1 /*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/hugetlb.h>
34
35 #include "internal.h"
36
37 /* How many pages do we try to swap or page in/out together? */
38 int page_cluster;
39
40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
43
44 /*
45 * This path almost never happens for VM activity - pages are normally
46 * freed via pagevecs. But it gets used by networking.
47 */
__page_cache_release(struct page * page)48 static void __page_cache_release(struct page *page)
49 {
50 if (PageLRU(page)) {
51 unsigned long flags;
52 struct zone *zone = page_zone(page);
53
54 spin_lock_irqsave(&zone->lru_lock, flags);
55 VM_BUG_ON(!PageLRU(page));
56 __ClearPageLRU(page);
57 del_page_from_lru_list(zone, page, page_off_lru(page));
58 spin_unlock_irqrestore(&zone->lru_lock, flags);
59 }
60 }
61
__put_single_page(struct page * page)62 static void __put_single_page(struct page *page)
63 {
64 __page_cache_release(page);
65 free_hot_cold_page(page, 0);
66 }
67
__put_compound_page(struct page * page)68 static void __put_compound_page(struct page *page)
69 {
70 compound_page_dtor *dtor;
71
72 if (!PageHuge(page))
73 __page_cache_release(page);
74 dtor = get_compound_page_dtor(page);
75 (*dtor)(page);
76 }
77
put_compound_page(struct page * page)78 static void put_compound_page(struct page *page)
79 {
80 if (unlikely(PageTail(page))) {
81 /* __split_huge_page_refcount can run under us */
82 struct page *page_head = compound_trans_head(page);
83
84 if (likely(page != page_head &&
85 get_page_unless_zero(page_head))) {
86 unsigned long flags;
87
88 if (PageHeadHuge(page_head)) {
89 if (likely(PageTail(page))) {
90 /*
91 * __split_huge_page_refcount
92 * cannot race here.
93 */
94 VM_BUG_ON(!PageHead(page_head));
95 atomic_dec(&page->_mapcount);
96 if (put_page_testzero(page_head))
97 VM_BUG_ON(1);
98 if (put_page_testzero(page_head))
99 __put_compound_page(page_head);
100 return;
101 } else {
102 /*
103 * __split_huge_page_refcount
104 * run before us, "page" was a
105 * THP tail. The split
106 * page_head has been freed
107 * and reallocated as slab or
108 * hugetlbfs page of smaller
109 * order (only possible if
110 * reallocated as slab on
111 * x86).
112 */
113 goto skip_lock;
114 }
115 }
116 /*
117 * page_head wasn't a dangling pointer but it
118 * may not be a head page anymore by the time
119 * we obtain the lock. That is ok as long as it
120 * can't be freed from under us.
121 */
122 flags = compound_lock_irqsave(page_head);
123 if (unlikely(!PageTail(page))) {
124 /* __split_huge_page_refcount run before us */
125 compound_unlock_irqrestore(page_head, flags);
126 VM_BUG_ON(PageHead(page_head));
127 skip_lock:
128 if (put_page_testzero(page_head)) {
129 /*
130 * The head page may have been
131 * freed and reallocated as a
132 * compound page of smaller
133 * order and then freed again.
134 * All we know is that it
135 * cannot have become: a THP
136 * page, a compound page of
137 * higher order, a tail page.
138 * That is because we still
139 * hold the refcount of the
140 * split THP tail and
141 * page_head was the THP head
142 * before the split.
143 */
144 if (PageHead(page_head))
145 __put_compound_page(page_head);
146 else
147 __put_single_page(page_head);
148 }
149 out_put_single:
150 if (put_page_testzero(page))
151 __put_single_page(page);
152 return;
153 }
154 VM_BUG_ON(page_head != page->first_page);
155 /*
156 * We can release the refcount taken by
157 * get_page_unless_zero() now that
158 * __split_huge_page_refcount() is blocked on
159 * the compound_lock.
