1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "path.h"
20 #include "srcline.h"
21 #include "symbol.h"
22 #include "sort.h"
23 #include "strlist.h"
24 #include "target.h"
25 #include "thread.h"
26 #include "util.h"
27 #include "vdso.h"
28 #include <stdbool.h>
29 #include <sys/types.h>
30 #include <sys/stat.h>
31 #include <unistd.h>
32 #include "unwind.h"
33 #include "linux/hash.h"
34 #include "asm/bug.h"
35 #include "bpf-event.h"
36 #include <internal/lib.h> // page_size
37 #include "cgroup.h"
38 #include "arm64-frame-pointer-unwind-support.h"
39 
40 #include <linux/ctype.h>
41 #include <symbol/kallsyms.h>
42 #include <linux/mman.h>
43 #include <linux/string.h>
44 #include <linux/zalloc.h>
45 
46 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
47 
machine__kernel_dso(struct machine * machine)48 static struct dso *machine__kernel_dso(struct machine *machine)
49 {
50 	return machine->vmlinux_map->dso;
51 }
52 
dsos__init(struct dsos * dsos)53 static void dsos__init(struct dsos *dsos)
54 {
55 	INIT_LIST_HEAD(&dsos->head);
56 	dsos->root = RB_ROOT;
57 	init_rwsem(&dsos->lock);
58 }
59 
machine__threads_init(struct machine * machine)60 static void machine__threads_init(struct machine *machine)
61 {
62 	int i;
63 
64 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
65 		struct threads *threads = &machine->threads[i];
66 		threads->entries = RB_ROOT_CACHED;
67 		init_rwsem(&threads->lock);
68 		threads->nr = 0;
69 		INIT_LIST_HEAD(&threads->dead);
70 		threads->last_match = NULL;
71 	}
72 }
73 
machine__set_mmap_name(struct machine * machine)74 static int machine__set_mmap_name(struct machine *machine)
75 {
76 	if (machine__is_host(machine))
77 		machine->mmap_name = strdup("[kernel.kallsyms]");
78 	else if (machine__is_default_guest(machine))
79 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
80 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
81 			  machine->pid) < 0)
82 		machine->mmap_name = NULL;
83 
84 	return machine->mmap_name ? 0 : -ENOMEM;
85 }
86 
thread__set_guest_comm(struct thread * thread,pid_t pid)87 static void thread__set_guest_comm(struct thread *thread, pid_t pid)
88 {
89 	char comm[64];
90 
91 	snprintf(comm, sizeof(comm), "[guest/%d]", pid);
92 	thread__set_comm(thread, comm, 0);
93 }
94 
machine__init(struct machine * machine,const char * root_dir,pid_t pid)95 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
96 {
97 	int err = -ENOMEM;
98 
99 	memset(machine, 0, sizeof(*machine));
100 	machine->kmaps = maps__new(machine);
101 	if (machine->kmaps == NULL)
102 		return -ENOMEM;
103 
104 	RB_CLEAR_NODE(&machine->rb_node);
105 	dsos__init(&machine->dsos);
106 
107 	machine__threads_init(machine);
108 
109 	machine->vdso_info = NULL;
110 	machine->env = NULL;
111 
112 	machine->pid = pid;
113 
114 	machine->id_hdr_size = 0;
115 	machine->kptr_restrict_warned = false;
116 	machine->comm_exec = false;
117 	machine->kernel_start = 0;
118 	machine->vmlinux_map = NULL;
119 
120 	machine->root_dir = strdup(root_dir);
121 	if (machine->root_dir == NULL)
122 		goto out;
123 
124 	if (machine__set_mmap_name(machine))
125 		goto out;
126 
127 	if (pid != HOST_KERNEL_ID) {
128 		struct thread *thread = machine__findnew_thread(machine, -1,
129 								pid);
130 
131 		if (thread == NULL)
132 			goto out;
133 
134 		thread__set_guest_comm(thread, pid);
135 		thread__put(thread);
136 	}
137 
138 	machine->current_tid = NULL;
139 	err = 0;
140 
141 out:
142 	if (err) {
143 		zfree(&machine->kmaps);
144 		zfree(&machine->root_dir);
145 		zfree(&machine->mmap_name);
146 	}
147 	return 0;
148 }
149 
machine__new_host(void)150 struct machine *machine__new_host(void)
151 {
152 	struct machine *machine = malloc(sizeof(*machine));
153 
154 	if (machine != NULL) {
155 		machine__init(machine, "", HOST_KERNEL_ID);
156 
157 		if (machine__create_kernel_maps(machine) < 0)
158 			goto out_delete;
159 	}
160 
161 	return machine;
162 out_delete:
163 	free(machine);
164 	return NULL;
165 }
166 
machine__new_kallsyms(void)167 struct machine *machine__new_kallsyms(void)
168 {
169 	struct machine *machine = machine__new_host();
170 	/*
171 	 * FIXME:
172 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
173 	 *    ask for not using the kcore parsing code, once this one is fixed
174 	 *    to create a map per module.
175 	 */
176 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
177 		machine__delete(machine);
178 		machine = NULL;
179 	}
180 
181 	return machine;
182 }
183 
dsos__purge(struct dsos * dsos)184 static void dsos__purge(struct dsos *dsos)
185 {
186 	struct dso *pos, *n;
187 
188 	down_write(&dsos->lock);
189 
190 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
191 		RB_CLEAR_NODE(&pos->rb_node);
192 		pos->root = NULL;
193 		list_del_init(&pos->node);
194 		dso__put(pos);
195 	}
196 
197 	up_write(&dsos->lock);
198 }
199 
dsos__exit(struct dsos * dsos)200 static void dsos__exit(struct dsos *dsos)
201 {
202 	dsos__purge(dsos);
203 	exit_rwsem(&dsos->lock);
204 }
205 
machine__delete_threads(struct machine * machine)206 void machine__delete_threads(struct machine *machine)
207 {
208 	struct rb_node *nd;
209 	int i;
210 
211 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
212 		struct threads *threads = &machine->threads[i];
213 		down_write(&threads->lock);
214 		nd = rb_first_cached(&threads->entries);
215 		while (nd) {
216 			struct thread *t = rb_entry(nd, struct thread, rb_node);
217 
218 			nd = rb_next(nd);
219 			__machine__remove_thread(machine, t, false);
220 		}
221 		up_write(&threads->lock);
222 	}
223 }
224 
machine__exit(struct machine * machine)225 void machine__exit(struct machine *machine)
226 {
227 	int i;
228 
229 	if (machine == NULL)
230 		return;
231 
232 	machine__destroy_kernel_maps(machine);
233 	maps__delete(machine->kmaps);
234 	dsos__exit(&machine->dsos);
235 	machine__exit_vdso(machine);
236 	zfree(&machine->root_dir);
237 	zfree(&machine->mmap_name);
238 	zfree(&machine->current_tid);
239 
240 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
241 		struct threads *threads = &machine->threads[i];
242 		struct thread *thread, *n;
243 		/*
244 		 * Forget about the dead, at this point whatever threads were
245 		 * left in the dead lists better have a reference count taken
246 		 * by who is using them, and then, when they drop those references
247 		 * and it finally hits zero, thread__put() will check and see that
248 		 * its not in the dead threads list and will not try to remove it
249 		 * from there, just calling thread__delete() straight away.
250 		 */
251 		list_for_each_entry_safe(thread, n, &threads->dead, node)
252 			list_del_init(&thread->node);
253 
254 		exit_rwsem(&threads->lock);
255 	}
256 }
257 
machine__delete(struct machine * machine)258 void machine__delete(struct machine *machine)
259 {
260 	if (machine) {
261 		machine__exit(machine);
262 		free(machine);
263 	}
264 }
265 
machines__init(struct machines * machines)266 void machines__init(struct machines *machines)
267 {
268 	machine__init(&machines->host, "", HOST_KERNEL_ID);
269 	machines->guests = RB_ROOT_CACHED;
270 }
271 
machines__exit(struct machines * machines)272 void machines__exit(struct machines *machines)
273 {
274 	machine__exit(&machines->host);
275 	/* XXX exit guest */
276 }
277 
machines__add(struct machines * machines,pid_t pid,const char * root_dir)278 struct machine *machines__add(struct machines *machines, pid_t pid,
279 			      const char *root_dir)
280 {
281 	struct rb_node **p = &machines->guests.rb_root.rb_node;
282 	struct rb_node *parent = NULL;
283 	struct machine *pos, *machine = malloc(sizeof(*machine));
284 	bool leftmost = true;
285 
286 	if (machine == NULL)
287 		return NULL;
288 
289 	if (machine__init(machine, root_dir, pid) != 0) {
290 		free(machine);
291 		return NULL;
292 	}
293 
294 	while (*p != NULL) {
295 		parent = *p;
296 		pos = rb_entry(parent, struct machine, rb_node);
297 		if (pid < pos->pid)
298 			p = &(*p)->rb_left;
299 		else {
300 			p = &(*p)->rb_right;
301 			leftmost = false;
302 		}
303 	}
304 
305 	rb_link_node(&machine->rb_node, parent, p);
306 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
307 
308 	machine->machines = machines;
309 
310 	return machine;
311 }
312 
machines__set_comm_exec(struct machines * machines,bool comm_exec)313 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
314 {
315 	struct rb_node *nd;
316 
317 	machines->host.comm_exec = comm_exec;
318 
319 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
320 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
321 
322 		machine->comm_exec = comm_exec;
323 	}
324 }
325 
machines__find(struct machines * machines,pid_t pid)326 struct machine *machines__find(struct machines *machines, pid_t pid)
327 {
328 	struct rb_node **p = &machines->guests.rb_root.rb_node;
329 	struct rb_node *parent = NULL;
330 	struct machine *machine;
331 	struct machine *default_machine = NULL;
332 
333 	if (pid == HOST_KERNEL_ID)
334 		return &machines->host;
335 
336 	while (*p != NULL) {
337 		parent = *p;
338 		machine = rb_entry(parent, struct machine, rb_node);
339 		if (pid < machine->pid)
340 			p = &(*p)->rb_left;
341 		else if (pid > machine->pid)
342 			p = &(*p)->rb_right;
343 		else
344 			return machine;
345 		if (!machine->pid)
346 			default_machine = machine;
347 	}
348 
349 	return default_machine;
350 }
351 
machines__findnew(struct machines * machines,pid_t pid)352 struct machine *machines__findnew(struct machines *machines, pid_t pid)
353 {
354 	char path[PATH_MAX];
355 	const char *root_dir = "";
356 	struct machine *machine = machines__find(machines, pid);
357 
358 	if (machine && (machine->pid == pid))
359 		goto out;
360 
361 	if ((pid != HOST_KERNEL_ID) &&
362 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
363 	    (symbol_conf.guestmount)) {
364 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
365 		if (access(path, R_OK)) {
366 			static struct strlist *seen;
367 
368 			if (!seen)
369 				seen = strlist__new(NULL, NULL);
370 
371 			if (!strlist__has_entry(seen, path)) {
372 				pr_err("Can't access file %s\n", path);
373 				strlist__add(seen, path);
374 			}
375 			machine = NULL;
376 			goto out;
377 		}
378 		root_dir = path;
379 	}
380 
381 	machine = machines__add(machines, pid, root_dir);
382 out:
383 	return machine;
384 }
385 
machines__find_guest(struct machines * machines,pid_t pid)386 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
387 {
388 	struct machine *machine = machines__find(machines, pid);
389 
390 	if (!machine)
391 		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
392 	return machine;
393 }
394 
395 /*
396  * A common case for KVM test programs is that the test program acts as the
397  * hypervisor, creating, running and destroying the virtual machine, and
398  * providing the guest object code from its own object code. In this case,
399  * the VM is not running an OS, but only the functions loaded into it by the
400  * hypervisor test program, and conveniently, loaded at the same virtual
401  * addresses.
402  *
403  * Normally to resolve addresses, MMAP events are needed to map addresses
404  * back to the object code and debug symbols for that object code.
405  *
406  * Currently, there is no way to get such mapping information from guests
407  * but, in the scenario described above, the guest has the same mappings
408  * as the hypervisor, so support for that scenario can be achieved.
409  *
410  * To support that, copy the host thread's maps to the guest thread's maps.
411  * Note, we do not discover the guest until we encounter a guest event,
412  * which works well because it is not until then that we know that the host
413  * thread's maps have been set up.
414  *
415  * This function returns the guest thread. Apart from keeping the data
416  * structures sane, using a thread belonging to the guest machine, instead
417  * of the host thread, allows it to have its own comm (refer
418  * thread__set_guest_comm()).
419  */
findnew_guest_code(struct machine * machine,struct machine * host_machine,pid_t pid)420 static struct thread *findnew_guest_code(struct machine *machine,
421 					 struct machine *host_machine,
422 					 pid_t pid)
423 {
424 	struct thread *host_thread;
425 	struct thread *thread;
426 	int err;
427 
428 	if (!machine)
429 		return NULL;
430 
431 	thread = machine__findnew_thread(machine, -1, pid);
432 	if (!thread)
433 		return NULL;
434 
435 	/* Assume maps are set up if there are any */
436 	if (thread->maps->nr_maps)
437 		return thread;
438 
439 	host_thread = machine__find_thread(host_machine, -1, pid);
440 	if (!host_thread)
441 		goto out_err;
442 
443 	thread__set_guest_comm(thread, pid);
444 
445 	/*
446 	 * Guest code can be found in hypervisor process at the same address
447 	 * so copy host maps.
