1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fscrypt_private.h
4 *
5 * Copyright (C) 2015, Google, Inc.
6 *
7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
8 * Heavily modified since then.
9 */
10
11 #ifndef _FSCRYPT_PRIVATE_H
12 #define _FSCRYPT_PRIVATE_H
13
14 #include <linux/fscrypt.h>
15 #include <linux/siphash.h>
16 #include <crypto/hash.h>
17 #include <linux/blk-crypto.h>
18
19 #define CONST_STRLEN(str) (sizeof(str) - 1)
20
21 #define FSCRYPT_FILE_NONCE_SIZE 16
22
23 /*
24 * Minimum size of an fscrypt master key. Note: a longer key will be required
25 * if ciphers with a 256-bit security strength are used. This is just the
26 * absolute minimum, which applies when only 128-bit encryption is used.
27 */
28 #define FSCRYPT_MIN_KEY_SIZE 16
29
30 #define FSCRYPT_CONTEXT_V1 1
31 #define FSCRYPT_CONTEXT_V2 2
32
33 /* Keep this in sync with include/uapi/linux/fscrypt.h */
34 #define FSCRYPT_MODE_MAX FSCRYPT_MODE_AES_256_HCTR2
35
36 struct fscrypt_context_v1 {
37 u8 version; /* FSCRYPT_CONTEXT_V1 */
38 u8 contents_encryption_mode;
39 u8 filenames_encryption_mode;
40 u8 flags;
41 u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
42 u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
43 };
44
45 struct fscrypt_context_v2 {
46 u8 version; /* FSCRYPT_CONTEXT_V2 */
47 u8 contents_encryption_mode;
48 u8 filenames_encryption_mode;
49 u8 flags;
50 u8 __reserved[4];
51 u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
52 u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
53 };
54
55 /*
56 * fscrypt_context - the encryption context of an inode
57 *
58 * This is the on-disk equivalent of an fscrypt_policy, stored alongside each
59 * encrypted file usually in a hidden extended attribute. It contains the
60 * fields from the fscrypt_policy, in order to identify the encryption algorithm
61 * and key with which the file is encrypted. It also contains a nonce that was
62 * randomly generated by fscrypt itself; this is used as KDF input or as a tweak
63 * to cause different files to be encrypted differently.
64 */
65 union fscrypt_context {
66 u8 version;
67 struct fscrypt_context_v1 v1;
68 struct fscrypt_context_v2 v2;
69 };
70
71 /*
72 * Return the size expected for the given fscrypt_context based on its version
73 * number, or 0 if the context version is unrecognized.
74 */
fscrypt_context_size(const union fscrypt_context * ctx)75 static inline int fscrypt_context_size(const union fscrypt_context *ctx)
76 {
77 switch (ctx->version) {
78 case FSCRYPT_CONTEXT_V1:
79 BUILD_BUG_ON(sizeof(ctx->v1) != 28);
80 return sizeof(ctx->v1);
81 case FSCRYPT_CONTEXT_V2:
82 BUILD_BUG_ON(sizeof(ctx->v2) != 40);
83 return sizeof(ctx->v2);
84 }
85 return 0;
86 }
87
88 /* Check whether an fscrypt_context has a recognized version number and size */
fscrypt_context_is_valid(const union fscrypt_context * ctx,int ctx_size)89 static inline bool fscrypt_context_is_valid(const union fscrypt_context *ctx,
90 int ctx_size)
91 {
92 return ctx_size >= 1 && ctx_size == fscrypt_context_size(ctx);
93 }
94
95 /* Retrieve the context's nonce, assuming the context was already validated */
fscrypt_context_nonce(const union fscrypt_context * ctx)96 static inline const u8 *fscrypt_context_nonce(const union fscrypt_context *ctx)
97 {
98 switch (ctx->version) {
99 case FSCRYPT_CONTEXT_V1:
100 return ctx->v1.nonce;
101 case FSCRYPT_CONTEXT_V2:
102 return ctx->v2.nonce;
103 }
104 WARN_ON(1);
105 return NULL;
106 }
107
108 union fscrypt_policy {
109 u8 version;
110 struct fscrypt_policy_v1 v1;
111 struct fscrypt_policy_v2 v2;
112 };
113
114 /*
115 * Return the size expected for the given fscrypt_policy based on its version
116 * number, or 0 if the policy version is unrecognized.
