1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4 #ifndef _LINUX_BPF_H
5 #define _LINUX_BPF_H 1
6
7 #include <uapi/linux/bpf.h>
8 #include <uapi/linux/filter.h>
9
10 #include <linux/workqueue.h>
11 #include <linux/file.h>
12 #include <linux/percpu.h>
13 #include <linux/err.h>
14 #include <linux/rbtree_latch.h>
15 #include <linux/numa.h>
16 #include <linux/mm_types.h>
17 #include <linux/wait.h>
18 #include <linux/refcount.h>
19 #include <linux/mutex.h>
20 #include <linux/module.h>
21 #include <linux/kallsyms.h>
22 #include <linux/capability.h>
23 #include <linux/sched/mm.h>
24 #include <linux/slab.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/stddef.h>
27 #include <linux/bpfptr.h>
28 #include <linux/btf.h>
29 #include <linux/rcupdate_trace.h>
30 #include <linux/static_call.h>
31
32 struct bpf_verifier_env;
33 struct bpf_verifier_log;
34 struct perf_event;
35 struct bpf_prog;
36 struct bpf_prog_aux;
37 struct bpf_map;
38 struct sock;
39 struct seq_file;
40 struct btf;
41 struct btf_type;
42 struct exception_table_entry;
43 struct seq_operations;
44 struct bpf_iter_aux_info;
45 struct bpf_local_storage;
46 struct bpf_local_storage_map;
47 struct kobject;
48 struct mem_cgroup;
49 struct module;
50 struct bpf_func_state;
51 struct ftrace_ops;
52 struct cgroup;
53
54 extern struct idr btf_idr;
55 extern spinlock_t btf_idr_lock;
56 extern struct kobject *btf_kobj;
57
58 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
59 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
60 struct bpf_iter_aux_info *aux);
61 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
62 typedef unsigned int (*bpf_func_t)(const void *,
63 const struct bpf_insn *);
64 struct bpf_iter_seq_info {
65 const struct seq_operations *seq_ops;
66 bpf_iter_init_seq_priv_t init_seq_private;
67 bpf_iter_fini_seq_priv_t fini_seq_private;
68 u32 seq_priv_size;
69 };
70
71 /* map is generic key/value storage optionally accessible by eBPF programs */
72 struct bpf_map_ops {
73 /* funcs callable from userspace (via syscall) */
74 int (*map_alloc_check)(union bpf_attr *attr);
75 struct bpf_map *(*map_alloc)(union bpf_attr *attr);
76 void (*map_release)(struct bpf_map *map, struct file *map_file);
77 void (*map_free)(struct bpf_map *map);
78 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
79 void (*map_release_uref)(struct bpf_map *map);
80 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
81 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
82 union bpf_attr __user *uattr);
83 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
84 void *value, u64 flags);
85 int (*map_lookup_and_delete_batch)(struct bpf_map *map,
86 const union bpf_attr *attr,
87 union bpf_attr __user *uattr);
88 int (*map_update_batch)(struct bpf_map *map, const union bpf_attr *attr,
89 union bpf_attr __user *uattr);
90 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
91 union bpf_attr __user *uattr);
92
93 /* funcs callable from userspace and from eBPF programs */
94 void *(*map_lookup_elem)(struct bpf_map *map, void *key);
95 int (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
96 int (*map_delete_elem)(struct bpf_map *map, void *key);
97 int (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
98 int (*map_pop_elem)(struct bpf_map *map, void *value);
99 int (*map_peek_elem)(struct bpf_map *map, void *value);
100 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
101
102 /* funcs called by prog_array and perf_event_array map */
103 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
104 int fd);
105 void (*map_fd_put_ptr)(void *ptr);
106 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
107 u32 (*map_fd_sys_lookup_elem)(void *ptr);
108 void (*map_seq_show_elem)(struct bpf_map *map, void *key,
109 struct seq_file *m);
110 int (*map_check_btf)(const struct bpf_map *map,
111 const struct btf *btf,
112 const struct btf_type *key_type,
113 const struct btf_type *value_type);
114
115 /* Prog poke tracking helpers. */
116 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
117 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
118 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
119 struct bpf_prog *new);
120
121 /* Direct value access helpers. */
122 int (*map_direct_value_addr)(const struct bpf_map *map,
123 u64 *imm, u32 off);
124 int (*map_direct_value_meta)(const struct bpf_map *map,
125 u64 imm, u32 *off);
126 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
127 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
128 struct poll_table_struct *pts);
129
130 /* Functions called by bpf_local_storage maps */
131 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
132 void *owner, u32 size);
133 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
134 void *owner, u32 size);
135 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
136
137 /* Misc helpers.*/
138 int (*map_redirect)(struct bpf_map *map, u32 ifindex, u64 flags);
139
140 /* map_meta_equal must be implemented for maps that can be
141 * used as an inner map. It is a runtime check to ensure
142 * an inner map can be inserted to an outer map.
143 *
144 * Some properties of the inner map has been used during the
145 * verification time. When inserting an inner map at the runtime,
146 * map_meta_equal has to ensure the inserting map has the same
147 * properties that the verifier has used earlier.
148 */
149 bool (*map_meta_equal)(const struct bpf_map *meta0,
150 const struct bpf_map *meta1);
151
152
153 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
154 struct bpf_func_state *caller,
155 struct bpf_func_state *callee);
156 int (*map_for_each_callback)(struct bpf_map *map,
157 bpf_callback_t callback_fn,
158 void *callback_ctx, u64 flags);
159
160 /* BTF id of struct allocated by map_alloc */
161 int *map_btf_id;
162
163 /* bpf_iter info used to open a seq_file */
164 const struct bpf_iter_seq_info *iter_seq_info;
165 };
166
167 enum {
168 /* Support at most 8 pointers in a BPF map value */
169 BPF_MAP_VALUE_OFF_MAX = 8,
170 BPF_MAP_OFF_ARR_MAX = BPF_MAP_VALUE_OFF_MAX +
171 1 + /* for bpf_spin_lock */
172 1, /* for bpf_timer */
173 };
174
175 enum bpf_kptr_type {
176 BPF_KPTR_UNREF,
177 BPF_KPTR_REF,
178 };
179
180 struct bpf_map_value_off_desc {
181 u32 offset;
182 enum bpf_kptr_type type;
183 struct {
184 struct btf *btf;
185 struct module *module;
186 btf_dtor_kfunc_t dtor;
187 u32 btf_id;
188 } kptr;
189 };
190
191 struct bpf_map_value_off {
192 u32 nr_off;
193 struct bpf_map_value_off_desc off[];
194 };
195
196 struct bpf_map_off_arr {
197 u32 cnt;
198 u32 field_off[BPF_MAP_OFF_ARR_MAX];
199 u8 field_sz[BPF_MAP_OFF_ARR_MAX];
200 };
201
202 struct bpf_map {
203 /* The first two cachelines with read-mostly members of which some
204 * are also accessed in fast-path (e.g. ops, max_entries).
205 */
206 const struct bpf_map_ops *ops ____cacheline_aligned;
207 struct bpf_map *inner_map_meta;
208 #ifdef CONFIG_SECURITY
209 void *security;
210 #endif
211 enum bpf_map_type map_type;
212 u32 key_size;
213 u32 value_size;
214 u32 max_entries;
215 u64 map_extra; /* any per-map-type extra fields */
216 u32 map_flags;
217 int spin_lock_off; /* >=0 valid offset, <0 error */
218 struct bpf_map_value_off *kptr_off_tab;
219 int timer_off; /* >=0 valid offset, <0 error */
220 u32 id;
221 int numa_node;
222 u32 btf_key_type_id;
223 u32 btf_value_type_id;
224 u32 btf_vmlinux_value_type_id;
225 struct btf *btf;
226 #ifdef CONFIG_MEMCG_KMEM
227 struct obj_cgroup *objcg;
228 #endif
229 char name[BPF_OBJ_NAME_LEN];
230 struct bpf_map_off_arr *off_arr;
231 /* The 3rd and 4th cacheline with misc members to avoid false sharing
232 * particularly with refcounting.
233 */
234 atomic64_t refcnt ____cacheline_aligned;
235 atomic64_t usercnt;
236 struct work_struct work;
237 struct mutex freeze_mutex;
238 atomic64_t writecnt;
239 /* 'Ownership' of program-containing map is claimed by the first program
240 * that is going to use this map or by the first program which FD is
241 * stored in the map to make sure that all callers and callees have the
242 * same prog type, JITed flag and xdp_has_frags flag.
243 */
244 struct {
245 spinlock_t lock;
246 enum bpf_prog_type type;
247 bool jited;
248 bool xdp_has_frags;
249 } owner;
250 bool bypass_spec_v1;
251 bool frozen; /* write-once; write-protected by freeze_mutex */
252 };
253
map_value_has_spin_lock(const struct bpf_map * map)254 static inline bool map_value_has_spin_lock(const struct bpf_map *map)
255 {
256 return map->spin_lock_off >= 0;
257 }
258
map_value_has_timer(const struct bpf_map * map)259 static inline bool map_value_has_timer(const struct bpf_map *map)
260 {
261 return map->timer_off >= 0;
262 }
263
map_value_has_kptrs(const struct bpf_map * map)264 static inline bool map_value_has_kptrs(const struct bpf_map *map)
265 {
266 return !IS_ERR_OR_NULL(map->kptr_off_tab);
267 }
268
check_and_init_map_value(struct bpf_map * map,void * dst)269 static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
270 {
271 if (unlikely(map_value_has_spin_lock(map)))
272 memset(dst + map->spin_lock_off, 0, sizeof(struct bpf_spin_lock));
273 if (unlikely(map_value_has_timer(map)))
274 memset(dst + map->timer_off, 0, sizeof(struct bpf_timer));
275 if (unlikely(map_value_has_kptrs(map))) {
276 struct bpf_map_value_off *tab = map->kptr_off_tab;
277 int i;
278
279 for (i = 0; i < tab->nr_off; i++)
280 *(u64 *)(dst + tab->off[i].offset) = 0;
281 }
282 }
283
284 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
285 * forced to use 'long' read/writes to try to atomically copy long counters.
286 * Best-effort only. No barriers here, since it _will_ race with concurrent
287 * updates from BPF programs. Called from bpf syscall and mostly used with
288 * size 8 or 16 bytes, so ask compiler to inline it.