448 	 */
449 	err = maps__clone(thread, host_thread->maps);
450 	thread__put(host_thread);
451 	if (err)
452 		goto out_err;
453 
454 	return thread;
455 
456 out_err:
457 	thread__zput(thread);
458 	return NULL;
459 }
460 
machines__findnew_guest_code(struct machines * machines,pid_t pid)461 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
462 {
463 	struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
464 	struct machine *machine = machines__findnew(machines, pid);
465 
466 	return findnew_guest_code(machine, host_machine, pid);
467 }
468 
machine__findnew_guest_code(struct machine * machine,pid_t pid)469 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
470 {
471 	struct machines *machines = machine->machines;
472 	struct machine *host_machine;
473 
474 	if (!machines)
475 		return NULL;
476 
477 	host_machine = machines__find(machines, HOST_KERNEL_ID);
478 
479 	return findnew_guest_code(machine, host_machine, pid);
480 }
481 
machines__process_guests(struct machines * machines,machine__process_t process,void * data)482 void machines__process_guests(struct machines *machines,
483 			      machine__process_t process, void *data)
484 {
485 	struct rb_node *nd;
486 
487 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
488 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
489 		process(pos, data);
490 	}
491 }
492 
machines__set_id_hdr_size(struct machines * machines,u16 id_hdr_size)493 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
494 {
495 	struct rb_node *node;
496 	struct machine *machine;
497 
498 	machines->host.id_hdr_size = id_hdr_size;
499 
500 	for (node = rb_first_cached(&machines->guests); node;
501 	     node = rb_next(node)) {
502 		machine = rb_entry(node, struct machine, rb_node);
503 		machine->id_hdr_size = id_hdr_size;
504 	}
505 
506 	return;
507 }
508 
machine__update_thread_pid(struct machine * machine,struct thread * th,pid_t pid)509 static void machine__update_thread_pid(struct machine *machine,
510 				       struct thread *th, pid_t pid)
511 {
512 	struct thread *leader;
513 
514 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
515 		return;
516 
517 	th->pid_ = pid;
518 
519 	if (th->pid_ == th->tid)
520 		return;
521 
522 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
523 	if (!leader)
524 		goto out_err;
525 
526 	if (!leader->maps)
527 		leader->maps = maps__new(machine);
528 
529 	if (!leader->maps)
530 		goto out_err;
531 
532 	if (th->maps == leader->maps)
533 		return;
534 
535 	if (th->maps) {
536 		/*
537 		 * Maps are created from MMAP events which provide the pid and
538 		 * tid.  Consequently there never should be any maps on a thread
539 		 * with an unknown pid.  Just print an error if there are.
540 		 */
541 		if (!maps__empty(th->maps))
542 			pr_err("Discarding thread maps for %d:%d\n",
543 			       th->pid_, th->tid);
544 		maps__put(th->maps);
545 	}
546 
547 	th->maps = maps__get(leader->maps);
548 out_put:
549 	thread__put(leader);
550 	return;
551 out_err:
552 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
553 	goto out_put;
554 }
555 
556 /*
557  * Front-end cache - TID lookups come in blocks,
558  * so most of the time we dont have to look up
559  * the full rbtree:
560  */
561 static struct thread*
__threads__get_last_match(struct threads * threads,struct machine * machine,int pid,int tid)562 __threads__get_last_match(struct threads *threads, struct machine *machine,
563 			  int pid, int tid)
564 {
565 	struct thread *th;
566 
567 	th = threads->last_match;
568 	if (th != NULL) {
569 		if (th->tid == tid) {
570 			machine__update_thread_pid(machine, th, pid);
571 			return thread__get(th);
572 		}
573 
574 		threads->last_match = NULL;
575 	}
576 
577 	return NULL;
578 }
579 
580 static struct thread*
threads__get_last_match(struct threads * threads,struct machine * machine,int pid,int tid)581 threads__get_last_match(struct threads *threads, struct machine *machine,
582 			int pid, int tid)
583 {
584 	struct thread *th = NULL;
585 
586 	if (perf_singlethreaded)
587 		th = __threads__get_last_match(threads, machine, pid, tid);
588 
589 	return th;
590 }
591 
592 static void
__threads__set_last_match(struct threads * threads,struct thread * th)593 __threads__set_last_match(struct threads *threads, struct thread *th)
594 {
595 	threads->last_match = th;
596 }
597 
598 static void
threads__set_last_match(struct threads * threads,struct thread * th)599 threads__set_last_match(struct threads *threads, struct thread *th)
600 {
601 	if (perf_singlethreaded)
602 		__threads__set_last_match(threads, th);
603 }
604 
605 /*
606  * Caller must eventually drop thread->refcnt returned with a successful
607  * lookup/new thread inserted.
608  */
____machine__findnew_thread(struct machine * machine,struct threads * threads,pid_t pid,pid_t tid,bool create)609 static struct thread *____machine__findnew_thread(struct machine *machine,
610 						  struct threads *threads,
611 						  pid_t pid, pid_t tid,
612 						  bool create)
613 {
614 	struct rb_node **p = &threads->entries.rb_root.rb_node;
615 	struct rb_node *parent = NULL;
616 	struct thread *th;
617 	bool leftmost = true;
618 
619 	th = threads__get_last_match(threads, machine, pid, tid);
620 	if (th)
621 		return th;
622 
623 	while (*p != NULL) {
624 		parent = *p;
625 		th = rb_entry(parent, struct thread, rb_node);
626 
627 		if (th->tid == tid) {
628 			threads__set_last_match(threads, th);
629 			machine__update_thread_pid(machine, th, pid);
630 			return thread__get(th);
631 		}
632 
633 		if (tid < th->tid)
634 			p = &(*p)->rb_left;
635 		else {
636 			p = &(*p)->rb_right;
637 			leftmost = false;
638 		}
639 	}
640 
641 	if (!create)
642 		return NULL;
643 
644 	th = thread__new(pid, tid);
645 	if (th != NULL) {
646 		rb_link_node(&th->rb_node, parent, p);
647 		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
648 
649 		/*
650 		 * We have to initialize maps separately after rb tree is updated.
651 		 *
652 		 * The reason is that we call machine__findnew_thread
653 		 * within thread__init_maps to find the thread
654 		 * leader and that would screwed the rb tree.
655 		 */
656 		if (thread__init_maps(th, machine)) {
657 			rb_erase_cached(&th->rb_node, &threads->entries);
658 			RB_CLEAR_NODE(&th->rb_node);
659 			thread__put(th);
660 			return NULL;
661 		}
662 		/*
663 		 * It is now in the rbtree, get a ref
664 		 */
665 		thread__get(th);
666 		threads__set_last_match(threads, th);
667 		++threads->nr;
668 	}
669 
670 	return th;
671 }
672 
__machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)673 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
674 {
675 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
676 }
677 
machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)678 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
679 				       pid_t tid)
680 {
681 	struct threads *threads = machine__threads(machine, tid);
682 	struct thread *th;
683 
684 	down_write(&threads->lock);
685 	th = __machine__findnew_thread(machine, pid, tid);
686 	up_write(&threads->lock);
687 	return th;
688 }
689 
machine__find_thread(struct machine * machine,pid_t pid,pid_t tid)690 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
691 				    pid_t tid)
692 {
693 	struct threads *threads = machine__threads(machine, tid);
694 	struct thread *th;
695 
696 	down_read(&threads->lock);
697 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
698 	up_read(&threads->lock);
699 	return th;
700 }
701 
702 /*
703  * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
704  * So here a single thread is created for that, but actually there is a separate
705  * idle task per cpu, so there should be one 'struct thread' per cpu, but there
706  * is only 1. That causes problems for some tools, requiring workarounds. For
707  * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
708  */
machine__idle_thread(struct machine * machine)709 struct thread *machine__idle_thread(struct machine *machine)
710 {
711 	struct thread *thread = machine__findnew_thread(machine, 0, 0);
712 
713 	if (!thread || thread__set_comm(thread, "swapper", 0) ||
714 	    thread__set_namespaces(thread, 0, NULL))
715 		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
716 
717 	return thread;
718 }
719 
machine__thread_exec_comm(struct machine * machine,struct thread * thread)720 struct comm *machine__thread_exec_comm(struct machine *machine,
721 				       struct thread *thread)
722 {
723 	if (machine->comm_exec)
724 		return thread__exec_comm(thread);
725 	else
726 		return thread__comm(thread);
727 }
728 
machine__process_comm_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)729 int machine__process_comm_event(struct machine *machine, union perf_event *event,
730 				struct perf_sample *sample)
731 {
732 	struct thread *thread = machine__findnew_thread(machine,
733 							event->comm.pid,
734 							event->comm.tid);
735 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
736 	int err = 0;
737 
738 	if (exec)
739 		machine->comm_exec = true;
740 
741 	if (dump_trace)
742 		perf_event__fprintf_comm(event, stdout);
743 
744 	if (thread == NULL ||
745 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
746 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
747 		err = -1;
748 	}
749 
750 	thread__put(thread);
751 
752 	return err;
753 }
754 
machine__process_namespaces_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)755 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
756 				      union perf_event *event,
757 				      struct perf_sample *sample __maybe_unused)
758 {
759 	struct thread *thread = machine__findnew_thread(machine,
760 							event->namespaces.pid,
761 							event->namespaces.tid);
762 	int err = 0;
763 
764 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
765 		  "\nWARNING: kernel seems to support more namespaces than perf"
766 		  " tool.\nTry updating the perf tool..\n\n");
767 
768 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
769 		  "\nWARNING: perf tool seems to support more namespaces than"
770 		  " the kernel.\nTry updating the kernel..\n\n");
771 
772 	if (dump_trace)
773 		perf_event__fprintf_namespaces(event, stdout);
774 
775 	if (thread == NULL ||
776 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
777 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
778 		err = -1;
779 	}
780 
781 	thread__put(thread);
782 
783 	return err;
784 }
785 
machine__process_cgroup_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)786 int machine__process_cgroup_event(struct machine *machine,
787 				  union perf_event *event,
788 				  struct perf_sample *sample __maybe_unused)
789 {
790 	struct cgroup *cgrp;
791 
792 	if (dump_trace)
793 		perf_event__fprintf_cgroup(event, stdout);
794 
795 	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
796 	if (cgrp == NULL)
797 		return -ENOMEM;
798 
799 	return 0;
800 }
801 
machine__process_lost_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)802 int machine__process_lost_event(struct machine *machine __maybe_unused,
803 				union perf_event *event, struct perf_sample *sample __maybe_unused)
804 {
805 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
806 		    event->lost.id, event->lost.lost);
807 	return 0;
808 }
809 
machine__process_lost_samples_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)810 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
811 					union perf_event *event, struct perf_sample *sample)
812 {
813 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
814 		    sample->id, event->lost_samples.lost);
815 	return 0;
816 }
817 
machine__findnew_module_dso(struct machine * machine,struct kmod_path * m,const char * filename)818 static struct dso *machine__findnew_module_dso(struct machine *machine,
819 					       struct kmod_path *m,
820 					       const char *filename)
821 {
822 	struct dso *dso;
823 
824 	down_write(&machine->dsos.lock);
825 
826 	dso = __dsos__find(&machine->dsos, m->name, true);
827 	if (!dso) {
828 		dso = __dsos__addnew(&machine->dsos, m->name);
829 		if (dso == NULL)
830 			goto out_unlock;
831 
832 		dso__set_module_info(dso, m, machine);
833 		dso__set_long_name(dso, strdup(filename), true);
834 		dso->kernel = DSO_SPACE__KERNEL;
835 	}
836 
837 	dso__get(dso);
838 out_unlock:
839 	up_write(&machine->dsos.lock);
840 	return dso;
841 }
842 
machine__process_aux_event(struct machine * machine __maybe_unused,union perf_event * event)843 int machine__process_aux_event(struct machine *machine __maybe_unused,
844 			       union perf_event *event)
845 {
846 	if (dump_trace)
847 		perf_event__fprintf_aux(event, stdout);
848 	return 0;
849 }
850 
machine__process_itrace_start_event(struct machine * machine __maybe_unused,union perf_event * event)851 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
852 					union perf_event *event)
853 {
854 	if (dump_trace)
855 		perf_event__fprintf_itrace_start(event, stdout);
856 	return 0;
857 }
858 
machine__process_aux_output_hw_id_event(struct machine * machine __maybe_unused,union perf_event * event)859 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
860 					    union perf_event *event)
861 {
862 	if (dump_trace)
863 		perf_event__fprintf_aux_output_hw_id(event, stdout);
864 	return 0;
865 }
866 
machine__process_switch_event(struct machine * machine __maybe_unused,union perf_event * event)867 int machine__process_switch_event(struct machine *machine __maybe_unused,
868 				  union perf_event *event)
869 {
870 	if (dump_trace)
871 		perf_event__fprintf_switch(event, stdout);
872 	return 0;
873 }
874 
machine__process_ksymbol_register(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)875 static int machine__process_ksymbol_register(struct machine *machine,
876 					     union perf_event *event,
877 					     struct perf_sample *sample __maybe_unused)
878 {
879 	struct symbol *sym;
880 	struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
881 
882 	if (!map) {
883 		struct dso *dso = dso__new(event->ksymbol.name);
884 
885 		if (dso) {
886 			dso->kernel = DSO_SPACE__KERNEL;
887 			map = map__new2(0, dso);
888 			dso__put(dso);
889 		}
890 
891 		if (!dso || !map) {
892 			return -ENOMEM;
893 		}
894 
895 		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
896 			map->dso->binary_type = DSO_BINARY_TYPE__OOL;
897 			map->dso->data.file_size = event->ksymbol.len;
898 			dso__set_loaded(map->dso);
899 		}
900 
901 		map->start = event->ksymbol.addr;
902 		map->end = map->start + event->ksymbol.len;
903 		maps__insert(machine__kernel_maps(machine), map);
904 		map__put(map);
905 		dso__set_loaded(dso);
906 
907 		if (is_bpf_image(event->ksymbol.name)) {
908 			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
909 			dso__set_long_name(dso, "", false);
910 		}
911 	}
912 
913 	sym = symbol__new(map->map_ip(map, map->start),
914 			  event->ksymbol.len,
915 			  0, 0, event->ksymbol.name);
916 	if (!sym)
917 		return -ENOMEM;
918 	dso__insert_symbol(map->dso, sym);
919 	return 0;
920 }
921 
machine__process_ksymbol_unregister(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)922 static int machine__process_ksymbol_unregister(struct machine *machine,
923 					       union perf_event *event,
924 					       struct perf_sample *sample __maybe_unused)
925 {
926 	struct symbol *sym;
927 	struct map *map;
928 
929 	map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
930 	if (!map)
931 		return 0;
932 
933 	if (map != machine->vmlinux_map)
934 		maps__remove(machine__kernel_maps(machine), map);
935 	else {
936 		sym = dso__find_symbol(map->dso, map->map_ip(map, map->start));
937 		if (sym)
938 			dso__delete_symbol(map->dso, sym);
939 	}
940 
941 	return 0;
942 }
943 
machine__process_ksymbol(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)944 int machine__process_ksymbol(struct machine *machine __maybe_unused,
945 			     union perf_event *event,
946 			     struct perf_sample *sample)
947 {
948 	if (dump_trace)
949 		perf_event__fprintf_ksymbol(event, stdout);
950 
951 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
952 		return machine__process_ksymbol_unregister(machine, event,
953 							   sample);
954 	return machine__process_ksymbol_register(machine, event, sample);
955 }
956 
machine__process_text_poke(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)957 int machine__process_text_poke(struct machine *machine, union perf_event *event,
958 			       struct perf_sample *sample __maybe_unused)
959 {
960 	struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
961 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
962 
963 	if (dump_trace)
964 		perf_event__fprintf_text_poke(event, machine, stdout);
965 
966 	if (!event->text_poke.new_len)
967 		return 0;
968 
969 	if (cpumode != PERF_RECORD_MISC_KERNEL) {
970 		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
971 		return 0;
972 	}
973 
974 	if (map && map->dso) {
975 		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
976 		int ret;
977 
978 		/*
979 		 * Kernel maps might be changed when loading symbols so loading
980 		 * must be done prior to using kernel maps.
