1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 
35 #include <xen/xen.h>
36 #include <xen/interface/xen.h>
37 #include <xen/interface/version.h>
38 #include <xen/interface/physdev.h>
39 #include <xen/interface/vcpu.h>
40 #include <xen/interface/memory.h>
41 #include <xen/features.h>
42 #include <xen/page.h>
43 #include <xen/hvm.h>
44 #include <xen/hvc-console.h>
45 
46 #include <asm/paravirt.h>
47 #include <asm/apic.h>
48 #include <asm/page.h>
49 #include <asm/xen/pci.h>
50 #include <asm/xen/hypercall.h>
51 #include <asm/xen/hypervisor.h>
52 #include <asm/fixmap.h>
53 #include <asm/processor.h>
54 #include <asm/proto.h>
55 #include <asm/msr-index.h>
56 #include <asm/traps.h>
57 #include <asm/setup.h>
58 #include <asm/desc.h>
59 #include <asm/pgalloc.h>
60 #include <asm/pgtable.h>
61 #include <asm/tlbflush.h>
62 #include <asm/reboot.h>
63 #include <asm/stackprotector.h>
64 #include <asm/hypervisor.h>
65 
66 #include "xen-ops.h"
67 #include "mmu.h"
68 #include "multicalls.h"
69 
70 EXPORT_SYMBOL_GPL(hypercall_page);
71 
72 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
73 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
74 
75 enum xen_domain_type xen_domain_type = XEN_NATIVE;
76 EXPORT_SYMBOL_GPL(xen_domain_type);
77 
78 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
79 EXPORT_SYMBOL(machine_to_phys_mapping);
80 unsigned int   machine_to_phys_order;
81 EXPORT_SYMBOL(machine_to_phys_order);
82 
83 struct start_info *xen_start_info;
84 EXPORT_SYMBOL_GPL(xen_start_info);
85 
86 struct shared_info xen_dummy_shared_info;
87 
88 void *xen_initial_gdt;
89 
90 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
91 __read_mostly int xen_have_vector_callback;
92 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
93 
94 /*
95  * Point at some empty memory to start with. We map the real shared_info
96  * page as soon as fixmap is up and running.
97  */
98 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
99 
100 /*
101  * Flag to determine whether vcpu info placement is available on all
102  * VCPUs.  We assume it is to start with, and then set it to zero on
103  * the first failure.  This is because it can succeed on some VCPUs
104  * and not others, since it can involve hypervisor memory allocation,
105  * or because the guest failed to guarantee all the appropriate
106  * constraints on all VCPUs (ie buffer can't cross a page boundary).
107  *
108  * Note that any particular CPU may be using a placed vcpu structure,
109  * but we can only optimise if the all are.
110  *
111  * 0: not available, 1: available
112  */
113 static int have_vcpu_info_placement = 1;
114 
clamp_max_cpus(void)115 static void clamp_max_cpus(void)
116 {
117 #ifdef CONFIG_SMP
118 	if (setup_max_cpus > MAX_VIRT_CPUS)
119 		setup_max_cpus = MAX_VIRT_CPUS;
120 #endif
121 }
122 
xen_vcpu_setup(int cpu)123 static void xen_vcpu_setup(int cpu)
124 {
125 	struct vcpu_register_vcpu_info info;
126 	int err;
127 	struct vcpu_info *vcpup;
128 
129 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
130 
131 	if (cpu < MAX_VIRT_CPUS)
132 		per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
133 
134 	if (!have_vcpu_info_placement) {
135 		if (cpu >= MAX_VIRT_CPUS)
136 			clamp_max_cpus();
137 		return;
138 	}
139 
140 	vcpup = &per_cpu(xen_vcpu_info, cpu);
141 	info.mfn = arbitrary_virt_to_mfn(vcpup);
142 	info.offset = offset_in_page(vcpup);
143 
144 	/* Check to see if the hypervisor will put the vcpu_info
145 	   structure where we want it, which allows direct access via
146 	   a percpu-variable. */
147 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
148 
149 	if (err) {
150 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
151 		have_vcpu_info_placement = 0;
152 		clamp_max_cpus();
153 	} else {
154 		/* This cpu is using the registered vcpu info, even if
155 		   later ones fail to. */
156 		per_cpu(xen_vcpu, cpu) = vcpup;
157 	}
158 }
159 
160 /*
161  * On restore, set the vcpu placement up again.
162  * If it fails, then we're in a bad state, since
163  * we can't back out from using it...
164  */
xen_vcpu_restore(void)165 void xen_vcpu_restore(void)
166 {
167 	int cpu;
168 
169 	for_each_online_cpu(cpu) {
170 		bool other_cpu = (cpu != smp_processor_id());
171 
172 		if (other_cpu &&
173 		    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
174 			BUG();
175 
176 		xen_setup_runstate_info(cpu);
177 
178 		if (have_vcpu_info_placement)
179 			xen_vcpu_setup(cpu);
180 
181 		if (other_cpu &&
182 		    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
183 			BUG();
184 	}
185 }
186 
xen_banner(void)187 static void __init xen_banner(void)
188 {
189 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
190 	struct xen_extraversion extra;
191 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
192 
193 	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
194 	       pv_info.name);
195 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
196 	       version >> 16, version & 0xffff, extra.extraversion,
197 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
198 }
199 
200 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
201 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
202 
xen_cpuid(unsigned int * ax,unsigned int * bx,unsigned int * cx,unsigned int * dx)203 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
204 		      unsigned int *cx, unsigned int *dx)
205 {
206 	unsigned maskebx = ~0;
207 	unsigned maskecx = ~0;
208 	unsigned maskedx = ~0;
209 
210 	/*
211 	 * Mask out inconvenient features, to try and disable as many
212 	 * unsupported kernel subsystems as possible.