289 */
bpf_long_memcpy(void * dst,const void * src,u32 size)290 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
291 {
292 const long *lsrc = src;
293 long *ldst = dst;
294
295 size /= sizeof(long);
296 while (size--)
297 *ldst++ = *lsrc++;
298 }
299
300 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
__copy_map_value(struct bpf_map * map,void * dst,void * src,bool long_memcpy)301 static inline void __copy_map_value(struct bpf_map *map, void *dst, void *src, bool long_memcpy)
302 {
303 u32 curr_off = 0;
304 int i;
305
306 if (likely(!map->off_arr)) {
307 if (long_memcpy)
308 bpf_long_memcpy(dst, src, round_up(map->value_size, 8));
309 else
310 memcpy(dst, src, map->value_size);
311 return;
312 }
313
314 for (i = 0; i < map->off_arr->cnt; i++) {
315 u32 next_off = map->off_arr->field_off[i];
316
317 memcpy(dst + curr_off, src + curr_off, next_off - curr_off);
318 curr_off = next_off + map->off_arr->field_sz[i];
319 }
320 memcpy(dst + curr_off, src + curr_off, map->value_size - curr_off);
321 }
322
copy_map_value(struct bpf_map * map,void * dst,void * src)323 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
324 {
325 __copy_map_value(map, dst, src, false);
326 }
327
copy_map_value_long(struct bpf_map * map,void * dst,void * src)328 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
329 {
330 __copy_map_value(map, dst, src, true);
331 }
332
zero_map_value(struct bpf_map * map,void * dst)333 static inline void zero_map_value(struct bpf_map *map, void *dst)
334 {
335 u32 curr_off = 0;
336 int i;
337
338 if (likely(!map->off_arr)) {
339 memset(dst, 0, map->value_size);
340 return;
341 }
342
343 for (i = 0; i < map->off_arr->cnt; i++) {
344 u32 next_off = map->off_arr->field_off[i];
345
346 memset(dst + curr_off, 0, next_off - curr_off);
347 curr_off = next_off + map->off_arr->field_sz[i];
348 }
349 memset(dst + curr_off, 0, map->value_size - curr_off);
350 }
351
352 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
353 bool lock_src);
354 void bpf_timer_cancel_and_free(void *timer);
355 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
356
357 struct bpf_offload_dev;
358 struct bpf_offloaded_map;
359
360 struct bpf_map_dev_ops {
361 int (*map_get_next_key)(struct bpf_offloaded_map *map,
362 void *key, void *next_key);
363 int (*map_lookup_elem)(struct bpf_offloaded_map *map,
364 void *key, void *value);
365 int (*map_update_elem)(struct bpf_offloaded_map *map,
366 void *key, void *value, u64 flags);
367 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
368 };
369
370 struct bpf_offloaded_map {
371 struct bpf_map map;
372 struct net_device *netdev;
373 const struct bpf_map_dev_ops *dev_ops;
374 void *dev_priv;
375 struct list_head offloads;
376 };
377
map_to_offmap(struct bpf_map * map)378 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
379 {
380 return container_of(map, struct bpf_offloaded_map, map);
381 }
382
bpf_map_offload_neutral(const struct bpf_map * map)383 static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
384 {
385 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
386 }
387
bpf_map_support_seq_show(const struct bpf_map * map)388 static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
389 {
390 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
391 map->ops->map_seq_show_elem;
392 }
393
394 int map_check_no_btf(const struct bpf_map *map,
395 const struct btf *btf,
396 const struct btf_type *key_type,
397 const struct btf_type *value_type);
398
399 bool bpf_map_meta_equal(const struct bpf_map *meta0,
400 const struct bpf_map *meta1);
401
402 extern const struct bpf_map_ops bpf_map_offload_ops;
403
404 /* bpf_type_flag contains a set of flags that are applicable to the values of
405 * arg_type, ret_type and reg_type. For example, a pointer value may be null,
406 * or a memory is read-only. We classify types into two categories: base types
407 * and extended types. Extended types are base types combined with a type flag.
408 *
409 * Currently there are no more than 32 base types in arg_type, ret_type and
410 * reg_types.
411 */
412 #define BPF_BASE_TYPE_BITS 8
413
414 enum bpf_type_flag {
415 /* PTR may be NULL. */
416 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS),
417
418 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is
419 * compatible with both mutable and immutable memory.
420 */
421 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS),
422
423 /* MEM was "allocated" from a different helper, and cannot be mixed
424 * with regular non-MEM_ALLOC'ed MEM types.
425 */
426 MEM_ALLOC = BIT(2 + BPF_BASE_TYPE_BITS),
427
428 /* MEM is in user address space. */
429 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS),
430
431 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
432 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
433 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
434 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
435 * to the specified cpu.
436 */
437 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS),
438
439 /* Indicates that the argument will be released. */
440 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS),
441
442 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
443 * unreferenced and referenced kptr loaded from map value using a load
444 * instruction, so that they can only be dereferenced but not escape the
445 * BPF program into the kernel (i.e. cannot be passed as arguments to
446 * kfunc or bpf helpers).
447 */
448 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS),
449
450 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS),
451
452 /* DYNPTR points to memory local to the bpf program. */
453 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS),
454
455 /* DYNPTR points to a kernel-produced ringbuf record. */
456 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS),
457
458 /* Size is known at compile time. */
459 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS),
460
461 __BPF_TYPE_FLAG_MAX,
462 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1,
463 };
464
465 #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF)
466
467 /* Max number of base types. */
468 #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS)
469
470 /* Max number of all types. */
471 #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
472
473 /* function argument constraints */
474 enum bpf_arg_type {
475 ARG_DONTCARE = 0, /* unused argument in helper function */
476
477 /* the following constraints used to prototype
478 * bpf_map_lookup/update/delete_elem() functions
479 */
480 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */
481 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */
482 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */
483
484 /* Used to prototype bpf_memcmp() and other functions that access data
485 * on eBPF program stack
486 */
487 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */
488
489 ARG_CONST_SIZE, /* number of bytes accessed from memory */
490 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */
491
492 ARG_PTR_TO_CTX, /* pointer to context */
493 ARG_ANYTHING, /* any (initialized) argument is ok */
494 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */
495 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */
496 ARG_PTR_TO_INT, /* pointer to int */
497 ARG_PTR_TO_LONG, /* pointer to long */
498 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */
499 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */
500 ARG_PTR_TO_ALLOC_MEM, /* pointer to dynamically allocated memory */
501 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */
502 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
503 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */
504 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */
505 ARG_PTR_TO_STACK, /* pointer to stack */
506 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */
507 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */
508 ARG_PTR_TO_KPTR, /* pointer to referenced kptr */
509 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
510 __BPF_ARG_TYPE_MAX,
511
512 /* Extended arg_types. */
513 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
514 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
515 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
516 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
517 ARG_PTR_TO_ALLOC_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_ALLOC_MEM,
518 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
519 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
520 /* pointer to memory does not need to be initialized, helper function must fill
521 * all bytes or clear them in error case.
522 */
523 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | ARG_PTR_TO_MEM,
524 /* Pointer to valid memory of size known at compile time. */
525 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
526
527 /* This must be the last entry. Its purpose is to ensure the enum is
528 * wide enough to hold the higher bits reserved for bpf_type_flag.
529 */
530 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT,
531 };
532 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
533
534 /* type of values returned from helper functions */
535 enum bpf_return_type {
536 RET_INTEGER, /* function returns integer */
537 RET_VOID, /* function doesn't return anything */
538 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */
539 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */
540 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */
541 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */
542 RET_PTR_TO_ALLOC_MEM, /* returns a pointer to dynamically allocated memory */
543 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */
544 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */
545 __BPF_RET_TYPE_MAX,
546
547 /* Extended ret_types. */
548 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
549 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
550 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
551 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
552 RET_PTR_TO_ALLOC_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_ALLOC | RET_PTR_TO_ALLOC_MEM,
553 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_ALLOC_MEM,
554 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
555
556 /* This must be the last entry. Its purpose is to ensure the enum is
557 * wide enough to hold the higher bits reserved for bpf_type_flag.
558 */
559 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT,
560 };
561 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
562
563 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
564 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
565 * instructions after verifying
566 */
567 struct bpf_func_proto {
568 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
569 bool gpl_only;
570 bool pkt_access;
571 enum bpf_return_type ret_type;
572 union {
573 struct {
574 enum bpf_arg_type arg1_type;
575 enum bpf_arg_type arg2_type;
576 enum bpf_arg_type arg3_type;
577 enum bpf_arg_type arg4_type;
578 enum bpf_arg_type arg5_type;
579 };
580 enum bpf_arg_type arg_type[5];
581 };
582 union {
583 struct {
584 u32 *arg1_btf_id;
585 u32 *arg2_btf_id;
586 u32 *arg3_btf_id;
587 u32 *arg4_btf_id;
588 u32 *arg5_btf_id;
589 };
590 u32 *arg_btf_id[5];
591 struct {
592 size_t arg1_size;
593 size_t arg2_size;
594 size_t arg3_size;
595 size_t arg4_size;
596 size_t arg5_size;
597 };
598 size_t arg_size[5];
599 };
600 int *ret_btf_id; /* return value btf_id */
601 bool (*allowed)(const struct bpf_prog *prog);
602 };
603
604 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is
605 * the first argument to eBPF programs.
606 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
607 */
608 struct bpf_context;
609
610 enum bpf_access_type {
611 BPF_READ = 1,
612 BPF_WRITE = 2
613 };
614
615 /* types of values stored in eBPF registers */
616 /* Pointer types represent:
617 * pointer
618 * pointer + imm
619 * pointer + (u16) var
620 * pointer + (u16) var + imm
621 * if (range > 0) then [ptr, ptr + range - off) is safe to access
622 * if (id > 0) means that some 'var' was added
623 * if (off > 0) means that 'imm' was added
624 */
625 enum bpf_reg_type {
626 NOT_INIT = 0, /* nothing was written into register */
627 SCALAR_VALUE, /* reg doesn't contain a valid pointer */
628 PTR_TO_CTX, /* reg points to bpf_context */
629 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */
630 PTR_TO_MAP_VALUE, /* reg points to map element value */
631 PTR_TO_MAP_KEY, /* reg points to a map element key */
632 PTR_TO_STACK, /* reg == frame_pointer + offset */
633 PTR_TO_PACKET_META, /* skb->data - meta_len */
634 PTR_TO_PACKET, /* reg points to skb->data */
635 PTR_TO_PACKET_END, /* skb->data + headlen */
636 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */
637 PTR_TO_SOCKET, /* reg points to struct bpf_sock */
638 PTR_TO_SOCK_COMMON, /* reg points to sock_common */
639 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */
640 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */
641 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */
642 /* PTR_TO_BTF_ID points to a kernel struct that does not need
643 * to be null checked by the BPF program. This does not imply the
644 * pointer is _not_ null and in practice this can easily be a null
645 * pointer when reading pointer chains. The assumption is program
646 * context will handle null pointer dereference typically via fault
647 * handling. The verifier must keep this in mind and can make no
648 * assumptions about null or non-null when doing branch analysis.
649 * Further, when passed into helpers the helpers can not, without
650 * additional context, assume the value is non-null.
651 */
652 PTR_TO_BTF_ID,
653 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
654 * been checked for null. Used primarily to inform the verifier
655 * an explicit null check is required for this struct.
656 */
657 PTR_TO_MEM, /* reg points to valid memory region */
658 PTR_TO_BUF, /* reg points to a read/write buffer */
659 PTR_TO_FUNC, /* reg points to a bpf program function */
660 PTR_TO_DYNPTR, /* reg points to a dynptr */
661 __BPF_REG_TYPE_MAX,
662
663 /* Extended reg_types. */
664 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
665 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET,
666 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
667 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
668 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID,
669
670 /* This must be the last entry. Its purpose is to ensure the enum is
671 * wide enough to hold the higher bits reserved for bpf_type_flag.
672 */
673 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT,
674 };
675 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
676
677 /* The information passed from prog-specific *_is_valid_access
678 * back to the verifier.
