1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "path.h"
20 #include "srcline.h"
21 #include "symbol.h"
22 #include "sort.h"
23 #include "strlist.h"
24 #include "target.h"
25 #include "thread.h"
26 #include "util.h"
27 #include "vdso.h"
28 #include <stdbool.h>
29 #include <sys/types.h>
30 #include <sys/stat.h>
31 #include <unistd.h>
32 #include "unwind.h"
33 #include "linux/hash.h"
34 #include "asm/bug.h"
35 #include "bpf-event.h"
36 #include <internal/lib.h> // page_size
37 #include "cgroup.h"
38 #include "arm64-frame-pointer-unwind-support.h"
39
40 #include <linux/ctype.h>
41 #include <symbol/kallsyms.h>
42 #include <linux/mman.h>
43 #include <linux/string.h>
44 #include <linux/zalloc.h>
45
46 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
47
machine__kernel_dso(struct machine * machine)48 static struct dso *machine__kernel_dso(struct machine *machine)
49 {
50 return machine->vmlinux_map->dso;
51 }
52
dsos__init(struct dsos * dsos)53 static void dsos__init(struct dsos *dsos)
54 {
55 INIT_LIST_HEAD(&dsos->head);
56 dsos->root = RB_ROOT;
57 init_rwsem(&dsos->lock);
58 }
59
machine__threads_init(struct machine * machine)60 static void machine__threads_init(struct machine *machine)
61 {
62 int i;
63
64 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
65 struct threads *threads = &machine->threads[i];
66 threads->entries = RB_ROOT_CACHED;
67 init_rwsem(&threads->lock);
68 threads->nr = 0;
69 INIT_LIST_HEAD(&threads->dead);
70 threads->last_match = NULL;
71 }
72 }
73
machine__set_mmap_name(struct machine * machine)74 static int machine__set_mmap_name(struct machine *machine)
75 {
76 if (machine__is_host(machine))
77 machine->mmap_name = strdup("[kernel.kallsyms]");
78 else if (machine__is_default_guest(machine))
79 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
80 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
81 machine->pid) < 0)
82 machine->mmap_name = NULL;
83
84 return machine->mmap_name ? 0 : -ENOMEM;
85 }
86
thread__set_guest_comm(struct thread * thread,pid_t pid)87 static void thread__set_guest_comm(struct thread *thread, pid_t pid)
88 {
89 char comm[64];
90
91 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
92 thread__set_comm(thread, comm, 0);
93 }
94
machine__init(struct machine * machine,const char * root_dir,pid_t pid)95 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
96 {
97 int err = -ENOMEM;
98
99 memset(machine, 0, sizeof(*machine));
100 machine->kmaps = maps__new(machine);
101 if (machine->kmaps == NULL)
102 return -ENOMEM;
103
104 RB_CLEAR_NODE(&machine->rb_node);
105 dsos__init(&machine->dsos);
106
107 machine__threads_init(machine);
108
109 machine->vdso_info = NULL;
110 machine->env = NULL;
111
112 machine->pid = pid;
113
114 machine->id_hdr_size = 0;
115 machine->kptr_restrict_warned = false;
116 machine->comm_exec = false;
117 machine->kernel_start = 0;
118 machine->vmlinux_map = NULL;
119
120 machine->root_dir = strdup(root_dir);
121 if (machine->root_dir == NULL)
122 goto out;
123
124 if (machine__set_mmap_name(machine))
125 goto out;
126
127 if (pid != HOST_KERNEL_ID) {
128 struct thread *thread = machine__findnew_thread(machine, -1,
129 pid);
130
131 if (thread == NULL)
132 goto out;
133
134 thread__set_guest_comm(thread, pid);
135 thread__put(thread);
136 }
137
138 machine->current_tid = NULL;
139 err = 0;
140
141 out:
142 if (err) {
143 zfree(&machine->kmaps);
144 zfree(&machine->root_dir);
145 zfree(&machine->mmap_name);
146 }
147 return 0;
148 }
149
machine__new_host(void)150 struct machine *machine__new_host(void)
151 {
152 struct machine *machine = malloc(sizeof(*machine));
153
154 if (machine != NULL) {
155 machine__init(machine, "", HOST_KERNEL_ID);
156
157 if (machine__create_kernel_maps(machine) < 0)
158 goto out_delete;
159 }
160
161 return machine;
162 out_delete:
163 free(machine);
164 return NULL;
165 }
166
machine__new_kallsyms(void)167 struct machine *machine__new_kallsyms(void)
168 {
169 struct machine *machine = machine__new_host();
170 /*
171 * FIXME:
172 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
173 * ask for not using the kcore parsing code, once this one is fixed
174 * to create a map per module.
175 */
176 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
177 machine__delete(machine);
178 machine = NULL;
179 }
180
181 return machine;
182 }
183
dsos__purge(struct dsos * dsos)184 static void dsos__purge(struct dsos *dsos)
185 {
186 struct dso *pos, *n;
187
188 down_write(&dsos->lock);
189
190 list_for_each_entry_safe(pos, n, &dsos->head, node) {
191 RB_CLEAR_NODE(&pos->rb_node);
192 pos->root = NULL;
193 list_del_init(&pos->node);
194 dso__put(pos);
195 }
196
197 up_write(&dsos->lock);
198 }
199
dsos__exit(struct dsos * dsos)200 static void dsos__exit(struct dsos *dsos)
201 {
202 dsos__purge(dsos);
203 exit_rwsem(&dsos->lock);
204 }
205
machine__delete_threads(struct machine * machine)206 void machine__delete_threads(struct machine *machine)
207 {
208 struct rb_node *nd;
209 int i;
210
211 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
212 struct threads *threads = &machine->threads[i];
213 down_write(&threads->lock);
214 nd = rb_first_cached(&threads->entries);
215 while (nd) {
216 struct thread *t = rb_entry(nd, struct thread, rb_node);
217
218 nd = rb_next(nd);
219 __machine__remove_thread(machine, t, false);
220 }
221 up_write(&threads->lock);
222 }
223 }
224
machine__exit(struct machine * machine)225 void machine__exit(struct machine *machine)
226 {
227 int i;
228
229 if (machine == NULL)
230 return;
231
232 machine__destroy_kernel_maps(machine);
233 maps__delete(machine->kmaps);
234 dsos__exit(&machine->dsos);
235 machine__exit_vdso(machine);
236 zfree(&machine->root_dir);
237 zfree(&machine->mmap_name);
238 zfree(&machine->current_tid);
239 zfree(&machine->kallsyms_filename);
240
241 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
242 struct threads *threads = &machine->threads[i];
243 struct thread *thread, *n;
244 /*
245 * Forget about the dead, at this point whatever threads were
246 * left in the dead lists better have a reference count taken
247 * by who is using them, and then, when they drop those references
248 * and it finally hits zero, thread__put() will check and see that
249 * its not in the dead threads list and will not try to remove it
250 * from there, just calling thread__delete() straight away.
251 */
252 list_for_each_entry_safe(thread, n, &threads->dead, node)
253 list_del_init(&thread->node);
254
255 exit_rwsem(&threads->lock);
256 }
257 }
258
machine__delete(struct machine * machine)259 void machine__delete(struct machine *machine)
260 {
261 if (machine) {
262 machine__exit(machine);
263 free(machine);
264 }
265 }
266
machines__init(struct machines * machines)267 void machines__init(struct machines *machines)
268 {
269 machine__init(&machines->host, "", HOST_KERNEL_ID);
270 machines->guests = RB_ROOT_CACHED;
271 }
272
machines__exit(struct machines * machines)273 void machines__exit(struct machines *machines)
274 {
275 machine__exit(&machines->host);
276 /* XXX exit guest */
277 }
278
machines__add(struct machines * machines,pid_t pid,const char * root_dir)279 struct machine *machines__add(struct machines *machines, pid_t pid,
280 const char *root_dir)
281 {
282 struct rb_node **p = &machines->guests.rb_root.rb_node;
283 struct rb_node *parent = NULL;
284 struct machine *pos, *machine = malloc(sizeof(*machine));
285 bool leftmost = true;
286
287 if (machine == NULL)
288 return NULL;
289
290 if (machine__init(machine, root_dir, pid) != 0) {
291 free(machine);
292 return NULL;
293 }
294
295 while (*p != NULL) {
296 parent = *p;
297 pos = rb_entry(parent, struct machine, rb_node);
298 if (pid < pos->pid)
299 p = &(*p)->rb_left;
300 else {
301 p = &(*p)->rb_right;
302 leftmost = false;
303 }
304 }
305
306 rb_link_node(&machine->rb_node, parent, p);
307 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
308
309 machine->machines = machines;
310
311 return machine;
312 }
313
machines__set_comm_exec(struct machines * machines,bool comm_exec)314 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
315 {
316 struct rb_node *nd;
317
318 machines->host.comm_exec = comm_exec;
319
320 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
321 struct machine *machine = rb_entry(nd, struct machine, rb_node);
322
323 machine->comm_exec = comm_exec;
324 }
325 }
326
machines__find(struct machines * machines,pid_t pid)327 struct machine *machines__find(struct machines *machines, pid_t pid)
328 {
329 struct rb_node **p = &machines->guests.rb_root.rb_node;
330 struct rb_node *parent = NULL;
331 struct machine *machine;
332 struct machine *default_machine = NULL;
333
334 if (pid == HOST_KERNEL_ID)
335 return &machines->host;
336
337 while (*p != NULL) {
338 parent = *p;
339 machine = rb_entry(parent, struct machine, rb_node);
340 if (pid < machine->pid)
341 p = &(*p)->rb_left;
342 else if (pid > machine->pid)
343 p = &(*p)->rb_right;
344 else
345 return machine;
346 if (!machine->pid)
347 default_machine = machine;
348 }
349
350 return default_machine;
351 }
352
machines__findnew(struct machines * machines,pid_t pid)353 struct machine *machines__findnew(struct machines *machines, pid_t pid)
354 {
355 char path[PATH_MAX];
356 const char *root_dir = "";
357 struct machine *machine = machines__find(machines, pid);
358
359 if (machine && (machine->pid == pid))
360 goto out;
361
362 if ((pid != HOST_KERNEL_ID) &&
363 (pid != DEFAULT_GUEST_KERNEL_ID) &&
364 (symbol_conf.guestmount)) {
365 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
366 if (access(path, R_OK)) {
367 static struct strlist *seen;
368
369 if (!seen)
370 seen = strlist__new(NULL, NULL);
371
372 if (!strlist__has_entry(seen, path)) {
373 pr_err("Can't access file %s\n", path);
374 strlist__add(seen, path);
375 }
376 machine = NULL;
377 goto out;
378 }
379 root_dir = path;
380 }
381
382 machine = machines__add(machines, pid, root_dir);
383 out:
384 return machine;
385 }
386
machines__find_guest(struct machines * machines,pid_t pid)387 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
388 {
389 struct machine *machine = machines__find(machines, pid);
390
391 if (!machine)
392 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
393 return machine;
394 }
395
396 /*
397 * A common case for KVM test programs is that the test program acts as the
398 * hypervisor, creating, running and destroying the virtual machine, and
399 * providing the guest object code from its own object code. In this case,
400 * the VM is not running an OS, but only the functions loaded into it by the
401 * hypervisor test program, and conveniently, loaded at the same virtual
402 * addresses.
403 *
404 * Normally to resolve addresses, MMAP events are needed to map addresses
405 * back to the object code and debug symbols for that object code.
406 *
407 * Currently, there is no way to get such mapping information from guests
408 * but, in the scenario described above, the guest has the same mappings
409 * as the hypervisor, so support for that scenario can be achieved.
410 *
411 * To support that, copy the host thread's maps to the guest thread's maps.
412 * Note, we do not discover the guest until we encounter a guest event,
413 * which works well because it is not until then that we know that the host
414 * thread's maps have been set up.
415 *
416 * This function returns the guest thread. Apart from keeping the data
417 * structures sane, using a thread belonging to the guest machine, instead
418 * of the host thread, allows it to have its own comm (refer
419 * thread__set_guest_comm()).
420 */
findnew_guest_code(struct machine * machine,struct machine * host_machine,pid_t pid)421 static struct thread *findnew_guest_code(struct machine *machine,
422 struct machine *host_machine,
423 pid_t pid)
424 {
425 struct thread *host_thread;
426 struct thread *thread;
427 int err;
428
429 if (!machine)
430 return NULL;
431
432 thread = machine__findnew_thread(machine, -1, pid);
433 if (!thread)
434 return NULL;
435
436 /* Assume maps are set up if there are any */
437 if (thread->maps->nr_maps)
438 return thread;
439
440 host_thread = machine__find_thread(host_machine, -1, pid);
441 if (!host_thread)
442 goto out_err;
443
444 thread__set_guest_comm(thread, pid);
445
446 /*
447 * Guest code can be found in hypervisor process at the same address
448 * so copy host maps.
