1 /*
2 * File Name:
3 * skfddi.c
4 *
5 * Copyright Information:
6 * Copyright SysKonnect 1998,1999.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * The information in this file is provided "AS IS" without warranty.
14 *
15 * Abstract:
16 * A Linux device driver supporting the SysKonnect FDDI PCI controller
17 * familie.
18 *
19 * Maintainers:
20 * CG Christoph Goos (cgoos@syskonnect.de)
21 *
22 * Contributors:
23 * DM David S. Miller
24 *
25 * Address all question to:
26 * linux@syskonnect.de
27 *
28 * The technical manual for the adapters is available from SysKonnect's
29 * web pages: www.syskonnect.com
30 * Goto "Support" and search Knowledge Base for "manual".
31 *
32 * Driver Architecture:
33 * The driver architecture is based on the DEC FDDI driver by
34 * Lawrence V. Stefani and several ethernet drivers.
35 * I also used an existing Windows NT miniport driver.
36 * All hardware dependant fuctions are handled by the SysKonnect
37 * Hardware Module.
38 * The only headerfiles that are directly related to this source
39 * are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
40 * The others belong to the SysKonnect FDDI Hardware Module and
41 * should better not be changed.
42 * NOTE:
43 * Compiling this driver produces some warnings, but I did not fix
44 * this, because the Hardware Module source is used for different
45 * drivers, and fixing it for Linux might bring problems on other
46 * projects. To keep the source common for all those drivers (and
47 * thus simplify fixes to it), please do not clean it up!
48 *
49 * Modification History:
50 * Date Name Description
51 * 02-Mar-98 CG Created.
52 *
53 * 10-Mar-99 CG Support for 2.2.x added.
54 * 25-Mar-99 CG Corrected IRQ routing for SMP (APIC)
55 * 26-Oct-99 CG Fixed compilation error on 2.2.13
56 * 12-Nov-99 CG Source code release
57 * 22-Nov-99 CG Included in kernel source.
58 * 07-May-00 DM 64 bit fixes, new dma interface
59 * 06-May-02 ML Structure fixes
60 *
61 * Compilation options (-Dxxx):
62 * DRIVERDEBUG print lots of messages to log file
63 * DUMPPACKETS print received/transmitted packets to logfile
64 *
65 * Tested cpu architectures:
66 * - i386
67 * - sparc64
68 */
69
70 /* Version information string - should be updated prior to */
71 /* each new release!!! */
72 #define VERSION "2.07"
73
74 static const char *boot_msg =
75 "SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
76 " SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
77
78 /* Include files */
79
80 #include <linux/module.h>
81
82 #include <linux/kernel.h>
83 #include <linux/sched.h>
84 #include <linux/string.h>
85 #include <linux/ptrace.h>
86 #include <linux/errno.h>
87 #include <linux/ioport.h>
88 #include <linux/slab.h>
89 #include <linux/interrupt.h>
90 #include <linux/pci.h>
91 #include <linux/delay.h>
92 #include <asm/byteorder.h>
93 #include <asm/bitops.h>
94 #include <asm/io.h>
95 #include <asm/uaccess.h>
96 #include <linux/ctype.h> // isdigit
97
98 #include <linux/netdevice.h>
99 #include <linux/fddidevice.h>
100 #include <linux/skbuff.h>
101
102 #include "h/types.h"
103 #undef ADDR // undo Linux definition
104 #include "h/skfbi.h"
105 #include "h/fddi.h"
106 #include "h/smc.h"
107 #include "h/smtstate.h"
108
109
110 // Define global routines
111 int skfp_probe(struct net_device *dev);
112
113
114 // Define module-wide (static) routines
115 static struct net_device *alloc_device(struct net_device *dev, u_long iobase);
116 static struct net_device *insert_device(struct net_device *dev,
117 int (*init) (struct net_device *));
118 static int fddi_dev_index(unsigned char *s);
119 static void init_dev(struct net_device *dev, u_long iobase);
120 static void link_modules(struct net_device *dev, struct net_device *tmp);
121 static int skfp_driver_init(struct net_device *dev);
122 static int skfp_open(struct net_device *dev);
123 static int skfp_close(struct net_device *dev);
124 static void skfp_interrupt(int irq, void *dev_id, struct pt_regs *regs);
125 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
126 static void skfp_ctl_set_multicast_list(struct net_device *dev);
127 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
128 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
129 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
130 static int skfp_send_pkt(struct sk_buff *skb, struct net_device *dev);
131 static void send_queued_packets(struct s_smc *smc);
132 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
133 static void ResetAdapter(struct s_smc *smc);
134
135
136 // Functions needed by the hardware module
137 void *mac_drv_get_space(struct s_smc *smc, u_int size);
138 void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
139 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
140 unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
141 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
142 int flag);
143 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
144 void llc_restart_tx(struct s_smc *smc);
145 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
146 int frag_count, int len);
147 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
148 int frag_count);
149 void mac_drv_fill_rxd(struct s_smc *smc);
150 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
151 int frag_count);
152 int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
153 int la_len);
154 void smt_timer_poll(struct s_smc *smc);
155 void ring_status_indication(struct s_smc *smc, u_long status);
156 unsigned long smt_get_time(void);
157 void smt_stat_counter(struct s_smc *smc, int stat);
158 void cfm_state_change(struct s_smc *smc, int c_state);
159 void ecm_state_change(struct s_smc *smc, int e_state);
160 void pcm_state_change(struct s_smc *smc, int plc, int p_state);
161 void rmt_state_change(struct s_smc *smc, int r_state);
162 void drv_reset_indication(struct s_smc *smc);
163 void dump_data(unsigned char *Data, int length);
164
165
166 // External functions from the hardware module
167 extern u_int mac_drv_check_space();
168 extern void read_address(struct s_smc *smc, u_char * mac_addr);
169 extern void card_stop(struct s_smc *smc);
170 extern int mac_drv_init(struct s_smc *smc);
171 extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
172 int len, int frame_status);
173 extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
174 int frame_len, int frame_status);
175 extern int init_smt(struct s_smc *smc, u_char * mac_addr);
176 extern void fddi_isr(struct s_smc *smc);
177 extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
178 int len, int frame_status);
179 extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
180 extern void mac_drv_clear_tx_queue(struct s_smc *smc);
181 extern void mac_drv_clear_rx_queue(struct s_smc *smc);
182 extern void mac_clear_multicast(struct s_smc *smc);
183 extern void enable_tx_irq(struct s_smc *smc, u_short queue);
184 extern void mac_drv_clear_txd(struct s_smc *smc);
185
186 static struct pci_device_id skfddi_pci_tbl[] __initdata = {
187 { PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
188 { } /* Terminating entry */
189 };
190 MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
191 MODULE_LICENSE("GPL");
192 MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
193
194 // Define module-wide (static) variables
195
196 static int num_boards; /* total number of adapters configured */
197 static int num_fddi;
198 static int autoprobed;
199
200 #ifdef MODULE
201 int init_module(void);
202 void cleanup_module(void);
203 static struct net_device *unlink_modules(struct net_device *p);
204 static int loading_module = 1;
205 #else
206 static int loading_module;
207 #endif // MODULE
208
209 #ifdef DRIVERDEBUG
210 #define PRINTK(s, args...) printk(s, ## args)
211 #else
212 #define PRINTK(s, args...)
213 #endif // DRIVERDEBUG
214
215 #define PRIV(dev) (&(((struct s_smc *)dev->priv)->os))
216
217 /*
218 * ==============
219 * = skfp_probe =
220 * ==============
221 *
222 * Overview:
223 * Probes for supported FDDI PCI controllers
224 *
225 * Returns:
226 * Condition code
227 *
228 * Arguments:
229 * dev - pointer to device information
230 *
231 * Functional Description:
232 * This routine is called by the OS for each FDDI device name (fddi0,
233 * fddi1,...,fddi6, fddi7) specified in drivers/net/Space.c.
234 * If loaded as a module, it will detect and initialize all
235 * adapters the first time it is called.
236 *
237 * Let's say that skfp_probe() is getting called to initialize fddi0.
238 * Furthermore, let's say there are three supported controllers in the
239 * system. Before skfp_probe() leaves, devices fddi0, fddi1, and fddi2
240 * will be initialized and a global flag will be set to indicate that
241 * skfp_probe() has already been called.
242 *
243 * However...the OS doesn't know that we've already initialized
244 * devices fddi1 and fddi2 so skfp_probe() gets called again and again
245 * until it reaches the end of the device list for FDDI (presently,
246 * fddi7). It's important that the driver "pretend" to probe for
247 * devices fddi1 and fddi2 and return success. Devices fddi3
248 * through fddi7 will return failure since they weren't initialized.
249 *
250 * This algorithm seems to work for the time being. As other FDDI
251 * drivers are written for Linux, a more generic approach (perhaps
252 * similar to the Ethernet card approach) may need to be implemented.
253 *
254 * Return Codes:
255 * 0 - This device (fddi0, fddi1, etc) configured successfully
256 * -ENODEV - No devices present, or no SysKonnect FDDI PCI device
257 * present for this device name
258 *
259 *
260 * Side Effects:
261 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
262 * initialized and the board resources are read and stored in
263 * the device structure.
264 */
skfp_probe(struct net_device * dev)265 int skfp_probe(struct net_device *dev)
266 {
267 int i; /* used in for loops */
268 struct pci_dev *pdev = NULL; /* PCI device structure */
269 #ifndef MEM_MAPPED_IO
270 u16 port; /* temporary I/O (port) address */
271 int port_len; /* length of port address range (in bytes) */
272 #else
273 unsigned long port;
274 #endif
275 u16 command; /* PCI Configuration space Command register val */
276 struct s_smc *smc; /* board pointer */
277 struct net_device *tmp = dev;
278 u8 first_dev_used = 0;
279 u16 SubSysId;
280
281 PRINTK(KERN_INFO "entering skfp_probe\n");
282
283 /*
284 * Verify whether we're going through skfp_probe() again
285 *
286 * If so, see if we're going through for a subsequent fddi device that
287 * we've already initialized. If we are, return success (0). If not,
288 * return failure (-ENODEV).