160 */
161 if (put_page_testzero(page_head))
162 VM_BUG_ON(1);
163 /* __split_huge_page_refcount will wait now */
164 VM_BUG_ON(page_mapcount(page) <= 0);
165 atomic_dec(&page->_mapcount);
166 VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
167 VM_BUG_ON(atomic_read(&page->_count) != 0);
168 compound_unlock_irqrestore(page_head, flags);
169 if (put_page_testzero(page_head)) {
170 if (PageHead(page_head))
171 __put_compound_page(page_head);
172 else
173 __put_single_page(page_head);
174 }
175 } else {
176 /* page_head is a dangling pointer */
177 VM_BUG_ON(PageTail(page));
178 goto out_put_single;
179 }
180 } else if (put_page_testzero(page)) {
181 if (PageHead(page))
182 __put_compound_page(page);
183 else
184 __put_single_page(page);
185 }
186 }
187
put_page(struct page * page)188 void put_page(struct page *page)
189 {
190 if (unlikely(PageCompound(page)))
191 put_compound_page(page);
192 else if (put_page_testzero(page))
193 __put_single_page(page);
194 }
195 EXPORT_SYMBOL(put_page);
196
197 /*
198 * This function is exported but must not be called by anything other
199 * than get_page(). It implements the slow path of get_page().
200 */
__get_page_tail(struct page * page)201 bool __get_page_tail(struct page *page)
202 {
203 /*
204 * This takes care of get_page() if run on a tail page
205 * returned by one of the get_user_pages/follow_page variants.
206 * get_user_pages/follow_page itself doesn't need the compound
207 * lock because it runs __get_page_tail_foll() under the
208 * proper PT lock that already serializes against
209 * split_huge_page().
210 */
211 unsigned long flags;
212 bool got = false;
213 struct page *page_head = compound_trans_head(page);
214
215 if (likely(page != page_head && get_page_unless_zero(page_head))) {
216 /* Ref to put_compound_page() comment. */
217 if (PageHeadHuge(page_head)) {
218 if (likely(PageTail(page))) {
219 /*
220 * This is a hugetlbfs
221 * page. __split_huge_page_refcount
222 * cannot race here.
223 */
224 VM_BUG_ON(!PageHead(page_head));
225 __get_page_tail_foll(page, false);
226 return true;
227 } else {
228 /*
229 * __split_huge_page_refcount run
230 * before us, "page" was a THP
231 * tail. The split page_head has been
232 * freed and reallocated as slab or
233 * hugetlbfs page of smaller order
234 * (only possible if reallocated as
235 * slab on x86).
236 */
237 put_page(page_head);
238 return false;
239 }
240 }
241 /*
242 * page_head wasn't a dangling pointer but it
243 * may not be a head page anymore by the time
244 * we obtain the lock. That is ok as long as it
245 * can't be freed from under us.
246 */
247 flags = compound_lock_irqsave(page_head);
248 /* here __split_huge_page_refcount won't run anymore */
249 if (likely(PageTail(page))) {
250 __get_page_tail_foll(page, false);
251 got = true;
252 }
253 compound_unlock_irqrestore(page_head, flags);
254 if (unlikely(!got))
255 put_page(page_head);
256 }
257 return got;
258 }
259 EXPORT_SYMBOL(__get_page_tail);
260
261 /**
262 * put_pages_list() - release a list of pages
263 * @pages: list of pages threaded on page->lru
264 *
265 * Release a list of pages which are strung together on page.lru. Currently
266 * used by read_cache_pages() and related error recovery code.