449 */
450 err = maps__clone(thread, host_thread->maps);
451 thread__put(host_thread);
452 if (err)
453 goto out_err;
454
455 return thread;
456
457 out_err:
458 thread__zput(thread);
459 return NULL;
460 }
461
machines__findnew_guest_code(struct machines * machines,pid_t pid)462 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
463 {
464 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
465 struct machine *machine = machines__findnew(machines, pid);
466
467 return findnew_guest_code(machine, host_machine, pid);
468 }
469
machine__findnew_guest_code(struct machine * machine,pid_t pid)470 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
471 {
472 struct machines *machines = machine->machines;
473 struct machine *host_machine;
474
475 if (!machines)
476 return NULL;
477
478 host_machine = machines__find(machines, HOST_KERNEL_ID);
479
480 return findnew_guest_code(machine, host_machine, pid);
481 }
482
machines__process_guests(struct machines * machines,machine__process_t process,void * data)483 void machines__process_guests(struct machines *machines,
484 machine__process_t process, void *data)
485 {
486 struct rb_node *nd;
487
488 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
489 struct machine *pos = rb_entry(nd, struct machine, rb_node);
490 process(pos, data);
491 }
492 }
493
machines__set_id_hdr_size(struct machines * machines,u16 id_hdr_size)494 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
495 {
496 struct rb_node *node;
497 struct machine *machine;
498
499 machines->host.id_hdr_size = id_hdr_size;
500
501 for (node = rb_first_cached(&machines->guests); node;
502 node = rb_next(node)) {
503 machine = rb_entry(node, struct machine, rb_node);
504 machine->id_hdr_size = id_hdr_size;
505 }
506
507 return;
508 }
509
machine__update_thread_pid(struct machine * machine,struct thread * th,pid_t pid)510 static void machine__update_thread_pid(struct machine *machine,
511 struct thread *th, pid_t pid)
512 {
513 struct thread *leader;
514
515 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
516 return;
517
518 th->pid_ = pid;
519
520 if (th->pid_ == th->tid)
521 return;
522
523 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
524 if (!leader)
525 goto out_err;
526
527 if (!leader->maps)
528 leader->maps = maps__new(machine);
529
530 if (!leader->maps)
531 goto out_err;
532
533 if (th->maps == leader->maps)
534 return;
535
536 if (th->maps) {
537 /*
538 * Maps are created from MMAP events which provide the pid and
539 * tid. Consequently there never should be any maps on a thread
540 * with an unknown pid. Just print an error if there are.
541 */
542 if (!maps__empty(th->maps))
543 pr_err("Discarding thread maps for %d:%d\n",
544 th->pid_, th->tid);
545 maps__put(th->maps);
546 }
547
548 th->maps = maps__get(leader->maps);
549 out_put:
550 thread__put(leader);
551 return;
552 out_err:
553 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
554 goto out_put;
555 }
556
557 /*
558 * Front-end cache - TID lookups come in blocks,
559 * so most of the time we dont have to look up
560 * the full rbtree:
561 */
562 static struct thread*
__threads__get_last_match(struct threads * threads,struct machine * machine,int pid,int tid)563 __threads__get_last_match(struct threads *threads, struct machine *machine,
564 int pid, int tid)
565 {
566 struct thread *th;
567
568 th = threads->last_match;
569 if (th != NULL) {
570 if (th->tid == tid) {
571 machine__update_thread_pid(machine, th, pid);
572 return thread__get(th);
573 }
574
575 threads->last_match = NULL;
576 }
577
578 return NULL;
579 }
580
581 static struct thread*
threads__get_last_match(struct threads * threads,struct machine * machine,int pid,int tid)582 threads__get_last_match(struct threads *threads, struct machine *machine,
583 int pid, int tid)
584 {
585 struct thread *th = NULL;
586
587 if (perf_singlethreaded)
588 th = __threads__get_last_match(threads, machine, pid, tid);
589
590 return th;
591 }
592
593 static void
__threads__set_last_match(struct threads * threads,struct thread * th)594 __threads__set_last_match(struct threads *threads, struct thread *th)
595 {
596 threads->last_match = th;
597 }
598
599 static void
threads__set_last_match(struct threads * threads,struct thread * th)600 threads__set_last_match(struct threads *threads, struct thread *th)
601 {
602 if (perf_singlethreaded)
603 __threads__set_last_match(threads, th);
604 }
605
606 /*
607 * Caller must eventually drop thread->refcnt returned with a successful
608 * lookup/new thread inserted.
609 */
____machine__findnew_thread(struct machine * machine,struct threads * threads,pid_t pid,pid_t tid,bool create)610 static struct thread *____machine__findnew_thread(struct machine *machine,
611 struct threads *threads,
612 pid_t pid, pid_t tid,
613 bool create)
614 {
615 struct rb_node **p = &threads->entries.rb_root.rb_node;
616 struct rb_node *parent = NULL;
617 struct thread *th;
618 bool leftmost = true;
619
620 th = threads__get_last_match(threads, machine, pid, tid);
621 if (th)
622 return th;
623
624 while (*p != NULL) {
625 parent = *p;
626 th = rb_entry(parent, struct thread, rb_node);
627
628 if (th->tid == tid) {
629 threads__set_last_match(threads, th);
630 machine__update_thread_pid(machine, th, pid);
631 return thread__get(th);
632 }
633
634 if (tid < th->tid)
635 p = &(*p)->rb_left;
636 else {
637 p = &(*p)->rb_right;
638 leftmost = false;
639 }
640 }
641
642 if (!create)
643 return NULL;
644
645 th = thread__new(pid, tid);
646 if (th != NULL) {
647 rb_link_node(&th->rb_node, parent, p);
648 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
649
650 /*
651 * We have to initialize maps separately after rb tree is updated.
652 *
653 * The reason is that we call machine__findnew_thread
654 * within thread__init_maps to find the thread
655 * leader and that would screwed the rb tree.
656 */
657 if (thread__init_maps(th, machine)) {
658 rb_erase_cached(&th->rb_node, &threads->entries);
659 RB_CLEAR_NODE(&th->rb_node);
660 thread__put(th);
661 return NULL;
662 }
663 /*
664 * It is now in the rbtree, get a ref
665 */
666 thread__get(th);
667 threads__set_last_match(threads, th);
668 ++threads->nr;
669 }
670
671 return th;
672 }
673
__machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)674 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
675 {
676 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
677 }
678
machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)679 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
680 pid_t tid)
681 {
682 struct threads *threads = machine__threads(machine, tid);
683 struct thread *th;
684
685 down_write(&threads->lock);
686 th = __machine__findnew_thread(machine, pid, tid);
687 up_write(&threads->lock);
688 return th;
689 }
690
machine__find_thread(struct machine * machine,pid_t pid,pid_t tid)691 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
692 pid_t tid)
693 {
694 struct threads *threads = machine__threads(machine, tid);
695 struct thread *th;
696
697 down_read(&threads->lock);
698 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
699 up_read(&threads->lock);
700 return th;
701 }
702
703 /*
704 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
705 * So here a single thread is created for that, but actually there is a separate
706 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
707 * is only 1. That causes problems for some tools, requiring workarounds. For
708 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
709 */
machine__idle_thread(struct machine * machine)710 struct thread *machine__idle_thread(struct machine *machine)
711 {
712 struct thread *thread = machine__findnew_thread(machine, 0, 0);
713
714 if (!thread || thread__set_comm(thread, "swapper", 0) ||
715 thread__set_namespaces(thread, 0, NULL))
716 pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
717
718 return thread;
719 }
720
machine__thread_exec_comm(struct machine * machine,struct thread * thread)721 struct comm *machine__thread_exec_comm(struct machine *machine,
722 struct thread *thread)
723 {
724 if (machine->comm_exec)
725 return thread__exec_comm(thread);
726 else
727 return thread__comm(thread);
728 }
729
machine__process_comm_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)730 int machine__process_comm_event(struct machine *machine, union perf_event *event,
731 struct perf_sample *sample)
732 {
733 struct thread *thread = machine__findnew_thread(machine,
734 event->comm.pid,
735 event->comm.tid);
736 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
737 int err = 0;
738
739 if (exec)
740 machine->comm_exec = true;
741
742 if (dump_trace)
743 perf_event__fprintf_comm(event, stdout);
744
745 if (thread == NULL ||
746 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
747 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
748 err = -1;
749 }
750
751 thread__put(thread);
752
753 return err;
754 }
755
machine__process_namespaces_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)756 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
757 union perf_event *event,
758 struct perf_sample *sample __maybe_unused)
759 {
760 struct thread *thread = machine__findnew_thread(machine,
761 event->namespaces.pid,
762 event->namespaces.tid);
763 int err = 0;
764
765 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
766 "\nWARNING: kernel seems to support more namespaces than perf"
767 " tool.\nTry updating the perf tool..\n\n");
768
769 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
770 "\nWARNING: perf tool seems to support more namespaces than"
771 " the kernel.\nTry updating the kernel..\n\n");
772
773 if (dump_trace)
774 perf_event__fprintf_namespaces(event, stdout);
775
776 if (thread == NULL ||
777 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
778 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
779 err = -1;
780 }
781
782 thread__put(thread);
783
784 return err;
785 }
786
machine__process_cgroup_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)787 int machine__process_cgroup_event(struct machine *machine,
788 union perf_event *event,
789 struct perf_sample *sample __maybe_unused)
790 {
791 struct cgroup *cgrp;
792
793 if (dump_trace)
794 perf_event__fprintf_cgroup(event, stdout);
795
796 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
797 if (cgrp == NULL)
798 return -ENOMEM;
799
800 return 0;
801 }
802
machine__process_lost_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)803 int machine__process_lost_event(struct machine *machine __maybe_unused,
804 union perf_event *event, struct perf_sample *sample __maybe_unused)
805 {
806 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
807 event->lost.id, event->lost.lost);
808 return 0;
809 }
810
machine__process_lost_samples_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)811 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
812 union perf_event *event, struct perf_sample *sample)
813 {
814 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
815 sample->id, event->lost_samples.lost);
816 return 0;
817 }
818
machine__findnew_module_dso(struct machine * machine,struct kmod_path * m,const char * filename)819 static struct dso *machine__findnew_module_dso(struct machine *machine,
820 struct kmod_path *m,
821 const char *filename)
822 {
823 struct dso *dso;
824
825 down_write(&machine->dsos.lock);
826
827 dso = __dsos__find(&machine->dsos, m->name, true);
828 if (!dso) {
829 dso = __dsos__addnew(&machine->dsos, m->name);
830 if (dso == NULL)
831 goto out_unlock;
832
833 dso__set_module_info(dso, m, machine);
834 dso__set_long_name(dso, strdup(filename), true);
835 dso->kernel = DSO_SPACE__KERNEL;
836 }
837
838 dso__get(dso);
839 out_unlock:
840 up_write(&machine->dsos.lock);
841 return dso;
842 }
843
machine__process_aux_event(struct machine * machine __maybe_unused,union perf_event * event)844 int machine__process_aux_event(struct machine *machine __maybe_unused,
845 union perf_event *event)
846 {
847 if (dump_trace)
848 perf_event__fprintf_aux(event, stdout);
849 return 0;
850 }
851
machine__process_itrace_start_event(struct machine * machine __maybe_unused,union perf_event * event)852 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
853 union perf_event *event)
854 {
855 if (dump_trace)
856 perf_event__fprintf_itrace_start(event, stdout);
857 return 0;
858 }
859
machine__process_aux_output_hw_id_event(struct machine * machine __maybe_unused,union perf_event * event)860 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
861 union perf_event *event)
862 {
863 if (dump_trace)
864 perf_event__fprintf_aux_output_hw_id(event, stdout);
865 return 0;
866 }
867
machine__process_switch_event(struct machine * machine __maybe_unused,union perf_event * event)868 int machine__process_switch_event(struct machine *machine __maybe_unused,
869 union perf_event *event)
870 {
871 if (dump_trace)
872 perf_event__fprintf_switch(event, stdout);
873 return 0;
874 }
875
machine__process_ksymbol_register(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)876 static int machine__process_ksymbol_register(struct machine *machine,
877 union perf_event *event,
878 struct perf_sample *sample __maybe_unused)
879 {
880 struct symbol *sym;
881 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
882
883 if (!map) {
884 struct dso *dso = dso__new(event->ksymbol.name);
885
886 if (dso) {
887 dso->kernel = DSO_SPACE__KERNEL;
888 map = map__new2(0, dso);
889 dso__put(dso);
890 }
891
892 if (!dso || !map) {
893 return -ENOMEM;
894 }
895
896 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
897 map->dso->binary_type = DSO_BINARY_TYPE__OOL;
898 map->dso->data.file_size = event->ksymbol.len;
899 dso__set_loaded(map->dso);
900 }
901
902 map->start = event->ksymbol.addr;
903 map->end = map->start + event->ksymbol.len;
904 maps__insert(machine__kernel_maps(machine), map);
905 map__put(map);
906 dso__set_loaded(dso);
907
908 if (is_bpf_image(event->ksymbol.name)) {
909 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
910 dso__set_long_name(dso, "", false);
911 }
912 }
913
914 sym = symbol__new(map->map_ip(map, map->start),
915 event->ksymbol.len,
916 0, 0, event->ksymbol.name);
917 if (!sym)
918 return -ENOMEM;
919 dso__insert_symbol(map->dso, sym);
920 return 0;
921 }
922
machine__process_ksymbol_unregister(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)923 static int machine__process_ksymbol_unregister(struct machine *machine,
924 union perf_event *event,
925 struct perf_sample *sample __maybe_unused)
926 {
927 struct symbol *sym;
928 struct map *map;
929
930 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
931 if (!map)
932 return 0;
933
934 if (map != machine->vmlinux_map)
935 maps__remove(machine__kernel_maps(machine), map);
936 else {
937 sym = dso__find_symbol(map->dso, map->map_ip(map, map->start));
938 if (sym)
939 dso__delete_symbol(map->dso, sym);
940 }
941
942 return 0;
943 }
944
machine__process_ksymbol(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)945 int machine__process_ksymbol(struct machine *machine __maybe_unused,
946 union perf_event *event,
947 struct perf_sample *sample)
948 {
949 if (dump_trace)
950 perf_event__fprintf_ksymbol(event, stdout);
951
952 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
953 return machine__process_ksymbol_unregister(machine, event,
954 sample);
955 return machine__process_ksymbol_register(machine, event, sample);
956 }
957
machine__process_text_poke(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)958 int machine__process_text_poke(struct machine *machine, union perf_event *event,
959 struct perf_sample *sample __maybe_unused)
960 {
961 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
962 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
963
964 if (dump_trace)
965 perf_event__fprintf_text_poke(event, machine, stdout);
966
967 if (!event->text_poke.new_len)
968 return 0;
969
970 if (cpumode != PERF_RECORD_MISC_KERNEL) {
971 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
972 return 0;
973 }
974
975 if (map && map->dso) {
976 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
977 int ret;
978
979 /*
980 * Kernel maps might be changed when loading symbols so loading
981 * must be done prior to using kernel maps.
