1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/hugetlb.h>
34 
35 #include "internal.h"
36 
37 /* How many pages do we try to swap or page in/out together? */
38 int page_cluster;
39 
40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
43 
44 /*
45  * This path almost never happens for VM activity - pages are normally
46  * freed via pagevecs.  But it gets used by networking.
47  */
__page_cache_release(struct page * page)48 static void __page_cache_release(struct page *page)
49 {
50 	if (PageLRU(page)) {
51 		unsigned long flags;
52 		struct zone *zone = page_zone(page);
53 
54 		spin_lock_irqsave(&zone->lru_lock, flags);
55 		VM_BUG_ON(!PageLRU(page));
56 		__ClearPageLRU(page);
57 		del_page_from_lru_list(zone, page, page_off_lru(page));
58 		spin_unlock_irqrestore(&zone->lru_lock, flags);
59 	}
60 }
61 
__put_single_page(struct page * page)62 static void __put_single_page(struct page *page)
63 {
64 	__page_cache_release(page);
65 	free_hot_cold_page(page, 0);
66 }
67 
__put_compound_page(struct page * page)68 static void __put_compound_page(struct page *page)
69 {
70 	compound_page_dtor *dtor;
71 
72 	if (!PageHuge(page))
73 		__page_cache_release(page);
74 	dtor = get_compound_page_dtor(page);
75 	(*dtor)(page);
76 }
77 
put_compound_page(struct page * page)78 static void put_compound_page(struct page *page)
79 {
80 	if (unlikely(PageTail(page))) {
81 		/* __split_huge_page_refcount can run under us */
82 		struct page *page_head = compound_trans_head(page);
83 
84 		if (likely(page != page_head &&
85 			   get_page_unless_zero(page_head))) {
86 			unsigned long flags;
87 
88 			 if (PageHeadHuge(page_head)) {
89 				if (likely(PageTail(page))) {
90 					/*
91 					 * __split_huge_page_refcount
92 					 * cannot race here.
93 					 */
94 					VM_BUG_ON(!PageHead(page_head));
95 					atomic_dec(&page->_mapcount);
96 					if (put_page_testzero(page_head))
97 						VM_BUG_ON(1);
98 					if (put_page_testzero(page_head))
99 						__put_compound_page(page_head);
100 					return;
101 				} else {
102 					/*
103 					 * __split_huge_page_refcount
104 					 * run before us, "page" was a
105 					 * THP tail. The split
106 					 * page_head has been freed
107 					 * and reallocated as slab or
108 					 * hugetlbfs page of smaller
109 					 * order (only possible if
110 					 * reallocated as slab on
111 					 * x86).
112 					 */
113 					goto skip_lock;
114 				}
115 			}
116 			/*
117 			 * page_head wasn't a dangling pointer but it
118 			 * may not be a head page anymore by the time
119 			 * we obtain the lock. That is ok as long as it
120 			 * can't be freed from under us.
121 			 */
122 			flags = compound_lock_irqsave(page_head);
123 			if (unlikely(!PageTail(page))) {
124 				/* __split_huge_page_refcount run before us */
125 				compound_unlock_irqrestore(page_head, flags);
126 				VM_BUG_ON(PageHead(page_head));
127 skip_lock:
128 				if (put_page_testzero(page_head)) {
129 					/*
130 					 * The head page may have been
131 					 * freed and reallocated as a
132 					 * compound page of smaller
133 					 * order and then freed again.
134 					 * All we know is that it
135 					 * cannot have become: a THP
136 					 * page, a compound page of
137 					 * higher order, a tail page.
138 					 * That is because we still
139 					 * hold the refcount of the
140 					 * split THP tail and
141 					 * page_head was the THP head
142 					 * before the split.
143 					 */
144 					if (PageHead(page_head))
145 						__put_compound_page(page_head);
146 					else
147 						__put_single_page(page_head);
148 				}
149 out_put_single:
150 				if (put_page_testzero(page))
151 					__put_single_page(page);
152 				return;
153 			}
154 			VM_BUG_ON(page_head != page->first_page);
155 			/*
156 			 * We can release the refcount taken by
157 			 * get_page_unless_zero() now that
158 			 * __split_huge_page_refcount() is blocked on
159 			 * the compound_lock.
