addr,
3705 unsigned char version, bool recover_curseg,
3706 bool recover_newaddr);
3707 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3708 block_t old_blkaddr, block_t *new_blkaddr,
3709 struct f2fs_summary *sum, int type,
3710 struct f2fs_io_info *fio);
3711 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3712 block_t blkaddr, unsigned int blkcnt);
3713 void f2fs_wait_on_page_writeback(struct page *page,
3714 enum page_type type, bool ordered, bool locked);
3715 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3716 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3717 block_t len);
3718 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3719 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3720 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3721 unsigned int val, int alloc);
3722 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3723 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3724 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3725 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3726 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3727 int __init f2fs_create_segment_manager_caches(void);
3728 void f2fs_destroy_segment_manager_caches(void);
3729 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3730 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3731 unsigned int segno);
3732 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3733 unsigned int segno);
3734
3735 #define DEF_FRAGMENT_SIZE 4
3736 #define MIN_FRAGMENT_SIZE 1
3737 #define MAX_FRAGMENT_SIZE 512
3738
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3739 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3740 {
3741 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3742 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3743 }
3744
3745 /*
3746 * checkpoint.c
3747 */
3748 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3749 unsigned char reason);
3750 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3751 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3752 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3753 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3754 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3755 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3756 block_t blkaddr, int type);
3757 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3758 int type, bool sync);
3759 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3760 unsigned int ra_blocks);
3761 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3762 long nr_to_write, enum iostat_type io_type);
3763 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3764 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3765 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3766 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3767 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3768 unsigned int devidx, int type);
3769 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3770 unsigned int devidx, int type);
3771 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3772 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3773 void f2fs_add_orphan_inode(struct inode *inode);
3774 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3775 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3776 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3777 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3778 void f2fs_remove_dirty_inode(struct inode *inode);
3779 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3780 bool from_cp);
3781 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3782 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3783 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3784 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3785 int __init f2fs_create_checkpoint_caches(void);
3786 void f2fs_destroy_checkpoint_caches(void);
3787 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3788 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3789 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3790 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3791
3792 /*
3793 * data.c
3794 */
3795 int __init f2fs_init_bioset(void);
3796 void f2fs_destroy_bioset(void);
3797 int f2fs_init_bio_entry_cache(void);
3798 void f2fs_destroy_bio_entry_cache(void);
3799 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3800 enum page_type type);
3801 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3802 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3803 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3804 struct inode *inode, struct page *page,
3805 nid_t ino, enum page_type type);
3806 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3807 struct bio **bio, struct page *page);
3808 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3809 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3810 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3811 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3812 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3813 block_t blk_addr, sector_t *sector);