289 */
290
291 if (autoprobed) {
292 PRINTK(KERN_INFO "Already entered skfp_probe\n");
293 if (dev != NULL) {
294 if ((strncmp(dev->name, "fddi", 4) == 0) &&
295 (dev->base_addr != 0)) {
296 return (0);
297 }
298 return (-ENODEV);
299 }
300 }
301 autoprobed = 1; /* set global flag */
302
303 printk("%s\n", boot_msg);
304
305 /* Scan for Syskonnect FDDI PCI controllers */
306 if (!pci_present()) { /* is PCI BIOS even present? */
307 printk("no PCI BIOS present\n");
308 return (-ENODEV);
309 }
310 for (i = 0; i < SKFP_MAX_NUM_BOARDS; i++) { // scan for PCI cards
311 PRINTK(KERN_INFO "Check device %d\n", i);
312 if ((pdev=pci_find_device(PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP,
313 pdev)) == 0) {
314 break;
315 }
316 if (pci_enable_device(pdev))
317 continue;
318
319 #ifndef MEM_MAPPED_IO
320 /* Verify that I/O enable bit is set (PCI slot is enabled) */
321 pci_read_config_word(pdev, PCI_COMMAND, &command);
322 if ((command & PCI_COMMAND_IO) == 0) {
323 PRINTK("I/O enable bit not set!");
324 PRINTK(" Verify that slot is enabled\n");
325 continue;
326 }
327
328 /* Turn off memory mapped space and enable mastering */
329
330 PRINTK(KERN_INFO "Command Reg: %04x\n", command);
331 command |= PCI_COMMAND_MASTER;
332 command &= ~PCI_COMMAND_MEMORY;
333 pci_write_config_word(pdev, PCI_COMMAND, command);
334
335 /* Read I/O base address from PCI Configuration Space */
336
337 pci_read_config_word(pdev, PCI_BASE_ADDRESS_1, &port);
338 port &= PCI_BASE_ADDRESS_IO_MASK; // clear I/O bit (bit 0)
339
340 /* Verify port address range is not already being used */
341
342 port_len = FP_IO_LEN;
343 if (check_region(port, port_len) != 0) {
344 printk("I/O range allocated to adapter");
345 printk(" (0x%X-0x%X) is already being used!\n", port,
346 (port + port_len - 1));
347 continue;
348 }
349 #else
350 /* Verify that MEM enable bit is set (PCI slot is enabled) */
351 pci_read_config_word(pdev, PCI_COMMAND, &command);
352 if ((command & PCI_COMMAND_MEMORY) == 0) {
353 PRINTK("MEMORY-I/O enable bit not set!");
354 PRINTK(" Verify that slot is enabled\n");
355 continue;
356 }
357
358 /* Turn off IO mapped space and enable mastering */
359
360 PRINTK(KERN_INFO "Command Reg: %04x\n", command);
361 command |= PCI_COMMAND_MASTER;
362 command &= ~PCI_COMMAND_IO;
363 pci_write_config_word(pdev, PCI_COMMAND, command);
364
365 port = pci_resource_start(pdev, 0);
366
367 port = (unsigned long)ioremap(port, 0x4000);
368 if (!port){
369 printk("skfp: Unable to map MEMORY register, "
370 "FDDI adapter will be disabled.\n");
371 break;
372 }
373 #endif
374
375 if ((!loading_module) || first_dev_used) {
376 /* Allocate a device structure for this adapter */
377 tmp = alloc_device(dev, port);
378 }
379 first_dev_used = 1; // only significant first time
380
381 pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &SubSysId);
382
383 if (tmp != NULL) {
384 if (loading_module)
385 link_modules(dev, tmp);
386 dev = tmp;
387 init_dev(dev, port);
388 dev->irq = pdev->irq;
389
390 /* Initialize board structure with bus-specific info */
391
392 smc = (struct s_smc *) dev->priv;
393 smc->os.dev = dev;
394 smc->os.bus_type = SK_BUS_TYPE_PCI;
395 smc->os.pdev = *pdev;
396 smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
397 smc->os.MaxFrameSize = MAX_FRAME_SIZE;
398 smc->os.dev = dev;
399 smc->hw.slot = -1;
400 smc->os.ResetRequested = FALSE;
401 skb_queue_head_init(&smc->os.SendSkbQueue);
402
403 if (skfp_driver_init(dev) == 0) {
404 // only increment global board
405 // count on success
406 num_boards++;
407 request_region(dev->base_addr,
408 FP_IO_LEN, dev->name);
409 if ((SubSysId & 0xff00) == 0x5500 ||
410 (SubSysId & 0xff00) == 0x5800) {
411 printk("%s: SysKonnect FDDI PCI adapter"
412 " found (SK-%04X)\n", dev->name,
413 SubSysId);
414 } else {
415 printk("%s: FDDI PCI adapter found\n",
416 dev->name);
417 }
418 } else {
419 kfree(dev);
420 i = SKFP_MAX_NUM_BOARDS; // stop search
421
422 }
423
424 } // if (dev != NULL)
425
426 } // for SKFP_MAX_NUM_BOARDS
427
428 /*
429 * If we're at this point we're going through skfp_probe() for the
430 * first time. Return success (0) if we've initialized 1 or more
431 * boards. Otherwise, return failure (-ENODEV).
432 */
433
434 if (num_boards > 0)
435 return (0);
436 else {
437 printk("no SysKonnect FDDI adapter found\n");
438 return (-ENODEV);
439 }
440 } // skfp_probe
441
442
443 /************************
444 *
445 * Search the entire 'fddi' device list for a fixed probe. If a match isn't
446 * found then check for an autoprobe or unused device location. If they
447 * are not available then insert a new device structure at the end of
448 * the current list.
449 *
450 ************************/
alloc_device(struct net_device * dev,u_long iobase)451 static struct net_device *alloc_device(struct net_device *dev, u_long iobase)
452 {
453 struct net_device *adev = NULL;
454 int fixed = 0, new_dev = 0;
455
456 PRINTK(KERN_INFO "entering alloc_device\n");
457 if (!dev)
458 return dev;
459
460 num_fddi = fddi_dev_index(dev->name);
461 if (loading_module) {
462 num_fddi++;
463 dev = insert_device(dev, skfp_probe);
464 return dev;
465 }
466 while (1) {
467 if (((dev->base_addr == NO_ADDRESS) ||
468 (dev->base_addr == 0)) && !adev) {
469 adev = dev;
470 } else if ((dev->priv == NULL) && (dev->base_addr == iobase)) {
471 fixed = 1;
472 } else {
473 if (dev->next == NULL) {
474 new_dev = 1;
475 } else if (strncmp(dev->next->name, "fddi", 4) != 0) {
476 new_dev = 1;
477 }
478 }
479 if ((dev->next == NULL) || new_dev || fixed)
480 break;
481 dev = dev->next;
482 num_fddi++;
483 } // while (1)
484
485 if (adev && !fixed) {
486 dev = adev;
487 num_fddi = fddi_dev_index(dev->name);
488 new_dev = 0;
489 }
490 if (((dev->next == NULL) && ((dev->base_addr != NO_ADDRESS) &&
491 (dev->base_addr != 0)) && !fixed) ||
492 new_dev) {
493 num_fddi++; /* New device */
494 dev = insert_device(dev, skfp_probe);
495 }
496 if (dev) {
497 if (!dev->priv) {
498 /* Allocate space for private board structure */
499 dev->priv = (void *) kmalloc(sizeof(struct s_smc),
500 GFP_KERNEL);
501 if (dev->priv == NULL) {
502 printk("%s: Could not allocate memory for",
503 dev->name);
504 printk(" private board structure!\n");
505 return (NULL);
506 }
507 /* clear structure */
508 memset(dev->priv, 0, sizeof(struct s_smc));
509 }
510 }
511 return dev;
512 } // alloc_device
513
514
515
516 /************************
517 *
518 * Initialize device structure
519 *
520 ************************/
init_dev(struct net_device * dev,u_long iobase)521 static void init_dev(struct net_device *dev, u_long iobase)
522 {
523 /* Initialize new device structure */
524
525 dev->rmem_end = 0; /* shared memory isn't used */
526 dev->rmem_start = 0; /* shared memory isn't used */
527 dev->mem_end = 0; /* shared memory isn't used */
528 dev->mem_start = 0; /* shared memory isn't used */
529 dev->base_addr = iobase; /* save port (I/O) base address */
530 dev->if_port = 0; /* not applicable to FDDI adapters */
531 dev->dma = 0; /* Bus Master DMA doesn't require channel */
532 dev->irq = 0;
533
534 netif_start_queue(dev);
535
536 dev->get_stats = &skfp_ctl_get_stats;
537 dev->open = &skfp_open;
538 dev->stop = &skfp_close;
539 dev->hard_start_xmit = &skfp_send_pkt;
540 dev->hard_header = NULL; /* set in fddi_setup() */
541 dev->rebuild_header = NULL; /* set in fddi_setup() */
542 dev->set_multicast_list = &skfp_ctl_set_multicast_list;
543 dev->set_mac_address = &skfp_ctl_set_mac_address;
544 dev->do_ioctl = &skfp_ioctl;
545 dev->set_config = NULL; /* not supported for now &&& */
546 dev->header_cache_update = NULL; /* not supported */
547 dev->change_mtu = NULL; /* set in fddi_setup() */
548
549 /* Initialize remaining device structure information */
550 fddi_setup(dev);
551 } // init_device
552
553
554 /************************
555 *
556 * If at end of fddi device list and can't use current entry, malloc
557 * one up. If memory could not be allocated, print an error message.
558 *
559 ************************/
insert_device(struct net_device * dev,int (* init)(struct net_device *))560 static struct net_device *insert_device(struct net_device *dev,
561 int (*init) (struct net_device *))
562 {
563 struct net_device *new;
564 int len;
565
566 PRINTK(KERN_INFO "entering insert_device\n");
567 len = sizeof(struct net_device) + sizeof(struct s_smc);
568 new = (struct net_device *) kmalloc(len, GFP_KERNEL);
569 if (new == NULL) {
570 printk("fddi%d: Device not initialised, insufficient memory\n",
571 num_fddi);
572 return NULL;
573 } else {
574 memset((char *) new, 0, len);
575 new->priv = (struct s_smc *) (new + 1);
576 new->init = init; /* initialisation routine */
577 if (!loading_module) {
578 new->next = dev->next;
579 dev->next = new;
580 }
581 /* create new device name */
582 if (num_fddi > 999) {
583 sprintf(new->name, "fddi????");
584 } else {
585 sprintf(new->name, "fddi%d", num_fddi);
586 }
587 }
588 return new;
589 } // insert_device
590
591
592 /************************
593 *
594 * Get the number of a "fddiX" string
595 *
596 ************************/
fddi_dev_index(unsigned char * s)597 static int fddi_dev_index(unsigned char *s)
598 {
599 int i = 0, j = 0;
600
601 for (; *s; s++) {
602 if (isdigit(*s)) {
603 j = 1;
604 i = (i * 10) + (*s - '0');
605 } else if (j)
606 break;
607 }
608 return i;
609 } // fddi_dev_index
610
611
612 /************************
613 *
614 * Used if loaded as module only. Link the device structures
615 * together. Needed to release them all at unload.
616 *
617 ************************/
link_modules(struct net_device * dev,struct net_device * tmp)618 static void link_modules(struct net_device *dev, struct net_device *tmp)
619 {
620 struct net_device *p = dev;
621
622 if (p) {
623 while (((struct s_smc *) (p->priv))->os.next_module) {
624 p = ((struct s_smc *) (p->priv))->os.next_module;
625 }
626
627 if (dev != tmp) {
628 ((struct s_smc *) (p->priv))->os.next_module = tmp;
629 } else {
630 ((struct s_smc *) (p->priv))->os.next_module = NULL;
631 }
632 }
633 return;
634 } // link_modules
635
636
637
638 /*
639 * ====================
640 * = skfp_driver_init =
641 * ====================
642 *
643 * Overview:
644 * Initializes remaining adapter board structure information
645 * and makes sure adapter is in a safe state prior to skfp_open().