117 */
fscrypt_policy_size(const union fscrypt_policy * policy)118 static inline int fscrypt_policy_size(const union fscrypt_policy *policy)
119 {
120 switch (policy->version) {
121 case FSCRYPT_POLICY_V1:
122 return sizeof(policy->v1);
123 case FSCRYPT_POLICY_V2:
124 return sizeof(policy->v2);
125 }
126 return 0;
127 }
128
129 /* Return the contents encryption mode of a valid encryption policy */
130 static inline u8
fscrypt_policy_contents_mode(const union fscrypt_policy * policy)131 fscrypt_policy_contents_mode(const union fscrypt_policy *policy)
132 {
133 switch (policy->version) {
134 case FSCRYPT_POLICY_V1:
135 return policy->v1.contents_encryption_mode;
136 case FSCRYPT_POLICY_V2:
137 return policy->v2.contents_encryption_mode;
138 }
139 BUG();
140 }
141
142 /* Return the filenames encryption mode of a valid encryption policy */
143 static inline u8
fscrypt_policy_fnames_mode(const union fscrypt_policy * policy)144 fscrypt_policy_fnames_mode(const union fscrypt_policy *policy)
145 {
146 switch (policy->version) {
147 case FSCRYPT_POLICY_V1:
148 return policy->v1.filenames_encryption_mode;
149 case FSCRYPT_POLICY_V2:
150 return policy->v2.filenames_encryption_mode;
151 }
152 BUG();
153 }
154
155 /* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */
156 static inline u8
fscrypt_policy_flags(const union fscrypt_policy * policy)157 fscrypt_policy_flags(const union fscrypt_policy *policy)
158 {
159 switch (policy->version) {
160 case FSCRYPT_POLICY_V1:
161 return policy->v1.flags;
162 case FSCRYPT_POLICY_V2:
163 return policy->v2.flags;
164 }
165 BUG();
166 }
167
168 /*
169 * For encrypted symlinks, the ciphertext length is stored at the beginning
170 * of the string in little-endian format.
171 */
172 struct fscrypt_symlink_data {
173 __le16 len;
174 char encrypted_path[1];
175 } __packed;
176
177 /**
178 * struct fscrypt_prepared_key - a key prepared for actual encryption/decryption
179 * @tfm: crypto API transform object
180 * @blk_key: key for blk-crypto
181 *
182 * Normally only one of the fields will be non-NULL.
183 */
184 struct fscrypt_prepared_key {
185 struct crypto_skcipher *tfm;
186 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
187 struct blk_crypto_key *blk_key;
188 #endif
189 };
190
191 /*
192 * fscrypt_info - the "encryption key" for an inode
193 *
194 * When an encrypted file's key is made available, an instance of this struct is
195 * allocated and stored in ->i_crypt_info. Once created, it remains until the
196 * inode is evicted.
197 */
198 struct fscrypt_info {
199
200 /* The key in a form prepared for actual encryption/decryption */
201 struct fscrypt_prepared_key ci_enc_key;
202
203 /* True if ci_enc_key should be freed when this fscrypt_info is freed */
204 bool ci_owns_key;
205
206 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
207 /*
208 * True if this inode will use inline encryption (blk-crypto) instead of
209 * the traditional filesystem-layer encryption.
210 */
211 bool ci_inlinecrypt;
212 #endif
213
214 /*
215 * Encryption mode used for this inode. It corresponds to either the
216 * contents or filenames encryption mode, depending on the inode type.
217 */
218 struct fscrypt_mode *ci_mode;
219
220 /* Back-pointer to the inode */
221 struct inode *ci_inode;
222
223 /*
224 * The master key with which this inode was unlocked (decrypted). This
225 * will be NULL if the master key was found in a process-subscribed
226 * keyring rather than in the filesystem-level keyring.
227 */
228 struct fscrypt_master_key *ci_master_key;
229
230 /*
231 * Link in list of inodes that were unlocked with the master key.