679 */
680 struct bpf_insn_access_aux {
681 enum bpf_reg_type reg_type;
682 union {
683 int ctx_field_size;
684 struct {
685 struct btf *btf;
686 u32 btf_id;
687 };
688 };
689 struct bpf_verifier_log *log; /* for verbose logs */
690 };
691
692 static inline void
bpf_ctx_record_field_size(struct bpf_insn_access_aux * aux,u32 size)693 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
694 {
695 aux->ctx_field_size = size;
696 }
697
bpf_pseudo_func(const struct bpf_insn * insn)698 static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
699 {
700 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
701 insn->src_reg == BPF_PSEUDO_FUNC;
702 }
703
704 struct bpf_prog_ops {
705 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
706 union bpf_attr __user *uattr);
707 };
708
709 struct bpf_verifier_ops {
710 /* return eBPF function prototype for verification */
711 const struct bpf_func_proto *
712 (*get_func_proto)(enum bpf_func_id func_id,
713 const struct bpf_prog *prog);
714
715 /* return true if 'size' wide access at offset 'off' within bpf_context
716 * with 'type' (read or write) is allowed
717 */
718 bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
719 const struct bpf_prog *prog,
720 struct bpf_insn_access_aux *info);
721 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
722 const struct bpf_prog *prog);
723 int (*gen_ld_abs)(const struct bpf_insn *orig,
724 struct bpf_insn *insn_buf);
725 u32 (*convert_ctx_access)(enum bpf_access_type type,
726 const struct bpf_insn *src,
727 struct bpf_insn *dst,
728 struct bpf_prog *prog, u32 *target_size);
729 int (*btf_struct_access)(struct bpf_verifier_log *log,
730 const struct btf *btf,
731 const struct btf_type *t, int off, int size,
732 enum bpf_access_type atype,
733 u32 *next_btf_id, enum bpf_type_flag *flag);
734 };
735
736 struct bpf_prog_offload_ops {
737 /* verifier basic callbacks */
738 int (*insn_hook)(struct bpf_verifier_env *env,
739 int insn_idx, int prev_insn_idx);
740 int (*finalize)(struct bpf_verifier_env *env);
741 /* verifier optimization callbacks (called after .finalize) */
742 int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
743 struct bpf_insn *insn);
744 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
745 /* program management callbacks */
746 int (*prepare)(struct bpf_prog *prog);
747 int (*translate)(struct bpf_prog *prog);
748 void (*destroy)(struct bpf_prog *prog);
749 };
750
751 struct bpf_prog_offload {
752 struct bpf_prog *prog;
753 struct net_device *netdev;
754 struct bpf_offload_dev *offdev;
755 void *dev_priv;
756 struct list_head offloads;
757 bool dev_state;
758 bool opt_failed;
759 void *jited_image;
760 u32 jited_len;
761 };
762
763 enum bpf_cgroup_storage_type {
764 BPF_CGROUP_STORAGE_SHARED,
765 BPF_CGROUP_STORAGE_PERCPU,
766 __BPF_CGROUP_STORAGE_MAX
767 };
768
769 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
770
771 /* The longest tracepoint has 12 args.
772 * See include/trace/bpf_probe.h
773 */
774 #define MAX_BPF_FUNC_ARGS 12
775
776 /* The maximum number of arguments passed through registers
777 * a single function may have.
778 */
779 #define MAX_BPF_FUNC_REG_ARGS 5
780
781 /* The argument is a structure. */
782 #define BTF_FMODEL_STRUCT_ARG BIT(0)
783
784 struct btf_func_model {
785 u8 ret_size;
786 u8 nr_args;
787 u8 arg_size[MAX_BPF_FUNC_ARGS];
788 u8 arg_flags[MAX_BPF_FUNC_ARGS];
789 };
790
791 /* Restore arguments before returning from trampoline to let original function
792 * continue executing. This flag is used for fentry progs when there are no
793 * fexit progs.
794 */
795 #define BPF_TRAMP_F_RESTORE_REGS BIT(0)
796 /* Call original function after fentry progs, but before fexit progs.
797 * Makes sense for fentry/fexit, normal calls and indirect calls.
798 */
799 #define BPF_TRAMP_F_CALL_ORIG BIT(1)
800 /* Skip current frame and return to parent. Makes sense for fentry/fexit
801 * programs only. Should not be used with normal calls and indirect calls.
802 */
803 #define BPF_TRAMP_F_SKIP_FRAME BIT(2)
804 /* Store IP address of the caller on the trampoline stack,
805 * so it's available for trampoline's programs.
806 */
807 #define BPF_TRAMP_F_IP_ARG BIT(3)
808 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */
809 #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4)
810
811 /* Get original function from stack instead of from provided direct address.
812 * Makes sense for trampolines with fexit or fmod_ret programs.
813 */
814 #define BPF_TRAMP_F_ORIG_STACK BIT(5)
815
816 /* This trampoline is on a function with another ftrace_ops with IPMODIFY,
817 * e.g., a live patch. This flag is set and cleared by ftrace call backs,
818 */
819 #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6)
820
821 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
822 * bytes on x86.
823 */
824 #define BPF_MAX_TRAMP_LINKS 38
825
826 struct bpf_tramp_links {
827 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
828 int nr_links;
829 };
830
831 struct bpf_tramp_run_ctx;
832
833 /* Different use cases for BPF trampoline:
834 * 1. replace nop at the function entry (kprobe equivalent)
835 * flags = BPF_TRAMP_F_RESTORE_REGS
836 * fentry = a set of programs to run before returning from trampoline
837 *
838 * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
839 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
840 * orig_call = fentry_ip + MCOUNT_INSN_SIZE
841 * fentry = a set of program to run before calling original function
842 * fexit = a set of program to run after original function
843 *
844 * 3. replace direct call instruction anywhere in the function body
845 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
846 * With flags = 0
847 * fentry = a set of programs to run before returning from trampoline
848 * With flags = BPF_TRAMP_F_CALL_ORIG
849 * orig_call = original callback addr or direct function addr
850 * fentry = a set of program to run before calling original function
851 * fexit = a set of program to run after original function
852 */
853 struct bpf_tramp_image;
854 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end,
855 const struct btf_func_model *m, u32 flags,
856 struct bpf_tramp_links *tlinks,
857 void *orig_call);
858 /* these two functions are called from generated trampoline */
859 u64 notrace __bpf_prog_enter(struct bpf_prog *prog, struct bpf_tramp_run_ctx *run_ctx);
860 void notrace __bpf_prog_exit(struct bpf_prog *prog, u64 start, struct bpf_tramp_run_ctx *run_ctx);
861 u64 notrace __bpf_prog_enter_sleepable(struct bpf_prog *prog, struct bpf_tramp_run_ctx *run_ctx);
862 void notrace __bpf_prog_exit_sleepable(struct bpf_prog *prog, u64 start,
863 struct bpf_tramp_run_ctx *run_ctx);
864 u64 notrace __bpf_prog_enter_lsm_cgroup(struct bpf_prog *prog,
865 struct bpf_tramp_run_ctx *run_ctx);
866 void notrace __bpf_prog_exit_lsm_cgroup(struct bpf_prog *prog, u64 start,
867 struct bpf_tramp_run_ctx *run_ctx);
868 u64 notrace __bpf_prog_enter_struct_ops(struct bpf_prog *prog,
869 struct bpf_tramp_run_ctx *run_ctx);
870 void notrace __bpf_prog_exit_struct_ops(struct bpf_prog *prog, u64 start,
871 struct bpf_tramp_run_ctx *run_ctx);
872 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
873 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
874
875 struct bpf_ksym {
876 unsigned long start;
877 unsigned long end;
878 char name[KSYM_NAME_LEN];
879 struct list_head lnode;
880 struct latch_tree_node tnode;
881 bool prog;
882 };
883
884 enum bpf_tramp_prog_type {
885 BPF_TRAMP_FENTRY,
886 BPF_TRAMP_FEXIT,
887 BPF_TRAMP_MODIFY_RETURN,
888 BPF_TRAMP_MAX,
889 BPF_TRAMP_REPLACE, /* more than MAX */
890 };
891
892 struct bpf_tramp_image {
893 void *image;
894 struct bpf_ksym ksym;
895 struct percpu_ref pcref;
896 void *ip_after_call;
897 void *ip_epilogue;
898 union {
899 struct rcu_head rcu;
900 struct work_struct work;
901 };
902 };
903
904 struct bpf_trampoline {
905 /* hlist for trampoline_table */
906 struct hlist_node hlist;
907 struct ftrace_ops *fops;
908 /* serializes access to fields of this trampoline */
909 struct mutex mutex;
910 refcount_t refcnt;
911 u32 flags;
912 u64 key;
913 struct {
914 struct btf_func_model model;
915 void *addr;
916 bool ftrace_managed;
917 } func;
918 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
919 * program by replacing one of its functions. func.addr is the address
920 * of the function it replaced.
921 */
922 struct bpf_prog *extension_prog;
923 /* list of BPF programs using this trampoline */
924 struct hlist_head progs_hlist[BPF_TRAMP_MAX];
925 /* Number of attached programs. A counter per kind. */
926 int progs_cnt[BPF_TRAMP_MAX];
927 /* Executable image of trampoline */
928 struct bpf_tramp_image *cur_image;
929 u64 selector;
930 struct module *mod;
931 };
932
933 struct bpf_attach_target_info {
934 struct btf_func_model fmodel;
935 long tgt_addr;
936 const char *tgt_name;
937 const struct btf_type *tgt_type;
938 };
939
940 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
941
942 struct bpf_dispatcher_prog {
943 struct bpf_prog *prog;
944 refcount_t users;
945 };
946
947 struct bpf_dispatcher {
948 /* dispatcher mutex */
949 struct mutex mutex;
950 void *func;
951 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
952 int num_progs;
953 void *image;
954 void *rw_image;
955 u32 image_off;
956 struct bpf_ksym ksym;
957 #ifdef CONFIG_HAVE_STATIC_CALL
958 struct static_call_key *sc_key;
959 void *sc_tramp;
960 #endif
961 };
962
bpf_dispatcher_nop_func(const void * ctx,const struct bpf_insn * insnsi,bpf_func_t bpf_func)963 static __always_inline __nocfi unsigned int bpf_dispatcher_nop_func(
964 const void *ctx,
965 const struct bpf_insn *insnsi,
966 bpf_func_t bpf_func)
967 {
968 return bpf_func(ctx, insnsi);
969 }
970
971 #ifdef CONFIG_BPF_JIT
972 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
973 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
974 struct bpf_trampoline *bpf_trampoline_get(u64 key,
975 struct bpf_attach_target_info *tgt_info);
976 void bpf_trampoline_put(struct bpf_trampoline *tr);
977 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
978
979 /*
980 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
981 * indirection with a direct call to the bpf program. If the architecture does
982 * not have STATIC_CALL, avoid a double-indirection.