646 *
647 * Returns:
648 * Condition code
649 *
650 * Arguments:
651 * dev - pointer to device information
652 *
653 * Functional Description:
654 * This function allocates additional resources such as the host memory
655 * blocks needed by the adapter.
656 * The adapter is also reset. The OS must call skfp_open() to open
657 * the adapter and bring it on-line.
658 *
659 * Return Codes:
660 * 0 - initialization succeeded
661 * -1 - initialization failed
662 */
skfp_driver_init(struct net_device * dev)663 static int skfp_driver_init(struct net_device *dev)
664 {
665 struct s_smc *smc = (struct s_smc *) dev->priv;
666 skfddi_priv *bp = PRIV(dev);
667 u8 val; /* used for I/O read/writes */
668
669 PRINTK(KERN_INFO "entering skfp_driver_init\n");
670
671 // set the io address in private structures
672 bp->base_addr = dev->base_addr;
673 smc->hw.iop = dev->base_addr;
674
675 // Get the interrupt level from the PCI Configuration Table
676 val = dev->irq;
677
678 smc->hw.irq = val;
679
680 spin_lock_init(&bp->DriverLock);
681
682 // Allocate invalid frame
683 bp->LocalRxBuffer = pci_alloc_consistent(&bp->pdev, MAX_FRAME_SIZE, &bp->LocalRxBufferDMA);
684 if (!bp->LocalRxBuffer) {
685 printk("could not allocate mem for ");
686 printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
687 goto fail;
688 }
689
690 // Determine the required size of the 'shared' memory area.
691 bp->SharedMemSize = mac_drv_check_space();
692 PRINTK(KERN_INFO "Memory for HWM: %ld\n", bp->SharedMemSize);
693 if (bp->SharedMemSize > 0) {
694 bp->SharedMemSize += 16; // for descriptor alignment
695
696 bp->SharedMemAddr = pci_alloc_consistent(&bp->pdev,
697 bp->SharedMemSize,
698 &bp->SharedMemDMA);
699 if (!bp->SharedMemSize) {
700 printk("could not allocate mem for ");
701 printk("hardware module: %ld byte\n",
702 bp->SharedMemSize);
703 goto fail;
704 }
705 bp->SharedMemHeap = 0; // Nothing used yet.
706
707 } else {
708 bp->SharedMemAddr = NULL;
709 bp->SharedMemHeap = 0;
710 } // SharedMemSize > 0
711
712 memset(bp->SharedMemAddr, 0, bp->SharedMemSize);
713
714 card_stop(smc); // Reset adapter.
715
716 PRINTK(KERN_INFO "mac_drv_init()..\n");
717 if (mac_drv_init(smc) != 0) {
718 PRINTK(KERN_INFO "mac_drv_init() failed.\n");
719 goto fail;
720 }
721 read_address(smc, NULL);
722 PRINTK(KERN_INFO "HW-Addr: %02x %02x %02x %02x %02x %02x\n",
723 smc->hw.fddi_canon_addr.a[0],
724 smc->hw.fddi_canon_addr.a[1],
725 smc->hw.fddi_canon_addr.a[2],
726 smc->hw.fddi_canon_addr.a[3],
727 smc->hw.fddi_canon_addr.a[4],
728 smc->hw.fddi_canon_addr.a[5]);
729 memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
730
731 smt_reset_defaults(smc, 0);
732
733 return (0);
734
735 fail:
736 if (bp->SharedMemAddr) {
737 pci_free_consistent(&bp->pdev,
738 bp->SharedMemSize,
739 bp->SharedMemAddr,
740 bp->SharedMemDMA);
741 bp->SharedMemAddr = NULL;
742 }
743 if (bp->LocalRxBuffer) {
744 pci_free_consistent(&bp->pdev, MAX_FRAME_SIZE,
745 bp->LocalRxBuffer, bp->LocalRxBufferDMA);
746 bp->LocalRxBuffer = NULL;
747 }
748 return (-1);
749 } // skfp_driver_init
750
751
752 /*
753 * =============
754 * = skfp_open =
755 * =============
756 *
757 * Overview:
758 * Opens the adapter
759 *
760 * Returns:
761 * Condition code
762 *
763 * Arguments:
764 * dev - pointer to device information
765 *
766 * Functional Description:
767 * This function brings the adapter to an operational state.
768 *
769 * Return Codes:
770 * 0 - Adapter was successfully opened
771 * -EAGAIN - Could not register IRQ
772 */
skfp_open(struct net_device * dev)773 static int skfp_open(struct net_device *dev)
774 {
775 struct s_smc *smc = (struct s_smc *) dev->priv;
776
777 PRINTK(KERN_INFO "entering skfp_open\n");
778 /* Register IRQ - support shared interrupts by passing device ptr */
779 if (request_irq(dev->irq, (void *) skfp_interrupt, SA_SHIRQ,
780 dev->name, dev)) {
781 printk("%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
782 return (-EAGAIN);
783 }
784 /*
785 * Set current address to factory MAC address
786 *
787 * Note: We've already done this step in skfp_driver_init.
788 * However, it's possible that a user has set a node
789 * address override, then closed and reopened the
790 * adapter. Unless we reset the device address field
791 * now, we'll continue to use the existing modified
792 * address.
793 */
794 read_address(smc, NULL);
795 memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
796
797 init_smt(smc, NULL);
798 smt_online(smc, 1);
799 STI_FBI();
800
801 MOD_INC_USE_COUNT;
802
803 /* Clear local multicast address tables */
804 mac_clear_multicast(smc);
805
806 /* Disable promiscuous filter settings */
807 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
808
809 return (0);
810 } // skfp_open
811
812
813 /*
814 * ==============
815 * = skfp_close =
816 * ==============
817 *
818 * Overview:
819 * Closes the device/module.
820 *
821 * Returns:
822 * Condition code
823 *
824 * Arguments:
825 * dev - pointer to device information
826 *
827 * Functional Description:
828 * This routine closes the adapter and brings it to a safe state.
829 * The interrupt service routine is deregistered with the OS.
830 * The adapter can be opened again with another call to skfp_open().
831 *
832 * Return Codes:
833 * Always return 0.
834 *
835 * Assumptions:
836 * No further requests for this adapter are made after this routine is
837 * called. skfp_open() can be called to reset and reinitialize the
838 * adapter.
839 */
skfp_close(struct net_device * dev)840 static int skfp_close(struct net_device *dev)
841 {
842 struct s_smc *smc = (struct s_smc *) dev->priv;
843 struct sk_buff *skb;
844 skfddi_priv *bp = PRIV(dev);
845
846 CLI_FBI();
847 smt_reset_defaults(smc, 1);
848 card_stop(smc);
849 mac_drv_clear_tx_queue(smc);
850 mac_drv_clear_rx_queue(smc);
851
852 netif_stop_queue(dev);
853 /* Deregister (free) IRQ */
854 free_irq(dev->irq, dev);
855
856 for (;;) {
857 skb = skb_dequeue(&bp->SendSkbQueue);
858 if (skb == NULL)
859 break;
860 bp->QueueSkb++;
861 dev_kfree_skb(skb);
862 }
863
864 MOD_DEC_USE_COUNT;
865
866 return (0);
867 } // skfp_close
868
869
870 /*
871 * ==================
872 * = skfp_interrupt =
873 * ==================
874 *
875 * Overview:
876 * Interrupt processing routine
877 *
878 * Returns:
879 * None
880 *
881 * Arguments:
882 * irq - interrupt vector
883 * dev_id - pointer to device information
884 * regs - pointer to registers structure
885 *
886 * Functional Description:
887 * This routine calls the interrupt processing routine for this adapter. It
888 * disables and reenables adapter interrupts, as appropriate. We can support
889 * shared interrupts since the incoming dev_id pointer provides our device
890 * structure context. All the real work is done in the hardware module.
891 *
892 * Return Codes:
893 * None
894 *
895 * Assumptions:
896 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
897 * on Intel-based systems) is done by the operating system outside this
898 * routine.
899 *
900 * System interrupts are enabled through this call.
901 *
902 * Side Effects:
903 * Interrupts are disabled, then reenabled at the adapter.
904 */
905
skfp_interrupt(int irq,void * dev_id,struct pt_regs * regs)906 void skfp_interrupt(int irq, void *dev_id, struct pt_regs *regs)
907 {
908 struct net_device *dev = (struct net_device *) dev_id;
909 struct s_smc *smc; /* private board structure pointer */
910 skfddi_priv *bp = PRIV(dev);
911
912
913 if (dev == NULL) {
914 printk("%s: irq %d for unknown device\n", dev->name, irq);
915 return;
916 }
917
918 smc = (struct s_smc *) dev->priv;
919
920 // IRQs enabled or disabled ?
921 if (inpd(ADDR(B0_IMSK)) == 0) {
922 // IRQs are disabled: must be shared interrupt
923 return;
924 }
925 // Note: At this point, IRQs are enabled.
926 if ((inpd(ISR_A) & smc->hw.is_imask) == 0) { // IRQ?
927 // Adapter did not issue an IRQ: must be shared interrupt
928 return;
929 }
930 CLI_FBI(); // Disable IRQs from our adapter.
931 spin_lock(&bp->DriverLock);
932
933 // Call interrupt handler in hardware module (HWM).
934 fddi_isr(smc);
935
936 if (smc->os.ResetRequested) {
937 ResetAdapter(smc);
938 smc->os.ResetRequested = FALSE;
939 }
940 spin_unlock(&bp->DriverLock);
941 STI_FBI(); // Enable IRQs from our adapter.
942
943 return;
944 } // skfp_interrupt
945
946
947 /*
948 * ======================
949 * = skfp_ctl_get_stats =
950 * ======================
951 *
952 * Overview:
953 * Get statistics for FDDI adapter
954 *
955 * Returns:
956 * Pointer to FDDI statistics structure
957 *
958 * Arguments:
959 * dev - pointer to device information
960 *
961 * Functional Description:
962 * Gets current MIB objects from adapter, then
963 * returns FDDI statistics structure as defined
964 * in if_fddi.h.
965 *
966 * Note: Since the FDDI statistics structure is
967 * still new and the device structure doesn't
968 * have an FDDI-specific get statistics handler,
969 * we'll return the FDDI statistics structure as
970 * a pointer to an Ethernet statistics structure.
971 * That way, at least the first part of the statistics
972 * structure can be decoded properly.
973 * We'll have to pay attention to this routine as the
974 * device structure becomes more mature and LAN media
975 * independent.