213 	 */
214 	switch (*ax) {
215 	case 1:
216 		maskecx = cpuid_leaf1_ecx_mask;
217 		maskedx = cpuid_leaf1_edx_mask;
218 		break;
219 
220 	case 0xb:
221 		/* Suppress extended topology stuff */
222 		maskebx = 0;
223 		break;
224 	}
225 
226 	asm(XEN_EMULATE_PREFIX "cpuid"
227 		: "=a" (*ax),
228 		  "=b" (*bx),
229 		  "=c" (*cx),
230 		  "=d" (*dx)
231 		: "0" (*ax), "2" (*cx));
232 
233 	*bx &= maskebx;
234 	*cx &= maskecx;
235 	*dx &= maskedx;
236 }
237 
xen_init_cpuid_mask(void)238 static __init void xen_init_cpuid_mask(void)
239 {
240 	unsigned int ax, bx, cx, dx;
241 	unsigned int xsave_mask;
242 
243 	cpuid_leaf1_edx_mask =
244 		~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
245 		  (1 << X86_FEATURE_MCA)  |  /* disable MCA */
246 		  (1 << X86_FEATURE_MTRR) |  /* disable MTRR */
247 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
248 
249 	if (!xen_initial_domain())
250 		cpuid_leaf1_edx_mask &=
251 			~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
252 			  (1 << X86_FEATURE_ACPI));  /* disable ACPI */
253 	ax = 1;
254 	xen_cpuid(&ax, &bx, &cx, &dx);
255 
256 	xsave_mask =
257 		(1 << (X86_FEATURE_XSAVE % 32)) |
258 		(1 << (X86_FEATURE_OSXSAVE % 32));
259 
260 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
261 	if ((cx & xsave_mask) != xsave_mask)
262 		cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
263 }
264 
xen_set_debugreg(int reg,unsigned long val)265 static void xen_set_debugreg(int reg, unsigned long val)
266 {
267 	HYPERVISOR_set_debugreg(reg, val);
268 }
269 
xen_get_debugreg(int reg)270 static unsigned long xen_get_debugreg(int reg)
271 {
272 	return HYPERVISOR_get_debugreg(reg);
273 }
274 
xen_end_context_switch(struct task_struct * next)275 static void xen_end_context_switch(struct task_struct *next)
276 {
277 	xen_mc_flush();
278 	paravirt_end_context_switch(next);
279 }
280 
xen_store_tr(void)281 static unsigned long xen_store_tr(void)
282 {
283 	return 0;
284 }
285 
286 /*
287  * Set the page permissions for a particular virtual address.  If the
288  * address is a vmalloc mapping (or other non-linear mapping), then
289  * find the linear mapping of the page and also set its protections to
290  * match.
291  */
set_aliased_prot(void * v,pgprot_t prot)292 static void set_aliased_prot(void *v, pgprot_t prot)
293 {
294 	int level;
295 	pte_t *ptep;
296 	pte_t pte;
297 	unsigned long pfn;
298 	struct page *page;
299 
300 	ptep = lookup_address((unsigned long)v, &level);
301 	BUG_ON(ptep == NULL);
302 
303 	pfn = pte_pfn(*ptep);
304 	page = pfn_to_page(pfn);
305 
306 	pte = pfn_pte(pfn, prot);
307 
308 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
309 		BUG();
310 
311 	if (!PageHighMem(page)) {
312 		void *av = __va(PFN_PHYS(pfn));
313 
314 		if (av != v)
315 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
316 				BUG();
317 	} else
318 		kmap_flush_unused();
319 }
320 
xen_alloc_ldt(struct desc_struct * ldt,unsigned entries)321 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
322 {
323 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
324 	int i;
325 
326 	for(i = 0; i < entries; i += entries_per_page)
327 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
328 }
329 
xen_free_ldt(struct desc_struct * ldt,unsigned entries)330 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
331 {
332 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
333 	int i;
334 
335 	for(i = 0; i < entries; i += entries_per_page)
336 		set_aliased_prot(ldt + i, PAGE_KERNEL);
337 }
338 
xen_set_ldt(const void * addr,unsigned entries)339 static void xen_set_ldt(const void *addr, unsigned entries)
340 {
341 	struct mmuext_op *op;
342 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
343 
344 	op = mcs.args;
345 	op->cmd = MMUEXT_SET_LDT;
346 	op->arg1.linear_addr = (unsigned long)addr;
347 	op->arg2.nr_ents = entries;
348 
349 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
350 
351 	xen_mc_issue(PARAVIRT_LAZY_CPU);
352 }
353 
xen_load_gdt(const struct desc_ptr * dtr)354 static void xen_load_gdt(const struct desc_ptr *dtr)
355 {
356 	unsigned long va = dtr->address;
357 	unsigned int size = dtr->size + 1;
358 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
359 	unsigned long frames[pages];
360 	int f;
361 
362 	/*
363 	 * A GDT can be up to 64k in size, which corresponds to 8192
364 	 * 8-byte entries, or 16 4k pages..
365 	 */
366 
367 	BUG_ON(size > 65536);
368 	BUG_ON(va & ~PAGE_MASK);
369 
370 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
371 		int level;
372 		pte_t *ptep;
373 		unsigned long pfn, mfn;
374 		void *virt;
375 
376 		/*
377 		 * The GDT is per-cpu and is in the percpu data area.