160 			 */
161 			if (put_page_testzero(page_head))
162 				VM_BUG_ON(1);
163 			/* __split_huge_page_refcount will wait now */
164 			VM_BUG_ON(page_mapcount(page) <= 0);
165 			atomic_dec(&page->_mapcount);
166 			VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
167 			VM_BUG_ON(atomic_read(&page->_count) != 0);
168 			compound_unlock_irqrestore(page_head, flags);
169 			if (put_page_testzero(page_head)) {
170 				if (PageHead(page_head))
171 					__put_compound_page(page_head);
172 				else
173 					__put_single_page(page_head);
174 			}
175 		} else {
176 			/* page_head is a dangling pointer */
177 			VM_BUG_ON(PageTail(page));
178 			goto out_put_single;
179 		}
180 	} else if (put_page_testzero(page)) {
181 		if (PageHead(page))
182 			__put_compound_page(page);
183 		else
184 			__put_single_page(page);
185 	}
186 }
187 
put_page(struct page * page)188 void put_page(struct page *page)
189 {
190 	if (unlikely(PageCompound(page)))
191 		put_compound_page(page);
192 	else if (put_page_testzero(page))
193 		__put_single_page(page);
194 }
195 EXPORT_SYMBOL(put_page);
196 
197 /*
198  * This function is exported but must not be called by anything other
199  * than get_page(). It implements the slow path of get_page().
200  */
__get_page_tail(struct page * page)201 bool __get_page_tail(struct page *page)
202 {
203 	/*
204 	 * This takes care of get_page() if run on a tail page
205 	 * returned by one of the get_user_pages/follow_page variants.
206 	 * get_user_pages/follow_page itself doesn't need the compound
207 	 * lock because it runs __get_page_tail_foll() under the
208 	 * proper PT lock that already serializes against
209 	 * split_huge_page().
210 	 */
211 	unsigned long flags;
212 	bool got = false;
213 	struct page *page_head = compound_trans_head(page);
214 
215 	if (likely(page != page_head && get_page_unless_zero(page_head))) {
216 		/* Ref to put_compound_page() comment. */
217 		if (PageHeadHuge(page_head)) {
218 			if (likely(PageTail(page))) {
219 				/*
220 				 * This is a hugetlbfs
221 				 * page. __split_huge_page_refcount
222 				 * cannot race here.
223 				 */
224 				VM_BUG_ON(!PageHead(page_head));
225 				__get_page_tail_foll(page, false);
226 				return true;
227 			} else {
228 				/*
229 				 * __split_huge_page_refcount run
230 				 * before us, "page" was a THP
231 				 * tail. The split page_head has been
232 				 * freed and reallocated as slab or
233 				 * hugetlbfs page of smaller order
234 				 * (only possible if reallocated as
235 				 * slab on x86).
236 				 */
237 				put_page(page_head);
238 				return false;
239 			}
240 		}
241 		/*
242 		 * page_head wasn't a dangling pointer but it
243 		 * may not be a head page anymore by the time
244 		 * we obtain the lock. That is ok as long as it
245 		 * can't be freed from under us.
246 		 */
247 		flags = compound_lock_irqsave(page_head);
248 		/* here __split_huge_page_refcount won't run anymore */
249 		if (likely(PageTail(page))) {
250 			__get_page_tail_foll(page, false);
251 			got = true;
252 		}
253 		compound_unlock_irqrestore(page_head, flags);
254 		if (unlikely(!got))
255 			put_page(page_head);
256 	}
257 	return got;
258 }
259 EXPORT_SYMBOL(__get_page_tail);
260 
261 /**
262  * put_pages_list() - release a list of pages
263  * @pages: list of pages threaded on page->lru
264  *
265  * Release a list of pages which are strung together on page.lru.  Currently
266  * used by read_cache_pages() and related error recovery code.