982 */
983 map__load(map);
984 ret = dso__data_write_cache_addr(map->dso, map, machine,
985 event->text_poke.addr,
986 new_bytes,
987 event->text_poke.new_len);
988 if (ret != event->text_poke.new_len)
989 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
990 event->text_poke.addr);
991 } else {
992 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
993 event->text_poke.addr);
994 }
995
996 return 0;
997 }
998
machine__addnew_module_map(struct machine * machine,u64 start,const char * filename)999 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
1000 const char *filename)
1001 {
1002 struct map *map = NULL;
1003 struct kmod_path m;
1004 struct dso *dso;
1005
1006 if (kmod_path__parse_name(&m, filename))
1007 return NULL;
1008
1009 dso = machine__findnew_module_dso(machine, &m, filename);
1010 if (dso == NULL)
1011 goto out;
1012
1013 map = map__new2(start, dso);
1014 if (map == NULL)
1015 goto out;
1016
1017 maps__insert(machine__kernel_maps(machine), map);
1018
1019 /* Put the map here because maps__insert already got it */
1020 map__put(map);
1021 out:
1022 /* put the dso here, corresponding to machine__findnew_module_dso */
1023 dso__put(dso);
1024 zfree(&m.name);
1025 return map;
1026 }
1027
machines__fprintf_dsos(struct machines * machines,FILE * fp)1028 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
1029 {
1030 struct rb_node *nd;
1031 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
1032
1033 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1034 struct machine *pos = rb_entry(nd, struct machine, rb_node);
1035 ret += __dsos__fprintf(&pos->dsos.head, fp);
1036 }
1037
1038 return ret;
1039 }
1040
machine__fprintf_dsos_buildid(struct machine * m,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)1041 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
1042 bool (skip)(struct dso *dso, int parm), int parm)
1043 {
1044 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
1045 }
1046
machines__fprintf_dsos_buildid(struct machines * machines,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)1047 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
1048 bool (skip)(struct dso *dso, int parm), int parm)
1049 {
1050 struct rb_node *nd;
1051 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
1052
1053 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1054 struct machine *pos = rb_entry(nd, struct machine, rb_node);
1055 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
1056 }
1057 return ret;
1058 }
1059
machine__fprintf_vmlinux_path(struct machine * machine,FILE * fp)1060 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
1061 {
1062 int i;
1063 size_t printed = 0;
1064 struct dso *kdso = machine__kernel_dso(machine);
1065
1066 if (kdso->has_build_id) {
1067 char filename[PATH_MAX];
1068 if (dso__build_id_filename(kdso, filename, sizeof(filename),
1069 false))
1070 printed += fprintf(fp, "[0] %s\n", filename);
1071 }
1072
1073 for (i = 0; i < vmlinux_path__nr_entries; ++i)
1074 printed += fprintf(fp, "[%d] %s\n",
1075 i + kdso->has_build_id, vmlinux_path[i]);
1076
1077 return printed;
1078 }
1079
machine__fprintf(struct machine * machine,FILE * fp)1080 size_t machine__fprintf(struct machine *machine, FILE *fp)
1081 {
1082 struct rb_node *nd;
1083 size_t ret;
1084 int i;
1085
1086 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
1087 struct threads *threads = &machine->threads[i];
1088
1089 down_read(&threads->lock);
1090
1091 ret = fprintf(fp, "Threads: %u\n", threads->nr);
1092
1093 for (nd = rb_first_cached(&threads->entries); nd;
1094 nd = rb_next(nd)) {
1095 struct thread *pos = rb_entry(nd, struct thread, rb_node);
1096
1097 ret += thread__fprintf(pos, fp);
1098 }
1099
1100 up_read(&threads->lock);
1101 }
1102 return ret;
1103 }
1104
machine__get_kernel(struct machine * machine)1105 static struct dso *machine__get_kernel(struct machine *machine)
1106 {
1107 const char *vmlinux_name = machine->mmap_name;
1108 struct dso *kernel;
1109
1110 if (machine__is_host(machine)) {
1111 if (symbol_conf.vmlinux_name)
1112 vmlinux_name = symbol_conf.vmlinux_name;
1113
1114 kernel = machine__findnew_kernel(machine, vmlinux_name,
1115 "[kernel]", DSO_SPACE__KERNEL);
1116 } else {
1117 if (symbol_conf.default_guest_vmlinux_name)
1118 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1119
1120 kernel = machine__findnew_kernel(machine, vmlinux_name,
1121 "[guest.kernel]",
1122 DSO_SPACE__KERNEL_GUEST);
1123 }
1124
1125 if (kernel != NULL && (!kernel->has_build_id))
1126 dso__read_running_kernel_build_id(kernel, machine);
1127
1128 return kernel;
1129 }
1130
machine__get_kallsyms_filename(struct machine * machine,char * buf,size_t bufsz)1131 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1132 size_t bufsz)
1133 {
1134 if (machine__is_default_guest(machine))
1135 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1136 else
1137 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1138 }
1139
1140 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1141
1142 /* Figure out the start address of kernel map from /proc/kallsyms.
1143 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1144 * symbol_name if it's not that important.
1145 */
machine__get_running_kernel_start(struct machine * machine,const char ** symbol_name,u64 * start,u64 * end)1146 static int machine__get_running_kernel_start(struct machine *machine,
1147 const char **symbol_name,
1148 u64 *start, u64 *end)
1149 {
1150 char filename[PATH_MAX];
1151 int i, err = -1;
1152 const char *name;
1153 u64 addr = 0;
1154
1155 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1156
1157 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1158 return 0;
1159
1160 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1161 err = kallsyms__get_function_start(filename, name, &addr);
1162 if (!err)
1163 break;
1164 }
1165
1166 if (err)
1167 return -1;
1168
1169 if (symbol_name)
1170 *symbol_name = name;
1171
1172 *start = addr;
1173
1174 err = kallsyms__get_function_start(filename, "_etext", &addr);
1175 if (!err)
1176 *end = addr;
1177
1178 return 0;
1179 }
1180
machine__create_extra_kernel_map(struct machine * machine,struct dso * kernel,struct extra_kernel_map * xm)1181 int machine__create_extra_kernel_map(struct machine *machine,
1182 struct dso *kernel,
1183 struct extra_kernel_map *xm)
1184 {
1185 struct kmap *kmap;
1186 struct map *map;
1187
1188 map = map__new2(xm->start, kernel);
1189 if (!map)
1190 return -1;
1191
1192 map->end = xm->end;
1193 map->pgoff = xm->pgoff;
1194
1195 kmap = map__kmap(map);
1196
1197 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1198
1199 maps__insert(machine__kernel_maps(machine), map);
1200
1201 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1202 kmap->name, map->start, map->end);
1203
1204 map__put(map);
1205
1206 return 0;
1207 }
1208
find_entry_trampoline(struct dso * dso)1209 static u64 find_entry_trampoline(struct dso *dso)
1210 {
1211 /* Duplicates are removed so lookup all aliases */
1212 const char *syms[] = {
1213 "_entry_trampoline",
1214 "__entry_trampoline_start",
1215 "entry_SYSCALL_64_trampoline",
1216 };
1217 struct symbol *sym = dso__first_symbol(dso);
1218 unsigned int i;
1219
1220 for (; sym; sym = dso__next_symbol(sym)) {
1221 if (sym->binding != STB_GLOBAL)
1222 continue;
1223 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1224 if (!strcmp(sym->name, syms[i]))
1225 return sym->start;
1226 }
1227 }
1228
1229 return 0;
1230 }
1231
1232 /*
1233 * These values can be used for kernels that do not have symbols for the entry
1234 * trampolines in kallsyms.
1235 */
1236 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1237 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1238 #define X86_64_ENTRY_TRAMPOLINE 0x6000
1239
1240 /* Map x86_64 PTI entry trampolines */
machine__map_x86_64_entry_trampolines(struct machine * machine,struct dso * kernel)1241 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1242 struct dso *kernel)
1243 {
1244 struct maps *kmaps = machine__kernel_maps(machine);
1245 int nr_cpus_avail, cpu;
1246 bool found = false;
1247 struct map *map;
1248 u64 pgoff;
1249
1250 /*
1251 * In the vmlinux case, pgoff is a virtual address which must now be
1252 * mapped to a vmlinux offset.