232 * Only used when ->ci_master_key is set.
233 */
234 struct list_head ci_master_key_link;
235
236 /*
237 * If non-NULL, then encryption is done using the master key directly
238 * and ci_enc_key will equal ci_direct_key->dk_key.
239 */
240 struct fscrypt_direct_key *ci_direct_key;
241
242 /*
243 * This inode's hash key for filenames. This is a 128-bit SipHash-2-4
244 * key. This is only set for directories that use a keyed dirhash over
245 * the plaintext filenames -- currently just casefolded directories.
246 */
247 siphash_key_t ci_dirhash_key;
248 bool ci_dirhash_key_initialized;
249
250 /* The encryption policy used by this inode */
251 union fscrypt_policy ci_policy;
252
253 /* This inode's nonce, copied from the fscrypt_context */
254 u8 ci_nonce[FSCRYPT_FILE_NONCE_SIZE];
255
256 /* Hashed inode number. Only set for IV_INO_LBLK_32 */
257 u32 ci_hashed_ino;
258 };
259
260 typedef enum {
261 FS_DECRYPT = 0,
262 FS_ENCRYPT,
263 } fscrypt_direction_t;
264
265 /* crypto.c */
266 extern struct kmem_cache *fscrypt_info_cachep;
267 int fscrypt_initialize(unsigned int cop_flags);
268 int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
269 u64 lblk_num, struct page *src_page,
270 struct page *dest_page, unsigned int len,
271 unsigned int offs, gfp_t gfp_flags);
272 struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
273
274 void __printf(3, 4) __cold
275 fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
276
277 #define fscrypt_warn(inode, fmt, ...) \
278 fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__)
279 #define fscrypt_err(inode, fmt, ...) \
280 fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__)
281
282 #define FSCRYPT_MAX_IV_SIZE 32
283
284 union fscrypt_iv {
285 struct {
286 /* logical block number within the file */
287 __le64 lblk_num;
288
289 /* per-file nonce; only set in DIRECT_KEY mode */
290 u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
291 };
292 u8 raw[FSCRYPT_MAX_IV_SIZE];
293 __le64 dun[FSCRYPT_MAX_IV_SIZE / sizeof(__le64)];
294 };
295
296 void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
297 const struct fscrypt_info *ci);
298
299 /* fname.c */
300 bool __fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
301 u32 orig_len, u32 max_len,
302 u32 *encrypted_len_ret);
303
304 /* hkdf.c */
305 struct fscrypt_hkdf {
306 struct crypto_shash *hmac_tfm;
307 };
308
309 int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
310 unsigned int master_key_size);
311
312 /*
313 * The list of contexts in which fscrypt uses HKDF. These values are used as
314 * the first byte of the HKDF application-specific info string to guarantee that
315 * info strings are never repeated between contexts. This ensures that all HKDF
316 * outputs are unique and cryptographically isolated, i.e. knowledge of one
317 * output doesn't reveal another.
318 */
319 #define HKDF_CONTEXT_KEY_IDENTIFIER 1 /* info=<empty> */
320 #define HKDF_CONTEXT_PER_FILE_ENC_KEY 2 /* info=file_nonce */
321 #define HKDF_CONTEXT_DIRECT_KEY 3 /* info=mode_num */
322 #define HKDF_CONTEXT_IV_INO_LBLK_64_KEY 4 /* info=mode_num||fs_uuid */
323 #define HKDF_CONTEXT_DIRHASH_KEY 5 /* info=file_nonce */
324 #define HKDF_CONTEXT_IV_INO_LBLK_32_KEY 6 /* info=mode_num||fs_uuid */
325 #define HKDF_CONTEXT_INODE_HASH_KEY 7 /* info=<empty> */
326
327 int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context,
328 const u8 *info, unsigned int infolen,
329 u8 *okm, unsigned int okmlen);
330
331 void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf);
332
333 /* inline_crypt.c */
334 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
335 int fscrypt_select_encryption_impl(struct fscrypt_info *ci);
336
337 static inline bool
fscrypt_using_inline_encryption(const struct fscrypt_info * ci)338 fscrypt_using_inline_encryption(const struct fscrypt_info *ci)
339 {
340 return ci->ci_inlinecrypt;
341 }
342
343 int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
344 const u8 *raw_key,
345 const struct fscrypt_info *ci);
346
347 void fscrypt_destroy_inline_crypt_key(struct super_block *sb,
348 struct fscrypt_prepared_key *prep_key);
349
350 /*
351 * Check whether the crypto transform or blk-crypto key has been allocated in
352 * @prep_key, depending on which encryption implementation the file will use.
