1 /*
2 * linux/arch/parisc/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright 1999 SuSE GmbH
6 * changed by Philipp Rumpf
7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8 *
9 */
10
11 #include <linux/config.h>
12
13 #include <linux/mm.h>
14 #include <linux/bootmem.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */
18 #include <linux/blk.h> /* for initrd_start and initrd_end */
19 #include <linux/swap.h>
20 #include <linux/unistd.h>
21
22 #include <asm/pgalloc.h>
23 #include <asm/tlb.h>
24 #include <asm/pdc_chassis.h>
25
26 mmu_gather_t mmu_gathers[NR_CPUS];
27
28 extern char _text; /* start of kernel code, defined by linker */
29 extern int data_start;
30 extern char _end; /* end of BSS, defined by linker */
31 extern char __init_begin, __init_end;
32
33 #ifdef CONFIG_DISCONTIGMEM
34 struct node_map_data node_data[MAX_PHYSMEM_RANGES];
35 bootmem_data_t bmem_data[MAX_PHYSMEM_RANGES];
36 unsigned char *chunkmap;
37 unsigned int maxchunkmap;
38 #endif
39
40 static struct resource data_resource = {
41 name: "Kernel data",
42 flags: IORESOURCE_BUSY | IORESOURCE_MEM,
43 };
44
45 static struct resource code_resource = {
46 name: "Kernel code",
47 flags: IORESOURCE_BUSY | IORESOURCE_MEM,
48 };
49
50 static struct resource pdcdata_resource = {
51 name: "PDC data (Page Zero)",
52 start: 0,
53 end: 0x9ff,
54 flags: IORESOURCE_BUSY | IORESOURCE_MEM,
55 };
56
57 static struct resource sysram_resources[MAX_PHYSMEM_RANGES];
58
59 static unsigned long max_pfn;
60
61 /* The following array is initialized from the firmware specific
62 * information retrieved in kernel/inventory.c.
63 */
64
65 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES];
66 int npmem_ranges;
67
68 #ifdef __LP64__
69 #define MAX_MEM (~0UL)
70 #else /* !__LP64__ */
71 #define MAX_MEM (3584U*1024U*1024U)
72 #endif /* !__LP64__ */
73
74 static unsigned long mem_limit = MAX_MEM;
75
mem_limit_func(void)76 static void __init mem_limit_func(void)
77 {
78 char *cp, *end;
79 unsigned long limit;
80 extern char saved_command_line[];
81
82 /* We need this before __setup() functions are called */
83
84 limit = MAX_MEM;
85 for (cp = saved_command_line; *cp; ) {
86 if (memcmp(cp, "mem=", 4) == 0) {
87 cp += 4;
88 limit = memparse(cp, &end);
89 if (end != cp)
90 break;
91 cp = end;
92 } else {
93 while (*cp != ' ' && *cp)
94 ++cp;
95 while (*cp == ' ')
96 ++cp;
97 }
98 }
99
100 if (limit < mem_limit)
101 mem_limit = limit;
102 }
103
104 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
105
setup_bootmem(void)106 static void __init setup_bootmem(void)
107 {
108 unsigned long bootmap_size;
109 unsigned long mem_max;
110 unsigned long bootmap_pages;
111 unsigned long bootmap_start_pfn;
112 unsigned long bootmap_pfn;
113 #ifndef CONFIG_DISCONTIGMEM
114 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
115 int npmem_holes;
116 #endif
117 int i, sysram_resource_count;
118
119 disable_sr_hashing(); /* Turn off space register hashing */
120
121 #ifdef CONFIG_DISCONTIGMEM
122 /*
123 * The below is still true as of 2.4.2. If this is ever fixed,
124 * we can remove this warning!
