1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Miscellaneous Mac68K-specific stuff
4 */
5
6 #include <linux/types.h>
7 #include <linux/errno.h>
8 #include <linux/kernel.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/time.h>
12 #include <linux/rtc.h>
13 #include <linux/mm.h>
14
15 #include <linux/adb.h>
16 #include <linux/cuda.h>
17 #include <linux/pmu.h>
18
19 #include <linux/uaccess.h>
20 #include <asm/io.h>
21 #include <asm/setup.h>
22 #include <asm/macintosh.h>
23 #include <asm/mac_via.h>
24 #include <asm/mac_oss.h>
25
26 #include <asm/machdep.h>
27
28 /*
29 * Offset between Unix time (1970-based) and Mac time (1904-based). Cuda and PMU
30 * times wrap in 2040. If we need to handle later times, the read_time functions
31 * need to be changed to interpret wrapped times as post-2040.
32 */
33
34 #define RTC_OFFSET 2082844800
35
36 static void (*rom_reset)(void);
37
38 #if IS_ENABLED(CONFIG_NVRAM)
39 #ifdef CONFIG_ADB_CUDA
cuda_pram_read_byte(int offset)40 static unsigned char cuda_pram_read_byte(int offset)
41 {
42 struct adb_request req;
43
44 if (cuda_request(&req, NULL, 4, CUDA_PACKET, CUDA_GET_PRAM,
45 (offset >> 8) & 0xFF, offset & 0xFF) < 0)
46 return 0;
47 while (!req.complete)
48 cuda_poll();
49 return req.reply[3];
50 }
51
cuda_pram_write_byte(unsigned char data,int offset)52 static void cuda_pram_write_byte(unsigned char data, int offset)
53 {
54 struct adb_request req;
55
56 if (cuda_request(&req, NULL, 5, CUDA_PACKET, CUDA_SET_PRAM,
57 (offset >> 8) & 0xFF, offset & 0xFF, data) < 0)
58 return;
59 while (!req.complete)
60 cuda_poll();
61 }
62 #endif /* CONFIG_ADB_CUDA */
63
64 #ifdef CONFIG_ADB_PMU
pmu_pram_read_byte(int offset)65 static unsigned char pmu_pram_read_byte(int offset)
66 {
67 struct adb_request req;
68
69 if (pmu_request(&req, NULL, 3, PMU_READ_XPRAM,
70 offset & 0xFF, 1) < 0)
71 return 0;
72 pmu_wait_complete(&req);
73
74 return req.reply[0];
75 }
76
pmu_pram_write_byte(unsigned char data,int offset)77 static void pmu_pram_write_byte(unsigned char data, int offset)
78 {
79 struct adb_request req;
80
81 if (pmu_request(&req, NULL, 4, PMU_WRITE_XPRAM,
82 offset & 0xFF, 1, data) < 0)
83 return;
84 pmu_wait_complete(&req);
85 }
86 #endif /* CONFIG_ADB_PMU */
87 #endif /* CONFIG_NVRAM */
88
89 /*
90 * VIA PRAM/RTC access routines
91 *
92 * Must be called with interrupts disabled and
93 * the RTC should be enabled.