353 */
354 static inline bool
fscrypt_is_key_prepared(struct fscrypt_prepared_key * prep_key,const struct fscrypt_info * ci)355 fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
356 const struct fscrypt_info *ci)
357 {
358 /*
359 * The two smp_load_acquire()'s here pair with the smp_store_release()'s
360 * in fscrypt_prepare_inline_crypt_key() and fscrypt_prepare_key().
361 * I.e., in some cases (namely, if this prep_key is a per-mode
362 * encryption key) another task can publish blk_key or tfm concurrently,
363 * executing a RELEASE barrier. We need to use smp_load_acquire() here
364 * to safely ACQUIRE the memory the other task published.
365 */
366 if (fscrypt_using_inline_encryption(ci))
367 return smp_load_acquire(&prep_key->blk_key) != NULL;
368 return smp_load_acquire(&prep_key->tfm) != NULL;
369 }
370
371 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
372
fscrypt_select_encryption_impl(struct fscrypt_info * ci)373 static inline int fscrypt_select_encryption_impl(struct fscrypt_info *ci)
374 {
375 return 0;
376 }
377
378 static inline bool
fscrypt_using_inline_encryption(const struct fscrypt_info * ci)379 fscrypt_using_inline_encryption(const struct fscrypt_info *ci)
380 {
381 return false;
382 }
383
384 static inline int
fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key * prep_key,const u8 * raw_key,const struct fscrypt_info * ci)385 fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
386 const u8 *raw_key,
387 const struct fscrypt_info *ci)
388 {
389 WARN_ON(1);
390 return -EOPNOTSUPP;
391 }
392
393 static inline void
fscrypt_destroy_inline_crypt_key(struct super_block * sb,struct fscrypt_prepared_key * prep_key)394 fscrypt_destroy_inline_crypt_key(struct super_block *sb,
395 struct fscrypt_prepared_key *prep_key)
396 {
397 }
398
399 static inline bool
fscrypt_is_key_prepared(struct fscrypt_prepared_key * prep_key,const struct fscrypt_info * ci)400 fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
401 const struct fscrypt_info *ci)
402 {
403 return smp_load_acquire(&prep_key->tfm) != NULL;
404 }
405 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
406
407 /* keyring.c */
408
409 /*
410 * fscrypt_master_key_secret - secret key material of an in-use master key
411 */
412 struct fscrypt_master_key_secret {
413
414 /*
415 * For v2 policy keys: HKDF context keyed by this master key.
416 * For v1 policy keys: not set (hkdf.hmac_tfm == NULL).
417 */
418 struct fscrypt_hkdf hkdf;
419
420 /*
421 * Size of the raw key in bytes. This remains set even if ->raw was
422 * zeroized due to no longer being needed. I.e. we still remember the
423 * size of the key even if we don't need to remember the key itself.
424 */
425 u32 size;
426
427 /* For v1 policy keys: the raw key. Wiped for v2 policy keys. */
428 u8 raw[FSCRYPT_MAX_KEY_SIZE];
429
430 } __randomize_layout;
431
432 /*
433 * fscrypt_master_key - an in-use master key
434 *
435 * This represents a master encryption key which has been added to the
436 * filesystem and can be used to "unlock" the encrypted files which were
437 * encrypted with it.
438 */
439 struct fscrypt_master_key {
440
441 /*
442 * Back-pointer to the super_block of the filesystem to which this
443 * master key has been added. Only valid if ->mk_active_refs > 0.
444 */
445 struct super_block *mk_sb;
446
447 /*
448 * Link in ->mk_sb->s_master_keys->key_hashtable.
449 * Only valid if ->mk_active_refs > 0.