378 		 * That can be virtually mapped, so we need to do a
379 		 * page-walk to get the underlying MFN for the
380 		 * hypercall.  The page can also be in the kernel's
381 		 * linear range, so we need to RO that mapping too.
382 		 */
383 		ptep = lookup_address(va, &level);
384 		BUG_ON(ptep == NULL);
385 
386 		pfn = pte_pfn(*ptep);
387 		mfn = pfn_to_mfn(pfn);
388 		virt = __va(PFN_PHYS(pfn));
389 
390 		frames[f] = mfn;
391 
392 		make_lowmem_page_readonly((void *)va);
393 		make_lowmem_page_readonly(virt);
394 	}
395 
396 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
397 		BUG();
398 }
399 
400 /*
401  * load_gdt for early boot, when the gdt is only mapped once
402  */
xen_load_gdt_boot(const struct desc_ptr * dtr)403 static __init void xen_load_gdt_boot(const struct desc_ptr *dtr)
404 {
405 	unsigned long va = dtr->address;
406 	unsigned int size = dtr->size + 1;
407 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
408 	unsigned long frames[pages];
409 	int f;
410 
411 	/*
412 	 * A GDT can be up to 64k in size, which corresponds to 8192
413 	 * 8-byte entries, or 16 4k pages..
414 	 */
415 
416 	BUG_ON(size > 65536);
417 	BUG_ON(va & ~PAGE_MASK);
418 
419 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
420 		pte_t pte;
421 		unsigned long pfn, mfn;
422 
423 		pfn = virt_to_pfn(va);
424 		mfn = pfn_to_mfn(pfn);
425 
426 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
427 
428 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
429 			BUG();
430 
431 		frames[f] = mfn;
432 	}
433 
434 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
435 		BUG();
436 }
437 
load_TLS_descriptor(struct thread_struct * t,unsigned int cpu,unsigned int i)438 static void load_TLS_descriptor(struct thread_struct *t,
439 				unsigned int cpu, unsigned int i)
440 {
441 	struct desc_struct *gdt = get_cpu_gdt_table(cpu);
442 	xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
443 	struct multicall_space mc = __xen_mc_entry(0);
444 
445 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
446 }
447 
xen_load_tls(struct thread_struct * t,unsigned int cpu)448 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
449 {
450 	/*
451 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
452 	 * and lazy gs handling is enabled, it means we're in a
453 	 * context switch, and %gs has just been saved.  This means we
454 	 * can zero it out to prevent faults on exit from the
455 	 * hypervisor if the next process has no %gs.  Either way, it
456 	 * has been saved, and the new value will get loaded properly.
457 	 * This will go away as soon as Xen has been modified to not
458 	 * save/restore %gs for normal hypercalls.
459 	 *
460 	 * On x86_64, this hack is not used for %gs, because gs points
461 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
462 	 * must not zero %gs on x86_64
463 	 *
464 	 * For x86_64, we need to zero %fs, otherwise we may get an
465 	 * exception between the new %fs descriptor being loaded and
466 	 * %fs being effectively cleared at __switch_to().
467 	 */
468 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
469 #ifdef CONFIG_X86_32
470 		lazy_load_gs(0);
471 #else
472 		loadsegment(fs, 0);
473 #endif
474 	}
475 
476 	xen_mc_batch();
477 
478 	load_TLS_descriptor(t, cpu, 0);
479 	load_TLS_descriptor(t, cpu, 1);
480 	load_TLS_descriptor(t, cpu, 2);
481 
482 	xen_mc_issue(PARAVIRT_LAZY_CPU);
483 }
484 
485 #ifdef CONFIG_X86_64
xen_load_gs_index(unsigned int idx)486 static void xen_load_gs_index(unsigned int idx)
487 {
488 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
489 		BUG();
490 }
491 #endif
492 
xen_write_ldt_entry(struct desc_struct * dt,int entrynum,const void * ptr)493 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
494 				const void *ptr)
495 {
496 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
497 	u64 entry = *(u64 *)ptr;
498 
499 	preempt_disable();
500 
501 	xen_mc_flush();
502 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
503 		BUG();
504 
505 	preempt_enable();
506 }
507 
cvt_gate_to_trap(int vector,const gate_desc * val,struct trap_info * info)508 static int cvt_gate_to_trap(int vector, const gate_desc *val,
509 			    struct trap_info *info)
510 {
511 	unsigned long addr;
512 
513 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
514 		return 0;
515 
516 	info->vector = vector;
517 
518 	addr = gate_offset(*val);
519 #ifdef CONFIG_X86_64
520 	/*
521 	 * Look for known traps using IST, and substitute them
522 	 * appropriately.  The debugger ones are the only ones we care
523 	 * about.  Xen will handle faults like double_fault and
524 	 * machine_check, so we should never see them.  Warn if
525 	 * there's an unexpected IST-using fault handler.