1253 */
1254 maps__for_each_entry(kmaps, map) {
1255 struct kmap *kmap = __map__kmap(map);
1256 struct map *dest_map;
1257
1258 if (!kmap || !is_entry_trampoline(kmap->name))
1259 continue;
1260
1261 dest_map = maps__find(kmaps, map->pgoff);
1262 if (dest_map != map)
1263 map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1264 found = true;
1265 }
1266 if (found || machine->trampolines_mapped)
1267 return 0;
1268
1269 pgoff = find_entry_trampoline(kernel);
1270 if (!pgoff)
1271 return 0;
1272
1273 nr_cpus_avail = machine__nr_cpus_avail(machine);
1274
1275 /* Add a 1 page map for each CPU's entry trampoline */
1276 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1277 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1278 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1279 X86_64_ENTRY_TRAMPOLINE;
1280 struct extra_kernel_map xm = {
1281 .start = va,
1282 .end = va + page_size,
1283 .pgoff = pgoff,
1284 };
1285
1286 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1287
1288 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1289 return -1;
1290 }
1291
1292 machine->trampolines_mapped = nr_cpus_avail;
1293
1294 return 0;
1295 }
1296
machine__create_extra_kernel_maps(struct machine * machine __maybe_unused,struct dso * kernel __maybe_unused)1297 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1298 struct dso *kernel __maybe_unused)
1299 {
1300 return 0;
1301 }
1302
1303 static int
__machine__create_kernel_maps(struct machine * machine,struct dso * kernel)1304 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1305 {
1306 /* In case of renewal the kernel map, destroy previous one */
1307 machine__destroy_kernel_maps(machine);
1308
1309 machine->vmlinux_map = map__new2(0, kernel);
1310 if (machine->vmlinux_map == NULL)
1311 return -1;
1312
1313 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1314 maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1315 return 0;
1316 }
1317
machine__destroy_kernel_maps(struct machine * machine)1318 void machine__destroy_kernel_maps(struct machine *machine)
1319 {
1320 struct kmap *kmap;
1321 struct map *map = machine__kernel_map(machine);
1322
1323 if (map == NULL)
1324 return;
1325
1326 kmap = map__kmap(map);
1327 maps__remove(machine__kernel_maps(machine), map);
1328 if (kmap && kmap->ref_reloc_sym) {
1329 zfree((char **)&kmap->ref_reloc_sym->name);
1330 zfree(&kmap->ref_reloc_sym);
1331 }
1332
1333 map__zput(machine->vmlinux_map);
1334 }
1335
machines__create_guest_kernel_maps(struct machines * machines)1336 int machines__create_guest_kernel_maps(struct machines *machines)
1337 {
1338 int ret = 0;
1339 struct dirent **namelist = NULL;
1340 int i, items = 0;
1341 char path[PATH_MAX];
1342 pid_t pid;
1343 char *endp;
1344
1345 if (symbol_conf.default_guest_vmlinux_name ||
1346 symbol_conf.default_guest_modules ||
1347 symbol_conf.default_guest_kallsyms) {
1348 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1349 }
1350
1351 if (symbol_conf.guestmount) {
1352 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1353 if (items <= 0)
1354 return -ENOENT;
1355 for (i = 0; i < items; i++) {
1356 if (!isdigit(namelist[i]->d_name[0])) {
1357 /* Filter out . and .. */
1358 continue;
1359 }
1360 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1361 if ((*endp != '\0') ||
1362 (endp == namelist[i]->d_name) ||
1363 (errno == ERANGE)) {
1364 pr_debug("invalid directory (%s). Skipping.\n",
1365 namelist[i]->d_name);
1366 continue;
1367 }
1368 sprintf(path, "%s/%s/proc/kallsyms",
1369 symbol_conf.guestmount,
1370 namelist[i]->d_name);
1371 ret = access(path, R_OK);
1372 if (ret) {
1373 pr_debug("Can't access file %s\n", path);
1374 goto failure;
1375 }
1376 machines__create_kernel_maps(machines, pid);
1377 }
1378 failure:
1379 free(namelist);
1380 }
1381
1382 return ret;
1383 }
1384
machines__destroy_kernel_maps(struct machines * machines)1385 void machines__destroy_kernel_maps(struct machines *machines)
1386 {
1387 struct rb_node *next = rb_first_cached(&machines->guests);
1388
1389 machine__destroy_kernel_maps(&machines->host);
1390
1391 while (next) {
1392 struct machine *pos = rb_entry(next, struct machine, rb_node);
1393
1394 next = rb_next(&pos->rb_node);
1395 rb_erase_cached(&pos->rb_node, &machines->guests);
1396 machine__delete(pos);
1397 }
1398 }
1399
machines__create_kernel_maps(struct machines * machines,pid_t pid)1400 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1401 {
1402 struct machine *machine = machines__findnew(machines, pid);
1403
1404 if (machine == NULL)
1405 return -1;
1406
1407 return machine__create_kernel_maps(machine);
1408 }
1409
machine__load_kallsyms(struct machine * machine,const char * filename)1410 int machine__load_kallsyms(struct machine *machine, const char *filename)
1411 {
1412 struct map *map = machine__kernel_map(machine);
1413 int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1414
1415 if (ret > 0) {
1416 dso__set_loaded(map->dso);
1417 /*
1418 * Since /proc/kallsyms will have multiple sessions for the
1419 * kernel, with modules between them, fixup the end of all
1420 * sections.
1421 */
1422 maps__fixup_end(machine__kernel_maps(machine));
1423 }
1424
1425 return ret;
1426 }
1427
machine__load_vmlinux_path(struct machine * machine)1428 int machine__load_vmlinux_path(struct machine *machine)
1429 {
1430 struct map *map = machine__kernel_map(machine);
1431 int ret = dso__load_vmlinux_path(map->dso, map);
1432
1433 if (ret > 0)
1434 dso__set_loaded(map->dso);
1435
1436 return ret;
1437 }
1438
get_kernel_version(const char * root_dir)1439 static char *get_kernel_version(const char *root_dir)
1440 {
1441 char version[PATH_MAX];
1442 FILE *file;
1443 char *name, *tmp;
1444 const char *prefix = "Linux version ";
1445
1446 sprintf(version, "%s/proc/version", root_dir);
1447 file = fopen(version, "r");
1448 if (!file)
1449 return NULL;
1450
1451 tmp = fgets(version, sizeof(version), file);
1452 fclose(file);
1453 if (!tmp)
1454 return NULL;
1455
1456 name = strstr(version, prefix);
1457 if (!name)
1458 return NULL;
1459 name += strlen(prefix);
1460 tmp = strchr(name, ' ');
1461 if (tmp)
1462 *tmp = '\0';
1463
1464 return strdup(name);
1465 }
1466
is_kmod_dso(struct dso * dso)1467 static bool is_kmod_dso(struct dso *dso)
1468 {
1469 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1470 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1471 }
1472
maps__set_module_path(struct maps * maps,const char * path,struct kmod_path * m)1473 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1474 {
1475 char *long_name;
1476 struct map *map = maps__find_by_name(maps, m->name);
1477
1478 if (map == NULL)
1479 return 0;
1480
1481 long_name = strdup(path);
1482 if (long_name == NULL)
1483 return -ENOMEM;
1484
1485 dso__set_long_name(map->dso, long_name, true);
1486 dso__kernel_module_get_build_id(map->dso, "");
1487
1488 /*
1489 * Full name could reveal us kmod compression, so
1490 * we need to update the symtab_type if needed.
1491 */
1492 if (m->comp && is_kmod_dso(map->dso)) {
1493 map->dso->symtab_type++;
1494 map->dso->comp = m->comp;
1495 }
1496
1497 return 0;
1498 }
1499
maps__set_modules_path_dir(struct maps * maps,const char * dir_name,int depth)1500 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1501 {
1502 struct dirent *dent;
1503 DIR *dir = opendir(dir_name);
1504 int ret = 0;
1505
1506 if (!dir) {
1507 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1508 return -1;
1509 }
1510
1511 while ((dent = readdir(dir)) != NULL) {
1512 char path[PATH_MAX];
1513 struct stat st;
1514
1515 /*sshfs might return bad dent->d_type, so we have to stat*/
1516 path__join(path, sizeof(path), dir_name, dent->d_name);
1517 if (stat(path, &st))
1518 continue;
1519
1520 if (S_ISDIR(st.st_mode)) {
1521 if (!strcmp(dent->d_name, ".") ||
1522 !strcmp(dent->d_name, ".."))
1523 continue;
1524
1525 /* Do not follow top-level source and build symlinks */
1526 if (depth == 0) {
1527 if (!strcmp(dent->d_name, "source") ||
1528 !strcmp(dent->d_name, "build"))
1529 continue;
1530 }
1531
1532 ret = maps__set_modules_path_dir(maps, path, depth + 1);
1533 if (ret < 0)
1534 goto out;
1535 } else {
1536 struct kmod_path m;
1537
1538 ret = kmod_path__parse_name(&m, dent->d_name);
1539 if (ret)
1540 goto out;
1541
1542 if (m.kmod)
1543 ret = maps__set_module_path(maps, path, &m);
1544
1545 zfree(&m.name);
1546
1547 if (ret)
1548 goto out;
1549 }
1550 }
1551
1552 out:
1553 closedir(dir);
1554 return ret;
1555 }
1556
machine__set_modules_path(struct machine * machine)1557 static int machine__set_modules_path(struct machine *machine)
1558 {
1559 char *version;
1560 char modules_path[PATH_MAX];
1561
1562 version = get_kernel_version(machine->root_dir);
1563 if (!version)
1564 return -1;
1565
1566 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1567 machine->root_dir, version);
1568 free(version);
1569
1570 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1571 }
arch__fix_module_text_start(u64 * start __maybe_unused,u64 * size __maybe_unused,const char * name __maybe_unused)1572 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1573 u64 *size __maybe_unused,
1574 const char *name __maybe_unused)
1575 {
1576 return 0;
1577 }
1578
machine__create_module(void * arg,const char * name,u64 start,u64 size)1579 static int machine__create_module(void *arg, const char *name, u64 start,
1580 u64 size)
1581 {
1582 struct machine *machine = arg;
1583 struct map *map;
1584
1585 if (arch__fix_module_text_start(&start, &size, name) < 0)
1586 return -1;
1587
1588 map = machine__addnew_module_map(machine, start, name);
1589 if (map == NULL)
1590 return -1;
1591 map->end = start + size;
1592
1593 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1594
1595 return 0;
1596 }
1597
machine__create_modules(struct machine * machine)1598 static int machine__create_modules(struct machine *machine)
1599 {
1600 const char *modules;
1601 char path[PATH_MAX];
1602
1603 if (machine__is_default_guest(machine)) {
1604 modules = symbol_conf.default_guest_modules;
1605 } else {
1606 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1607 modules = path;
1608 }
1609
1610 if (symbol__restricted_filename(modules, "/proc/modules"))
1611 return -1;
1612
1613 if (modules__parse(modules, machine, machine__create_module))
1614 return -1;
1615
1616 if (!machine__set_modules_path(machine))
1617 return 0;
1618
1619 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1620
1621 return 0;
1622 }
1623
machine__set_kernel_mmap(struct machine * machine,u64 start,u64 end)1624 static void machine__set_kernel_mmap(struct machine *machine,
1625 u64 start, u64 end)
1626 {
1627 machine->vmlinux_map->start = start;
1628 machine->vmlinux_map->end = end;
1629 /*
1630 * Be a bit paranoid here, some perf.data file came with
1631 * a zero sized synthesized MMAP event for the kernel.
1632 */
1633 if (start == 0 && end == 0)
1634 machine->vmlinux_map->end = ~0ULL;
1635 }
1636
machine__update_kernel_mmap(struct machine * machine,u64 start,u64 end)1637 static void machine__update_kernel_mmap(struct machine *machine,
1638 u64 start, u64 end)
1639 {
1640 struct map *map = machine__kernel_map(machine);
1641
1642 map__get(map);
1643 maps__remove(machine__kernel_maps(machine), map);
1644
1645 machine__set_kernel_mmap(machine, start, end);
1646
1647 maps__insert(machine__kernel_maps(machine), map);
1648 map__put(map);
1649 }
1650
machine__create_kernel_maps(struct machine * machine)1651 int machine__create_kernel_maps(struct machine *machine)
1652 {
1653 struct dso *kernel = machine__get_kernel(machine);
1654 const char *name = NULL;
1655 struct map *map;
1656 u64 start = 0, end = ~0ULL;
1657 int ret;
1658
1659 if (kernel == NULL)
1660 return -1;
1661
1662 ret = __machine__create_kernel_maps(machine, kernel);
1663 if (ret < 0)
1664 goto out_put;
1665
1666 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1667 if (machine__is_host(machine))
1668 pr_debug("Problems creating module maps, "
1669 "continuing anyway...\n");
1670 else
1671 pr_debug("Problems creating module maps for guest %d, "
1672 "continuing anyway...\n", machine->pid);
1673 }
1674
1675 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1676 if (name &&
1677 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1678 machine__destroy_kernel_maps(machine);
1679 ret = -1;
1680 goto out_put;
1681 }
1682
1683 /*
1684 * we have a real start address now, so re-order the kmaps
1685 * assume it's the last in the kmaps
1686 */
1687 machine__update_kernel_mmap(machine, start, end);
1688 }
1689
1690 if (machine__create_extra_kernel_maps(machine, kernel))
1691 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1692
1693 if (end == ~0ULL) {
1694 /* update end address of the kernel map using adjacent module address */
1695 map = map__next(machine__kernel_map(machine));
1696 if (map)
1697 machine__set_kernel_mmap(machine, start, map->start);
1698 }
1699
1700 out_put:
1701 dso__put(kernel);
1702 return ret;
1703 }
1704
machine__uses_kcore(struct machine * machine)1705 static bool machine__uses_kcore(struct machine *machine)
1706 {
1707 struct dso *dso;
1708
1709 list_for_each_entry(dso, &machine->dsos.head, node) {
1710 if (dso__is_kcore(dso))
1711 return true;
1712 }
1713
1714 return false;
1715 }
1716
perf_event__is_extra_kernel_mmap(struct machine * machine,struct extra_kernel_map * xm)1717 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1718 struct extra_kernel_map *xm)
1719 {
1720 return machine__is(machine, "x86_64") &&
1721 is_entry_trampoline(xm->name);
1722 }
1723
machine__process_extra_kernel_map(struct machine * machine,struct extra_kernel_map * xm)1724 static int machine__process_extra_kernel_map(struct machine *machine,
1725 struct extra_kernel_map *xm)
1726 {
1727 struct dso *kernel = machine__kernel_dso(machine);
1728
1729 if (kernel == NULL)
1730 return -1;
1731
1732 return machine__create_extra_kernel_map(machine, kernel, xm);
1733 }
1734
machine__process_kernel_mmap_event(struct machine * machine,struct extra_kernel_map * xm,struct build_id * bid)1735 static int machine__process_kernel_mmap_event(struct machine *machine,
1736 struct extra_kernel_map *xm,
1737 struct build_id *bid)
1738 {
1739 struct map *map;
1740 enum dso_space_type dso_space;
1741 bool is_kernel_mmap;
1742 const char *mmap_name = machine->mmap_name;
1743
1744 /* If we have maps from kcore then we do not need or want any others */
1745 if (machine__uses_kcore(machine))
1746 return 0;
1747
1748 if (machine__is_host(machine))
1749 dso_space = DSO_SPACE__KERNEL;
1750 else
1751 dso_space = DSO_SPACE__KERNEL_GUEST;
1752
1753 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1754 if (!is_kernel_mmap && !machine__is_host(machine)) {
1755 /*
1756 * If the event was recorded inside the guest and injected into
1757 * the host perf.data file, then it will match a host mmap_name,
1758 * so try that - see machine__set_mmap_name().