3814 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3815 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3816 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3817 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3818 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3819 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3820 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3821 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3822 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3823 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3824 pgoff_t *next_pgofs);
3825 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3826 bool for_write);
3827 struct page *f2fs_get_new_data_page(struct inode *inode,
3828 struct page *ipage, pgoff_t index, bool new_i_size);
3829 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3830 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3831 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3832 u64 start, u64 len);
3833 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3834 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3835 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3836 int f2fs_write_single_data_page(struct page *page, int *submitted,
3837 struct bio **bio, sector_t *last_block,
3838 struct writeback_control *wbc,
3839 enum iostat_type io_type,
3840 int compr_blocks, bool allow_balance);
3841 void f2fs_write_failed(struct inode *inode, loff_t to);
3842 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3843 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3844 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3845 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3846 int f2fs_init_post_read_processing(void);
3847 void f2fs_destroy_post_read_processing(void);
3848 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3849 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3850 extern const struct iomap_ops f2fs_iomap_ops;
3851
3852 /*
3853 * gc.c
3854 */
3855 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3856 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3857 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3858 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3859 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3860 int f2fs_resize_fs(struct file *filp, __u64 block_count);
3861 int __init f2fs_create_garbage_collection_cache(void);
3862 void f2fs_destroy_garbage_collection_cache(void);
3863 /* victim selection function for cleaning and SSR */
3864 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3865 int gc_type, int type, char alloc_mode,
3866 unsigned long long age);
3867
3868 /*
3869 * recovery.c
3870 */
3871 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3872 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3873 int __init f2fs_create_recovery_cache(void);
3874 void f2fs_destroy_recovery_cache(void);
3875
3876 /*
3877 * debug.c
3878 */
3879 #ifdef CONFIG_F2FS_STAT_FS
3880 struct f2fs_stat_info {
3881 struct list_head stat_list;
3882 struct f2fs_sb_info *sbi;
3883 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3884 int main_area_segs, main_area_sections, main_area_zones;
3885 unsigned long long hit_cached[NR_EXTENT_CACHES];
3886 unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3887 unsigned long long total_ext[NR_EXTENT_CACHES];
3888 unsigned long long hit_total[NR_EXTENT_CACHES];
3889 int ext_tree[NR_EXTENT_CACHES];
3890 int zombie_tree[NR_EXTENT_CACHES];
3891 int ext_node[NR_EXTENT_CACHES];
3892 /* to count memory footprint */
3893 unsigned long long ext_mem[NR_EXTENT_CACHES];
3894 /* for read extent cache */
3895 unsigned long long hit_largest;
3896 /* for block age extent cache */
3897 unsigned long long allocated_data_blocks;
3898 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3899 int ndirty_data, ndirty_qdata;
3900 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3901 int nats, dirty_nats, sits, dirty_sits;
3902 int free_nids, avail_nids, alloc_nids;
3903 int total_count, utilization;
3904 int nr_wb_cp_data, nr_wb_data;
3905 int nr_rd_data, nr_rd_node, nr_rd_meta;
3906 int nr_dio_read, nr_dio_write;
3907 unsigned int io_skip_bggc, other_skip_bggc;
3908 int nr_flushing, nr_flushed, flush_list_empty;
3909 int nr_discarding, nr_discarded;
3910 int nr_discard_cmd;
3911 unsigned int undiscard_blks;
3912 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3913 unsigned int cur_ckpt_time, peak_ckpt_time;
3914 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3915 int compr_inode, swapfile_inode;
3916 unsigned long long compr_blocks;
3917 int aw_cnt, max_aw_cnt;
3918 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3919 unsigned int bimodal, avg_vblocks;
3920 int util_free, util_valid, util_invalid;
3921 int rsvd_segs, overp_segs;
3922 int dirty_count, node_pages, meta_pages, compress_pages;
3923 int compress_page_hit;
3924 int prefree_count, free_segs, free_secs;
3925 int cp_call_count[MAX_CALL_TYPE], cp_count;
3926 int gc_call_count[MAX_CALL_TYPE];
3927 int gc_segs[2][2];
3928 int gc_secs[2][2];
3929 int tot_blks, data_blks, node_blks;
3930 int bg_data_blks, bg_node_blks;
3931 int curseg[NR_CURSEG_TYPE];
3932 int cursec[NR_CURSEG_TYPE];
3933 int curzone[NR_CURSEG_TYPE];
3934 unsigned int dirty_seg[NR_CURSEG_TYPE];
3935 unsigned int full_seg[NR_CURSEG_TYPE];
3936 unsigned int valid_blks[NR_CURSEG_TYPE];
3937
3938 unsigned int meta_count[META_MAX];
3939 unsigned int segment_count[2];
3940 unsigned int block_count[2];
3941 unsigned int inplace_count;
3942 unsigned long long base_mem, cache_mem, page_mem;
3943 };
3944
F2FS_STAT(struct f2fs_sb_info * sbi)3945 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3946 {