526 	 */
527 	if (addr == (unsigned long)debug)
528 		addr = (unsigned long)xen_debug;
529 	else if (addr == (unsigned long)int3)
530 		addr = (unsigned long)xen_int3;
531 	else if (addr == (unsigned long)stack_segment)
532 		addr = (unsigned long)xen_stack_segment;
533 	else if (addr == (unsigned long)double_fault ||
534 		 addr == (unsigned long)nmi) {
535 		/* Don't need to handle these */
536 		return 0;
537 #ifdef CONFIG_X86_MCE
538 	} else if (addr == (unsigned long)machine_check) {
539 		return 0;
540 #endif
541 	} else {
542 		/* Some other trap using IST? */
543 		if (WARN_ON(val->ist != 0))
544 			return 0;
545 	}
546 #endif	/* CONFIG_X86_64 */
547 	info->address = addr;
548 
549 	info->cs = gate_segment(*val);
550 	info->flags = val->dpl;
551 	/* interrupt gates clear IF */
552 	if (val->type == GATE_INTERRUPT)
553 		info->flags |= 1 << 2;
554 
555 	return 1;
556 }
557 
558 /* Locations of each CPU's IDT */
559 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
560 
561 /* Set an IDT entry.  If the entry is part of the current IDT, then
562    also update Xen. */
xen_write_idt_entry(gate_desc * dt,int entrynum,const gate_desc * g)563 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
564 {
565 	unsigned long p = (unsigned long)&dt[entrynum];
566 	unsigned long start, end;
567 
568 	preempt_disable();
569 
570 	start = __this_cpu_read(idt_desc.address);
571 	end = start + __this_cpu_read(idt_desc.size) + 1;
572 
573 	xen_mc_flush();
574 
575 	native_write_idt_entry(dt, entrynum, g);
576 
577 	if (p >= start && (p + 8) <= end) {
578 		struct trap_info info[2];
579 
580 		info[1].address = 0;
581 
582 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
583 			if (HYPERVISOR_set_trap_table(info))
584 				BUG();
585 	}
586 
587 	preempt_enable();
588 }
589 
xen_convert_trap_info(const struct desc_ptr * desc,struct trap_info * traps)590 static void xen_convert_trap_info(const struct desc_ptr *desc,
591 				  struct trap_info *traps)
592 {
593 	unsigned in, out, count;
594 
595 	count = (desc->size+1) / sizeof(gate_desc);
596 	BUG_ON(count > 256);
597 
598 	for (in = out = 0; in < count; in++) {
599 		gate_desc *entry = (gate_desc*)(desc->address) + in;
600 
601 		if (cvt_gate_to_trap(in, entry, &traps[out]))
602 			out++;
603 	}
604 	traps[out].address = 0;
605 }
606 
xen_copy_trap_info(struct trap_info * traps)607 void xen_copy_trap_info(struct trap_info *traps)
608 {
609 	const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
610 
611 	xen_convert_trap_info(desc, traps);
612 }
613 
614 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
615    hold a spinlock to protect the static traps[] array (static because
616    it avoids allocation, and saves stack space). */
xen_load_idt(const struct desc_ptr * desc)617 static void xen_load_idt(const struct desc_ptr *desc)
618 {
619 	static DEFINE_SPINLOCK(lock);
620 	static struct trap_info traps[257];
621 
622 	spin_lock(&lock);
623 
624 	__get_cpu_var(idt_desc) = *desc;
625 
626 	xen_convert_trap_info(desc, traps);
627 
628 	xen_mc_flush();
629 	if (HYPERVISOR_set_trap_table(traps))
630 		BUG();
631 
632 	spin_unlock(&lock);
633 }
634 
635 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
636    they're handled differently. */
xen_write_gdt_entry(struct desc_struct * dt,int entry,const void * desc,int type)637 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
638 				const void *desc, int type)
639 {
640 	preempt_disable();
641 
642 	switch (type) {
643 	case DESC_LDT:
644 	case DESC_TSS:
645 		/* ignore */
646 		break;
647 
648 	default: {
649 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
650 
651 		xen_mc_flush();
652 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
653 			BUG();
654 	}
655 
656 	}
657 
658 	preempt_enable();
659 }
660 
661 /*
662  * Version of write_gdt_entry for use at early boot-time needed to
663  * update an entry as simply as possible.
664  */
xen_write_gdt_entry_boot(struct desc_struct * dt,int entry,const void * desc,int type)665 static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
666 					    const void *desc, int type)
667 {
668 	switch (type) {
669 	case DESC_LDT:
670 	case DESC_TSS:
671 		/* ignore */
672 		break;
673 
674 	default: {
675 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
676 
677 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
678 			dt[entry] = *(struct desc_struct *)desc;
679 	}
680 
681 	}
682 }
683 
xen_load_sp0(struct tss_struct * tss,struct thread_struct * thread)684 static void xen_load_sp0(struct tss_struct *tss,
685 			 struct thread_struct *thread)
686 {
687 	struct multicall_space mcs = xen_mc_entry(0);
688 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
689 	xen_mc_issue(PARAVIRT_LAZY_CPU);
690 }
691 
xen_set_iopl_mask(unsigned mask)692 static void xen_set_iopl_mask(unsigned mask)
693 {
694 	struct physdev_set_iopl set_iopl;
695 
696 	/* Force the change at ring 0. */
697 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
698 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
699 }
700 