125 */
126
127 printk(KERN_WARNING "\n\n");
128 printk(KERN_WARNING "CONFIG_DISCONTIGMEM is enabled, which is probably a mistake. This\n");
129 printk(KERN_WARNING "option can lead to heavy swapping, even when there are gigabytes\n");
130 printk(KERN_WARNING "of free memory.\n\n");
131 #endif
132
133 #ifdef __LP64__
134
135 #ifndef CONFIG_DISCONTIGMEM
136 /*
137 * Sort the ranges. Since the number of ranges is typically
138 * small, and performance is not an issue here, just do
139 * a simple insertion sort.
140 */
141
142 for (i = 1; i < npmem_ranges; i++) {
143 int j;
144
145 for (j = i; j > 0; j--) {
146 unsigned long tmp;
147
148 if (pmem_ranges[j-1].start_pfn <
149 pmem_ranges[j].start_pfn) {
150
151 break;
152 }
153 tmp = pmem_ranges[j-1].start_pfn;
154 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
155 pmem_ranges[j].start_pfn = tmp;
156 tmp = pmem_ranges[j-1].pages;
157 pmem_ranges[j-1].pages = pmem_ranges[j].pages;
158 pmem_ranges[j].pages = tmp;
159 }
160 }
161
162 /*
163 * Throw out ranges that are too far apart (controlled by
164 * MAX_GAP). If CONFIG_DISCONTIGMEM wasn't implemented so
165 * poorly, we would recommend enabling that option, but,
166 * until it is fixed, this is the best way to go.
167 */
168
169 for (i = 1; i < npmem_ranges; i++) {
170 if (pmem_ranges[i].start_pfn -
171 (pmem_ranges[i-1].start_pfn +
172 pmem_ranges[i-1].pages) > MAX_GAP) {
173 npmem_ranges = i;
174 break;
175 }
176 }
177 #endif
178
179 if (npmem_ranges > 1) {
180
181 /* Print the memory ranges */
182
183 printk(KERN_INFO "Memory Ranges:\n");
184
185 for (i = 0; i < npmem_ranges; i++) {
186 unsigned long start;
187 unsigned long size;
188
189 size = (pmem_ranges[i].pages << PAGE_SHIFT);
190 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
191 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld Mb\n",
192 i,start, start + (size - 1), size >> 20);
193 }
194 }
195
196 #endif /* __LP64__ */
197
198 #if 1
199 /* KLUGE! this really belongs in kernel/resource.c! */
200 iomem_resource.end = ~0UL;
201 #endif
202
203 sysram_resource_count = npmem_ranges;
204 for (i = 0; i < sysram_resource_count; i++) {
205 struct resource *res = &sysram_resources[i];
206 res->name = "System RAM";
207 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
208 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
209 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
210 request_resource(&iomem_resource, res);
211 }
212
213 /*
214 * For 32 bit kernels we limit the amount of memory we can
215 * support, in order to preserve enough kernel address space
216 * for other purposes. For 64 bit kernels we don't normally
217 * limit the memory, but this mechanism can be used to
218 * artificially limit the amount of memory (and it is written
219 * to work with multiple memory ranges).
220 */
221
222 mem_limit_func(); /* check for "mem=" argument */
223
224 mem_max = 0;
225 for (i = 0; i < npmem_ranges; i++) {
226 unsigned long rsize;
227
228 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
229 if ((mem_max + rsize) > mem_limit) {
230 printk(KERN_WARNING "Memory truncated to %ld Mb\n", mem_limit >> 20);
231 if (mem_max == mem_limit)
232 npmem_ranges = i;
233 else {
234 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
235 - (mem_max >> PAGE_SHIFT);
236 npmem_ranges = i + 1;
237 mem_max = mem_limit;
238 }
239 break;
240 }
241 mem_max += rsize;
242 }
243
244 printk(KERN_INFO "Total Memory: %ld Mb\n",mem_max >> 20);
245
246 #ifndef CONFIG_DISCONTIGMEM
247
248 /* Merge the ranges, keeping track of the holes */
249
250 {
251 unsigned long end_pfn;
252 unsigned long hole_pages;
253
254 npmem_holes = 0;
255 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
256 for (i = 1; i < npmem_ranges; i++) {
257
258 hole_pages = pmem_ranges[i].start_pfn - end_pfn;
259 if (hole_pages) {
260 pmem_holes[npmem_holes].start_pfn = end_pfn;
261 pmem_holes[npmem_holes++].pages = hole_pages;
262 end_pfn += hole_pages;
263 }
264 end_pfn += pmem_ranges[i].pages;
265 }
266
267 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
268 npmem_ranges = 1;
269 }
270 #endif
271
272 bootmap_pages = 0;
273 for (i = 0; i < npmem_ranges; i++)
274 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
275
276 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
277
278 #ifdef CONFIG_DISCONTIGMEM
279 for (i = 0; i < npmem_ranges; i++)
280 node_data[i].pg_data.bdata = &bmem_data[i];
281 #endif
282 /*
283 * Initialize and free the full range of memory in each range.