981 		 */
982 		map__load(map);
983 		ret = dso__data_write_cache_addr(map->dso, map, machine,
984 						 event->text_poke.addr,
985 						 new_bytes,
986 						 event->text_poke.new_len);
987 		if (ret != event->text_poke.new_len)
988 			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
989 				 event->text_poke.addr);
990 	} else {
991 		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
992 			 event->text_poke.addr);
993 	}
994 
995 	return 0;
996 }
997 
machine__addnew_module_map(struct machine * machine,u64 start,const char * filename)998 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
999 					      const char *filename)
1000 {
1001 	struct map *map = NULL;
1002 	struct kmod_path m;
1003 	struct dso *dso;
1004 
1005 	if (kmod_path__parse_name(&m, filename))
1006 		return NULL;
1007 
1008 	dso = machine__findnew_module_dso(machine, &m, filename);
1009 	if (dso == NULL)
1010 		goto out;
1011 
1012 	map = map__new2(start, dso);
1013 	if (map == NULL)
1014 		goto out;
1015 
1016 	maps__insert(machine__kernel_maps(machine), map);
1017 
1018 	/* Put the map here because maps__insert already got it */
1019 	map__put(map);
1020 out:
1021 	/* put the dso here, corresponding to  machine__findnew_module_dso */
1022 	dso__put(dso);
1023 	zfree(&m.name);
1024 	return map;
1025 }
1026 
machines__fprintf_dsos(struct machines * machines,FILE * fp)1027 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
1028 {
1029 	struct rb_node *nd;
1030 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
1031 
1032 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1033 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1034 		ret += __dsos__fprintf(&pos->dsos.head, fp);
1035 	}
1036 
1037 	return ret;
1038 }
1039 
machine__fprintf_dsos_buildid(struct machine * m,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)1040 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
1041 				     bool (skip)(struct dso *dso, int parm), int parm)
1042 {
1043 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
1044 }
1045 
machines__fprintf_dsos_buildid(struct machines * machines,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)1046 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
1047 				     bool (skip)(struct dso *dso, int parm), int parm)
1048 {
1049 	struct rb_node *nd;
1050 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
1051 
1052 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1053 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1054 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
1055 	}
1056 	return ret;
1057 }
1058 
machine__fprintf_vmlinux_path(struct machine * machine,FILE * fp)1059 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
1060 {
1061 	int i;
1062 	size_t printed = 0;
1063 	struct dso *kdso = machine__kernel_dso(machine);
1064 
1065 	if (kdso->has_build_id) {
1066 		char filename[PATH_MAX];
1067 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
1068 					   false))
1069 			printed += fprintf(fp, "[0] %s\n", filename);
1070 	}
1071 
1072 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
1073 		printed += fprintf(fp, "[%d] %s\n",
1074 				   i + kdso->has_build_id, vmlinux_path[i]);
1075 
1076 	return printed;
1077 }
1078 
machine__fprintf(struct machine * machine,FILE * fp)1079 size_t machine__fprintf(struct machine *machine, FILE *fp)
1080 {
1081 	struct rb_node *nd;
1082 	size_t ret;
1083 	int i;
1084 
1085 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
1086 		struct threads *threads = &machine->threads[i];
1087 
1088 		down_read(&threads->lock);
1089 
1090 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
1091 
1092 		for (nd = rb_first_cached(&threads->entries); nd;
1093 		     nd = rb_next(nd)) {
1094 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
1095 
1096 			ret += thread__fprintf(pos, fp);
1097 		}
1098 
1099 		up_read(&threads->lock);
1100 	}
1101 	return ret;
1102 }
1103 
machine__get_kernel(struct machine * machine)1104 static struct dso *machine__get_kernel(struct machine *machine)
1105 {
1106 	const char *vmlinux_name = machine->mmap_name;
1107 	struct dso *kernel;
1108 
1109 	if (machine__is_host(machine)) {
1110 		if (symbol_conf.vmlinux_name)
1111 			vmlinux_name = symbol_conf.vmlinux_name;
1112 
1113 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1114 						 "[kernel]", DSO_SPACE__KERNEL);
1115 	} else {
1116 		if (symbol_conf.default_guest_vmlinux_name)
1117 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1118 
1119 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1120 						 "[guest.kernel]",
1121 						 DSO_SPACE__KERNEL_GUEST);
1122 	}
1123 
1124 	if (kernel != NULL && (!kernel->has_build_id))
1125 		dso__read_running_kernel_build_id(kernel, machine);
1126 
1127 	return kernel;
1128 }
1129 
1130 struct process_args {
1131 	u64 start;
1132 };
1133 
machine__get_kallsyms_filename(struct machine * machine,char * buf,size_t bufsz)1134 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1135 				    size_t bufsz)
1136 {
1137 	if (machine__is_default_guest(machine))
1138 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1139 	else
1140 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1141 }
1142 
1143 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1144 
1145 /* Figure out the start address of kernel map from /proc/kallsyms.
1146  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1147  * symbol_name if it's not that important.
1148  */
machine__get_running_kernel_start(struct machine * machine,const char ** symbol_name,u64 * start,u64 * end)1149 static int machine__get_running_kernel_start(struct machine *machine,
1150 					     const char **symbol_name,
1151 					     u64 *start, u64 *end)
1152 {
1153 	char filename[PATH_MAX];
1154 	int i, err = -1;
1155 	const char *name;
1156 	u64 addr = 0;
1157 
1158 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1159 
1160 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1161 		return 0;
1162 
1163 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1164 		err = kallsyms__get_function_start(filename, name, &addr);
1165 		if (!err)
1166 			break;
1167 	}
1168 
1169 	if (err)
1170 		return -1;
1171 
1172 	if (symbol_name)
1173 		*symbol_name = name;
1174 
1175 	*start = addr;
1176 
1177 	err = kallsyms__get_function_start(filename, "_etext", &addr);
1178 	if (!err)
1179 		*end = addr;
1180 
1181 	return 0;
1182 }
1183 
machine__create_extra_kernel_map(struct machine * machine,struct dso * kernel,struct extra_kernel_map * xm)1184 int machine__create_extra_kernel_map(struct machine *machine,
1185 				     struct dso *kernel,
1186 				     struct extra_kernel_map *xm)
1187 {
1188 	struct kmap *kmap;
1189 	struct map *map;
1190 
1191 	map = map__new2(xm->start, kernel);
1192 	if (!map)
1193 		return -1;
1194 
1195 	map->end   = xm->end;
1196 	map->pgoff = xm->pgoff;
1197 
1198 	kmap = map__kmap(map);
1199 
1200 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1201 
1202 	maps__insert(machine__kernel_maps(machine), map);
1203 
1204 	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1205 		  kmap->name, map->start, map->end);
1206 
1207 	map__put(map);
1208 
1209 	return 0;
1210 }
1211 
find_entry_trampoline(struct dso * dso)1212 static u64 find_entry_trampoline(struct dso *dso)
1213 {
1214 	/* Duplicates are removed so lookup all aliases */
1215 	const char *syms[] = {
1216 		"_entry_trampoline",
1217 		"__entry_trampoline_start",
1218 		"entry_SYSCALL_64_trampoline",
1219 	};
1220 	struct symbol *sym = dso__first_symbol(dso);
1221 	unsigned int i;
1222 
1223 	for (; sym; sym = dso__next_symbol(sym)) {
1224 		if (sym->binding != STB_GLOBAL)
1225 			continue;
1226 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1227 			if (!strcmp(sym->name, syms[i]))
1228 				return sym->start;
1229 		}
1230 	}
1231 
1232 	return 0;
1233 }
1234 
1235 /*
1236  * These values can be used for kernels that do not have symbols for the entry
1237  * trampolines in kallsyms.
1238  */
1239 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1240 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1241 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1242 
1243 /* Map x86_64 PTI entry trampolines */
machine__map_x86_64_entry_trampolines(struct machine * machine,struct dso * kernel)1244 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1245 					  struct dso *kernel)
1246 {
1247 	struct maps *kmaps = machine__kernel_maps(machine);
1248 	int nr_cpus_avail, cpu;
1249 	bool found = false;
1250 	struct map *map;
1251 	u64 pgoff;
1252 
1253 	/*
1254 	 * In the vmlinux case, pgoff is a virtual address which must now be
1255 	 * mapped to a vmlinux offset.