983 */
984 #ifdef CONFIG_HAVE_STATIC_CALL
985
986 #define __BPF_DISPATCHER_SC_INIT(_name) \
987 .sc_key = &STATIC_CALL_KEY(_name), \
988 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
989
990 #define __BPF_DISPATCHER_SC(name) \
991 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
992
993 #define __BPF_DISPATCHER_CALL(name) \
994 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
995
996 #define __BPF_DISPATCHER_UPDATE(_d, _new) \
997 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
998
999 #else
1000 #define __BPF_DISPATCHER_SC_INIT(name)
1001 #define __BPF_DISPATCHER_SC(name)
1002 #define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi)
1003 #define __BPF_DISPATCHER_UPDATE(_d, _new)
1004 #endif
1005
1006 #define BPF_DISPATCHER_INIT(_name) { \
1007 .mutex = __MUTEX_INITIALIZER(_name.mutex), \
1008 .func = &_name##_func, \
1009 .progs = {}, \
1010 .num_progs = 0, \
1011 .image = NULL, \
1012 .image_off = 0, \
1013 .ksym = { \
1014 .name = #_name, \
1015 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \
1016 }, \
1017 __BPF_DISPATCHER_SC_INIT(_name##_call) \
1018 }
1019
1020 #define DEFINE_BPF_DISPATCHER(name) \
1021 __BPF_DISPATCHER_SC(name); \
1022 noinline __nocfi unsigned int bpf_dispatcher_##name##_func( \
1023 const void *ctx, \
1024 const struct bpf_insn *insnsi, \
1025 bpf_func_t bpf_func) \
1026 { \
1027 return __BPF_DISPATCHER_CALL(name); \
1028 } \
1029 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \
1030 struct bpf_dispatcher bpf_dispatcher_##name = \
1031 BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1032
1033 #define DECLARE_BPF_DISPATCHER(name) \
1034 unsigned int bpf_dispatcher_##name##_func( \
1035 const void *ctx, \
1036 const struct bpf_insn *insnsi, \
1037 bpf_func_t bpf_func); \
1038 extern struct bpf_dispatcher bpf_dispatcher_##name;
1039
1040 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1041 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1042 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1043 struct bpf_prog *to);
1044 /* Called only from JIT-enabled code, so there's no need for stubs. */
1045 void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym);
1046 void bpf_image_ksym_del(struct bpf_ksym *ksym);
1047 void bpf_ksym_add(struct bpf_ksym *ksym);
1048 void bpf_ksym_del(struct bpf_ksym *ksym);
1049 int bpf_jit_charge_modmem(u32 size);
1050 void bpf_jit_uncharge_modmem(u32 size);
1051 bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1052 #else
bpf_trampoline_link_prog(struct bpf_tramp_link * link,struct bpf_trampoline * tr)1053 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1054 struct bpf_trampoline *tr)
1055 {
1056 return -ENOTSUPP;
1057 }
bpf_trampoline_unlink_prog(struct bpf_tramp_link * link,struct bpf_trampoline * tr)1058 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1059 struct bpf_trampoline *tr)
1060 {
1061 return -ENOTSUPP;
1062 }
bpf_trampoline_get(u64 key,struct bpf_attach_target_info * tgt_info)1063 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1064 struct bpf_attach_target_info *tgt_info)
1065 {
1066 return ERR_PTR(-EOPNOTSUPP);
1067 }
bpf_trampoline_put(struct bpf_trampoline * tr)1068 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1069 #define DEFINE_BPF_DISPATCHER(name)
1070 #define DECLARE_BPF_DISPATCHER(name)
1071 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1072 #define BPF_DISPATCHER_PTR(name) NULL
bpf_dispatcher_change_prog(struct bpf_dispatcher * d,struct bpf_prog * from,struct bpf_prog * to)1073 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1074 struct bpf_prog *from,
1075 struct bpf_prog *to) {}
is_bpf_image_address(unsigned long address)1076 static inline bool is_bpf_image_address(unsigned long address)
1077 {
1078 return false;
1079 }
bpf_prog_has_trampoline(const struct bpf_prog * prog)1080 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1081 {
1082 return false;
1083 }
1084 #endif
1085
1086 struct bpf_func_info_aux {
1087 u16 linkage;
1088 bool unreliable;
1089 };
1090
1091 enum bpf_jit_poke_reason {
1092 BPF_POKE_REASON_TAIL_CALL,
1093 };
1094
1095 /* Descriptor of pokes pointing /into/ the JITed image. */
1096 struct bpf_jit_poke_descriptor {
1097 void *tailcall_target;
1098 void *tailcall_bypass;
1099 void *bypass_addr;
1100 void *aux;
1101 union {
1102 struct {
1103 struct bpf_map *map;
1104 u32 key;
1105 } tail_call;
1106 };
1107 bool tailcall_target_stable;
1108 u8 adj_off;
1109 u16 reason;
1110 u32 insn_idx;
1111 };
1112
1113 /* reg_type info for ctx arguments */
1114 struct bpf_ctx_arg_aux {
1115 u32 offset;
1116 enum bpf_reg_type reg_type;
1117 u32 btf_id;
1118 };
1119
1120 struct btf_mod_pair {
1121 struct btf *btf;
1122 struct module *module;
1123 };
1124
1125 struct bpf_kfunc_desc_tab;
1126
1127 struct bpf_prog_aux {
1128 atomic64_t refcnt;
1129 u32 used_map_cnt;
1130 u32 used_btf_cnt;
1131 u32 max_ctx_offset;
1132 u32 max_pkt_offset;
1133 u32 max_tp_access;
1134 u32 stack_depth;
1135 u32 id;
1136 u32 func_cnt; /* used by non-func prog as the number of func progs */
1137 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1138 u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1139 u32 ctx_arg_info_size;
1140 u32 max_rdonly_access;
1141 u32 max_rdwr_access;
1142 struct btf *attach_btf;
1143 const struct bpf_ctx_arg_aux *ctx_arg_info;
1144 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1145 struct bpf_prog *dst_prog;
1146 struct bpf_trampoline *dst_trampoline;
1147 enum bpf_prog_type saved_dst_prog_type;
1148 enum bpf_attach_type saved_dst_attach_type;
1149 bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1150 bool offload_requested;
1151 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1152 bool func_proto_unreliable;
1153 bool sleepable;
1154 bool tail_call_reachable;
1155 bool xdp_has_frags;
1156 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1157 const struct btf_type *attach_func_proto;
1158 /* function name for valid attach_btf_id */
1159 const char *attach_func_name;
1160 struct bpf_prog **func;
1161 void *jit_data; /* JIT specific data. arch dependent */
1162 struct bpf_jit_poke_descriptor *poke_tab;
1163 struct bpf_kfunc_desc_tab *kfunc_tab;
1164 struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1165 u32 size_poke_tab;
1166 struct bpf_ksym ksym;
1167 const struct bpf_prog_ops *ops;
1168 struct bpf_map **used_maps;
1169 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1170 struct btf_mod_pair *used_btfs;
1171 struct bpf_prog *prog;
1172 struct user_struct *user;
1173 u64 load_time; /* ns since boottime */
1174 u32 verified_insns;
1175 int cgroup_atype; /* enum cgroup_bpf_attach_type */
1176 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1177 char name[BPF_OBJ_NAME_LEN];
1178 #ifdef CONFIG_SECURITY
1179 void *security;
1180 #endif
1181 struct bpf_prog_offload *offload;
1182 struct btf *btf;
1183 struct bpf_func_info *func_info;
1184 struct bpf_func_info_aux *func_info_aux;
1185 /* bpf_line_info loaded from userspace. linfo->insn_off
1186 * has the xlated insn offset.
1187 * Both the main and sub prog share the same linfo.
1188 * The subprog can access its first linfo by
1189 * using the linfo_idx.
1190 */
1191 struct bpf_line_info *linfo;
1192 /* jited_linfo is the jited addr of the linfo. It has a
1193 * one to one mapping to linfo:
1194 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1195 * Both the main and sub prog share the same jited_linfo.
1196 * The subprog can access its first jited_linfo by
1197 * using the linfo_idx.
1198 */
1199 void **jited_linfo;
1200 u32 func_info_cnt;
1201 u32 nr_linfo;
1202 /* subprog can use linfo_idx to access its first linfo and
1203 * jited_linfo.
1204 * main prog always has linfo_idx == 0
1205 */
1206 u32 linfo_idx;
1207 u32 num_exentries;
1208 struct exception_table_entry *extable;
1209 union {
1210 struct work_struct work;
1211 struct rcu_head rcu;
1212 };
1213 };
1214
1215 struct bpf_prog {
1216 u16 pages; /* Number of allocated pages */
1217 u16 jited:1, /* Is our filter JIT'ed? */
1218 jit_requested:1,/* archs need to JIT the prog */
1219 gpl_compatible:1, /* Is filter GPL compatible? */
1220 cb_access:1, /* Is control block accessed? */
1221 dst_needed:1, /* Do we need dst entry? */
1222 blinding_requested:1, /* needs constant blinding */
1223 blinded:1, /* Was blinded */
1224 is_func:1, /* program is a bpf function */
1225 kprobe_override:1, /* Do we override a kprobe? */
1226 has_callchain_buf:1, /* callchain buffer allocated? */
1227 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1228 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1229 call_get_func_ip:1, /* Do we call get_func_ip() */
1230 tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */
1231 enum bpf_prog_type type; /* Type of BPF program */
1232 enum bpf_attach_type expected_attach_type; /* For some prog types */
1233 u32 len; /* Number of filter blocks */
1234 u32 jited_len; /* Size of jited insns in bytes */
1235 u8 tag[BPF_TAG_SIZE];
1236 struct bpf_prog_stats __percpu *stats;
1237 int __percpu *active;
1238 unsigned int (*bpf_func)(const void *ctx,
1239 const struct bpf_insn *insn);
1240 struct bpf_prog_aux *aux; /* Auxiliary fields */
1241 struct sock_fprog_kern *orig_prog; /* Original BPF program */
1242 /* Instructions for interpreter */
1243 union {
1244 DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1245 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1246 };
1247 };
1248
1249 struct bpf_array_aux {
1250 /* Programs with direct jumps into programs part of this array. */
1251 struct list_head poke_progs;
1252 struct bpf_map *map;
1253 struct mutex poke_mutex;
1254 struct work_struct work;
1255 };
1256
1257 struct bpf_link {
1258 atomic64_t refcnt;
1259 u32 id;
1260 enum bpf_link_type type;
1261 const struct bpf_link_ops *ops;
1262 struct bpf_prog *prog;
1263 struct work_struct work;
1264 };
1265
1266 struct bpf_link_ops {
1267 void (*release)(struct bpf_link *link);
1268 void (*dealloc)(struct bpf_link *link);
1269 int (*detach)(struct bpf_link *link);
1270 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1271 struct bpf_prog *old_prog);
1272 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1273 int (*fill_link_info)(const struct bpf_link *link,
1274 struct bpf_link_info *info);
1275 };
1276
1277 struct bpf_tramp_link {
1278 struct bpf_link link;
1279 struct hlist_node tramp_hlist;
1280 u64 cookie;
1281 };
1282
1283 struct bpf_shim_tramp_link {
1284 struct bpf_tramp_link link;
1285 struct bpf_trampoline *trampoline;
1286 };
1287
1288 struct bpf_tracing_link {
1289 struct bpf_tramp_link link;
1290 enum bpf_attach_type attach_type;
1291 struct bpf_trampoline *trampoline;
1292 struct bpf_prog *tgt_prog;
1293 };
1294
1295 struct bpf_link_primer {
1296 struct bpf_link *link;
1297 struct file *file;
1298 int fd;
1299 u32 id;
1300 };
1301
1302 struct bpf_struct_ops_value;
1303 struct btf_member;
1304
1305 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1306 struct bpf_struct_ops {
1307 const struct bpf_verifier_ops *verifier_ops;
1308 int (*init)(struct btf *btf);
1309 int (*check_member)(const struct btf_type *t,
1310 const struct btf_member *member);
1311 int (*init_member)(const struct btf_type *t,
1312 const struct btf_member *member,
1313 void *kdata, const void *udata);
1314 int (*reg)(void *kdata);
1315 void (*unreg)(void *kdata);
1316 const struct btf_type *type;
1317 const struct btf_type *value_type;
1318 const char *name;
1319 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1320 u32 type_id;
1321 u32 value_id;
1322 };
1323
1324 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1325 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1326 const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id);
1327 void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log);
1328 bool bpf_struct_ops_get(const void *kdata);
1329 void bpf_struct_ops_put(const void *kdata);
1330 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1331 void *value);
1332 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1333 struct bpf_tramp_link *link,
1334 const struct btf_func_model *model,
1335 void *image, void *image_end);
bpf_try_module_get(const void * data,struct module * owner)1336 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1337 {
1338 if (owner == BPF_MODULE_OWNER)
1339 return bpf_struct_ops_get(data);
1340 else
1341 return try_module_get(owner);
1342 }
bpf_module_put(const void * data,struct module * owner)1343 static inline void bpf_module_put(const void *data, struct module *owner)
1344 {
1345 if (owner == BPF_MODULE_OWNER)
1346 bpf_struct_ops_put(data);
1347 else
1348 module_put(owner);
1349 }
1350
1351 #ifdef CONFIG_NET
1352 /* Define it here to avoid the use of forward declaration */
1353 struct bpf_dummy_ops_state {
1354 int val;
1355 };
1356
1357 struct bpf_dummy_ops {
1358 int (*test_1)(struct bpf_dummy_ops_state *cb);
1359 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1360 char a3, unsigned long a4);
1361 };
1362
1363 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1364 union bpf_attr __user *uattr);
1365 #endif
1366 #else
bpf_struct_ops_find(u32 type_id)1367 static inline const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id)
1368 {
1369 return NULL;
1370 }
bpf_struct_ops_init(struct btf * btf,struct bpf_verifier_log * log)1371 static inline void bpf_struct_ops_init(struct btf *btf,
1372 struct bpf_verifier_log *log)
1373 {
1374 }
bpf_try_module_get(const void * data,struct module * owner)1375 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1376 {
1377 return try_module_get(owner);
1378 }
bpf_module_put(const void * data,struct module * owner)1379 static inline void bpf_module_put(const void *data, struct module *owner)
1380 {
1381 module_put(owner);
1382 }
bpf_struct_ops_map_sys_lookup_elem(struct bpf_map * map,void * key,void * value)1383 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1384 void *key,
1385 void *value)
1386 {
1387 return -EINVAL;
1388 }
1389 #endif
1390
1391 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1392 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1393 int cgroup_atype);
1394 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1395 #else
bpf_trampoline_link_cgroup_shim(struct bpf_prog * prog,int cgroup_atype)1396 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1397 int cgroup_atype)
1398 {
1399 return -EOPNOTSUPP;
1400 }
bpf_trampoline_unlink_cgroup_shim(struct bpf_prog * prog)1401 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1402 {
1403 }
1404 #endif
1405
1406 struct bpf_array {
1407 struct bpf_map map;
1408 u32 elem_size;
1409 u32 index_mask;
1410 struct bpf_array_aux *aux;
1411 union {
1412 char value[0] __aligned(8);
1413 void *ptrs[0] __aligned(8);
1414 void __percpu *pptrs[0] __aligned(8);
1415 };
1416 };
1417
1418 #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */
1419 #define MAX_TAIL_CALL_CNT 33
1420
1421 /* Maximum number of loops for bpf_loop */
1422 #define BPF_MAX_LOOPS BIT(23)
1423
1424 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \
1425 BPF_F_RDONLY_PROG | \
1426 BPF_F_WRONLY | \
1427 BPF_F_WRONLY_PROG)
1428
1429 #define BPF_MAP_CAN_READ BIT(0)
1430 #define BPF_MAP_CAN_WRITE BIT(1)
1431
1432 /* Maximum number of user-producer ring buffer samples that can be drained in
1433 * a call to bpf_user_ringbuf_drain().