284 * Note that the only writing these routines do are to the bootmap,
285 * and we've made sure to locate the bootmap properly so that they
286 * won't be writing over anything important.
287 */
288
289 bootmap_pfn = bootmap_start_pfn;
290 max_pfn = 0;
291 for (i = 0; i < npmem_ranges; i++) {
292 unsigned long start_pfn;
293 unsigned long npages;
294
295 start_pfn = pmem_ranges[i].start_pfn;
296 npages = pmem_ranges[i].pages;
297
298 bootmap_size = init_bootmem_node(NODE_DATA(i),
299 bootmap_pfn,
300 start_pfn,
301 (start_pfn + npages) );
302 free_bootmem_node(NODE_DATA(i),
303 (start_pfn << PAGE_SHIFT),
304 (npages << PAGE_SHIFT) );
305 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
306 if ((start_pfn + npages) > max_pfn)
307 max_pfn = start_pfn + npages;
308 }
309
310 if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) {
311 printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n");
312 BUG();
313 }
314
315 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
316
317 #define PDC_CONSOLE_IO_IODC_SIZE 32768
318
319 reserve_bootmem_node(NODE_DATA(0), 0UL,
320 (unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE));
321 reserve_bootmem_node(NODE_DATA(0),__pa((unsigned long)&_text),
322 (unsigned long)(&_end - &_text));
323 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
324 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT));
325
326 #ifndef CONFIG_DISCONTIGMEM
327
328 /* reserve the holes */
329
330 for (i = 0; i < npmem_holes; i++) {
331 reserve_bootmem_node(NODE_DATA(0),
332 (pmem_holes[i].start_pfn << PAGE_SHIFT),
333 (pmem_holes[i].pages << PAGE_SHIFT));
334 }
335 #endif
336
337 #ifdef CONFIG_BLK_DEV_INITRD
338 if (initrd_start) {
339 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
340 if (__pa(initrd_start) < mem_max) {
341 unsigned long initrd_reserve;
342
343 if (__pa(initrd_end) > mem_max) {
344 initrd_reserve = mem_max - __pa(initrd_start);
345 } else {
346 initrd_reserve = initrd_end - initrd_start;
347 }
348 initrd_below_start_ok = 1;
349 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
350
351 reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve);
352 }
353 }
354 #endif
355
356 data_resource.start = virt_to_phys(&data_start);
357 data_resource.end = virt_to_phys(&_end)-1;
358 code_resource.start = virt_to_phys(&_text);
359 code_resource.end = virt_to_phys(&data_start)-1;
360
361 /* We don't know which region the kernel will be in, so try
362 * all of them.
363 */
364 for (i = 0; i < sysram_resource_count; i++) {
365 struct resource *res = &sysram_resources[i];
366 request_resource(res, &code_resource);
367 request_resource(res, &data_resource);
368 }
369 request_resource(&sysram_resources[0], &pdcdata_resource);
370 }
371
free_initmem(void)372 void free_initmem(void)
373 {
374 /* FIXME: */
375 #if 0
376 printk(KERN_INFO "NOT FREEING INITMEM (%dk)\n",
377 (&__init_end - &__init_begin) >> 10);
378 return;
379 #endif
380 unsigned long addr;
381
382 printk(KERN_INFO "Freeing unused kernel memory: ");
383
384 #if 1
385 /* Attempt to catch anyone trying to execute code here
386 * by filling the page with BRK insns.