1256 	 */
1257 	maps__for_each_entry(kmaps, map) {
1258 		struct kmap *kmap = __map__kmap(map);
1259 		struct map *dest_map;
1260 
1261 		if (!kmap || !is_entry_trampoline(kmap->name))
1262 			continue;
1263 
1264 		dest_map = maps__find(kmaps, map->pgoff);
1265 		if (dest_map != map)
1266 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1267 		found = true;
1268 	}
1269 	if (found || machine->trampolines_mapped)
1270 		return 0;
1271 
1272 	pgoff = find_entry_trampoline(kernel);
1273 	if (!pgoff)
1274 		return 0;
1275 
1276 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1277 
1278 	/* Add a 1 page map for each CPU's entry trampoline */
1279 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1280 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1281 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1282 			 X86_64_ENTRY_TRAMPOLINE;
1283 		struct extra_kernel_map xm = {
1284 			.start = va,
1285 			.end   = va + page_size,
1286 			.pgoff = pgoff,
1287 		};
1288 
1289 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1290 
1291 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1292 			return -1;
1293 	}
1294 
1295 	machine->trampolines_mapped = nr_cpus_avail;
1296 
1297 	return 0;
1298 }
1299 
machine__create_extra_kernel_maps(struct machine * machine __maybe_unused,struct dso * kernel __maybe_unused)1300 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1301 					     struct dso *kernel __maybe_unused)
1302 {
1303 	return 0;
1304 }
1305 
1306 static int
__machine__create_kernel_maps(struct machine * machine,struct dso * kernel)1307 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1308 {
1309 	/* In case of renewal the kernel map, destroy previous one */
1310 	machine__destroy_kernel_maps(machine);
1311 
1312 	machine->vmlinux_map = map__new2(0, kernel);
1313 	if (machine->vmlinux_map == NULL)
1314 		return -1;
1315 
1316 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1317 	maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1318 	return 0;
1319 }
1320 
machine__destroy_kernel_maps(struct machine * machine)1321 void machine__destroy_kernel_maps(struct machine *machine)
1322 {
1323 	struct kmap *kmap;
1324 	struct map *map = machine__kernel_map(machine);
1325 
1326 	if (map == NULL)
1327 		return;
1328 
1329 	kmap = map__kmap(map);
1330 	maps__remove(machine__kernel_maps(machine), map);
1331 	if (kmap && kmap->ref_reloc_sym) {
1332 		zfree((char **)&kmap->ref_reloc_sym->name);
1333 		zfree(&kmap->ref_reloc_sym);
1334 	}
1335 
1336 	map__zput(machine->vmlinux_map);
1337 }
1338 
machines__create_guest_kernel_maps(struct machines * machines)1339 int machines__create_guest_kernel_maps(struct machines *machines)
1340 {
1341 	int ret = 0;
1342 	struct dirent **namelist = NULL;
1343 	int i, items = 0;
1344 	char path[PATH_MAX];
1345 	pid_t pid;
1346 	char *endp;
1347 
1348 	if (symbol_conf.default_guest_vmlinux_name ||
1349 	    symbol_conf.default_guest_modules ||
1350 	    symbol_conf.default_guest_kallsyms) {
1351 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1352 	}
1353 
1354 	if (symbol_conf.guestmount) {
1355 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1356 		if (items <= 0)
1357 			return -ENOENT;
1358 		for (i = 0; i < items; i++) {
1359 			if (!isdigit(namelist[i]->d_name[0])) {
1360 				/* Filter out . and .. */
1361 				continue;
1362 			}
1363 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1364 			if ((*endp != '\0') ||
1365 			    (endp == namelist[i]->d_name) ||
1366 			    (errno == ERANGE)) {
1367 				pr_debug("invalid directory (%s). Skipping.\n",
1368 					 namelist[i]->d_name);
1369 				continue;
1370 			}
1371 			sprintf(path, "%s/%s/proc/kallsyms",
1372 				symbol_conf.guestmount,
1373 				namelist[i]->d_name);
1374 			ret = access(path, R_OK);
1375 			if (ret) {
1376 				pr_debug("Can't access file %s\n", path);
1377 				goto failure;
1378 			}
1379 			machines__create_kernel_maps(machines, pid);
1380 		}
1381 failure:
1382 		free(namelist);
1383 	}
1384 
1385 	return ret;
1386 }
1387 
machines__destroy_kernel_maps(struct machines * machines)1388 void machines__destroy_kernel_maps(struct machines *machines)
1389 {
1390 	struct rb_node *next = rb_first_cached(&machines->guests);
1391 
1392 	machine__destroy_kernel_maps(&machines->host);
1393 
1394 	while (next) {
1395 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1396 
1397 		next = rb_next(&pos->rb_node);
1398 		rb_erase_cached(&pos->rb_node, &machines->guests);
1399 		machine__delete(pos);
1400 	}
1401 }
1402 
machines__create_kernel_maps(struct machines * machines,pid_t pid)1403 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1404 {
1405 	struct machine *machine = machines__findnew(machines, pid);
1406 
1407 	if (machine == NULL)
1408 		return -1;
1409 
1410 	return machine__create_kernel_maps(machine);
1411 }
1412 
machine__load_kallsyms(struct machine * machine,const char * filename)1413 int machine__load_kallsyms(struct machine *machine, const char *filename)
1414 {
1415 	struct map *map = machine__kernel_map(machine);
1416 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1417 
1418 	if (ret > 0) {
1419 		dso__set_loaded(map->dso);
1420 		/*
1421 		 * Since /proc/kallsyms will have multiple sessions for the
1422 		 * kernel, with modules between them, fixup the end of all
1423 		 * sections.
1424 		 */
1425 		maps__fixup_end(machine__kernel_maps(machine));
1426 	}
1427 
1428 	return ret;
1429 }
1430 
machine__load_vmlinux_path(struct machine * machine)1431 int machine__load_vmlinux_path(struct machine *machine)
1432 {
1433 	struct map *map = machine__kernel_map(machine);
1434 	int ret = dso__load_vmlinux_path(map->dso, map);
1435 
1436 	if (ret > 0)
1437 		dso__set_loaded(map->dso);
1438 
1439 	return ret;
1440 }
1441 
get_kernel_version(const char * root_dir)1442 static char *get_kernel_version(const char *root_dir)
1443 {
1444 	char version[PATH_MAX];
1445 	FILE *file;
1446 	char *name, *tmp;
1447 	const char *prefix = "Linux version ";
1448 
1449 	sprintf(version, "%s/proc/version", root_dir);
1450 	file = fopen(version, "r");
1451 	if (!file)
1452 		return NULL;
1453 
1454 	tmp = fgets(version, sizeof(version), file);
1455 	fclose(file);
1456 	if (!tmp)
1457 		return NULL;
1458 
1459 	name = strstr(version, prefix);
1460 	if (!name)
1461 		return NULL;
1462 	name += strlen(prefix);
1463 	tmp = strchr(name, ' ');
1464 	if (tmp)
1465 		*tmp = '\0';
1466 
1467 	return strdup(name);
1468 }
1469 
is_kmod_dso(struct dso * dso)1470 static bool is_kmod_dso(struct dso *dso)
1471 {
1472 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1473 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1474 }
1475 
maps__set_module_path(struct maps * maps,const char * path,struct kmod_path * m)1476 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1477 {
1478 	char *long_name;
1479 	struct map *map = maps__find_by_name(maps, m->name);
1480 
1481 	if (map == NULL)
1482 		return 0;
1483 
1484 	long_name = strdup(path);
1485 	if (long_name == NULL)
1486 		return -ENOMEM;
1487 
1488 	dso__set_long_name(map->dso, long_name, true);
1489 	dso__kernel_module_get_build_id(map->dso, "");
1490 
1491 	/*
1492 	 * Full name could reveal us kmod compression, so
1493 	 * we need to update the symtab_type if needed.
1494 	 */
1495 	if (m->comp && is_kmod_dso(map->dso)) {
1496 		map->dso->symtab_type++;
1497 		map->dso->comp = m->comp;
1498 	}
1499 
1500 	return 0;
1501 }
1502 
maps__set_modules_path_dir(struct maps * maps,const char * dir_name,int depth)1503 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1504 {
1505 	struct dirent *dent;
1506 	DIR *dir = opendir(dir_name);
1507 	int ret = 0;
1508 
1509 	if (!dir) {
1510 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1511 		return -1;
1512 	}
1513 
1514 	while ((dent = readdir(dir)) != NULL) {
1515 		char path[PATH_MAX];
1516 		struct stat st;
1517 
1518 		/*sshfs might return bad dent->d_type, so we have to stat*/
1519 		path__join(path, sizeof(path), dir_name, dent->d_name);
1520 		if (stat(path, &st))
1521 			continue;
1522 
1523 		if (S_ISDIR(st.st_mode)) {
1524 			if (!strcmp(dent->d_name, ".") ||
1525 			    !strcmp(dent->d_name, ".."))
1526 				continue;
1527 
1528 			/* Do not follow top-level source and build symlinks */
1529 			if (depth == 0) {
1530 				if (!strcmp(dent->d_name, "source") ||
1531 				    !strcmp(dent->d_name, "build"))
1532 					continue;
1533 			}
1534 
1535 			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1536 			if (ret < 0)
1537 				goto out;
1538 		} else {
1539 			struct kmod_path m;
1540 
1541 			ret = kmod_path__parse_name(&m, dent->d_name);
1542 			if (ret)
1543 				goto out;
1544 
1545 			if (m.kmod)
1546 				ret = maps__set_module_path(maps, path, &m);
1547 
1548 			zfree(&m.name);
1549 
1550 			if (ret)
1551 				goto out;
1552 		}
1553 	}
1554 
1555 out:
1556 	closedir(dir);
1557 	return ret;
1558 }
1559 
machine__set_modules_path(struct machine * machine)1560 static int machine__set_modules_path(struct machine *machine)
1561 {
1562 	char *version;
1563 	char modules_path[PATH_MAX];
1564 
1565 	version = get_kernel_version(machine->root_dir);
1566 	if (!version)
1567 		return -1;
1568 
1569 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1570 		 machine->root_dir, version);
1571 	free(version);
1572 
1573 	return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1574 }
arch__fix_module_text_start(u64 * start __maybe_unused,u64 * size __maybe_unused,const char * name __maybe_unused)1575 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1576 				u64 *size __maybe_unused,
1577 				const char *name __maybe_unused)
1578 {
1579 	return 0;
1580 }
1581 
machine__create_module(void * arg,const char * name,u64 start,u64 size)1582 static int machine__create_module(void *arg, const char *name, u64 start,
1583 				  u64 size)
1584 {
1585 	struct machine *machine = arg;
1586 	struct map *map;
1587 
1588 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1589 		return -1;
1590 
1591 	map = machine__addnew_module_map(machine, start, name);
1592 	if (map == NULL)
1593 		return -1;
1594 	map->end = start + size;
1595 
1596 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1597 
1598 	return 0;
1599 }
1600 
machine__create_modules(struct machine * machine)1601 static int machine__create_modules(struct machine *machine)
1602 {
1603 	const char *modules;
1604 	char path[PATH_MAX];
1605 
1606 	if (machine__is_default_guest(machine)) {
1607 		modules = symbol_conf.default_guest_modules;
1608 	} else {
1609 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1610 		modules = path;
1611 	}
1612 
1613 	if (symbol__restricted_filename(modules, "/proc/modules"))
1614 		return -1;
1615 
1616 	if (modules__parse(modules, machine, machine__create_module))
1617 		return -1;
1618 
1619 	if (!machine__set_modules_path(machine))
1620 		return 0;
1621 
1622 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1623 
1624 	return 0;
1625 }
1626 
machine__set_kernel_mmap(struct machine * machine,u64 start,u64 end)1627 static void machine__set_kernel_mmap(struct machine *machine,
1628 				     u64 start, u64 end)
1629 {
1630 	machine->vmlinux_map->start = start;
1631 	machine->vmlinux_map->end   = end;
1632 	/*
1633 	 * Be a bit paranoid here, some perf.data file came with
1634 	 * a zero sized synthesized MMAP event for the kernel.
1635 	 */
1636 	if (start == 0 && end == 0)
1637 		machine->vmlinux_map->end = ~0ULL;
1638 }
1639 
machine__update_kernel_mmap(struct machine * machine,u64 start,u64 end)1640 static void machine__update_kernel_mmap(struct machine *machine,
1641 				     u64 start, u64 end)
1642 {
1643 	struct map *map = machine__kernel_map(machine);
1644 
1645 	map__get(map);
1646 	maps__remove(machine__kernel_maps(machine), map);
1647 
1648 	machine__set_kernel_mmap(machine, start, end);
1649 
1650 	maps__insert(machine__kernel_maps(machine), map);
1651 	map__put(map);
1652 }
1653 
machine__create_kernel_maps(struct machine * machine)1654 int machine__create_kernel_maps(struct machine *machine)
1655 {
1656 	struct dso *kernel = machine__get_kernel(machine);
1657 	const char *name = NULL;
1658 	struct map *map;
1659 	u64 start = 0, end = ~0ULL;
1660 	int ret;
1661 
1662 	if (kernel == NULL)
1663 		return -1;
1664 
1665 	ret = __machine__create_kernel_maps(machine, kernel);
1666 	if (ret < 0)
1667 		goto out_put;
1668 
1669 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1670 		if (machine__is_host(machine))
1671 			pr_debug("Problems creating module maps, "
1672 				 "continuing anyway...\n");
1673 		else
1674 			pr_debug("Problems creating module maps for guest %d, "
1675 				 "continuing anyway...\n", machine->pid);
1676 	}
1677 
1678 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1679 		if (name &&
1680 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1681 			machine__destroy_kernel_maps(machine);
1682 			ret = -1;
1683 			goto out_put;
1684 		}
1685 
1686 		/*
1687 		 * we have a real start address now, so re-order the kmaps
1688 		 * assume it's the last in the kmaps
1689 		 */
1690 		machine__update_kernel_mmap(machine, start, end);
1691 	}
1692 
1693 	if (machine__create_extra_kernel_maps(machine, kernel))
1694 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1695 
1696 	if (end == ~0ULL) {
1697 		/* update end address of the kernel map using adjacent module address */
1698 		map = map__next(machine__kernel_map(machine));
1699 		if (map)
1700 			machine__set_kernel_mmap(machine, start, map->start);
1701 	}
1702 
1703 out_put:
1704 	dso__put(kernel);
1705 	return ret;
1706 }
1707 
machine__uses_kcore(struct machine * machine)1708 static bool machine__uses_kcore(struct machine *machine)
1709 {
1710 	struct dso *dso;
1711 
1712 	list_for_each_entry(dso, &machine->dsos.head, node) {
1713 		if (dso__is_kcore(dso))
1714 			return true;
1715 	}
1716 
1717 	return false;
1718 }
1719 
perf_event__is_extra_kernel_mmap(struct machine * machine,struct extra_kernel_map * xm)1720 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1721 					     struct extra_kernel_map *xm)
1722 {
1723 	return machine__is(machine, "x86_64") &&
1724 	       is_entry_trampoline(xm->name);
1725 }
1726 
machine__process_extra_kernel_map(struct machine * machine,struct extra_kernel_map * xm)1727 static int machine__process_extra_kernel_map(struct machine *machine,
1728 					     struct extra_kernel_map *xm)
1729 {
1730 	struct dso *kernel = machine__kernel_dso(machine);
1731 
1732 	if (kernel == NULL)
1733 		return -1;
1734 
1735 	return machine__create_extra_kernel_map(machine, kernel, xm);
1736 }
1737 
machine__process_kernel_mmap_event(struct machine * machine,struct extra_kernel_map * xm,struct build_id * bid)1738 static int machine__process_kernel_mmap_event(struct machine *machine,
1739 					      struct extra_kernel_map *xm,
1740 					      struct build_id *bid)
1741 {
1742 	struct map *map;
1743 	enum dso_space_type dso_space;
1744 	bool is_kernel_mmap;
1745 
1746 	/* If we have maps from kcore then we do not need or want any others */
1747 	if (machine__uses_kcore(machine))
1748 		return 0;
1749 
1750 	if (machine__is_host(machine))
1751 		dso_space = DSO_SPACE__KERNEL;
1752 	else
1753 		dso_space = DSO_SPACE__KERNEL_GUEST;
1754 
1755 	is_kernel_mmap = memcmp(xm->name, machine->mmap_name,
1756 				strlen(machine->mmap_name) - 1) == 0;
1757 	if (xm->name[0] == '/' ||
1758 	    (!is_kernel_mmap && xm->name[0] == '[')) {
1759 		map = machine__addnew_module_map(machine, xm->start,
1760 						 xm->name);
1761 		if (map == NULL)
1762 			goto out_problem;
1763 
1764 		map->end = map->start + xm->end - xm->start;
1765 
1766 		if (build_id__is_defined(bid))
1767 			dso__set_build_id(map->dso, bid);
1768 
1769 	} else if (is_kernel_mmap) {
1770 		const char *symbol_name = (xm->name + strlen(machine->mmap_name));
1771 		/*
1772 		 * Should be there already, from the build-id table in
1773 		 * the header.