xen_io_delay(void)701 static void xen_io_delay(void)
702 {
703 }
704 
705 #ifdef CONFIG_X86_LOCAL_APIC
xen_apic_read(u32 reg)706 static u32 xen_apic_read(u32 reg)
707 {
708 	return 0;
709 }
710 
xen_apic_write(u32 reg,u32 val)711 static void xen_apic_write(u32 reg, u32 val)
712 {
713 	/* Warn to see if there's any stray references */
714 	WARN_ON(1);
715 }
716 
xen_apic_icr_read(void)717 static u64 xen_apic_icr_read(void)
718 {
719 	return 0;
720 }
721 
xen_apic_icr_write(u32 low,u32 id)722 static void xen_apic_icr_write(u32 low, u32 id)
723 {
724 	/* Warn to see if there's any stray references */
725 	WARN_ON(1);
726 }
727 
xen_apic_wait_icr_idle(void)728 static void xen_apic_wait_icr_idle(void)
729 {
730         return;
731 }
732 
xen_safe_apic_wait_icr_idle(void)733 static u32 xen_safe_apic_wait_icr_idle(void)
734 {
735         return 0;
736 }
737 
set_xen_basic_apic_ops(void)738 static void set_xen_basic_apic_ops(void)
739 {
740 	apic->read = xen_apic_read;
741 	apic->write = xen_apic_write;
742 	apic->icr_read = xen_apic_icr_read;
743 	apic->icr_write = xen_apic_icr_write;
744 	apic->wait_icr_idle = xen_apic_wait_icr_idle;
745 	apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
746 }
747 
748 #endif
749 
xen_clts(void)750 static void xen_clts(void)
751 {
752 	struct multicall_space mcs;
753 
754 	mcs = xen_mc_entry(0);
755 
756 	MULTI_fpu_taskswitch(mcs.mc, 0);
757 
758 	xen_mc_issue(PARAVIRT_LAZY_CPU);
759 }
760 
761 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
762 
xen_read_cr0(void)763 static unsigned long xen_read_cr0(void)
764 {
765 	unsigned long cr0 = percpu_read(xen_cr0_value);
766 
767 	if (unlikely(cr0 == 0)) {
768 		cr0 = native_read_cr0();
769 		percpu_write(xen_cr0_value, cr0);
770 	}
771 
772 	return cr0;
773 }
774 
xen_write_cr0(unsigned long cr0)775 static void xen_write_cr0(unsigned long cr0)
776 {
777 	struct multicall_space mcs;
778 
779 	percpu_write(xen_cr0_value, cr0);
780 
781 	/* Only pay attention to cr0.TS; everything else is
782 	   ignored. */
783 	mcs = xen_mc_entry(0);
784 
785 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
786 
787 	xen_mc_issue(PARAVIRT_LAZY_CPU);
788 }
789 
xen_write_cr4(unsigned long cr4)790 static void xen_write_cr4(unsigned long cr4)
791 {
792 	cr4 &= ~X86_CR4_PGE;
793 	cr4 &= ~X86_CR4_PSE;
794 
795 	native_write_cr4(cr4);
796 }
797 
xen_write_msr_safe(unsigned int msr,unsigned low,unsigned high)798 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
799 {
800 	int ret;
801 
802 	ret = 0;
803 
804 	switch (msr) {
805 #ifdef CONFIG_X86_64
806 		unsigned which;
807 		u64 base;
808 
809 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
810 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
811 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
812 
813 	set:
814 		base = ((u64)high << 32) | low;
815 		if (HYPERVISOR_set_segment_base(which, base) != 0)
816 			ret = -EIO;
817 		break;
818 #endif
819 
820 	case MSR_STAR:
821 	case MSR_CSTAR:
822 	case MSR_LSTAR:
823 	case MSR_SYSCALL_MASK:
824 	case MSR_IA32_SYSENTER_CS:
825 	case MSR_IA32_SYSENTER_ESP:
826 	case MSR_IA32_SYSENTER_EIP:
827 		/* Fast syscall setup is all done in hypercalls, so
828 		   these are all ignored.  Stub them out here to stop
829 		   Xen console noise. */
830 		break;
831 
832 	case MSR_IA32_CR_PAT:
833 		if (smp_processor_id() == 0)
834 			xen_set_pat(((u64)high << 32) | low);
835 		break;
836 
837 	default:
838 		ret = native_write_msr_safe(msr, low, high);
839 	}
840 
841 	return ret;
842 }
843 
xen_setup_shared_info(void)844 void xen_setup_shared_info(void)
845 {
846 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
847 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
848 			   xen_start_info->shared_info);
849 
850 		HYPERVISOR_shared_info =
851 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
852 	} else
853 		HYPERVISOR_shared_info =
854 			(struct shared_info *)__va(xen_start_info->shared_info);
855 
856 #ifndef CONFIG_SMP
857 	/* In UP this is as good a place as any to set up shared info */
858 	xen_setup_vcpu_info_placement();
859 #endif
860 
861 	xen_setup_mfn_list_list();
862 }
863 
864 /* This is called once we have the cpu_possible_map */
xen_setup_vcpu_info_placement(void)865 void xen_setup_vcpu_info_placement(void)
866 {
867 	int cpu;
868 
869 	for_each_possible_cpu(cpu)
870 		xen_vcpu_setup(cpu);
871 
872 	/* xen_vcpu_setup managed to place the vcpu_info within the
873 	   percpu area for all cpus, so make use of it */
874 	if (have_vcpu_info_placement) {
875 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
876 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
877 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
878 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
879 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
880 	}
881 }
882 
xen_patch(u8 type,u16 clobbers,void * insnbuf,unsigned long addr,unsigned len)883 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
884 			  unsigned long addr, unsigned len)
885 {
886 	char *start, *end, *reloc;
887 	unsigned ret;
888 