976 *
977 */
skfp_ctl_get_stats(struct net_device * dev)978 struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
979 {
980 struct s_smc *bp = (struct s_smc *) dev->priv;
981
982 /* Fill the bp->stats structure with driver-maintained counters */
983
984 bp->os.MacStat.port_bs_flag[0] = 0x1234;
985 bp->os.MacStat.port_bs_flag[1] = 0x5678;
986 // goos: need to fill out fddi statistic
987 #if 0
988 /* Get FDDI SMT MIB objects */
989
990 /* Fill the bp->stats structure with the SMT MIB object values */
991
992 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
993 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
994 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
995 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
996 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
997 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
998 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
999 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
1000 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
1001 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
1002 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
1003 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
1004 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
1005 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
1006 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
1007 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
1008 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
1009 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
1010 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
1011 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
1012 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
1013 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
1014 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
1015 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
1016 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
1017 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
1018 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
1019 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
1020 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
1021 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
1022 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
1023 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
1024 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
1025 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
1026 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
1027 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
1028 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
1029 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
1030 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
1031 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
1032 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
1033 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
1034 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
1035 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
1036 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
1037 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
1038 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
1039 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
1040 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
1041 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
1042 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
1043 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
1044 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
1045 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
1046 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
1047 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
1048 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
1049 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
1050 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
1051 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
1052 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
1053 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
1054 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
1055 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
1056 memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
1057 memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
1058 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
1059 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
1060 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
1061 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
1062 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
1063 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
1064 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
1065 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
1066 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
1067 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
1068 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
1069 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
1070 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
1071 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
1072 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
1073 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
1074 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
1075 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
1076 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
1077 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
1078 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
1079 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
1080 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
1081 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
1082 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
1083 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
1084
1085
1086 /* Fill the bp->stats structure with the FDDI counter values */
1087
1088 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
1089 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
1090 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
1091 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
1092 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
1093 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
1094 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
1095 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
1096 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
1097 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
1098 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
1099
1100 #endif
1101 return ((struct net_device_stats *) &bp->os.MacStat);
1102 } // ctl_get_stat
1103
1104
1105 /*
1106 * ==============================
1107 * = skfp_ctl_set_multicast_list =
1108 * ==============================
1109 *
1110 * Overview:
1111 * Enable/Disable LLC frame promiscuous mode reception
1112 * on the adapter and/or update multicast address table.
1113 *
1114 * Returns:
1115 * None
1116 *
1117 * Arguments:
1118 * dev - pointer to device information
1119 *
1120 * Functional Description:
1121 * This function acquires the driver lock and only calls
1122 * skfp_ctl_set_multicast_list_wo_lock then.
1123 * This routine follows a fairly simple algorithm for setting the
1124 * adapter filters and CAM:
1125 *
1126 * if IFF_PROMISC flag is set
1127 * enable promiscuous mode
1128 * else
1129 * disable promiscuous mode
1130 * if number of multicast addresses <= max. multicast number
1131 * add mc addresses to adapter table
1132 * else
1133 * enable promiscuous mode
1134 * update adapter filters
1135 *
1136 * Assumptions:
1137 * Multicast addresses are presented in canonical (LSB) format.
1138 *
1139 * Side Effects:
1140 * On-board adapter filters are updated.
1141 */
skfp_ctl_set_multicast_list(struct net_device * dev)1142 static void skfp_ctl_set_multicast_list(struct net_device *dev)
1143 {
1144 skfddi_priv *bp = PRIV(dev);
1145 unsigned long Flags;
1146
1147 spin_lock_irqsave(&bp->DriverLock, Flags);
1148 skfp_ctl_set_multicast_list_wo_lock(dev);
1149 spin_unlock_irqrestore(&bp->DriverLock, Flags);
1150 return;
1151 } // skfp_ctl_set_multicast_list
1152
1153
1154
skfp_ctl_set_multicast_list_wo_lock(struct net_device * dev)1155 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
1156 {
1157 struct s_smc *smc = (struct s_smc *) dev->priv;
1158 struct dev_mc_list *dmi; /* ptr to multicast addr entry */
1159 int i;
1160
1161 /* Enable promiscuous mode, if necessary */
1162 if (dev->flags & IFF_PROMISC) {
1163 mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
1164 PRINTK(KERN_INFO "PROMISCUOUS MODE ENABLED\n");
1165 }
1166 /* Else, update multicast address table */
1167 else {
1168 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
1169 PRINTK(KERN_INFO "PROMISCUOUS MODE DISABLED\n");
1170
1171 // Reset all MC addresses
1172 mac_clear_multicast(smc);
1173 mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
1174
1175 if (dev->flags & IFF_ALLMULTI) {
1176 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
1177 PRINTK(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
1178 } else if (dev->mc_count > 0) {
1179 if (dev->mc_count <= FPMAX_MULTICAST) {
1180 /* use exact filtering */
1181
1182 // point to first multicast addr
1183 dmi = dev->mc_list;
1184
1185 for (i = 0; i < dev->mc_count; i++) {
1186 mac_add_multicast(smc,
1187 dmi->dmi_addr, 1);
1188 PRINTK(KERN_INFO "ENABLE MC ADDRESS:");
1189 PRINTK(" %02x %02x %02x ",
1190 dmi->dmi_addr[0],
1191 dmi->dmi_addr[1],
1192 dmi->dmi_addr[2]);
1193 PRINTK("%02x %02x %02x\n",
1194 dmi->dmi_addr[3],
1195 dmi->dmi_addr[4],
1196 dmi->dmi_addr[5]);
1197 dmi = dmi->next;
1198 } // for
1199
1200 } else { // more MC addresses than HW supports
1201
1202 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
1203 PRINTK(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
1204 }
1205 } else { // no MC addresses
1206
1207 PRINTK(KERN_INFO "DISABLE ALL MC ADDRESSES\n");
1208 }
1209
1210 /* Update adapter filters */
1211 mac_update_multicast(smc);
1212 }
1213 return;
1214 } // skfp_ctl_set_multicast_list_wo_lock
1215
1216
1217 /*
1218 * ===========================
1219 * = skfp_ctl_set_mac_address =
1220 * ===========================
1221 *
1222 * Overview:
1223 * set new mac address on adapter and update dev_addr field in device table.
1224 *
1225 * Returns:
1226 * None
1227 *
1228 * Arguments:
1229 * dev - pointer to device information
1230 * addr - pointer to sockaddr structure containing unicast address to set
1231 *
1232 * Assumptions:
1233 * The address pointed to by addr->sa_data is a valid unicast
1234 * address and is presented in canonical (LSB) format.
1235 */
skfp_ctl_set_mac_address(struct net_device * dev,void * addr)1236 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
1237 {
1238 struct s_smc *smc = (struct s_smc *) dev->priv;
1239 struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
1240 skfddi_priv *bp = (skfddi_priv *) & smc->os;
1241 unsigned long Flags;
1242
1243
1244 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
1245 spin_lock_irqsave(&bp->DriverLock, Flags);
1246 ResetAdapter(smc);
1247 spin_unlock_irqrestore(&bp->DriverLock, Flags);
1248
1249 return (0); /* always return zero */
1250 } // skfp_ctl_set_mac_address
1251
1252
1253 /*
1254 * ==============
1255 * = skfp_ioctl =
1256 * ==============
1257 *
1258 * Overview:
1259 *
1260 * Perform IOCTL call functions here. Some are privileged operations and the
1261 * effective uid is checked in those cases.
1262 *
1263 * Returns:
1264 * status value
1265 * 0 - success
1266 * other - failure
1267 *
1268 * Arguments:
1269 * dev - pointer to device information
1270 * rq - pointer to ioctl request structure
1271 * cmd - ?
1272 *
1273 */
1274
1275
skfp_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1276 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1277 {
1278 skfddi_priv *lp = PRIV(dev);
1279 struct s_skfp_ioctl ioc;
1280 int status = 0;
1281
1282 copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl));
1283 switch (ioc.cmd) {
1284 case SKFP_GET_STATS: /* Get the driver statistics */
1285 ioc.len = sizeof(lp->MacStat);
1286 copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len);
1287 break;
1288 case SKFP_CLR_STATS: /* Zero out the driver statistics */
1289 if (!capable(CAP_NET_ADMIN)) {
1290 memset(&lp->MacStat, 0, sizeof(lp->MacStat));
1291 } else {
1292 status = -EPERM;
1293 }
1294 break;
1295 default:
1296 printk("ioctl for %s: unknow cmd: %04x\n", dev->name, ioc.cmd);
1297 } // switch
1298
1299 return status;
1300 } // skfp_ioctl
1301
1302
1303 /*
1304 * =====================
1305 * = skfp_send_pkt =
1306 * =====================
1307 *
1308 * Overview:
1309 * Queues a packet for transmission and try to transmit it.
1310 *
1311 * Returns:
1312 * Condition code
1313 *
1314 * Arguments:
1315 * skb - pointer to sk_buff to queue for transmission
1316 * dev - pointer to device information
1317 *
1318 * Functional Description:
1319 * Here we assume that an incoming skb transmit request
1320 * is contained in a single physically contiguous buffer
1321 * in which the virtual address of the start of packet
1322 * (skb->data) can be converted to a physical address
1323 * by using pci_map_single().
1324 *
1325 * We have an internal queue for packets we can not send
1326 * immediately. Packets in this queue can be given to the
1327 * adapter if transmit buffers are freed.
1328 *
1329 * We can't free the skb until after it's been DMA'd
1330 * out by the adapter, so we'll keep it in the driver and
1331 * return it in mac_drv_tx_complete.
1332 *
1333 * Return Codes:
1334 * 0 - driver has queued and/or sent packet
1335 * 1 - caller should requeue the sk_buff for later transmission
1336 *
1337 * Assumptions:
1338 * The entire packet is stored in one physically
1339 * contiguous buffer which is not cached and whose
1340 * 32-bit physical address can be determined.
1341 *
1342 * It's vital that this routine is NOT reentered for the
1343 * same board and that the OS is not in another section of
1344 * code (eg. skfp_interrupt) for the same board on a
1345 * different thread.
1346 *
1347 * Side Effects:
1348 * None
1349 */
skfp_send_pkt(struct sk_buff * skb,struct net_device * dev)1350 static int skfp_send_pkt(struct sk_buff *skb, struct net_device *dev)
1351 {
1352 skfddi_priv *bp = PRIV(dev);
1353
1354 PRINTK(KERN_INFO "skfp_send_pkt\n");
1355
1356 /*
1357 * Verify that incoming transmit request is OK
1358 *
1359 * Note: The packet size check is consistent with other
1360 * Linux device drivers, although the correct packet
1361 * size should be verified before calling the
1362 * transmit routine.
