1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2023 Intel Corporation
9 */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27
28 /**
29 * DOC: BSS tree/list structure
30 *
31 * At the top level, the BSS list is kept in both a list in each
32 * registered device (@bss_list) as well as an RB-tree for faster
33 * lookup. In the RB-tree, entries can be looked up using their
34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35 * for other BSSes.
36 *
37 * Due to the possibility of hidden SSIDs, there's a second level
38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39 * The hidden_list connects all BSSes belonging to a single AP
40 * that has a hidden SSID, and connects beacon and probe response
41 * entries. For a probe response entry for a hidden SSID, the
42 * hidden_beacon_bss pointer points to the BSS struct holding the
43 * beacon's information.
44 *
45 * Reference counting is done for all these references except for
46 * the hidden_list, so that a beacon BSS struct that is otherwise
47 * not referenced has one reference for being on the bss_list and
48 * one for each probe response entry that points to it using the
49 * hidden_beacon_bss pointer. When a BSS struct that has such a
50 * pointer is get/put, the refcount update is also propagated to
51 * the referenced struct, this ensure that it cannot get removed
52 * while somebody is using the probe response version.
53 *
54 * Note that the hidden_beacon_bss pointer never changes, due to
55 * the reference counting. Therefore, no locking is needed for
56 * it.
57 *
58 * Also note that the hidden_beacon_bss pointer is only relevant
59 * if the driver uses something other than the IEs, e.g. private
60 * data stored in the BSS struct, since the beacon IEs are
61 * also linked into the probe response struct.
62 */
63
64 /*
65 * Limit the number of BSS entries stored in mac80211. Each one is
66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67 * If somebody wants to really attack this though, they'd likely
68 * use small beacons, and only one type of frame, limiting each of
69 * the entries to a much smaller size (in order to generate more
70 * entries in total, so overhead is bigger.)
71 */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75 "limit to number of scan BSS entries (per wiphy, default 1000)");
76
77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
78
79 /**
80 * struct cfg80211_colocated_ap - colocated AP information
81 *
82 * @list: linked list to all colocated aPS
83 * @bssid: BSSID of the reported AP
84 * @ssid: SSID of the reported AP
85 * @ssid_len: length of the ssid
86 * @center_freq: frequency the reported AP is on
87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88 * that operate in the same channel as the reported AP and that might be
89 * detected by a STA receiving this frame, are transmitting unsolicited
90 * Probe Response frames every 20 TUs
91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92 * @same_ssid: the reported AP has the same SSID as the reporting AP
93 * @multi_bss: the reported AP is part of a multiple BSSID set
94 * @transmitted_bssid: the reported AP is the transmitting BSSID
95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
96 * colocated and can be discovered via legacy bands.
97 * @short_ssid_valid: short_ssid is valid and can be used
98 * @short_ssid: the short SSID for this SSID
99 * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP
100 */
101 struct cfg80211_colocated_ap {
102 struct list_head list;
103 u8 bssid[ETH_ALEN];
104 u8 ssid[IEEE80211_MAX_SSID_LEN];
105 size_t ssid_len;
106 u32 short_ssid;
107 u32 center_freq;
108 u8 unsolicited_probe:1,
109 oct_recommended:1,
110 same_ssid:1,
111 multi_bss:1,
112 transmitted_bssid:1,
113 colocated_ess:1,
114 short_ssid_valid:1;
115 s8 psd_20;
116 };
117
bss_free(struct cfg80211_internal_bss * bss)118 static void bss_free(struct cfg80211_internal_bss *bss)
119 {
120 struct cfg80211_bss_ies *ies;
121
122 if (WARN_ON(atomic_read(&bss->hold)))
123 return;
124
125 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
126 if (ies && !bss->pub.hidden_beacon_bss)
127 kfree_rcu(ies, rcu_head);
128 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
129 if (ies)
130 kfree_rcu(ies, rcu_head);
131
132 /*
133 * This happens when the module is removed, it doesn't
134 * really matter any more save for completeness
135 */
136 if (!list_empty(&bss->hidden_list))
137 list_del(&bss->hidden_list);
138
139 kfree(bss);
140 }
141
bss_ref_get(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)142 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
143 struct cfg80211_internal_bss *bss)
144 {
145 lockdep_assert_held(&rdev->bss_lock);
146
147 bss->refcount++;
148
149 if (bss->pub.hidden_beacon_bss)
150 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
151
152 if (bss->pub.transmitted_bss)
153 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
154 }
155
bss_ref_put(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)156 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
157 struct cfg80211_internal_bss *bss)
158 {
159 lockdep_assert_held(&rdev->bss_lock);
160
161 if (bss->pub.hidden_beacon_bss) {
162 struct cfg80211_internal_bss *hbss;
163
164 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
165 hbss->refcount--;
166 if (hbss->refcount == 0)
167 bss_free(hbss);
168 }
169
170 if (bss->pub.transmitted_bss) {
171 struct cfg80211_internal_bss *tbss;
172
173 tbss = bss_from_pub(bss->pub.transmitted_bss);
174 tbss->refcount--;
175 if (tbss->refcount == 0)
176 bss_free(tbss);
177 }
178
179 bss->refcount--;
180 if (bss->refcount == 0)
181 bss_free(bss);
182 }
183
__cfg80211_unlink_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)184 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
185 struct cfg80211_internal_bss *bss)
186 {
187 lockdep_assert_held(&rdev->bss_lock);
188
189 if (!list_empty(&bss->hidden_list)) {
190 /*
191 * don't remove the beacon entry if it has
192 * probe responses associated with it
193 */
194 if (!bss->pub.hidden_beacon_bss)
195 return false;
196 /*
197 * if it's a probe response entry break its
198 * link to the other entries in the group
199 */
200 list_del_init(&bss->hidden_list);
201 }
202
203 list_del_init(&bss->list);
204 list_del_init(&bss->pub.nontrans_list);
205 rb_erase(&bss->rbn, &rdev->bss_tree);
206 rdev->bss_entries--;
207 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
208 "rdev bss entries[%d]/list[empty:%d] corruption\n",
209 rdev->bss_entries, list_empty(&rdev->bss_list));
210 bss_ref_put(rdev, bss);
211 return true;
212 }
213
cfg80211_is_element_inherited(const struct element * elem,const struct element * non_inherit_elem)214 bool cfg80211_is_element_inherited(const struct element *elem,
215 const struct element *non_inherit_elem)
216 {
217 u8 id_len, ext_id_len, i, loop_len, id;
218 const u8 *list;
219
220 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
221 return false;
222
223 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
224 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
225 return false;
226
227 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
228 return true;
229
230 /*
231 * non inheritance element format is:
232 * ext ID (56) | IDs list len | list | extension IDs list len | list
233 * Both lists are optional. Both lengths are mandatory.
234 * This means valid length is:
235 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
236 */
237 id_len = non_inherit_elem->data[1];
238 if (non_inherit_elem->datalen < 3 + id_len)
239 return true;
240
241 ext_id_len = non_inherit_elem->data[2 + id_len];
242 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
243 return true;
244
245 if (elem->id == WLAN_EID_EXTENSION) {
246 if (!ext_id_len)
247 return true;
248 loop_len = ext_id_len;
249 list = &non_inherit_elem->data[3 + id_len];
250 id = elem->data[0];
251 } else {
252 if (!id_len)
253 return true;
254 loop_len = id_len;
255 list = &non_inherit_elem->data[2];
256 id = elem->id;
257 }
258
259 for (i = 0; i < loop_len; i++) {
260 if (list[i] == id)
261 return false;
262 }
263
264 return true;
265 }
266 EXPORT_SYMBOL(cfg80211_is_element_inherited);
267
cfg80211_copy_elem_with_frags(const struct element * elem,const u8 * ie,size_t ie_len,u8 ** pos,u8 * buf,size_t buf_len)268 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
269 const u8 *ie, size_t ie_len,
270 u8 **pos, u8 *buf, size_t buf_len)
271 {
272 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
273 elem->data + elem->datalen > ie + ie_len))
274 return 0;
275
276 if (elem->datalen + 2 > buf + buf_len - *pos)
277 return 0;
278
279 memcpy(*pos, elem, elem->datalen + 2);
280 *pos += elem->datalen + 2;
281
282 /* Finish if it is not fragmented */
283 if (elem->datalen != 255)
284 return *pos - buf;
285
286 ie_len = ie + ie_len - elem->data - elem->datalen;
287 ie = (const u8 *)elem->data + elem->datalen;
288
289 for_each_element(elem, ie, ie_len) {
290 if (elem->id != WLAN_EID_FRAGMENT)
291 break;
292
293 if (elem->datalen + 2 > buf + buf_len - *pos)
294 return 0;
295
296 memcpy(*pos, elem, elem->datalen + 2);
297 *pos += elem->datalen + 2;
298
299 if (elem->datalen != 255)
300 break;
301 }
302
303 return *pos - buf;
304 }
305
cfg80211_gen_new_ie(const u8 * ie,size_t ielen,const u8 * subie,size_t subie_len,u8 * new_ie,size_t new_ie_len)306 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
307 const u8 *subie, size_t subie_len,
308 u8 *new_ie, size_t new_ie_len)
309 {
310 const struct element *non_inherit_elem, *parent, *sub;
311 u8 *pos = new_ie;
312 u8 id, ext_id;
313 unsigned int match_len;
314
315 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
316 subie, subie_len);
317
318 /* We copy the elements one by one from the parent to the generated
319 * elements.
320 * If they are not inherited (included in subie or in the non
321 * inheritance element), then we copy all occurrences the first time
322 * we see this element type.
323 */
324 for_each_element(parent, ie, ielen) {
325 if (parent->id == WLAN_EID_FRAGMENT)
326 continue;
327
328 if (parent->id == WLAN_EID_EXTENSION) {
329 if (parent->datalen < 1)
330 continue;
331
332 id = WLAN_EID_EXTENSION;
333 ext_id = parent->data[0];
334 match_len = 1;
335 } else {
336 id = parent->id;
337 match_len = 0;
338 }
339
340 /* Find first occurrence in subie */
341 sub = cfg80211_find_elem_match(id, subie, subie_len,
342 &ext_id, match_len, 0);
343
344 /* Copy from parent if not in subie and inherited */
345 if (!sub &&
346 cfg80211_is_element_inherited(parent, non_inherit_elem)) {
347 if (!cfg80211_copy_elem_with_frags(parent,
348 ie, ielen,
349 &pos, new_ie,
350 new_ie_len))
351 return 0;
352
353 continue;
354 }
355
356 /* Already copied if an earlier element had the same type */
357 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
358 &ext_id, match_len, 0))
359 continue;
360
361 /* Not inheriting, copy all similar elements from subie */
362 while (sub) {
363 if (!cfg80211_copy_elem_with_frags(sub,
364 subie, subie_len,
365 &pos, new_ie,
366 new_ie_len))
367 return 0;
368
369 sub = cfg80211_find_elem_match(id,
370 sub->data + sub->datalen,
371 subie_len + subie -
372 (sub->data +
373 sub->datalen),
374 &ext_id, match_len, 0);
375 }
376 }
377
378 /* The above misses elements that are included in subie but not in the
379 * parent, so do a pass over subie and append those.
380 * Skip the non-tx BSSID caps and non-inheritance element.
381 */
382 for_each_element(sub, subie, subie_len) {
383 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
384 continue;
385
386 if (sub->id == WLAN_EID_FRAGMENT)
387 continue;
388
389 if (sub->id == WLAN_EID_EXTENSION) {
390 if (sub->datalen < 1)
391 continue;
392
393 id = WLAN_EID_EXTENSION;
394 ext_id = sub->data[0];
395 match_len = 1;
396
397 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
398 continue;
399 } else {
400 id = sub->id;
401 match_len = 0;
402 }
403
404 /* Processed if one was included in the parent */
405 if (cfg80211_find_elem_match(id, ie, ielen,
406 &ext_id, match_len, 0))
407 continue;
408
409 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
410 &pos, new_ie, new_ie_len))
411 return 0;
412 }
413
414 return pos - new_ie;
415 }
416
is_bss(struct cfg80211_bss * a,const u8 * bssid,const u8 * ssid,size_t ssid_len)417 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
418 const u8 *ssid, size_t ssid_len)
419 {
420 const struct cfg80211_bss_ies *ies;
421 const struct element *ssid_elem;
422
423 if (bssid && !ether_addr_equal(a->bssid, bssid))
424 return false;
425
426 if (!ssid)
427 return true;
428
429 ies = rcu_access_pointer(a->ies);
430 if (!ies)
431 return false;
432 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
433 if (!ssid_elem)
434 return false;
435 if (ssid_elem->datalen != ssid_len)
436 return false;
437 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
438 }
439
440 static int
cfg80211_add_nontrans_list(struct cfg80211_bss * trans_bss,struct cfg80211_bss * nontrans_bss)441 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
442 struct cfg80211_bss *nontrans_bss)
443 {
444 const struct element *ssid_elem;
445 struct cfg80211_bss *bss = NULL;
446
447 rcu_read_lock();
448 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
449 if (!ssid_elem) {
450 rcu_read_unlock();
451 return -EINVAL;
452 }
453
454 /* check if nontrans_bss is in the list */
455 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
456 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
457 ssid_elem->datalen)) {
458 rcu_read_unlock();
459 return 0;
460 }
461 }
462
463 rcu_read_unlock();
464
465 /*
466 * This is a bit weird - it's not on the list, but already on another
467 * one! The only way that could happen is if there's some BSSID/SSID
468 * shared by multiple APs in their multi-BSSID profiles, potentially
469 * with hidden SSID mixed in ... ignore it.