267  */
put_pages_list(struct list_head * pages)268 void put_pages_list(struct list_head *pages)
269 {
270 	while (!list_empty(pages)) {
271 		struct page *victim;
272 
273 		victim = list_entry(pages->prev, struct page, lru);
274 		list_del(&victim->lru);
275 		page_cache_release(victim);
276 	}
277 }
278 EXPORT_SYMBOL(put_pages_list);
279 
pagevec_lru_move_fn(struct pagevec * pvec,void (* move_fn)(struct page * page,void * arg),void * arg)280 static void pagevec_lru_move_fn(struct pagevec *pvec,
281 				void (*move_fn)(struct page *page, void *arg),
282 				void *arg)
283 {
284 	int i;
285 	struct zone *zone = NULL;
286 	unsigned long flags = 0;
287 
288 	for (i = 0; i < pagevec_count(pvec); i++) {
289 		struct page *page = pvec->pages[i];
290 		struct zone *pagezone = page_zone(page);
291 
292 		if (pagezone != zone) {
293 			if (zone)
294 				spin_unlock_irqrestore(&zone->lru_lock, flags);
295 			zone = pagezone;
296 			spin_lock_irqsave(&zone->lru_lock, flags);
297 		}
298 
299 		(*move_fn)(page, arg);
300 	}
301 	if (zone)
302 		spin_unlock_irqrestore(&zone->lru_lock, flags);
303 	release_pages(pvec->pages, pvec->nr, pvec->cold);
304 	pagevec_reinit(pvec);
305 }
306 
pagevec_move_tail_fn(struct page * page,void * arg)307 static void pagevec_move_tail_fn(struct page *page, void *arg)
308 {
309 	int *pgmoved = arg;
310 
311 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
312 		enum lru_list lru = page_lru_base_type(page);
313 		struct lruvec *lruvec;
314 
315 		lruvec = mem_cgroup_lru_move_lists(page_zone(page),
316 						   page, lru, lru);
317 		list_move_tail(&page->lru, &lruvec->lists[lru]);
318 		(*pgmoved)++;
319 	}
320 }
321 
322 /*
323  * pagevec_move_tail() must be called with IRQ disabled.
324  * Otherwise this may cause nasty races.
325  */
pagevec_move_tail(struct pagevec * pvec)326 static void pagevec_move_tail(struct pagevec *pvec)
327 {
328 	int pgmoved = 0;
329 
330 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
331 	__count_vm_events(PGROTATED, pgmoved);
332 }
333 
334 /*
335  * Writeback is about to end against a page which has been marked for immediate
336  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
337  * inactive list.
338  */
rotate_reclaimable_page(struct page * page)339 void rotate_reclaimable_page(struct page *page)
340 {
341 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
342 	    !PageUnevictable(page) && PageLRU(page)) {
343 		struct pagevec *pvec;
344 		unsigned long flags;
345 
346 		page_cache_get(page);
347 		local_irq_save(flags);
348 		pvec = &__get_cpu_var(lru_rotate_pvecs);
349 		if (!pagevec_add(pvec, page))
350 			pagevec_move_tail(pvec);
351 		local_irq_restore(flags);
352 	}
353 }
354 
update_page_reclaim_stat(struct zone * zone,struct page * page,int file,int rotated)355 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
356 				     int file, int rotated)
357 {
358 	struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
359 	struct zone_reclaim_stat *memcg_reclaim_stat;
360 
361 	memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
362 
363 	reclaim_stat->recent_scanned[file]++;
364 	if (rotated)
365 		reclaim_stat->recent_rotated[file]++;
366 
367 	if (!memcg_reclaim_stat)
368 		return;
369 
370 	memcg_reclaim_stat->recent_scanned[file]++;
371 	if (rotated)
372 		memcg_reclaim_stat->recent_rotated[file]++;
373 }
374 
__activate_page(struct page * page,void * arg)375 static void __activate_page(struct page *page, void *arg)
376 {
377 	struct zone *zone = page_zone(page);
378 
379 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
380 		int file = page_is_file_cache(page);
381 		int lru = page_lru_base_type(page);
382 		del_page_from_lru_list(zone, page, lru);
383 
384 		SetPageActive(page);
385 		lru += LRU_ACTIVE;
386 		add_page_to_lru_list(zone, page, lru);
387 		__count_vm_event(PGACTIVATE);
388 
389 		update_page_reclaim_stat(zone, page, file, 1);