3947 return (struct f2fs_stat_info *)sbi->stat_info;
3948 }
3949
3950 #define stat_inc_cp_call_count(sbi, foreground) \
3951 atomic_inc(&sbi->cp_call_count[(foreground)])
3952 #define stat_inc_cp_count(si) (F2FS_STAT(sbi)->cp_count++)
3953 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3954 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3955 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3956 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3957 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type]))
3958 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3959 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3960 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type]))
3961 #define stat_inc_inline_xattr(inode) \
3962 do { \
3963 if (f2fs_has_inline_xattr(inode)) \
3964 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3965 } while (0)
3966 #define stat_dec_inline_xattr(inode) \
3967 do { \
3968 if (f2fs_has_inline_xattr(inode)) \
3969 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3970 } while (0)
3971 #define stat_inc_inline_inode(inode) \
3972 do { \
3973 if (f2fs_has_inline_data(inode)) \
3974 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3975 } while (0)
3976 #define stat_dec_inline_inode(inode) \
3977 do { \
3978 if (f2fs_has_inline_data(inode)) \
3979 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3980 } while (0)
3981 #define stat_inc_inline_dir(inode) \
3982 do { \
3983 if (f2fs_has_inline_dentry(inode)) \
3984 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3985 } while (0)
3986 #define stat_dec_inline_dir(inode) \
3987 do { \
3988 if (f2fs_has_inline_dentry(inode)) \
3989 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3990 } while (0)
3991 #define stat_inc_compr_inode(inode) \
3992 do { \
3993 if (f2fs_compressed_file(inode)) \
3994 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
3995 } while (0)
3996 #define stat_dec_compr_inode(inode) \
3997 do { \
3998 if (f2fs_compressed_file(inode)) \
3999 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
4000 } while (0)
4001 #define stat_add_compr_blocks(inode, blocks) \
4002 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4003 #define stat_sub_compr_blocks(inode, blocks) \
4004 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4005 #define stat_inc_swapfile_inode(inode) \
4006 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4007 #define stat_dec_swapfile_inode(inode) \
4008 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4009 #define stat_inc_atomic_inode(inode) \
4010 (atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4011 #define stat_dec_atomic_inode(inode) \
4012 (atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4013 #define stat_inc_meta_count(sbi, blkaddr) \
4014 do { \
4015 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
4016 atomic_inc(&(sbi)->meta_count[META_CP]); \
4017 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
4018 atomic_inc(&(sbi)->meta_count[META_SIT]); \
4019 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
4020 atomic_inc(&(sbi)->meta_count[META_NAT]); \
4021 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
4022 atomic_inc(&(sbi)->meta_count[META_SSA]); \
4023 } while (0)
4024 #define stat_inc_seg_type(sbi, curseg) \
4025 ((sbi)->segment_count[(curseg)->alloc_type]++)
4026 #define stat_inc_block_count(sbi, curseg) \
4027 ((sbi)->block_count[(curseg)->alloc_type]++)
4028 #define stat_inc_inplace_blocks(sbi) \
4029 (atomic_inc(&(sbi)->inplace_count))
4030 #define stat_update_max_atomic_write(inode) \
4031 do { \
4032 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \
4033 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
4034 if (cur > max) \
4035 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
4036 } while (0)
4037 #define stat_inc_gc_call_count(sbi, foreground) \
4038 (F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4039 #define stat_inc_gc_sec_count(sbi, type, gc_type) \
4040 (F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4041 #define stat_inc_gc_seg_count(sbi, type, gc_type) \
4042 (F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4043
4044 #define stat_inc_tot_blk_count(si, blks) \
4045 ((si)->tot_blks += (blks))
4046
4047 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
4048 do { \
4049 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4050 stat_inc_tot_blk_count(si, blks); \
4051 si->data_blks += (blks); \
4052 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4053 } while (0)
4054
4055 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
4056 do { \
4057 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4058 stat_inc_tot_blk_count(si, blks); \
4059 si->node_blks += (blks); \
4060 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4061 } while (0)
4062
4063 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4064 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4065 void __init f2fs_create_root_stats(void);
4066 void f2fs_destroy_root_stats(void);
4067 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4068 #else
4069 #define stat_inc_cp_call_count(sbi, foreground) do { } while (0)
4070 #define stat_inc_cp_count(sbi) do { } while (0)
4071 #define stat_io_skip_bggc_count(sbi) do { } while (0)
4072 #define stat_other_skip_bggc_count(sbi) do { } while (0)