470 */
471 if (!list_empty(&nontrans_bss->nontrans_list))
472 return -EINVAL;
473
474 /* add to the list */
475 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
476 return 0;
477 }
478
__cfg80211_bss_expire(struct cfg80211_registered_device * rdev,unsigned long expire_time)479 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
480 unsigned long expire_time)
481 {
482 struct cfg80211_internal_bss *bss, *tmp;
483 bool expired = false;
484
485 lockdep_assert_held(&rdev->bss_lock);
486
487 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
488 if (atomic_read(&bss->hold))
489 continue;
490 if (!time_after(expire_time, bss->ts))
491 continue;
492
493 if (__cfg80211_unlink_bss(rdev, bss))
494 expired = true;
495 }
496
497 if (expired)
498 rdev->bss_generation++;
499 }
500
cfg80211_bss_expire_oldest(struct cfg80211_registered_device * rdev)501 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
502 {
503 struct cfg80211_internal_bss *bss, *oldest = NULL;
504 bool ret;
505
506 lockdep_assert_held(&rdev->bss_lock);
507
508 list_for_each_entry(bss, &rdev->bss_list, list) {
509 if (atomic_read(&bss->hold))
510 continue;
511
512 if (!list_empty(&bss->hidden_list) &&
513 !bss->pub.hidden_beacon_bss)
514 continue;
515
516 if (oldest && time_before(oldest->ts, bss->ts))
517 continue;
518 oldest = bss;
519 }
520
521 if (WARN_ON(!oldest))
522 return false;
523
524 /*
525 * The callers make sure to increase rdev->bss_generation if anything
526 * gets removed (and a new entry added), so there's no need to also do
527 * it here.
528 */
529
530 ret = __cfg80211_unlink_bss(rdev, oldest);
531 WARN_ON(!ret);
532 return ret;
533 }
534
cfg80211_parse_bss_param(u8 data,struct cfg80211_colocated_ap * coloc_ap)535 static u8 cfg80211_parse_bss_param(u8 data,
536 struct cfg80211_colocated_ap *coloc_ap)
537 {
538 coloc_ap->oct_recommended =
539 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
540 coloc_ap->same_ssid =
541 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
542 coloc_ap->multi_bss =
543 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
544 coloc_ap->transmitted_bssid =
545 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
546 coloc_ap->unsolicited_probe =
547 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
548 coloc_ap->colocated_ess =
549 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
550
551 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
552 }
553
cfg80211_calc_short_ssid(const struct cfg80211_bss_ies * ies,const struct element ** elem,u32 * s_ssid)554 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
555 const struct element **elem, u32 *s_ssid)
556 {
557
558 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
559 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
560 return -EINVAL;
561
562 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
563 return 0;
564 }
565
cfg80211_free_coloc_ap_list(struct list_head * coloc_ap_list)566 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
567 {
568 struct cfg80211_colocated_ap *ap, *tmp_ap;
569
570 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
571 list_del(&ap->list);
572 kfree(ap);
573 }
574 }
575
cfg80211_parse_ap_info(struct cfg80211_colocated_ap * entry,const u8 * pos,u8 length,const struct element * ssid_elem,u32 s_ssid_tmp)576 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
577 const u8 *pos, u8 length,
578 const struct element *ssid_elem,
579 u32 s_ssid_tmp)
580 {
581 u8 bss_params;
582
583 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
584
585 /* The length is already verified by the caller to contain bss_params */
586 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
587 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
588
589 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
590 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
591 entry->short_ssid_valid = true;
592
593 bss_params = tbtt_info->bss_params;
594
595 /* Ignore disabled links */
596 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
597 if (le16_get_bits(tbtt_info->mld_params.params,
598 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
599 return -EINVAL;
600 }
601
602 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
603 psd_20))
604 entry->psd_20 = tbtt_info->psd_20;
605 } else {
606 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
607
608 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
609
610 bss_params = tbtt_info->bss_params;
611
612 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
613 psd_20))
614 entry->psd_20 = tbtt_info->psd_20;
615 }
616
617 /* ignore entries with invalid BSSID */
618 if (!is_valid_ether_addr(entry->bssid))
619 return -EINVAL;
620
621 /* skip non colocated APs */
622 if (!cfg80211_parse_bss_param(bss_params, entry))
623 return -EINVAL;
624
625 /* no information about the short ssid. Consider the entry valid
626 * for now. It would later be dropped in case there are explicit
627 * SSIDs that need to be matched
628 */
629 if (!entry->same_ssid && !entry->short_ssid_valid)
630 return 0;
631
632 if (entry->same_ssid) {
633 entry->short_ssid = s_ssid_tmp;
634 entry->short_ssid_valid = true;
635
636 /*
637 * This is safe because we validate datalen in
638 * cfg80211_parse_colocated_ap(), before calling this
639 * function.
640 */
641 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
642 entry->ssid_len = ssid_elem->datalen;
643 }
644
645 return 0;
646 }
647
cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies * ies,struct list_head * list)648 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
649 struct list_head *list)
650 {
651 struct ieee80211_neighbor_ap_info *ap_info;
652 const struct element *elem, *ssid_elem;
653 const u8 *pos, *end;
654 u32 s_ssid_tmp;
655 int n_coloc = 0, ret;
656 LIST_HEAD(ap_list);
657
658 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
659 if (ret)
660 return 0;
661
662 for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
663 ies->data, ies->len) {
664 pos = elem->data;
665 end = elem->data + elem->datalen;
666
667 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
668 while (pos + sizeof(*ap_info) <= end) {
669 enum nl80211_band band;
670 int freq;
671 u8 length, i, count;
672
673 ap_info = (void *)pos;
674 count = u8_get_bits(ap_info->tbtt_info_hdr,
675 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
676 length = ap_info->tbtt_info_len;
677
678 pos += sizeof(*ap_info);
679
680 if (!ieee80211_operating_class_to_band(ap_info->op_class,
681 &band))
682 break;
683
684 freq = ieee80211_channel_to_frequency(ap_info->channel,
685 band);
686
687 if (end - pos < count * length)
688 break;
689
690 if (u8_get_bits(ap_info->tbtt_info_hdr,
691 IEEE80211_AP_INFO_TBTT_HDR_TYPE) !=
692 IEEE80211_TBTT_INFO_TYPE_TBTT) {
693 pos += count * length;
694 continue;
695 }
696
697 /* TBTT info must include bss param + BSSID +
698 * (short SSID or same_ssid bit to be set).
699 * ignore other options, and move to the
700 * next AP info
701 */
702 if (band != NL80211_BAND_6GHZ ||
703 !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
704 bss_params) ||
705 length == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
706 length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
707 bss_params))) {
708 pos += count * length;
709 continue;
710 }
711
712 for (i = 0; i < count; i++) {
713 struct cfg80211_colocated_ap *entry;
714
715 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
716 GFP_ATOMIC);
717
718 if (!entry)
719 goto error;
720
721 entry->center_freq = freq;
722
723 if (!cfg80211_parse_ap_info(entry, pos, length,
724 ssid_elem,
725 s_ssid_tmp)) {
726 n_coloc++;
727 list_add_tail(&entry->list, &ap_list);
728 } else {
729 kfree(entry);
730 }
731
732 pos += length;
733 }
734 }
735
736 error:
737 if (pos != end) {
738 cfg80211_free_coloc_ap_list(&ap_list);
739 return 0;
740 }
741 }
742
743 list_splice_tail(&ap_list, list);
744 return n_coloc;
745 }
746
cfg80211_scan_req_add_chan(struct cfg80211_scan_request * request,struct ieee80211_channel * chan,bool add_to_6ghz)747 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
748 struct ieee80211_channel *chan,
749 bool add_to_6ghz)
750 {
751 int i;
752 u32 n_channels = request->n_channels;
753 struct cfg80211_scan_6ghz_params *params =
754 &request->scan_6ghz_params[request->n_6ghz_params];
755
756 for (i = 0; i < n_channels; i++) {
757 if (request->channels[i] == chan) {
758 if (add_to_6ghz)
759 params->channel_idx = i;
760 return;
761 }
762 }
763
764 request->channels[n_channels] = chan;
765 if (add_to_6ghz)
766 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
767 n_channels;
768
769 request->n_channels++;
770 }
771
cfg80211_find_ssid_match(struct cfg80211_colocated_ap * ap,struct cfg80211_scan_request * request)772 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
773 struct cfg80211_scan_request *request)
774 {
775 int i;
776 u32 s_ssid;
777
778 for (i = 0; i < request->n_ssids; i++) {
779 /* wildcard ssid in the scan request */
780 if (!request->ssids[i].ssid_len) {
781 if (ap->multi_bss && !ap->transmitted_bssid)
782 continue;
783
784 return true;
785 }
786
787 if (ap->ssid_len &&
788 ap->ssid_len == request->ssids[i].ssid_len) {
789 if (!memcmp(request->ssids[i].ssid, ap->ssid,
790 ap->ssid_len))
791 return true;
792 } else if (ap->short_ssid_valid) {
793 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
794 request->ssids[i].ssid_len);
795
796 if (ap->short_ssid == s_ssid)
797 return true;
798 }
799 }
800
801 return false;
802 }
803
cfg80211_scan_6ghz(struct cfg80211_registered_device * rdev)804 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
805 {
806 u8 i;
807 struct cfg80211_colocated_ap *ap;
808 int n_channels, count = 0, err;
809 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
810 LIST_HEAD(coloc_ap_list);
811 bool need_scan_psc = true;
812 const struct ieee80211_sband_iftype_data *iftd;
813
814 rdev_req->scan_6ghz = true;
815
816 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
817 return -EOPNOTSUPP;
818
819 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
820 rdev_req->wdev->iftype);
821 if (!iftd || !iftd->he_cap.has_he)
822 return -EOPNOTSUPP;
823
824 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
825
826 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
827 struct cfg80211_internal_bss *intbss;
828
829 spin_lock_bh(&rdev->bss_lock);
830 list_for_each_entry(intbss, &rdev->bss_list, list) {
831 struct cfg80211_bss *res = &intbss->pub;
832 const struct cfg80211_bss_ies *ies;
833
834 ies = rcu_access_pointer(res->ies);
835 count += cfg80211_parse_colocated_ap(ies,
836 &coloc_ap_list);
837 }
838 spin_unlock_bh(&rdev->bss_lock);
839 }
840
841 request = kzalloc(struct_size(request, channels, n_channels) +
842 sizeof(*request->scan_6ghz_params) * count +
843 sizeof(*request->ssids) * rdev_req->n_ssids,
844 GFP_KERNEL);
845 if (!request) {
846 cfg80211_free_coloc_ap_list(&coloc_ap_list);
847 return -ENOMEM;
848 }
849
850 *request = *rdev_req;
851 request->n_channels = 0;
852 request->scan_6ghz_params =
853 (void *)&request->channels[n_channels];
854
855 /*
856 * PSC channels should not be scanned in case of direct scan with 1 SSID
857 * and at least one of the reported co-located APs with same SSID
858 * indicating that all APs in the same ESS are co-located
859 */
860 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
861 list_for_each_entry(ap, &coloc_ap_list, list) {
862 if (ap->colocated_ess &&
863 cfg80211_find_ssid_match(ap, request)) {
864 need_scan_psc = false;
865 break;
866 }
867 }
868 }
869
870 /*
871 * add to the scan request the channels that need to be scanned
872 * regardless of the collocated APs (PSC channels or all channels
873 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
874 */
875 for (i = 0; i < rdev_req->n_channels; i++) {
876 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
877 ((need_scan_psc &&
878 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
879 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
880 cfg80211_scan_req_add_chan(request,
881 rdev_req->channels[i],
882 false);
883 }
884 }
885
886 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
887 goto skip;
888
889 list_for_each_entry(ap, &coloc_ap_list, list) {
890 bool found = false;
891 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
892 &request->scan_6ghz_params[request->n_6ghz_params];
893 struct ieee80211_channel *chan =
894 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
895
896 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
897 continue;
898
899 for (i = 0; i < rdev_req->n_channels; i++) {
900 if (rdev_req->channels[i] == chan)
901 found = true;
902 }
903
904 if (!found)
905 continue;
906
907 if (request->n_ssids > 0 &&
908 !cfg80211_find_ssid_match(ap, request))
909 continue;
910
911 if (!is_broadcast_ether_addr(request->bssid) &&
912 !ether_addr_equal(request->bssid, ap->bssid))
913 continue;
914
915 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
916 continue;
917
918 cfg80211_scan_req_add_chan(request, chan, true);
919 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
920 scan_6ghz_params->short_ssid = ap->short_ssid;
921 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
922 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
923 scan_6ghz_params->psd_20 = ap->psd_20;
924
925 /*
926 * If a PSC channel is added to the scan and 'need_scan_psc' is
927 * set to false, then all the APs that the scan logic is
928 * interested with on the channel are collocated and thus there
929 * is no need to perform the initial PSC channel listen.
930 */
931 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
932 scan_6ghz_params->psc_no_listen = true;
933
934 request->n_6ghz_params++;
935 }
936
937 skip:
938 cfg80211_free_coloc_ap_list(&coloc_ap_list);
939
940 if (request->n_channels) {
941 struct cfg80211_scan_request *old = rdev->int_scan_req;
942 rdev->int_scan_req = request;
943
944 /*
945 * Add the ssids from the parent scan request to the new scan
946 * request, so the driver would be able to use them in its
947 * probe requests to discover hidden APs on PSC channels.