94 */
95
via_rtc_recv(void)96 static __u8 via_rtc_recv(void)
97 {
98 int i, reg;
99 __u8 data;
100
101 reg = via1[vBufB] & ~VIA1B_vRTCClk;
102
103 /* Set the RTC data line to be an input. */
104
105 via1[vDirB] &= ~VIA1B_vRTCData;
106
107 /* The bits of the byte come out in MSB order */
108
109 data = 0;
110 for (i = 0 ; i < 8 ; i++) {
111 via1[vBufB] = reg;
112 via1[vBufB] = reg | VIA1B_vRTCClk;
113 data = (data << 1) | (via1[vBufB] & VIA1B_vRTCData);
114 }
115
116 /* Return RTC data line to output state */
117
118 via1[vDirB] |= VIA1B_vRTCData;
119
120 return data;
121 }
122
via_rtc_send(__u8 data)123 static void via_rtc_send(__u8 data)
124 {
125 int i, reg, bit;
126
127 reg = via1[vBufB] & ~(VIA1B_vRTCClk | VIA1B_vRTCData);
128
129 /* The bits of the byte go in in MSB order */
130
131 for (i = 0 ; i < 8 ; i++) {
132 bit = data & 0x80? 1 : 0;
133 data <<= 1;
134 via1[vBufB] = reg | bit;
135 via1[vBufB] = reg | bit | VIA1B_vRTCClk;
136 }
137 }
138
139 /*
140 * These values can be found in Inside Macintosh vol. III ch. 2
141 * which has a description of the RTC chip in the original Mac.
142 */
143
144 #define RTC_FLG_READ BIT(7)
145 #define RTC_FLG_WRITE_PROTECT BIT(7)
146 #define RTC_CMD_READ(r) (RTC_FLG_READ | (r << 2))
147 #define RTC_CMD_WRITE(r) (r << 2)
148 #define RTC_REG_SECONDS_0 0
149 #define RTC_REG_SECONDS_1 1
150 #define RTC_REG_SECONDS_2 2
151 #define RTC_REG_SECONDS_3 3
152 #define RTC_REG_WRITE_PROTECT 13
153
154 /*
155 * Inside Mac has no information about two-byte RTC commands but
156 * the MAME/MESS source code has the essentials.
157 */
158
159 #define RTC_REG_XPRAM 14
160 #define RTC_CMD_XPRAM_READ (RTC_CMD_READ(RTC_REG_XPRAM) << 8)
161 #define RTC_CMD_XPRAM_WRITE (RTC_CMD_WRITE(RTC_REG_XPRAM) << 8)
162 #define RTC_CMD_XPRAM_ARG(a) (((a & 0xE0) << 3) | ((a & 0x1F) << 2))
163
164 /*
165 * Execute a VIA PRAM/RTC command. For read commands
166 * data should point to a one-byte buffer for the
167 * resulting data. For write commands it should point
168 * to the data byte to for the command.
169 *
170 * This function disables all interrupts while running.
171 */
172
via_rtc_command(int command,__u8 * data)173 static void via_rtc_command(int command, __u8 *data)
174 {
175 unsigned long flags;
176 int is_read;
177
178 local_irq_save(flags);
179
180 /* The least significant bits must be 0b01 according to Inside Mac */
181
182 command = (command & ~3) | 1;
183
184 /* Enable the RTC and make sure the strobe line is high */
185
186 via1[vBufB] = (via1[vBufB] | VIA1B_vRTCClk) & ~VIA1B_vRTCEnb;
187
188 if (command & 0xFF00) { /* extended (two-byte) command */
189 via_rtc_send((command & 0xFF00) >> 8);
190 via_rtc_send(command & 0xFF);
191 is_read = command & (RTC_FLG_READ << 8);
192 } else { /* one-byte command */
193 via_rtc_send(command);
194 is_read = command & RTC_FLG_READ;
195 }
196 if (is_read) {
197 *data = via_rtc_recv();
198 } else {
199 via_rtc_send(*data);
200 }
201
202 /* All done, disable the RTC */
203
204 via1[vBufB] |= VIA1B_vRTCEnb;
205
206 local_irq_restore(flags);
207 }
208
209 #if IS_ENABLED(CONFIG_NVRAM)
via_pram_read_byte(int offset)210 static unsigned char via_pram_read_byte(int offset)
211 {
212 unsigned char temp;
213
214 via_rtc_command(RTC_CMD_XPRAM_READ | RTC_CMD_XPRAM_ARG(offset), &temp);
215
216 return temp;
217 }
218
via_pram_write_byte(unsigned char data,int offset)219 static void via_pram_write_byte(unsigned char data, int offset)
220 {
221 unsigned char temp;
222
223 temp = 0x55;
224 via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp);
225
226 temp = data;
227 via_rtc_command(RTC_CMD_XPRAM_WRITE | RTC_CMD_XPRAM_ARG(offset), &temp);
228
229 temp = 0x55 | RTC_FLG_WRITE_PROTECT;
230 via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp);
231 }
232 #endif /* CONFIG_NVRAM */
233
234 /*
235 * Return the current time in seconds since January 1, 1904.
