1 /*
2 * madgemc.c: Driver for the Madge Smart 16/4 MC16 MCA token ring card.
3 *
4 * Written 2000 by Adam Fritzler
5 *
6 * This software may be used and distributed according to the terms
7 * of the GNU General Public License, incorporated herein by reference.
8 *
9 * This driver module supports the following cards:
10 * - Madge Smart 16/4 Ringnode MC16
11 * - Madge Smart 16/4 Ringnode MC32 (??)
12 *
13 * Maintainer(s):
14 * AF Adam Fritzler
15 *
16 * Modification History:
17 * 16-Jan-00 AF Created
18 *
19 */
20 static const char version[] = "madgemc.c: v0.91 23/01/2000 by Adam Fritzler\n";
21
22 #include <linux/module.h>
23 #include <linux/mca.h>
24 #include <linux/slab.h>
25 #include <linux/kernel.h>
26 #include <linux/errno.h>
27 #include <linux/init.h>
28 #include <linux/netdevice.h>
29 #include <linux/trdevice.h>
30
31 #include <asm/system.h>
32 #include <asm/io.h>
33 #include <asm/irq.h>
34
35 #include "tms380tr.h"
36 #include "madgemc.h" /* Madge-specific constants */
37
38 #define MADGEMC_IO_EXTENT 32
39 #define MADGEMC_SIF_OFFSET 0x08
40
41 struct card_info {
42 /*
43 * These are read from the BIA ROM.
44 */
45 unsigned int manid;
46 unsigned int cardtype;
47 unsigned int cardrev;
48 unsigned int ramsize;
49
50 /*
51 * These are read from the MCA POS registers.
52 */
53 unsigned int burstmode:2;
54 unsigned int fairness:1; /* 0 = Fair, 1 = Unfair */
55 unsigned int arblevel:4;
56 unsigned int ringspeed:2; /* 0 = 4mb, 1 = 16, 2 = Auto/none */
57 unsigned int cabletype:1; /* 0 = RJ45, 1 = DB9 */
58 };
59
60 static int madgemc_open(struct net_device *dev);
61 static int madgemc_close(struct net_device *dev);
62 static int madgemc_chipset_init(struct net_device *dev);
63 static void madgemc_read_rom(struct net_device *dev, struct card_info *card);
64 static unsigned short madgemc_setnselout_pins(struct net_device *dev);
65 static void madgemc_setcabletype(struct net_device *dev, int type);
66
67 static int madgemc_mcaproc(char *buf, int slot, void *d);
68
69 static void madgemc_setregpage(struct net_device *dev, int page);
70 static void madgemc_setsifsel(struct net_device *dev, int val);
71 static void madgemc_setint(struct net_device *dev, int val);
72
73 static irqreturn_t madgemc_interrupt(int irq, void *dev_id);
74
75 /*
76 * These work around paging, however they don't guarantee you're on the
77 * right page.
78 */
79 #define SIFREADB(reg) (inb(dev->base_addr + ((reg<0x8)?reg:reg-0x8)))
80 #define SIFWRITEB(val, reg) (outb(val, dev->base_addr + ((reg<0x8)?reg:reg-0x8)))
81 #define SIFREADW(reg) (inw(dev->base_addr + ((reg<0x8)?reg:reg-0x8)))
82 #define SIFWRITEW(val, reg) (outw(val, dev->base_addr + ((reg<0x8)?reg:reg-0x8)))
83
84 /*
85 * Read a byte-length value from the register.
86 */
madgemc_sifreadb(struct net_device * dev,unsigned short reg)87 static unsigned short madgemc_sifreadb(struct net_device *dev, unsigned short reg)
88 {
89 unsigned short ret;
90 if (reg<0x8)
91 ret = SIFREADB(reg);
92 else {
93 madgemc_setregpage(dev, 1);
94 ret = SIFREADB(reg);
95 madgemc_setregpage(dev, 0);
96 }
97 return ret;
98 }
99
100 /*
101 * Write a byte-length value to a register.