267 */
put_pages_list(struct list_head * pages)268 void put_pages_list(struct list_head *pages)
269 {
270 while (!list_empty(pages)) {
271 struct page *victim;
272
273 victim = list_entry(pages->prev, struct page, lru);
274 list_del(&victim->lru);
275 page_cache_release(victim);
276 }
277 }
278 EXPORT_SYMBOL(put_pages_list);
279
pagevec_lru_move_fn(struct pagevec * pvec,void (* move_fn)(struct page * page,void * arg),void * arg)280 static void pagevec_lru_move_fn(struct pagevec *pvec,
281 void (*move_fn)(struct page *page, void *arg),
282 void *arg)
283 {
284 int i;
285 struct zone *zone = NULL;
286 unsigned long flags = 0;
287
288 for (i = 0; i < pagevec_count(pvec); i++) {
289 struct page *page = pvec->pages[i];
290 struct zone *pagezone = page_zone(page);
291
292 if (pagezone != zone) {
293 if (zone)
294 spin_unlock_irqrestore(&zone->lru_lock, flags);
295 zone = pagezone;
296 spin_lock_irqsave(&zone->lru_lock, flags);
297 }
298
299 (*move_fn)(page, arg);
300 }
301 if (zone)
302 spin_unlock_irqrestore(&zone->lru_lock, flags);
303 release_pages(pvec->pages, pvec->nr, pvec->cold);
304 pagevec_reinit(pvec);
305 }
306
pagevec_move_tail_fn(struct page * page,void * arg)307 static void pagevec_move_tail_fn(struct page *page, void *arg)
308 {
309 int *pgmoved = arg;
310
311 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
312 enum lru_list lru = page_lru_base_type(page);
313 struct lruvec *lruvec;
314
315 lruvec = mem_cgroup_lru_move_lists(page_zone(page),
316 page, lru, lru);
317 list_move_tail(&page->lru, &lruvec->lists[lru]);
318 (*pgmoved)++;
319 }
320 }
321
322 /*
323 * pagevec_move_tail() must be called with IRQ disabled.
324 * Otherwise this may cause nasty races.
325 */
pagevec_move_tail(struct pagevec * pvec)326 static void pagevec_move_tail(struct pagevec *pvec)
327 {
328 int pgmoved = 0;
329
330 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
331 __count_vm_events(PGROTATED, pgmoved);
332 }
333
334 /*
335 * Writeback is about to end against a page which has been marked for immediate
336 * reclaim. If it still appears to be reclaimable, move it to the tail of the
337 * inactive list.
338 */
rotate_reclaimable_page(struct page * page)339 void rotate_reclaimable_page(struct page *page)
340 {
341 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
342 !PageUnevictable(page) && PageLRU(page)) {
343 struct pagevec *pvec;
344 unsigned long flags;
345
346 page_cache_get(page);
347 local_irq_save(flags);
348 pvec = &__get_cpu_var(lru_rotate_pvecs);
349 if (!pagevec_add(pvec, page))
350 pagevec_move_tail(pvec);
351 local_irq_restore(flags);
352 }
353 }
354
update_page_reclaim_stat(struct zone * zone,struct page * page,int file,int rotated)355 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
356 int file, int rotated)
357 {
358 struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
359 struct zone_reclaim_stat *memcg_reclaim_stat;
360
361 memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
362
363 reclaim_stat->recent_scanned[file]++;
364 if (rotated)
365 reclaim_stat->recent_rotated[file]++;
366
367 if (!memcg_reclaim_stat)
368 return;
369
370 memcg_reclaim_stat->recent_scanned[file]++;
371 if (rotated)
372 memcg_reclaim_stat->recent_rotated[file]++;
373 }
374
__activate_page(struct page * page,void * arg)375 static void __activate_page(struct page *page, void *arg)
376 {
377 struct zone *zone = page_zone(page);
378
379 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
380 int file = page_is_file_cache(page);
381 int lru = page_lru_base_type(page);
382 del_page_from_lru_list(zone, page, lru);
383
384 SetPageActive(page);
385 lru += LRU_ACTIVE;
386 add_page_to_lru_list(zone, page, lru);
387 __count_vm_event(PGACTIVATE);
388
389 update_page_reclaim_stat(zone, page, file, 1);
390 }
391 }
392
393 #ifdef CONFIG_SMP
394 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
395
activate_page_drain(int cpu)396 static void activate_page_drain(int cpu)
397 {
398 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
399
400 if (pagevec_count(pvec))
401 pagevec_lru_move_fn(pvec, __activate_page, NULL);
402 }
403
activate_page(struct page * page)404 void activate_page(struct page *page)
405 {
406 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
407 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
408
409 page_cache_get(page);
410 if (!pagevec_add(pvec, page))
411 pagevec_lru_move_fn(pvec, __activate_page, NULL);
412 put_cpu_var(activate_page_pvecs);
413 }
414 }
415
416 #else
activate_page_drain(int cpu)417 static inline void activate_page_drain(int cpu)
418 {
419 }
420
activate_page(struct page * page)421 void activate_page(struct page *page)
422 {
423 struct zone *zone = page_zone(page);
424
425 spin_lock_irq(&zone->lru_lock);
426 __activate_page(page, NULL);
427 spin_unlock_irq(&zone->lru_lock);
428 }
429 #endif
430
431 /*
432 * Mark a page as having seen activity.