387 *
388 * If we disable interrupts for all CPUs, then IPI stops working.
389 * Kinda breaks the global cache flushing.
390 */
391 local_irq_disable();
392
393 memset(&__init_begin, 0x00,
394 (unsigned long)&__init_end - (unsigned long)&__init_begin);
395
396 flush_data_cache();
397 asm volatile("sync" : : );
398 flush_icache_range((unsigned long)&__init_begin, (unsigned long)&__init_end);
399 asm volatile("sync" : : );
400
401 local_irq_enable();
402 #endif
403
404 addr = (unsigned long)(&__init_begin);
405 for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
406 ClearPageReserved(virt_to_page(addr));
407 set_page_count(virt_to_page(addr), 1);
408 free_page(addr);
409 num_physpages++;
410 }
411
412 printk("%luk freed\n", (unsigned long)(&__init_end - &__init_begin) >> 10);
413
414 /* set up a new led state on systems shipped LED State panel */
415 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
416 }
417
418 /*
419 * Just an arbitrary offset to serve as a "hole" between mapping areas
420 * (between top of physical memory and a potential pcxl dma mapping
421 * area, and below the vmalloc mapping area).
422 *
423 * The current 32K value just means that there will be a 32K "hole"
424 * between mapping areas. That means that any out-of-bounds memory
425 * accesses will hopefully be caught. The vmalloc() routines leaves
426 * a hole of 4kB between each vmalloced area for the same reason.
427 */
428
429 #define MAP_START 0x4000 /* Leave room for gateway page expansion */
430 #define VM_MAP_OFFSET (32*1024)
431 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
432 & ~(VM_MAP_OFFSET-1)))
433
434 void *vmalloc_start;
435 #ifdef CONFIG_PA11
436 unsigned long pcxl_dma_start;
437 #endif
438
mem_init(void)439 void __init mem_init(void)
440 {
441 int i;
442
443 high_memory = __va((max_pfn << PAGE_SHIFT));
444 max_mapnr = (virt_to_page(high_memory - 1) - mem_map) + 1;
445
446 num_physpages = 0;
447 for (i = 0; i < npmem_ranges; i++)
448 num_physpages += free_all_bootmem_node(NODE_DATA(i));
449
450 printk(KERN_INFO "Memory: %luk available\n", num_physpages << (PAGE_SHIFT-10));
451
452 #ifdef CONFIG_PA11
453 if (hppa_dma_ops == &pcxl_dma_ops) {
454 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
455 vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE);
456 }
457 else {
458 pcxl_dma_start = 0;
459 vmalloc_start = SET_MAP_OFFSET(MAP_START);
460 }
461 #else
462 vmalloc_start = SET_MAP_OFFSET(MAP_START);
463 #endif
464
465 }
466
do_check_pgt_cache(int low,int high)467 int do_check_pgt_cache(int low, int high)
468 {
469 return 0;
470 }
471
472 unsigned long *empty_zero_page;
473
show_mem(void)474 void show_mem(void)
475 {
476 int i,free = 0,total = 0,reserved = 0;
477 int shared = 0, cached = 0;
478
479 printk(KERN_INFO "Mem-info:\n");
480 show_free_areas();
481 printk(KERN_INFO "Free swap: %6dkB\n",nr_swap_pages<<(PAGE_SHIFT-10));
482 i = max_mapnr;
483 while (i-- > 0) {
484 total++;
485 if (PageReserved(mem_map+i))
486 reserved++;
487 else if (PageSwapCache(mem_map+i))
488 cached++;
489 else if (!atomic_read(&mem_map[i].count))
490 free++;
491 else
492 shared += atomic_read(&mem_map[i].count) - 1;
493 }
494 printk(KERN_INFO "%d pages of RAM\n", total);
495 printk(KERN_INFO "%d reserved pages\n", reserved);