948 */
949 request->ssids = (void *)&request->channels[request->n_channels];
950 request->n_ssids = rdev_req->n_ssids;
951 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
952 request->n_ssids);
953
954 /*
955 * If this scan follows a previous scan, save the scan start
956 * info from the first part of the scan
957 */
958 if (old)
959 rdev->int_scan_req->info = old->info;
960
961 err = rdev_scan(rdev, request);
962 if (err) {
963 rdev->int_scan_req = old;
964 kfree(request);
965 } else {
966 kfree(old);
967 }
968
969 return err;
970 }
971
972 kfree(request);
973 return -EINVAL;
974 }
975
cfg80211_scan(struct cfg80211_registered_device * rdev)976 int cfg80211_scan(struct cfg80211_registered_device *rdev)
977 {
978 struct cfg80211_scan_request *request;
979 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
980 u32 n_channels = 0, idx, i;
981
982 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
983 return rdev_scan(rdev, rdev_req);
984
985 for (i = 0; i < rdev_req->n_channels; i++) {
986 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
987 n_channels++;
988 }
989
990 if (!n_channels)
991 return cfg80211_scan_6ghz(rdev);
992
993 request = kzalloc(struct_size(request, channels, n_channels),
994 GFP_KERNEL);
995 if (!request)
996 return -ENOMEM;
997
998 *request = *rdev_req;
999 request->n_channels = n_channels;
1000
1001 for (i = idx = 0; i < rdev_req->n_channels; i++) {
1002 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1003 request->channels[idx++] = rdev_req->channels[i];
1004 }
1005
1006 rdev_req->scan_6ghz = false;
1007 rdev->int_scan_req = request;
1008 return rdev_scan(rdev, request);
1009 }
1010
___cfg80211_scan_done(struct cfg80211_registered_device * rdev,bool send_message)1011 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1012 bool send_message)
1013 {
1014 struct cfg80211_scan_request *request, *rdev_req;
1015 struct wireless_dev *wdev;
1016 struct sk_buff *msg;
1017 #ifdef CONFIG_CFG80211_WEXT
1018 union iwreq_data wrqu;
1019 #endif
1020
1021 lockdep_assert_held(&rdev->wiphy.mtx);
1022
1023 if (rdev->scan_msg) {
1024 nl80211_send_scan_msg(rdev, rdev->scan_msg);
1025 rdev->scan_msg = NULL;
1026 return;
1027 }
1028
1029 rdev_req = rdev->scan_req;
1030 if (!rdev_req)
1031 return;
1032
1033 wdev = rdev_req->wdev;
1034 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1035
1036 if (wdev_running(wdev) &&
1037 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1038 !rdev_req->scan_6ghz && !request->info.aborted &&
1039 !cfg80211_scan_6ghz(rdev))
1040 return;
1041
1042 /*
1043 * This must be before sending the other events!
1044 * Otherwise, wpa_supplicant gets completely confused with
1045 * wext events.
1046 */
1047 if (wdev->netdev)
1048 cfg80211_sme_scan_done(wdev->netdev);
1049
1050 if (!request->info.aborted &&
1051 request->flags & NL80211_SCAN_FLAG_FLUSH) {
1052 /* flush entries from previous scans */
1053 spin_lock_bh(&rdev->bss_lock);
1054 __cfg80211_bss_expire(rdev, request->scan_start);
1055 spin_unlock_bh(&rdev->bss_lock);
1056 }
1057
1058 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1059
1060 #ifdef CONFIG_CFG80211_WEXT
1061 if (wdev->netdev && !request->info.aborted) {
1062 memset(&wrqu, 0, sizeof(wrqu));
1063
1064 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1065 }
1066 #endif
1067
1068 dev_put(wdev->netdev);
1069
1070 kfree(rdev->int_scan_req);
1071 rdev->int_scan_req = NULL;
1072
1073 kfree(rdev->scan_req);
1074 rdev->scan_req = NULL;
1075
1076 if (!send_message)
1077 rdev->scan_msg = msg;
1078 else
1079 nl80211_send_scan_msg(rdev, msg);
1080 }
1081
__cfg80211_scan_done(struct wiphy * wiphy,struct wiphy_work * wk)1082 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1083 {
1084 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1085 }
1086
cfg80211_scan_done(struct cfg80211_scan_request * request,struct cfg80211_scan_info * info)1087 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1088 struct cfg80211_scan_info *info)
1089 {
1090 struct cfg80211_scan_info old_info = request->info;
1091
1092 trace_cfg80211_scan_done(request, info);
1093 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1094 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1095
1096 request->info = *info;
1097
1098 /*
1099 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1100 * be of the first part. In such a case old_info.scan_start_tsf should
1101 * be non zero.
1102 */
1103 if (request->scan_6ghz && old_info.scan_start_tsf) {
1104 request->info.scan_start_tsf = old_info.scan_start_tsf;
1105 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1106 sizeof(request->info.tsf_bssid));
1107 }
1108
1109 request->notified = true;
1110 wiphy_work_queue(request->wiphy,
1111 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1112 }
1113 EXPORT_SYMBOL(cfg80211_scan_done);
1114
cfg80211_add_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1115 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1116 struct cfg80211_sched_scan_request *req)
1117 {
1118 lockdep_assert_held(&rdev->wiphy.mtx);
1119
1120 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1121 }
1122
cfg80211_del_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1123 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1124 struct cfg80211_sched_scan_request *req)
1125 {
1126 lockdep_assert_held(&rdev->wiphy.mtx);
1127
1128 list_del_rcu(&req->list);
1129 kfree_rcu(req, rcu_head);
1130 }
1131
1132 static struct cfg80211_sched_scan_request *
cfg80211_find_sched_scan_req(struct cfg80211_registered_device * rdev,u64 reqid)1133 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1134 {
1135 struct cfg80211_sched_scan_request *pos;
1136
1137 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1138 lockdep_is_held(&rdev->wiphy.mtx)) {
1139 if (pos->reqid == reqid)
1140 return pos;
1141 }
1142 return NULL;
1143 }
1144
1145 /*
1146 * Determines if a scheduled scan request can be handled. When a legacy
1147 * scheduled scan is running no other scheduled scan is allowed regardless
1148 * whether the request is for legacy or multi-support scan. When a multi-support
1149 * scheduled scan is running a request for legacy scan is not allowed. In this
1150 * case a request for multi-support scan can be handled if resources are
1151 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1152 */
cfg80211_sched_scan_req_possible(struct cfg80211_registered_device * rdev,bool want_multi)1153 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1154 bool want_multi)
1155 {
1156 struct cfg80211_sched_scan_request *pos;
1157 int i = 0;
1158
1159 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1160 /* request id zero means legacy in progress */
1161 if (!i && !pos->reqid)
1162 return -EINPROGRESS;
1163 i++;
1164 }
1165
1166 if (i) {
1167 /* no legacy allowed when multi request(s) are active */
1168 if (!want_multi)
1169 return -EINPROGRESS;
1170
1171 /* resource limit reached */
1172 if (i == rdev->wiphy.max_sched_scan_reqs)
1173 return -ENOSPC;
1174 }
1175 return 0;
1176 }
1177
cfg80211_sched_scan_results_wk(struct work_struct * work)1178 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1179 {
1180 struct cfg80211_registered_device *rdev;
1181 struct cfg80211_sched_scan_request *req, *tmp;
1182
1183 rdev = container_of(work, struct cfg80211_registered_device,
1184 sched_scan_res_wk);
1185
1186 wiphy_lock(&rdev->wiphy);
1187 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1188 if (req->report_results) {
1189 req->report_results = false;
1190 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1191 /* flush entries from previous scans */
1192 spin_lock_bh(&rdev->bss_lock);
1193 __cfg80211_bss_expire(rdev, req->scan_start);
1194 spin_unlock_bh(&rdev->bss_lock);
1195 req->scan_start = jiffies;
1196 }
1197 nl80211_send_sched_scan(req,
1198 NL80211_CMD_SCHED_SCAN_RESULTS);
1199 }
1200 }
1201 wiphy_unlock(&rdev->wiphy);
1202 }
1203
cfg80211_sched_scan_results(struct wiphy * wiphy,u64 reqid)1204 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1205 {
1206 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1207 struct cfg80211_sched_scan_request *request;
1208
1209 trace_cfg80211_sched_scan_results(wiphy, reqid);
1210 /* ignore if we're not scanning */
1211
1212 rcu_read_lock();
1213 request = cfg80211_find_sched_scan_req(rdev, reqid);
1214 if (request) {
1215 request->report_results = true;
1216 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1217 }
1218 rcu_read_unlock();
1219 }
1220 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1221
cfg80211_sched_scan_stopped_locked(struct wiphy * wiphy,u64 reqid)1222 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1223 {
1224 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1225
1226 lockdep_assert_held(&wiphy->mtx);
1227
1228 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1229
1230 __cfg80211_stop_sched_scan(rdev, reqid, true);
1231 }
1232 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1233
cfg80211_sched_scan_stopped(struct wiphy * wiphy,u64 reqid)1234 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1235 {
1236 wiphy_lock(wiphy);
1237 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1238 wiphy_unlock(wiphy);
1239 }
1240 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1241
cfg80211_stop_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req,bool driver_initiated)1242 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1243 struct cfg80211_sched_scan_request *req,
1244 bool driver_initiated)
1245 {
1246 lockdep_assert_held(&rdev->wiphy.mtx);
1247
1248 if (!driver_initiated) {
1249 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1250 if (err)
1251 return err;
1252 }
1253
1254 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1255
1256 cfg80211_del_sched_scan_req(rdev, req);
1257
1258 return 0;
1259 }
1260
__cfg80211_stop_sched_scan(struct cfg80211_registered_device * rdev,u64 reqid,bool driver_initiated)1261 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1262 u64 reqid, bool driver_initiated)
1263 {
1264 struct cfg80211_sched_scan_request *sched_scan_req;
1265
1266 lockdep_assert_held(&rdev->wiphy.mtx);
1267
1268 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1269 if (!sched_scan_req)
1270 return -ENOENT;
1271
1272 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1273 driver_initiated);
1274 }
1275
cfg80211_bss_age(struct cfg80211_registered_device * rdev,unsigned long age_secs)1276 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1277 unsigned long age_secs)
1278 {
1279 struct cfg80211_internal_bss *bss;
1280 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1281
1282 spin_lock_bh(&rdev->bss_lock);
1283 list_for_each_entry(bss, &rdev->bss_list, list)
1284 bss->ts -= age_jiffies;
1285 spin_unlock_bh(&rdev->bss_lock);
1286 }
1287
cfg80211_bss_expire(struct cfg80211_registered_device * rdev)1288 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1289 {
1290 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1291 }
1292
cfg80211_bss_flush(struct wiphy * wiphy)1293 void cfg80211_bss_flush(struct wiphy *wiphy)
1294 {
1295 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1296
1297 spin_lock_bh(&rdev->bss_lock);
1298 __cfg80211_bss_expire(rdev, jiffies);
1299 spin_unlock_bh(&rdev->bss_lock);
1300 }
1301 EXPORT_SYMBOL(cfg80211_bss_flush);
1302
1303 const struct element *
cfg80211_find_elem_match(u8 eid,const u8 * ies,unsigned int len,const u8 * match,unsigned int match_len,unsigned int match_offset)1304 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1305 const u8 *match, unsigned int match_len,
1306 unsigned int match_offset)
1307 {
1308 const struct element *elem;
1309
1310 for_each_element_id(elem, eid, ies, len) {
1311 if (elem->datalen >= match_offset + match_len &&
1312 !memcmp(elem->data + match_offset, match, match_len))
1313 return elem;
1314 }
1315
1316 return NULL;
1317 }
1318 EXPORT_SYMBOL(cfg80211_find_elem_match);
1319
cfg80211_find_vendor_elem(unsigned int oui,int oui_type,const u8 * ies,unsigned int len)1320 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1321 const u8 *ies,
1322 unsigned int len)
1323 {
1324 const struct element *elem;
1325 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1326 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1327
1328 if (WARN_ON(oui_type > 0xff))
1329 return NULL;
1330
1331 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1332 match, match_len, 0);
1333
1334 if (!elem || elem->datalen < 4)
1335 return NULL;
1336
1337 return elem;
1338 }
1339 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1340
1341 /**
1342 * enum bss_compare_mode - BSS compare mode
1343 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1344 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1345 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1346 */
1347 enum bss_compare_mode {
1348 BSS_CMP_REGULAR,
1349 BSS_CMP_HIDE_ZLEN,
1350 BSS_CMP_HIDE_NUL,
1351 };
1352
cmp_bss(struct cfg80211_bss * a,struct cfg80211_bss * b,enum bss_compare_mode mode)1353 static int cmp_bss(struct cfg80211_bss *a,
1354 struct cfg80211_bss *b,
1355 enum bss_compare_mode mode)
1356 {
1357 const struct cfg80211_bss_ies *a_ies, *b_ies;
1358 const u8 *ie1 = NULL;
1359 const u8 *ie2 = NULL;
1360 int i, r;
1361
1362 if (a->channel != b->channel)
1363 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1364 (a->channel->center_freq * 1000 + a->channel->freq_offset);
1365
1366 a_ies = rcu_access_pointer(a->ies);
1367 if (!a_ies)
1368 return -1;
1369 b_ies = rcu_access_pointer(b->ies);
1370 if (!b_ies)
1371 return 1;
1372
1373 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1374 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1375 a_ies->data, a_ies->len);
1376 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1377 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1378 b_ies->data, b_ies->len);
1379 if (ie1 && ie2) {
1380 int mesh_id_cmp;
1381
1382 if (ie1[1] == ie2[1])
1383 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1384 else
1385 mesh_id_cmp = ie2[1] - ie1[1];
1386
1387 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1388 a_ies->data, a_ies->len);
1389 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1390 b_ies->data, b_ies->len);
1391 if (ie1 && ie2) {
1392 if (mesh_id_cmp)
1393 return mesh_id_cmp;
1394 if (ie1[1] != ie2[1])
1395 return ie2[1] - ie1[1];
1396 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1397 }
1398 }
1399
1400 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1401 if (r)
1402 return r;
1403
1404 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1405 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1406
1407 if (!ie1 && !ie2)
1408 return 0;
1409
1410 /*
1411 * Note that with "hide_ssid", the function returns a match if
1412 * the already-present BSS ("b") is a hidden SSID beacon for
1413 * the new BSS ("a").
1414 */
1415
1416 /* sort missing IE before (left of) present IE */
1417 if (!ie1)
1418 return -1;
1419 if (!ie2)
1420 return 1;
1421
1422 switch (mode) {
1423 case BSS_CMP_HIDE_ZLEN:
1424 /*
1425 * In ZLEN mode we assume the BSS entry we're
1426 * looking for has a zero-length SSID. So if
1427 * the one we're looking at right now has that,
1428 * return 0. Otherwise, return the difference
1429 * in length, but since we're looking for the
1430 * 0-length it's really equivalent to returning
1431 * the length of the one we're looking at.