450 */
451 struct hlist_node mk_node;
452
453 /* Semaphore that protects ->mk_secret and ->mk_users */
454 struct rw_semaphore mk_sem;
455
456 /*
457 * Active and structural reference counts. An active ref guarantees
458 * that the struct continues to exist, continues to be in the keyring
459 * ->mk_sb->s_master_keys, and that any embedded subkeys (e.g.
460 * ->mk_direct_keys) that have been prepared continue to exist.
461 * A structural ref only guarantees that the struct continues to exist.
462 *
463 * There is one active ref associated with ->mk_secret being present,
464 * and one active ref for each inode in ->mk_decrypted_inodes.
465 *
466 * There is one structural ref associated with the active refcount being
467 * nonzero. Finding a key in the keyring also takes a structural ref,
468 * which is then held temporarily while the key is operated on.
469 */
470 refcount_t mk_active_refs;
471 refcount_t mk_struct_refs;
472
473 struct rcu_head mk_rcu_head;
474
475 /*
476 * The secret key material. After FS_IOC_REMOVE_ENCRYPTION_KEY is
477 * executed, this is wiped and no new inodes can be unlocked with this
478 * key; however, there may still be inodes in ->mk_decrypted_inodes
479 * which could not be evicted. As long as some inodes still remain,
480 * FS_IOC_REMOVE_ENCRYPTION_KEY can be retried, or
481 * FS_IOC_ADD_ENCRYPTION_KEY can add the secret again.
482 *
483 * While ->mk_secret is present, one ref in ->mk_active_refs is held.
484 *
485 * Locking: protected by ->mk_sem. The manipulation of ->mk_active_refs
486 * associated with this field is protected by ->mk_sem as well.
487 */
488 struct fscrypt_master_key_secret mk_secret;
489
490 /*
491 * For v1 policy keys: an arbitrary key descriptor which was assigned by
492 * userspace (->descriptor).
493 *
494 * For v2 policy keys: a cryptographic hash of this key (->identifier).
495 */
496 struct fscrypt_key_specifier mk_spec;
497
498 /*
499 * Keyring which contains a key of type 'key_type_fscrypt_user' for each
500 * user who has added this key. Normally each key will be added by just
501 * one user, but it's possible that multiple users share a key, and in
502 * that case we need to keep track of those users so that one user can't
503 * remove the key before the others want it removed too.
504 *
505 * This is NULL for v1 policy keys; those can only be added by root.
506 *
507 * Locking: protected by ->mk_sem. (We don't just rely on the keyrings
508 * subsystem semaphore ->mk_users->sem, as we need support for atomic
509 * search+insert along with proper synchronization with ->mk_secret.)
510 */
511 struct key *mk_users;
512
513 /*
514 * List of inodes that were unlocked using this key. This allows the
515 * inodes to be evicted efficiently if the key is removed.
516 */
517 struct list_head mk_decrypted_inodes;
518 spinlock_t mk_decrypted_inodes_lock;
519
520 /*
521 * Per-mode encryption keys for the various types of encryption policies
522 * that use them. Allocated and derived on-demand.
523 */
524 struct fscrypt_prepared_key mk_direct_keys[FSCRYPT_MODE_MAX + 1];
525 struct fscrypt_prepared_key mk_iv_ino_lblk_64_keys[FSCRYPT_MODE_MAX + 1];
526 struct fscrypt_prepared_key mk_iv_ino_lblk_32_keys[FSCRYPT_MODE_MAX + 1];
527
528 /* Hash key for inode numbers. Initialized only when needed. */
529 siphash_key_t mk_ino_hash_key;
530 bool mk_ino_hash_key_initialized;
531
532 } __randomize_layout;
533
534 static inline bool
is_master_key_secret_present(const struct fscrypt_master_key_secret * secret)535 is_master_key_secret_present(const struct fscrypt_master_key_secret *secret)
536 {
537 /*
538 * The READ_ONCE() is only necessary for fscrypt_drop_inode().
539 * fscrypt_drop_inode() runs in atomic context, so it can't take the key
540 * semaphore and thus 'secret' can change concurrently which would be a
541 * data race. But fscrypt_drop_inode() only need to know whether the
542 * secret *was* present at the time of check, so READ_ONCE() suffices.