236 *
237 * This only works on machines with the VIA-based PRAM/RTC, which
238 * is basically any machine with Mac II-style ADB.
239 */
240
via_read_time(void)241 static time64_t via_read_time(void)
242 {
243 union {
244 __u8 cdata[4];
245 __u32 idata;
246 } result, last_result;
247 int count = 1;
248
249 via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_0), &last_result.cdata[3]);
250 via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_1), &last_result.cdata[2]);
251 via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_2), &last_result.cdata[1]);
252 via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_3), &last_result.cdata[0]);
253
254 /*
255 * The NetBSD guys say to loop until you get the same reading
256 * twice in a row.
257 */
258
259 while (1) {
260 via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_0),
261 &result.cdata[3]);
262 via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_1),
263 &result.cdata[2]);
264 via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_2),
265 &result.cdata[1]);
266 via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_3),
267 &result.cdata[0]);
268
269 if (result.idata == last_result.idata)
270 return (time64_t)result.idata - RTC_OFFSET;
271
272 if (++count > 10)
273 break;
274
275 last_result.idata = result.idata;
276 }
277
278 pr_err("%s: failed to read a stable value; got 0x%08x then 0x%08x\n",
279 __func__, last_result.idata, result.idata);
280
281 return 0;
282 }
283
284 /*
285 * Set the current time to a number of seconds since January 1, 1904.
286 *
287 * This only works on machines with the VIA-based PRAM/RTC, which
288 * is basically any machine with Mac II-style ADB.
289 */
290
via_set_rtc_time(struct rtc_time * tm)291 static void via_set_rtc_time(struct rtc_time *tm)
292 {
293 union {
294 __u8 cdata[4];
295 __u32 idata;
296 } data;
297 __u8 temp;
298 time64_t time;
299
300 time = mktime64(tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
301 tm->tm_hour, tm->tm_min, tm->tm_sec);
302
303 /* Clear the write protect bit */
304
305 temp = 0x55;
306 via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp);
307
308 data.idata = lower_32_bits(time + RTC_OFFSET);
309 via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_0), &data.cdata[3]);
310 via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_1), &data.cdata[2]);
311 via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_2), &data.cdata[1]);
312 via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_3), &data.cdata[0]);
313
314 /* Set the write protect bit */
315
316 temp = 0x55 | RTC_FLG_WRITE_PROTECT;
317 via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp);
318 }
319
via_shutdown(void)320 static void via_shutdown(void)
321 {
322 if (rbv_present) {
323 via2[rBufB] &= ~0x04;
324 } else {
325 /* Direction of vDirB is output */
326 via2[vDirB] |= 0x04;
327 /* Send a value of 0 on that line */
328 via2[vBufB] &= ~0x04;
329 mdelay(1000);
330 }
331 }
332
oss_shutdown(void)333 static void oss_shutdown(void)
334 {
335 oss->rom_ctrl = OSS_POWEROFF;
336 }
337
338 #ifdef CONFIG_ADB_CUDA
cuda_restart(void)339 static void cuda_restart(void)
340 {
341 struct adb_request req;
342
343 if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_RESET_SYSTEM) < 0)
344 return;
345 while (!req.complete)
346 cuda_poll();
347 }
348
cuda_shutdown(void)349 static void cuda_shutdown(void)
350 {
351 struct adb_request req;
352
353 if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_POWERDOWN) < 0)
354 return;
355
356 /* Avoid infinite polling loop when PSU is not under Cuda control */
357 switch (macintosh_config->ident) {
358 case MAC_MODEL_C660:
359 case MAC_MODEL_Q605:
360 case MAC_MODEL_Q605_ACC:
361 case MAC_MODEL_P475:
362 case MAC_MODEL_P475F:
363 return;
364 }
365
366 while (!req.complete)
367 cuda_poll();
368 }
369 #endif /* CONFIG_ADB_CUDA */
370
371 /*
372 *-------------------------------------------------------------------
373 * Below this point are the generic routines; they'll dispatch to the
374 * correct routine for the hardware on which we're running.