1759 */
1760 mmap_name = "[kernel.kallsyms]";
1761 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1762 }
1763 if (xm->name[0] == '/' ||
1764 (!is_kernel_mmap && xm->name[0] == '[')) {
1765 map = machine__addnew_module_map(machine, xm->start,
1766 xm->name);
1767 if (map == NULL)
1768 goto out_problem;
1769
1770 map->end = map->start + xm->end - xm->start;
1771
1772 if (build_id__is_defined(bid))
1773 dso__set_build_id(map->dso, bid);
1774
1775 } else if (is_kernel_mmap) {
1776 const char *symbol_name = xm->name + strlen(mmap_name);
1777 /*
1778 * Should be there already, from the build-id table in
1779 * the header.
1780 */
1781 struct dso *kernel = NULL;
1782 struct dso *dso;
1783
1784 down_read(&machine->dsos.lock);
1785
1786 list_for_each_entry(dso, &machine->dsos.head, node) {
1787
1788 /*
1789 * The cpumode passed to is_kernel_module is not the
1790 * cpumode of *this* event. If we insist on passing
1791 * correct cpumode to is_kernel_module, we should
1792 * record the cpumode when we adding this dso to the
1793 * linked list.
1794 *
1795 * However we don't really need passing correct
1796 * cpumode. We know the correct cpumode must be kernel
1797 * mode (if not, we should not link it onto kernel_dsos
1798 * list).
1799 *
1800 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1801 * is_kernel_module() treats it as a kernel cpumode.
1802 */
1803
1804 if (!dso->kernel ||
1805 is_kernel_module(dso->long_name,
1806 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1807 continue;
1808
1809
1810 kernel = dso;
1811 break;
1812 }
1813
1814 up_read(&machine->dsos.lock);
1815
1816 if (kernel == NULL)
1817 kernel = machine__findnew_dso(machine, machine->mmap_name);
1818 if (kernel == NULL)
1819 goto out_problem;
1820
1821 kernel->kernel = dso_space;
1822 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1823 dso__put(kernel);
1824 goto out_problem;
1825 }
1826
1827 if (strstr(kernel->long_name, "vmlinux"))
1828 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1829
1830 machine__update_kernel_mmap(machine, xm->start, xm->end);
1831
1832 if (build_id__is_defined(bid))
1833 dso__set_build_id(kernel, bid);
1834
1835 /*
1836 * Avoid using a zero address (kptr_restrict) for the ref reloc
1837 * symbol. Effectively having zero here means that at record
1838 * time /proc/sys/kernel/kptr_restrict was non zero.
1839 */
1840 if (xm->pgoff != 0) {
1841 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1842 symbol_name,
1843 xm->pgoff);
1844 }
1845
1846 if (machine__is_default_guest(machine)) {
1847 /*
1848 * preload dso of guest kernel and modules
1849 */
1850 dso__load(kernel, machine__kernel_map(machine));
1851 }
1852 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1853 return machine__process_extra_kernel_map(machine, xm);
1854 }
1855 return 0;
1856 out_problem:
1857 return -1;
1858 }
1859
machine__process_mmap2_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1860 int machine__process_mmap2_event(struct machine *machine,
1861 union perf_event *event,
1862 struct perf_sample *sample)
1863 {
1864 struct thread *thread;
1865 struct map *map;
1866 struct dso_id dso_id = {
1867 .maj = event->mmap2.maj,
1868 .min = event->mmap2.min,
1869 .ino = event->mmap2.ino,
1870 .ino_generation = event->mmap2.ino_generation,
1871 };
1872 struct build_id __bid, *bid = NULL;
1873 int ret = 0;
1874
1875 if (dump_trace)
1876 perf_event__fprintf_mmap2(event, stdout);
1877
1878 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1879 bid = &__bid;
1880 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1881 }
1882
1883 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1884 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1885 struct extra_kernel_map xm = {
1886 .start = event->mmap2.start,
1887 .end = event->mmap2.start + event->mmap2.len,
1888 .pgoff = event->mmap2.pgoff,
1889 };
1890
1891 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1892 ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1893 if (ret < 0)
1894 goto out_problem;
1895 return 0;
1896 }
1897
1898 thread = machine__findnew_thread(machine, event->mmap2.pid,
1899 event->mmap2.tid);
1900 if (thread == NULL)
1901 goto out_problem;
1902
1903 map = map__new(machine, event->mmap2.start,
1904 event->mmap2.len, event->mmap2.pgoff,
1905 &dso_id, event->mmap2.prot,
1906 event->mmap2.flags, bid,
1907 event->mmap2.filename, thread);
1908
1909 if (map == NULL)
1910 goto out_problem_map;
1911
1912 ret = thread__insert_map(thread, map);
1913 if (ret)
1914 goto out_problem_insert;
1915
1916 thread__put(thread);
1917 map__put(map);
1918 return 0;
1919
1920 out_problem_insert:
1921 map__put(map);
1922 out_problem_map:
1923 thread__put(thread);
1924 out_problem:
1925 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1926 return 0;
1927 }
1928
machine__process_mmap_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1929 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1930 struct perf_sample *sample)
1931 {
1932 struct thread *thread;
1933 struct map *map;
1934 u32 prot = 0;
1935 int ret = 0;
1936
1937 if (dump_trace)
1938 perf_event__fprintf_mmap(event, stdout);
1939
1940 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1941 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1942 struct extra_kernel_map xm = {
1943 .start = event->mmap.start,
1944 .end = event->mmap.start + event->mmap.len,
1945 .pgoff = event->mmap.pgoff,
1946 };
1947
1948 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1949 ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1950 if (ret < 0)
1951 goto out_problem;
1952 return 0;
1953 }
1954
1955 thread = machine__findnew_thread(machine, event->mmap.pid,
1956 event->mmap.tid);
1957 if (thread == NULL)
1958 goto out_problem;
1959
1960 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1961 prot = PROT_EXEC;
1962
1963 map = map__new(machine, event->mmap.start,
1964 event->mmap.len, event->mmap.pgoff,
1965 NULL, prot, 0, NULL, event->mmap.filename, thread);
1966
1967 if (map == NULL)
1968 goto out_problem_map;
1969
1970 ret = thread__insert_map(thread, map);
1971 if (ret)
1972 goto out_problem_insert;
1973
1974 thread__put(thread);
1975 map__put(map);
1976 return 0;
1977
1978 out_problem_insert:
1979 map__put(map);
1980 out_problem_map:
1981 thread__put(thread);
1982 out_problem:
1983 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1984 return 0;
1985 }
1986
__machine__remove_thread(struct machine * machine,struct thread * th,bool lock)1987 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1988 {
1989 struct threads *threads = machine__threads(machine, th->tid);
1990
1991 if (threads->last_match == th)
1992 threads__set_last_match(threads, NULL);
1993
1994 if (lock)
1995 down_write(&threads->lock);
1996
1997 BUG_ON(refcount_read(&th->refcnt) == 0);
1998
1999 rb_erase_cached(&th->rb_node, &threads->entries);
2000 RB_CLEAR_NODE(&th->rb_node);
2001 --threads->nr;
2002 /*
2003 * Move it first to the dead_threads list, then drop the reference,
2004 * if this is the last reference, then the thread__delete destructor
2005 * will be called and we will remove it from the dead_threads list.
2006 */
2007 list_add_tail(&th->node, &threads->dead);
2008
2009 /*
2010 * We need to do the put here because if this is the last refcount,
2011 * then we will be touching the threads->dead head when removing the
2012 * thread.
2013 */
2014 thread__put(th);
2015
2016 if (lock)
2017 up_write(&threads->lock);
2018 }
2019
machine__remove_thread(struct machine * machine,struct thread * th)2020 void machine__remove_thread(struct machine *machine, struct thread *th)
2021 {
2022 return __machine__remove_thread(machine, th, true);
2023 }
2024
machine__process_fork_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)2025 int machine__process_fork_event(struct machine *machine, union perf_event *event,
2026 struct perf_sample *sample)
2027 {
2028 struct thread *thread = machine__find_thread(machine,
2029 event->fork.pid,
2030 event->fork.tid);
2031 struct thread *parent = machine__findnew_thread(machine,
2032 event->fork.ppid,
2033 event->fork.ptid);
2034 bool do_maps_clone = true;
2035 int err = 0;
2036
2037 if (dump_trace)
2038 perf_event__fprintf_task(event, stdout);
2039
2040 /*
2041 * There may be an existing thread that is not actually the parent,
2042 * either because we are processing events out of order, or because the
2043 * (fork) event that would have removed the thread was lost. Assume the
2044 * latter case and continue on as best we can.
2045 */
2046 if (parent->pid_ != (pid_t)event->fork.ppid) {
2047 dump_printf("removing erroneous parent thread %d/%d\n",
2048 parent->pid_, parent->tid);
2049 machine__remove_thread(machine, parent);
2050 thread__put(parent);
2051 parent = machine__findnew_thread(machine, event->fork.ppid,
2052 event->fork.ptid);
2053 }
2054
2055 /* if a thread currently exists for the thread id remove it */
2056 if (thread != NULL) {
2057 machine__remove_thread(machine, thread);
2058 thread__put(thread);
2059 }
2060
2061 thread = machine__findnew_thread(machine, event->fork.pid,
2062 event->fork.tid);
2063 /*
2064 * When synthesizing FORK events, we are trying to create thread
2065 * objects for the already running tasks on the machine.
2066 *
2067 * Normally, for a kernel FORK event, we want to clone the parent's
2068 * maps because that is what the kernel just did.
2069 *
2070 * But when synthesizing, this should not be done. If we do, we end up
2071 * with overlapping maps as we process the synthesized MMAP2 events that
2072 * get delivered shortly thereafter.
2073 *
2074 * Use the FORK event misc flags in an internal way to signal this
2075 * situation, so we can elide the map clone when appropriate.
2076 */
2077 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
2078 do_maps_clone = false;
2079
2080 if (thread == NULL || parent == NULL ||
2081 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
2082 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
2083 err = -1;
2084 }
2085 thread__put(thread);
2086 thread__put(parent);
2087
2088 return err;
2089 }
2090
machine__process_exit_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)2091 int machine__process_exit_event(struct machine *machine, union perf_event *event,
2092 struct perf_sample *sample __maybe_unused)
2093 {
2094 struct thread *thread = machine__find_thread(machine,
2095 event->fork.pid,
2096 event->fork.tid);
2097
2098 if (dump_trace)
2099 perf_event__fprintf_task(event, stdout);
2100
2101 if (thread != NULL) {
2102 thread__exited(thread);
2103 thread__put(thread);
2104 }
2105
2106 return 0;
2107 }
2108
machine__process_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)2109 int machine__process_event(struct machine *machine, union perf_event *event,
2110 struct perf_sample *sample)
2111 {
2112 int ret;
2113
2114 switch (event->header.type) {
2115 case PERF_RECORD_COMM:
2116 ret = machine__process_comm_event(machine, event, sample); break;
2117 case PERF_RECORD_MMAP:
2118 ret = machine__process_mmap_event(machine, event, sample); break;
2119 case PERF_RECORD_NAMESPACES:
2120 ret = machine__process_namespaces_event(machine, event, sample); break;
2121 case PERF_RECORD_CGROUP:
2122 ret = machine__process_cgroup_event(machine, event, sample); break;
2123 case PERF_RECORD_MMAP2:
2124 ret = machine__process_mmap2_event(machine, event, sample); break;
2125 case PERF_RECORD_FORK:
2126 ret = machine__process_fork_event(machine, event, sample); break;
2127 case PERF_RECORD_EXIT:
2128 ret = machine__process_exit_event(machine, event, sample); break;
2129 case PERF_RECORD_LOST:
2130 ret = machine__process_lost_event(machine, event, sample); break;
2131 case PERF_RECORD_AUX:
2132 ret = machine__process_aux_event(machine, event); break;
2133 case PERF_RECORD_ITRACE_START:
2134 ret = machine__process_itrace_start_event(machine, event); break;
2135 case PERF_RECORD_LOST_SAMPLES:
2136 ret = machine__process_lost_samples_event(machine, event, sample); break;
2137 case PERF_RECORD_SWITCH:
2138 case PERF_RECORD_SWITCH_CPU_WIDE:
2139 ret = machine__process_switch_event(machine, event); break;
2140 case PERF_RECORD_KSYMBOL:
2141 ret = machine__process_ksymbol(machine, event, sample); break;
2142 case PERF_RECORD_BPF_EVENT:
2143 ret = machine__process_bpf(machine, event, sample); break;
2144 case PERF_RECORD_TEXT_POKE:
2145 ret = machine__process_text_poke(machine, event, sample); break;
2146 case PERF_RECORD_AUX_OUTPUT_HW_ID:
2147 ret = machine__process_aux_output_hw_id_event(machine, event); break;
2148 default:
2149 ret = -1;
2150 break;
2151 }
2152
2153 return ret;
2154 }
2155
symbol__match_regex(struct symbol * sym,regex_t * regex)2156 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2157 {
2158 if (!regexec(regex, sym->name, 0, NULL, 0))
2159 return true;
2160 return false;
2161 }
2162
ip__resolve_ams(struct thread * thread,struct addr_map_symbol * ams,u64 ip)2163 static void ip__resolve_ams(struct thread *thread,
2164 struct addr_map_symbol *ams,
2165 u64 ip)
2166 {
2167 struct addr_location al;
2168
2169 memset(&al, 0, sizeof(al));
2170 /*
2171 * We cannot use the header.misc hint to determine whether a
2172 * branch stack address is user, kernel, guest, hypervisor.