1363 */
1364
1365 if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1366 bp->MacStat.gen.tx_errors++; /* bump error counter */
1367 // dequeue packets from xmt queue and send them
1368 netif_start_queue(dev);
1369 dev_kfree_skb(skb);
1370 return (0); /* return "success" */
1371 }
1372 if (bp->QueueSkb == 0) { // return with tbusy set: queue full
1373
1374 netif_stop_queue(dev);
1375 return 1;
1376 }
1377 bp->QueueSkb--;
1378 skb_queue_tail(&bp->SendSkbQueue, skb);
1379 send_queued_packets((struct s_smc *) dev->priv);
1380 if (bp->QueueSkb == 0) {
1381 netif_stop_queue(dev);
1382 }
1383 dev->trans_start = jiffies;
1384 return 0;
1385
1386 } // skfp_send_pkt
1387
1388
1389 /*
1390 * =======================
1391 * = send_queued_packets =
1392 * =======================
1393 *
1394 * Overview:
1395 * Send packets from the driver queue as long as there are some and
1396 * transmit resources are available.
1397 *
1398 * Returns:
1399 * None
1400 *
1401 * Arguments:
1402 * smc - pointer to smc (adapter) structure
1403 *
1404 * Functional Description:
1405 * Take a packet from queue if there is any. If not, then we are done.
1406 * Check if there are resources to send the packet. If not, requeue it
1407 * and exit.
1408 * Set packet descriptor flags and give packet to adapter.
1409 * Check if any send resources can be freed (we do not use the
1410 * transmit complete interrupt).
1411 */
send_queued_packets(struct s_smc * smc)1412 static void send_queued_packets(struct s_smc *smc)
1413 {
1414 skfddi_priv *bp = (skfddi_priv *) & smc->os;
1415 struct sk_buff *skb;
1416 unsigned char fc;
1417 int queue;
1418 struct s_smt_fp_txd *txd; // Current TxD.
1419 dma_addr_t dma_address;
1420 unsigned long Flags;
1421
1422 int frame_status; // HWM tx frame status.
1423
1424 PRINTK(KERN_INFO "send queued packets\n");
1425 for (;;) {
1426 // send first buffer from queue
1427 skb = skb_dequeue(&bp->SendSkbQueue);
1428
1429 if (!skb) {
1430 PRINTK(KERN_INFO "queue empty\n");
1431 return;
1432 } // queue empty !
1433
1434 spin_lock_irqsave(&bp->DriverLock, Flags);
1435 fc = skb->data[0];
1436 queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1437 #ifdef ESS
1438 // Check if the frame may/must be sent as a synchronous frame.
1439
1440 if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1441 // It's an LLC frame.
1442 if (!smc->ess.sync_bw_available)
1443 fc &= ~FC_SYNC_BIT; // No bandwidth available.
1444
1445 else { // Bandwidth is available.
1446
1447 if (smc->mib.fddiESSSynchTxMode) {
1448 // Send as sync. frame.
1449 fc |= FC_SYNC_BIT;
1450 }
1451 }
1452 }
1453 #endif // ESS
1454 frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1455
1456 if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1457 // Unable to send the frame.
1458
1459 if ((frame_status & RING_DOWN) != 0) {
1460 // Ring is down.
1461 PRINTK("Tx attempt while ring down.\n");
1462 } else if ((frame_status & OUT_OF_TXD) != 0) {
1463 PRINTK("%s: out of TXDs.\n", bp->dev->name);
1464 } else {
1465 PRINTK("%s: out of transmit resources",
1466 bp->dev->name);
1467 }
1468
1469 // Note: We will retry the operation as soon as
1470 // transmit resources become available.
1471 skb_queue_head(&bp->SendSkbQueue, skb);
1472 spin_unlock_irqrestore(&bp->DriverLock, Flags);
1473 return; // Packet has been queued.
1474
1475 } // if (unable to send frame)
1476
1477 bp->QueueSkb++; // one packet less in local queue
1478
1479 // source address in packet ?
1480 CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1481
1482 txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1483
1484 dma_address = pci_map_single(&bp->pdev, skb->data,
1485 skb->len, PCI_DMA_TODEVICE);
1486 if (frame_status & LAN_TX) {
1487 txd->txd_os.skb = skb; // save skb
1488 txd->txd_os.dma_addr = dma_address; // save dma mapping
1489 }
1490 hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1491 frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1492
1493 if (!(frame_status & LAN_TX)) { // local only frame
1494 pci_unmap_single(&bp->pdev, dma_address,
1495 skb->len, PCI_DMA_TODEVICE);
1496 dev_kfree_skb_irq(skb);
1497 }
1498 spin_unlock_irqrestore(&bp->DriverLock, Flags);
1499 } // for
1500
1501 return; // never reached
1502
1503 } // send_queued_packets
1504
1505
1506 /************************
1507 *
1508 * CheckSourceAddress
1509 *
1510 * Verify if the source address is set. Insert it if necessary.
1511 *
1512 ************************/
CheckSourceAddress(unsigned char * frame,unsigned char * hw_addr)1513 void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1514 {
1515 unsigned char SRBit;
1516
1517 if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1518
1519 return;
1520 if ((unsigned short) frame[1 + 10] != 0)
1521 return;
1522 SRBit = frame[1 + 6] & 0x01;
1523 memcpy(&frame[1 + 6], hw_addr, 6);
1524 frame[8] |= SRBit;
1525 } // CheckSourceAddress
1526
1527
1528 /************************
1529 *
1530 * ResetAdapter
1531 *
1532 * Reset the adapter and bring it back to operational mode.
1533 * Args
1534 * smc - A pointer to the SMT context struct.
1535 * Out
1536 * Nothing.
1537 *
1538 ************************/
ResetAdapter(struct s_smc * smc)1539 static void ResetAdapter(struct s_smc *smc)
1540 {
1541
1542 PRINTK(KERN_INFO "[fddi: ResetAdapter]\n");
1543
1544 // Stop the adapter.
1545
1546 card_stop(smc); // Stop all activity.
1547
1548 // Clear the transmit and receive descriptor queues.
1549 mac_drv_clear_tx_queue(smc);
1550 mac_drv_clear_rx_queue(smc);
1551
1552 // Restart the adapter.
1553
1554 smt_reset_defaults(smc, 1); // Initialize the SMT module.
1555
1556 init_smt(smc, (smc->os.dev)->dev_addr); // Initialize the hardware.
1557
1558 smt_online(smc, 1); // Insert into the ring again.
1559 STI_FBI();
1560
1561 // Restore original receive mode (multicasts, promiscuous, etc.).
1562 skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1563 } // ResetAdapter
1564
1565
1566 //--------------- functions called by hardware module ----------------
1567
1568 /************************
1569 *
1570 * llc_restart_tx
1571 *
1572 * The hardware driver calls this routine when the transmit complete
1573 * interrupt bits (end of frame) for the synchronous or asynchronous
1574 * queue is set.
1575 *
1576 * NOTE The hardware driver calls this function also if no packets are queued.
1577 * The routine must be able to handle this case.
1578 * Args
1579 * smc - A pointer to the SMT context struct.
1580 * Out
1581 * Nothing.
1582 *
1583 ************************/
llc_restart_tx(struct s_smc * smc)1584 void llc_restart_tx(struct s_smc *smc)
1585 {
1586 skfddi_priv *bp = (skfddi_priv *) & smc->os;
1587
1588 PRINTK(KERN_INFO "[llc_restart_tx]\n");
1589
1590 // Try to send queued packets
1591 spin_unlock(&bp->DriverLock);
1592 send_queued_packets(smc);
1593 spin_lock(&bp->DriverLock);
1594 netif_start_queue(bp->dev);// system may send again if it was blocked
1595
1596 } // llc_restart_tx
1597
1598
1599 /************************
1600 *
1601 * mac_drv_get_space
1602 *
1603 * The hardware module calls this function to allocate the memory
1604 * for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1605 * Args
1606 * smc - A pointer to the SMT context struct.
1607 *
1608 * size - Size of memory in bytes to allocate.
1609 * Out
1610 * != 0 A pointer to the virtual address of the allocated memory.
1611 * == 0 Allocation error.
1612 *
1613 ************************/
mac_drv_get_space(struct s_smc * smc,unsigned int size)1614 void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1615 {
1616 void *virt;
1617
1618 PRINTK(KERN_INFO "mac_drv_get_space (%d bytes), ", size);
1619 virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1620
1621 if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1622 printk("Unexpected SMT memory size requested: %d\n", size);
1623 return (NULL);
1624 }
1625 smc->os.SharedMemHeap += size; // Move heap pointer.
1626
1627 PRINTK(KERN_INFO "mac_drv_get_space end\n");
1628 PRINTK(KERN_INFO "virt addr: %lx\n", (ulong) virt);
1629 PRINTK(KERN_INFO "bus addr: %lx\n", (ulong)
1630 (smc->os.SharedMemDMA +
1631 ((char *) virt - (char *)smc->os.SharedMemAddr)));
1632 return (virt);
1633 } // mac_drv_get_space
1634
1635
1636 /************************
1637 *
1638 * mac_drv_get_desc_mem
1639 *
1640 * This function is called by the hardware dependent module.
1641 * It allocates the memory for the RxD and TxD descriptors.
1642 *
1643 * This memory must be non-cached, non-movable and non-swappable.
1644 * This memory should start at a physical page boundary.
1645 * Args
1646 * smc - A pointer to the SMT context struct.
1647 *
1648 * size - Size of memory in bytes to allocate.
1649 * Out
1650 * != 0 A pointer to the virtual address of the allocated memory.
1651 * == 0 Allocation error.
1652 *
1653 ************************/
mac_drv_get_desc_mem(struct s_smc * smc,unsigned int size)1654 void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1655 {
1656
1657 char *virt;
1658
1659 PRINTK(KERN_INFO "mac_drv_get_desc_mem\n");
1660
1661 // Descriptor memory must be aligned on 16-byte boundary.
1662
1663 virt = mac_drv_get_space(smc, size);
1664
1665 size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1666 size = size % 16;
1667
1668 PRINTK("Allocate %u bytes alignment gap ", size);
1669 PRINTK("for descriptor memory.\n");
1670
1671 if (!mac_drv_get_space(smc, size)) {
1672 printk("fddi: Unable to align descriptor memory.\n");
1673 return (NULL);
1674 }
1675 return (virt + size);
1676 } // mac_drv_get_desc_mem
1677
1678
1679 /************************
1680 *
1681 * mac_drv_virt2phys
1682 *
1683 * Get the physical address of a given virtual address.
1684 * Args
1685 * smc - A pointer to the SMT context struct.
1686 *
1687 * virt - A (virtual) pointer into our 'shared' memory area.
1688 * Out
1689 * Physical address of the given virtual address.
1690 *
1691 ************************/
mac_drv_virt2phys(struct s_smc * smc,void * virt)1692 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1693 {
1694 return (smc->os.SharedMemDMA +
1695 ((char *) virt - (char *)smc->os.SharedMemAddr));
1696 } // mac_drv_virt2phys
1697
1698
1699 /************************
1700 *
1701 * dma_master
1702 *
1703 * The HWM calls this function, when the driver leads through a DMA
1704 * transfer. If the OS-specific module must prepare the system hardware
1705 * for the DMA transfer, it should do it in this function.