375 *-------------------------------------------------------------------
376 */
377
378 #if IS_ENABLED(CONFIG_NVRAM)
mac_pram_read_byte(int addr)379 unsigned char mac_pram_read_byte(int addr)
380 {
381 switch (macintosh_config->adb_type) {
382 case MAC_ADB_IOP:
383 case MAC_ADB_II:
384 case MAC_ADB_PB1:
385 return via_pram_read_byte(addr);
386 #ifdef CONFIG_ADB_CUDA
387 case MAC_ADB_EGRET:
388 case MAC_ADB_CUDA:
389 return cuda_pram_read_byte(addr);
390 #endif
391 #ifdef CONFIG_ADB_PMU
392 case MAC_ADB_PB2:
393 return pmu_pram_read_byte(addr);
394 #endif
395 default:
396 return 0xFF;
397 }
398 }
399
mac_pram_write_byte(unsigned char val,int addr)400 void mac_pram_write_byte(unsigned char val, int addr)
401 {
402 switch (macintosh_config->adb_type) {
403 case MAC_ADB_IOP:
404 case MAC_ADB_II:
405 case MAC_ADB_PB1:
406 via_pram_write_byte(val, addr);
407 break;
408 #ifdef CONFIG_ADB_CUDA
409 case MAC_ADB_EGRET:
410 case MAC_ADB_CUDA:
411 cuda_pram_write_byte(val, addr);
412 break;
413 #endif
414 #ifdef CONFIG_ADB_PMU
415 case MAC_ADB_PB2:
416 pmu_pram_write_byte(val, addr);
417 break;
418 #endif
419 default:
420 break;
421 }
422 }
423
mac_pram_get_size(void)424 ssize_t mac_pram_get_size(void)
425 {
426 return 256;
427 }
428 #endif /* CONFIG_NVRAM */
429
mac_poweroff(void)430 void mac_poweroff(void)
431 {
432 if (oss_present) {
433 oss_shutdown();
434 } else if (macintosh_config->adb_type == MAC_ADB_II) {
435 via_shutdown();
436 #ifdef CONFIG_ADB_CUDA
437 } else if (macintosh_config->adb_type == MAC_ADB_EGRET ||
438 macintosh_config->adb_type == MAC_ADB_CUDA) {
439 cuda_shutdown();
440 #endif
441 #ifdef CONFIG_ADB_PMU
442 } else if (macintosh_config->adb_type == MAC_ADB_PB2) {
443 pmu_shutdown();
444 #endif
445 }
446
447 pr_crit("It is now safe to turn off your Macintosh.\n");
448 local_irq_disable();
449 while(1);
450 }
451
mac_reset(void)452 void mac_reset(void)
453 {
454 if (macintosh_config->adb_type == MAC_ADB_II &&
455 macintosh_config->ident != MAC_MODEL_SE30) {
456 /* need ROMBASE in booter */
457 /* indeed, plus need to MAP THE ROM !! */
458
459 if (mac_bi_data.rombase == 0)
460 mac_bi_data.rombase = 0x40800000;
461
462 /* works on some */
463 rom_reset = (void *) (mac_bi_data.rombase + 0xa);
464
465 local_irq_disable();
466 rom_reset();
467 #ifdef CONFIG_ADB_CUDA
468 } else if (macintosh_config->adb_type == MAC_ADB_EGRET ||
469 macintosh_config->adb_type == MAC_ADB_CUDA) {
470 cuda_restart();
471 #endif
472 #ifdef CONFIG_ADB_PMU
473 } else if (macintosh_config->adb_type == MAC_ADB_PB2) {
474 pmu_restart();
475 #endif
476 } else if (CPU_IS_030) {
477
478 /* 030-specific reset routine. The idea is general, but the
479 * specific registers to reset are '030-specific. Until I
480 * have a non-030 machine, I can't test anything else.