102 */
madgemc_sifwriteb(struct net_device * dev,unsigned short val,unsigned short reg)103 static void madgemc_sifwriteb(struct net_device *dev, unsigned short val, unsigned short reg)
104 {
105 if (reg<0x8)
106 SIFWRITEB(val, reg);
107 else {
108 madgemc_setregpage(dev, 1);
109 SIFWRITEB(val, reg);
110 madgemc_setregpage(dev, 0);
111 }
112 }
113
114 /*
115 * Read a word-length value from a register
116 */
madgemc_sifreadw(struct net_device * dev,unsigned short reg)117 static unsigned short madgemc_sifreadw(struct net_device *dev, unsigned short reg)
118 {
119 unsigned short ret;
120 if (reg<0x8)
121 ret = SIFREADW(reg);
122 else {
123 madgemc_setregpage(dev, 1);
124 ret = SIFREADW(reg);
125 madgemc_setregpage(dev, 0);
126 }
127 return ret;
128 }
129
130 /*
131 * Write a word-length value to a register.
132 */
madgemc_sifwritew(struct net_device * dev,unsigned short val,unsigned short reg)133 static void madgemc_sifwritew(struct net_device *dev, unsigned short val, unsigned short reg)
134 {
135 if (reg<0x8)
136 SIFWRITEW(val, reg);
137 else {
138 madgemc_setregpage(dev, 1);
139 SIFWRITEW(val, reg);
140 madgemc_setregpage(dev, 0);
141 }
142 }
143
144 static struct net_device_ops madgemc_netdev_ops __read_mostly;
145
madgemc_probe(struct device * device)146 static int __devinit madgemc_probe(struct device *device)
147 {
148 static int versionprinted;
149 struct net_device *dev;
150 struct net_local *tp;
151 struct card_info *card;
152 struct mca_device *mdev = to_mca_device(device);
153 int ret = 0;
154
155 if (versionprinted++ == 0)
156 printk("%s", version);
157
158 if(mca_device_claimed(mdev))
159 return -EBUSY;
160 mca_device_set_claim(mdev, 1);
161
162 dev = alloc_trdev(sizeof(struct net_local));
163 if (!dev) {
164 printk("madgemc: unable to allocate dev space\n");
165 mca_device_set_claim(mdev, 0);
166 ret = -ENOMEM;
167 goto getout;
168 }
169
170 dev->netdev_ops = &madgemc_netdev_ops;
171
172 card = kmalloc(sizeof(struct card_info), GFP_KERNEL);
173 if (card==NULL) {
174 printk("madgemc: unable to allocate card struct\n");
175 ret = -ENOMEM;
176 goto getout1;
177 }
178
179 /*
180 * Parse configuration information. This all comes
181 * directly from the publicly available @002d.ADF.
182 * Get it from Madge or your local ADF library.
183 */
184
185 /*
186 * Base address
187 */
188 dev->base_addr = 0x0a20 +
189 ((mdev->pos[2] & MC16_POS2_ADDR2)?0x0400:0) +
190 ((mdev->pos[0] & MC16_POS0_ADDR1)?0x1000:0) +
191 ((mdev->pos[3] & MC16_POS3_ADDR3)?0x2000:0);
192
193 /*
194 * Interrupt line
195 */
196 switch(mdev->pos[0] >> 6) { /* upper two bits */
197 case 0x1: dev->irq = 3; break;
198 case 0x2: dev->irq = 9; break; /* IRQ 2 = IRQ 9 */
199 case 0x3: dev->irq = 10; break;
200 default: dev->irq = 0; break;
201 }
202
203 if (dev->irq == 0) {
204 printk("%s: invalid IRQ\n", dev->name);
205 ret = -EBUSY;
206 goto getout2;
207 }
208
209 if (!request_region(dev->base_addr, MADGEMC_IO_EXTENT,
210 "madgemc")) {
211 printk(KERN_INFO "madgemc: unable to setup Smart MC in slot %d because of I/O base conflict at 0x%04lx\n", mdev->slot, dev->base_addr);
212 dev->base_addr += MADGEMC_SIF_OFFSET;
213 ret = -EBUSY;
214 goto getout2;
215 }
216 dev->base_addr += MADGEMC_SIF_OFFSET;
217
218 /*
219 * Arbitration Level
220 */
221 card->arblevel = ((mdev->pos[0] >> 1) & 0x7) + 8;
222
223 /*
224 * Burst mode and Fairness
225 */
226 card->burstmode = ((mdev->pos[2] >> 6) & 0x3);
227 card->fairness = ((mdev->pos[2] >> 4) & 0x1);
228
229 /*
230 * Ring Speed
231 */
232 if ((mdev->pos[1] >> 2)&0x1)
233 card->ringspeed = 2; /* not selected */
234 else if ((mdev->pos[2] >> 5) & 0x1)
235 card->ringspeed = 1; /* 16Mb */
236 else
237 card->ringspeed = 0; /* 4Mb */
238
239 /*
240 * Cable type
241 */
242 if ((mdev->pos[1] >> 6)&0x1)
243 card->cabletype = 1; /* STP/DB9 */
244 else
245 card->cabletype = 0; /* UTP/RJ-45 */
246
247
248 /*
249 * ROM Info. This requires us to actually twiddle
250 * bits on the card, so we must ensure above that
251 * the base address is free of conflict (request_region above).