4073 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
4074 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
4075 #define stat_inc_total_hit(sbi, type) do { } while (0)
4076 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0)
4077 #define stat_inc_largest_node_hit(sbi) do { } while (0)
4078 #define stat_inc_cached_node_hit(sbi, type) do { } while (0)
4079 #define stat_inc_inline_xattr(inode) do { } while (0)
4080 #define stat_dec_inline_xattr(inode) do { } while (0)
4081 #define stat_inc_inline_inode(inode) do { } while (0)
4082 #define stat_dec_inline_inode(inode) do { } while (0)
4083 #define stat_inc_inline_dir(inode) do { } while (0)
4084 #define stat_dec_inline_dir(inode) do { } while (0)
4085 #define stat_inc_compr_inode(inode) do { } while (0)
4086 #define stat_dec_compr_inode(inode) do { } while (0)
4087 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
4088 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
4089 #define stat_inc_swapfile_inode(inode) do { } while (0)
4090 #define stat_dec_swapfile_inode(inode) do { } while (0)
4091 #define stat_inc_atomic_inode(inode) do { } while (0)
4092 #define stat_dec_atomic_inode(inode) do { } while (0)
4093 #define stat_update_max_atomic_write(inode) do { } while (0)
4094 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
4095 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
4096 #define stat_inc_block_count(sbi, curseg) do { } while (0)
4097 #define stat_inc_inplace_blocks(sbi) do { } while (0)
4098 #define stat_inc_gc_call_count(sbi, foreground) do { } while (0)
4099 #define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0)
4100 #define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0)
4101 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
4102 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
4103 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
4104
f2fs_build_stats(struct f2fs_sb_info * sbi)4105 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4106 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4107 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4108 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4109 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4110 #endif
4111
4112 extern const struct file_operations f2fs_dir_operations;
4113 extern const struct file_operations f2fs_file_operations;
4114 extern const struct inode_operations f2fs_file_inode_operations;
4115 extern const struct address_space_operations f2fs_dblock_aops;
4116 extern const struct address_space_operations f2fs_node_aops;
4117 extern const struct address_space_operations f2fs_meta_aops;
4118 extern const struct inode_operations f2fs_dir_inode_operations;
4119 extern const struct inode_operations f2fs_symlink_inode_operations;
4120 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4121 extern const struct inode_operations f2fs_special_inode_operations;
4122 extern struct kmem_cache *f2fs_inode_entry_slab;
4123
4124 /*
4125 * inline.c
4126 */
4127 bool f2fs_may_inline_data(struct inode *inode);
4128 bool f2fs_sanity_check_inline_data(struct inode *inode);
4129 bool f2fs_may_inline_dentry(struct inode *inode);
4130 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4131 void f2fs_truncate_inline_inode(struct inode *inode,
4132 struct page *ipage, u64 from);
4133 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4134 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4135 int f2fs_convert_inline_inode(struct inode *inode);
4136 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4137 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4138 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4139 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4140 const struct f2fs_filename *fname,
4141 struct page **res_page);
4142 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4143 struct page *ipage);
4144 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4145 struct inode *inode, nid_t ino, umode_t mode);
4146 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4147 struct page *page, struct inode *dir,
4148 struct inode *inode);
4149 bool f2fs_empty_inline_dir(struct inode *dir);
4150 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4151 struct fscrypt_str *fstr);
4152 int f2fs_inline_data_fiemap(struct inode *inode,
4153 struct fiemap_extent_info *fieinfo,
4154 __u64 start, __u64 len);
4155
4156 /*
4157 * shrinker.c
4158 */
4159 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4160 struct shrink_control *sc);
4161 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4162 struct shrink_control *sc);
4163 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4164 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4165
4166 /*
4167 * extent_cache.c
4168 */
4169 bool sanity_check_extent_cache(struct inode *inode);
4170 void f2fs_init_extent_tree(struct inode *inode);
4171 void f2fs_drop_extent_tree(struct inode *inode);
4172 void f2fs_destroy_extent_node(struct inode *inode);
4173 void f2fs_destroy_extent_tree(struct inode *inode);
4174 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4175 int __init f2fs_create_extent_cache(void);
4176 void f2fs_destroy_extent_cache(void);
4177
4178 /* read extent cache ops */
4179 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4180 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4181 struct extent_info *ei);