1432 *
1433 * No content comparison is needed as we assume
1434 * the content length is zero.
1435 */
1436 return ie2[1];
1437 case BSS_CMP_REGULAR:
1438 default:
1439 /* sort by length first, then by contents */
1440 if (ie1[1] != ie2[1])
1441 return ie2[1] - ie1[1];
1442 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1443 case BSS_CMP_HIDE_NUL:
1444 if (ie1[1] != ie2[1])
1445 return ie2[1] - ie1[1];
1446 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1447 for (i = 0; i < ie2[1]; i++)
1448 if (ie2[i + 2])
1449 return -1;
1450 return 0;
1451 }
1452 }
1453
cfg80211_bss_type_match(u16 capability,enum nl80211_band band,enum ieee80211_bss_type bss_type)1454 static bool cfg80211_bss_type_match(u16 capability,
1455 enum nl80211_band band,
1456 enum ieee80211_bss_type bss_type)
1457 {
1458 bool ret = true;
1459 u16 mask, val;
1460
1461 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1462 return ret;
1463
1464 if (band == NL80211_BAND_60GHZ) {
1465 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1466 switch (bss_type) {
1467 case IEEE80211_BSS_TYPE_ESS:
1468 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1469 break;
1470 case IEEE80211_BSS_TYPE_PBSS:
1471 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1472 break;
1473 case IEEE80211_BSS_TYPE_IBSS:
1474 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1475 break;
1476 default:
1477 return false;
1478 }
1479 } else {
1480 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1481 switch (bss_type) {
1482 case IEEE80211_BSS_TYPE_ESS:
1483 val = WLAN_CAPABILITY_ESS;
1484 break;
1485 case IEEE80211_BSS_TYPE_IBSS:
1486 val = WLAN_CAPABILITY_IBSS;
1487 break;
1488 case IEEE80211_BSS_TYPE_MBSS:
1489 val = 0;
1490 break;
1491 default:
1492 return false;
1493 }
1494 }
1495
1496 ret = ((capability & mask) == val);
1497 return ret;
1498 }
1499
1500 /* Returned bss is reference counted and must be cleaned up appropriately. */
cfg80211_get_bss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * bssid,const u8 * ssid,size_t ssid_len,enum ieee80211_bss_type bss_type,enum ieee80211_privacy privacy)1501 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1502 struct ieee80211_channel *channel,
1503 const u8 *bssid,
1504 const u8 *ssid, size_t ssid_len,
1505 enum ieee80211_bss_type bss_type,
1506 enum ieee80211_privacy privacy)
1507 {
1508 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1509 struct cfg80211_internal_bss *bss, *res = NULL;
1510 unsigned long now = jiffies;
1511 int bss_privacy;
1512
1513 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1514 privacy);
1515
1516 spin_lock_bh(&rdev->bss_lock);
1517
1518 list_for_each_entry(bss, &rdev->bss_list, list) {
1519 if (!cfg80211_bss_type_match(bss->pub.capability,
1520 bss->pub.channel->band, bss_type))
1521 continue;
1522
1523 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1524 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1525 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1526 continue;
1527 if (channel && bss->pub.channel != channel)
1528 continue;
1529 if (!is_valid_ether_addr(bss->pub.bssid))
1530 continue;
1531 /* Don't get expired BSS structs */
1532 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1533 !atomic_read(&bss->hold))
1534 continue;
1535 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1536 res = bss;
1537 bss_ref_get(rdev, res);
1538 break;
1539 }
1540 }
1541
1542 spin_unlock_bh(&rdev->bss_lock);
1543 if (!res)
1544 return NULL;
1545 trace_cfg80211_return_bss(&res->pub);
1546 return &res->pub;
1547 }
1548 EXPORT_SYMBOL(cfg80211_get_bss);
1549
rb_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1550 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1551 struct cfg80211_internal_bss *bss)
1552 {
1553 struct rb_node **p = &rdev->bss_tree.rb_node;
1554 struct rb_node *parent = NULL;
1555 struct cfg80211_internal_bss *tbss;
1556 int cmp;
1557
1558 while (*p) {
1559 parent = *p;
1560 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1561
1562 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1563
1564 if (WARN_ON(!cmp)) {
1565 /* will sort of leak this BSS */
1566 return;
1567 }
1568
1569 if (cmp < 0)
1570 p = &(*p)->rb_left;
1571 else
1572 p = &(*p)->rb_right;
1573 }
1574
1575 rb_link_node(&bss->rbn, parent, p);
1576 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1577 }
1578
1579 static struct cfg80211_internal_bss *
rb_find_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * res,enum bss_compare_mode mode)1580 rb_find_bss(struct cfg80211_registered_device *rdev,
1581 struct cfg80211_internal_bss *res,
1582 enum bss_compare_mode mode)
1583 {
1584 struct rb_node *n = rdev->bss_tree.rb_node;
1585 struct cfg80211_internal_bss *bss;
1586 int r;
1587
1588 while (n) {
1589 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1590 r = cmp_bss(&res->pub, &bss->pub, mode);
1591
1592 if (r == 0)
1593 return bss;
1594 else if (r < 0)
1595 n = n->rb_left;
1596 else
1597 n = n->rb_right;
1598 }
1599
1600 return NULL;
1601 }
1602
cfg80211_combine_bsses(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * new)1603 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1604 struct cfg80211_internal_bss *new)
1605 {
1606 const struct cfg80211_bss_ies *ies;
1607 struct cfg80211_internal_bss *bss;
1608 const u8 *ie;
1609 int i, ssidlen;
1610 u8 fold = 0;
1611 u32 n_entries = 0;
1612
1613 ies = rcu_access_pointer(new->pub.beacon_ies);
1614 if (WARN_ON(!ies))
1615 return false;
1616
1617 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1618 if (!ie) {
1619 /* nothing to do */
1620 return true;
1621 }
1622
1623 ssidlen = ie[1];
1624 for (i = 0; i < ssidlen; i++)
1625 fold |= ie[2 + i];
1626
1627 if (fold) {
1628 /* not a hidden SSID */
1629 return true;
1630 }
1631
1632 /* This is the bad part ... */
1633
1634 list_for_each_entry(bss, &rdev->bss_list, list) {
1635 /*
1636 * we're iterating all the entries anyway, so take the
1637 * opportunity to validate the list length accounting
1638 */
1639 n_entries++;
1640
1641 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1642 continue;
1643 if (bss->pub.channel != new->pub.channel)
1644 continue;
1645 if (bss->pub.scan_width != new->pub.scan_width)
1646 continue;
1647 if (rcu_access_pointer(bss->pub.beacon_ies))
1648 continue;
1649 ies = rcu_access_pointer(bss->pub.ies);
1650 if (!ies)
1651 continue;
1652 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1653 if (!ie)
1654 continue;
1655 if (ssidlen && ie[1] != ssidlen)
1656 continue;
1657 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1658 continue;
1659 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1660 list_del(&bss->hidden_list);
1661 /* combine them */
1662 list_add(&bss->hidden_list, &new->hidden_list);
1663 bss->pub.hidden_beacon_bss = &new->pub;
1664 new->refcount += bss->refcount;
1665 rcu_assign_pointer(bss->pub.beacon_ies,
1666 new->pub.beacon_ies);
1667 }
1668
1669 WARN_ONCE(n_entries != rdev->bss_entries,
1670 "rdev bss entries[%d]/list[len:%d] corruption\n",
1671 rdev->bss_entries, n_entries);
1672
1673 return true;
1674 }
1675
cfg80211_update_hidden_bsses(struct cfg80211_internal_bss * known,const struct cfg80211_bss_ies * new_ies,const struct cfg80211_bss_ies * old_ies)1676 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1677 const struct cfg80211_bss_ies *new_ies,
1678 const struct cfg80211_bss_ies *old_ies)
1679 {
1680 struct cfg80211_internal_bss *bss;
1681
1682 /* Assign beacon IEs to all sub entries */
1683 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1684 const struct cfg80211_bss_ies *ies;
1685
1686 ies = rcu_access_pointer(bss->pub.beacon_ies);
1687 WARN_ON(ies != old_ies);
1688
1689 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1690 }
1691 }
1692
1693 static bool
cfg80211_update_known_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,struct cfg80211_internal_bss * new,bool signal_valid)1694 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1695 struct cfg80211_internal_bss *known,
1696 struct cfg80211_internal_bss *new,
1697 bool signal_valid)
1698 {
1699 lockdep_assert_held(&rdev->bss_lock);
1700
1701 /* Update IEs */
1702 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1703 const struct cfg80211_bss_ies *old;
1704
1705 old = rcu_access_pointer(known->pub.proberesp_ies);
1706
1707 rcu_assign_pointer(known->pub.proberesp_ies,
1708 new->pub.proberesp_ies);
1709 /* Override possible earlier Beacon frame IEs */
1710 rcu_assign_pointer(known->pub.ies,
1711 new->pub.proberesp_ies);
1712 if (old)
1713 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1714 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1715 const struct cfg80211_bss_ies *old;
1716
1717 if (known->pub.hidden_beacon_bss &&
1718 !list_empty(&known->hidden_list)) {
1719 const struct cfg80211_bss_ies *f;
1720
1721 /* The known BSS struct is one of the probe
1722 * response members of a group, but we're
1723 * receiving a beacon (beacon_ies in the new
1724 * bss is used). This can only mean that the
1725 * AP changed its beacon from not having an
1726 * SSID to showing it, which is confusing so
1727 * drop this information.
1728 */
1729
1730 f = rcu_access_pointer(new->pub.beacon_ies);
1731 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1732 return false;
1733 }
1734
1735 old = rcu_access_pointer(known->pub.beacon_ies);
1736
1737 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1738
1739 /* Override IEs if they were from a beacon before */
1740 if (old == rcu_access_pointer(known->pub.ies))
1741 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1742
1743 cfg80211_update_hidden_bsses(known,
1744 rcu_access_pointer(new->pub.beacon_ies),
1745 old);
1746
1747 if (old)
1748 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1749 }
1750
1751 known->pub.beacon_interval = new->pub.beacon_interval;
1752
1753 /* don't update the signal if beacon was heard on
1754 * adjacent channel.
1755 */
1756 if (signal_valid)
1757 known->pub.signal = new->pub.signal;
1758 known->pub.capability = new->pub.capability;
1759 known->ts = new->ts;
1760 known->ts_boottime = new->ts_boottime;
1761 known->parent_tsf = new->parent_tsf;
1762 known->pub.chains = new->pub.chains;
1763 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1764 IEEE80211_MAX_CHAINS);
1765 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1766 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1767 known->pub.bssid_index = new->pub.bssid_index;
1768
1769 return true;
1770 }
1771
1772 /* Returned bss is reference counted and must be cleaned up appropriately. */
1773 static struct cfg80211_internal_bss *
__cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)1774 __cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1775 struct cfg80211_internal_bss *tmp,
1776 bool signal_valid, unsigned long ts)
1777 {
1778 struct cfg80211_internal_bss *found = NULL;
1779
1780 if (WARN_ON(!tmp->pub.channel))
1781 return NULL;
1782
1783 tmp->ts = ts;
1784
1785 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1786 return NULL;
1787 }
1788
1789 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1790
1791 if (found) {
1792 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1793 return NULL;
1794 } else {
1795 struct cfg80211_internal_bss *new;
1796 struct cfg80211_internal_bss *hidden;
1797 struct cfg80211_bss_ies *ies;
1798
1799 /*
1800 * create a copy -- the "res" variable that is passed in
1801 * is allocated on the stack since it's not needed in the
1802 * more common case of an update
1803 */
1804 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1805 GFP_ATOMIC);
1806 if (!new) {
1807 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1808 if (ies)
1809 kfree_rcu(ies, rcu_head);
1810 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1811 if (ies)
1812 kfree_rcu(ies, rcu_head);
1813 return NULL;
1814 }
1815 memcpy(new, tmp, sizeof(*new));
1816 new->refcount = 1;
1817 INIT_LIST_HEAD(&new->hidden_list);
1818 INIT_LIST_HEAD(&new->pub.nontrans_list);
1819 /* we'll set this later if it was non-NULL */
1820 new->pub.transmitted_bss = NULL;
1821
1822 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1823 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1824 if (!hidden)
1825 hidden = rb_find_bss(rdev, tmp,
1826 BSS_CMP_HIDE_NUL);
1827 if (hidden) {
1828 new->pub.hidden_beacon_bss = &hidden->pub;
1829 list_add(&new->hidden_list,
1830 &hidden->hidden_list);
1831 hidden->refcount++;
1832
1833 ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1834 rcu_assign_pointer(new->pub.beacon_ies,
1835 hidden->pub.beacon_ies);
1836 if (ies)
1837 kfree_rcu(ies, rcu_head);
1838 }
1839 } else {
1840 /*
1841 * Ok so we found a beacon, and don't have an entry. If
1842 * it's a beacon with hidden SSID, we might be in for an
1843 * expensive search for any probe responses that should
1844 * be grouped with this beacon for updates ...