252 */
253 madgemc_read_rom(dev, card);
254
255 if (card->manid != 0x4d) { /* something went wrong */
256 printk(KERN_INFO "%s: Madge MC ROM read failed (unknown manufacturer ID %02x)\n", dev->name, card->manid);
257 goto getout3;
258 }
259
260 if ((card->cardtype != 0x08) && (card->cardtype != 0x0d)) {
261 printk(KERN_INFO "%s: Madge MC ROM read failed (unknown card ID %02x)\n", dev->name, card->cardtype);
262 ret = -EIO;
263 goto getout3;
264 }
265
266 /* All cards except Rev 0 and 1 MC16's have 256kb of RAM */
267 if ((card->cardtype == 0x08) && (card->cardrev <= 0x01))
268 card->ramsize = 128;
269 else
270 card->ramsize = 256;
271
272 printk("%s: %s Rev %d at 0x%04lx IRQ %d\n",
273 dev->name,
274 (card->cardtype == 0x08)?MADGEMC16_CARDNAME:
275 MADGEMC32_CARDNAME, card->cardrev,
276 dev->base_addr, dev->irq);
277
278 if (card->cardtype == 0x0d)
279 printk("%s: Warning: MC32 support is experimental and highly untested\n", dev->name);
280
281 if (card->ringspeed==2) { /* Unknown */
282 printk("%s: Warning: Ring speed not set in POS -- Please run the reference disk and set it!\n", dev->name);
283 card->ringspeed = 1; /* default to 16mb */
284 }
285
286 printk("%s: RAM Size: %dKB\n", dev->name, card->ramsize);
287
288 printk("%s: Ring Speed: %dMb/sec on %s\n", dev->name,
289 (card->ringspeed)?16:4,
290 card->cabletype?"STP/DB9":"UTP/RJ-45");
291 printk("%s: Arbitration Level: %d\n", dev->name,
292 card->arblevel);
293
294 printk("%s: Burst Mode: ", dev->name);
295 switch(card->burstmode) {
296 case 0: printk("Cycle steal"); break;
297 case 1: printk("Limited burst"); break;
298 case 2: printk("Delayed release"); break;
299 case 3: printk("Immediate release"); break;
300 }
301 printk(" (%s)\n", (card->fairness)?"Unfair":"Fair");
302
303
304 /*
305 * Enable SIF before we assign the interrupt handler,
306 * just in case we get spurious interrupts that need
307 * handling.
308 */
309 outb(0, dev->base_addr + MC_CONTROL_REG0); /* sanity */
310 madgemc_setsifsel(dev, 1);
311 if (request_irq(dev->irq, madgemc_interrupt, IRQF_SHARED,
312 "madgemc", dev)) {
313 ret = -EBUSY;
314 goto getout3;
315 }
316
317 madgemc_chipset_init(dev); /* enables interrupts! */
318 madgemc_setcabletype(dev, card->cabletype);
319
320 /* Setup MCA structures */
321 mca_device_set_name(mdev, (card->cardtype == 0x08)?MADGEMC16_CARDNAME:MADGEMC32_CARDNAME);
322 mca_set_adapter_procfn(mdev->slot, madgemc_mcaproc, dev);
323
324 printk("%s: Ring Station Address: %pM\n",
325 dev->name, dev->dev_addr);
326
327 if (tmsdev_init(dev, device)) {
328 printk("%s: unable to get memory for dev->priv.\n",
329 dev->name);
330 ret = -ENOMEM;
331 goto getout4;
332 }
333 tp = netdev_priv(dev);
334
335 /*
336 * The MC16 is physically a 32bit card. However, Madge
337 * insists on calling it 16bit, so I'll assume here that
338 * they know what they're talking about. Cut off DMA
339 * at 16mb.