1434 */
1435 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
1436
bpf_map_flags_to_cap(struct bpf_map * map)1437 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
1438 {
1439 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1440
1441 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
1442 * not possible.
1443 */
1444 if (access_flags & BPF_F_RDONLY_PROG)
1445 return BPF_MAP_CAN_READ;
1446 else if (access_flags & BPF_F_WRONLY_PROG)
1447 return BPF_MAP_CAN_WRITE;
1448 else
1449 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
1450 }
1451
bpf_map_flags_access_ok(u32 access_flags)1452 static inline bool bpf_map_flags_access_ok(u32 access_flags)
1453 {
1454 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
1455 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1456 }
1457
1458 struct bpf_event_entry {
1459 struct perf_event *event;
1460 struct file *perf_file;
1461 struct file *map_file;
1462 struct rcu_head rcu;
1463 };
1464
map_type_contains_progs(struct bpf_map * map)1465 static inline bool map_type_contains_progs(struct bpf_map *map)
1466 {
1467 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
1468 map->map_type == BPF_MAP_TYPE_DEVMAP ||
1469 map->map_type == BPF_MAP_TYPE_CPUMAP;
1470 }
1471
1472 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
1473 int bpf_prog_calc_tag(struct bpf_prog *fp);
1474
1475 const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
1476 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
1477
1478 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
1479 unsigned long off, unsigned long len);
1480 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
1481 const struct bpf_insn *src,
1482 struct bpf_insn *dst,
1483 struct bpf_prog *prog,
1484 u32 *target_size);
1485
1486 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1487 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
1488
1489 /* an array of programs to be executed under rcu_lock.
1490 *
1491 * Typical usage:
1492 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
1493 *
1494 * the structure returned by bpf_prog_array_alloc() should be populated
1495 * with program pointers and the last pointer must be NULL.
1496 * The user has to keep refcnt on the program and make sure the program
1497 * is removed from the array before bpf_prog_put().
1498 * The 'struct bpf_prog_array *' should only be replaced with xchg()
1499 * since other cpus are walking the array of pointers in parallel.
1500 */
1501 struct bpf_prog_array_item {
1502 struct bpf_prog *prog;
1503 union {
1504 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1505 u64 bpf_cookie;
1506 };
1507 };
1508
1509 struct bpf_prog_array {
1510 struct rcu_head rcu;
1511 struct bpf_prog_array_item items[];
1512 };
1513
1514 struct bpf_empty_prog_array {
1515 struct bpf_prog_array hdr;
1516 struct bpf_prog *null_prog;
1517 };
1518
1519 /* to avoid allocating empty bpf_prog_array for cgroups that
1520 * don't have bpf program attached use one global 'bpf_empty_prog_array'
1521 * It will not be modified the caller of bpf_prog_array_alloc()
1522 * (since caller requested prog_cnt == 0)
1523 * that pointer should be 'freed' by bpf_prog_array_free()
1524 */
1525 extern struct bpf_empty_prog_array bpf_empty_prog_array;
1526
1527 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
1528 void bpf_prog_array_free(struct bpf_prog_array *progs);
1529 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
1530 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
1531 int bpf_prog_array_length(struct bpf_prog_array *progs);
1532 bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
1533 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
1534 __u32 __user *prog_ids, u32 cnt);
1535
1536 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
1537 struct bpf_prog *old_prog);
1538 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
1539 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
1540 struct bpf_prog *prog);
1541 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
1542 u32 *prog_ids, u32 request_cnt,
1543 u32 *prog_cnt);
1544 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
1545 struct bpf_prog *exclude_prog,
1546 struct bpf_prog *include_prog,
1547 u64 bpf_cookie,
1548 struct bpf_prog_array **new_array);
1549
1550 struct bpf_run_ctx {};
1551
1552 struct bpf_cg_run_ctx {
1553 struct bpf_run_ctx run_ctx;
1554 const struct bpf_prog_array_item *prog_item;
1555 int retval;
1556 };
1557
1558 struct bpf_trace_run_ctx {
1559 struct bpf_run_ctx run_ctx;
1560 u64 bpf_cookie;
1561 };
1562
1563 struct bpf_tramp_run_ctx {
1564 struct bpf_run_ctx run_ctx;
1565 u64 bpf_cookie;
1566 struct bpf_run_ctx *saved_run_ctx;
1567 };
1568
bpf_set_run_ctx(struct bpf_run_ctx * new_ctx)1569 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
1570 {
1571 struct bpf_run_ctx *old_ctx = NULL;
1572
1573 #ifdef CONFIG_BPF_SYSCALL
1574 old_ctx = current->bpf_ctx;
1575 current->bpf_ctx = new_ctx;
1576 #endif
1577 return old_ctx;
1578 }
1579
bpf_reset_run_ctx(struct bpf_run_ctx * old_ctx)1580 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
1581 {
1582 #ifdef CONFIG_BPF_SYSCALL
1583 current->bpf_ctx = old_ctx;
1584 #endif
1585 }
1586
1587 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
1588 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0)
1589 /* BPF program asks to set CN on the packet. */
1590 #define BPF_RET_SET_CN (1 << 0)
1591
1592 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
1593
1594 static __always_inline u32
bpf_prog_run_array(const struct bpf_prog_array * array,const void * ctx,bpf_prog_run_fn run_prog)1595 bpf_prog_run_array(const struct bpf_prog_array *array,
1596 const void *ctx, bpf_prog_run_fn run_prog)
1597 {
1598 const struct bpf_prog_array_item *item;
1599 const struct bpf_prog *prog;
1600 struct bpf_run_ctx *old_run_ctx;
1601 struct bpf_trace_run_ctx run_ctx;
1602 u32 ret = 1;
1603
1604 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
1605
1606 if (unlikely(!array))
1607 return ret;
1608
1609 migrate_disable();
1610 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
1611 item = &array->items[0];
1612 while ((prog = READ_ONCE(item->prog))) {
1613 run_ctx.bpf_cookie = item->bpf_cookie;
1614 ret &= run_prog(prog, ctx);
1615 item++;
1616 }
1617 bpf_reset_run_ctx(old_run_ctx);
1618 migrate_enable();
1619 return ret;
1620 }
1621
1622 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
1623 *
1624 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
1625 * overall. As a result, we must use the bpf_prog_array_free_sleepable
1626 * in order to use the tasks_trace rcu grace period.
1627 *
1628 * When a non-sleepable program is inside the array, we take the rcu read
1629 * section and disable preemption for that program alone, so it can access
1630 * rcu-protected dynamically sized maps.
1631 */
1632 static __always_inline u32
bpf_prog_run_array_sleepable(const struct bpf_prog_array __rcu * array_rcu,const void * ctx,bpf_prog_run_fn run_prog)1633 bpf_prog_run_array_sleepable(const struct bpf_prog_array __rcu *array_rcu,
1634 const void *ctx, bpf_prog_run_fn run_prog)
1635 {
1636 const struct bpf_prog_array_item *item;
1637 const struct bpf_prog *prog;
1638 const struct bpf_prog_array *array;
1639 struct bpf_run_ctx *old_run_ctx;
1640 struct bpf_trace_run_ctx run_ctx;
1641 u32 ret = 1;
1642
1643 might_fault();
1644
1645 rcu_read_lock_trace();
1646 migrate_disable();
1647
1648 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held());
1649 if (unlikely(!array))
1650 goto out;
1651 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
1652 item = &array->items[0];
1653 while ((prog = READ_ONCE(item->prog))) {
1654 if (!prog->aux->sleepable)
1655 rcu_read_lock();
1656
1657 run_ctx.bpf_cookie = item->bpf_cookie;
1658 ret &= run_prog(prog, ctx);
1659 item++;
1660
1661 if (!prog->aux->sleepable)
1662 rcu_read_unlock();
1663 }
1664 bpf_reset_run_ctx(old_run_ctx);
1665 out:
1666 migrate_enable();
1667 rcu_read_unlock_trace();
1668 return ret;
1669 }
1670
1671 #ifdef CONFIG_BPF_SYSCALL
1672 DECLARE_PER_CPU(int, bpf_prog_active);
1673 extern struct mutex bpf_stats_enabled_mutex;
1674
1675 /*
1676 * Block execution of BPF programs attached to instrumentation (perf,
1677 * kprobes, tracepoints) to prevent deadlocks on map operations as any of
1678 * these events can happen inside a region which holds a map bucket lock
1679 * and can deadlock on it.