1845 */
1846 if (!cfg80211_combine_bsses(rdev, new)) {
1847 bss_ref_put(rdev, new);
1848 return NULL;
1849 }
1850 }
1851
1852 if (rdev->bss_entries >= bss_entries_limit &&
1853 !cfg80211_bss_expire_oldest(rdev)) {
1854 bss_ref_put(rdev, new);
1855 return NULL;
1856 }
1857
1858 /* This must be before the call to bss_ref_get */
1859 if (tmp->pub.transmitted_bss) {
1860 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1861 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1862 }
1863
1864 list_add_tail(&new->list, &rdev->bss_list);
1865 rdev->bss_entries++;
1866 rb_insert_bss(rdev, new);
1867 found = new;
1868 }
1869
1870 rdev->bss_generation++;
1871 bss_ref_get(rdev, found);
1872
1873 return found;
1874 }
1875
1876 struct cfg80211_internal_bss *
cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)1877 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1878 struct cfg80211_internal_bss *tmp,
1879 bool signal_valid, unsigned long ts)
1880 {
1881 struct cfg80211_internal_bss *res;
1882
1883 spin_lock_bh(&rdev->bss_lock);
1884 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
1885 spin_unlock_bh(&rdev->bss_lock);
1886
1887 return res;
1888 }
1889
cfg80211_get_ies_channel_number(const u8 * ie,size_t ielen,enum nl80211_band band)1890 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1891 enum nl80211_band band)
1892 {
1893 const struct element *tmp;
1894
1895 if (band == NL80211_BAND_6GHZ) {
1896 struct ieee80211_he_operation *he_oper;
1897
1898 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
1899 ielen);
1900 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1901 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
1902 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1903
1904 he_oper = (void *)&tmp->data[1];
1905
1906 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1907 if (!he_6ghz_oper)
1908 return -1;
1909
1910 return he_6ghz_oper->primary;
1911 }
1912 } else if (band == NL80211_BAND_S1GHZ) {
1913 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
1914 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1915 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1916
1917 return s1gop->oper_ch;
1918 }
1919 } else {
1920 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
1921 if (tmp && tmp->datalen == 1)
1922 return tmp->data[0];
1923
1924 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
1925 if (tmp &&
1926 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
1927 struct ieee80211_ht_operation *htop = (void *)tmp->data;
1928
1929 return htop->primary_chan;
1930 }
1931 }
1932
1933 return -1;
1934 }
1935 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
1936
1937 /*
1938 * Update RX channel information based on the available frame payload
1939 * information. This is mainly for the 2.4 GHz band where frames can be received
1940 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1941 * element to indicate the current (transmitting) channel, but this might also
1942 * be needed on other bands if RX frequency does not match with the actual
1943 * operating channel of a BSS, or if the AP reports a different primary channel.
1944 */
1945 static struct ieee80211_channel *
cfg80211_get_bss_channel(struct wiphy * wiphy,const u8 * ie,size_t ielen,struct ieee80211_channel * channel,enum nl80211_bss_scan_width scan_width)1946 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1947 struct ieee80211_channel *channel,
1948 enum nl80211_bss_scan_width scan_width)
1949 {
1950 u32 freq;
1951 int channel_number;
1952 struct ieee80211_channel *alt_channel;
1953
1954 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
1955 channel->band);
1956
1957 if (channel_number < 0) {
1958 /* No channel information in frame payload */
1959 return channel;
1960 }
1961
1962 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1963
1964 /*
1965 * Frame info (beacon/prob res) is the same as received channel,
1966 * no need for further processing.
1967 */
1968 if (freq == ieee80211_channel_to_khz(channel))
1969 return channel;
1970
1971 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1972 if (!alt_channel) {
1973 if (channel->band == NL80211_BAND_2GHZ ||
1974 channel->band == NL80211_BAND_6GHZ) {
1975 /*
1976 * Better not allow unexpected channels when that could
1977 * be going beyond the 1-11 range (e.g., discovering
1978 * BSS on channel 12 when radio is configured for
1979 * channel 11) or beyond the 6 GHz channel range.
1980 */
1981 return NULL;
1982 }
1983
1984 /* No match for the payload channel number - ignore it */
1985 return channel;
1986 }
1987
1988 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1989 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1990 /*
1991 * Ignore channel number in 5 and 10 MHz channels where there
1992 * may not be an n:1 or 1:n mapping between frequencies and
1993 * channel numbers.
1994 */
1995 return channel;
1996 }
1997
1998 /*
1999 * Use the channel determined through the payload channel number
2000 * instead of the RX channel reported by the driver.
2001 */
2002 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2003 return NULL;
2004 return alt_channel;
2005 }
2006
2007 struct cfg80211_inform_single_bss_data {
2008 struct cfg80211_inform_bss *drv_data;
2009 enum cfg80211_bss_frame_type ftype;
2010 struct ieee80211_channel *channel;
2011 u8 bssid[ETH_ALEN];
2012 u64 tsf;
2013 u16 capability;
2014 u16 beacon_interval;
2015 const u8 *ie;
2016 size_t ielen;
2017
2018 enum {
2019 BSS_SOURCE_DIRECT = 0,
2020 BSS_SOURCE_MBSSID,
2021 BSS_SOURCE_STA_PROFILE,
2022 } bss_source;
2023 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2024 struct cfg80211_bss *source_bss;
2025 u8 max_bssid_indicator;
2026 u8 bssid_index;
2027 };
2028
2029 /* Returned bss is reference counted and must be cleaned up appropriately. */
2030 static struct cfg80211_bss *
cfg80211_inform_single_bss_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * data,gfp_t gfp)2031 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2032 struct cfg80211_inform_single_bss_data *data,
2033 gfp_t gfp)
2034 {
2035 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2036 struct cfg80211_inform_bss *drv_data = data->drv_data;
2037 struct cfg80211_bss_ies *ies;
2038 struct ieee80211_channel *channel;
2039 struct cfg80211_internal_bss tmp = {}, *res;
2040 int bss_type;
2041 bool signal_valid;
2042 unsigned long ts;
2043
2044 if (WARN_ON(!wiphy))
2045 return NULL;
2046
2047 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2048 (drv_data->signal < 0 || drv_data->signal > 100)))
2049 return NULL;
2050
2051 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2052 return NULL;
2053
2054 channel = data->channel;
2055 if (!channel)
2056 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2057 drv_data->chan,
2058 drv_data->scan_width);
2059 if (!channel)
2060 return NULL;
2061
2062 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2063 tmp.pub.channel = channel;
2064 tmp.pub.scan_width = drv_data->scan_width;
2065 if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2066 tmp.pub.signal = drv_data->signal;
2067 else
2068 tmp.pub.signal = 0;
2069 tmp.pub.beacon_interval = data->beacon_interval;
2070 tmp.pub.capability = data->capability;
2071 tmp.ts_boottime = drv_data->boottime_ns;
2072 tmp.parent_tsf = drv_data->parent_tsf;
2073 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2074
2075 if (data->bss_source != BSS_SOURCE_DIRECT) {
2076 tmp.pub.transmitted_bss = data->source_bss;
2077 ts = bss_from_pub(data->source_bss)->ts;
2078 tmp.pub.bssid_index = data->bssid_index;
2079 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2080 } else {
2081 ts = jiffies;
2082
2083 if (channel->band == NL80211_BAND_60GHZ) {
2084 bss_type = data->capability &
2085 WLAN_CAPABILITY_DMG_TYPE_MASK;
2086 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2087 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2088 regulatory_hint_found_beacon(wiphy, channel,
2089 gfp);
2090 } else {
2091 if (data->capability & WLAN_CAPABILITY_ESS)
2092 regulatory_hint_found_beacon(wiphy, channel,
2093 gfp);
2094 }
2095 }
2096
2097 /*
2098 * If we do not know here whether the IEs are from a Beacon or Probe
2099 * Response frame, we need to pick one of the options and only use it
2100 * with the driver that does not provide the full Beacon/Probe Response
2101 * frame. Use Beacon frame pointer to avoid indicating that this should
2102 * override the IEs pointer should we have received an earlier
2103 * indication of Probe Response data.
2104 */
2105 ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2106 if (!ies)
2107 return NULL;
2108 ies->len = data->ielen;
2109 ies->tsf = data->tsf;
2110 ies->from_beacon = false;
2111 memcpy(ies->data, data->ie, data->ielen);
2112
2113 switch (data->ftype) {
2114 case CFG80211_BSS_FTYPE_BEACON:
2115 ies->from_beacon = true;
2116 fallthrough;
2117 case CFG80211_BSS_FTYPE_UNKNOWN:
2118 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2119 break;
2120 case CFG80211_BSS_FTYPE_PRESP:
2121 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2122 break;
2123 }
2124 rcu_assign_pointer(tmp.pub.ies, ies);
2125
2126 signal_valid = drv_data->chan == channel;
2127 spin_lock_bh(&rdev->bss_lock);
2128 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2129 if (!res)
2130 goto drop;
2131
2132 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2133
2134 if (data->bss_source == BSS_SOURCE_MBSSID) {
2135 /* this is a nontransmitting bss, we need to add it to
2136 * transmitting bss' list if it is not there
2137 */
2138 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2139 if (__cfg80211_unlink_bss(rdev, res)) {
2140 rdev->bss_generation++;
2141 res = NULL;
2142 }
2143 }
2144
2145 if (!res)
2146 goto drop;
2147 }
2148 spin_unlock_bh(&rdev->bss_lock);
2149
2150 trace_cfg80211_return_bss(&res->pub);
2151 /* __cfg80211_bss_update gives us a referenced result */
2152 return &res->pub;
2153
2154 drop:
2155 spin_unlock_bh(&rdev->bss_lock);
2156 return NULL;
2157 }
2158
2159 static const struct element
cfg80211_get_profile_continuation(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem)2160 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2161 const struct element *mbssid_elem,
2162 const struct element *sub_elem)
2163 {
2164 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2165 const struct element *next_mbssid;
2166 const struct element *next_sub;
2167
2168 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2169 mbssid_end,
2170 ielen - (mbssid_end - ie));
2171
2172 /*
2173 * If it is not the last subelement in current MBSSID IE or there isn't
2174 * a next MBSSID IE - profile is complete.
2175 */
2176 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2177 !next_mbssid)
2178 return NULL;
2179
2180 /* For any length error, just return NULL */
2181
2182 if (next_mbssid->datalen < 4)
2183 return NULL;
2184
2185 next_sub = (void *)&next_mbssid->data[1];
2186
2187 if (next_mbssid->data + next_mbssid->datalen <
2188 next_sub->data + next_sub->datalen)
2189 return NULL;
2190
2191 if (next_sub->id != 0 || next_sub->datalen < 2)
2192 return NULL;
2193
2194 /*
2195 * Check if the first element in the next sub element is a start
2196 * of a new profile
2197 */
2198 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2199 NULL : next_mbssid;
2200 }
2201
cfg80211_merge_profile(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem,u8 * merged_ie,size_t max_copy_len)2202 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2203 const struct element *mbssid_elem,
2204 const struct element *sub_elem,
2205 u8 *merged_ie, size_t max_copy_len)
2206 {
2207 size_t copied_len = sub_elem->datalen;
2208 const struct element *next_mbssid;
2209
2210 if (sub_elem->datalen > max_copy_len)
2211 return 0;
2212
2213 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2214
2215 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2216 mbssid_elem,
2217 sub_elem))) {
2218 const struct element *next_sub = (void *)&next_mbssid->data[1];
2219
2220 if (copied_len + next_sub->datalen > max_copy_len)
2221 break;
2222 memcpy(merged_ie + copied_len, next_sub->data,
2223 next_sub->datalen);
2224 copied_len += next_sub->datalen;
2225 }
2226
2227 return copied_len;
2228 }
2229 EXPORT_SYMBOL(cfg80211_merge_profile);
2230
2231 static void
cfg80211_parse_mbssid_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * tx_data,struct cfg80211_bss * source_bss,gfp_t gfp)2232 cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2233 struct cfg80211_inform_single_bss_data *tx_data,
2234 struct cfg80211_bss *source_bss,
2235 gfp_t gfp)
2236 {
2237 struct cfg80211_inform_single_bss_data data = {
2238 .drv_data = tx_data->drv_data,
2239 .ftype = tx_data->ftype,
2240 .tsf = tx_data->tsf,
2241 .beacon_interval = tx_data->beacon_interval,
2242 .source_bss = source_bss,
2243 .bss_source = BSS_SOURCE_MBSSID,
2244 };
2245 const u8 *mbssid_index_ie;
2246 const struct element *elem, *sub;
2247 u8 *new_ie, *profile;
2248 u64 seen_indices = 0;
2249 struct cfg80211_bss *bss;
2250
2251 if (!source_bss)
2252 return;
2253 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2254 tx_data->ie, tx_data->ielen))
2255 return;
2256 if (!wiphy->support_mbssid)
2257 return;
2258 if (wiphy->support_only_he_mbssid &&
2259 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2260 tx_data->ie, tx_data->ielen))
2261 return;
2262
2263 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2264 if (!new_ie)
2265 return;
2266
2267 profile = kmalloc(tx_data->ielen, gfp);
2268 if (!profile)
2269 goto out;
2270
2271 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2272 tx_data->ie, tx_data->ielen) {
2273 if (elem->datalen < 4)
2274 continue;
2275 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2276 continue;
2277 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2278 u8 profile_len;
2279
2280 if (sub->id != 0 || sub->datalen < 4) {
2281 /* not a valid BSS profile */
2282 continue;
2283 }
2284
2285 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2286 sub->data[1] != 2) {
2287 /* The first element within the Nontransmitted
2288 * BSSID Profile is not the Nontransmitted
2289 * BSSID Capability element.