4182 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4183 block_t *blkaddr);
4184 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4185 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4186 pgoff_t fofs, block_t blkaddr, unsigned int len);
4187 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4188 int nr_shrink);
4189
4190 /* block age extent cache ops */
4191 void f2fs_init_age_extent_tree(struct inode *inode);
4192 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4193 struct extent_info *ei);
4194 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4195 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4196 pgoff_t fofs, unsigned int len);
4197 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4198 int nr_shrink);
4199
4200 /*
4201 * sysfs.c
4202 */
4203 #define MIN_RA_MUL 2
4204 #define MAX_RA_MUL 256
4205
4206 int __init f2fs_init_sysfs(void);
4207 void f2fs_exit_sysfs(void);
4208 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4209 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4210
4211 /* verity.c */
4212 extern const struct fsverity_operations f2fs_verityops;
4213
4214 /*
4215 * crypto support
4216 */
f2fs_encrypted_file(struct inode * inode)4217 static inline bool f2fs_encrypted_file(struct inode *inode)
4218 {
4219 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4220 }
4221
f2fs_set_encrypted_inode(struct inode * inode)4222 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4223 {
4224 #ifdef CONFIG_FS_ENCRYPTION
4225 file_set_encrypt(inode);
4226 f2fs_set_inode_flags(inode);
4227 #endif
4228 }
4229
4230 /*
4231 * Returns true if the reads of the inode's data need to undergo some
4232 * postprocessing step, like decryption or authenticity verification.
4233 */
f2fs_post_read_required(struct inode * inode)4234 static inline bool f2fs_post_read_required(struct inode *inode)
4235 {
4236 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4237 f2fs_compressed_file(inode);
4238 }
4239
4240 /*
4241 * compress.c
4242 */
4243 #ifdef CONFIG_F2FS_FS_COMPRESSION
4244 bool f2fs_is_compressed_page(struct page *page);
4245 struct page *f2fs_compress_control_page(struct page *page);
4246 int f2fs_prepare_compress_overwrite(struct inode *inode,
4247 struct page **pagep, pgoff_t index, void **fsdata);
4248 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4249 pgoff_t index, unsigned copied);
4250 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4251 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4252 bool f2fs_is_compress_backend_ready(struct inode *inode);
4253 bool f2fs_is_compress_level_valid(int alg, int lvl);
4254 int __init f2fs_init_compress_mempool(void);
4255 void f2fs_destroy_compress_mempool(void);
4256 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4257 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4258 block_t blkaddr, bool in_task);
4259 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4260 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4261 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4262 int index, int nr_pages, bool uptodate);
4263 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4264 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4265 int f2fs_write_multi_pages(struct compress_ctx *cc,
4266 int *submitted,
4267 struct writeback_control *wbc,
4268 enum iostat_type io_type);
4269 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4270 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4271 pgoff_t fofs, block_t blkaddr,
4272 unsigned int llen, unsigned int c_len);
4273 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4274 unsigned nr_pages, sector_t *last_block_in_bio,
4275 bool is_readahead, bool for_write);
4276 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4277 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4278 bool in_task);
4279 void f2fs_put_page_dic(struct page *page, bool in_task);
4280 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4281 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4282 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4283 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4284 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4285 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4286 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4287 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4288 int __init f2fs_init_compress_cache(void);
4289 void f2fs_destroy_compress_cache(void);
4290 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4291 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4292 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4293 nid_t ino, block_t blkaddr);
4294 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4295 block_t blkaddr);
4296 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4297 #define inc_compr_inode_stat(inode) \
4298 do { \
4299 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4300 sbi->compr_new_inode++; \
4301 } while (0)
4302 #define add_compr_block_stat(inode, blocks) \
4303 do { \
4304 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4305 int diff = F2FS_I(inode)->i_cluster_size - blocks; \
4306 sbi->compr_written_block += blocks; \
4307 sbi->compr_saved_block += diff; \
4308 } while (0)
4309 #else
f2fs_is_compressed_page(struct page * page)4310 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4311 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4312 {