433 *
434 * inactive,unreferenced -> inactive,referenced
435 * inactive,referenced -> active,unreferenced
436 * active,unreferenced -> active,referenced
437 */
mark_page_accessed(struct page * page)438 void mark_page_accessed(struct page *page)
439 {
440 if (!PageActive(page) && !PageUnevictable(page) &&
441 PageReferenced(page) && PageLRU(page)) {
442 activate_page(page);
443 ClearPageReferenced(page);
444 } else if (!PageReferenced(page)) {
445 SetPageReferenced(page);
446 }
447 }
448 EXPORT_SYMBOL(mark_page_accessed);
449
__lru_cache_add(struct page * page,enum lru_list lru)450 void __lru_cache_add(struct page *page, enum lru_list lru)
451 {
452 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
453
454 page_cache_get(page);
455 if (!pagevec_add(pvec, page))
456 __pagevec_lru_add(pvec, lru);
457 put_cpu_var(lru_add_pvecs);
458 }
459 EXPORT_SYMBOL(__lru_cache_add);
460
461 /**
462 * lru_cache_add_lru - add a page to a page list
463 * @page: the page to be added to the LRU.
464 * @lru: the LRU list to which the page is added.
465 */
lru_cache_add_lru(struct page * page,enum lru_list lru)466 void lru_cache_add_lru(struct page *page, enum lru_list lru)
467 {
468 if (PageActive(page)) {
469 VM_BUG_ON(PageUnevictable(page));
470 ClearPageActive(page);
471 } else if (PageUnevictable(page)) {
472 VM_BUG_ON(PageActive(page));
473 ClearPageUnevictable(page);
474 }
475
476 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
477 __lru_cache_add(page, lru);
478 }
479
480 /**
481 * add_page_to_unevictable_list - add a page to the unevictable list
482 * @page: the page to be added to the unevictable list
483 *
484 * Add page directly to its zone's unevictable list. To avoid races with
485 * tasks that might be making the page evictable, through eg. munlock,
486 * munmap or exit, while it's not on the lru, we want to add the page
487 * while it's locked or otherwise "invisible" to other tasks. This is
488 * difficult to do when using the pagevec cache, so bypass that.
489 */
add_page_to_unevictable_list(struct page * page)490 void add_page_to_unevictable_list(struct page *page)
491 {
492 struct zone *zone = page_zone(page);
493
494 spin_lock_irq(&zone->lru_lock);
495 SetPageUnevictable(page);
496 SetPageLRU(page);
497 add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
498 spin_unlock_irq(&zone->lru_lock);
499 }
500
501 /*
502 * If the page can not be invalidated, it is moved to the
503 * inactive list to speed up its reclaim. It is moved to the
504 * head of the list, rather than the tail, to give the flusher
505 * threads some time to write it out, as this is much more
506 * effective than the single-page writeout from reclaim.