340 */
341 tp->setnselout = madgemc_setnselout_pins;
342 tp->sifwriteb = madgemc_sifwriteb;
343 tp->sifreadb = madgemc_sifreadb;
344 tp->sifwritew = madgemc_sifwritew;
345 tp->sifreadw = madgemc_sifreadw;
346 tp->DataRate = (card->ringspeed)?SPEED_16:SPEED_4;
347
348 memcpy(tp->ProductID, "Madge MCA 16/4 ", PROD_ID_SIZE + 1);
349
350 tp->tmspriv = card;
351 dev_set_drvdata(device, dev);
352
353 if (register_netdev(dev) == 0)
354 return 0;
355
356 dev_set_drvdata(device, NULL);
357 ret = -ENOMEM;
358 getout4:
359 free_irq(dev->irq, dev);
360 getout3:
361 release_region(dev->base_addr-MADGEMC_SIF_OFFSET,
362 MADGEMC_IO_EXTENT);
363 getout2:
364 kfree(card);
365 getout1:
366 free_netdev(dev);
367 getout:
368 mca_device_set_claim(mdev, 0);
369 return ret;
370 }
371
372 /*
373 * Handle interrupts generated by the card
374 *
375 * The MicroChannel Madge cards need slightly more handling
376 * after an interrupt than other TMS380 cards do.
377 *
378 * First we must make sure it was this card that generated the
379 * interrupt (since interrupt sharing is allowed). Then,
380 * because we're using level-triggered interrupts (as is
381 * standard on MCA), we must toggle the interrupt line
382 * on the card in order to claim and acknowledge the interrupt.
383 * Once that is done, the interrupt should be handlable in
384 * the normal tms380tr_interrupt() routine.
385 *
386 * There's two ways we can check to see if the interrupt is ours,
387 * both with their own disadvantages...
388 *
389 * 1) Read in the SIFSTS register from the TMS controller. This
390 * is guaranteed to be accurate, however, there's a fairly
391 * large performance penalty for doing so: the Madge chips
392 * must request the register from the Eagle, the Eagle must
393 * read them from its internal bus, and then take the route
394 * back out again, for a 16bit read.
395 *
396 * 2) Use the MC_CONTROL_REG0_SINTR bit from the Madge ASICs.
397 * The major disadvantage here is that the accuracy of the
398 * bit is in question. However, it cuts out the extra read
399 * cycles it takes to read the Eagle's SIF, as its only an
400 * 8bit read, and theoretically the Madge bit is directly
401 * connected to the interrupt latch coming out of the Eagle
402 * hardware (that statement is not verified).
403 *
404 * I can't determine which of these methods has the best win. For now,
405 * we make a compromise. Use the Madge way for the first interrupt,
406 * which should be the fast-path, and then once we hit the first
407 * interrupt, keep on trying using the SIF method until we've
408 * exhausted all contiguous interrupts.
409 *
410 */
madgemc_interrupt(int irq,void * dev_id)411 static irqreturn_t madgemc_interrupt(int irq, void *dev_id)
412 {
413 int pending,reg1;
414 struct net_device *dev;
415
416 if (!dev_id) {
417 printk("madgemc_interrupt: was not passed a dev_id!\n");
418 return IRQ_NONE;
419 }
420
421 dev = (struct net_device *)dev_id;
422
423 /* Make sure its really us. -- the Madge way */
424 pending = inb(dev->base_addr + MC_CONTROL_REG0);
425 if (!(pending & MC_CONTROL_REG0_SINTR))
426 return IRQ_NONE; /* not our interrupt */
427
428 /*
429 * Since we're level-triggered, we may miss the rising edge
430 * of the next interrupt while we're off handling this one,
431 * so keep checking until the SIF verifies that it has nothing
432 * left for us to do.
433 */
434 pending = STS_SYSTEM_IRQ;
435 do {
436 if (pending & STS_SYSTEM_IRQ) {
437
438 /* Toggle the interrupt to reset the latch on card */
439 reg1 = inb(dev->base_addr + MC_CONTROL_REG1);
440 outb(reg1 ^ MC_CONTROL_REG1_SINTEN,
441 dev->base_addr + MC_CONTROL_REG1);
442 outb(reg1, dev->base_addr + MC_CONTROL_REG1);
443
444 /* Continue handling as normal */
445 tms380tr_interrupt(irq, dev_id);
446
447 pending = SIFREADW(SIFSTS); /* restart - the SIF way */
448
449 } else
450 return IRQ_HANDLED;
451 } while (1);
452
453 return IRQ_HANDLED; /* not reachable */
454 }
455
456 /*
457 * Set the card to the preferred ring speed.