390 	}
391 }
392 
393 #ifdef CONFIG_SMP
394 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
395 
activate_page_drain(int cpu)396 static void activate_page_drain(int cpu)
397 {
398 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
399 
400 	if (pagevec_count(pvec))
401 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
402 }
403 
activate_page(struct page * page)404 void activate_page(struct page *page)
405 {
406 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
407 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
408 
409 		page_cache_get(page);
410 		if (!pagevec_add(pvec, page))
411 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
412 		put_cpu_var(activate_page_pvecs);
413 	}
414 }
415 
416 #else
activate_page_drain(int cpu)417 static inline void activate_page_drain(int cpu)
418 {
419 }
420 
activate_page(struct page * page)421 void activate_page(struct page *page)
422 {
423 	struct zone *zone = page_zone(page);
424 
425 	spin_lock_irq(&zone->lru_lock);
426 	__activate_page(page, NULL);
427 	spin_unlock_irq(&zone->lru_lock);
428 }
429 #endif
430 
431 /*
432  * Mark a page as having seen activity.
433  *
434  * inactive,unreferenced	->	inactive,referenced
435  * inactive,referenced		->	active,unreferenced
436  * active,unreferenced		->	active,referenced
437  */
mark_page_accessed(struct page * page)438 void mark_page_accessed(struct page *page)
439 {
440 	if (!PageActive(page) && !PageUnevictable(page) &&
441 			PageReferenced(page) && PageLRU(page)) {
442 		activate_page(page);
443 		ClearPageReferenced(page);
444 	} else if (!PageReferenced(page)) {
445 		SetPageReferenced(page);
446 	}
447 }
448 EXPORT_SYMBOL(mark_page_accessed);
449 
__lru_cache_add(struct page * page,enum lru_list lru)450 void __lru_cache_add(struct page *page, enum lru_list lru)
451 {
452 	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
453 
454 	page_cache_get(page);
455 	if (!pagevec_add(pvec, page))
456 		__pagevec_lru_add(pvec, lru);
457 	put_cpu_var(lru_add_pvecs);
458 }
459 EXPORT_SYMBOL(__lru_cache_add);
460 
461 /**
462  * lru_cache_add_lru - add a page to a page list
463  * @page: the page to be added to the LRU.
464  * @lru: the LRU list to which the page is added.
465  */
lru_cache_add_lru(struct page * page,enum lru_list lru)466 void lru_cache_add_lru(struct page *page, enum lru_list lru)
467 {
468 	if (PageActive(page)) {
469 		VM_BUG_ON(PageUnevictable(page));
470 		ClearPageActive(page);
471 	} else if (PageUnevictable(page)) {
472 		VM_BUG_ON(PageActive(page));
473 		ClearPageUnevictable(page);
474 	}
475 
476 	VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
477 	__lru_cache_add(page, lru);
478 }
479 
480 /**
481  * add_page_to_unevictable_list - add a page to the unevictable list
482  * @page:  the page to be added to the unevictable list
483  *
484  * Add page directly to its zone's unevictable list.  To avoid races with
485  * tasks that might be making the page evictable, through eg. munlock,
486  * munmap or exit, while it's not on the lru, we want to add the page
487  * while it's locked or otherwise "invisible" to other tasks.  This is
488  * difficult to do when using the pagevec cache, so bypass that.
489  */
add_page_to_unevictable_list(struct page * page)490 void add_page_to_unevictable_list(struct page *page)
491 {
492 	struct zone *zone = page_zone(page);
493 
494 	spin_lock_irq(&zone->lru_lock);
495 	SetPageUnevictable(page);
496 	SetPageLRU(page);
497 	add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
498 	spin_unlock_irq(&zone->lru_lock);
499 }
500 
501 /*
502  * If the page can not be invalidated, it is moved to the
503  * inactive list to speed up its reclaim.  It is moved to the
504  * head of the list, rather than the tail, to give the flusher
505  * threads some time to write it out, as this is much more
506  * effective than the single-page writeout from reclaim.