543 */
544 return READ_ONCE(secret->size) != 0;
545 }
546
master_key_spec_type(const struct fscrypt_key_specifier * spec)547 static inline const char *master_key_spec_type(
548 const struct fscrypt_key_specifier *spec)
549 {
550 switch (spec->type) {
551 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
552 return "descriptor";
553 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
554 return "identifier";
555 }
556 return "[unknown]";
557 }
558
master_key_spec_len(const struct fscrypt_key_specifier * spec)559 static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec)
560 {
561 switch (spec->type) {
562 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
563 return FSCRYPT_KEY_DESCRIPTOR_SIZE;
564 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
565 return FSCRYPT_KEY_IDENTIFIER_SIZE;
566 }
567 return 0;
568 }
569
570 void fscrypt_put_master_key(struct fscrypt_master_key *mk);
571
572 void fscrypt_put_master_key_activeref(struct fscrypt_master_key *mk);
573
574 struct fscrypt_master_key *
575 fscrypt_find_master_key(struct super_block *sb,
576 const struct fscrypt_key_specifier *mk_spec);
577
578 int fscrypt_get_test_dummy_key_identifier(
579 u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
580
581 int fscrypt_verify_key_added(struct super_block *sb,
582 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
583
584 int __init fscrypt_init_keyring(void);
585
586 /* keysetup.c */
587
588 struct fscrypt_mode {
589 const char *friendly_name;
590 const char *cipher_str;
591 int keysize; /* key size in bytes */
592 int security_strength; /* security strength in bytes */
593 int ivsize; /* IV size in bytes */
594 int logged_cryptoapi_impl;
595 int logged_blk_crypto_native;
596 int logged_blk_crypto_fallback;
597 enum blk_crypto_mode_num blk_crypto_mode;
598 };
599
600 extern struct fscrypt_mode fscrypt_modes[];
601
602 int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
603 const u8 *raw_key, const struct fscrypt_info *ci);
604
605 void fscrypt_destroy_prepared_key(struct super_block *sb,
606 struct fscrypt_prepared_key *prep_key);
607
608 int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key);
609
610 int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
611 const struct fscrypt_master_key *mk);
612
613 void fscrypt_hash_inode_number(struct fscrypt_info *ci,
614 const struct fscrypt_master_key *mk);
615
616 int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported);
617
618 /**
619 * fscrypt_require_key() - require an inode's encryption key
620 * @inode: the inode we need the key for
621 *
622 * If the inode is encrypted, set up its encryption key if not already done.
623 * Then require that the key be present and return -ENOKEY otherwise.
624 *
625 * No locks are needed, and the key will live as long as the struct inode --- so
626 * it won't go away from under you.
627 *
628 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
629 * if a problem occurred while setting up the encryption key.
630 */
fscrypt_require_key(struct inode * inode)631 static inline int fscrypt_require_key(struct inode *inode)
632 {
633 if (IS_ENCRYPTED(inode)) {
634 int err = fscrypt_get_encryption_info(inode, false);
635
636 if (err)
637 return err;
638 if (!fscrypt_has_encryption_key(inode))
639 return -ENOKEY;
640 }
641 return 0;
642 }
643
644 /* keysetup_v1.c */
645
646 void fscrypt_put_direct_key(struct fscrypt_direct_key *dk);
647
648 int fscrypt_setup_v1_file_key(struct fscrypt_info *ci,
649 const u8 *raw_master_key);
650
651 int fscrypt_setup_v1_file_key_via_subscribed_keyrings(struct fscrypt_info *ci);
652
653 /* policy.c */
654
655 bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
656 const union fscrypt_policy *policy2);
657 int fscrypt_policy_to_key_spec(const union fscrypt_policy *policy,
658 struct fscrypt_key_specifier *key_spec);
659 bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
660 const struct inode *inode);
661 int fscrypt_policy_from_context(union fscrypt_policy *policy_u,
662 const union fscrypt_context *ctx_u,
663 int ctx_size);
664 const union fscrypt_policy *fscrypt_policy_to_inherit(struct inode *dir);
665
666 #endif /* _FSCRYPT_PRIVATE_H */
667