1680 */
bpf_disable_instrumentation(void)1681 static inline void bpf_disable_instrumentation(void)
1682 {
1683 migrate_disable();
1684 this_cpu_inc(bpf_prog_active);
1685 }
1686
bpf_enable_instrumentation(void)1687 static inline void bpf_enable_instrumentation(void)
1688 {
1689 this_cpu_dec(bpf_prog_active);
1690 migrate_enable();
1691 }
1692
1693 extern const struct file_operations bpf_map_fops;
1694 extern const struct file_operations bpf_prog_fops;
1695 extern const struct file_operations bpf_iter_fops;
1696
1697 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
1698 extern const struct bpf_prog_ops _name ## _prog_ops; \
1699 extern const struct bpf_verifier_ops _name ## _verifier_ops;
1700 #define BPF_MAP_TYPE(_id, _ops) \
1701 extern const struct bpf_map_ops _ops;
1702 #define BPF_LINK_TYPE(_id, _name)
1703 #include <linux/bpf_types.h>
1704 #undef BPF_PROG_TYPE
1705 #undef BPF_MAP_TYPE
1706 #undef BPF_LINK_TYPE
1707
1708 extern const struct bpf_prog_ops bpf_offload_prog_ops;
1709 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
1710 extern const struct bpf_verifier_ops xdp_analyzer_ops;
1711
1712 struct bpf_prog *bpf_prog_get(u32 ufd);
1713 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
1714 bool attach_drv);
1715 void bpf_prog_add(struct bpf_prog *prog, int i);
1716 void bpf_prog_sub(struct bpf_prog *prog, int i);
1717 void bpf_prog_inc(struct bpf_prog *prog);
1718 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
1719 void bpf_prog_put(struct bpf_prog *prog);
1720
1721 void bpf_prog_free_id(struct bpf_prog *prog, bool do_idr_lock);
1722 void bpf_map_free_id(struct bpf_map *map, bool do_idr_lock);
1723
1724 struct bpf_map_value_off_desc *bpf_map_kptr_off_contains(struct bpf_map *map, u32 offset);
1725 void bpf_map_free_kptr_off_tab(struct bpf_map *map);
1726 struct bpf_map_value_off *bpf_map_copy_kptr_off_tab(const struct bpf_map *map);
1727 bool bpf_map_equal_kptr_off_tab(const struct bpf_map *map_a, const struct bpf_map *map_b);
1728 void bpf_map_free_kptrs(struct bpf_map *map, void *map_value);
1729
1730 struct bpf_map *bpf_map_get(u32 ufd);
1731 struct bpf_map *bpf_map_get_with_uref(u32 ufd);
1732 struct bpf_map *__bpf_map_get(struct fd f);
1733 void bpf_map_inc(struct bpf_map *map);
1734 void bpf_map_inc_with_uref(struct bpf_map *map);
1735 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
1736 void bpf_map_put_with_uref(struct bpf_map *map);
1737 void bpf_map_put(struct bpf_map *map);
1738 void *bpf_map_area_alloc(u64 size, int numa_node);
1739 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
1740 void bpf_map_area_free(void *base);
1741 bool bpf_map_write_active(const struct bpf_map *map);
1742 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
1743 int generic_map_lookup_batch(struct bpf_map *map,
1744 const union bpf_attr *attr,
1745 union bpf_attr __user *uattr);
1746 int generic_map_update_batch(struct bpf_map *map,
1747 const union bpf_attr *attr,
1748 union bpf_attr __user *uattr);
1749 int generic_map_delete_batch(struct bpf_map *map,
1750 const union bpf_attr *attr,
1751 union bpf_attr __user *uattr);
1752 struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
1753 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
1754
1755 #ifdef CONFIG_MEMCG_KMEM
1756 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
1757 int node);
1758 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
1759 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
1760 size_t align, gfp_t flags);
1761 #else
1762 static inline void *
bpf_map_kmalloc_node(const struct bpf_map * map,size_t size,gfp_t flags,int node)1763 bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
1764 int node)
1765 {
1766 return kmalloc_node(size, flags, node);
1767 }
1768
1769 static inline void *
bpf_map_kzalloc(const struct bpf_map * map,size_t size,gfp_t flags)1770 bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags)
1771 {
1772 return kzalloc(size, flags);
1773 }
1774
1775 static inline void __percpu *
bpf_map_alloc_percpu(const struct bpf_map * map,size_t size,size_t align,gfp_t flags)1776 bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align,
1777 gfp_t flags)
1778 {
1779 return __alloc_percpu_gfp(size, align, flags);
1780 }
1781 #endif
1782
1783 extern int sysctl_unprivileged_bpf_disabled;
1784
bpf_allow_ptr_leaks(void)1785 static inline bool bpf_allow_ptr_leaks(void)
1786 {
1787 return perfmon_capable();
1788 }
1789
bpf_allow_uninit_stack(void)1790 static inline bool bpf_allow_uninit_stack(void)
1791 {
1792 return perfmon_capable();
1793 }
1794
bpf_allow_ptr_to_map_access(void)1795 static inline bool bpf_allow_ptr_to_map_access(void)
1796 {
1797 return perfmon_capable();
1798 }
1799
bpf_bypass_spec_v1(void)1800 static inline bool bpf_bypass_spec_v1(void)
1801 {
1802 return perfmon_capable();
1803 }
1804
bpf_bypass_spec_v4(void)1805 static inline bool bpf_bypass_spec_v4(void)
1806 {
1807 return perfmon_capable();
1808 }
1809
1810 int bpf_map_new_fd(struct bpf_map *map, int flags);
1811 int bpf_prog_new_fd(struct bpf_prog *prog);
1812
1813 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
1814 const struct bpf_link_ops *ops, struct bpf_prog *prog);
1815 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
1816 int bpf_link_settle(struct bpf_link_primer *primer);
1817 void bpf_link_cleanup(struct bpf_link_primer *primer);
1818 void bpf_link_inc(struct bpf_link *link);
1819 void bpf_link_put(struct bpf_link *link);
1820 int bpf_link_new_fd(struct bpf_link *link);
1821 struct file *bpf_link_new_file(struct bpf_link *link, int *reserved_fd);
1822 struct bpf_link *bpf_link_get_from_fd(u32 ufd);
1823 struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
1824
1825 int bpf_obj_pin_user(u32 ufd, const char __user *pathname);
1826 int bpf_obj_get_user(const char __user *pathname, int flags);
1827
1828 #define BPF_ITER_FUNC_PREFIX "bpf_iter_"
1829 #define DEFINE_BPF_ITER_FUNC(target, args...) \
1830 extern int bpf_iter_ ## target(args); \
1831 int __init bpf_iter_ ## target(args) { return 0; }
1832
1833 /*
1834 * The task type of iterators.
1835 *
1836 * For BPF task iterators, they can be parameterized with various
1837 * parameters to visit only some of tasks.
1838 *
1839 * BPF_TASK_ITER_ALL (default)
1840 * Iterate over resources of every task.
1841 *
1842 * BPF_TASK_ITER_TID
1843 * Iterate over resources of a task/tid.
1844 *
1845 * BPF_TASK_ITER_TGID
1846 * Iterate over resources of every task of a process / task group.
1847 */
1848 enum bpf_iter_task_type {
1849 BPF_TASK_ITER_ALL = 0,
1850 BPF_TASK_ITER_TID,
1851 BPF_TASK_ITER_TGID,
1852 };
1853
1854 struct bpf_iter_aux_info {
1855 /* for map_elem iter */
1856 struct bpf_map *map;
1857
1858 /* for cgroup iter */
1859 struct {
1860 struct cgroup *start; /* starting cgroup */
1861 enum bpf_cgroup_iter_order order;
1862 } cgroup;
1863 struct {
1864 enum bpf_iter_task_type type;
1865 u32 pid;
1866 } task;
1867 };
1868
1869 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
1870 union bpf_iter_link_info *linfo,
1871 struct bpf_iter_aux_info *aux);
1872 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
1873 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
1874 struct seq_file *seq);
1875 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
1876 struct bpf_link_info *info);
1877 typedef const struct bpf_func_proto *
1878 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
1879 const struct bpf_prog *prog);
1880
1881 enum bpf_iter_feature {
1882 BPF_ITER_RESCHED = BIT(0),
1883 };
1884
1885 #define BPF_ITER_CTX_ARG_MAX 2
1886 struct bpf_iter_reg {
1887 const char *target;
1888 bpf_iter_attach_target_t attach_target;
1889 bpf_iter_detach_target_t detach_target;
1890 bpf_iter_show_fdinfo_t show_fdinfo;
1891 bpf_iter_fill_link_info_t fill_link_info;
1892 bpf_iter_get_func_proto_t get_func_proto;
1893 u32 ctx_arg_info_size;
1894 u32 feature;
1895 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
1896 const struct bpf_iter_seq_info *seq_info;
1897 };
1898
1899 struct bpf_iter_meta {
1900 __bpf_md_ptr(struct seq_file *, seq);
1901 u64 session_id;
1902 u64 seq_num;
1903 };
1904
1905 struct bpf_iter__bpf_map_elem {
1906 __bpf_md_ptr(struct bpf_iter_meta *, meta);
1907 __bpf_md_ptr(struct bpf_map *, map);
1908 __bpf_md_ptr(void *, key);
1909 __bpf_md_ptr(void *, value);
1910 };
1911
1912 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
1913 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
1914 bool bpf_iter_prog_supported(struct bpf_prog *prog);
1915 const struct bpf_func_proto *
1916 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
1917 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
1918 int bpf_iter_new_fd(struct bpf_link *link);
1919 bool bpf_link_is_iter(struct bpf_link *link);
1920 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
1921 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
1922 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
1923 struct seq_file *seq);
1924 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
1925 struct bpf_link_info *info);
1926
1927 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
1928 struct bpf_func_state *caller,
1929 struct bpf_func_state *callee);
1930
1931 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
1932 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
1933 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
1934 u64 flags);
1935 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
1936 u64 flags);
1937
1938 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
1939
1940 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
1941 void *key, void *value, u64 map_flags);
1942 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
1943 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
1944 void *key, void *value, u64 map_flags);
1945 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
1946
1947 int bpf_get_file_flag(int flags);
1948 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
1949 size_t actual_size);
1950
1951 /* verify correctness of eBPF program */
1952 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr);
1953
1954 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1955 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
1956 #endif
1957
1958 struct btf *bpf_get_btf_vmlinux(void);
1959
1960 /* Map specifics */
1961 struct xdp_frame;
1962 struct sk_buff;
1963 struct bpf_dtab_netdev;
1964 struct bpf_cpu_map_entry;
1965
1966 void __dev_flush(void);
1967 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
1968 struct net_device *dev_rx);
1969 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
1970 struct net_device *dev_rx);
1971 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
1972 struct bpf_map *map, bool exclude_ingress);
1973 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
1974 struct bpf_prog *xdp_prog);
1975 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
1976 struct bpf_prog *xdp_prog, struct bpf_map *map,
1977 bool exclude_ingress);
1978
1979 void __cpu_map_flush(void);
1980 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
1981 struct net_device *dev_rx);
1982 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
1983 struct sk_buff *skb);
1984
1985 /* Return map's numa specified by userspace */
bpf_map_attr_numa_node(const union bpf_attr * attr)1986 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
1987 {
1988 return (attr->map_flags & BPF_F_NUMA_NODE) ?
1989 attr->numa_node : NUMA_NO_NODE;
1990 }
1991
1992 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
1993 int array_map_alloc_check(union bpf_attr *attr);
1994
1995 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
1996 union bpf_attr __user *uattr);
1997 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
1998 union bpf_attr __user *uattr);
1999 int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2000 const union bpf_attr *kattr,
2001 union bpf_attr __user *uattr);
2002 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2003 const union bpf_attr *kattr,
2004 union bpf_attr __user *uattr);
2005 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2006 const union bpf_attr *kattr,
2007 union bpf_attr __user *uattr);
2008 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2009 const union bpf_attr *kattr,
2010 union bpf_attr __user *uattr);
2011 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2012 const struct bpf_prog *prog,
2013 struct bpf_insn_access_aux *info);
2014
bpf_tracing_ctx_access(int off,int size,enum bpf_access_type type)2015 static inline bool bpf_tracing_ctx_access(int off, int size,
2016 enum bpf_access_type type)
2017 {
2018 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2019 return false;
2020 if (type != BPF_READ)
2021 return false;
2022 if (off % size != 0)
2023 return false;
2024 return true;
2025 }
2026
bpf_tracing_btf_ctx_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)2027 static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2028 enum bpf_access_type type,
2029 const struct bpf_prog *prog,
2030 struct bpf_insn_access_aux *info)
2031 {
2032 if (!bpf_tracing_ctx_access(off, size, type))
2033 return false;
2034 return btf_ctx_access(off, size, type, prog, info);
2035 }
2036
2037 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
2038 const struct btf_type *t, int off, int size,
2039 enum bpf_access_type atype,
2040 u32 *next_btf_id, enum bpf_type_flag *flag);
2041 bool btf_struct_ids_match(struct bpf_verifier_log *log,
2042 const struct btf *btf, u32 id, int off,
2043 const struct btf *need_btf, u32 need_type_id,
2044 bool strict);
2045
2046 int btf_distill_func_proto(struct bpf_verifier_log *log,
2047 struct btf *btf,
2048 const struct btf_type *func_proto,
2049 const char *func_name,
2050 struct btf_func_model *m);
2051
2052 struct bpf_kfunc_arg_meta {
2053 u64 r0_size;
2054 bool r0_rdonly;
2055 int ref_obj_id;
2056 u32 flags;
2057 };
2058
2059 struct bpf_reg_state;
2060 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
2061 struct bpf_reg_state *regs);
2062 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
2063 struct bpf_reg_state *regs);
2064 int btf_check_kfunc_arg_match(struct bpf_verifier_env *env,
2065 const struct btf *btf, u32 func_id,
2066 struct bpf_reg_state *regs,
2067 struct bpf_kfunc_arg_meta *meta);
2068 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
2069 struct bpf_reg_state *reg);
2070 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2071 struct btf *btf, const struct btf_type *t);
2072
2073 struct bpf_prog *bpf_prog_by_id(u32 id);
2074 struct bpf_link *bpf_link_by_id(u32 id);
2075
2076 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id);
2077 void bpf_task_storage_free(struct task_struct *task);
2078 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2079 const struct btf_func_model *
2080 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2081 const struct bpf_insn *insn);
2082 struct bpf_core_ctx {
2083 struct bpf_verifier_log *log;
2084 const struct btf *btf;
2085 };
2086
2087 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2088 int relo_idx, void *insn);
2089
unprivileged_ebpf_enabled(void)2090 static inline bool unprivileged_ebpf_enabled(void)
2091 {
2092 return !sysctl_unprivileged_bpf_disabled;
2093 }
2094
2095 /* Not all bpf prog type has the bpf_ctx.