496 printk(KERN_INFO "%d pages shared\n", shared);
497 printk(KERN_INFO "%d pages swap cached\n", cached);
498 show_buffers();
499 }
500
501
map_pages(unsigned long start_vaddr,unsigned long start_paddr,unsigned long size,pgprot_t pgprot)502 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
503 {
504 pgd_t *pg_dir;
505 pmd_t *pmd;
506 pte_t *pg_table;
507 unsigned long end_paddr;
508 unsigned long start_pmd;
509 unsigned long start_pte;
510 unsigned long tmp1;
511 unsigned long tmp2;
512 unsigned long address;
513 unsigned long ro_start;
514 unsigned long ro_end;
515 unsigned long fv_addr;
516 unsigned long gw_addr;
517 extern const unsigned long fault_vector_20;
518 extern void * const linux_gateway_page;
519
520 ro_start = __pa((unsigned long)&_text);
521 ro_end = __pa((unsigned long)&data_start);
522 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
523 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
524
525 end_paddr = start_paddr + size;
526
527 pg_dir = pgd_offset_k(start_vaddr);
528
529 #if PTRS_PER_PMD == 1
530 start_pmd = 0;
531 #else
532 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
533 #endif
534 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
535
536 address = start_paddr;
537 while (address < end_paddr) {
538 #if PTRS_PER_PMD == 1
539 pmd = (pmd_t *)__pa(pg_dir);
540 #else
541 pmd = (pmd_t *) (PAGE_MASK & pgd_val(*pg_dir));
542
543 /*
544 * pmd is physical at this point
545 */
546
547 if (!pmd) {
548 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
549 pmd = (pmd_t *) __pa(pmd);
550 }
551
552 pgd_val(*pg_dir) = _PAGE_TABLE | (unsigned long) pmd;
553 #endif
554 pg_dir++;
555
556 /* now change pmd to kernel virtual addresses */
557
558 pmd = (pmd_t *)__va(pmd) + start_pmd;
559 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
560
561 /*
562 * pg_table is physical at this point
563 */
564
565 pg_table = (pte_t *) (PAGE_MASK & pmd_val(*pmd));
566 if (!pg_table) {
567 pg_table = (pte_t *)
568 alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
569 pg_table = (pte_t *) __pa(pg_table);
570 }
571
572 pmd_val(*pmd) = _PAGE_TABLE |
573 (unsigned long) pg_table;
574
575 /* now change pg_table to kernel virtual addresses */
576
577 pg_table = (pte_t *) __va(pg_table) + start_pte;
578 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
579 pte_t pte;
580
581 #if !defined(CONFIG_STI_CONSOLE)
582 #warning STI console should explicitly allocate executable pages but does not
583 /*
584 * Map the fault vector writable so we can
585 * write the HPMC checksum.
586 */
587 if (address >= ro_start && address < ro_end
588 && address != fv_addr
589 && address != gw_addr)
590 pte = __mk_pte(address, PAGE_KERNEL_RO);
591 else
592 #endif
593 pte = __mk_pte(address, pgprot);
594
595 if (address >= end_paddr)
596 pte_val(pte) = 0;
597
598 set_pte(pg_table, pte);
599
600 address += PAGE_SIZE;
601 }
602 start_pte = 0;
603
604 if (address >= end_paddr)
605 break;
606 }
607 start_pmd = 0;
608 }
609 }
610
611 /*
612 * pagetable_init() sets up the page tables
613 *
614 * Note that gateway_init() places the Linux gateway page at page 0.
615 * Since gateway pages cannot be dereferenced this has the desirable
616 * side effect of trapping those pesky NULL-reference errors in the
617 * kernel.