889 	start = end = reloc = NULL;
890 
891 #define SITE(op, x)							\
892 	case PARAVIRT_PATCH(op.x):					\
893 	if (have_vcpu_info_placement) {					\
894 		start = (char *)xen_##x##_direct;			\
895 		end = xen_##x##_direct_end;				\
896 		reloc = xen_##x##_direct_reloc;				\
897 	}								\
898 	goto patch_site
899 
900 	switch (type) {
901 		SITE(pv_irq_ops, irq_enable);
902 		SITE(pv_irq_ops, irq_disable);
903 		SITE(pv_irq_ops, save_fl);
904 		SITE(pv_irq_ops, restore_fl);
905 #undef SITE
906 
907 	patch_site:
908 		if (start == NULL || (end-start) > len)
909 			goto default_patch;
910 
911 		ret = paravirt_patch_insns(insnbuf, len, start, end);
912 
913 		/* Note: because reloc is assigned from something that
914 		   appears to be an array, gcc assumes it's non-null,
915 		   but doesn't know its relationship with start and
916 		   end. */
917 		if (reloc > start && reloc < end) {
918 			int reloc_off = reloc - start;
919 			long *relocp = (long *)(insnbuf + reloc_off);
920 			long delta = start - (char *)addr;
921 
922 			*relocp += delta;
923 		}
924 		break;
925 
926 	default_patch:
927 	default:
928 		ret = paravirt_patch_default(type, clobbers, insnbuf,
929 					     addr, len);
930 		break;
931 	}
932 
933 	return ret;
934 }
935 
936 static const struct pv_info xen_info __initdata = {
937 	.paravirt_enabled = 1,
938 	.shared_kernel_pmd = 0,
939 
940 	.name = "Xen",
941 };
942 
943 static const struct pv_init_ops xen_init_ops __initdata = {
944 	.patch = xen_patch,
945 };
946 
947 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
948 	.cpuid = xen_cpuid,
949 
950 	.set_debugreg = xen_set_debugreg,
951 	.get_debugreg = xen_get_debugreg,
952 
953 	.clts = xen_clts,
954 
955 	.read_cr0 = xen_read_cr0,
956 	.write_cr0 = xen_write_cr0,
957 
958 	.read_cr4 = native_read_cr4,
959 	.read_cr4_safe = native_read_cr4_safe,
960 	.write_cr4 = xen_write_cr4,
961 
962 	.wbinvd = native_wbinvd,
963 
964 	.read_msr = native_read_msr_safe,
965 	.write_msr = xen_write_msr_safe,
966 	.read_tsc = native_read_tsc,
967 	.read_pmc = native_read_pmc,
968 
969 	.iret = xen_iret,
970 	.irq_enable_sysexit = xen_sysexit,
971 #ifdef CONFIG_X86_64
972 	.usergs_sysret32 = xen_sysret32,
973 	.usergs_sysret64 = xen_sysret64,
974 #endif
975 
976 	.load_tr_desc = paravirt_nop,
977 	.set_ldt = xen_set_ldt,
978 	.load_gdt = xen_load_gdt,
979 	.load_idt = xen_load_idt,
980 	.load_tls = xen_load_tls,
981 #ifdef CONFIG_X86_64
982 	.load_gs_index = xen_load_gs_index,
983 #endif
984 
985 	.alloc_ldt = xen_alloc_ldt,
986 	.free_ldt = xen_free_ldt,
987 
988 	.store_gdt = native_store_gdt,
989 	.store_idt = native_store_idt,
990 	.store_tr = xen_store_tr,
991 
992 	.write_ldt_entry = xen_write_ldt_entry,
993 	.write_gdt_entry = xen_write_gdt_entry,
994 	.write_idt_entry = xen_write_idt_entry,
995 	.load_sp0 = xen_load_sp0,
996 
997 	.set_iopl_mask = xen_set_iopl_mask,
998 	.io_delay = xen_io_delay,
999 
1000 	/* Xen takes care of %gs when switching to usermode for us */
1001 	.swapgs = paravirt_nop,
1002 
1003 	.start_context_switch = paravirt_start_context_switch,
1004 	.end_context_switch = xen_end_context_switch,
1005 };
1006 
1007 static const struct pv_apic_ops xen_apic_ops __initdata = {
1008 #ifdef CONFIG_X86_LOCAL_APIC
1009 	.startup_ipi_hook = paravirt_nop,
1010 #endif
1011 };
1012 
xen_reboot(int reason)1013 static void xen_reboot(int reason)
1014 {
1015 	struct sched_shutdown r = { .reason = reason };
1016 
1017 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1018 		BUG();
1019 }
1020 
xen_restart(char * msg)1021 static void xen_restart(char *msg)
1022 {
1023 	xen_reboot(SHUTDOWN_reboot);
1024 }
1025 
xen_emergency_restart(void)1026 static void xen_emergency_restart(void)
1027 {
1028 	xen_reboot(SHUTDOWN_reboot);
1029 }
1030 
xen_machine_halt(void)1031 static void xen_machine_halt(void)
1032 {
1033 	xen_reboot(SHUTDOWN_poweroff);
1034 }
1035 
xen_crash_shutdown(struct pt_regs * regs)1036 static void xen_crash_shutdown(struct pt_regs *regs)
1037 {
1038 	xen_reboot(SHUTDOWN_crash);
1039 }
1040 
1041 static int
xen_panic_event(struct notifier_block * this,unsigned long event,void * ptr)1042 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1043 {
1044 	xen_reboot(SHUTDOWN_crash);
1045 	return NOTIFY_DONE;
1046 }
1047 
1048 static struct notifier_block xen_panic_block = {
1049 	.notifier_call= xen_panic_event,
1050 };
1051 
xen_panic_handler_init(void)1052 int xen_panic_handler_init(void)
1053 {
1054 	atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1055 	return 0;
1056 }
1057 
1058 static const struct machine_ops __initdata xen_machine_ops = {
1059 	.restart = xen_restart,
1060 	.halt = xen_machine_halt,
1061 	.power_off = xen_machine_halt,
1062 	.shutdown = xen_machine_halt,
1063 	.crash_shutdown = xen_crash_shutdown,
1064 	.emergency_restart = xen_emergency_restart,
1065 };
1066 
1067 /*
1068  * Set up the GDT and segment registers for -fstack-protector.  Until
1069  * we do this, we have to be careful not to call any stack-protected
1070  * function, which is most of the kernel.