2096 * For the bpf prog type that has initialized the bpf_ctx,
2097 * this function can be used to decide if a kernel function
2098 * is called by a bpf program.
2099 */
has_current_bpf_ctx(void)2100 static inline bool has_current_bpf_ctx(void)
2101 {
2102 return !!current->bpf_ctx;
2103 }
2104
2105 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2106 #else /* !CONFIG_BPF_SYSCALL */
bpf_prog_get(u32 ufd)2107 static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2108 {
2109 return ERR_PTR(-EOPNOTSUPP);
2110 }
2111
bpf_prog_get_type_dev(u32 ufd,enum bpf_prog_type type,bool attach_drv)2112 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2113 enum bpf_prog_type type,
2114 bool attach_drv)
2115 {
2116 return ERR_PTR(-EOPNOTSUPP);
2117 }
2118
bpf_prog_add(struct bpf_prog * prog,int i)2119 static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2120 {
2121 }
2122
bpf_prog_sub(struct bpf_prog * prog,int i)2123 static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2124 {
2125 }
2126
bpf_prog_put(struct bpf_prog * prog)2127 static inline void bpf_prog_put(struct bpf_prog *prog)
2128 {
2129 }
2130
bpf_prog_inc(struct bpf_prog * prog)2131 static inline void bpf_prog_inc(struct bpf_prog *prog)
2132 {
2133 }
2134
2135 static inline struct bpf_prog *__must_check
bpf_prog_inc_not_zero(struct bpf_prog * prog)2136 bpf_prog_inc_not_zero(struct bpf_prog *prog)
2137 {
2138 return ERR_PTR(-EOPNOTSUPP);
2139 }
2140
bpf_link_init(struct bpf_link * link,enum bpf_link_type type,const struct bpf_link_ops * ops,struct bpf_prog * prog)2141 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2142 const struct bpf_link_ops *ops,
2143 struct bpf_prog *prog)
2144 {
2145 }
2146
bpf_link_prime(struct bpf_link * link,struct bpf_link_primer * primer)2147 static inline int bpf_link_prime(struct bpf_link *link,
2148 struct bpf_link_primer *primer)
2149 {
2150 return -EOPNOTSUPP;
2151 }
2152
bpf_link_settle(struct bpf_link_primer * primer)2153 static inline int bpf_link_settle(struct bpf_link_primer *primer)
2154 {
2155 return -EOPNOTSUPP;
2156 }
2157
bpf_link_cleanup(struct bpf_link_primer * primer)2158 static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2159 {
2160 }
2161
bpf_link_inc(struct bpf_link * link)2162 static inline void bpf_link_inc(struct bpf_link *link)
2163 {
2164 }
2165
bpf_link_put(struct bpf_link * link)2166 static inline void bpf_link_put(struct bpf_link *link)
2167 {
2168 }
2169
bpf_obj_get_user(const char __user * pathname,int flags)2170 static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2171 {
2172 return -EOPNOTSUPP;
2173 }
2174
__dev_flush(void)2175 static inline void __dev_flush(void)
2176 {
2177 }
2178
2179 struct xdp_frame;
2180 struct bpf_dtab_netdev;
2181 struct bpf_cpu_map_entry;
2182
2183 static inline
dev_xdp_enqueue(struct net_device * dev,struct xdp_frame * xdpf,struct net_device * dev_rx)2184 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2185 struct net_device *dev_rx)
2186 {
2187 return 0;
2188 }
2189
2190 static inline
dev_map_enqueue(struct bpf_dtab_netdev * dst,struct xdp_frame * xdpf,struct net_device * dev_rx)2191 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2192 struct net_device *dev_rx)
2193 {
2194 return 0;
2195 }
2196
2197 static inline
dev_map_enqueue_multi(struct xdp_frame * xdpf,struct net_device * dev_rx,struct bpf_map * map,bool exclude_ingress)2198 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2199 struct bpf_map *map, bool exclude_ingress)
2200 {
2201 return 0;
2202 }
2203
2204 struct sk_buff;
2205
dev_map_generic_redirect(struct bpf_dtab_netdev * dst,struct sk_buff * skb,struct bpf_prog * xdp_prog)2206 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2207 struct sk_buff *skb,
2208 struct bpf_prog *xdp_prog)
2209 {
2210 return 0;
2211 }
2212
2213 static inline
dev_map_redirect_multi(struct net_device * dev,struct sk_buff * skb,struct bpf_prog * xdp_prog,struct bpf_map * map,bool exclude_ingress)2214 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2215 struct bpf_prog *xdp_prog, struct bpf_map *map,
2216 bool exclude_ingress)
2217 {
2218 return 0;
2219 }
2220
__cpu_map_flush(void)2221 static inline void __cpu_map_flush(void)
2222 {
2223 }
2224
cpu_map_enqueue(struct bpf_cpu_map_entry * rcpu,struct xdp_frame * xdpf,struct net_device * dev_rx)2225 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2226 struct xdp_frame *xdpf,
2227 struct net_device *dev_rx)
2228 {
2229 return 0;
2230 }
2231
cpu_map_generic_redirect(struct bpf_cpu_map_entry * rcpu,struct sk_buff * skb)2232 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2233 struct sk_buff *skb)
2234 {
2235 return -EOPNOTSUPP;
2236 }
2237
bpf_prog_get_type_path(const char * name,enum bpf_prog_type type)2238 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2239 enum bpf_prog_type type)
2240 {
2241 return ERR_PTR(-EOPNOTSUPP);
2242 }
2243
bpf_prog_test_run_xdp(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2244 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2245 const union bpf_attr *kattr,
2246 union bpf_attr __user *uattr)
2247 {
2248 return -ENOTSUPP;
2249 }
2250
bpf_prog_test_run_skb(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2251 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2252 const union bpf_attr *kattr,
2253 union bpf_attr __user *uattr)
2254 {
2255 return -ENOTSUPP;
2256 }
2257
bpf_prog_test_run_tracing(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2258 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2259 const union bpf_attr *kattr,
2260 union bpf_attr __user *uattr)
2261 {
2262 return -ENOTSUPP;
2263 }
2264
bpf_prog_test_run_flow_dissector(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2265 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2266 const union bpf_attr *kattr,
2267 union bpf_attr __user *uattr)
2268 {
2269 return -ENOTSUPP;
2270 }
2271
bpf_prog_test_run_sk_lookup(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2272 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2273 const union bpf_attr *kattr,
2274 union bpf_attr __user *uattr)
2275 {
2276 return -ENOTSUPP;
2277 }
2278
bpf_map_put(struct bpf_map * map)2279 static inline void bpf_map_put(struct bpf_map *map)
2280 {
2281 }
2282
bpf_prog_by_id(u32 id)2283 static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2284 {
2285 return ERR_PTR(-ENOTSUPP);
2286 }
2287
btf_struct_access(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,int off,int size,enum bpf_access_type atype,u32 * next_btf_id,enum bpf_type_flag * flag)2288 static inline int btf_struct_access(struct bpf_verifier_log *log,
2289 const struct btf *btf,
2290 const struct btf_type *t, int off, int size,
2291 enum bpf_access_type atype,
2292 u32 *next_btf_id, enum bpf_type_flag *flag)
2293 {
2294 return -EACCES;
2295 }
2296
2297 static inline const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id)2298 bpf_base_func_proto(enum bpf_func_id func_id)
2299 {
2300 return NULL;
2301 }
2302
bpf_task_storage_free(struct task_struct * task)2303 static inline void bpf_task_storage_free(struct task_struct *task)
2304 {
2305 }
2306
bpf_prog_has_kfunc_call(const struct bpf_prog * prog)2307 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2308 {
2309 return false;
2310 }
2311
2312 static inline const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)2313 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2314 const struct bpf_insn *insn)
2315 {
2316 return NULL;
2317 }
2318
unprivileged_ebpf_enabled(void)2319 static inline bool unprivileged_ebpf_enabled(void)
2320 {
2321 return false;
2322 }
2323
has_current_bpf_ctx(void)2324 static inline bool has_current_bpf_ctx(void)
2325 {
2326 return false;
2327 }
2328
bpf_prog_inc_misses_counter(struct bpf_prog * prog)2329 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
2330 {
2331 }
2332 #endif /* CONFIG_BPF_SYSCALL */
2333
2334 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2335 struct btf_mod_pair *used_btfs, u32 len);
2336
bpf_prog_get_type(u32 ufd,enum bpf_prog_type type)2337 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
2338 enum bpf_prog_type type)
2339 {
2340 return bpf_prog_get_type_dev(ufd, type, false);
2341 }
2342
2343 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2344 struct bpf_map **used_maps, u32 len);
2345
2346 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
2347
2348 int bpf_prog_offload_compile(struct bpf_prog *prog);
2349 void bpf_prog_offload_destroy(struct bpf_prog *prog);
2350 int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
2351 struct bpf_prog *prog);
2352
2353 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
2354
2355 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
2356 int bpf_map_offload_update_elem(struct bpf_map *map,
2357 void *key, void *value, u64 flags);
2358 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
2359 int bpf_map_offload_get_next_key(struct bpf_map *map,
2360 void *key, void *next_key);
2361
2362 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
2363
2364 struct bpf_offload_dev *
2365 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
2366 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
2367 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
2368 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
2369 struct net_device *netdev);
2370 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
2371 struct net_device *netdev);
2372 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
2373
2374 void unpriv_ebpf_notify(int new_state);
2375
2376 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
2377 int bpf_prog_offload_init(struct bpf_prog *prog, union bpf_attr *attr);
2378
bpf_prog_is_dev_bound(const struct bpf_prog_aux * aux)2379 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2380 {
2381 return aux->offload_requested;
2382 }
2383
bpf_map_is_dev_bound(struct bpf_map * map)2384 static inline bool bpf_map_is_dev_bound(struct bpf_map *map)
2385 {
2386 return unlikely(map->ops == &bpf_map_offload_ops);
2387 }
2388
2389 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
2390 void bpf_map_offload_map_free(struct bpf_map *map);
2391 int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2392 const union bpf_attr *kattr,
2393 union bpf_attr __user *uattr);
2394
2395 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
2396 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
2397 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
2398 int sock_map_bpf_prog_query(const union bpf_attr *attr,
2399 union bpf_attr __user *uattr);
2400
2401 void sock_map_unhash(struct sock *sk);
2402 void sock_map_destroy(struct sock *sk);
2403 void sock_map_close(struct sock *sk, long timeout);
2404 #else
bpf_prog_offload_init(struct bpf_prog * prog,union bpf_attr * attr)2405 static inline int bpf_prog_offload_init(struct bpf_prog *prog,
2406 union bpf_attr *attr)
2407 {
2408 return -EOPNOTSUPP;
2409 }
2410
bpf_prog_is_dev_bound(struct bpf_prog_aux * aux)2411 static inline bool bpf_prog_is_dev_bound(struct bpf_prog_aux *aux)
2412 {
2413 return false;
2414 }
2415
bpf_map_is_dev_bound(struct bpf_map * map)2416 static inline bool bpf_map_is_dev_bound(struct bpf_map *map)
2417 {
2418 return false;
2419 }
2420
bpf_map_offload_map_alloc(union bpf_attr * attr)2421 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
2422 {
2423 return ERR_PTR(-EOPNOTSUPP);
2424 }
2425
bpf_map_offload_map_free(struct bpf_map * map)2426 static inline void bpf_map_offload_map_free(struct bpf_map *map)
2427 {
2428 }
2429
bpf_prog_test_run_syscall(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2430 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2431 const union bpf_attr *kattr,
2432 union bpf_attr __user *uattr)
2433 {
2434 return -ENOTSUPP;
2435 }
2436
2437 #ifdef CONFIG_BPF_SYSCALL
sock_map_get_from_fd(const union bpf_attr * attr,struct bpf_prog * prog)2438 static inline int sock_map_get_from_fd(const union bpf_attr *attr,
2439 struct bpf_prog *prog)
2440 {
2441 return -EINVAL;
2442 }
2443
sock_map_prog_detach(const union bpf_attr * attr,enum bpf_prog_type ptype)2444 static inline int sock_map_prog_detach(const union bpf_attr *attr,