618 */
pagetable_init(void)619 static void __init pagetable_init(void)
620 {
621 int range;
622
623 printk("pagetable_init\n");
624
625 /* Map each physical memory range to its kernel vaddr */
626
627 for (range = 0; range < npmem_ranges; range++) {
628 unsigned long start_paddr;
629 unsigned long end_paddr;
630 unsigned long size;
631
632 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
633 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
634 size = pmem_ranges[range].pages << PAGE_SHIFT;
635
636 map_pages((unsigned long)__va(start_paddr), start_paddr,
637 size, PAGE_KERNEL);
638 }
639
640 #ifdef CONFIG_BLK_DEV_INITRD
641 if (initrd_end && initrd_end > mem_limit) {
642 printk("initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
643 map_pages(initrd_start, __pa(initrd_start),
644 initrd_end - initrd_start, PAGE_KERNEL);
645 }
646 #endif
647
648 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
649 memset(empty_zero_page, 0, PAGE_SIZE);
650 }
651
gateway_init(void)652 static void __init gateway_init(void)
653 {
654 unsigned long linux_gateway_page_addr;
655 /* FIXME: This is 'const' in order to trick the compiler
656 into not treating it as DP-relative data. */
657 extern void * const linux_gateway_page;
658
659 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
660
661 /*
662 * Setup Linux Gateway page.
663 *
664 * The Linux gateway page will reside in kernel space (on virtual
665 * page 0), so it doesn't need to be aliased into user space.
666 */
667
668 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
669 PAGE_SIZE, PAGE_GATEWAY);
670 }
671
672 void
map_hpux_gateway_page(struct task_struct * tsk,struct mm_struct * mm)673 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
674 {
675 pgd_t *pg_dir;
676 pmd_t *pmd;
677 pte_t *pg_table;
678 unsigned long start_pmd;
679 unsigned long start_pte;
680 unsigned long address;
681 unsigned long hpux_gw_page_addr;
682 /* FIXME: This is 'const' in order to trick the compiler
683 into not treating it as DP-relative data. */
684 extern void * const hpux_gateway_page;
685
686 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
687
688 /*
689 * Setup HP-UX Gateway page.
690 *
691 * The HP-UX gateway page resides in the user address space,
692 * so it needs to be aliased into each process.
693 */
694
695 pg_dir = pgd_offset(mm,hpux_gw_page_addr);
696
697 #if PTRS_PER_PMD == 1
698 start_pmd = 0;
699 #else
700 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
701 #endif
702 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
703
704 address = __pa(&hpux_gateway_page);
705 #if PTRS_PER_PMD == 1
706 pmd = (pmd_t *)__pa(pg_dir);
707 #else
708 pmd = (pmd_t *) (PAGE_MASK & pgd_val(*pg_dir));
709
710 /*
711 * pmd is physical at this point
712 */
713
714 if (!pmd) {
715 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
716 pmd = (pmd_t *) __pa(pmd);
717 }
718
719 pgd_val(*pg_dir) = _PAGE_TABLE | (unsigned long) pmd;
720 #endif
721 /* now change pmd to kernel virtual addresses */
722
723 pmd = (pmd_t *)__va(pmd) + start_pmd;
724
725 /*
726 * pg_table is physical at this point
727 */
728
729 pg_table = (pte_t *) (PAGE_MASK & pmd_val(*pmd));
730 if (!pg_table)
731 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
732
733 pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) pg_table;
734
735 /* now change pg_table to kernel virtual addresses */
736
737 pg_table = (pte_t *) __va(pg_table) + start_pte;
738 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
739 }
740
741 extern void flush_tlb_all_local(void);
742
paging_init(void)743 void __init paging_init(void)
744 {
745 int i;
746
747 setup_bootmem();
748 pagetable_init();
749 gateway_init();
750 flush_cache_all_local(); /* start with known state */
751 flush_tlb_all_local();
752
753 for (i = 0; i < npmem_ranges; i++) {
754 unsigned long zones_size[MAX_NR_ZONES] = { 0, 0, 0, };
755
756 zones_size[ZONE_DMA] = pmem_ranges[i].pages;
757 free_area_init_node(i,NODE_DATA(i),NULL,zones_size,
758 (pmem_ranges[i].start_pfn << PAGE_SHIFT),0);
759 }
760
761 #ifdef CONFIG_DISCONTIGMEM
762 /*
763 * Initialize support for virt_to_page() macro.