507 *
508 * If the page isn't page_mapped and dirty/writeback, the page
509 * could reclaim asap using PG_reclaim.
510 *
511 * 1. active, mapped page -> none
512 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
513 * 3. inactive, mapped page -> none
514 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
515 * 5. inactive, clean -> inactive, tail
516 * 6. Others -> none
517 *
518 * In 4, why it moves inactive's head, the VM expects the page would
519 * be write it out by flusher threads as this is much more effective
520 * than the single-page writeout from reclaim.
521 */
lru_deactivate_fn(struct page * page,void * arg)522 static void lru_deactivate_fn(struct page *page, void *arg)
523 {
524 int lru, file;
525 bool active;
526 struct zone *zone = page_zone(page);
527
528 if (!PageLRU(page))
529 return;
530
531 if (PageUnevictable(page))
532 return;
533
534 /* Some processes are using the page */
535 if (page_mapped(page))
536 return;
537
538 active = PageActive(page);
539
540 file = page_is_file_cache(page);
541 lru = page_lru_base_type(page);
542 del_page_from_lru_list(zone, page, lru + active);
543 ClearPageActive(page);
544 ClearPageReferenced(page);
545 add_page_to_lru_list(zone, page, lru);
546
547 if (PageWriteback(page) || PageDirty(page)) {
548 /*
549 * PG_reclaim could be raced with end_page_writeback
550 * It can make readahead confusing. But race window
551 * is _really_ small and it's non-critical problem.
552 */
553 SetPageReclaim(page);
554 } else {
555 struct lruvec *lruvec;
556 /*
557 * The page's writeback ends up during pagevec
558 * We moves tha page into tail of inactive.
559 */
560 lruvec = mem_cgroup_lru_move_lists(zone, page, lru, lru);
561 list_move_tail(&page->lru, &lruvec->lists[lru]);
562 __count_vm_event(PGROTATED);
563 }
564
565 if (active)
566 __count_vm_event(PGDEACTIVATE);
567 update_page_reclaim_stat(zone, page, file, 0);
568 }
569
570 /*
571 * Drain pages out of the cpu's pagevecs.
572 * Either "cpu" is the current CPU, and preemption has already been
573 * disabled; or "cpu" is being hot-unplugged, and is already dead.
574 */
lru_add_drain_cpu(int cpu)575 void lru_add_drain_cpu(int cpu)
576 {
577 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
578 struct pagevec *pvec;
579 int lru;
580
581 for_each_lru(lru) {
582 pvec = &pvecs[lru - LRU_BASE];
583 if (pagevec_count(pvec))
584 __pagevec_lru_add(pvec, lru);
585 }
586
587 pvec = &per_cpu(lru_rotate_pvecs, cpu);
588 if (pagevec_count(pvec)) {
589 unsigned long flags;
590
591 /* No harm done if a racing interrupt already did this */
592 local_irq_save(flags);
593 pagevec_move_tail(pvec);
594 local_irq_restore(flags);
595 }
596
597 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
598 if (pagevec_count(pvec))
599 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
600
601 activate_page_drain(cpu);
602 }
603
604 /**
605 * deactivate_page - forcefully deactivate a page
606 * @page: page to deactivate
607 *
608 * This function hints the VM that @page is a good reclaim candidate,
609 * for example if its invalidation fails due to the page being dirty
610 * or under writeback.
611 */
deactivate_page(struct page * page)612 void deactivate_page(struct page *page)
613 {
614 /*
615 * In a workload with many unevictable page such as mprotect, unevictable
616 * page deactivation for accelerating reclaim is pointless.