458 *
459 * Unlike newer cards, the MC16/32 have their speed selection
460 * circuit connected to the Madge ASICs and not to the TMS380
461 * NSELOUT pins. Set the ASIC bits correctly here, and return
462 * zero to leave the TMS NSELOUT bits unaffected.
463 *
464 */
madgemc_setnselout_pins(struct net_device * dev)465 static unsigned short madgemc_setnselout_pins(struct net_device *dev)
466 {
467 unsigned char reg1;
468 struct net_local *tp = netdev_priv(dev);
469
470 reg1 = inb(dev->base_addr + MC_CONTROL_REG1);
471
472 if(tp->DataRate == SPEED_16)
473 reg1 |= MC_CONTROL_REG1_SPEED_SEL; /* add for 16mb */
474 else if (reg1 & MC_CONTROL_REG1_SPEED_SEL)
475 reg1 ^= MC_CONTROL_REG1_SPEED_SEL; /* remove for 4mb */
476 outb(reg1, dev->base_addr + MC_CONTROL_REG1);
477
478 return 0; /* no change */
479 }
480
481 /*
482 * Set the register page. This equates to the SRSX line
483 * on the TMS380Cx6.
484 *
485 * Register selection is normally done via three contiguous
486 * bits. However, some boards (such as the MC16/32) use only
487 * two bits, plus a separate bit in the glue chip. This
488 * sets the SRSX bit (the top bit). See page 4-17 in the
489 * Yellow Book for which registers are affected.
490 *
491 */
madgemc_setregpage(struct net_device * dev,int page)492 static void madgemc_setregpage(struct net_device *dev, int page)
493 {
494 static int reg1;
495
496 reg1 = inb(dev->base_addr + MC_CONTROL_REG1);
497 if ((page == 0) && (reg1 & MC_CONTROL_REG1_SRSX)) {
498 outb(reg1 ^ MC_CONTROL_REG1_SRSX,
499 dev->base_addr + MC_CONTROL_REG1);
500 }
501 else if (page == 1) {
502 outb(reg1 | MC_CONTROL_REG1_SRSX,
503 dev->base_addr + MC_CONTROL_REG1);
504 }
505 reg1 = inb(dev->base_addr + MC_CONTROL_REG1);
506 }
507
508 /*
509 * The SIF registers are not mapped into register space by default
510 * Set this to 1 to map them, 0 to map the BIA ROM.
511 *
512 */
madgemc_setsifsel(struct net_device * dev,int val)513 static void madgemc_setsifsel(struct net_device *dev, int val)
514 {
515 unsigned int reg0;
516
517 reg0 = inb(dev->base_addr + MC_CONTROL_REG0);
518 if ((val == 0) && (reg0 & MC_CONTROL_REG0_SIFSEL)) {
519 outb(reg0 ^ MC_CONTROL_REG0_SIFSEL,
520 dev->base_addr + MC_CONTROL_REG0);
521 } else if (val == 1) {
522 outb(reg0 | MC_CONTROL_REG0_SIFSEL,
523 dev->base_addr + MC_CONTROL_REG0);
524 }
525 reg0 = inb(dev->base_addr + MC_CONTROL_REG0);
526 }
527
528 /*
529 * Enable SIF interrupts
530 *
531 * This does not enable interrupts in the SIF, but rather
532 * enables SIF interrupts to be passed onto the host.
533 *
534 */
madgemc_setint(struct net_device * dev,int val)535 static void madgemc_setint(struct net_device *dev, int val)
536 {
537 unsigned int reg1;
538
539 reg1 = inb(dev->base_addr + MC_CONTROL_REG1);
540 if ((val == 0) && (reg1 & MC_CONTROL_REG1_SINTEN)) {
541 outb(reg1 ^ MC_CONTROL_REG1_SINTEN,
542 dev->base_addr + MC_CONTROL_REG1);
543 } else if (val == 1) {
544 outb(reg1 | MC_CONTROL_REG1_SINTEN,
545 dev->base_addr + MC_CONTROL_REG1);
546 }
547 }
548
549 /*
550 * Cable type is set via control register 7. Bit zero high
551 * for UTP, low for STP.