2290 */
2291 continue;
2292 }
2293
2294 memset(profile, 0, tx_data->ielen);
2295 profile_len = cfg80211_merge_profile(tx_data->ie,
2296 tx_data->ielen,
2297 elem,
2298 sub,
2299 profile,
2300 tx_data->ielen);
2301
2302 /* found a Nontransmitted BSSID Profile */
2303 mbssid_index_ie = cfg80211_find_ie
2304 (WLAN_EID_MULTI_BSSID_IDX,
2305 profile, profile_len);
2306 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2307 mbssid_index_ie[2] == 0 ||
2308 mbssid_index_ie[2] > 46) {
2309 /* No valid Multiple BSSID-Index element */
2310 continue;
2311 }
2312
2313 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2314 /* We don't support legacy split of a profile */
2315 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2316 mbssid_index_ie[2]);
2317
2318 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2319
2320 data.bssid_index = mbssid_index_ie[2];
2321 data.max_bssid_indicator = elem->data[0];
2322
2323 cfg80211_gen_new_bssid(tx_data->bssid,
2324 data.max_bssid_indicator,
2325 data.bssid_index,
2326 data.bssid);
2327
2328 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2329 data.ie = new_ie;
2330 data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2331 tx_data->ielen,
2332 profile,
2333 profile_len,
2334 new_ie,
2335 IEEE80211_MAX_DATA_LEN);
2336 if (!data.ielen)
2337 continue;
2338
2339 data.capability = get_unaligned_le16(profile + 2);
2340 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2341 if (!bss)
2342 break;
2343 cfg80211_put_bss(wiphy, bss);
2344 }
2345 }
2346
2347 out:
2348 kfree(new_ie);
2349 kfree(profile);
2350 }
2351
cfg80211_defragment_element(const struct element * elem,const u8 * ies,size_t ieslen,u8 * data,size_t data_len,u8 frag_id)2352 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2353 size_t ieslen, u8 *data, size_t data_len,
2354 u8 frag_id)
2355 {
2356 const struct element *next;
2357 ssize_t copied;
2358 u8 elem_datalen;
2359
2360 if (!elem)
2361 return -EINVAL;
2362
2363 /* elem might be invalid after the memmove */
2364 next = (void *)(elem->data + elem->datalen);
2365 elem_datalen = elem->datalen;
2366
2367 if (elem->id == WLAN_EID_EXTENSION) {
2368 copied = elem->datalen - 1;
2369 if (copied > data_len)
2370 return -ENOSPC;
2371
2372 memmove(data, elem->data + 1, copied);
2373 } else {
2374 copied = elem->datalen;
2375 if (copied > data_len)
2376 return -ENOSPC;
2377
2378 memmove(data, elem->data, copied);
2379 }
2380
2381 /* Fragmented elements must have 255 bytes */
2382 if (elem_datalen < 255)
2383 return copied;
2384
2385 for (elem = next;
2386 elem->data < ies + ieslen &&
2387 elem->data + elem->datalen <= ies + ieslen;
2388 elem = next) {
2389 /* elem might be invalid after the memmove */
2390 next = (void *)(elem->data + elem->datalen);
2391
2392 if (elem->id != frag_id)
2393 break;
2394
2395 elem_datalen = elem->datalen;
2396
2397 if (copied + elem_datalen > data_len)
2398 return -ENOSPC;
2399
2400 memmove(data + copied, elem->data, elem_datalen);
2401 copied += elem_datalen;
2402
2403 /* Only the last fragment may be short */
2404 if (elem_datalen != 255)
2405 break;
2406 }
2407
2408 return copied;
2409 }
2410 EXPORT_SYMBOL(cfg80211_defragment_element);
2411
2412 struct cfg80211_mle {
2413 struct ieee80211_multi_link_elem *mle;
2414 struct ieee80211_mle_per_sta_profile
2415 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2416 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2417
2418 u8 data[];
2419 };
2420
2421 static struct cfg80211_mle *
cfg80211_defrag_mle(const struct element * mle,const u8 * ie,size_t ielen,gfp_t gfp)2422 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2423 gfp_t gfp)
2424 {
2425 const struct element *elem;
2426 struct cfg80211_mle *res;
2427 size_t buf_len;
2428 ssize_t mle_len;
2429 u8 common_size, idx;
2430
2431 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2432 return NULL;
2433
2434 /* Required length for first defragmentation */
2435 buf_len = mle->datalen - 1;
2436 for_each_element(elem, mle->data + mle->datalen,
2437 ielen - sizeof(*mle) + mle->datalen) {
2438 if (elem->id != WLAN_EID_FRAGMENT)
2439 break;
2440
2441 buf_len += elem->datalen;
2442 }
2443
2444 res = kzalloc(struct_size(res, data, buf_len), gfp);
2445 if (!res)
2446 return NULL;
2447
2448 mle_len = cfg80211_defragment_element(mle, ie, ielen,
2449 res->data, buf_len,
2450 WLAN_EID_FRAGMENT);
2451 if (mle_len < 0)
2452 goto error;
2453
2454 res->mle = (void *)res->data;
2455
2456 /* Find the sub-element area in the buffer */
2457 common_size = ieee80211_mle_common_size((u8 *)res->mle);
2458 ie = res->data + common_size;
2459 ielen = mle_len - common_size;
2460
2461 idx = 0;
2462 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2463 ie, ielen) {
2464 res->sta_prof[idx] = (void *)elem->data;
2465 res->sta_prof_len[idx] = elem->datalen;
2466
2467 idx++;
2468 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2469 break;
2470 }
2471 if (!for_each_element_completed(elem, ie, ielen))
2472 goto error;
2473
2474 /* Defragment sta_info in-place */
2475 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2476 idx++) {
2477 if (res->sta_prof_len[idx] < 255)
2478 continue;
2479
2480 elem = (void *)res->sta_prof[idx] - 2;
2481
2482 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2483 res->sta_prof[idx + 1])
2484 buf_len = (u8 *)res->sta_prof[idx + 1] -
2485 (u8 *)res->sta_prof[idx];
2486 else
2487 buf_len = ielen + ie - (u8 *)elem;
2488
2489 res->sta_prof_len[idx] =
2490 cfg80211_defragment_element(elem,
2491 (u8 *)elem, buf_len,
2492 (u8 *)res->sta_prof[idx],
2493 buf_len,
2494 IEEE80211_MLE_SUBELEM_FRAGMENT);
2495 if (res->sta_prof_len[idx] < 0)
2496 goto error;
2497 }
2498
2499 return res;
2500
2501 error:
2502 kfree(res);
2503 return NULL;
2504 }
2505
2506 static bool
cfg80211_tbtt_info_for_mld_ap(const u8 * ie,size_t ielen,u8 mld_id,u8 link_id,const struct ieee80211_neighbor_ap_info ** ap_info,const u8 ** tbtt_info)2507 cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2508 const struct ieee80211_neighbor_ap_info **ap_info,
2509 const u8 **tbtt_info)
2510 {
2511 const struct ieee80211_neighbor_ap_info *info;
2512 const struct element *rnr;
2513 const u8 *pos, *end;
2514
2515 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) {
2516 pos = rnr->data;
2517 end = rnr->data + rnr->datalen;
2518
2519 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
2520 while (sizeof(*info) <= end - pos) {
2521 const struct ieee80211_rnr_mld_params *mld_params;
2522 u16 params;
2523 u8 length, i, count, mld_params_offset;
2524 u8 type, lid;
2525
2526 info = (void *)pos;
2527 count = u8_get_bits(info->tbtt_info_hdr,
2528 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
2529 length = info->tbtt_info_len;
2530
2531 pos += sizeof(*info);
2532
2533 if (count * length > end - pos)
2534 return false;
2535
2536 type = u8_get_bits(info->tbtt_info_hdr,
2537 IEEE80211_AP_INFO_TBTT_HDR_TYPE);
2538
2539 /* Only accept full TBTT information. NSTR mobile APs
2540 * use the shortened version, but we ignore them here.
2541 */
2542 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2543 length >=
2544 offsetofend(struct ieee80211_tbtt_info_ge_11,
2545 mld_params)) {
2546 mld_params_offset =
2547 offsetof(struct ieee80211_tbtt_info_ge_11, mld_params);
2548 } else {
2549 pos += count * length;
2550 continue;
2551 }
2552
2553 for (i = 0; i < count; i++) {
2554 mld_params = (void *)pos + mld_params_offset;
2555 params = le16_to_cpu(mld_params->params);
2556
2557 lid = u16_get_bits(params,
2558 IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2559
2560 if (mld_id == mld_params->mld_id &&
2561 link_id == lid) {
2562 *ap_info = info;
2563 *tbtt_info = pos;
2564
2565 return true;
2566 }
2567
2568 pos += length;
2569 }
2570 }
2571 }
2572
2573 return false;
2574 }
2575
2576 static void
cfg80211_parse_ml_elem_sta_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * tx_data,struct cfg80211_bss * source_bss,const struct element * elem,gfp_t gfp)2577 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2578 struct cfg80211_inform_single_bss_data *tx_data,
2579 struct cfg80211_bss *source_bss,
2580 const struct element *elem,
2581 gfp_t gfp)
2582 {
2583 struct cfg80211_inform_single_bss_data data = {
2584 .drv_data = tx_data->drv_data,
2585 .ftype = tx_data->ftype,
2586 .source_bss = source_bss,
2587 .bss_source = BSS_SOURCE_STA_PROFILE,
2588 };
2589 struct ieee80211_multi_link_elem *ml_elem;
2590 struct cfg80211_mle *mle;
2591 u16 control;
2592 u8 *new_ie;
2593 struct cfg80211_bss *bss;
2594 int mld_id;
2595 u16 seen_links = 0;
2596 const u8 *pos;
2597 u8 i;
2598
2599 if (!ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1))
2600 return;
2601
2602 ml_elem = (void *)elem->data + 1;
2603 control = le16_to_cpu(ml_elem->control);
2604 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) !=
2605 IEEE80211_ML_CONTROL_TYPE_BASIC)
2606 return;
2607
2608 /* Must be present when transmitted by an AP (in a probe response) */
2609 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2610 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2611 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2612 return;
2613
2614 /* length + MLD MAC address + link ID info + BSS Params Change Count */
2615 pos = ml_elem->variable + 1 + 6 + 1 + 1;
2616
2617 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
2618 pos += 2;
2619 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA))
2620 pos += 2;
2621
2622 /* MLD capabilities and operations */
2623 pos += 2;
2624
2625 /*
2626 * The MLD ID of the reporting AP is always zero. It is set if the AP
2627 * is part of an MBSSID set and will be non-zero for ML Elements
2628 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2629 * Draft P802.11be_D3.2, 35.3.4.2)
2630 */
2631 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) {
2632 mld_id = *pos;
2633 pos += 1;
2634 } else {
2635 mld_id = 0;
2636 }
2637
2638 /* Extended MLD capabilities and operations */
2639 pos += 2;
2640
2641 /* Fully defrag the ML element for sta information/profile iteration */
2642 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2643 if (!mle)
2644 return;
2645
2646 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2647 if (!new_ie)
2648 goto out;
2649
2650 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2651 const struct ieee80211_neighbor_ap_info *ap_info;
2652 enum nl80211_band band;
2653 u32 freq;
2654 const u8 *profile;
2655 const u8 *tbtt_info;
2656 ssize_t profile_len;
2657 u8 link_id;
2658
2659 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2660 mle->sta_prof_len[i]))
2661 continue;
2662
2663 control = le16_to_cpu(mle->sta_prof[i]->control);
2664
2665 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2666 continue;
2667
2668 link_id = u16_get_bits(control,
2669 IEEE80211_MLE_STA_CONTROL_LINK_ID);
2670 if (seen_links & BIT(link_id))
2671 break;
2672 seen_links |= BIT(link_id);
2673
2674 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2675 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2676 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2677 continue;
2678
2679 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2680 data.beacon_interval =
2681 get_unaligned_le16(mle->sta_prof[i]->variable + 6);
2682 data.tsf = tx_data->tsf +
2683 get_unaligned_le64(mle->sta_prof[i]->variable + 8);
2684
2685 /* sta_info_len counts itself */
2686 profile = mle->sta_prof[i]->variable +
2687 mle->sta_prof[i]->sta_info_len - 1;
2688 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
2689 profile;
2690
2691 if (profile_len < 2)
2692 continue;
2693
2694 data.capability = get_unaligned_le16(profile);
2695 profile += 2;
2696 profile_len -= 2;
2697
2698 /* Find in RNR to look up channel information */
2699 if (!cfg80211_tbtt_info_for_mld_ap(tx_data->ie, tx_data->ielen,
2700 mld_id, link_id,
2701 &ap_info, &tbtt_info))
2702 continue;
2703
2704 /* We could sanity check the BSSID is included */
2705
2706 if (!ieee80211_operating_class_to_band(ap_info->op_class,
2707 &band))
2708 continue;
2709
2710 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
2711 data.channel = ieee80211_get_channel_khz(wiphy, freq);
2712
2713 /* Generate new elements */
2714 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2715 data.ie = new_ie;
2716 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
2717 profile, profile_len,
2718 new_ie,
2719 IEEE80211_MAX_DATA_LEN);
2720 if (!data.ielen)
2721 continue;
2722
2723 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2724 if (!bss)
2725 break;
2726 cfg80211_put_bss(wiphy, bss);
2727 }
2728
2729 out:
2730 kfree(new_ie);
2731 kfree(mle);
2732 }
2733
cfg80211_parse_ml_sta_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * tx_data,struct cfg80211_bss * source_bss,gfp_t gfp)2734 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
2735 struct cfg80211_inform_single_bss_data *tx_data,
2736 struct cfg80211_bss *source_bss,
2737 gfp_t gfp)
2738 {
2739 const struct element *elem;
2740
2741 if (!source_bss)
2742 return;
2743
2744 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
2745 return;
2746
2747 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
2748 tx_data->ie, tx_data->ielen)
2749 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
2750 elem, gfp);
2751 }
2752
2753 struct cfg80211_bss *
cfg80211_inform_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,gfp_t gfp)2754 cfg80211_inform_bss_data(struct wiphy *wiphy,
2755 struct cfg80211_inform_bss *data,
2756 enum cfg80211_bss_frame_type ftype,
2757 const u8 *bssid, u64 tsf, u16 capability,
2758 u16 beacon_interval, const u8 *ie, size_t ielen,
2759 gfp_t gfp)
2760 {
2761 struct cfg80211_inform_single_bss_data inform_data = {
2762 .drv_data = data,
2763 .ftype = ftype,