617 */
618 if (PageUnevictable(page))
619 return;
620
621 if (likely(get_page_unless_zero(page))) {
622 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
623
624 if (!pagevec_add(pvec, page))
625 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
626 put_cpu_var(lru_deactivate_pvecs);
627 }
628 }
629
lru_add_drain(void)630 void lru_add_drain(void)
631 {
632 lru_add_drain_cpu(get_cpu());
633 put_cpu();
634 }
635
lru_add_drain_per_cpu(struct work_struct * dummy)636 static void lru_add_drain_per_cpu(struct work_struct *dummy)
637 {
638 lru_add_drain();
639 }
640
641 /*
642 * Returns 0 for success
643 */
lru_add_drain_all(void)644 int lru_add_drain_all(void)
645 {
646 return schedule_on_each_cpu(lru_add_drain_per_cpu);
647 }
648
649 /*
650 * Batched page_cache_release(). Decrement the reference count on all the
651 * passed pages. If it fell to zero then remove the page from the LRU and
652 * free it.
653 *
654 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
655 * for the remainder of the operation.
656 *
657 * The locking in this function is against shrink_inactive_list(): we recheck
658 * the page count inside the lock to see whether shrink_inactive_list()
659 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
660 * will free it.
661 */
release_pages(struct page ** pages,int nr,int cold)662 void release_pages(struct page **pages, int nr, int cold)
663 {
664 int i;
665 LIST_HEAD(pages_to_free);
666 struct zone *zone = NULL;
667 unsigned long uninitialized_var(flags);
668
669 for (i = 0; i < nr; i++) {
670 struct page *page = pages[i];
671
672 if (unlikely(PageCompound(page))) {
673 if (zone) {
674 spin_unlock_irqrestore(&zone->lru_lock, flags);
675 zone = NULL;
676 }
677 put_compound_page(page);
678 continue;
679 }
680
681 if (!put_page_testzero(page))
682 continue;
683
684 if (PageLRU(page)) {
685 struct zone *pagezone = page_zone(page);
686
687 if (pagezone != zone) {
688 if (zone)
689 spin_unlock_irqrestore(&zone->lru_lock,
690 flags);
691 zone = pagezone;
692 spin_lock_irqsave(&zone->lru_lock, flags);
693 }
694 VM_BUG_ON(!PageLRU(page));
695 __ClearPageLRU(page);
696 del_page_from_lru_list(zone, page, page_off_lru(page));
697 }
698
699 list_add(&page->lru, &pages_to_free);
700 }
701 if (zone)
702 spin_unlock_irqrestore(&zone->lru_lock, flags);
703
704 free_hot_cold_page_list(&pages_to_free, cold);
705 }
706 EXPORT_SYMBOL(release_pages);
707
708 /*
709 * The pages which we're about to release may be in the deferred lru-addition
710 * queues. That would prevent them from really being freed right now. That's
711 * OK from a correctness point of view but is inefficient - those pages may be
712 * cache-warm and we want to give them back to the page allocator ASAP.
713 *
714 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
715 * and __pagevec_lru_add_active() call release_pages() directly to avoid
716 * mutual recursion.
717 */
__pagevec_release(struct pagevec * pvec)718 void __pagevec_release(struct pagevec *pvec)
719 {
720 lru_add_drain();
721 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
722 pagevec_reinit(pvec);
723 }
724 EXPORT_SYMBOL(__pagevec_release);
725
726 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
727 /* used by __split_huge_page_refcount() */
lru_add_page_tail(struct zone * zone,struct page * page,struct page * page_tail)728 void lru_add_page_tail(struct zone* zone,
729 struct page *page, struct page *page_tail)
730 {
731 int uninitialized_var(active);
732 enum lru_list lru;
733 const int file = 0;
734
735 VM_BUG_ON(!PageHead(page));
736 VM_BUG_ON(PageCompound(page_tail));
737 VM_BUG_ON(PageLRU(page_tail));
738 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&zone->lru_lock));
739
740 SetPageLRU(page_tail);
741
742 if (page_evictable(page_tail, NULL)) {
743 if (PageActive(page)) {
744 SetPageActive(page_tail);
745 active = 1;
746 lru = LRU_ACTIVE_ANON;
747 } else {
748 active = 0;
749 lru = LRU_INACTIVE_ANON;
750 }
751 } else {
752 SetPageUnevictable(page_tail);
753 lru = LRU_UNEVICTABLE;
754 }
755
756 if (likely(PageLRU(page)))
757 list_add_tail(&page_tail->lru, &page->lru);
758 else {
759 struct list_head *list_head;
760 /*
761 * Head page has not yet been counted, as an hpage,
762 * so we must account for each subpage individually.