552 */
madgemc_setcabletype(struct net_device * dev,int type)553 static void madgemc_setcabletype(struct net_device *dev, int type)
554 {
555 outb((type==0)?MC_CONTROL_REG7_CABLEUTP:MC_CONTROL_REG7_CABLESTP,
556 dev->base_addr + MC_CONTROL_REG7);
557 }
558
559 /*
560 * Enable the functions of the Madge chipset needed for
561 * full working order.
562 */
madgemc_chipset_init(struct net_device * dev)563 static int madgemc_chipset_init(struct net_device *dev)
564 {
565 outb(0, dev->base_addr + MC_CONTROL_REG1); /* pull SRESET low */
566 tms380tr_wait(100); /* wait for card to reset */
567
568 /* bring back into normal operating mode */
569 outb(MC_CONTROL_REG1_NSRESET, dev->base_addr + MC_CONTROL_REG1);
570
571 /* map SIF registers */
572 madgemc_setsifsel(dev, 1);
573
574 /* enable SIF interrupts */
575 madgemc_setint(dev, 1);
576
577 return 0;
578 }
579
580 /*
581 * Disable the board, and put back into power-up state.
582 */
madgemc_chipset_close(struct net_device * dev)583 static void madgemc_chipset_close(struct net_device *dev)
584 {
585 /* disable interrupts */
586 madgemc_setint(dev, 0);
587 /* unmap SIF registers */
588 madgemc_setsifsel(dev, 0);
589 }
590
591 /*
592 * Read the card type (MC16 or MC32) from the card.
593 *
594 * The configuration registers are stored in two separate
595 * pages. Pages are flipped by clearing bit 3 of CONTROL_REG0 (PAGE)
596 * for page zero, or setting bit 3 for page one.
597 *
598 * Page zero contains the following data:
599 * Byte 0: Manufacturer ID (0x4D -- ASCII "M")
600 * Byte 1: Card type:
601 * 0x08 for MC16
602 * 0x0D for MC32
603 * Byte 2: Card revision
604 * Byte 3: Mirror of POS config register 0
605 * Byte 4: Mirror of POS 1
606 * Byte 5: Mirror of POS 2
607 *
608 * Page one contains the following data:
609 * Byte 0: Unused
610 * Byte 1-6: BIA, MSB to LSB.
611 *
612 * Note that to read the BIA, we must unmap the SIF registers
613 * by clearing bit 2 of CONTROL_REG0 (SIFSEL), as the data
614 * will reside in the same logical location. For this reason,
615 * _never_ read the BIA while the Eagle processor is running!
616 * The SIF will be completely inaccessible until the BIA operation
617 * is complete.
618 *
619 */
madgemc_read_rom(struct net_device * dev,struct card_info * card)620 static void madgemc_read_rom(struct net_device *dev, struct card_info *card)
621 {
622 unsigned long ioaddr;
623 unsigned char reg0, reg1, tmpreg0, i;
624
625 ioaddr = dev->base_addr;
626
627 reg0 = inb(ioaddr + MC_CONTROL_REG0);
628 reg1 = inb(ioaddr + MC_CONTROL_REG1);
629
630 /* Switch to page zero and unmap SIF */
631 tmpreg0 = reg0 & ~(MC_CONTROL_REG0_PAGE + MC_CONTROL_REG0_SIFSEL);
632 outb(tmpreg0, ioaddr + MC_CONTROL_REG0);
633
634 card->manid = inb(ioaddr + MC_ROM_MANUFACTURERID);
635 card->cardtype = inb(ioaddr + MC_ROM_ADAPTERID);
636 card->cardrev = inb(ioaddr + MC_ROM_REVISION);
637
638 /* Switch to rom page one */
639 outb(tmpreg0 | MC_CONTROL_REG0_PAGE, ioaddr + MC_CONTROL_REG0);
640
641 /* Read BIA */
642 dev->addr_len = 6;
643 for (i = 0; i < 6; i++)
644 dev->dev_addr[i] = inb(ioaddr + MC_ROM_BIA_START + i);
645
646 /* Restore original register values */
647 outb(reg0, ioaddr + MC_CONTROL_REG0);
648 outb(reg1, ioaddr + MC_CONTROL_REG1);
649 }
650
madgemc_open(struct net_device * dev)651 static int madgemc_open(struct net_device *dev)
652 {
653 /*
654 * Go ahead and reinitialize the chipset again, just to
655 * make sure we didn't get left in a bad state.