1706 *
1707 * The hardware module calls this dma_master if it wants to send an SMT
1708 * frame. This means that the virt address passed in here is part of
1709 * the 'shared' memory area.
1710 * Args
1711 * smc - A pointer to the SMT context struct.
1712 *
1713 * virt - The virtual address of the data.
1714 *
1715 * len - The length in bytes of the data.
1716 *
1717 * flag - Indicates the transmit direction and the buffer type:
1718 * DMA_RD (0x01) system RAM ==> adapter buffer memory
1719 * DMA_WR (0x02) adapter buffer memory ==> system RAM
1720 * SMT_BUF (0x80) SMT buffer
1721 *
1722 * >> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1723 * Out
1724 * Returns the pyhsical address for the DMA transfer.
1725 *
1726 ************************/
dma_master(struct s_smc * smc,void * virt,int len,int flag)1727 u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1728 {
1729 return (smc->os.SharedMemDMA +
1730 ((char *) virt - (char *)smc->os.SharedMemAddr));
1731 } // dma_master
1732
1733
1734 /************************
1735 *
1736 * dma_complete
1737 *
1738 * The hardware module calls this routine when it has completed a DMA
1739 * transfer. If the operating system dependant module has set up the DMA
1740 * channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1741 * the DMA channel.
1742 * Args
1743 * smc - A pointer to the SMT context struct.
1744 *
1745 * descr - A pointer to a TxD or RxD, respectively.
1746 *
1747 * flag - Indicates the DMA transfer direction / SMT buffer:
1748 * DMA_RD (0x01) system RAM ==> adapter buffer memory
1749 * DMA_WR (0x02) adapter buffer memory ==> system RAM
1750 * SMT_BUF (0x80) SMT buffer (managed by HWM)
1751 * Out
1752 * Nothing.
1753 *
1754 ************************/
dma_complete(struct s_smc * smc,volatile union s_fp_descr * descr,int flag)1755 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1756 {
1757 /* For TX buffers, there are two cases. If it is an SMT transmit
1758 * buffer, there is nothing to do since we use consistent memory
1759 * for the 'shared' memory area. The other case is for normal
1760 * transmit packets given to us by the networking stack, and in
1761 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1762 * below.
1763 *
1764 * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1765 * because the hardware module is about to potentially look at
1766 * the contents of the buffer. If we did not call the PCI DMA
1767 * unmap first, the hardware module could read inconsistent data.
1768 */
1769 if (flag & DMA_WR) {
1770 skfddi_priv *bp = (skfddi_priv *) & smc->os;
1771 volatile struct s_smt_fp_rxd *r = &descr->r;
1772
1773 /* If SKB is NULL, we used the local buffer. */
1774 if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1775 int MaxFrameSize = bp->MaxFrameSize;
1776
1777 pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
1778 MaxFrameSize, PCI_DMA_FROMDEVICE);
1779 r->rxd_os.dma_addr = 0;
1780 }
1781 }
1782 } // dma_complete
1783
1784
1785 /************************
1786 *
1787 * mac_drv_tx_complete
1788 *
1789 * Transmit of a packet is complete. Release the tx staging buffer.
1790 *
1791 * Args
1792 * smc - A pointer to the SMT context struct.
1793 *
1794 * txd - A pointer to the last TxD which is used by the frame.
1795 * Out
1796 * Returns nothing.
1797 *
1798 ************************/
mac_drv_tx_complete(struct s_smc * smc,volatile struct s_smt_fp_txd * txd)1799 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1800 {
1801 struct sk_buff *skb;
1802
1803 PRINTK(KERN_INFO "entering mac_drv_tx_complete\n");
1804 // Check if this TxD points to a skb
1805
1806 if (!(skb = txd->txd_os.skb)) {
1807 PRINTK("TXD with no skb assigned.\n");
1808 return;
1809 }
1810 txd->txd_os.skb = NULL;
1811
1812 // release the DMA mapping
1813 pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
1814 skb->len, PCI_DMA_TODEVICE);
1815 txd->txd_os.dma_addr = 0;
1816
1817 smc->os.MacStat.gen.tx_packets++; // Count transmitted packets.
1818 smc->os.MacStat.gen.tx_bytes+=skb->len; // Count bytes
1819
1820 // free the skb
1821 dev_kfree_skb_irq(skb);
1822
1823 PRINTK(KERN_INFO "leaving mac_drv_tx_complete\n");
1824 } // mac_drv_tx_complete
1825
1826
1827 /************************
1828 *
1829 * dump packets to logfile
1830 *
1831 ************************/
1832 #ifdef DUMPPACKETS
dump_data(unsigned char * Data,int length)1833 void dump_data(unsigned char *Data, int length)
1834 {
1835 int i, j;
1836 unsigned char s[255], sh[10];
1837 if (length > 64) {
1838 length = 64;
1839 }
1840 printk(KERN_INFO "---Packet start---\n");
1841 for (i = 0, j = 0; i < length / 8; i++, j += 8)
1842 printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n",
1843 Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3],
1844 Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]);
1845 strcpy(s, "");
1846 for (i = 0; i < length % 8; i++) {
1847 sprintf(sh, "%02x ", Data[j + i]);
1848 strcat(s, sh);
1849 }
1850 printk(KERN_INFO "%s\n", s);
1851 printk(KERN_INFO "------------------\n");
1852 } // dump_data
1853 #else
1854 #define dump_data(data,len)
1855 #endif // DUMPPACKETS
1856
1857 /************************
1858 *
1859 * mac_drv_rx_complete
1860 *
1861 * The hardware module calls this function if an LLC frame is received
1862 * in a receive buffer. Also the SMT, NSA, and directed beacon frames
1863 * from the network will be passed to the LLC layer by this function
1864 * if passing is enabled.
1865 *
1866 * mac_drv_rx_complete forwards the frame to the LLC layer if it should
1867 * be received. It also fills the RxD ring with new receive buffers if
1868 * some can be queued.
1869 * Args
1870 * smc - A pointer to the SMT context struct.
1871 *
1872 * rxd - A pointer to the first RxD which is used by the receive frame.
1873 *
1874 * frag_count - Count of RxDs used by the received frame.
1875 *
1876 * len - Frame length.
1877 * Out
1878 * Nothing.
1879 *
1880 ************************/
mac_drv_rx_complete(struct s_smc * smc,volatile struct s_smt_fp_rxd * rxd,int frag_count,int len)1881 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1882 int frag_count, int len)
1883 {
1884 skfddi_priv *bp = (skfddi_priv *) & smc->os;
1885 struct sk_buff *skb;
1886 unsigned char *virt, *cp;
1887 unsigned short ri;
1888 u_int RifLength;
1889
1890 PRINTK(KERN_INFO "entering mac_drv_rx_complete (len=%d)\n", len);
1891 if (frag_count != 1) { // This is not allowed to happen.
1892
1893 printk("fddi: Multi-fragment receive!\n");
1894 goto RequeueRxd; // Re-use the given RXD(s).
1895
1896 }
1897 skb = rxd->rxd_os.skb;
1898 if (!skb) {
1899 PRINTK(KERN_INFO "No skb in rxd\n");
1900 smc->os.MacStat.gen.rx_errors++;
1901 goto RequeueRxd;
1902 }
1903 virt = skb->data;
1904
1905 // The DMA mapping was released in dma_complete above.
1906
1907 dump_data(skb->data, len);
1908
1909 /*
1910 * FDDI Frame format:
1911 * +-------+-------+-------+------------+--------+------------+
1912 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1913 * +-------+-------+-------+------------+--------+------------+
1914 *
1915 * FC = Frame Control
1916 * DA = Destination Address
1917 * SA = Source Address
1918 * RIF = Routing Information Field
1919 * LLC = Logical Link Control
1920 */
1921
1922 // Remove Routing Information Field (RIF), if present.
1923
1924 if ((virt[1 + 6] & FDDI_RII) == 0)
1925 RifLength = 0;
1926 else {
1927 int n;
1928 // goos: RIF removal has still to be tested
1929 PRINTK(KERN_INFO "RIF found\n");
1930 // Get RIF length from Routing Control (RC) field.
1931 cp = virt + FDDI_MAC_HDR_LEN; // Point behind MAC header.
1932
1933 ri = ntohs(*((unsigned short *) cp));
1934 RifLength = ri & FDDI_RCF_LEN_MASK;
1935 if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1936 printk("fddi: Invalid RIF.\n");
1937 goto RequeueRxd; // Discard the frame.
1938
1939 }
1940 virt[1 + 6] &= ~FDDI_RII; // Clear RII bit.
1941 // regions overlap
1942
1943 virt = cp + RifLength;
1944 for (n = FDDI_MAC_HDR_LEN; n; n--)
1945 *--virt = *--cp;
1946 // adjust sbd->data pointer
1947 skb_pull(skb, RifLength);
1948 len -= RifLength;
1949 RifLength = 0;
1950 }
1951
1952 // Count statistics.
1953 smc->os.MacStat.gen.rx_packets++; // Count indicated receive
1954 // packets.
1955 smc->os.MacStat.gen.rx_bytes+=len; // Count bytes.
1956
1957 // virt points to header again
1958 if (virt[1] & 0x01) { // Check group (multicast) bit.
1959
1960 smc->os.MacStat.gen.multicast++;
1961 }
1962
1963 // deliver frame to system
1964 rxd->rxd_os.skb = NULL;
1965 skb_trim(skb, len);
1966 skb->protocol = fddi_type_trans(skb, bp->dev);
1967 skb->dev = bp->dev; /* pass up device pointer */
1968
1969 netif_rx(skb);
1970 bp->dev->last_rx = jiffies;
1971
1972 HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1973 return;
1974
1975 RequeueRxd:
1976 PRINTK(KERN_INFO "Rx: re-queue RXD.\n");
1977 mac_drv_requeue_rxd(smc, rxd, frag_count);
1978 smc->os.MacStat.gen.rx_errors++; // Count receive packets
1979 // not indicated.
1980
1981 } // mac_drv_rx_complete
1982
1983
1984 /************************
1985 *
1986 * mac_drv_requeue_rxd
1987 *
1988 * The hardware module calls this function to request the OS-specific
1989 * module to queue the receive buffer(s) represented by the pointer
1990 * to the RxD and the frag_count into the receive queue again. This
1991 * buffer was filled with an invalid frame or an SMT frame.
1992 * Args
1993 * smc - A pointer to the SMT context struct.
1994 *
1995 * rxd - A pointer to the first RxD which is used by the receive frame.
1996 *
1997 * frag_count - Count of RxDs used by the received frame.
1998 * Out
1999 * Nothing.
2000 *
2001 ************************/
mac_drv_requeue_rxd(struct s_smc * smc,volatile struct s_smt_fp_rxd * rxd,int frag_count)2002 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
2003 int frag_count)
2004 {
2005 volatile struct s_smt_fp_rxd *next_rxd;
2006 volatile struct s_smt_fp_rxd *src_rxd;
2007 struct sk_buff *skb;
2008 int MaxFrameSize;
2009 unsigned char *v_addr;
2010 dma_addr_t b_addr;
2011
2012 if (frag_count != 1) // This is not allowed to happen.