2764 .tsf = tsf,
2765 .capability = capability,
2766 .beacon_interval = beacon_interval,
2767 .ie = ie,
2768 .ielen = ielen,
2769 };
2770 struct cfg80211_bss *res;
2771
2772 memcpy(inform_data.bssid, bssid, ETH_ALEN);
2773
2774 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
2775 if (!res)
2776 return NULL;
2777
2778 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
2779
2780 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
2781
2782 return res;
2783 }
2784 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2785
2786 /* cfg80211_inform_bss_width_frame helper */
2787 static struct cfg80211_bss *
cfg80211_inform_single_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)2788 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2789 struct cfg80211_inform_bss *data,
2790 struct ieee80211_mgmt *mgmt, size_t len,
2791 gfp_t gfp)
2792 {
2793 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2794 struct cfg80211_internal_bss tmp = {}, *res;
2795 struct cfg80211_bss_ies *ies;
2796 struct ieee80211_channel *channel;
2797 bool signal_valid;
2798 struct ieee80211_ext *ext = NULL;
2799 u8 *bssid, *variable;
2800 u16 capability, beacon_int;
2801 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2802 u.probe_resp.variable);
2803 int bss_type;
2804
2805 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2806 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2807
2808 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2809
2810 if (WARN_ON(!mgmt))
2811 return NULL;
2812
2813 if (WARN_ON(!wiphy))
2814 return NULL;
2815
2816 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2817 (data->signal < 0 || data->signal > 100)))
2818 return NULL;
2819
2820 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2821 ext = (void *) mgmt;
2822 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2823 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2824 min_hdr_len = offsetof(struct ieee80211_ext,
2825 u.s1g_short_beacon.variable);
2826 }
2827
2828 if (WARN_ON(len < min_hdr_len))
2829 return NULL;
2830
2831 ielen = len - min_hdr_len;
2832 variable = mgmt->u.probe_resp.variable;
2833 if (ext) {
2834 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2835 variable = ext->u.s1g_short_beacon.variable;
2836 else
2837 variable = ext->u.s1g_beacon.variable;
2838 }
2839
2840 channel = cfg80211_get_bss_channel(wiphy, variable,
2841 ielen, data->chan, data->scan_width);
2842 if (!channel)
2843 return NULL;
2844
2845 if (ext) {
2846 const struct ieee80211_s1g_bcn_compat_ie *compat;
2847 const struct element *elem;
2848
2849 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2850 variable, ielen);
2851 if (!elem)
2852 return NULL;
2853 if (elem->datalen < sizeof(*compat))
2854 return NULL;
2855 compat = (void *)elem->data;
2856 bssid = ext->u.s1g_beacon.sa;
2857 capability = le16_to_cpu(compat->compat_info);
2858 beacon_int = le16_to_cpu(compat->beacon_int);
2859 } else {
2860 bssid = mgmt->bssid;
2861 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2862 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2863 }
2864
2865 if (channel->band == NL80211_BAND_60GHZ) {
2866 bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2867 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2868 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2869 regulatory_hint_found_beacon(wiphy, channel, gfp);
2870 } else {
2871 if (capability & WLAN_CAPABILITY_ESS)
2872 regulatory_hint_found_beacon(wiphy, channel, gfp);
2873 }
2874
2875 ies = kzalloc(sizeof(*ies) + ielen, gfp);
2876 if (!ies)
2877 return NULL;
2878 ies->len = ielen;
2879 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2880 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2881 ieee80211_is_s1g_beacon(mgmt->frame_control);
2882 memcpy(ies->data, variable, ielen);
2883
2884 if (ieee80211_is_probe_resp(mgmt->frame_control))
2885 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2886 else
2887 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2888 rcu_assign_pointer(tmp.pub.ies, ies);
2889
2890 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2891 tmp.pub.beacon_interval = beacon_int;
2892 tmp.pub.capability = capability;
2893 tmp.pub.channel = channel;
2894 tmp.pub.scan_width = data->scan_width;
2895 tmp.pub.signal = data->signal;
2896 tmp.ts_boottime = data->boottime_ns;
2897 tmp.parent_tsf = data->parent_tsf;
2898 tmp.pub.chains = data->chains;
2899 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2900 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2901
2902 signal_valid = data->chan == channel;
2903 spin_lock_bh(&rdev->bss_lock);
2904 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies);
2905 if (!res)
2906 goto drop;
2907
2908 rdev_inform_bss(rdev, &res->pub, ies, data->drv_data);
2909
2910 spin_unlock_bh(&rdev->bss_lock);
2911
2912 trace_cfg80211_return_bss(&res->pub);
2913 /* __cfg80211_bss_update gives us a referenced result */
2914 return &res->pub;
2915
2916 drop:
2917 spin_unlock_bh(&rdev->bss_lock);
2918 return NULL;
2919 }
2920
2921 struct cfg80211_bss *
cfg80211_inform_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)2922 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2923 struct cfg80211_inform_bss *data,
2924 struct ieee80211_mgmt *mgmt, size_t len,
2925 gfp_t gfp)
2926 {
2927 struct cfg80211_inform_single_bss_data inform_data = {
2928 .drv_data = data,
2929 .ie = mgmt->u.probe_resp.variable,
2930 .ielen = len - offsetof(struct ieee80211_mgmt,
2931 u.probe_resp.variable),
2932 };
2933 struct cfg80211_bss *res;
2934
2935 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2936 len, gfp);
2937 if (!res)
2938 return NULL;
2939
2940 /* don't do any further MBSSID/ML handling for S1G */
2941 if (ieee80211_is_s1g_beacon(mgmt->frame_control))
2942 return res;
2943
2944 inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2945 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2946 memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN);
2947 inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2948 inform_data.beacon_interval =
2949 le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2950
2951 /* process each non-transmitting bss */
2952 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
2953
2954 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
2955
2956 return res;
2957 }
2958 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2959
cfg80211_ref_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2960 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2961 {
2962 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2963
2964 if (!pub)
2965 return;
2966
2967 spin_lock_bh(&rdev->bss_lock);
2968 bss_ref_get(rdev, bss_from_pub(pub));
2969 spin_unlock_bh(&rdev->bss_lock);
2970 }
2971 EXPORT_SYMBOL(cfg80211_ref_bss);
2972
cfg80211_put_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2973 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2974 {
2975 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2976
2977 if (!pub)
2978 return;
2979
2980 spin_lock_bh(&rdev->bss_lock);
2981 bss_ref_put(rdev, bss_from_pub(pub));
2982 spin_unlock_bh(&rdev->bss_lock);
2983 }
2984 EXPORT_SYMBOL(cfg80211_put_bss);
2985
cfg80211_unlink_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2986 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2987 {
2988 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2989 struct cfg80211_internal_bss *bss, *tmp1;
2990 struct cfg80211_bss *nontrans_bss, *tmp;
2991
2992 if (WARN_ON(!pub))
2993 return;
2994
2995 bss = bss_from_pub(pub);
2996
2997 spin_lock_bh(&rdev->bss_lock);
2998 if (list_empty(&bss->list))
2999 goto out;
3000
3001 list_for_each_entry_safe(nontrans_bss, tmp,
3002 &pub->nontrans_list,
3003 nontrans_list) {
3004 tmp1 = bss_from_pub(nontrans_bss);
3005 if (__cfg80211_unlink_bss(rdev, tmp1))
3006 rdev->bss_generation++;
3007 }
3008
3009 if (__cfg80211_unlink_bss(rdev, bss))
3010 rdev->bss_generation++;
3011 out:
3012 spin_unlock_bh(&rdev->bss_lock);
3013 }
3014 EXPORT_SYMBOL(cfg80211_unlink_bss);
3015
cfg80211_bss_iter(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,void (* iter)(struct wiphy * wiphy,struct cfg80211_bss * bss,void * data),void * iter_data)3016 void cfg80211_bss_iter(struct wiphy *wiphy,
3017 struct cfg80211_chan_def *chandef,
3018 void (*iter)(struct wiphy *wiphy,
3019 struct cfg80211_bss *bss,
3020 void *data),
3021 void *iter_data)
3022 {
3023 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3024 struct cfg80211_internal_bss *bss;
3025
3026 spin_lock_bh(&rdev->bss_lock);
3027
3028 list_for_each_entry(bss, &rdev->bss_list, list) {
3029 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3030 false))
3031 iter(wiphy, &bss->pub, iter_data);
3032 }
3033
3034 spin_unlock_bh(&rdev->bss_lock);
3035 }
3036 EXPORT_SYMBOL(cfg80211_bss_iter);
3037
cfg80211_update_assoc_bss_entry(struct wireless_dev * wdev,unsigned int link_id,struct ieee80211_channel * chan)3038 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3039 unsigned int link_id,
3040 struct ieee80211_channel *chan)
3041 {
3042 struct wiphy *wiphy = wdev->wiphy;
3043 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3044 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3045 struct cfg80211_internal_bss *new = NULL;
3046 struct cfg80211_internal_bss *bss;
3047 struct cfg80211_bss *nontrans_bss;
3048 struct cfg80211_bss *tmp;
3049
3050 spin_lock_bh(&rdev->bss_lock);
3051
3052 /*
3053 * Some APs use CSA also for bandwidth changes, i.e., without actually
3054 * changing the control channel, so no need to update in such a case.
3055 */
3056 if (cbss->pub.channel == chan)
3057 goto done;
3058
3059 /* use transmitting bss */
3060 if (cbss->pub.transmitted_bss)
3061 cbss = bss_from_pub(cbss->pub.transmitted_bss);
3062
3063 cbss->pub.channel = chan;
3064
3065 list_for_each_entry(bss, &rdev->bss_list, list) {
3066 if (!cfg80211_bss_type_match(bss->pub.capability,
3067 bss->pub.channel->band,
3068 wdev->conn_bss_type))
3069 continue;
3070
3071 if (bss == cbss)
3072 continue;
3073
3074 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3075 new = bss;
3076 break;
3077 }
3078 }
3079
3080 if (new) {
3081 /* to save time, update IEs for transmitting bss only */
3082 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
3083 new->pub.proberesp_ies = NULL;
3084 new->pub.beacon_ies = NULL;
3085 }
3086
3087 list_for_each_entry_safe(nontrans_bss, tmp,
3088 &new->pub.nontrans_list,
3089 nontrans_list) {
3090 bss = bss_from_pub(nontrans_bss);
3091 if (__cfg80211_unlink_bss(rdev, bss))
3092 rdev->bss_generation++;
3093 }
3094
3095 WARN_ON(atomic_read(&new->hold));
3096 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3097 rdev->bss_generation++;
3098 }
3099
3100 rb_erase(&cbss->rbn, &rdev->bss_tree);
3101 rb_insert_bss(rdev, cbss);
3102 rdev->bss_generation++;
3103
3104 list_for_each_entry_safe(nontrans_bss, tmp,
3105 &cbss->pub.nontrans_list,
3106 nontrans_list) {
3107 bss = bss_from_pub(nontrans_bss);
3108 bss->pub.channel = chan;
3109 rb_erase(&bss->rbn, &rdev->bss_tree);
3110 rb_insert_bss(rdev, bss);
3111 rdev->bss_generation++;
3112 }
3113
3114 done:
3115 spin_unlock_bh(&rdev->bss_lock);
3116 }
3117
3118 #ifdef CONFIG_CFG80211_WEXT
3119 static struct cfg80211_registered_device *
cfg80211_get_dev_from_ifindex(struct net * net,int ifindex)3120 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3121 {
3122 struct cfg80211_registered_device *rdev;
3123 struct net_device *dev;
3124
3125 ASSERT_RTNL();
3126
3127 dev = dev_get_by_index(net, ifindex);
3128 if (!dev)
3129 return ERR_PTR(-ENODEV);
3130 if (dev->ieee80211_ptr)
3131 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3132 else
3133 rdev = ERR_PTR(-ENODEV);
3134 dev_put(dev);
3135 return rdev;
3136 }
3137
cfg80211_wext_siwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)3138 int cfg80211_wext_siwscan(struct net_device *dev,
3139 struct iw_request_info *info,
3140 union iwreq_data *wrqu, char *extra)
3141 {
3142 struct cfg80211_registered_device *rdev;
3143 struct wiphy *wiphy;
3144 struct iw_scan_req *wreq = NULL;
3145 struct cfg80211_scan_request *creq;
3146 int i, err, n_channels = 0;
3147 enum nl80211_band band;
3148
3149 if (!netif_running(dev))
3150 return -ENETDOWN;
3151
3152 if (wrqu->data.length == sizeof(struct iw_scan_req))
3153 wreq = (struct iw_scan_req *)extra;
3154
3155 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3156
3157 if (IS_ERR(rdev))
3158 return PTR_ERR(rdev);
3159
3160 if (rdev->scan_req || rdev->scan_msg)
3161 return -EBUSY;
3162
3163 wiphy = &rdev->wiphy;
3164
3165 /* Determine number of channels, needed to allocate creq */
3166 if (wreq && wreq->num_channels)
3167 n_channels = wreq->num_channels;
3168 else
3169 n_channels = ieee80211_get_num_supported_channels(wiphy);
3170
3171 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
3172 n_channels * sizeof(void *),
3173 GFP_ATOMIC);
3174 if (!creq)
3175 return -ENOMEM;
3176
3177 creq->wiphy = wiphy;
3178 creq->wdev = dev->ieee80211_ptr;
3179 /* SSIDs come after channels */
3180 creq->ssids = (void *)&creq->channels[n_channels];
3181 creq->n_channels = n_channels;
3182 creq->n_ssids = 1;
3183 creq->scan_start = jiffies;
3184
3185 /* translate "Scan on frequencies" request */
3186 i = 0;
3187 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3188 int j;
3189
3190 if (!wiphy->bands[band])
3191 continue;
3192
3193 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3194 /* ignore disabled channels */
3195 if (wiphy->bands[band]->channels[j].flags &
3196 IEEE80211_CHAN_DISABLED)
3197 continue;
3198
3199 /* If we have a wireless request structure and the
3200 * wireless request specifies frequencies, then search
3201 * for the matching hardware channel.