1774 		 */
1775 		struct dso *kernel = NULL;
1776 		struct dso *dso;
1777 
1778 		down_read(&machine->dsos.lock);
1779 
1780 		list_for_each_entry(dso, &machine->dsos.head, node) {
1781 
1782 			/*
1783 			 * The cpumode passed to is_kernel_module is not the
1784 			 * cpumode of *this* event. If we insist on passing
1785 			 * correct cpumode to is_kernel_module, we should
1786 			 * record the cpumode when we adding this dso to the
1787 			 * linked list.
1788 			 *
1789 			 * However we don't really need passing correct
1790 			 * cpumode.  We know the correct cpumode must be kernel
1791 			 * mode (if not, we should not link it onto kernel_dsos
1792 			 * list).
1793 			 *
1794 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1795 			 * is_kernel_module() treats it as a kernel cpumode.
1796 			 */
1797 
1798 			if (!dso->kernel ||
1799 			    is_kernel_module(dso->long_name,
1800 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1801 				continue;
1802 
1803 
1804 			kernel = dso;
1805 			break;
1806 		}
1807 
1808 		up_read(&machine->dsos.lock);
1809 
1810 		if (kernel == NULL)
1811 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1812 		if (kernel == NULL)
1813 			goto out_problem;
1814 
1815 		kernel->kernel = dso_space;
1816 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1817 			dso__put(kernel);
1818 			goto out_problem;
1819 		}
1820 
1821 		if (strstr(kernel->long_name, "vmlinux"))
1822 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1823 
1824 		machine__update_kernel_mmap(machine, xm->start, xm->end);
1825 
1826 		if (build_id__is_defined(bid))
1827 			dso__set_build_id(kernel, bid);
1828 
1829 		/*
1830 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1831 		 * symbol. Effectively having zero here means that at record
1832 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1833 		 */
1834 		if (xm->pgoff != 0) {
1835 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1836 							symbol_name,
1837 							xm->pgoff);
1838 		}
1839 
1840 		if (machine__is_default_guest(machine)) {
1841 			/*
1842 			 * preload dso of guest kernel and modules
1843 			 */
1844 			dso__load(kernel, machine__kernel_map(machine));
1845 		}
1846 	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1847 		return machine__process_extra_kernel_map(machine, xm);
1848 	}
1849 	return 0;
1850 out_problem:
1851 	return -1;
1852 }
1853 
machine__process_mmap2_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1854 int machine__process_mmap2_event(struct machine *machine,
1855 				 union perf_event *event,
1856 				 struct perf_sample *sample)
1857 {
1858 	struct thread *thread;
1859 	struct map *map;
1860 	struct dso_id dso_id = {
1861 		.maj = event->mmap2.maj,
1862 		.min = event->mmap2.min,
1863 		.ino = event->mmap2.ino,
1864 		.ino_generation = event->mmap2.ino_generation,
1865 	};
1866 	struct build_id __bid, *bid = NULL;
1867 	int ret = 0;
1868 
1869 	if (dump_trace)
1870 		perf_event__fprintf_mmap2(event, stdout);
1871 
1872 	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1873 		bid = &__bid;
1874 		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1875 	}
1876 
1877 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1878 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1879 		struct extra_kernel_map xm = {
1880 			.start = event->mmap2.start,
1881 			.end   = event->mmap2.start + event->mmap2.len,
1882 			.pgoff = event->mmap2.pgoff,
1883 		};
1884 
1885 		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1886 		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1887 		if (ret < 0)
1888 			goto out_problem;
1889 		return 0;
1890 	}
1891 
1892 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1893 					event->mmap2.tid);
1894 	if (thread == NULL)
1895 		goto out_problem;
1896 
1897 	map = map__new(machine, event->mmap2.start,
1898 			event->mmap2.len, event->mmap2.pgoff,
1899 			&dso_id, event->mmap2.prot,
1900 			event->mmap2.flags, bid,
1901 			event->mmap2.filename, thread);
1902 
1903 	if (map == NULL)
1904 		goto out_problem_map;
1905 
1906 	ret = thread__insert_map(thread, map);
1907 	if (ret)
1908 		goto out_problem_insert;
1909 
1910 	thread__put(thread);
1911 	map__put(map);
1912 	return 0;
1913 
1914 out_problem_insert:
1915 	map__put(map);
1916 out_problem_map:
1917 	thread__put(thread);
1918 out_problem:
1919 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1920 	return 0;
1921 }
1922 
machine__process_mmap_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1923 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1924 				struct perf_sample *sample)
1925 {
1926 	struct thread *thread;
1927 	struct map *map;
1928 	u32 prot = 0;
1929 	int ret = 0;
1930 
1931 	if (dump_trace)
1932 		perf_event__fprintf_mmap(event, stdout);
1933 
1934 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1935 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1936 		struct extra_kernel_map xm = {
1937 			.start = event->mmap.start,
1938 			.end   = event->mmap.start + event->mmap.len,
1939 			.pgoff = event->mmap.pgoff,
1940 		};
1941 
1942 		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1943 		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1944 		if (ret < 0)
1945 			goto out_problem;
1946 		return 0;
1947 	}
1948 
1949 	thread = machine__findnew_thread(machine, event->mmap.pid,
1950 					 event->mmap.tid);
1951 	if (thread == NULL)
1952 		goto out_problem;
1953 
1954 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1955 		prot = PROT_EXEC;
1956 
1957 	map = map__new(machine, event->mmap.start,
1958 			event->mmap.len, event->mmap.pgoff,
1959 			NULL, prot, 0, NULL, event->mmap.filename, thread);
1960 
1961 	if (map == NULL)
1962 		goto out_problem_map;
1963 
1964 	ret = thread__insert_map(thread, map);
1965 	if (ret)
1966 		goto out_problem_insert;
1967 
1968 	thread__put(thread);
1969 	map__put(map);
1970 	return 0;
1971 
1972 out_problem_insert:
1973 	map__put(map);
1974 out_problem_map:
1975 	thread__put(thread);
1976 out_problem:
1977 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1978 	return 0;
1979 }
1980 
__machine__remove_thread(struct machine * machine,struct thread * th,bool lock)1981 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1982 {
1983 	struct threads *threads = machine__threads(machine, th->tid);
1984 
1985 	if (threads->last_match == th)
1986 		threads__set_last_match(threads, NULL);
1987 
1988 	if (lock)
1989 		down_write(&threads->lock);
1990 
1991 	BUG_ON(refcount_read(&th->refcnt) == 0);
1992 
1993 	rb_erase_cached(&th->rb_node, &threads->entries);
1994 	RB_CLEAR_NODE(&th->rb_node);
1995 	--threads->nr;
1996 	/*
1997 	 * Move it first to the dead_threads list, then drop the reference,
1998 	 * if this is the last reference, then the thread__delete destructor
1999 	 * will be called and we will remove it from the dead_threads list.
2000 	 */
2001 	list_add_tail(&th->node, &threads->dead);
2002 
2003 	/*
2004 	 * We need to do the put here because if this is the last refcount,
2005 	 * then we will be touching the threads->dead head when removing the
2006 	 * thread.
2007 	 */
2008 	thread__put(th);
2009 
2010 	if (lock)
2011 		up_write(&threads->lock);
2012 }
2013 
machine__remove_thread(struct machine * machine,struct thread * th)2014 void machine__remove_thread(struct machine *machine, struct thread *th)
2015 {
2016 	return __machine__remove_thread(machine, th, true);
2017 }
2018 
machine__process_fork_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)2019 int machine__process_fork_event(struct machine *machine, union perf_event *event,
2020 				struct perf_sample *sample)
2021 {
2022 	struct thread *thread = machine__find_thread(machine,
2023 						     event->fork.pid,
2024 						     event->fork.tid);
2025 	struct thread *parent = machine__findnew_thread(machine,
2026 							event->fork.ppid,
2027 							event->fork.ptid);
2028 	bool do_maps_clone = true;
2029 	int err = 0;
2030 
2031 	if (dump_trace)
2032 		perf_event__fprintf_task(event, stdout);
2033 
2034 	/*
2035 	 * There may be an existing thread that is not actually the parent,
2036 	 * either because we are processing events out of order, or because the
2037 	 * (fork) event that would have removed the thread was lost. Assume the
2038 	 * latter case and continue on as best we can.
2039 	 */
2040 	if (parent->pid_ != (pid_t)event->fork.ppid) {
2041 		dump_printf("removing erroneous parent thread %d/%d\n",
2042 			    parent->pid_, parent->tid);
2043 		machine__remove_thread(machine, parent);
2044 		thread__put(parent);
2045 		parent = machine__findnew_thread(machine, event->fork.ppid,
2046 						 event->fork.ptid);
2047 	}
2048 
2049 	/* if a thread currently exists for the thread id remove it */
2050 	if (thread != NULL) {
2051 		machine__remove_thread(machine, thread);
2052 		thread__put(thread);
2053 	}
2054 
2055 	thread = machine__findnew_thread(machine, event->fork.pid,
2056 					 event->fork.tid);
2057 	/*
2058 	 * When synthesizing FORK events, we are trying to create thread
2059 	 * objects for the already running tasks on the machine.
2060 	 *
2061 	 * Normally, for a kernel FORK event, we want to clone the parent's
2062 	 * maps because that is what the kernel just did.
2063 	 *
2064 	 * But when synthesizing, this should not be done.  If we do, we end up
2065 	 * with overlapping maps as we process the synthesized MMAP2 events that
2066 	 * get delivered shortly thereafter.
2067 	 *
2068 	 * Use the FORK event misc flags in an internal way to signal this
2069 	 * situation, so we can elide the map clone when appropriate.
2070 	 */
2071 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
2072 		do_maps_clone = false;
2073 
2074 	if (thread == NULL || parent == NULL ||
2075 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
2076 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
2077 		err = -1;
2078 	}
2079 	thread__put(thread);
2080 	thread__put(parent);
2081 
2082 	return err;
2083 }
2084 
machine__process_exit_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)2085 int machine__process_exit_event(struct machine *machine, union perf_event *event,
2086 				struct perf_sample *sample __maybe_unused)
2087 {
2088 	struct thread *thread = machine__find_thread(machine,
2089 						     event->fork.pid,
2090 						     event->fork.tid);
2091 
2092 	if (dump_trace)
2093 		perf_event__fprintf_task(event, stdout);
2094 
2095 	if (thread != NULL) {
2096 		thread__exited(thread);
2097 		thread__put(thread);
2098 	}
2099 
2100 	return 0;
2101 }
2102 
machine__process_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)2103 int machine__process_event(struct machine *machine, union perf_event *event,
2104 			   struct perf_sample *sample)
2105 {
2106 	int ret;
2107 
2108 	switch (event->header.type) {
2109 	case PERF_RECORD_COMM:
2110 		ret = machine__process_comm_event(machine, event, sample); break;
2111 	case PERF_RECORD_MMAP:
2112 		ret = machine__process_mmap_event(machine, event, sample); break;
2113 	case PERF_RECORD_NAMESPACES:
2114 		ret = machine__process_namespaces_event(machine, event, sample); break;
2115 	case PERF_RECORD_CGROUP:
2116 		ret = machine__process_cgroup_event(machine, event, sample); break;
2117 	case PERF_RECORD_MMAP2:
2118 		ret = machine__process_mmap2_event(machine, event, sample); break;
2119 	case PERF_RECORD_FORK:
2120 		ret = machine__process_fork_event(machine, event, sample); break;
2121 	case PERF_RECORD_EXIT:
2122 		ret = machine__process_exit_event(machine, event, sample); break;
2123 	case PERF_RECORD_LOST:
2124 		ret = machine__process_lost_event(machine, event, sample); break;
2125 	case PERF_RECORD_AUX:
2126 		ret = machine__process_aux_event(machine, event); break;
2127 	case PERF_RECORD_ITRACE_START:
2128 		ret = machine__process_itrace_start_event(machine, event); break;
2129 	case PERF_RECORD_LOST_SAMPLES:
2130 		ret = machine__process_lost_samples_event(machine, event, sample); break;
2131 	case PERF_RECORD_SWITCH:
2132 	case PERF_RECORD_SWITCH_CPU_WIDE:
2133 		ret = machine__process_switch_event(machine, event); break;
2134 	case PERF_RECORD_KSYMBOL:
2135 		ret = machine__process_ksymbol(machine, event, sample); break;
2136 	case PERF_RECORD_BPF_EVENT:
2137 		ret = machine__process_bpf(machine, event, sample); break;
2138 	case PERF_RECORD_TEXT_POKE:
2139 		ret = machine__process_text_poke(machine, event, sample); break;
2140 	case PERF_RECORD_AUX_OUTPUT_HW_ID:
2141 		ret = machine__process_aux_output_hw_id_event(machine, event); break;
2142 	default:
2143 		ret = -1;
2144 		break;
2145 	}
2146 
2147 	return ret;
2148 }
2149 
symbol__match_regex(struct symbol * sym,regex_t * regex)2150 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2151 {
2152 	if (!regexec(regex, sym->name, 0, NULL, 0))
2153 		return true;
2154 	return false;
2155 }
2156 
ip__resolve_ams(struct thread * thread,struct addr_map_symbol * ams,u64 ip)2157 static void ip__resolve_ams(struct thread *thread,
2158 			    struct addr_map_symbol *ams,
2159 			    u64 ip)
2160 {
2161 	struct addr_location al;
2162 
2163 	memset(&al, 0, sizeof(al));
2164 	/*
2165 	 * We cannot use the header.misc hint to determine whether a
2166 	 * branch stack address is user, kernel, guest, hypervisor.