656 */
657 madgemc_chipset_init(dev);
658 tms380tr_open(dev);
659 return 0;
660 }
661
madgemc_close(struct net_device * dev)662 static int madgemc_close(struct net_device *dev)
663 {
664 tms380tr_close(dev);
665 madgemc_chipset_close(dev);
666 return 0;
667 }
668
669 /*
670 * Give some details available from /proc/mca/slotX
671 */
madgemc_mcaproc(char * buf,int slot,void * d)672 static int madgemc_mcaproc(char *buf, int slot, void *d)
673 {
674 struct net_device *dev = (struct net_device *)d;
675 struct net_local *tp = netdev_priv(dev);
676 struct card_info *curcard = tp->tmspriv;
677 int len = 0;
678
679 len += sprintf(buf+len, "-------\n");
680 if (curcard) {
681 len += sprintf(buf+len, "Card Revision: %d\n", curcard->cardrev);
682 len += sprintf(buf+len, "RAM Size: %dkb\n", curcard->ramsize);
683 len += sprintf(buf+len, "Cable type: %s\n", (curcard->cabletype)?"STP/DB9":"UTP/RJ-45");
684 len += sprintf(buf+len, "Configured ring speed: %dMb/sec\n", (curcard->ringspeed)?16:4);
685 len += sprintf(buf+len, "Running ring speed: %dMb/sec\n", (tp->DataRate==SPEED_16)?16:4);
686 len += sprintf(buf+len, "Device: %s\n", dev->name);
687 len += sprintf(buf+len, "IO Port: 0x%04lx\n", dev->base_addr);
688 len += sprintf(buf+len, "IRQ: %d\n", dev->irq);
689 len += sprintf(buf+len, "Arbitration Level: %d\n", curcard->arblevel);
690 len += sprintf(buf+len, "Burst Mode: ");
691 switch(curcard->burstmode) {
692 case 0: len += sprintf(buf+len, "Cycle steal"); break;
693 case 1: len += sprintf(buf+len, "Limited burst"); break;
694 case 2: len += sprintf(buf+len, "Delayed release"); break;
695 case 3: len += sprintf(buf+len, "Immediate release"); break;
696 }
697 len += sprintf(buf+len, " (%s)\n", (curcard->fairness)?"Unfair":"Fair");
698
699 len += sprintf(buf+len, "Ring Station Address: %pM\n",
700 dev->dev_addr);
701 } else
702 len += sprintf(buf+len, "Card not configured\n");
703
704 return len;
705 }
706
madgemc_remove(struct device * device)707 static int __devexit madgemc_remove(struct device *device)
708 {
709 struct net_device *dev = dev_get_drvdata(device);
710 struct net_local *tp;
711 struct card_info *card;
712
713 BUG_ON(!dev);
714
715 tp = netdev_priv(dev);
716 card = tp->tmspriv;
717 kfree(card);
718 tp->tmspriv = NULL;
719
720 unregister_netdev(dev);
721 release_region(dev->base_addr-MADGEMC_SIF_OFFSET, MADGEMC_IO_EXTENT);
722 free_irq(dev->irq, dev);
723 tmsdev_term(dev);
724 free_netdev(dev);
725 dev_set_drvdata(device, NULL);
726
727 return 0;
728 }
729
730 static short madgemc_adapter_ids[] __initdata = {
731 0x002d,
732 0x0000
733 };
734
735 static struct mca_driver madgemc_driver = {
736 .id_table = madgemc_adapter_ids,
737 .driver = {
738 .name = "madgemc",
739 .bus = &mca_bus_type,
740 .probe = madgemc_probe,
741 .remove = __devexit_p(madgemc_remove),
742 },
743 };
744
madgemc_init(void)745 static int __init madgemc_init (void)
746 {
747 madgemc_netdev_ops = tms380tr_netdev_ops;
748 madgemc_netdev_ops.ndo_open = madgemc_open;
749 madgemc_netdev_ops.ndo_stop = madgemc_close;
750
751 return mca_register_driver (&madgemc_driver);
752 }
753
madgemc_exit(void)754 static void __exit madgemc_exit (void)
755 {
756 mca_unregister_driver (&madgemc_driver);
757 }
758
759 module_init(madgemc_init);
760 module_exit(madgemc_exit);
761
762 MODULE_LICENSE("GPL");
763
764