2013
2014 printk("fddi: Multi-fragment requeue!\n");
2015
2016 MaxFrameSize = ((skfddi_priv *) & smc->os)->MaxFrameSize;
2017 src_rxd = rxd;
2018 for (; frag_count > 0; frag_count--) {
2019 next_rxd = src_rxd->rxd_next;
2020 rxd = HWM_GET_CURR_RXD(smc);
2021
2022 skb = src_rxd->rxd_os.skb;
2023 if (skb == NULL) { // this should not happen
2024
2025 PRINTK("Requeue with no skb in rxd!\n");
2026 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
2027 if (skb) {
2028 // we got a skb
2029 rxd->rxd_os.skb = skb;
2030 skb_reserve(skb, 3);
2031 skb_put(skb, MaxFrameSize);
2032 v_addr = skb->data;
2033 b_addr = pci_map_single(&smc->os.pdev,
2034 v_addr,
2035 MaxFrameSize,
2036 PCI_DMA_FROMDEVICE);
2037 rxd->rxd_os.dma_addr = b_addr;
2038 } else {
2039 // no skb available, use local buffer
2040 PRINTK("Queueing invalid buffer!\n");
2041 rxd->rxd_os.skb = NULL;
2042 v_addr = smc->os.LocalRxBuffer;
2043 b_addr = smc->os.LocalRxBufferDMA;
2044 }
2045 } else {
2046 // we use skb from old rxd
2047 rxd->rxd_os.skb = skb;
2048 v_addr = skb->data;
2049 b_addr = pci_map_single(&smc->os.pdev,
2050 v_addr,
2051 MaxFrameSize,
2052 PCI_DMA_FROMDEVICE);
2053 rxd->rxd_os.dma_addr = b_addr;
2054 }
2055 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
2056 FIRST_FRAG | LAST_FRAG);
2057
2058 src_rxd = next_rxd;
2059 }
2060 } // mac_drv_requeue_rxd
2061
2062
2063 /************************
2064 *
2065 * mac_drv_fill_rxd
2066 *
2067 * The hardware module calls this function at initialization time
2068 * to fill the RxD ring with receive buffers. It is also called by
2069 * mac_drv_rx_complete if rx_free is large enough to queue some new
2070 * receive buffers into the RxD ring. mac_drv_fill_rxd queues new
2071 * receive buffers as long as enough RxDs and receive buffers are
2072 * available.
2073 * Args
2074 * smc - A pointer to the SMT context struct.
2075 * Out
2076 * Nothing.
2077 *
2078 ************************/
mac_drv_fill_rxd(struct s_smc * smc)2079 void mac_drv_fill_rxd(struct s_smc *smc)
2080 {
2081 int MaxFrameSize;
2082 unsigned char *v_addr;
2083 unsigned long b_addr;
2084 struct sk_buff *skb;
2085 volatile struct s_smt_fp_rxd *rxd;
2086
2087 PRINTK(KERN_INFO "entering mac_drv_fill_rxd\n");
2088
2089 // Walk through the list of free receive buffers, passing receive
2090 // buffers to the HWM as long as RXDs are available.
2091
2092 MaxFrameSize = ((skfddi_priv *) & smc->os)->MaxFrameSize;
2093 // Check if there is any RXD left.
2094 while (HWM_GET_RX_FREE(smc) > 0) {
2095 PRINTK(KERN_INFO ".\n");
2096
2097 rxd = HWM_GET_CURR_RXD(smc);
2098 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
2099 if (skb) {
2100 // we got a skb
2101 skb_reserve(skb, 3);
2102 skb_put(skb, MaxFrameSize);
2103 v_addr = skb->data;
2104 b_addr = pci_map_single(&smc->os.pdev,
2105 v_addr,
2106 MaxFrameSize,
2107 PCI_DMA_FROMDEVICE);
2108 rxd->rxd_os.dma_addr = b_addr;
2109 } else {
2110 // no skb available, use local buffer
2111 // System has run out of buffer memory, but we want to
2112 // keep the receiver running in hope of better times.
2113 // Multiple descriptors may point to this local buffer,
2114 // so data in it must be considered invalid.
2115 PRINTK("Queueing invalid buffer!\n");
2116 v_addr = smc->os.LocalRxBuffer;
2117 b_addr = smc->os.LocalRxBufferDMA;
2118 }
2119
2120 rxd->rxd_os.skb = skb;
2121
2122 // Pass receive buffer to HWM.
2123 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
2124 FIRST_FRAG | LAST_FRAG);
2125 }
2126 PRINTK(KERN_INFO "leaving mac_drv_fill_rxd\n");
2127 } // mac_drv_fill_rxd
2128
2129
2130 /************************
2131 *
2132 * mac_drv_clear_rxd
2133 *
2134 * The hardware module calls this function to release unused
2135 * receive buffers.
2136 * Args
2137 * smc - A pointer to the SMT context struct.
2138 *
2139 * rxd - A pointer to the first RxD which is used by the receive buffer.
2140 *
2141 * frag_count - Count of RxDs used by the receive buffer.
2142 * Out
2143 * Nothing.
2144 *
2145 ************************/
mac_drv_clear_rxd(struct s_smc * smc,volatile struct s_smt_fp_rxd * rxd,int frag_count)2146 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
2147 int frag_count)
2148 {
2149
2150 struct sk_buff *skb;
2151
2152 PRINTK("entering mac_drv_clear_rxd\n");
2153
2154 if (frag_count != 1) // This is not allowed to happen.
2155
2156 printk("fddi: Multi-fragment clear!\n");
2157
2158 for (; frag_count > 0; frag_count--) {
2159 skb = rxd->rxd_os.skb;
2160 if (skb != NULL) {
2161 skfddi_priv *bp = (skfddi_priv *) & smc->os;
2162 int MaxFrameSize = bp->MaxFrameSize;
2163
2164 pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
2165 MaxFrameSize, PCI_DMA_FROMDEVICE);
2166
2167 dev_kfree_skb(skb);
2168 rxd->rxd_os.skb = NULL;
2169 }
2170 rxd = rxd->rxd_next; // Next RXD.
2171
2172 }
2173 } // mac_drv_clear_rxd
2174
2175
2176 /************************
2177 *
2178 * mac_drv_rx_init
2179 *
2180 * The hardware module calls this routine when an SMT or NSA frame of the
2181 * local SMT should be delivered to the LLC layer.
2182 *
2183 * It is necessary to have this function, because there is no other way to
2184 * copy the contents of SMT MBufs into receive buffers.
2185 *
2186 * mac_drv_rx_init allocates the required target memory for this frame,
2187 * and receives the frame fragment by fragment by calling mac_drv_rx_frag.
2188 * Args
2189 * smc - A pointer to the SMT context struct.
2190 *
2191 * len - The length (in bytes) of the received frame (FC, DA, SA, Data).
2192 *
2193 * fc - The Frame Control field of the received frame.
2194 *
2195 * look_ahead - A pointer to the lookahead data buffer (may be NULL).
2196 *
2197 * la_len - The length of the lookahead data stored in the lookahead
2198 * buffer (may be zero).
2199 * Out
2200 * Always returns zero (0).
2201 *
2202 ************************/
mac_drv_rx_init(struct s_smc * smc,int len,int fc,char * look_ahead,int la_len)2203 int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
2204 char *look_ahead, int la_len)
2205 {
2206 struct sk_buff *skb;
2207
2208 PRINTK("entering mac_drv_rx_init(len=%d)\n", len);
2209
2210 // "Received" a SMT or NSA frame of the local SMT.
2211
2212 if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
2213 PRINTK("fddi: Discard invalid local SMT frame\n");
2214 PRINTK(" len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
2215 len, la_len, (unsigned long) look_ahead);
2216 return (0);
2217 }
2218 skb = alloc_skb(len + 3, GFP_ATOMIC);
2219 if (!skb) {
2220 PRINTK("fddi: Local SMT: skb memory exhausted.\n");
2221 return (0);
2222 }
2223 skb_reserve(skb, 3);
2224 skb_put(skb, len);
2225 memcpy(skb->data, look_ahead, len);
2226
2227 // deliver frame to system
2228 skb->protocol = fddi_type_trans(skb, ((skfddi_priv *) & smc->os)->dev);
2229 skb->dev->last_rx = jiffies;
2230 netif_rx(skb);
2231
2232 return (0);
2233 } // mac_drv_rx_init
2234
2235
2236 /************************
2237 *
2238 * smt_timer_poll
2239 *
2240 * This routine is called periodically by the SMT module to clean up the
2241 * driver.
2242 *
2243 * Return any queued frames back to the upper protocol layers if the ring
2244 * is down.
2245 * Args
2246 * smc - A pointer to the SMT context struct.
2247 * Out
2248 * Nothing.
2249 *
2250 ************************/
smt_timer_poll(struct s_smc * smc)2251 void smt_timer_poll(struct s_smc *smc)
2252 {
2253 } // smt_timer_poll
2254
2255
2256 /************************
2257 *
2258 * ring_status_indication
2259 *
2260 * This function indicates a change of the ring state.
2261 * Args
2262 * smc - A pointer to the SMT context struct.
2263 *
2264 * status - The current ring status.
2265 * Out
2266 * Nothing.
2267 *
2268 ************************/
ring_status_indication(struct s_smc * smc,u_long status)2269 void ring_status_indication(struct s_smc *smc, u_long status)
2270 {
2271 PRINTK("ring_status_indication( ");
2272 if (status & RS_RES15)
2273 PRINTK("RS_RES15 ");
2274 if (status & RS_HARDERROR)
2275 PRINTK("RS_HARDERROR ");
2276 if (status & RS_SOFTERROR)
2277 PRINTK("RS_SOFTERROR ");
2278 if (status & RS_BEACON)
2279 PRINTK("RS_BEACON ");
2280 if (status & RS_PATHTEST)
2281 PRINTK("RS_PATHTEST ");
2282 if (status & RS_SELFTEST)
2283 PRINTK("RS_SELFTEST ");
2284 if (status & RS_RES9)
2285 PRINTK("RS_RES9 ");
2286 if (status & RS_DISCONNECT)
2287 PRINTK("RS_DISCONNECT ");
2288 if (status & RS_RES7)
2289 PRINTK("RS_RES7 ");
2290 if (status & RS_DUPADDR)
2291 PRINTK("RS_DUPADDR ");
2292 if (status & RS_NORINGOP)
2293 PRINTK("RS_NORINGOP ");
2294 if (status & RS_VERSION)
2295 PRINTK("RS_VERSION ");
2296 if (status & RS_STUCKBYPASSS)
2297 PRINTK("RS_STUCKBYPASSS ");
2298 if (status & RS_EVENT)
2299 PRINTK("RS_EVENT ");
2300 if (status & RS_RINGOPCHANGE)
2301 PRINTK("RS_RINGOPCHANGE ");
2302 if (status & RS_RES0)
2303 PRINTK("RS_RES0 ");
2304 PRINTK("]\n");
2305 } // ring_status_indication
2306
2307
2308 /************************
2309 *
2310 * smt_get_time
2311 *
2312 * Gets the current time from the system.