2167 	 * Branches may straddle the kernel/user/hypervisor boundaries.
2168 	 * Thus, we have to try consecutively until we find a match
2169 	 * or else, the symbol is unknown
2170 	 */
2171 	thread__find_cpumode_addr_location(thread, ip, &al);
2172 
2173 	ams->addr = ip;
2174 	ams->al_addr = al.addr;
2175 	ams->al_level = al.level;
2176 	ams->ms.maps = al.maps;
2177 	ams->ms.sym = al.sym;
2178 	ams->ms.map = al.map;
2179 	ams->phys_addr = 0;
2180 	ams->data_page_size = 0;
2181 }
2182 
ip__resolve_data(struct thread * thread,u8 m,struct addr_map_symbol * ams,u64 addr,u64 phys_addr,u64 daddr_page_size)2183 static void ip__resolve_data(struct thread *thread,
2184 			     u8 m, struct addr_map_symbol *ams,
2185 			     u64 addr, u64 phys_addr, u64 daddr_page_size)
2186 {
2187 	struct addr_location al;
2188 
2189 	memset(&al, 0, sizeof(al));
2190 
2191 	thread__find_symbol(thread, m, addr, &al);
2192 
2193 	ams->addr = addr;
2194 	ams->al_addr = al.addr;
2195 	ams->al_level = al.level;
2196 	ams->ms.maps = al.maps;
2197 	ams->ms.sym = al.sym;
2198 	ams->ms.map = al.map;
2199 	ams->phys_addr = phys_addr;
2200 	ams->data_page_size = daddr_page_size;
2201 }
2202 
sample__resolve_mem(struct perf_sample * sample,struct addr_location * al)2203 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2204 				     struct addr_location *al)
2205 {
2206 	struct mem_info *mi = mem_info__new();
2207 
2208 	if (!mi)
2209 		return NULL;
2210 
2211 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2212 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2213 			 sample->addr, sample->phys_addr,
2214 			 sample->data_page_size);
2215 	mi->data_src.val = sample->data_src;
2216 
2217 	return mi;
2218 }
2219 
callchain_srcline(struct map_symbol * ms,u64 ip)2220 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2221 {
2222 	struct map *map = ms->map;
2223 	char *srcline = NULL;
2224 
2225 	if (!map || callchain_param.key == CCKEY_FUNCTION)
2226 		return srcline;
2227 
2228 	srcline = srcline__tree_find(&map->dso->srclines, ip);
2229 	if (!srcline) {
2230 		bool show_sym = false;
2231 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2232 
2233 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2234 				      ms->sym, show_sym, show_addr, ip);
2235 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2236 	}
2237 
2238 	return srcline;
2239 }
2240 
2241 struct iterations {
2242 	int nr_loop_iter;
2243 	u64 cycles;
2244 };
2245 
add_callchain_ip(struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,u64 ip,bool branch,struct branch_flags * flags,struct iterations * iter,u64 branch_from)2246 static int add_callchain_ip(struct thread *thread,
2247 			    struct callchain_cursor *cursor,
2248 			    struct symbol **parent,
2249 			    struct addr_location *root_al,
2250 			    u8 *cpumode,
2251 			    u64 ip,
2252 			    bool branch,
2253 			    struct branch_flags *flags,
2254 			    struct iterations *iter,
2255 			    u64 branch_from)
2256 {
2257 	struct map_symbol ms;
2258 	struct addr_location al;
2259 	int nr_loop_iter = 0;
2260 	u64 iter_cycles = 0;
2261 	const char *srcline = NULL;
2262 
2263 	al.filtered = 0;
2264 	al.sym = NULL;
2265 	al.srcline = NULL;
2266 	if (!cpumode) {
2267 		thread__find_cpumode_addr_location(thread, ip, &al);
2268 	} else {
2269 		if (ip >= PERF_CONTEXT_MAX) {
2270 			switch (ip) {
2271 			case PERF_CONTEXT_HV:
2272 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2273 				break;
2274 			case PERF_CONTEXT_KERNEL:
2275 				*cpumode = PERF_RECORD_MISC_KERNEL;
2276 				break;
2277 			case PERF_CONTEXT_USER:
2278 				*cpumode = PERF_RECORD_MISC_USER;
2279 				break;
2280 			default:
2281 				pr_debug("invalid callchain context: "
2282 					 "%"PRId64"\n", (s64) ip);
2283 				/*
2284 				 * It seems the callchain is corrupted.
2285 				 * Discard all.
2286 				 */
2287 				callchain_cursor_reset(cursor);
2288 				return 1;
2289 			}
2290 			return 0;
2291 		}
2292 		thread__find_symbol(thread, *cpumode, ip, &al);
2293 	}
2294 
2295 	if (al.sym != NULL) {
2296 		if (perf_hpp_list.parent && !*parent &&
2297 		    symbol__match_regex(al.sym, &parent_regex))
2298 			*parent = al.sym;
2299 		else if (have_ignore_callees && root_al &&
2300 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2301 			/* Treat this symbol as the root,
2302 			   forgetting its callees. */
2303 			*root_al = al;
2304 			callchain_cursor_reset(cursor);
2305 		}
2306 	}
2307 
2308 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2309 		return 0;
2310 
2311 	if (iter) {
2312 		nr_loop_iter = iter->nr_loop_iter;
2313 		iter_cycles = iter->cycles;
2314 	}
2315 
2316 	ms.maps = al.maps;
2317 	ms.map = al.map;
2318 	ms.sym = al.sym;
2319 	srcline = callchain_srcline(&ms, al.addr);
2320 	return callchain_cursor_append(cursor, ip, &ms,
2321 				       branch, flags, nr_loop_iter,
2322 				       iter_cycles, branch_from, srcline);
2323 }
2324 
sample__resolve_bstack(struct perf_sample * sample,struct addr_location * al)2325 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2326 					   struct addr_location *al)
2327 {
2328 	unsigned int i;
2329 	const struct branch_stack *bs = sample->branch_stack;
2330 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2331 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2332 
2333 	if (!bi)
2334 		return NULL;
2335 
2336 	for (i = 0; i < bs->nr; i++) {
2337 		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2338 		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2339 		bi[i].flags = entries[i].flags;
2340 	}
2341 	return bi;
2342 }
2343 
save_iterations(struct iterations * iter,struct branch_entry * be,int nr)2344 static void save_iterations(struct iterations *iter,
2345 			    struct branch_entry *be, int nr)
2346 {
2347 	int i;
2348 
2349 	iter->nr_loop_iter++;
2350 	iter->cycles = 0;
2351 
2352 	for (i = 0; i < nr; i++)
2353 		iter->cycles += be[i].flags.cycles;
2354 }
2355 
2356 #define CHASHSZ 127
2357 #define CHASHBITS 7
2358 #define NO_ENTRY 0xff
2359 
2360 #define PERF_MAX_BRANCH_DEPTH 127
2361 
2362 /* Remove loops. */
remove_loops(struct branch_entry * l,int nr,struct iterations * iter)2363 static int remove_loops(struct branch_entry *l, int nr,
2364 			struct iterations *iter)
2365 {
2366 	int i, j, off;
2367 	unsigned char chash[CHASHSZ];
2368 
2369 	memset(chash, NO_ENTRY, sizeof(chash));
2370 
2371 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2372 
2373 	for (i = 0; i < nr; i++) {
2374 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2375 
2376 		/* no collision handling for now */
2377 		if (chash[h] == NO_ENTRY) {
2378 			chash[h] = i;
2379 		} else if (l[chash[h]].from == l[i].from) {
2380 			bool is_loop = true;
2381 			/* check if it is a real loop */
2382 			off = 0;
2383 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2384 				if (l[j].from != l[i + off].from) {
2385 					is_loop = false;
2386 					break;
2387 				}
2388 			if (is_loop) {
2389 				j = nr - (i + off);
2390 				if (j > 0) {
2391 					save_iterations(iter + i + off,
2392 						l + i, off);
2393 
2394 					memmove(iter + i, iter + i + off,
2395 						j * sizeof(*iter));
2396 
2397 					memmove(l + i, l + i + off,
2398 						j * sizeof(*l));
2399 				}
2400 
2401 				nr -= off;
2402 			}
2403 		}
2404 	}
2405 	return nr;
2406 }
2407 
lbr_callchain_add_kernel_ip(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,u64 branch_from,bool callee,int end)2408 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2409 				       struct callchain_cursor *cursor,
2410 				       struct perf_sample *sample,
2411 				       struct symbol **parent,
2412 				       struct addr_location *root_al,
2413 				       u64 branch_from,
2414 				       bool callee, int end)
2415 {
2416 	struct ip_callchain *chain = sample->callchain;
2417 	u8 cpumode = PERF_RECORD_MISC_USER;
2418 	int err, i;
2419 
2420 	if (callee) {
2421 		for (i = 0; i < end + 1; i++) {
2422 			err = add_callchain_ip(thread, cursor, parent,
2423 					       root_al, &cpumode, chain->ips[i],
2424 					       false, NULL, NULL, branch_from);
2425 			if (err)
2426 				return err;
2427 		}
2428 		return 0;
2429 	}
2430 
2431 	for (i = end; i >= 0; i--) {
2432 		err = add_callchain_ip(thread, cursor, parent,
2433 				       root_al, &cpumode, chain->ips[i],
2434 				       false, NULL, NULL, branch_from);
2435 		if (err)
2436 			return err;
2437 	}
2438 
2439 	return 0;
2440 }
2441 
save_lbr_cursor_node(struct thread * thread,struct callchain_cursor * cursor,int idx)2442 static void save_lbr_cursor_node(struct thread *thread,
2443 				 struct callchain_cursor *cursor,
2444 				 int idx)
2445 {
2446 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2447 
2448 	if (!lbr_stitch)
2449 		return;
2450 
2451 	if (cursor->pos == cursor->nr) {
2452 		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2453 		return;
2454 	}
2455 
2456 	if (!cursor->curr)
2457 		cursor->curr = cursor->first;
2458 	else
2459 		cursor->curr = cursor->curr->next;
2460 	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2461 	       sizeof(struct callchain_cursor_node));
2462 
2463 	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2464 	cursor->pos++;
2465 }
2466 
lbr_callchain_add_lbr_ip(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,u64 * branch_from,bool callee)2467 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2468 				    struct callchain_cursor *cursor,
2469 				    struct perf_sample *sample,
2470 				    struct symbol **parent,
2471 				    struct addr_location *root_al,
2472 				    u64 *branch_from,
2473 				    bool callee)
2474 {
2475 	struct branch_stack *lbr_stack = sample->branch_stack;
2476 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2477 	u8 cpumode = PERF_RECORD_MISC_USER;
2478 	int lbr_nr = lbr_stack->nr;
2479 	struct branch_flags *flags;
2480 	int err, i;
2481 	u64 ip;
2482 
2483 	/*
2484 	 * The curr and pos are not used in writing session. They are cleared
2485 	 * in callchain_cursor_commit() when the writing session is closed.
2486 	 * Using curr and pos to track the current cursor node.
2487 	 */
2488 	if (thread->lbr_stitch) {
2489 		cursor->curr = NULL;
2490 		cursor->pos = cursor->nr;
2491 		if (cursor->nr) {
2492 			cursor->curr = cursor->first;
2493 			for (i = 0; i < (int)(cursor->nr - 1); i++)
2494 				cursor->curr = cursor->curr->next;
2495 		}
2496 	}
2497 
2498 	if (callee) {
2499 		/* Add LBR ip from first entries.to */
2500 		ip = entries[0].to;
2501 		flags = &entries[0].flags;
2502 		*branch_from = entries[0].from;
2503 		err = add_callchain_ip(thread, cursor, parent,
2504 				       root_al, &cpumode, ip,
2505 				       true, flags, NULL,
2506 				       *branch_from);
2507 		if (err)
2508 			return err;
2509 
2510 		/*
2511 		 * The number of cursor node increases.