4313 if (!f2fs_compressed_file(inode))
4314 return true;
4315 /* not support compression */
4316 return false;
4317 }
f2fs_is_compress_level_valid(int alg,int lvl)4318 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
f2fs_compress_control_page(struct page * page)4319 static inline struct page *f2fs_compress_control_page(struct page *page)
4320 {
4321 WARN_ON_ONCE(1);
4322 return ERR_PTR(-EINVAL);
4323 }
f2fs_init_compress_mempool(void)4324 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4325 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4326 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4327 bool in_task) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)4328 static inline void f2fs_end_read_compressed_page(struct page *page,
4329 bool failed, block_t blkaddr, bool in_task)
4330 {
4331 WARN_ON_ONCE(1);
4332 }
f2fs_put_page_dic(struct page * page,bool in_task)4333 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4334 {
4335 WARN_ON_ONCE(1);
4336 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn)4337 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4338 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4339 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4340 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4341 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4342 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4343 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4344 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)4345 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4346 block_t blkaddr) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4347 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4348 struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4349 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4350 struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4351 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4352 nid_t ino) { }
4353 #define inc_compr_inode_stat(inode) do { } while (0)
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4354 static inline void f2fs_update_read_extent_tree_range_compressed(
4355 struct inode *inode,
4356 pgoff_t fofs, block_t blkaddr,
4357 unsigned int llen, unsigned int c_len) { }
4358 #endif
4359
set_compress_context(struct inode * inode)4360 static inline int set_compress_context(struct inode *inode)
4361 {
4362 #ifdef CONFIG_F2FS_FS_COMPRESSION
4363 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4364
4365 F2FS_I(inode)->i_compress_algorithm =
4366 F2FS_OPTION(sbi).compress_algorithm;
4367 F2FS_I(inode)->i_log_cluster_size =
4368 F2FS_OPTION(sbi).compress_log_size;
4369 F2FS_I(inode)->i_compress_flag =
4370 F2FS_OPTION(sbi).compress_chksum ?
4371 BIT(COMPRESS_CHKSUM) : 0;
4372 F2FS_I(inode)->i_cluster_size =
4373 BIT(F2FS_I(inode)->i_log_cluster_size);
4374 if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4375 F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4376 F2FS_OPTION(sbi).compress_level)
4377 F2FS_I(inode)->i_compress_level =
4378 F2FS_OPTION(sbi).compress_level;
4379 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4380 set_inode_flag(inode, FI_COMPRESSED_FILE);
4381 stat_inc_compr_inode(inode);
4382 inc_compr_inode_stat(inode);
4383 f2fs_mark_inode_dirty_sync(inode, true);
4384 return 0;
4385 #else
4386 return -EOPNOTSUPP;
4387 #endif
4388 }
4389
f2fs_disable_compressed_file(struct inode * inode)4390 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4391 {
4392 struct f2fs_inode_info *fi = F2FS_I(inode);
4393
4394 if (!f2fs_compressed_file(inode))
4395 return true;
4396 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4397 return false;
4398
4399 fi->i_flags &= ~F2FS_COMPR_FL;
4400 stat_dec_compr_inode(inode);
4401 clear_inode_flag(inode, FI_COMPRESSED_FILE);
4402 f2fs_mark_inode_dirty_sync(inode, true);
4403 return true;
4404 }
4405
4406 #define F2FS_FEATURE_FUNCS(name, flagname) \
4407 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4408 { \
4409 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4410 }
4411
4412 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4413 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4414 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4415 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4416 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4417 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4418 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4419 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4420 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4421 F2FS_FEATURE_FUNCS(verity, VERITY);
4422 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4423 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4424 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4425 F2FS_FEATURE_FUNCS(readonly, RO);
4426
4427 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4428 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4429 block_t blkaddr)
4430 {
4431 unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4432
4433 return test_bit(zno, FDEV(devi).blkz_seq);
4434 }
4435 #endif
4436
f2fs_bdev_index(struct f2fs_sb_info * sbi,struct block_device * bdev)4437 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4438 struct block_device *bdev)
4439 {
4440 int i;
4441
4442 if (!f2fs_is_multi_device(sbi))