481 * -- C. Scott Ananian <cananian@alumni.princeton.edu>
482 */
483
484 unsigned long rombase = 0x40000000;
485
486 /* make a 1-to-1 mapping, using the transparent tran. reg. */
487 unsigned long virt = (unsigned long) mac_reset;
488 unsigned long phys = virt_to_phys(mac_reset);
489 unsigned long addr = (phys&0xFF000000)|0x8777;
490 unsigned long offset = phys-virt;
491
492 local_irq_disable(); /* lets not screw this up, ok? */
493 __asm__ __volatile__(".chip 68030\n\t"
494 "pmove %0,%/tt0\n\t"
495 ".chip 68k"
496 : : "m" (addr));
497 /* Now jump to physical address so we can disable MMU */
498 __asm__ __volatile__(
499 ".chip 68030\n\t"
500 "lea %/pc@(1f),%/a0\n\t"
501 "addl %0,%/a0\n\t"/* fixup target address and stack ptr */
502 "addl %0,%/sp\n\t"
503 "pflusha\n\t"
504 "jmp %/a0@\n\t" /* jump into physical memory */
505 "0:.long 0\n\t" /* a constant zero. */
506 /* OK. Now reset everything and jump to reset vector. */
507 "1:\n\t"
508 "lea %/pc@(0b),%/a0\n\t"
509 "pmove %/a0@, %/tc\n\t" /* disable mmu */
510 "pmove %/a0@, %/tt0\n\t" /* disable tt0 */
511 "pmove %/a0@, %/tt1\n\t" /* disable tt1 */
512 "movel #0, %/a0\n\t"
513 "movec %/a0, %/vbr\n\t" /* clear vector base register */
514 "movec %/a0, %/cacr\n\t" /* disable caches */
515 "movel #0x0808,%/a0\n\t"
516 "movec %/a0, %/cacr\n\t" /* flush i&d caches */
517 "movew #0x2700,%/sr\n\t" /* set up status register */
518 "movel %1@(0x0),%/a0\n\t"/* load interrupt stack pointer */
519 "movec %/a0, %/isp\n\t"
520 "movel %1@(0x4),%/a0\n\t" /* load reset vector */
521 "reset\n\t" /* reset external devices */
522 "jmp %/a0@\n\t" /* jump to the reset vector */
523 ".chip 68k"
524 : : "r" (offset), "a" (rombase) : "a0");
525 }
526
527 /* should never get here */
528 pr_crit("Restart failed. Please restart manually.\n");
529 local_irq_disable();
530 while(1);
531 }
532
533 /*
534 * This function translates seconds since 1970 into a proper date.
535 *
536 * Algorithm cribbed from glibc2.1, __offtime().
537 *
538 * This is roughly same as rtc_time64_to_tm(), which we should probably
539 * use here, but it's only available when CONFIG_RTC_LIB is enabled.