2512 		 * Move the current cursor node.
2513 		 * But does not need to save current cursor node for entry 0.
2514 		 * It's impossible to stitch the whole LBRs of previous sample.
2515 		 */
2516 		if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2517 			if (!cursor->curr)
2518 				cursor->curr = cursor->first;
2519 			else
2520 				cursor->curr = cursor->curr->next;
2521 			cursor->pos++;
2522 		}
2523 
2524 		/* Add LBR ip from entries.from one by one. */
2525 		for (i = 0; i < lbr_nr; i++) {
2526 			ip = entries[i].from;
2527 			flags = &entries[i].flags;
2528 			err = add_callchain_ip(thread, cursor, parent,
2529 					       root_al, &cpumode, ip,
2530 					       true, flags, NULL,
2531 					       *branch_from);
2532 			if (err)
2533 				return err;
2534 			save_lbr_cursor_node(thread, cursor, i);
2535 		}
2536 		return 0;
2537 	}
2538 
2539 	/* Add LBR ip from entries.from one by one. */
2540 	for (i = lbr_nr - 1; i >= 0; i--) {
2541 		ip = entries[i].from;
2542 		flags = &entries[i].flags;
2543 		err = add_callchain_ip(thread, cursor, parent,
2544 				       root_al, &cpumode, ip,
2545 				       true, flags, NULL,
2546 				       *branch_from);
2547 		if (err)
2548 			return err;
2549 		save_lbr_cursor_node(thread, cursor, i);
2550 	}
2551 
2552 	/* Add LBR ip from first entries.to */
2553 	ip = entries[0].to;
2554 	flags = &entries[0].flags;
2555 	*branch_from = entries[0].from;
2556 	err = add_callchain_ip(thread, cursor, parent,
2557 			       root_al, &cpumode, ip,
2558 			       true, flags, NULL,
2559 			       *branch_from);
2560 	if (err)
2561 		return err;
2562 
2563 	return 0;
2564 }
2565 
lbr_callchain_add_stitched_lbr_ip(struct thread * thread,struct callchain_cursor * cursor)2566 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2567 					     struct callchain_cursor *cursor)
2568 {
2569 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2570 	struct callchain_cursor_node *cnode;
2571 	struct stitch_list *stitch_node;
2572 	int err;
2573 
2574 	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2575 		cnode = &stitch_node->cursor;
2576 
2577 		err = callchain_cursor_append(cursor, cnode->ip,
2578 					      &cnode->ms,
2579 					      cnode->branch,
2580 					      &cnode->branch_flags,
2581 					      cnode->nr_loop_iter,
2582 					      cnode->iter_cycles,
2583 					      cnode->branch_from,
2584 					      cnode->srcline);
2585 		if (err)
2586 			return err;
2587 	}
2588 	return 0;
2589 }
2590 
get_stitch_node(struct thread * thread)2591 static struct stitch_list *get_stitch_node(struct thread *thread)
2592 {
2593 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2594 	struct stitch_list *stitch_node;
2595 
2596 	if (!list_empty(&lbr_stitch->free_lists)) {
2597 		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2598 					       struct stitch_list, node);
2599 		list_del(&stitch_node->node);
2600 
2601 		return stitch_node;
2602 	}
2603 
2604 	return malloc(sizeof(struct stitch_list));
2605 }
2606 
has_stitched_lbr(struct thread * thread,struct perf_sample * cur,struct perf_sample * prev,unsigned int max_lbr,bool callee)2607 static bool has_stitched_lbr(struct thread *thread,
2608 			     struct perf_sample *cur,
2609 			     struct perf_sample *prev,
2610 			     unsigned int max_lbr,
2611 			     bool callee)
2612 {
2613 	struct branch_stack *cur_stack = cur->branch_stack;
2614 	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2615 	struct branch_stack *prev_stack = prev->branch_stack;
2616 	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2617 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2618 	int i, j, nr_identical_branches = 0;
2619 	struct stitch_list *stitch_node;
2620 	u64 cur_base, distance;
2621 
2622 	if (!cur_stack || !prev_stack)
2623 		return false;
2624 
2625 	/* Find the physical index of the base-of-stack for current sample. */
2626 	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2627 
2628 	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2629 						     (max_lbr + prev_stack->hw_idx - cur_base);
2630 	/* Previous sample has shorter stack. Nothing can be stitched. */
2631 	if (distance + 1 > prev_stack->nr)
2632 		return false;
2633 
2634 	/*
2635 	 * Check if there are identical LBRs between two samples.
2636 	 * Identical LBRs must have same from, to and flags values. Also,
2637 	 * they have to be saved in the same LBR registers (same physical
2638 	 * index).
2639 	 *
2640 	 * Starts from the base-of-stack of current sample.
2641 	 */
2642 	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2643 		if ((prev_entries[i].from != cur_entries[j].from) ||
2644 		    (prev_entries[i].to != cur_entries[j].to) ||
2645 		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2646 			break;
2647 		nr_identical_branches++;
2648 	}
2649 
2650 	if (!nr_identical_branches)
2651 		return false;
2652 
2653 	/*
2654 	 * Save the LBRs between the base-of-stack of previous sample
2655 	 * and the base-of-stack of current sample into lbr_stitch->lists.
2656 	 * These LBRs will be stitched later.
2657 	 */
2658 	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2659 
2660 		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2661 			continue;
2662 
2663 		stitch_node = get_stitch_node(thread);
2664 		if (!stitch_node)
2665 			return false;
2666 
2667 		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2668 		       sizeof(struct callchain_cursor_node));
2669 
2670 		if (callee)
2671 			list_add(&stitch_node->node, &lbr_stitch->lists);
2672 		else
2673 			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2674 	}
2675 
2676 	return true;
2677 }
2678 
alloc_lbr_stitch(struct thread * thread,unsigned int max_lbr)2679 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2680 {
2681 	if (thread->lbr_stitch)
2682 		return true;
2683 
2684 	thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2685 	if (!thread->lbr_stitch)
2686 		goto err;
2687 
2688 	thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2689 	if (!thread->lbr_stitch->prev_lbr_cursor)
2690 		goto free_lbr_stitch;
2691 
2692 	INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2693 	INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2694 
2695 	return true;
2696 
2697 free_lbr_stitch:
2698 	zfree(&thread->lbr_stitch);
2699 err:
2700 	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2701 	thread->lbr_stitch_enable = false;
2702 	return false;
2703 }
2704 
2705 /*
2706  * Resolve LBR callstack chain sample
2707  * Return:
2708  * 1 on success get LBR callchain information
2709  * 0 no available LBR callchain information, should try fp
2710  * negative error code on other errors.
2711  */
resolve_lbr_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack,unsigned int max_lbr)2712 static int resolve_lbr_callchain_sample(struct thread *thread,
2713 					struct callchain_cursor *cursor,
2714 					struct perf_sample *sample,
2715 					struct symbol **parent,
2716 					struct addr_location *root_al,
2717 					int max_stack,
2718 					unsigned int max_lbr)
2719 {
2720 	bool callee = (callchain_param.order == ORDER_CALLEE);
2721 	struct ip_callchain *chain = sample->callchain;
2722 	int chain_nr = min(max_stack, (int)chain->nr), i;
2723 	struct lbr_stitch *lbr_stitch;
2724 	bool stitched_lbr = false;
2725 	u64 branch_from = 0;
2726 	int err;
2727 
2728 	for (i = 0; i < chain_nr; i++) {
2729 		if (chain->ips[i] == PERF_CONTEXT_USER)
2730 			break;
2731 	}
2732 
2733 	/* LBR only affects the user callchain */
2734 	if (i == chain_nr)
2735 		return 0;
2736 
2737 	if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2738 	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2739 		lbr_stitch = thread->lbr_stitch;
2740 
2741 		stitched_lbr = has_stitched_lbr(thread, sample,
2742 						&lbr_stitch->prev_sample,
2743 						max_lbr, callee);
2744 
2745 		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2746 			list_replace_init(&lbr_stitch->lists,
2747 					  &lbr_stitch->free_lists);
2748 		}
2749 		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2750 	}
2751 
2752 	if (callee) {
2753 		/* Add kernel ip */
2754 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2755 						  parent, root_al, branch_from,
2756 						  true, i);
2757 		if (err)
2758 			goto error;
2759 
2760 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2761 					       root_al, &branch_from, true);
2762 		if (err)
2763 			goto error;
2764 
2765 		if (stitched_lbr) {
2766 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2767 			if (err)
2768 				goto error;
2769 		}
2770 
2771 	} else {
2772 		if (stitched_lbr) {
2773 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2774 			if (err)
2775 				goto error;
2776 		}
2777 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2778 					       root_al, &branch_from, false);
2779 		if (err)
2780 			goto error;
2781 
2782 		/* Add kernel ip */
2783 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2784 						  parent, root_al, branch_from,
2785 						  false, i);
2786 		if (err)
2787 			goto error;
2788 	}
2789 	return 1;
2790 
2791 error:
2792 	return (err < 0) ? err : 0;
2793 }
2794 
find_prev_cpumode(struct ip_callchain * chain,struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,int ent)2795 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2796 			     struct callchain_cursor *cursor,
2797 			     struct symbol **parent,
2798 			     struct addr_location *root_al,
2799 			     u8 *cpumode, int ent)
2800 {
2801 	int err = 0;
2802 
2803 	while (--ent >= 0) {
2804 		u64 ip = chain->ips[ent];
2805 
2806 		if (ip >= PERF_CONTEXT_MAX) {
2807 			err = add_callchain_ip(thread, cursor, parent,
2808 					       root_al, cpumode, ip,
2809 					       false, NULL, NULL, 0);
2810 			break;
2811 		}
2812 	}
2813 	return err;
2814 }
2815 
get_leaf_frame_caller(struct perf_sample * sample,struct thread * thread,int usr_idx)2816 static u64 get_leaf_frame_caller(struct perf_sample *sample,
2817 		struct thread *thread, int usr_idx)
2818 {
2819 	if (machine__normalized_is(thread->maps->machine, "arm64"))
2820 		return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2821 	else
2822 		return 0;
2823 }
2824 
thread__resolve_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)2825 static int thread__resolve_callchain_sample(struct thread *thread,
2826 					    struct callchain_cursor *cursor,
2827 					    struct evsel *evsel,
2828 					    struct perf_sample *sample,
2829 					    struct symbol **parent,
2830 					    struct addr_location *root_al,
2831 					    int max_stack)
2832 {
2833 	struct branch_stack *branch = sample->branch_stack;
2834 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2835 	struct ip_callchain *chain = sample->callchain;
2836 	int chain_nr = 0;
2837 	u8 cpumode = PERF_RECORD_MISC_USER;
2838 	int i, j, err, nr_entries, usr_idx;
2839 	int skip_idx = -1;
2840 	int first_call = 0;
2841 	u64 leaf_frame_caller;
2842 
2843 	if (chain)
2844 		chain_nr = chain->nr;
2845 
2846 	if (evsel__has_branch_callstack(evsel)) {
2847 		struct perf_env *env = evsel__env(evsel);
2848 
2849 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2850 						   root_al, max_stack,
2851 						   !env ? 0 : env->max_branches);
2852 		if (err)
2853 			return (err < 0) ? err : 0;
2854 	}
2855 
2856 	/*
2857 	 * Based on DWARF debug information, some architectures skip
2858 	 * a callchain entry saved by the kernel.
2859 	 */
2860 	skip_idx = arch_skip_callchain_idx(thread, chain);
2861 
2862 	/*
2863 	 * Add branches to call stack for easier browsing. This gives
2864 	 * more context for a sample than just the callers.
2865 	 *
2866 	 * This uses individual histograms of paths compared to the
2867 	 * aggregated histograms the normal LBR mode uses.
2868 	 *
2869 	 * Limitations for now:
2870 	 * - No extra filters
2871 	 * - No annotations (should annotate somehow)
2872 	 */
2873 
2874 	if (branch && callchain_param.branch_callstack) {
2875 		int nr = min(max_stack, (int)branch->nr);
2876 		struct branch_entry be[nr];
2877 		struct iterations iter[nr];
2878 
2879 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2880 			pr_warning("corrupted branch chain. skipping...\n");
2881 			goto check_calls;
2882 		}
2883 
2884 		for (i = 0; i < nr; i++) {
2885 			if (callchain_param.order == ORDER_CALLEE) {
2886 				be[i] = entries[i];
2887 
2888 				if (chain == NULL)
2889 					continue;
2890 
2891 				/*
2892 				 * Check for overlap into the callchain.
2893 				 * The return address is one off compared to
2894 				 * the branch entry. To adjust for this
2895 				 * assume the calling instruction is not longer
2896 				 * than 8 bytes.