764 *
765 * Note that MAX_ADDRESS is the largest virtual address that
766 * we can map. However, since we map all physical memory into
767 * the kernel address space, it also has an effect on the maximum
768 * physical address we can map (MAX_ADDRESS - PAGE_OFFSET).
769 */
770
771 maxchunkmap = MAX_ADDRESS >> CHUNKSHIFT;
772 chunkmap = (unsigned char *)alloc_bootmem(maxchunkmap);
773
774 for (i = 0; i < maxchunkmap; i++)
775 chunkmap[i] = BADCHUNK;
776
777 for (i = 0; i < npmem_ranges; i++) {
778
779 ADJ_NODE_MEM_MAP(i) = NODE_MEM_MAP(i) - pmem_ranges[i].start_pfn;
780 {
781 unsigned long chunk_paddr;
782 unsigned long end_paddr;
783 int chunknum;
784
785 chunk_paddr = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
786 end_paddr = chunk_paddr + (pmem_ranges[i].pages << PAGE_SHIFT);
787 chunk_paddr &= CHUNKMASK;
788
789 chunknum = (int)CHUNKNUM(chunk_paddr);
790 while (chunk_paddr < end_paddr) {
791 if (chunknum >= maxchunkmap)
792 goto badchunkmap1;
793 if (chunkmap[chunknum] != BADCHUNK)
794 goto badchunkmap2;
795 chunkmap[chunknum] = (unsigned char)i;
796 chunk_paddr += CHUNKSZ;
797 chunknum++;
798 }
799 }
800 }
801
802 return;
803
804 badchunkmap1:
805 panic("paging_init: Physical address exceeds maximum address space!\n");
806 badchunkmap2:
807 panic("paging_init: Collision in chunk map array. CHUNKSZ needs to be smaller\n");
808 #endif
809 }
810
811 #ifdef CONFIG_PA20
812
813 /*
814 * Currently, all PA20 chips have 18 bit protection id's, which is the
815 * limiting factor (space ids are 32 bits).
816 */
817
818 #define NR_SPACE_IDS 262144
819
820 #else
821
822 /*
823 * Currently we have a one-to-one relationship between space id's and
824 * protection id's. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
825 * support 15 bit protection id's, so that is the limiting factor.
826 * PCXT' has 18 bit protection id's, but only 16 bit spaceids, so it's
827 * probably not worth the effort for a special case here.
828 */
829
830 #define NR_SPACE_IDS 32768
831
832 #endif /* !CONFIG_PA20 */
833
834 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
835 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
836
837 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
838 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
839 static unsigned long space_id_index;
840 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
841 static unsigned long dirty_space_ids = 0;
842
843 static spinlock_t sid_lock = SPIN_LOCK_UNLOCKED;
844
alloc_sid(void)845 unsigned long alloc_sid(void)
846 {
847 unsigned long index;
848
849 spin_lock(&sid_lock);
850
851 if (free_space_ids == 0) {
852 if (dirty_space_ids != 0) {
853 spin_unlock(&sid_lock);
854 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
855 spin_lock(&sid_lock);
856 }
857 if (free_space_ids == 0)
858 BUG();
859 }
860
861 free_space_ids--;
862
863 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
864 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
865 space_id_index = index;
866
867 spin_unlock(&sid_lock);
868
869 return index << SPACEID_SHIFT;
870 }
871
free_sid(unsigned long spaceid)872 void free_sid(unsigned long spaceid)
873 {
874 unsigned long index = spaceid >> SPACEID_SHIFT;
875 unsigned long *dirty_space_offset;
876
877 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
878 index &= (BITS_PER_LONG - 1);
879
880 spin_lock(&sid_lock);
881
882 if (*dirty_space_offset & (1L << index))