540 */
541 #define SECS_PER_MINUTE (60)
542 #define SECS_PER_HOUR (SECS_PER_MINUTE * 60)
543 #define SECS_PER_DAY (SECS_PER_HOUR * 24)
544
unmktime(time64_t time,long offset,int * yearp,int * monp,int * dayp,int * hourp,int * minp,int * secp)545 static void unmktime(time64_t time, long offset,
546 int *yearp, int *monp, int *dayp,
547 int *hourp, int *minp, int *secp)
548 {
549 /* How many days come before each month (0-12). */
550 static const unsigned short int __mon_yday[2][13] =
551 {
552 /* Normal years. */
553 { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
554 /* Leap years. */
555 { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
556 };
557 int days, rem, y, wday, yday;
558 const unsigned short int *ip;
559
560 days = div_u64_rem(time, SECS_PER_DAY, &rem);
561 rem += offset;
562 while (rem < 0) {
563 rem += SECS_PER_DAY;
564 --days;
565 }
566 while (rem >= SECS_PER_DAY) {
567 rem -= SECS_PER_DAY;
568 ++days;
569 }
570 *hourp = rem / SECS_PER_HOUR;
571 rem %= SECS_PER_HOUR;
572 *minp = rem / SECS_PER_MINUTE;
573 *secp = rem % SECS_PER_MINUTE;
574 /* January 1, 1970 was a Thursday. */
575 wday = (4 + days) % 7; /* Day in the week. Not currently used */
576 if (wday < 0) wday += 7;
577 y = 1970;
578
579 #define DIV(a, b) ((a) / (b) - ((a) % (b) < 0))
580 #define LEAPS_THRU_END_OF(y) (DIV (y, 4) - DIV (y, 100) + DIV (y, 400))
581 #define __isleap(year) \
582 ((year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0))
583
584 while (days < 0 || days >= (__isleap (y) ? 366 : 365))
585 {
586 /* Guess a corrected year, assuming 365 days per year. */
587 long int yg = y + days / 365 - (days % 365 < 0);
588
589 /* Adjust DAYS and Y to match the guessed year. */
590 days -= (yg - y) * 365 +
591 LEAPS_THRU_END_OF(yg - 1) - LEAPS_THRU_END_OF(y - 1);
592 y = yg;
593 }
594 *yearp = y - 1900;
595 yday = days; /* day in the year. Not currently used. */
596 ip = __mon_yday[__isleap(y)];
597 for (y = 11; days < (long int) ip[y]; --y)
598 continue;
599 days -= ip[y];
600 *monp = y;
601 *dayp = days + 1; /* day in the month */
602 return;
603 }
604
605 /*
606 * Read/write the hardware clock.
607 */
608
mac_hwclk(int op,struct rtc_time * t)609 int mac_hwclk(int op, struct rtc_time *t)
610 {
611 time64_t now;
612
613 if (!op) { /* read */
614 switch (macintosh_config->adb_type) {
615 case MAC_ADB_IOP:
616 case MAC_ADB_II:
617 case MAC_ADB_PB1:
618 now = via_read_time();
619 break;
620 #ifdef CONFIG_ADB_CUDA
621 case MAC_ADB_EGRET:
622 case MAC_ADB_CUDA:
623 now = cuda_get_time();
624 break;
625 #endif
626 #ifdef CONFIG_ADB_PMU
627 case MAC_ADB_PB2:
628 now = pmu_get_time();
629 break;
630 #endif
631 default:
632 now = 0;
633 }
634
635 t->tm_wday = 0;
636 unmktime(now, 0,
637 &t->tm_year, &t->tm_mon, &t->tm_mday,
638 &t->tm_hour, &t->tm_min, &t->tm_sec);
639 pr_debug("%s: read %ptR\n", __func__, t);
640 } else { /* write */
641 pr_debug("%s: tried to write %ptR\n", __func__, t);
642
643 switch (macintosh_config->adb_type) {
644 case MAC_ADB_IOP:
645 case MAC_ADB_II:
646 case MAC_ADB_PB1:
647 via_set_rtc_time(t);
648 break;
649 #ifdef CONFIG_ADB_CUDA
650 case MAC_ADB_EGRET:
651 case MAC_ADB_CUDA:
652 cuda_set_rtc_time(t);
653 break;
654 #endif
655 #ifdef CONFIG_ADB_PMU
656 case MAC_ADB_PB2:
657 pmu_set_rtc_time(t);
658 break;
659 #endif
660 default:
661 return -ENODEV;
662 }
663 }
664 return 0;
665 }
666