2313 * Args
2314 * None.
2315 * Out
2316 * The current time in TICKS_PER_SECOND.
2317 *
2318 * TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
2319 * defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
2320 * to the time returned by smt_get_time().
2321 *
2322 ************************/
smt_get_time(void)2323 unsigned long smt_get_time(void)
2324 {
2325 return jiffies;
2326 } // smt_get_time
2327
2328
2329 /************************
2330 *
2331 * smt_stat_counter
2332 *
2333 * Status counter update (ring_op, fifo full).
2334 * Args
2335 * smc - A pointer to the SMT context struct.
2336 *
2337 * stat - = 0: A ring operational change occurred.
2338 * = 1: The FORMAC FIFO buffer is full / FIFO overflow.
2339 * Out
2340 * Nothing.
2341 *
2342 ************************/
smt_stat_counter(struct s_smc * smc,int stat)2343 void smt_stat_counter(struct s_smc *smc, int stat)
2344 {
2345 // BOOLEAN RingIsUp ;
2346
2347 PRINTK(KERN_INFO "smt_stat_counter\n");
2348 switch (stat) {
2349 case 0:
2350 PRINTK(KERN_INFO "Ring operational change.\n");
2351 break;
2352 case 1:
2353 PRINTK(KERN_INFO "Receive fifo overflow.\n");
2354 smc->os.MacStat.gen.rx_errors++;
2355 break;
2356 default:
2357 PRINTK(KERN_INFO "Unknown status (%d).\n", stat);
2358 break;
2359 }
2360 } // smt_stat_counter
2361
2362
2363 /************************
2364 *
2365 * cfm_state_change
2366 *
2367 * Sets CFM state in custom statistics.
2368 * Args
2369 * smc - A pointer to the SMT context struct.
2370 *
2371 * c_state - Possible values are:
2372 *
2373 * EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2374 * EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2375 * Out
2376 * Nothing.
2377 *
2378 ************************/
cfm_state_change(struct s_smc * smc,int c_state)2379 void cfm_state_change(struct s_smc *smc, int c_state)
2380 {
2381 #ifdef DRIVERDEBUG
2382 char *s;
2383
2384 switch (c_state) {
2385 case SC0_ISOLATED:
2386 s = "SC0_ISOLATED";
2387 break;
2388 case SC1_WRAP_A:
2389 s = "SC1_WRAP_A";
2390 break;
2391 case SC2_WRAP_B:
2392 s = "SC2_WRAP_B";
2393 break;
2394 case SC4_THRU_A:
2395 s = "SC4_THRU_A";
2396 break;
2397 case SC5_THRU_B:
2398 s = "SC5_THRU_B";
2399 break;
2400 case SC7_WRAP_S:
2401 s = "SC7_WRAP_S";
2402 break;
2403 case SC9_C_WRAP_A:
2404 s = "SC9_C_WRAP_A";
2405 break;
2406 case SC10_C_WRAP_B:
2407 s = "SC10_C_WRAP_B";
2408 break;
2409 case SC11_C_WRAP_S:
2410 s = "SC11_C_WRAP_S";
2411 break;
2412 default:
2413 PRINTK(KERN_INFO "cfm_state_change: unknown %d\n", c_state);
2414 return;
2415 }
2416 PRINTK(KERN_INFO "cfm_state_change: %s\n", s);
2417 #endif // DRIVERDEBUG
2418 } // cfm_state_change
2419
2420
2421 /************************
2422 *
2423 * ecm_state_change
2424 *
2425 * Sets ECM state in custom statistics.
2426 * Args
2427 * smc - A pointer to the SMT context struct.
2428 *
2429 * e_state - Possible values are:
2430 *
2431 * SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2432 * SC5_THRU_B (7), SC7_WRAP_S (8)
2433 * Out
2434 * Nothing.
2435 *
2436 ************************/
ecm_state_change(struct s_smc * smc,int e_state)2437 void ecm_state_change(struct s_smc *smc, int e_state)
2438 {
2439 #ifdef DRIVERDEBUG
2440 char *s;
2441
2442 switch (e_state) {
2443 case EC0_OUT:
2444 s = "EC0_OUT";
2445 break;
2446 case EC1_IN:
2447 s = "EC1_IN";
2448 break;
2449 case EC2_TRACE:
2450 s = "EC2_TRACE";
2451 break;
2452 case EC3_LEAVE:
2453 s = "EC3_LEAVE";
2454 break;
2455 case EC4_PATH_TEST:
2456 s = "EC4_PATH_TEST";
2457 break;
2458 case EC5_INSERT:
2459 s = "EC5_INSERT";
2460 break;
2461 case EC6_CHECK:
2462 s = "EC6_CHECK";
2463 break;
2464 case EC7_DEINSERT:
2465 s = "EC7_DEINSERT";
2466 break;
2467 default:
2468 s = "unknown";
2469 break;
2470 }
2471 PRINTK(KERN_INFO "ecm_state_change: %s\n", s);
2472 #endif //DRIVERDEBUG
2473 } // ecm_state_change
2474
2475
2476 /************************
2477 *
2478 * rmt_state_change
2479 *
2480 * Sets RMT state in custom statistics.
2481 * Args
2482 * smc - A pointer to the SMT context struct.
2483 *
2484 * r_state - Possible values are:
2485 *
2486 * RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2487 * RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2488 * Out
2489 * Nothing.
2490 *
2491 ************************/
rmt_state_change(struct s_smc * smc,int r_state)2492 void rmt_state_change(struct s_smc *smc, int r_state)
2493 {
2494 #ifdef DRIVERDEBUG
2495 char *s;
2496
2497 switch (r_state) {
2498 case RM0_ISOLATED:
2499 s = "RM0_ISOLATED";
2500 break;
2501 case RM1_NON_OP:
2502 s = "RM1_NON_OP - not operational";
2503 break;
2504 case RM2_RING_OP:
2505 s = "RM2_RING_OP - ring operational";
2506 break;
2507 case RM3_DETECT:
2508 s = "RM3_DETECT - detect dupl addresses";
2509 break;
2510 case RM4_NON_OP_DUP:
2511 s = "RM4_NON_OP_DUP - dupl. addr detected";
2512 break;
2513 case RM5_RING_OP_DUP:
2514 s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2515 break;
2516 case RM6_DIRECTED:
2517 s = "RM6_DIRECTED - sending directed beacons";
2518 break;
2519 case RM7_TRACE:
2520 s = "RM7_TRACE - trace initiated";
2521 break;
2522 default:
2523 s = "unknown";
2524 break;
2525 }
2526 PRINTK(KERN_INFO "[rmt_state_change: %s]\n", s);
2527 #endif // DRIVERDEBUG
2528 } // rmt_state_change
2529
2530
2531 /************************
2532 *
2533 * drv_reset_indication
2534 *
2535 * This function is called by the SMT when it has detected a severe
2536 * hardware problem. The driver should perform a reset on the adapter
2537 * as soon as possible, but not from within this function.
2538 * Args
2539 * smc - A pointer to the SMT context struct.
2540 * Out
2541 * Nothing.
2542 *
2543 ************************/
drv_reset_indication(struct s_smc * smc)2544 void drv_reset_indication(struct s_smc *smc)
2545 {
2546 PRINTK(KERN_INFO "entering drv_reset_indication\n");
2547
2548 smc->os.ResetRequested = TRUE; // Set flag.
2549
2550 } // drv_reset_indication
2551
2552
2553
2554 //--------------- functions for use as a module ----------------
2555
2556 #ifdef MODULE
2557 /************************
2558 *
2559 * Note now that module autoprobing is allowed under PCI. The
2560 * IRQ lines will not be auto-detected; instead I'll rely on the BIOSes
2561 * to "do the right thing".
2562 *
2563 ************************/
2564 #define LP(a) ((struct s_smc*)(a))
2565 static struct net_device *mdev;
2566
2567 /************************
2568 *
2569 * init_module
2570 *
2571 * If compiled as a module, find
2572 * adapters and initialize them.
2573 *
2574 ************************/
init_module(void)2575 int init_module(void)
2576 {
2577 struct net_device *p;
2578
2579 PRINTK(KERN_INFO "FDDI init module\n");
2580 if ((mdev = insert_device(NULL, skfp_probe)) == NULL)
2581 return -ENOMEM;
2582
2583 for (p = mdev; p != NULL; p = LP(p->priv)->os.next_module) {
2584 PRINTK(KERN_INFO "device to register: %s\n", p->name);
2585 if (register_netdev(p) != 0) {
2586 printk("skfddi init_module failed\n");
2587 return -EIO;
2588 }
2589 }
2590
2591 PRINTK(KERN_INFO "+++++ exit with success +++++\n");
2592 return 0;
2593 } // init_module
2594
2595 /************************
2596 *
2597 * cleanup_module
2598 *
2599 * Release all resources claimed by this module.
2600 *
2601 ************************/
cleanup_module(void)2602 void cleanup_module(void)
2603 {
2604 PRINTK(KERN_INFO "cleanup_module\n");
2605 while (mdev != NULL) {
2606 mdev = unlink_modules(mdev);
2607 }
2608 return;
2609 } // cleanup_module
2610
2611
2612 /************************
2613 *
2614 * unlink_modules
2615 *
2616 * Unregister devices and release their memory.
2617 *
2618 ************************/
unlink_modules(struct net_device * p)2619 static struct net_device *unlink_modules(struct net_device *p)
2620 {
2621 struct net_device *next = NULL;
2622
2623 if (p->priv) { /* Private areas allocated? */
2624 struct s_smc *lp = (struct s_smc *) p->priv;
2625
2626 next = lp->os.next_module;
2627
2628 if (lp->os.SharedMemAddr) {
2629 pci_free_consistent(&lp->os.pdev,
2630 lp->os.SharedMemSize,
2631 lp->os.SharedMemAddr,
2632 lp->os.SharedMemDMA);
2633 lp->os.SharedMemAddr = NULL;
2634 }
2635 if (lp->os.LocalRxBuffer) {
2636 pci_free_consistent(&lp->os.pdev,
2637 MAX_FRAME_SIZE,
2638 lp->os.LocalRxBuffer,
2639 lp->os.LocalRxBufferDMA);
2640 lp->os.LocalRxBuffer = NULL;
2641 }
2642 release_region(p->base_addr,
2643 (lp->os.bus_type == SK_BUS_TYPE_PCI ? FP_IO_LEN : 0));
2644 }
2645 unregister_netdev(p);
2646 printk("%s: unloaded\n", p->name);
2647 kfree(p); /* Free the device structure */
2648
2649 return next;
2650 } // unlink_modules
2651
2652
2653 #endif /* MODULE */
2654