507  *
508  * If the page isn't page_mapped and dirty/writeback, the page
509  * could reclaim asap using PG_reclaim.
510  *
511  * 1. active, mapped page -> none
512  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
513  * 3. inactive, mapped page -> none
514  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
515  * 5. inactive, clean -> inactive, tail
516  * 6. Others -> none
517  *
518  * In 4, why it moves inactive's head, the VM expects the page would
519  * be write it out by flusher threads as this is much more effective
520  * than the single-page writeout from reclaim.
521  */
lru_deactivate_fn(struct page * page,void * arg)522 static void lru_deactivate_fn(struct page *page, void *arg)
523 {
524 	int lru, file;
525 	bool active;
526 	struct zone *zone = page_zone(page);
527 
528 	if (!PageLRU(page))
529 		return;
530 
531 	if (PageUnevictable(page))
532 		return;
533 
534 	/* Some processes are using the page */
535 	if (page_mapped(page))
536 		return;
537 
538 	active = PageActive(page);
539 
540 	file = page_is_file_cache(page);
541 	lru = page_lru_base_type(page);
542 	del_page_from_lru_list(zone, page, lru + active);
543 	ClearPageActive(page);
544 	ClearPageReferenced(page);
545 	add_page_to_lru_list(zone, page, lru);
546 
547 	if (PageWriteback(page) || PageDirty(page)) {
548 		/*
549 		 * PG_reclaim could be raced with end_page_writeback
550 		 * It can make readahead confusing.  But race window
551 		 * is _really_ small and  it's non-critical problem.
552 		 */
553 		SetPageReclaim(page);
554 	} else {
555 		struct lruvec *lruvec;
556 		/*
557 		 * The page's writeback ends up during pagevec
558 		 * We moves tha page into tail of inactive.
559 		 */
560 		lruvec = mem_cgroup_lru_move_lists(zone, page, lru, lru);
561 		list_move_tail(&page->lru, &lruvec->lists[lru]);
562 		__count_vm_event(PGROTATED);
563 	}
564 
565 	if (active)
566 		__count_vm_event(PGDEACTIVATE);
567 	update_page_reclaim_stat(zone, page, file, 0);
568 }
569 
570 /*
571  * Drain pages out of the cpu's pagevecs.
572  * Either "cpu" is the current CPU, and preemption has already been
573  * disabled; or "cpu" is being hot-unplugged, and is already dead.
574  */
lru_add_drain_cpu(int cpu)575 void lru_add_drain_cpu(int cpu)
576 {
577 	struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
578 	struct pagevec *pvec;
579 	int lru;
580 
581 	for_each_lru(lru) {
582 		pvec = &pvecs[lru - LRU_BASE];
583 		if (pagevec_count(pvec))
584 			__pagevec_lru_add(pvec, lru);
585 	}
586 
587 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
588 	if (pagevec_count(pvec)) {
589 		unsigned long flags;
590 
591 		/* No harm done if a racing interrupt already did this */
592 		local_irq_save(flags);
593 		pagevec_move_tail(pvec);
594 		local_irq_restore(flags);
595 	}
596 
597 	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
598 	if (pagevec_count(pvec))
599 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
600 
601 	activate_page_drain(cpu);
602 }
603 
604 /**
605  * deactivate_page - forcefully deactivate a page
606  * @page: page to deactivate
607  *
608  * This function hints the VM that @page is a good reclaim candidate,
609  * for example if its invalidation fails due to the page being dirty
610  * or under writeback.
611  */
deactivate_page(struct page * page)612 void deactivate_page(struct page *page)
613 {
614 	/*
615 	 * In a workload with many unevictable page such as mprotect, unevictable
616 	 * page deactivation for accelerating reclaim is pointless.