1071  */
xen_setup_stackprotector(void)1072 static void __init xen_setup_stackprotector(void)
1073 {
1074 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1075 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1076 
1077 	setup_stack_canary_segment(0);
1078 	switch_to_new_gdt(0);
1079 
1080 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1081 	pv_cpu_ops.load_gdt = xen_load_gdt;
1082 }
1083 
1084 /* First C function to be called on Xen boot */
xen_start_kernel(void)1085 asmlinkage void __init xen_start_kernel(void)
1086 {
1087 	struct physdev_set_iopl set_iopl;
1088 	int rc;
1089 	pgd_t *pgd;
1090 
1091 	if (!xen_start_info)
1092 		return;
1093 
1094 	xen_domain_type = XEN_PV_DOMAIN;
1095 
1096 	xen_setup_machphys_mapping();
1097 
1098 	/* Install Xen paravirt ops */
1099 	pv_info = xen_info;
1100 	pv_init_ops = xen_init_ops;
1101 	pv_cpu_ops = xen_cpu_ops;
1102 	pv_apic_ops = xen_apic_ops;
1103 
1104 	x86_init.resources.memory_setup = xen_memory_setup;
1105 	x86_init.oem.arch_setup = xen_arch_setup;
1106 	x86_init.oem.banner = xen_banner;
1107 
1108 	xen_init_time_ops();
1109 
1110 	/*
1111 	 * Set up some pagetable state before starting to set any ptes.
1112 	 */
1113 
1114 	xen_init_mmu_ops();
1115 
1116 	/* Prevent unwanted bits from being set in PTEs. */
1117 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1118 	if (!xen_initial_domain())
1119 		__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1120 
1121 	__supported_pte_mask |= _PAGE_IOMAP;
1122 
1123 	/*
1124 	 * Prevent page tables from being allocated in highmem, even
1125 	 * if CONFIG_HIGHPTE is enabled.
1126 	 */
1127 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1128 
1129 	/* Work out if we support NX */
1130 	x86_configure_nx();
1131 
1132 	xen_setup_features();
1133 
1134 	/* Get mfn list */
1135 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1136 		xen_build_dynamic_phys_to_machine();
1137 
1138 	/*
1139 	 * Set up kernel GDT and segment registers, mainly so that
1140 	 * -fstack-protector code can be executed.
1141 	 */
1142 	xen_setup_stackprotector();
1143 
1144 	xen_init_irq_ops();
1145 	xen_init_cpuid_mask();
1146 
1147 #ifdef CONFIG_X86_LOCAL_APIC
1148 	/*
1149 	 * set up the basic apic ops.
1150 	 */
1151 	set_xen_basic_apic_ops();
1152 #endif
1153 
1154 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1155 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1156 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1157 	}
1158 
1159 	machine_ops = xen_machine_ops;
1160 
1161 	/*
1162 	 * The only reliable way to retain the initial address of the
1163 	 * percpu gdt_page is to remember it here, so we can go and
1164 	 * mark it RW later, when the initial percpu area is freed.
1165 	 */
1166 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1167 
1168 	xen_smp_init();
1169 
1170 #ifdef CONFIG_ACPI_NUMA
1171 	/*
1172 	 * The pages we from Xen are not related to machine pages, so
1173 	 * any NUMA information the kernel tries to get from ACPI will
1174 	 * be meaningless.  Prevent it from trying.
1175 	 */
1176 	acpi_numa = -1;
1177 #endif
1178 
1179 	pgd = (pgd_t *)xen_start_info->pt_base;
1180 
1181 	if (!xen_initial_domain())
1182 		__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1183 
1184 	__supported_pte_mask |= _PAGE_IOMAP;
1185 	/* Don't do the full vcpu_info placement stuff until we have a
1186 	   possible map and a non-dummy shared_info. */
1187 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1188 
1189 	local_irq_disable();
1190 	early_boot_irqs_disabled = true;
1191 
1192 	memblock_init();
1193 
1194 	xen_raw_console_write("mapping kernel into physical memory\n");
1195 	pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1196 	xen_ident_map_ISA();
1197 
1198 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1199 	xen_build_mfn_list_list();
1200 
1201 	/* keep using Xen gdt for now; no urgent need to change it */
1202 
1203 #ifdef CONFIG_X86_32
1204 	pv_info.kernel_rpl = 1;
1205 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1206 		pv_info.kernel_rpl = 0;
1207 #else
1208 	pv_info.kernel_rpl = 0;
1209 #endif
1210 	/* set the limit of our address space */
1211 	xen_reserve_top();
1212 
1213 	/* We used to do this in xen_arch_setup, but that is too late on AMD
1214 	 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1215 	 * which pokes 0xcf8 port.