3202 */
3203 if (wreq && wreq->num_channels) {
3204 int k;
3205 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3206 for (k = 0; k < wreq->num_channels; k++) {
3207 struct iw_freq *freq =
3208 &wreq->channel_list[k];
3209 int wext_freq =
3210 cfg80211_wext_freq(freq);
3211
3212 if (wext_freq == wiphy_freq)
3213 goto wext_freq_found;
3214 }
3215 goto wext_freq_not_found;
3216 }
3217
3218 wext_freq_found:
3219 creq->channels[i] = &wiphy->bands[band]->channels[j];
3220 i++;
3221 wext_freq_not_found: ;
3222 }
3223 }
3224 /* No channels found? */
3225 if (!i) {
3226 err = -EINVAL;
3227 goto out;
3228 }
3229
3230 /* Set real number of channels specified in creq->channels[] */
3231 creq->n_channels = i;
3232
3233 /* translate "Scan for SSID" request */
3234 if (wreq) {
3235 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3236 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3237 err = -EINVAL;
3238 goto out;
3239 }
3240 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3241 creq->ssids[0].ssid_len = wreq->essid_len;
3242 }
3243 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
3244 creq->n_ssids = 0;
3245 }
3246
3247 for (i = 0; i < NUM_NL80211_BANDS; i++)
3248 if (wiphy->bands[i])
3249 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3250
3251 eth_broadcast_addr(creq->bssid);
3252
3253 wiphy_lock(&rdev->wiphy);
3254
3255 rdev->scan_req = creq;
3256 err = rdev_scan(rdev, creq);
3257 if (err) {
3258 rdev->scan_req = NULL;
3259 /* creq will be freed below */
3260 } else {
3261 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3262 /* creq now owned by driver */
3263 creq = NULL;
3264 dev_hold(dev);
3265 }
3266 wiphy_unlock(&rdev->wiphy);
3267 out:
3268 kfree(creq);
3269 return err;
3270 }
3271 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3272
ieee80211_scan_add_ies(struct iw_request_info * info,const struct cfg80211_bss_ies * ies,char * current_ev,char * end_buf)3273 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3274 const struct cfg80211_bss_ies *ies,
3275 char *current_ev, char *end_buf)
3276 {
3277 const u8 *pos, *end, *next;
3278 struct iw_event iwe;
3279
3280 if (!ies)
3281 return current_ev;
3282
3283 /*
3284 * If needed, fragment the IEs buffer (at IE boundaries) into short
3285 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3286 */
3287 pos = ies->data;
3288 end = pos + ies->len;
3289
3290 while (end - pos > IW_GENERIC_IE_MAX) {
3291 next = pos + 2 + pos[1];
3292 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3293 next = next + 2 + next[1];
3294
3295 memset(&iwe, 0, sizeof(iwe));
3296 iwe.cmd = IWEVGENIE;
3297 iwe.u.data.length = next - pos;
3298 current_ev = iwe_stream_add_point_check(info, current_ev,
3299 end_buf, &iwe,
3300 (void *)pos);
3301 if (IS_ERR(current_ev))
3302 return current_ev;
3303 pos = next;
3304 }
3305
3306 if (end > pos) {
3307 memset(&iwe, 0, sizeof(iwe));
3308 iwe.cmd = IWEVGENIE;
3309 iwe.u.data.length = end - pos;
3310 current_ev = iwe_stream_add_point_check(info, current_ev,
3311 end_buf, &iwe,
3312 (void *)pos);
3313 if (IS_ERR(current_ev))
3314 return current_ev;
3315 }
3316
3317 return current_ev;
3318 }
3319
3320 static char *
ieee80211_bss(struct wiphy * wiphy,struct iw_request_info * info,struct cfg80211_internal_bss * bss,char * current_ev,char * end_buf)3321 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3322 struct cfg80211_internal_bss *bss, char *current_ev,
3323 char *end_buf)
3324 {
3325 const struct cfg80211_bss_ies *ies;
3326 struct iw_event iwe;
3327 const u8 *ie;
3328 u8 buf[50];
3329 u8 *cfg, *p, *tmp;
3330 int rem, i, sig;
3331 bool ismesh = false;
3332
3333 memset(&iwe, 0, sizeof(iwe));
3334 iwe.cmd = SIOCGIWAP;
3335 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3336 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3337 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3338 IW_EV_ADDR_LEN);
3339 if (IS_ERR(current_ev))
3340 return current_ev;
3341
3342 memset(&iwe, 0, sizeof(iwe));
3343 iwe.cmd = SIOCGIWFREQ;
3344 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3345 iwe.u.freq.e = 0;
3346 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3347 IW_EV_FREQ_LEN);
3348 if (IS_ERR(current_ev))
3349 return current_ev;
3350
3351 memset(&iwe, 0, sizeof(iwe));
3352 iwe.cmd = SIOCGIWFREQ;
3353 iwe.u.freq.m = bss->pub.channel->center_freq;
3354 iwe.u.freq.e = 6;
3355 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3356 IW_EV_FREQ_LEN);
3357 if (IS_ERR(current_ev))
3358 return current_ev;
3359
3360 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3361 memset(&iwe, 0, sizeof(iwe));
3362 iwe.cmd = IWEVQUAL;
3363 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3364 IW_QUAL_NOISE_INVALID |
3365 IW_QUAL_QUAL_UPDATED;
3366 switch (wiphy->signal_type) {
3367 case CFG80211_SIGNAL_TYPE_MBM:
3368 sig = bss->pub.signal / 100;
3369 iwe.u.qual.level = sig;
3370 iwe.u.qual.updated |= IW_QUAL_DBM;
3371 if (sig < -110) /* rather bad */
3372 sig = -110;
3373 else if (sig > -40) /* perfect */
3374 sig = -40;
3375 /* will give a range of 0 .. 70 */
3376 iwe.u.qual.qual = sig + 110;
3377 break;
3378 case CFG80211_SIGNAL_TYPE_UNSPEC:
3379 iwe.u.qual.level = bss->pub.signal;
3380 /* will give range 0 .. 100 */
3381 iwe.u.qual.qual = bss->pub.signal;
3382 break;
3383 default:
3384 /* not reached */
3385 break;
3386 }
3387 current_ev = iwe_stream_add_event_check(info, current_ev,
3388 end_buf, &iwe,
3389 IW_EV_QUAL_LEN);
3390 if (IS_ERR(current_ev))
3391 return current_ev;
3392 }
3393
3394 memset(&iwe, 0, sizeof(iwe));
3395 iwe.cmd = SIOCGIWENCODE;
3396 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3397 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3398 else
3399 iwe.u.data.flags = IW_ENCODE_DISABLED;
3400 iwe.u.data.length = 0;
3401 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3402 &iwe, "");
3403 if (IS_ERR(current_ev))
3404 return current_ev;
3405
3406 rcu_read_lock();
3407 ies = rcu_dereference(bss->pub.ies);
3408 rem = ies->len;
3409 ie = ies->data;
3410
3411 while (rem >= 2) {
3412 /* invalid data */
3413 if (ie[1] > rem - 2)
3414 break;
3415
3416 switch (ie[0]) {
3417 case WLAN_EID_SSID:
3418 memset(&iwe, 0, sizeof(iwe));
3419 iwe.cmd = SIOCGIWESSID;
3420 iwe.u.data.length = ie[1];
3421 iwe.u.data.flags = 1;
3422 current_ev = iwe_stream_add_point_check(info,
3423 current_ev,
3424 end_buf, &iwe,
3425 (u8 *)ie + 2);
3426 if (IS_ERR(current_ev))
3427 goto unlock;
3428 break;
3429 case WLAN_EID_MESH_ID:
3430 memset(&iwe, 0, sizeof(iwe));
3431 iwe.cmd = SIOCGIWESSID;
3432 iwe.u.data.length = ie[1];
3433 iwe.u.data.flags = 1;
3434 current_ev = iwe_stream_add_point_check(info,
3435 current_ev,
3436 end_buf, &iwe,
3437 (u8 *)ie + 2);
3438 if (IS_ERR(current_ev))
3439 goto unlock;
3440 break;
3441 case WLAN_EID_MESH_CONFIG:
3442 ismesh = true;
3443 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3444 break;
3445 cfg = (u8 *)ie + 2;
3446 memset(&iwe, 0, sizeof(iwe));
3447 iwe.cmd = IWEVCUSTOM;
3448 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
3449 "0x%02X", cfg[0]);
3450 iwe.u.data.length = strlen(buf);
3451 current_ev = iwe_stream_add_point_check(info,
3452 current_ev,
3453 end_buf,
3454 &iwe, buf);
3455 if (IS_ERR(current_ev))
3456 goto unlock;
3457 sprintf(buf, "Path Selection Metric ID: 0x%02X",
3458 cfg[1]);
3459 iwe.u.data.length = strlen(buf);
3460 current_ev = iwe_stream_add_point_check(info,
3461 current_ev,
3462 end_buf,
3463 &iwe, buf);
3464 if (IS_ERR(current_ev))
3465 goto unlock;
3466 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3467 cfg[2]);
3468 iwe.u.data.length = strlen(buf);
3469 current_ev = iwe_stream_add_point_check(info,
3470 current_ev,
3471 end_buf,
3472 &iwe, buf);
3473 if (IS_ERR(current_ev))
3474 goto unlock;
3475 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3476 iwe.u.data.length = strlen(buf);
3477 current_ev = iwe_stream_add_point_check(info,
3478 current_ev,
3479 end_buf,
3480 &iwe, buf);
3481 if (IS_ERR(current_ev))
3482 goto unlock;
3483 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3484 iwe.u.data.length = strlen(buf);
3485 current_ev = iwe_stream_add_point_check(info,
3486 current_ev,
3487 end_buf,
3488 &iwe, buf);
3489 if (IS_ERR(current_ev))
3490 goto unlock;
3491 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3492 iwe.u.data.length = strlen(buf);
3493 current_ev = iwe_stream_add_point_check(info,
3494 current_ev,
3495 end_buf,
3496 &iwe, buf);
3497 if (IS_ERR(current_ev))
3498 goto unlock;
3499 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3500 iwe.u.data.length = strlen(buf);
3501 current_ev = iwe_stream_add_point_check(info,
3502 current_ev,
3503 end_buf,
3504 &iwe, buf);
3505 if (IS_ERR(current_ev))
3506 goto unlock;
3507 break;
3508 case WLAN_EID_SUPP_RATES:
3509 case WLAN_EID_EXT_SUPP_RATES:
3510 /* display all supported rates in readable format */
3511 p = current_ev + iwe_stream_lcp_len(info);
3512
3513 memset(&iwe, 0, sizeof(iwe));
3514 iwe.cmd = SIOCGIWRATE;
3515 /* Those two flags are ignored... */
3516 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3517
3518 for (i = 0; i < ie[1]; i++) {
3519 iwe.u.bitrate.value =
3520 ((ie[i + 2] & 0x7f) * 500000);
3521 tmp = p;
3522 p = iwe_stream_add_value(info, current_ev, p,
3523 end_buf, &iwe,
3524 IW_EV_PARAM_LEN);
3525 if (p == tmp) {
3526 current_ev = ERR_PTR(-E2BIG);
3527 goto unlock;
3528 }
3529 }
3530 current_ev = p;
3531 break;
3532 }
3533 rem -= ie[1] + 2;
3534 ie += ie[1] + 2;
3535 }
3536
3537 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3538 ismesh) {
3539 memset(&iwe, 0, sizeof(iwe));
3540 iwe.cmd = SIOCGIWMODE;
3541 if (ismesh)
3542 iwe.u.mode = IW_MODE_MESH;
3543 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3544 iwe.u.mode = IW_MODE_MASTER;
3545 else
3546 iwe.u.mode = IW_MODE_ADHOC;
3547 current_ev = iwe_stream_add_event_check(info, current_ev,
3548 end_buf, &iwe,
3549 IW_EV_UINT_LEN);
3550 if (IS_ERR(current_ev))
3551 goto unlock;
3552 }
3553
3554 memset(&iwe, 0, sizeof(iwe));
3555 iwe.cmd = IWEVCUSTOM;
3556 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3557 iwe.u.data.length = strlen(buf);
3558 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3559 &iwe, buf);
3560 if (IS_ERR(current_ev))
3561 goto unlock;
3562 memset(&iwe, 0, sizeof(iwe));
3563 iwe.cmd = IWEVCUSTOM;
3564 sprintf(buf, " Last beacon: %ums ago",
3565 elapsed_jiffies_msecs(bss->ts));
3566 iwe.u.data.length = strlen(buf);
3567 current_ev = iwe_stream_add_point_check(info, current_ev,
3568 end_buf, &iwe, buf);
3569 if (IS_ERR(current_ev))
3570 goto unlock;
3571
3572 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3573
3574 unlock:
3575 rcu_read_unlock();
3576 return current_ev;
3577 }
3578
3579
ieee80211_scan_results(struct cfg80211_registered_device * rdev,struct iw_request_info * info,char * buf,size_t len)3580 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3581 struct iw_request_info *info,
3582 char *buf, size_t len)
3583 {
3584 char *current_ev = buf;
3585 char *end_buf = buf + len;
3586 struct cfg80211_internal_bss *bss;
3587 int err = 0;
3588
3589 spin_lock_bh(&rdev->bss_lock);
3590 cfg80211_bss_expire(rdev);
3591
3592 list_for_each_entry(bss, &rdev->bss_list, list) {
3593 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3594 err = -E2BIG;
3595 break;
3596 }
3597 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3598 current_ev, end_buf);
3599 if (IS_ERR(current_ev)) {
3600 err = PTR_ERR(current_ev);
3601 break;
3602 }
3603 }
3604 spin_unlock_bh(&rdev->bss_lock);
3605
3606 if (err)
3607 return err;
3608 return current_ev - buf;
3609 }
3610
3611
cfg80211_wext_giwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)3612 int cfg80211_wext_giwscan(struct net_device *dev,
3613 struct iw_request_info *info,
3614 union iwreq_data *wrqu, char *extra)
3615 {
3616 struct iw_point *data = &wrqu->data;
3617 struct cfg80211_registered_device *rdev;
3618 int res;
3619
3620 if (!netif_running(dev))
3621 return -ENETDOWN;
3622
3623 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3624
3625 if (IS_ERR(rdev))
3626 return PTR_ERR(rdev);
3627
3628 if (rdev->scan_req || rdev->scan_msg)
3629 return -EAGAIN;
3630
3631 res = ieee80211_scan_results(rdev, info, extra, data->length);
3632 data->length = 0;
3633 if (res >= 0) {
3634 data->length = res;
3635 res = 0;
3636 }
3637
3638 return res;
3639 }
3640 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3641 #endif
3642