617 	 */
618 	if (PageUnevictable(page))
619 		return;
620 
621 	if (likely(get_page_unless_zero(page))) {
622 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
623 
624 		if (!pagevec_add(pvec, page))
625 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
626 		put_cpu_var(lru_deactivate_pvecs);
627 	}
628 }
629 
lru_add_drain(void)630 void lru_add_drain(void)
631 {
632 	lru_add_drain_cpu(get_cpu());
633 	put_cpu();
634 }
635 
lru_add_drain_per_cpu(struct work_struct * dummy)636 static void lru_add_drain_per_cpu(struct work_struct *dummy)
637 {
638 	lru_add_drain();
639 }
640 
641 /*
642  * Returns 0 for success
643  */
lru_add_drain_all(void)644 int lru_add_drain_all(void)
645 {
646 	return schedule_on_each_cpu(lru_add_drain_per_cpu);
647 }
648 
649 /*
650  * Batched page_cache_release().  Decrement the reference count on all the
651  * passed pages.  If it fell to zero then remove the page from the LRU and
652  * free it.
653  *
654  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
655  * for the remainder of the operation.
656  *
657  * The locking in this function is against shrink_inactive_list(): we recheck
658  * the page count inside the lock to see whether shrink_inactive_list()
659  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
660  * will free it.
661  */
release_pages(struct page ** pages,int nr,int cold)662 void release_pages(struct page **pages, int nr, int cold)
663 {
664 	int i;
665 	LIST_HEAD(pages_to_free);
666 	struct zone *zone = NULL;
667 	unsigned long uninitialized_var(flags);
668 
669 	for (i = 0; i < nr; i++) {
670 		struct page *page = pages[i];
671 
672 		if (unlikely(PageCompound(page))) {
673 			if (zone) {
674 				spin_unlock_irqrestore(&zone->lru_lock, flags);
675 				zone = NULL;
676 			}
677 			put_compound_page(page);
678 			continue;
679 		}
680 
681 		if (!put_page_testzero(page))
682 			continue;
683 
684 		if (PageLRU(page)) {
685 			struct zone *pagezone = page_zone(page);
686 
687 			if (pagezone != zone) {
688 				if (zone)
689 					spin_unlock_irqrestore(&zone->lru_lock,
690 									flags);
691 				zone = pagezone;
692 				spin_lock_irqsave(&zone->lru_lock, flags);
693 			}
694 			VM_BUG_ON(!PageLRU(page));
695 			__ClearPageLRU(page);
696 			del_page_from_lru_list(zone, page, page_off_lru(page));
697 		}
698 
699 		list_add(&page->lru, &pages_to_free);
700 	}
701 	if (zone)
702 		spin_unlock_irqrestore(&zone->lru_lock, flags);
703 
704 	free_hot_cold_page_list(&pages_to_free, cold);
705 }
706 EXPORT_SYMBOL(release_pages);
707 
708 /*
709  * The pages which we're about to release may be in the deferred lru-addition
710  * queues.  That would prevent them from really being freed right now.  That's
711  * OK from a correctness point of view but is inefficient - those pages may be
712  * cache-warm and we want to give them back to the page allocator ASAP.
713  *
714  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
715  * and __pagevec_lru_add_active() call release_pages() directly to avoid
716  * mutual recursion.
717  */
__pagevec_release(struct pagevec * pvec)718 void __pagevec_release(struct pagevec *pvec)
719 {
720 	lru_add_drain();
721 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
722 	pagevec_reinit(pvec);
723 }
724 EXPORT_SYMBOL(__pagevec_release);
725 
726 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
727 /* used by __split_huge_page_refcount() */
lru_add_page_tail(struct zone * zone,struct page * page,struct page * page_tail)728 void lru_add_page_tail(struct zone* zone,
729 		       struct page *page, struct page *page_tail)
730 {
731 	int uninitialized_var(active);
732 	enum lru_list lru;
733 	const int file = 0;
734 
735 	VM_BUG_ON(!PageHead(page));
736 	VM_BUG_ON(PageCompound(page_tail));
737 	VM_BUG_ON(PageLRU(page_tail));
738 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&zone->lru_lock));
739 
740 	SetPageLRU(page_tail);
741 
742 	if (page_evictable(page_tail, NULL)) {
743 		if (PageActive(page)) {
744 			SetPageActive(page_tail);
745 			active = 1;
746 			lru = LRU_ACTIVE_ANON;
747 		} else {
748 			active = 0;
749 			lru = LRU_INACTIVE_ANON;
750 		}
751 	} else {
752 		SetPageUnevictable(page_tail);
753 		lru = LRU_UNEVICTABLE;
754 	}
755 
756 	if (likely(PageLRU(page)))
757 		list_add_tail(&page_tail->lru, &page->lru);
758 	else {
759 		struct list_head *list_head;
760 		/*
761 		 * Head page has not yet been counted, as an hpage,
762 		 * so we must account for each subpage individually.