883 BUG(); /* attempt to free space id twice */
884
885 *dirty_space_offset |= (1L << index);
886 dirty_space_ids++;
887
888 spin_unlock(&sid_lock);
889 }
890
891
892 #ifdef CONFIG_SMP
get_dirty_sids(unsigned long * ndirtyptr,unsigned long * dirty_array)893 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
894 {
895 int i;
896
897 /* NOTE: sid_lock must be held upon entry */
898
899 *ndirtyptr = dirty_space_ids;
900 if (dirty_space_ids != 0) {
901 for (i = 0; i < SID_ARRAY_SIZE; i++) {
902 dirty_array[i] = dirty_space_id[i];
903 dirty_space_id[i] = 0;
904 }
905 dirty_space_ids = 0;
906 }
907
908 return;
909 }
910
recycle_sids(unsigned long ndirty,unsigned long * dirty_array)911 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
912 {
913 int i;
914
915 /* NOTE: sid_lock must be held upon entry */
916
917 if (ndirty != 0) {
918 for (i = 0; i < SID_ARRAY_SIZE; i++) {
919 space_id[i] ^= dirty_array[i];
920 }
921
922 free_space_ids += ndirty;
923 space_id_index = 0;
924 }
925 }
926
927 #else /* CONFIG_SMP */
928
recycle_sids(void)929 static void recycle_sids(void)
930 {
931 int i;
932
933 /* NOTE: sid_lock must be held upon entry */
934
935 if (dirty_space_ids != 0) {
936 for (i = 0; i < SID_ARRAY_SIZE; i++) {
937 space_id[i] ^= dirty_space_id[i];
938 dirty_space_id[i] = 0;
939 }
940
941 free_space_ids += dirty_space_ids;
942 dirty_space_ids = 0;
943 space_id_index = 0;
944 }
945 }
946 #endif
947
948 /*
949 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
950 * purged, we can safely reuse the space ids that were released but
951 * not flushed from the tlb.
952 */
953
954 #ifdef CONFIG_SMP
955
956 static unsigned long recycle_ndirty;
957 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
958 static unsigned int recycle_inuse = 0;
959
flush_tlb_all(void)960 void flush_tlb_all(void)
961 {
962 int do_recycle;
963
964 do_recycle = 0;
965 spin_lock(&sid_lock);
966 if (dirty_space_ids > RECYCLE_THRESHOLD) {
967 if (recycle_inuse) {
968 BUG(); /* FIXME: Use a semaphore/wait queue here */
969 }
970 get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
971 recycle_inuse++;
972 do_recycle++;
973 }
974 spin_unlock(&sid_lock);
975 smp_call_function((void (*)(void *))flush_tlb_all_local, NULL, 1, 1);
976 flush_tlb_all_local();
977 if (do_recycle) {
978 spin_lock(&sid_lock);
979 recycle_sids(recycle_ndirty,recycle_dirty_array);
980 recycle_inuse = 0;
981 spin_unlock(&sid_lock);
982 }
983 }
984 #else
flush_tlb_all(void)985 void flush_tlb_all(void)
986 {
987 spin_lock(&sid_lock);
988 flush_tlb_all_local();
989 recycle_sids();
990 spin_unlock(&sid_lock);
991 }
992 #endif
993
994 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)995 void free_initrd_mem(unsigned long start, unsigned long end)
996 {
997 #if 0
998 if (start < end)
999 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1000 for (; start < end; start += PAGE_SIZE) {
1001 ClearPageReserved(virt_to_page(start));
1002 set_page_count(virt_to_page(start), 1);
1003 free_page(start);
1004 num_physpages++;
1005 }
1006 #endif
1007 }
1008 #endif
1009
si_meminfo(struct sysinfo * val)1010 void si_meminfo(struct sysinfo *val)
1011 {
1012 val->totalram = num_physpages;
1013 val->sharedram = 0;
1014 val->freeram = nr_free_pages();
1015 val->bufferram = atomic_read(&buffermem_pages);
1016 val->totalhigh = 0;
1017 val->freehigh = 0;
1018 val->mem_unit = PAGE_SIZE;
1019 return;
1020 }
1021