4443 return 0;
4444
4445 for (i = 0; i < sbi->s_ndevs; i++)
4446 if (FDEV(i).bdev == bdev)
4447 return i;
4448
4449 WARN_ON(1);
4450 return -1;
4451 }
4452
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4453 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4454 {
4455 return f2fs_sb_has_blkzoned(sbi);
4456 }
4457
f2fs_bdev_support_discard(struct block_device * bdev)4458 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4459 {
4460 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4461 }
4462
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4463 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4464 {
4465 int i;
4466
4467 if (!f2fs_is_multi_device(sbi))
4468 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4469
4470 for (i = 0; i < sbi->s_ndevs; i++)
4471 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4472 return true;
4473 return false;
4474 }
4475
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4476 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4477 {
4478 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4479 f2fs_hw_should_discard(sbi);
4480 }
4481
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4482 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4483 {
4484 int i;
4485
4486 if (!f2fs_is_multi_device(sbi))
4487 return bdev_read_only(sbi->sb->s_bdev);
4488
4489 for (i = 0; i < sbi->s_ndevs; i++)
4490 if (bdev_read_only(FDEV(i).bdev))
4491 return true;
4492 return false;
4493 }
4494
f2fs_dev_is_readonly(struct f2fs_sb_info * sbi)4495 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4496 {
4497 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4498 }
4499
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4500 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4501 {
4502 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4503 }
4504
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4505 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4506 {
4507 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4508 }
4509
f2fs_may_compress(struct inode * inode)4510 static inline bool f2fs_may_compress(struct inode *inode)
4511 {
4512 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4513 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4514 f2fs_is_mmap_file(inode))
4515 return false;
4516 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4517 }
4518
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4519 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4520 u64 blocks, bool add)
4521 {
4522 struct f2fs_inode_info *fi = F2FS_I(inode);
4523 int diff = fi->i_cluster_size - blocks;
4524
4525 /* don't update i_compr_blocks if saved blocks were released */
4526 if (!add && !atomic_read(&fi->i_compr_blocks))
4527 return;
4528
4529 if (add) {
4530 atomic_add(diff, &fi->i_compr_blocks);
4531 stat_add_compr_blocks(inode, diff);
4532 } else {
4533 atomic_sub(diff, &fi->i_compr_blocks);
4534 stat_sub_compr_blocks(inode, diff);
4535 }
4536 f2fs_mark_inode_dirty_sync(inode, true);
4537 }
4538
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4539 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4540 int flag)
4541 {
4542 if (!f2fs_is_multi_device(sbi))
4543 return false;
4544 if (flag != F2FS_GET_BLOCK_DIO)
4545 return false;
4546 return sbi->aligned_blksize;
4547 }
4548
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4549 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4550 {
4551 return fsverity_active(inode) &&
4552 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4553 }
4554
4555 #ifdef CONFIG_F2FS_FAULT_INJECTION
4556 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4557 unsigned int type);
4558 #else
4559 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
4560 #endif
4561
is_journalled_quota(struct f2fs_sb_info * sbi)4562 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4563 {
4564 #ifdef CONFIG_QUOTA
4565 if (f2fs_sb_has_quota_ino(sbi))
4566 return true;
4567 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4568 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4569 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4570 return true;
4571 #endif
4572 return false;
4573 }
4574
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4575 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4576 {
4577 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4578 }
4579
f2fs_io_schedule_timeout(long timeout)4580 static inline void f2fs_io_schedule_timeout(long timeout)
4581 {
4582 set_current_state(TASK_UNINTERRUPTIBLE);
4583 io_schedule_timeout(timeout);
4584 }
4585
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,pgoff_t ofs,enum page_type type)4586 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4587 enum page_type type)
4588 {
4589 if (unlikely(f2fs_cp_error(sbi)))
4590 return;
4591
4592 if (ofs == sbi->page_eio_ofs[type]) {
4593 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4594 set_ckpt_flags(sbi, CP_ERROR_FLAG);
4595 } else {
4596 sbi->page_eio_ofs[type] = ofs;
4597 sbi->page_eio_cnt[type] = 0;
4598 }
4599 }
4600
f2fs_is_readonly(struct f2fs_sb_info * sbi)4601 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4602 {
4603 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4604 }
4605
4606 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4607 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4608
4609 #endif /* _LINUX_F2FS_H */
4610