763 		 *
764 		 * Use the standard add function to put page_tail on the list,
765 		 * but then correct its position so they all end up in order.
766 		 */
767 		add_page_to_lru_list(zone, page_tail, lru);
768 		list_head = page_tail->lru.prev;
769 		list_move_tail(&page_tail->lru, list_head);
770 	}
771 
772 	if (!PageUnevictable(page))
773 		update_page_reclaim_stat(zone, page_tail, file, active);
774 }
775 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
776 
__pagevec_lru_add_fn(struct page * page,void * arg)777 static void __pagevec_lru_add_fn(struct page *page, void *arg)
778 {
779 	enum lru_list lru = (enum lru_list)arg;
780 	struct zone *zone = page_zone(page);
781 	int file = is_file_lru(lru);
782 	int active = is_active_lru(lru);
783 
784 	VM_BUG_ON(PageActive(page));
785 	VM_BUG_ON(PageUnevictable(page));
786 	VM_BUG_ON(PageLRU(page));
787 
788 	SetPageLRU(page);
789 	if (active)
790 		SetPageActive(page);
791 	add_page_to_lru_list(zone, page, lru);
792 	update_page_reclaim_stat(zone, page, file, active);
793 }
794 
795 /*
796  * Add the passed pages to the LRU, then drop the caller's refcount
797  * on them.  Reinitialises the caller's pagevec.
798  */
__pagevec_lru_add(struct pagevec * pvec,enum lru_list lru)799 void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
800 {
801 	VM_BUG_ON(is_unevictable_lru(lru));
802 
803 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru);
804 }
805 EXPORT_SYMBOL(__pagevec_lru_add);
806 
807 /**
808  * pagevec_lookup - gang pagecache lookup
809  * @pvec:	Where the resulting pages are placed
810  * @mapping:	The address_space to search
811  * @start:	The starting page index
812  * @nr_pages:	The maximum number of pages
813  *
814  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
815  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
816  * reference against the pages in @pvec.
817  *
818  * The search returns a group of mapping-contiguous pages with ascending
819  * indexes.  There may be holes in the indices due to not-present pages.
820  *
821  * pagevec_lookup() returns the number of pages which were found.
822  */
pagevec_lookup(struct pagevec * pvec,struct address_space * mapping,pgoff_t start,unsigned nr_pages)823 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
824 		pgoff_t start, unsigned nr_pages)
825 {
826 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
827 	return pagevec_count(pvec);
828 }
829 EXPORT_SYMBOL(pagevec_lookup);
830 
pagevec_lookup_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,int tag,unsigned nr_pages)831 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
832 		pgoff_t *index, int tag, unsigned nr_pages)
833 {
834 	pvec->nr = find_get_pages_tag(mapping, index, tag,
835 					nr_pages, pvec->pages);
836 	return pagevec_count(pvec);
837 }
838 EXPORT_SYMBOL(pagevec_lookup_tag);
839 
840 /*
841  * Perform any setup for the swap system
842  */
swap_setup(void)843 void __init swap_setup(void)
844 {
845 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
846 
847 #ifdef CONFIG_SWAP
848 	bdi_init(swapper_space.backing_dev_info);
849 #endif
850 
851 	/* Use a smaller cluster for small-memory machines */
852 	if (megs < 16)
853 		page_cluster = 2;
854 	else
855 		page_cluster = 3;
856 	/*
857 	 * Right now other parts of the system means that we
858 	 * _really_ don't want to cluster much more
859 	 */
860 }
861