2445 enum bpf_prog_type ptype)
2446 {
2447 return -EOPNOTSUPP;
2448 }
2449
sock_map_update_elem_sys(struct bpf_map * map,void * key,void * value,u64 flags)2450 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
2451 u64 flags)
2452 {
2453 return -EOPNOTSUPP;
2454 }
2455
sock_map_bpf_prog_query(const union bpf_attr * attr,union bpf_attr __user * uattr)2456 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
2457 union bpf_attr __user *uattr)
2458 {
2459 return -EINVAL;
2460 }
2461 #endif /* CONFIG_BPF_SYSCALL */
2462 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
2463
2464 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
2465 void bpf_sk_reuseport_detach(struct sock *sk);
2466 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
2467 void *value);
2468 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
2469 void *value, u64 map_flags);
2470 #else
bpf_sk_reuseport_detach(struct sock * sk)2471 static inline void bpf_sk_reuseport_detach(struct sock *sk)
2472 {
2473 }
2474
2475 #ifdef CONFIG_BPF_SYSCALL
bpf_fd_reuseport_array_lookup_elem(struct bpf_map * map,void * key,void * value)2476 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
2477 void *key, void *value)
2478 {
2479 return -EOPNOTSUPP;
2480 }
2481
bpf_fd_reuseport_array_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)2482 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
2483 void *key, void *value,
2484 u64 map_flags)
2485 {
2486 return -EOPNOTSUPP;
2487 }
2488 #endif /* CONFIG_BPF_SYSCALL */
2489 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
2490
2491 /* verifier prototypes for helper functions called from eBPF programs */
2492 extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
2493 extern const struct bpf_func_proto bpf_map_update_elem_proto;
2494 extern const struct bpf_func_proto bpf_map_delete_elem_proto;
2495 extern const struct bpf_func_proto bpf_map_push_elem_proto;
2496 extern const struct bpf_func_proto bpf_map_pop_elem_proto;
2497 extern const struct bpf_func_proto bpf_map_peek_elem_proto;
2498 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
2499
2500 extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
2501 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
2502 extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
2503 extern const struct bpf_func_proto bpf_tail_call_proto;
2504 extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
2505 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
2506 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
2507 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
2508 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
2509 extern const struct bpf_func_proto bpf_get_current_comm_proto;
2510 extern const struct bpf_func_proto bpf_get_stackid_proto;
2511 extern const struct bpf_func_proto bpf_get_stack_proto;
2512 extern const struct bpf_func_proto bpf_get_task_stack_proto;
2513 extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
2514 extern const struct bpf_func_proto bpf_get_stack_proto_pe;
2515 extern const struct bpf_func_proto bpf_sock_map_update_proto;
2516 extern const struct bpf_func_proto bpf_sock_hash_update_proto;
2517 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
2518 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
2519 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
2520 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
2521 extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
2522 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
2523 extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
2524 extern const struct bpf_func_proto bpf_spin_lock_proto;
2525 extern const struct bpf_func_proto bpf_spin_unlock_proto;
2526 extern const struct bpf_func_proto bpf_get_local_storage_proto;
2527 extern const struct bpf_func_proto bpf_strtol_proto;
2528 extern const struct bpf_func_proto bpf_strtoul_proto;
2529 extern const struct bpf_func_proto bpf_tcp_sock_proto;
2530 extern const struct bpf_func_proto bpf_jiffies64_proto;
2531 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
2532 extern const struct bpf_func_proto bpf_event_output_data_proto;
2533 extern const struct bpf_func_proto bpf_ringbuf_output_proto;
2534 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
2535 extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
2536 extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
2537 extern const struct bpf_func_proto bpf_ringbuf_query_proto;
2538 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
2539 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
2540 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
2541 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
2542 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
2543 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
2544 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
2545 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
2546 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
2547 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
2548 extern const struct bpf_func_proto bpf_copy_from_user_proto;
2549 extern const struct bpf_func_proto bpf_snprintf_btf_proto;
2550 extern const struct bpf_func_proto bpf_snprintf_proto;
2551 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
2552 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
2553 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
2554 extern const struct bpf_func_proto bpf_sock_from_file_proto;
2555 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
2556 extern const struct bpf_func_proto bpf_task_storage_get_proto;
2557 extern const struct bpf_func_proto bpf_task_storage_delete_proto;
2558 extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
2559 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
2560 extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
2561 extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
2562 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
2563 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
2564 extern const struct bpf_func_proto bpf_find_vma_proto;
2565 extern const struct bpf_func_proto bpf_loop_proto;
2566 extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
2567 extern const struct bpf_func_proto bpf_set_retval_proto;
2568 extern const struct bpf_func_proto bpf_get_retval_proto;
2569 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
2570
2571 const struct bpf_func_proto *tracing_prog_func_proto(
2572 enum bpf_func_id func_id, const struct bpf_prog *prog);
2573
2574 /* Shared helpers among cBPF and eBPF. */
2575 void bpf_user_rnd_init_once(void);
2576 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
2577 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
2578
2579 #if defined(CONFIG_NET)
2580 bool bpf_sock_common_is_valid_access(int off, int size,
2581 enum bpf_access_type type,
2582 struct bpf_insn_access_aux *info);
2583 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
2584 struct bpf_insn_access_aux *info);
2585 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
2586 const struct bpf_insn *si,
2587 struct bpf_insn *insn_buf,
2588 struct bpf_prog *prog,
2589 u32 *target_size);
2590 #else
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)2591 static inline bool bpf_sock_common_is_valid_access(int off, int size,
2592 enum bpf_access_type type,
2593 struct bpf_insn_access_aux *info)
2594 {
2595 return false;
2596 }
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)2597 static inline bool bpf_sock_is_valid_access(int off, int size,
2598 enum bpf_access_type type,
2599 struct bpf_insn_access_aux *info)
2600 {
2601 return false;
2602 }
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)2603 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
2604 const struct bpf_insn *si,
2605 struct bpf_insn *insn_buf,
2606 struct bpf_prog *prog,
2607 u32 *target_size)
2608 {
2609 return 0;
2610 }
2611 #endif
2612
2613 #ifdef CONFIG_INET
2614 struct sk_reuseport_kern {
2615 struct sk_buff *skb;
2616 struct sock *sk;
2617 struct sock *selected_sk;
2618 struct sock *migrating_sk;
2619 void *data_end;
2620 u32 hash;
2621 u32 reuseport_id;
2622 bool bind_inany;
2623 };
2624 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
2625 struct bpf_insn_access_aux *info);
2626
2627 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
2628 const struct bpf_insn *si,
2629 struct bpf_insn *insn_buf,
2630 struct bpf_prog *prog,
2631 u32 *target_size);
2632
2633 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
2634 struct bpf_insn_access_aux *info);
2635
2636 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
2637 const struct bpf_insn *si,
2638 struct bpf_insn *insn_buf,
2639 struct bpf_prog *prog,
2640 u32 *target_size);
2641 #else
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)2642 static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
2643 enum bpf_access_type type,
2644 struct bpf_insn_access_aux *info)
2645 {
2646 return false;
2647 }
2648
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)2649 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
2650 const struct bpf_insn *si,
2651 struct bpf_insn *insn_buf,
2652 struct bpf_prog *prog,
2653 u32 *target_size)
2654 {
2655 return 0;
2656 }
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)2657 static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
2658 enum bpf_access_type type,
2659 struct bpf_insn_access_aux *info)
2660 {
2661 return false;
2662 }
2663
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)2664 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
2665 const struct bpf_insn *si,
2666 struct bpf_insn *insn_buf,
2667 struct bpf_prog *prog,
2668 u32 *target_size)
2669 {
2670 return 0;
2671 }
2672 #endif /* CONFIG_INET */
2673
2674 enum bpf_text_poke_type {
2675 BPF_MOD_CALL,
2676 BPF_MOD_JUMP,
2677 };
2678
2679 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2680 void *addr1, void *addr2);
2681
2682 void *bpf_arch_text_copy(void *dst, void *src, size_t len);
2683 int bpf_arch_text_invalidate(void *dst, size_t len);
2684
2685 struct btf_id_set;
2686 bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
2687
2688 #define MAX_BPRINTF_VARARGS 12
2689
2690 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
2691 u32 **bin_buf, u32 num_args);
2692 void bpf_bprintf_cleanup(void);
2693
2694 /* the implementation of the opaque uapi struct bpf_dynptr */
2695 struct bpf_dynptr_kern {
2696 void *data;
2697 /* Size represents the number of usable bytes of dynptr data.
2698 * If for example the offset is at 4 for a local dynptr whose data is
2699 * of type u64, the number of usable bytes is 4.
2700 *
2701 * The upper 8 bits are reserved. It is as follows:
2702 * Bits 0 - 23 = size
2703 * Bits 24 - 30 = dynptr type
2704 * Bit 31 = whether dynptr is read-only
2705 */
2706 u32 size;
2707 u32 offset;
2708 } __aligned(8);
2709
2710 enum bpf_dynptr_type {
2711 BPF_DYNPTR_TYPE_INVALID,
2712 /* Points to memory that is local to the bpf program */
2713 BPF_DYNPTR_TYPE_LOCAL,
2714 /* Underlying data is a kernel-produced ringbuf record */
2715 BPF_DYNPTR_TYPE_RINGBUF,
2716 };
2717
2718 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2719 enum bpf_dynptr_type type, u32 offset, u32 size);
2720 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2721 int bpf_dynptr_check_size(u32 size);
2722 u32 bpf_dynptr_get_size(struct bpf_dynptr_kern *ptr);
2723
2724 #ifdef CONFIG_BPF_LSM
2725 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
2726 void bpf_cgroup_atype_put(int cgroup_atype);
2727 #else
bpf_cgroup_atype_get(u32 attach_btf_id,int cgroup_atype)2728 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
bpf_cgroup_atype_put(int cgroup_atype)2729 static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
2730 #endif /* CONFIG_BPF_LSM */
2731
2732 struct key;
2733
2734 #ifdef CONFIG_KEYS
2735 struct bpf_key {
2736 struct key *key;
2737 bool has_ref;
2738 };
2739 #endif /* CONFIG_KEYS */
2740 #endif /* _LINUX_BPF_H */
2741