1216 	 */
1217 	set_iopl.iopl = 1;
1218 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1219 	if (rc != 0)
1220 		xen_raw_printk("physdev_op failed %d\n", rc);
1221 
1222 #ifdef CONFIG_X86_32
1223 	/* set up basic CPUID stuff */
1224 	cpu_detect(&new_cpu_data);
1225 	new_cpu_data.hard_math = 1;
1226 	new_cpu_data.wp_works_ok = 1;
1227 	new_cpu_data.x86_capability[0] = cpuid_edx(1);
1228 #endif
1229 
1230 	/* Poke various useful things into boot_params */
1231 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1232 	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1233 		? __pa(xen_start_info->mod_start) : 0;
1234 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1235 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1236 
1237 	if (!xen_initial_domain()) {
1238 		add_preferred_console("xenboot", 0, NULL);
1239 		add_preferred_console("tty", 0, NULL);
1240 		add_preferred_console("hvc", 0, NULL);
1241 		if (pci_xen)
1242 			x86_init.pci.arch_init = pci_xen_init;
1243 	} else {
1244 		/* Make sure ACS will be enabled */
1245 		pci_request_acs();
1246 	}
1247 
1248 
1249 	xen_raw_console_write("about to get started...\n");
1250 
1251 	xen_setup_runstate_info(0);
1252 
1253 	/* Start the world */
1254 #ifdef CONFIG_X86_32
1255 	i386_start_kernel();
1256 #else
1257 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1258 #endif
1259 }
1260 
init_hvm_pv_info(int * major,int * minor)1261 static int init_hvm_pv_info(int *major, int *minor)
1262 {
1263 	uint32_t eax, ebx, ecx, edx, pages, msr, base;
1264 	u64 pfn;
1265 
1266 	base = xen_cpuid_base();
1267 	cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1268 
1269 	*major = eax >> 16;
1270 	*minor = eax & 0xffff;
1271 	printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1272 
1273 	cpuid(base + 2, &pages, &msr, &ecx, &edx);
1274 
1275 	pfn = __pa(hypercall_page);
1276 	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1277 
1278 	xen_setup_features();
1279 
1280 	pv_info.name = "Xen HVM";
1281 
1282 	xen_domain_type = XEN_HVM_DOMAIN;
1283 
1284 	return 0;
1285 }
1286 
xen_hvm_init_shared_info(void)1287 void __ref xen_hvm_init_shared_info(void)
1288 {
1289 	int cpu;
1290 	struct xen_add_to_physmap xatp;
1291 	static struct shared_info *shared_info_page = 0;
1292 
1293 	if (!shared_info_page)
1294 		shared_info_page = (struct shared_info *)
1295 			extend_brk(PAGE_SIZE, PAGE_SIZE);
1296 	xatp.domid = DOMID_SELF;
1297 	xatp.idx = 0;
1298 	xatp.space = XENMAPSPACE_shared_info;
1299 	xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1300 	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1301 		BUG();
1302 
1303 	HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1304 
1305 	/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1306 	 * page, we use it in the event channel upcall and in some pvclock
1307 	 * related functions. We don't need the vcpu_info placement
1308 	 * optimizations because we don't use any pv_mmu or pv_irq op on
1309 	 * HVM.
1310 	 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1311 	 * online but xen_hvm_init_shared_info is run at resume time too and
1312 	 * in that case multiple vcpus might be online. */
1313 	for_each_online_cpu(cpu) {
1314 		per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1315 	}
1316 }
1317 
1318 #ifdef CONFIG_XEN_PVHVM
xen_hvm_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1319 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1320 				    unsigned long action, void *hcpu)
1321 {
1322 	int cpu = (long)hcpu;
1323 	switch (action) {
1324 	case CPU_UP_PREPARE:
1325 		per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1326 		if (xen_have_vector_callback)
1327 			xen_init_lock_cpu(cpu);
1328 		break;
1329 	default:
1330 		break;
1331 	}
1332 	return NOTIFY_OK;
1333 }
1334 
1335 static struct notifier_block __cpuinitdata xen_hvm_cpu_notifier = {
1336 	.notifier_call	= xen_hvm_cpu_notify,
1337 };
1338 
xen_hvm_guest_init(void)1339 static void __init xen_hvm_guest_init(void)
1340 {
1341 	int r;
1342 	int major, minor;
1343 
1344 	r = init_hvm_pv_info(&major, &minor);
1345 	if (r < 0)
1346 		return;
1347 
1348 	xen_hvm_init_shared_info();
1349 
1350 	if (xen_feature(XENFEAT_hvm_callback_vector))
1351 		xen_have_vector_callback = 1;
1352 	xen_hvm_smp_init();
1353 	register_cpu_notifier(&xen_hvm_cpu_notifier);
1354 	xen_unplug_emulated_devices();
1355 	have_vcpu_info_placement = 0;
1356 	x86_init.irqs.intr_init = xen_init_IRQ;
1357 	xen_hvm_init_time_ops();
1358 	xen_hvm_init_mmu_ops();
1359 }
1360 
xen_hvm_platform(void)1361 static bool __init xen_hvm_platform(void)
1362 {
1363 	if (xen_pv_domain())
1364 		return false;
1365 
1366 	if (!xen_cpuid_base())
1367 		return false;
1368 
1369 	return true;
1370 }
1371 
xen_hvm_need_lapic(void)1372 bool xen_hvm_need_lapic(void)
1373 {
1374 	if (xen_pv_domain())
1375 		return false;
1376 	if (!xen_hvm_domain())
1377 		return false;
1378 	if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1379 		return false;
1380 	return true;
1381 }
1382 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1383 
1384 const __refconst struct hypervisor_x86 x86_hyper_xen_hvm = {
1385 	.name			= "Xen HVM",
1386 	.detect			= xen_hvm_platform,
1387 	.init_platform		= xen_hvm_guest_init,
1388 };
1389 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1390 #endif
1391