2897 				 */
2898 				if (i == skip_idx ||
2899 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2900 					first_call++;
2901 				else if (be[i].from < chain->ips[first_call] &&
2902 				    be[i].from >= chain->ips[first_call] - 8)
2903 					first_call++;
2904 			} else
2905 				be[i] = entries[branch->nr - i - 1];
2906 		}
2907 
2908 		memset(iter, 0, sizeof(struct iterations) * nr);
2909 		nr = remove_loops(be, nr, iter);
2910 
2911 		for (i = 0; i < nr; i++) {
2912 			err = add_callchain_ip(thread, cursor, parent,
2913 					       root_al,
2914 					       NULL, be[i].to,
2915 					       true, &be[i].flags,
2916 					       NULL, be[i].from);
2917 
2918 			if (!err)
2919 				err = add_callchain_ip(thread, cursor, parent, root_al,
2920 						       NULL, be[i].from,
2921 						       true, &be[i].flags,
2922 						       &iter[i], 0);
2923 			if (err == -EINVAL)
2924 				break;
2925 			if (err)
2926 				return err;
2927 		}
2928 
2929 		if (chain_nr == 0)
2930 			return 0;
2931 
2932 		chain_nr -= nr;
2933 	}
2934 
2935 check_calls:
2936 	if (chain && callchain_param.order != ORDER_CALLEE) {
2937 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2938 					&cpumode, chain->nr - first_call);
2939 		if (err)
2940 			return (err < 0) ? err : 0;
2941 	}
2942 	for (i = first_call, nr_entries = 0;
2943 	     i < chain_nr && nr_entries < max_stack; i++) {
2944 		u64 ip;
2945 
2946 		if (callchain_param.order == ORDER_CALLEE)
2947 			j = i;
2948 		else
2949 			j = chain->nr - i - 1;
2950 
2951 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2952 		if (j == skip_idx)
2953 			continue;
2954 #endif
2955 		ip = chain->ips[j];
2956 		if (ip < PERF_CONTEXT_MAX)
2957                        ++nr_entries;
2958 		else if (callchain_param.order != ORDER_CALLEE) {
2959 			err = find_prev_cpumode(chain, thread, cursor, parent,
2960 						root_al, &cpumode, j);
2961 			if (err)
2962 				return (err < 0) ? err : 0;
2963 			continue;
2964 		}
2965 
2966 		/*
2967 		 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2968 		 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2969 		 * the index will be different in order to add the missing frame
2970 		 * at the right place.
2971 		 */
2972 
2973 		usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2974 
2975 		if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2976 
2977 			leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2978 
2979 			/*
2980 			 * check if leaf_frame_Caller != ip to not add the same
2981 			 * value twice.
2982 			 */
2983 
2984 			if (leaf_frame_caller && leaf_frame_caller != ip) {
2985 
2986 				err = add_callchain_ip(thread, cursor, parent,
2987 					       root_al, &cpumode, leaf_frame_caller,
2988 					       false, NULL, NULL, 0);
2989 				if (err)
2990 					return (err < 0) ? err : 0;
2991 			}
2992 		}
2993 
2994 		err = add_callchain_ip(thread, cursor, parent,
2995 				       root_al, &cpumode, ip,
2996 				       false, NULL, NULL, 0);
2997 
2998 		if (err)
2999 			return (err < 0) ? err : 0;
3000 	}
3001 
3002 	return 0;
3003 }
3004 
append_inlines(struct callchain_cursor * cursor,struct map_symbol * ms,u64 ip)3005 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
3006 {
3007 	struct symbol *sym = ms->sym;
3008 	struct map *map = ms->map;
3009 	struct inline_node *inline_node;
3010 	struct inline_list *ilist;
3011 	u64 addr;
3012 	int ret = 1;
3013 
3014 	if (!symbol_conf.inline_name || !map || !sym)
3015 		return ret;
3016 
3017 	addr = map__map_ip(map, ip);
3018 	addr = map__rip_2objdump(map, addr);
3019 
3020 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
3021 	if (!inline_node) {
3022 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
3023 		if (!inline_node)
3024 			return ret;
3025 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
3026 	}
3027 
3028 	list_for_each_entry(ilist, &inline_node->val, list) {
3029 		struct map_symbol ilist_ms = {
3030 			.maps = ms->maps,
3031 			.map = map,
3032 			.sym = ilist->symbol,
3033 		};
3034 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
3035 					      NULL, 0, 0, 0, ilist->srcline);
3036 
3037 		if (ret != 0)
3038 			return ret;
3039 	}
3040 
3041 	return ret;
3042 }
3043 
unwind_entry(struct unwind_entry * entry,void * arg)3044 static int unwind_entry(struct unwind_entry *entry, void *arg)
3045 {
3046 	struct callchain_cursor *cursor = arg;
3047 	const char *srcline = NULL;
3048 	u64 addr = entry->ip;
3049 
3050 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
3051 		return 0;
3052 
3053 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
3054 		return 0;
3055 
3056 	/*
3057 	 * Convert entry->ip from a virtual address to an offset in
3058 	 * its corresponding binary.
3059 	 */
3060 	if (entry->ms.map)
3061 		addr = map__map_ip(entry->ms.map, entry->ip);
3062 
3063 	srcline = callchain_srcline(&entry->ms, addr);
3064 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
3065 				       false, NULL, 0, 0, 0, srcline);
3066 }
3067 
thread__resolve_callchain_unwind(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,int max_stack)3068 static int thread__resolve_callchain_unwind(struct thread *thread,
3069 					    struct callchain_cursor *cursor,
3070 					    struct evsel *evsel,
3071 					    struct perf_sample *sample,
3072 					    int max_stack)
3073 {
3074 	/* Can we do dwarf post unwind? */
3075 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
3076 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
3077 		return 0;
3078 
3079 	/* Bail out if nothing was captured. */
3080 	if ((!sample->user_regs.regs) ||
3081 	    (!sample->user_stack.size))
3082 		return 0;
3083 
3084 	return unwind__get_entries(unwind_entry, cursor,
3085 				   thread, sample, max_stack, false);
3086 }
3087 
thread__resolve_callchain(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)3088 int thread__resolve_callchain(struct thread *thread,
3089 			      struct callchain_cursor *cursor,
3090 			      struct evsel *evsel,
3091 			      struct perf_sample *sample,
3092 			      struct symbol **parent,
3093 			      struct addr_location *root_al,
3094 			      int max_stack)
3095 {
3096 	int ret = 0;
3097 
3098 	callchain_cursor_reset(cursor);
3099 
3100 	if (callchain_param.order == ORDER_CALLEE) {
3101 		ret = thread__resolve_callchain_sample(thread, cursor,
3102 						       evsel, sample,
3103 						       parent, root_al,
3104 						       max_stack);
3105 		if (ret)
3106 			return ret;
3107 		ret = thread__resolve_callchain_unwind(thread, cursor,
3108 						       evsel, sample,
3109 						       max_stack);
3110 	} else {
3111 		ret = thread__resolve_callchain_unwind(thread, cursor,
3112 						       evsel, sample,
3113 						       max_stack);
3114 		if (ret)
3115 			return ret;
3116 		ret = thread__resolve_callchain_sample(thread, cursor,
3117 						       evsel, sample,
3118 						       parent, root_al,
3119 						       max_stack);
3120 	}
3121 
3122 	return ret;
3123 }
3124 
machine__for_each_thread(struct machine * machine,int (* fn)(struct thread * thread,void * p),void * priv)3125 int machine__for_each_thread(struct machine *machine,
3126 			     int (*fn)(struct thread *thread, void *p),
3127 			     void *priv)
3128 {
3129 	struct threads *threads;
3130 	struct rb_node *nd;
3131 	struct thread *thread;
3132 	int rc = 0;
3133 	int i;
3134 
3135 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3136 		threads = &machine->threads[i];
3137 		for (nd = rb_first_cached(&threads->entries); nd;
3138 		     nd = rb_next(nd)) {
3139 			thread = rb_entry(nd, struct thread, rb_node);
3140 			rc = fn(thread, priv);
3141 			if (rc != 0)
3142 				return rc;
3143 		}
3144 
3145 		list_for_each_entry(thread, &threads->dead, node) {
3146 			rc = fn(thread, priv);
3147 			if (rc != 0)
3148 				return rc;
3149 		}
3150 	}
3151 	return rc;
3152 }
3153 
machines__for_each_thread(struct machines * machines,int (* fn)(struct thread * thread,void * p),void * priv)3154 int machines__for_each_thread(struct machines *machines,
3155 			      int (*fn)(struct thread *thread, void *p),
3156 			      void *priv)
3157 {
3158 	struct rb_node *nd;
3159 	int rc = 0;
3160 
3161 	rc = machine__for_each_thread(&machines->host, fn, priv);
3162 	if (rc != 0)
3163 		return rc;
3164 
3165 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3166 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3167 
3168 		rc = machine__for_each_thread(machine, fn, priv);
3169 		if (rc != 0)
3170 			return rc;
3171 	}
3172 	return rc;
3173 }
3174 
machine__get_current_tid(struct machine * machine,int cpu)3175 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3176 {
3177 	int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
3178 
3179 	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
3180 		return -1;
3181 
3182 	return machine->current_tid[cpu];
3183 }
3184 
machine__set_current_tid(struct machine * machine,int cpu,pid_t pid,pid_t tid)3185 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3186 			     pid_t tid)
3187 {
3188 	struct thread *thread;
3189 	int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
3190 
3191 	if (cpu < 0)
3192 		return -EINVAL;
3193 
3194 	if (!machine->current_tid) {
3195 		int i;
3196 
3197 		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
3198 		if (!machine->current_tid)
3199 			return -ENOMEM;
3200 		for (i = 0; i < nr_cpus; i++)
3201 			machine->current_tid[i] = -1;
3202 	}
3203 
3204 	if (cpu >= nr_cpus) {
3205 		pr_err("Requested CPU %d too large. ", cpu);
3206 		pr_err("Consider raising MAX_NR_CPUS\n");
3207 		return -EINVAL;
3208 	}
3209 
3210 	machine->current_tid[cpu] = tid;
3211 
3212 	thread = machine__findnew_thread(machine, pid, tid);
3213 	if (!thread)
3214 		return -ENOMEM;
3215 
3216 	thread->cpu = cpu;
3217 	thread__put(thread);
3218 
3219 	return 0;
3220 }
3221 
3222 /*
3223  * Compares the raw arch string. N.B. see instead perf_env__arch() or
3224  * machine__normalized_is() if a normalized arch is needed.
3225  */
machine__is(struct machine * machine,const char * arch)3226 bool machine__is(struct machine *machine, const char *arch)
3227 {
3228 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3229 }
3230 
machine__normalized_is(struct machine * machine,const char * arch)3231 bool machine__normalized_is(struct machine *machine, const char *arch)
3232 {
3233 	return machine && !strcmp(perf_env__arch(machine->env), arch);
3234 }
3235 
machine__nr_cpus_avail(struct machine * machine)3236 int machine__nr_cpus_avail(struct machine *machine)
3237 {
3238 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3239 }
3240 
machine__get_kernel_start(struct machine * machine)3241 int machine__get_kernel_start(struct machine *machine)
3242 {
3243 	struct map *map = machine__kernel_map(machine);
3244 	int err = 0;
3245 
3246 	/*
3247 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3248 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3249 	 * all addresses including kernel addresses are less than 2^32.  In
3250 	 * that case (32-bit system), if the kernel mapping is unknown, all
3251 	 * addresses will be assumed to be in user space - see
3252 	 * machine__kernel_ip().
3253 	 */
3254 	machine->kernel_start = 1ULL << 63;
3255 	if (map) {
3256 		err = map__load(map);
3257 		/*
3258 		 * On x86_64, PTI entry trampolines are less than the
3259 		 * start of kernel text, but still above 2^63. So leave
3260 		 * kernel_start = 1ULL << 63 for x86_64.
3261 		 */
3262 		if (!err && !machine__is(machine, "x86_64"))
3263 			machine->kernel_start = map->start;
3264 	}
3265 	return err;
3266 }
3267 
machine__addr_cpumode(struct machine * machine,u8 cpumode,u64 addr)3268 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3269 {
3270 	u8 addr_cpumode = cpumode;
3271 	bool kernel_ip;
3272 
3273 	if (!machine->single_address_space)
3274 		goto out;
3275 
3276 	kernel_ip = machine__kernel_ip(machine, addr);
3277 	switch (cpumode) {
3278 	case PERF_RECORD_MISC_KERNEL:
3279 	case PERF_RECORD_MISC_USER:
3280 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3281 					   PERF_RECORD_MISC_USER;
3282 		break;
3283 	case PERF_RECORD_MISC_GUEST_KERNEL:
3284 	case PERF_RECORD_MISC_GUEST_USER:
3285 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3286 					   PERF_RECORD_MISC_GUEST_USER;
3287 		break;
3288 	default:
3289 		break;
3290 	}
3291 out:
3292 	return addr_cpumode;
3293 }
3294 
machine__findnew_dso_id(struct machine * machine,const char * filename,struct dso_id * id)3295 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3296 {
3297 	return dsos__findnew_id(&machine->dsos, filename, id);
3298 }
3299 
machine__findnew_dso(struct machine * machine,const char * filename)3300 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3301 {
3302 	return machine__findnew_dso_id(machine, filename, NULL);
3303 }
3304 
machine__resolve_kernel_addr(void * vmachine,unsigned long long * addrp,char ** modp)3305 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3306 {
3307 	struct machine *machine = vmachine;
3308 	struct map *map;
3309 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3310 
3311 	if (sym == NULL)
3312 		return NULL;
3313 
3314 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3315 	*addrp = map->unmap_ip(map, sym->start);
3316 	return sym->name;
3317 }
3318 
machine__for_each_dso(struct machine * machine,machine__dso_t fn,void * priv)3319 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3320 {
3321 	struct dso *pos;
3322 	int err = 0;
3323 
3324 	list_for_each_entry(pos, &machine->dsos.head, node) {
3325 		if (fn(pos, machine, priv))
3326 			err = -1;
3327 	}
3328 	return err;
3329 }
3330