2173 * Branches may straddle the kernel/user/hypervisor boundaries.
2174 * Thus, we have to try consecutively until we find a match
2175 * or else, the symbol is unknown
2176 */
2177 thread__find_cpumode_addr_location(thread, ip, &al);
2178
2179 ams->addr = ip;
2180 ams->al_addr = al.addr;
2181 ams->al_level = al.level;
2182 ams->ms.maps = al.maps;
2183 ams->ms.sym = al.sym;
2184 ams->ms.map = al.map;
2185 ams->phys_addr = 0;
2186 ams->data_page_size = 0;
2187 }
2188
ip__resolve_data(struct thread * thread,u8 m,struct addr_map_symbol * ams,u64 addr,u64 phys_addr,u64 daddr_page_size)2189 static void ip__resolve_data(struct thread *thread,
2190 u8 m, struct addr_map_symbol *ams,
2191 u64 addr, u64 phys_addr, u64 daddr_page_size)
2192 {
2193 struct addr_location al;
2194
2195 memset(&al, 0, sizeof(al));
2196
2197 thread__find_symbol(thread, m, addr, &al);
2198
2199 ams->addr = addr;
2200 ams->al_addr = al.addr;
2201 ams->al_level = al.level;
2202 ams->ms.maps = al.maps;
2203 ams->ms.sym = al.sym;
2204 ams->ms.map = al.map;
2205 ams->phys_addr = phys_addr;
2206 ams->data_page_size = daddr_page_size;
2207 }
2208
sample__resolve_mem(struct perf_sample * sample,struct addr_location * al)2209 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2210 struct addr_location *al)
2211 {
2212 struct mem_info *mi = mem_info__new();
2213
2214 if (!mi)
2215 return NULL;
2216
2217 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2218 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2219 sample->addr, sample->phys_addr,
2220 sample->data_page_size);
2221 mi->data_src.val = sample->data_src;
2222
2223 return mi;
2224 }
2225
callchain_srcline(struct map_symbol * ms,u64 ip)2226 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2227 {
2228 struct map *map = ms->map;
2229 char *srcline = NULL;
2230
2231 if (!map || callchain_param.key == CCKEY_FUNCTION)
2232 return srcline;
2233
2234 srcline = srcline__tree_find(&map->dso->srclines, ip);
2235 if (!srcline) {
2236 bool show_sym = false;
2237 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2238
2239 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2240 ms->sym, show_sym, show_addr, ip);
2241 srcline__tree_insert(&map->dso->srclines, ip, srcline);
2242 }
2243
2244 return srcline;
2245 }
2246
2247 struct iterations {
2248 int nr_loop_iter;
2249 u64 cycles;
2250 };
2251
add_callchain_ip(struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,u64 ip,bool branch,struct branch_flags * flags,struct iterations * iter,u64 branch_from)2252 static int add_callchain_ip(struct thread *thread,
2253 struct callchain_cursor *cursor,
2254 struct symbol **parent,
2255 struct addr_location *root_al,
2256 u8 *cpumode,
2257 u64 ip,
2258 bool branch,
2259 struct branch_flags *flags,
2260 struct iterations *iter,
2261 u64 branch_from)
2262 {
2263 struct map_symbol ms;
2264 struct addr_location al;
2265 int nr_loop_iter = 0;
2266 u64 iter_cycles = 0;
2267 const char *srcline = NULL;
2268
2269 al.filtered = 0;
2270 al.sym = NULL;
2271 al.srcline = NULL;
2272 if (!cpumode) {
2273 thread__find_cpumode_addr_location(thread, ip, &al);
2274 } else {
2275 if (ip >= PERF_CONTEXT_MAX) {
2276 switch (ip) {
2277 case PERF_CONTEXT_HV:
2278 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2279 break;
2280 case PERF_CONTEXT_KERNEL:
2281 *cpumode = PERF_RECORD_MISC_KERNEL;
2282 break;
2283 case PERF_CONTEXT_USER:
2284 *cpumode = PERF_RECORD_MISC_USER;
2285 break;
2286 default:
2287 pr_debug("invalid callchain context: "
2288 "%"PRId64"\n", (s64) ip);
2289 /*
2290 * It seems the callchain is corrupted.
2291 * Discard all.
2292 */
2293 callchain_cursor_reset(cursor);
2294 return 1;
2295 }
2296 return 0;
2297 }
2298 thread__find_symbol(thread, *cpumode, ip, &al);
2299 }
2300
2301 if (al.sym != NULL) {
2302 if (perf_hpp_list.parent && !*parent &&
2303 symbol__match_regex(al.sym, &parent_regex))
2304 *parent = al.sym;
2305 else if (have_ignore_callees && root_al &&
2306 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2307 /* Treat this symbol as the root,
2308 forgetting its callees. */
2309 *root_al = al;
2310 callchain_cursor_reset(cursor);
2311 }
2312 }
2313
2314 if (symbol_conf.hide_unresolved && al.sym == NULL)
2315 return 0;
2316
2317 if (iter) {
2318 nr_loop_iter = iter->nr_loop_iter;
2319 iter_cycles = iter->cycles;
2320 }
2321
2322 ms.maps = al.maps;
2323 ms.map = al.map;
2324 ms.sym = al.sym;
2325 srcline = callchain_srcline(&ms, al.addr);
2326 return callchain_cursor_append(cursor, ip, &ms,
2327 branch, flags, nr_loop_iter,
2328 iter_cycles, branch_from, srcline);
2329 }
2330
sample__resolve_bstack(struct perf_sample * sample,struct addr_location * al)2331 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2332 struct addr_location *al)
2333 {
2334 unsigned int i;
2335 const struct branch_stack *bs = sample->branch_stack;
2336 struct branch_entry *entries = perf_sample__branch_entries(sample);
2337 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2338
2339 if (!bi)
2340 return NULL;
2341
2342 for (i = 0; i < bs->nr; i++) {
2343 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2344 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2345 bi[i].flags = entries[i].flags;
2346 }
2347 return bi;
2348 }
2349
save_iterations(struct iterations * iter,struct branch_entry * be,int nr)2350 static void save_iterations(struct iterations *iter,
2351 struct branch_entry *be, int nr)
2352 {
2353 int i;
2354
2355 iter->nr_loop_iter++;
2356 iter->cycles = 0;
2357
2358 for (i = 0; i < nr; i++)
2359 iter->cycles += be[i].flags.cycles;
2360 }
2361
2362 #define CHASHSZ 127
2363 #define CHASHBITS 7
2364 #define NO_ENTRY 0xff
2365
2366 #define PERF_MAX_BRANCH_DEPTH 127
2367
2368 /* Remove loops. */
remove_loops(struct branch_entry * l,int nr,struct iterations * iter)2369 static int remove_loops(struct branch_entry *l, int nr,
2370 struct iterations *iter)
2371 {
2372 int i, j, off;
2373 unsigned char chash[CHASHSZ];
2374
2375 memset(chash, NO_ENTRY, sizeof(chash));
2376
2377 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2378
2379 for (i = 0; i < nr; i++) {
2380 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2381
2382 /* no collision handling for now */
2383 if (chash[h] == NO_ENTRY) {
2384 chash[h] = i;
2385 } else if (l[chash[h]].from == l[i].from) {
2386 bool is_loop = true;
2387 /* check if it is a real loop */
2388 off = 0;
2389 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2390 if (l[j].from != l[i + off].from) {
2391 is_loop = false;
2392 break;
2393 }
2394 if (is_loop) {
2395 j = nr - (i + off);
2396 if (j > 0) {
2397 save_iterations(iter + i + off,
2398 l + i, off);
2399
2400 memmove(iter + i, iter + i + off,
2401 j * sizeof(*iter));
2402
2403 memmove(l + i, l + i + off,
2404 j * sizeof(*l));
2405 }
2406
2407 nr -= off;
2408 }
2409 }
2410 }
2411 return nr;
2412 }
2413
lbr_callchain_add_kernel_ip(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,u64 branch_from,bool callee,int end)2414 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2415 struct callchain_cursor *cursor,
2416 struct perf_sample *sample,
2417 struct symbol **parent,
2418 struct addr_location *root_al,
2419 u64 branch_from,
2420 bool callee, int end)
2421 {
2422 struct ip_callchain *chain = sample->callchain;
2423 u8 cpumode = PERF_RECORD_MISC_USER;
2424 int err, i;
2425
2426 if (callee) {
2427 for (i = 0; i < end + 1; i++) {
2428 err = add_callchain_ip(thread, cursor, parent,
2429 root_al, &cpumode, chain->ips[i],
2430 false, NULL, NULL, branch_from);
2431 if (err)
2432 return err;
2433 }
2434 return 0;
2435 }
2436
2437 for (i = end; i >= 0; i--) {
2438 err = add_callchain_ip(thread, cursor, parent,
2439 root_al, &cpumode, chain->ips[i],
2440 false, NULL, NULL, branch_from);
2441 if (err)
2442 return err;
2443 }
2444
2445 return 0;
2446 }
2447
save_lbr_cursor_node(struct thread * thread,struct callchain_cursor * cursor,int idx)2448 static void save_lbr_cursor_node(struct thread *thread,
2449 struct callchain_cursor *cursor,
2450 int idx)
2451 {
2452 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2453
2454 if (!lbr_stitch)
2455 return;
2456
2457 if (cursor->pos == cursor->nr) {
2458 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2459 return;
2460 }
2461
2462 if (!cursor->curr)
2463 cursor->curr = cursor->first;
2464 else
2465 cursor->curr = cursor->curr->next;
2466 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2467 sizeof(struct callchain_cursor_node));
2468
2469 lbr_stitch->prev_lbr_cursor[idx].valid = true;
2470 cursor->pos++;
2471 }
2472
lbr_callchain_add_lbr_ip(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,u64 * branch_from,bool callee)2473 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2474 struct callchain_cursor *cursor,
2475 struct perf_sample *sample,
2476 struct symbol **parent,
2477 struct addr_location *root_al,
2478 u64 *branch_from,
2479 bool callee)
2480 {
2481 struct branch_stack *lbr_stack = sample->branch_stack;
2482 struct branch_entry *entries = perf_sample__branch_entries(sample);
2483 u8 cpumode = PERF_RECORD_MISC_USER;
2484 int lbr_nr = lbr_stack->nr;
2485 struct branch_flags *flags;
2486 int err, i;
2487 u64 ip;
2488
2489 /*
2490 * The curr and pos are not used in writing session. They are cleared
2491 * in callchain_cursor_commit() when the writing session is closed.
2492 * Using curr and pos to track the current cursor node.
2493 */
2494 if (thread->lbr_stitch) {
2495 cursor->curr = NULL;
2496 cursor->pos = cursor->nr;
2497 if (cursor->nr) {
2498 cursor->curr = cursor->first;
2499 for (i = 0; i < (int)(cursor->nr - 1); i++)
2500 cursor->curr = cursor->curr->next;
2501 }
2502 }
2503
2504 if (callee) {
2505 /* Add LBR ip from first entries.to */
2506 ip = entries[0].to;
2507 flags = &entries[0].flags;
2508 *branch_from = entries[0].from;
2509 err = add_callchain_ip(thread, cursor, parent,
2510 root_al, &cpumode, ip,
2511 true, flags, NULL,
2512 *branch_from);
2513 if (err)
2514 return err;
2515
2516 /*
2517 * The number of cursor node increases.