763 *
764 * Use the standard add function to put page_tail on the list,
765 * but then correct its position so they all end up in order.
766 */
767 add_page_to_lru_list(zone, page_tail, lru);
768 list_head = page_tail->lru.prev;
769 list_move_tail(&page_tail->lru, list_head);
770 }
771
772 if (!PageUnevictable(page))
773 update_page_reclaim_stat(zone, page_tail, file, active);
774 }
775 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
776
__pagevec_lru_add_fn(struct page * page,void * arg)777 static void __pagevec_lru_add_fn(struct page *page, void *arg)
778 {
779 enum lru_list lru = (enum lru_list)arg;
780 struct zone *zone = page_zone(page);
781 int file = is_file_lru(lru);
782 int active = is_active_lru(lru);
783
784 VM_BUG_ON(PageActive(page));
785 VM_BUG_ON(PageUnevictable(page));
786 VM_BUG_ON(PageLRU(page));
787
788 SetPageLRU(page);
789 if (active)
790 SetPageActive(page);
791 add_page_to_lru_list(zone, page, lru);
792 update_page_reclaim_stat(zone, page, file, active);
793 }
794
795 /*
796 * Add the passed pages to the LRU, then drop the caller's refcount
797 * on them. Reinitialises the caller's pagevec.
798 */
__pagevec_lru_add(struct pagevec * pvec,enum lru_list lru)799 void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
800 {
801 VM_BUG_ON(is_unevictable_lru(lru));
802
803 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru);
804 }
805 EXPORT_SYMBOL(__pagevec_lru_add);
806
807 /**
808 * pagevec_lookup - gang pagecache lookup
809 * @pvec: Where the resulting pages are placed
810 * @mapping: The address_space to search
811 * @start: The starting page index
812 * @nr_pages: The maximum number of pages
813 *
814 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
815 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
816 * reference against the pages in @pvec.
817 *
818 * The search returns a group of mapping-contiguous pages with ascending
819 * indexes. There may be holes in the indices due to not-present pages.
820 *
821 * pagevec_lookup() returns the number of pages which were found.
822 */
pagevec_lookup(struct pagevec * pvec,struct address_space * mapping,pgoff_t start,unsigned nr_pages)823 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
824 pgoff_t start, unsigned nr_pages)
825 {
826 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
827 return pagevec_count(pvec);
828 }
829 EXPORT_SYMBOL(pagevec_lookup);
830
pagevec_lookup_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,int tag,unsigned nr_pages)831 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
832 pgoff_t *index, int tag, unsigned nr_pages)
833 {
834 pvec->nr = find_get_pages_tag(mapping, index, tag,
835 nr_pages, pvec->pages);
836 return pagevec_count(pvec);
837 }
838 EXPORT_SYMBOL(pagevec_lookup_tag);
839
840 /*
841 * Perform any setup for the swap system
842 */
swap_setup(void)843 void __init swap_setup(void)
844 {
845 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
846
847 #ifdef CONFIG_SWAP
848 bdi_init(swapper_space.backing_dev_info);
849 #endif
850
851 /* Use a smaller cluster for small-memory machines */
852 if (megs < 16)
853 page_cluster = 2;
854 else
855 page_cluster = 3;
856 /*
857 * Right now other parts of the system means that we
858 * _really_ don't want to cluster much more
859 */
860 }
861