2518 * Move the current cursor node.
2519 * But does not need to save current cursor node for entry 0.
2520 * It's impossible to stitch the whole LBRs of previous sample.
2521 */
2522 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2523 if (!cursor->curr)
2524 cursor->curr = cursor->first;
2525 else
2526 cursor->curr = cursor->curr->next;
2527 cursor->pos++;
2528 }
2529
2530 /* Add LBR ip from entries.from one by one. */
2531 for (i = 0; i < lbr_nr; i++) {
2532 ip = entries[i].from;
2533 flags = &entries[i].flags;
2534 err = add_callchain_ip(thread, cursor, parent,
2535 root_al, &cpumode, ip,
2536 true, flags, NULL,
2537 *branch_from);
2538 if (err)
2539 return err;
2540 save_lbr_cursor_node(thread, cursor, i);
2541 }
2542 return 0;
2543 }
2544
2545 /* Add LBR ip from entries.from one by one. */
2546 for (i = lbr_nr - 1; i >= 0; i--) {
2547 ip = entries[i].from;
2548 flags = &entries[i].flags;
2549 err = add_callchain_ip(thread, cursor, parent,
2550 root_al, &cpumode, ip,
2551 true, flags, NULL,
2552 *branch_from);
2553 if (err)
2554 return err;
2555 save_lbr_cursor_node(thread, cursor, i);
2556 }
2557
2558 /* Add LBR ip from first entries.to */
2559 ip = entries[0].to;
2560 flags = &entries[0].flags;
2561 *branch_from = entries[0].from;
2562 err = add_callchain_ip(thread, cursor, parent,
2563 root_al, &cpumode, ip,
2564 true, flags, NULL,
2565 *branch_from);
2566 if (err)
2567 return err;
2568
2569 return 0;
2570 }
2571
lbr_callchain_add_stitched_lbr_ip(struct thread * thread,struct callchain_cursor * cursor)2572 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2573 struct callchain_cursor *cursor)
2574 {
2575 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2576 struct callchain_cursor_node *cnode;
2577 struct stitch_list *stitch_node;
2578 int err;
2579
2580 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2581 cnode = &stitch_node->cursor;
2582
2583 err = callchain_cursor_append(cursor, cnode->ip,
2584 &cnode->ms,
2585 cnode->branch,
2586 &cnode->branch_flags,
2587 cnode->nr_loop_iter,
2588 cnode->iter_cycles,
2589 cnode->branch_from,
2590 cnode->srcline);
2591 if (err)
2592 return err;
2593 }
2594 return 0;
2595 }
2596
get_stitch_node(struct thread * thread)2597 static struct stitch_list *get_stitch_node(struct thread *thread)
2598 {
2599 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2600 struct stitch_list *stitch_node;
2601
2602 if (!list_empty(&lbr_stitch->free_lists)) {
2603 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2604 struct stitch_list, node);
2605 list_del(&stitch_node->node);
2606
2607 return stitch_node;
2608 }
2609
2610 return malloc(sizeof(struct stitch_list));
2611 }
2612
has_stitched_lbr(struct thread * thread,struct perf_sample * cur,struct perf_sample * prev,unsigned int max_lbr,bool callee)2613 static bool has_stitched_lbr(struct thread *thread,
2614 struct perf_sample *cur,
2615 struct perf_sample *prev,
2616 unsigned int max_lbr,
2617 bool callee)
2618 {
2619 struct branch_stack *cur_stack = cur->branch_stack;
2620 struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2621 struct branch_stack *prev_stack = prev->branch_stack;
2622 struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2623 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2624 int i, j, nr_identical_branches = 0;
2625 struct stitch_list *stitch_node;
2626 u64 cur_base, distance;
2627
2628 if (!cur_stack || !prev_stack)
2629 return false;
2630
2631 /* Find the physical index of the base-of-stack for current sample. */
2632 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2633
2634 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2635 (max_lbr + prev_stack->hw_idx - cur_base);
2636 /* Previous sample has shorter stack. Nothing can be stitched. */
2637 if (distance + 1 > prev_stack->nr)
2638 return false;
2639
2640 /*
2641 * Check if there are identical LBRs between two samples.
2642 * Identical LBRs must have same from, to and flags values. Also,
2643 * they have to be saved in the same LBR registers (same physical
2644 * index).
2645 *
2646 * Starts from the base-of-stack of current sample.
2647 */
2648 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2649 if ((prev_entries[i].from != cur_entries[j].from) ||
2650 (prev_entries[i].to != cur_entries[j].to) ||
2651 (prev_entries[i].flags.value != cur_entries[j].flags.value))
2652 break;
2653 nr_identical_branches++;
2654 }
2655
2656 if (!nr_identical_branches)
2657 return false;
2658
2659 /*
2660 * Save the LBRs between the base-of-stack of previous sample
2661 * and the base-of-stack of current sample into lbr_stitch->lists.
2662 * These LBRs will be stitched later.
2663 */
2664 for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2665
2666 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2667 continue;
2668
2669 stitch_node = get_stitch_node(thread);
2670 if (!stitch_node)
2671 return false;
2672
2673 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2674 sizeof(struct callchain_cursor_node));
2675
2676 if (callee)
2677 list_add(&stitch_node->node, &lbr_stitch->lists);
2678 else
2679 list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2680 }
2681
2682 return true;
2683 }
2684
alloc_lbr_stitch(struct thread * thread,unsigned int max_lbr)2685 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2686 {
2687 if (thread->lbr_stitch)
2688 return true;
2689
2690 thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2691 if (!thread->lbr_stitch)
2692 goto err;
2693
2694 thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2695 if (!thread->lbr_stitch->prev_lbr_cursor)
2696 goto free_lbr_stitch;
2697
2698 INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2699 INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2700
2701 return true;
2702
2703 free_lbr_stitch:
2704 zfree(&thread->lbr_stitch);
2705 err:
2706 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2707 thread->lbr_stitch_enable = false;
2708 return false;
2709 }
2710
2711 /*
2712 * Resolve LBR callstack chain sample
2713 * Return:
2714 * 1 on success get LBR callchain information
2715 * 0 no available LBR callchain information, should try fp
2716 * negative error code on other errors.
2717 */
resolve_lbr_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack,unsigned int max_lbr)2718 static int resolve_lbr_callchain_sample(struct thread *thread,
2719 struct callchain_cursor *cursor,
2720 struct perf_sample *sample,
2721 struct symbol **parent,
2722 struct addr_location *root_al,
2723 int max_stack,
2724 unsigned int max_lbr)
2725 {
2726 bool callee = (callchain_param.order == ORDER_CALLEE);
2727 struct ip_callchain *chain = sample->callchain;
2728 int chain_nr = min(max_stack, (int)chain->nr), i;
2729 struct lbr_stitch *lbr_stitch;
2730 bool stitched_lbr = false;
2731 u64 branch_from = 0;
2732 int err;
2733
2734 for (i = 0; i < chain_nr; i++) {
2735 if (chain->ips[i] == PERF_CONTEXT_USER)
2736 break;
2737 }
2738
2739 /* LBR only affects the user callchain */
2740 if (i == chain_nr)
2741 return 0;
2742
2743 if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2744 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2745 lbr_stitch = thread->lbr_stitch;
2746
2747 stitched_lbr = has_stitched_lbr(thread, sample,
2748 &lbr_stitch->prev_sample,
2749 max_lbr, callee);
2750
2751 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2752 list_replace_init(&lbr_stitch->lists,
2753 &lbr_stitch->free_lists);
2754 }
2755 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2756 }
2757
2758 if (callee) {
2759 /* Add kernel ip */
2760 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2761 parent, root_al, branch_from,
2762 true, i);
2763 if (err)
2764 goto error;
2765
2766 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2767 root_al, &branch_from, true);
2768 if (err)
2769 goto error;
2770
2771 if (stitched_lbr) {
2772 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2773 if (err)
2774 goto error;
2775 }
2776
2777 } else {
2778 if (stitched_lbr) {
2779 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2780 if (err)
2781 goto error;
2782 }
2783 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2784 root_al, &branch_from, false);
2785 if (err)
2786 goto error;
2787
2788 /* Add kernel ip */
2789 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2790 parent, root_al, branch_from,
2791 false, i);
2792 if (err)
2793 goto error;
2794 }
2795 return 1;
2796
2797 error:
2798 return (err < 0) ? err : 0;
2799 }
2800
find_prev_cpumode(struct ip_callchain * chain,struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,int ent)2801 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2802 struct callchain_cursor *cursor,
2803 struct symbol **parent,
2804 struct addr_location *root_al,
2805 u8 *cpumode, int ent)
2806 {
2807 int err = 0;
2808
2809 while (--ent >= 0) {
2810 u64 ip = chain->ips[ent];
2811
2812 if (ip >= PERF_CONTEXT_MAX) {
2813 err = add_callchain_ip(thread, cursor, parent,
2814 root_al, cpumode, ip,
2815 false, NULL, NULL, 0);
2816 break;
2817 }
2818 }
2819 return err;
2820 }
2821
get_leaf_frame_caller(struct perf_sample * sample,struct thread * thread,int usr_idx)2822 static u64 get_leaf_frame_caller(struct perf_sample *sample,
2823 struct thread *thread, int usr_idx)
2824 {
2825 if (machine__normalized_is(thread->maps->machine, "arm64"))
2826 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2827 else
2828 return 0;
2829 }
2830
thread__resolve_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)2831 static int thread__resolve_callchain_sample(struct thread *thread,
2832 struct callchain_cursor *cursor,
2833 struct evsel *evsel,
2834 struct perf_sample *sample,
2835 struct symbol **parent,
2836 struct addr_location *root_al,
2837 int max_stack)
2838 {
2839 struct branch_stack *branch = sample->branch_stack;
2840 struct branch_entry *entries = perf_sample__branch_entries(sample);
2841 struct ip_callchain *chain = sample->callchain;
2842 int chain_nr = 0;
2843 u8 cpumode = PERF_RECORD_MISC_USER;
2844 int i, j, err, nr_entries, usr_idx;
2845 int skip_idx = -1;
2846 int first_call = 0;
2847 u64 leaf_frame_caller;
2848
2849 if (chain)
2850 chain_nr = chain->nr;
2851
2852 if (evsel__has_branch_callstack(evsel)) {
2853 struct perf_env *env = evsel__env(evsel);
2854
2855 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2856 root_al, max_stack,
2857 !env ? 0 : env->max_branches);
2858 if (err)
2859 return (err < 0) ? err : 0;
2860 }
2861
2862 /*
2863 * Based on DWARF debug information, some architectures skip
2864 * a callchain entry saved by the kernel.
2865 */
2866 skip_idx = arch_skip_callchain_idx(thread, chain);
2867
2868 /*
2869 * Add branches to call stack for easier browsing. This gives
2870 * more context for a sample than just the callers.
2871 *
2872 * This uses individual histograms of paths compared to the
2873 * aggregated histograms the normal LBR mode uses.
2874 *
2875 * Limitations for now:
2876 * - No extra filters
2877 * - No annotations (should annotate somehow)
2878 */
2879
2880 if (branch && callchain_param.branch_callstack) {
2881 int nr = min(max_stack, (int)branch->nr);
2882 struct branch_entry be[nr];
2883 struct iterations iter[nr];
2884
2885 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2886 pr_warning("corrupted branch chain. skipping...\n");
2887 goto check_calls;
2888 }
2889
2890 for (i = 0; i < nr; i++) {
2891 if (callchain_param.order == ORDER_CALLEE) {
2892 be[i] = entries[i];
2893
2894 if (chain == NULL)
2895 continue;
2896
2897 /*
2898 * Check for overlap into the callchain.
2899 * The return address is one off compared to
2900 * the branch entry. To adjust for this
2901 * assume the calling instruction is not longer
2902 * than 8 bytes.
2903 */
2904 if (i == skip_idx ||
2905 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2906 first_call++;
2907 else if (be[i].from < chain->ips[first_call] &&
2908 be[i].from >= chain->ips[first_call] - 8)
2909 first_call++;
2910 } else
2911 be[i] = entries[branch->nr - i - 1];
2912 }
2913
2914 memset(iter, 0, sizeof(struct iterations) * nr);
2915 nr = remove_loops(be, nr, iter);
2916
2917 for (i = 0; i < nr; i++) {
2918 err = add_callchain_ip(thread, cursor, parent,
2919 root_al,
2920 NULL, be[i].to,
2921 true, &be[i].flags,
2922 NULL, be[i].from);
2923
2924 if (!err)
2925 err = add_callchain_ip(thread, cursor, parent, root_al,
2926 NULL, be[i].from,
2927 true, &be[i].flags,
2928 &iter[i], 0);
2929 if (err == -EINVAL)
2930 break;
2931 if (err)
2932 return err;
2933 }
2934
2935 if (chain_nr == 0)
2936 return 0;
2937
2938 chain_nr -= nr;
2939 }
2940
2941 check_calls:
2942 if (chain && callchain_param.order != ORDER_CALLEE) {
2943 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2944 &cpumode, chain->nr - first_call);
2945 if (err)
2946 return (err < 0) ? err : 0;
2947 }
2948 for (i = first_call, nr_entries = 0;
2949 i < chain_nr && nr_entries < max_stack; i++) {
2950 u64 ip;
2951
2952 if (callchain_param.order == ORDER_CALLEE)
2953 j = i;
2954 else
2955 j = chain->nr - i - 1;
2956
2957 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2958 if (j == skip_idx)
2959 continue;
2960 #endif
2961 ip = chain->ips[j];
2962 if (ip < PERF_CONTEXT_MAX)
2963 ++nr_entries;
2964 else if (callchain_param.order != ORDER_CALLEE) {
2965 err = find_prev_cpumode(chain, thread, cursor, parent,
2966 root_al, &cpumode, j);
2967 if (err)
2968 return (err < 0) ? err : 0;
2969 continue;
2970 }
2971
2972 /*
2973 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2974 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2975 * the index will be different in order to add the missing frame
2976 * at the right place.
2977 */
2978
2979 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2980
2981 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2982
2983 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2984
2985 /*
2986 * check if leaf_frame_Caller != ip to not add the same
2987 * value twice.
2988 */
2989
2990 if (leaf_frame_caller && leaf_frame_caller != ip) {
2991
2992 err = add_callchain_ip(thread, cursor, parent,
2993 root_al, &cpumode, leaf_frame_caller,
2994 false, NULL, NULL, 0);
2995 if (err)
2996 return (err < 0) ? err : 0;
2997 }
2998 }
2999
3000 err = add_callchain_ip(thread, cursor, parent,
3001 root_al, &cpumode, ip,
3002 false, NULL, NULL, 0);
3003
3004 if (err)
3005 return (err < 0) ? err : 0;
3006 }
3007
3008 return 0;
3009 }
3010
append_inlines(struct callchain_cursor * cursor,struct map_symbol * ms,u64 ip)3011 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
3012 {
3013 struct symbol *sym = ms->sym;
3014 struct map *map = ms->map;
3015 struct inline_node *inline_node;
3016 struct inline_list *ilist;
3017 u64 addr;
3018 int ret = 1;
3019
3020 if (!symbol_conf.inline_name || !map || !sym)
3021 return ret;
3022
3023 addr = map__map_ip(map, ip);
3024 addr = map__rip_2objdump(map, addr);
3025
3026 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
3027 if (!inline_node) {
3028 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
3029 if (!inline_node)
3030 return ret;
3031 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
3032 }
3033
3034 list_for_each_entry(ilist, &inline_node->val, list) {
3035 struct map_symbol ilist_ms = {
3036 .maps = ms->maps,
3037 .map = map,
3038 .sym = ilist->symbol,
3039 };
3040 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
3041 NULL, 0, 0, 0, ilist->srcline);
3042
3043 if (ret != 0)
3044 return ret;
3045 }
3046
3047 return ret;
3048 }
3049
unwind_entry(struct unwind_entry * entry,void * arg)3050 static int unwind_entry(struct unwind_entry *entry, void *arg)
3051 {
3052 struct callchain_cursor *cursor = arg;
3053 const char *srcline = NULL;
3054 u64 addr = entry->ip;
3055
3056 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
3057 return 0;
3058
3059 if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
3060 return 0;
3061
3062 /*
3063 * Convert entry->ip from a virtual address to an offset in
3064 * its corresponding binary.
3065 */
3066 if (entry->ms.map)
3067 addr = map__map_ip(entry->ms.map, entry->ip);
3068
3069 srcline = callchain_srcline(&entry->ms, addr);
3070 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
3071 false, NULL, 0, 0, 0, srcline);
3072 }
3073
thread__resolve_callchain_unwind(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,int max_stack)3074 static int thread__resolve_callchain_unwind(struct thread *thread,
3075 struct callchain_cursor *cursor,
3076 struct evsel *evsel,
3077 struct perf_sample *sample,
3078 int max_stack)
3079 {
3080 /* Can we do dwarf post unwind? */
3081 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
3082 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
3083 return 0;
3084
3085 /* Bail out if nothing was captured. */
3086 if ((!sample->user_regs.regs) ||
3087 (!sample->user_stack.size))
3088 return 0;
3089
3090 return unwind__get_entries(unwind_entry, cursor,
3091 thread, sample, max_stack, false);
3092 }
3093
thread__resolve_callchain(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)3094 int thread__resolve_callchain(struct thread *thread,
3095 struct callchain_cursor *cursor,
3096 struct evsel *evsel,
3097 struct perf_sample *sample,
3098 struct symbol **parent,
3099 struct addr_location *root_al,
3100 int max_stack)
3101 {
3102 int ret = 0;
3103
3104 callchain_cursor_reset(cursor);
3105
3106 if (callchain_param.order == ORDER_CALLEE) {
3107 ret = thread__resolve_callchain_sample(thread, cursor,
3108 evsel, sample,
3109 parent, root_al,
3110 max_stack);
3111 if (ret)
3112 return ret;
3113 ret = thread__resolve_callchain_unwind(thread, cursor,
3114 evsel, sample,
3115 max_stack);
3116 } else {
3117 ret = thread__resolve_callchain_unwind(thread, cursor,
3118 evsel, sample,
3119 max_stack);
3120 if (ret)
3121 return ret;
3122 ret = thread__resolve_callchain_sample(thread, cursor,
3123 evsel, sample,
3124 parent, root_al,
3125 max_stack);
3126 }
3127
3128 return ret;
3129 }
3130
machine__for_each_thread(struct machine * machine,int (* fn)(struct thread * thread,void * p),void * priv)3131 int machine__for_each_thread(struct machine *machine,
3132 int (*fn)(struct thread *thread, void *p),
3133 void *priv)
3134 {
3135 struct threads *threads;
3136 struct rb_node *nd;
3137 struct thread *thread;
3138 int rc = 0;
3139 int i;
3140
3141 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3142 threads = &machine->threads[i];
3143 for (nd = rb_first_cached(&threads->entries); nd;
3144 nd = rb_next(nd)) {
3145 thread = rb_entry(nd, struct thread, rb_node);
3146 rc = fn(thread, priv);
3147 if (rc != 0)
3148 return rc;
3149 }
3150
3151 list_for_each_entry(thread, &threads->dead, node) {
3152 rc = fn(thread, priv);
3153 if (rc != 0)
3154 return rc;
3155 }
3156 }
3157 return rc;
3158 }
3159
machines__for_each_thread(struct machines * machines,int (* fn)(struct thread * thread,void * p),void * priv)3160 int machines__for_each_thread(struct machines *machines,
3161 int (*fn)(struct thread *thread, void *p),
3162 void *priv)
3163 {
3164 struct rb_node *nd;
3165 int rc = 0;
3166
3167 rc = machine__for_each_thread(&machines->host, fn, priv);
3168 if (rc != 0)
3169 return rc;
3170
3171 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3172 struct machine *machine = rb_entry(nd, struct machine, rb_node);
3173
3174 rc = machine__for_each_thread(machine, fn, priv);
3175 if (rc != 0)
3176 return rc;
3177 }
3178 return rc;
3179 }
3180
machine__get_current_tid(struct machine * machine,int cpu)3181 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3182 {
3183 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3184 return -1;
3185
3186 return machine->current_tid[cpu];
3187 }
3188
machine__set_current_tid(struct machine * machine,int cpu,pid_t pid,pid_t tid)3189 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3190 pid_t tid)
3191 {
3192 struct thread *thread;
3193 const pid_t init_val = -1;
3194
3195 if (cpu < 0)
3196 return -EINVAL;
3197
3198 if (realloc_array_as_needed(machine->current_tid,
3199 machine->current_tid_sz,
3200 (unsigned int)cpu,
3201 &init_val))
3202 return -ENOMEM;
3203
3204 machine->current_tid[cpu] = tid;
3205
3206 thread = machine__findnew_thread(machine, pid, tid);
3207 if (!thread)
3208 return -ENOMEM;
3209
3210 thread->cpu = cpu;
3211 thread__put(thread);
3212
3213 return 0;
3214 }
3215
3216 /*
3217 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3218 * machine__normalized_is() if a normalized arch is needed.
3219 */
machine__is(struct machine * machine,const char * arch)3220 bool machine__is(struct machine *machine, const char *arch)
3221 {
3222 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3223 }
3224
machine__normalized_is(struct machine * machine,const char * arch)3225 bool machine__normalized_is(struct machine *machine, const char *arch)
3226 {
3227 return machine && !strcmp(perf_env__arch(machine->env), arch);
3228 }
3229
machine__nr_cpus_avail(struct machine * machine)3230 int machine__nr_cpus_avail(struct machine *machine)
3231 {
3232 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3233 }
3234
machine__get_kernel_start(struct machine * machine)3235 int machine__get_kernel_start(struct machine *machine)
3236 {
3237 struct map *map = machine__kernel_map(machine);
3238 int err = 0;
3239
3240 /*
3241 * The only addresses above 2^63 are kernel addresses of a 64-bit
3242 * kernel. Note that addresses are unsigned so that on a 32-bit system
3243 * all addresses including kernel addresses are less than 2^32. In
3244 * that case (32-bit system), if the kernel mapping is unknown, all
3245 * addresses will be assumed to be in user space - see
3246 * machine__kernel_ip().
3247 */
3248 machine->kernel_start = 1ULL << 63;
3249 if (map) {
3250 err = map__load(map);
3251 /*
3252 * On x86_64, PTI entry trampolines are less than the
3253 * start of kernel text, but still above 2^63. So leave
3254 * kernel_start = 1ULL << 63 for x86_64.
3255 */
3256 if (!err && !machine__is(machine, "x86_64"))
3257 machine->kernel_start = map->start;
3258 }
3259 return err;
3260 }
3261
machine__addr_cpumode(struct machine * machine,u8 cpumode,u64 addr)3262 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3263 {
3264 u8 addr_cpumode = cpumode;
3265 bool kernel_ip;
3266
3267 if (!machine->single_address_space)
3268 goto out;
3269
3270 kernel_ip = machine__kernel_ip(machine, addr);
3271 switch (cpumode) {
3272 case PERF_RECORD_MISC_KERNEL:
3273 case PERF_RECORD_MISC_USER:
3274 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3275 PERF_RECORD_MISC_USER;
3276 break;
3277 case PERF_RECORD_MISC_GUEST_KERNEL:
3278 case PERF_RECORD_MISC_GUEST_USER:
3279 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3280 PERF_RECORD_MISC_GUEST_USER;
3281 break;
3282 default:
3283 break;
3284 }
3285 out:
3286 return addr_cpumode;
3287 }
3288
machine__findnew_dso_id(struct machine * machine,const char * filename,struct dso_id * id)3289 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3290 {
3291 return dsos__findnew_id(&machine->dsos, filename, id);
3292 }
3293
machine__findnew_dso(struct machine * machine,const char * filename)3294 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3295 {
3296 return machine__findnew_dso_id(machine, filename, NULL);
3297 }
3298
machine__resolve_kernel_addr(void * vmachine,unsigned long long * addrp,char ** modp)3299 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3300 {
3301 struct machine *machine = vmachine;
3302 struct map *map;
3303 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3304
3305 if (sym == NULL)
3306 return NULL;
3307
3308 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3309 *addrp = map->unmap_ip(map, sym->start);
3310 return sym->name;
3311 }
3312
machine__for_each_dso(struct machine * machine,machine__dso_t fn,void * priv)3313 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3314 {
3315 struct dso *pos;
3316 int err = 0;
3317
3318 list_for_each_entry(pos, &machine->dsos.head, node) {
3319 if (fn(pos, machine, priv))
3320 err = -1;
3321 }
3322 return err;
3323 }
3324
machine__for_each_kernel_map(struct machine * machine,machine__map_t fn,void * priv)3325 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3326 {
3327 struct maps *maps = machine__kernel_maps(machine);
3328 struct map *map;
3329 int err = 0;
3330
3331 for (map = maps__first(maps); map != NULL; map = map__next(map)) {
3332 err = fn(map, priv);
3333 if (err != 0) {
3334 break;
3335 }
3336 }
3337 return err;
3338 }
3339