1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2004-2011 Emulex.  All rights reserved.           *
5  * EMULEX and SLI are trademarks of Emulex.                        *
6  * www.emulex.com                                                  *
7  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
8  *                                                                 *
9  * This program is free software; you can redistribute it and/or   *
10  * modify it under the terms of version 2 of the GNU General       *
11  * Public License as published by the Free Software Foundation.    *
12  * This program is distributed in the hope that it will be useful. *
13  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
14  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
15  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
16  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
17  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
18  * more details, a copy of which can be found in the file COPYING  *
19  * included with this package.                                     *
20  *******************************************************************/
21 #include <linux/pci.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_device.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31 #include <scsi/scsi_tcq.h>
32 #include <scsi/scsi_transport_fc.h>
33 
34 #include "lpfc_version.h"
35 #include "lpfc_hw4.h"
36 #include "lpfc_hw.h"
37 #include "lpfc_sli.h"
38 #include "lpfc_sli4.h"
39 #include "lpfc_nl.h"
40 #include "lpfc_disc.h"
41 #include "lpfc_scsi.h"
42 #include "lpfc.h"
43 #include "lpfc_logmsg.h"
44 #include "lpfc_crtn.h"
45 #include "lpfc_vport.h"
46 
47 #define LPFC_RESET_WAIT  2
48 #define LPFC_ABORT_WAIT  2
49 
50 int _dump_buf_done;
51 
52 static char *dif_op_str[] = {
53 	"SCSI_PROT_NORMAL",
54 	"SCSI_PROT_READ_INSERT",
55 	"SCSI_PROT_WRITE_STRIP",
56 	"SCSI_PROT_READ_STRIP",
57 	"SCSI_PROT_WRITE_INSERT",
58 	"SCSI_PROT_READ_PASS",
59 	"SCSI_PROT_WRITE_PASS",
60 };
61 static void
62 lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb);
63 static void
64 lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb);
65 
66 static void
lpfc_debug_save_data(struct lpfc_hba * phba,struct scsi_cmnd * cmnd)67 lpfc_debug_save_data(struct lpfc_hba *phba, struct scsi_cmnd *cmnd)
68 {
69 	void *src, *dst;
70 	struct scatterlist *sgde = scsi_sglist(cmnd);
71 
72 	if (!_dump_buf_data) {
73 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
74 			"9050 BLKGRD: ERROR %s _dump_buf_data is NULL\n",
75 				__func__);
76 		return;
77 	}
78 
79 
80 	if (!sgde) {
81 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
82 			"9051 BLKGRD: ERROR: data scatterlist is null\n");
83 		return;
84 	}
85 
86 	dst = (void *) _dump_buf_data;
87 	while (sgde) {
88 		src = sg_virt(sgde);
89 		memcpy(dst, src, sgde->length);
90 		dst += sgde->length;
91 		sgde = sg_next(sgde);
92 	}
93 }
94 
95 static void
lpfc_debug_save_dif(struct lpfc_hba * phba,struct scsi_cmnd * cmnd)96 lpfc_debug_save_dif(struct lpfc_hba *phba, struct scsi_cmnd *cmnd)
97 {
98 	void *src, *dst;
99 	struct scatterlist *sgde = scsi_prot_sglist(cmnd);
100 
101 	if (!_dump_buf_dif) {
102 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
103 			"9052 BLKGRD: ERROR %s _dump_buf_data is NULL\n",
104 				__func__);
105 		return;
106 	}
107 
108 	if (!sgde) {
109 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
110 			"9053 BLKGRD: ERROR: prot scatterlist is null\n");
111 		return;
112 	}
113 
114 	dst = _dump_buf_dif;
115 	while (sgde) {
116 		src = sg_virt(sgde);
117 		memcpy(dst, src, sgde->length);
118 		dst += sgde->length;
119 		sgde = sg_next(sgde);
120 	}
121 }
122 
123 /**
124  * lpfc_sli4_set_rsp_sgl_last - Set the last bit in the response sge.
125  * @phba: Pointer to HBA object.
126  * @lpfc_cmd: lpfc scsi command object pointer.
127  *
128  * This function is called from the lpfc_prep_task_mgmt_cmd function to
129  * set the last bit in the response sge entry.
130  **/
131 static void
lpfc_sli4_set_rsp_sgl_last(struct lpfc_hba * phba,struct lpfc_scsi_buf * lpfc_cmd)132 lpfc_sli4_set_rsp_sgl_last(struct lpfc_hba *phba,
133 				struct lpfc_scsi_buf *lpfc_cmd)
134 {
135 	struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
136 	if (sgl) {
137 		sgl += 1;
138 		sgl->word2 = le32_to_cpu(sgl->word2);
139 		bf_set(lpfc_sli4_sge_last, sgl, 1);
140 		sgl->word2 = cpu_to_le32(sgl->word2);
141 	}
142 }
143 
144 /**
145  * lpfc_update_stats - Update statistical data for the command completion
146  * @phba: Pointer to HBA object.
147  * @lpfc_cmd: lpfc scsi command object pointer.
148  *
149  * This function is called when there is a command completion and this
150  * function updates the statistical data for the command completion.
151  **/
152 static void
lpfc_update_stats(struct lpfc_hba * phba,struct lpfc_scsi_buf * lpfc_cmd)153 lpfc_update_stats(struct lpfc_hba *phba, struct  lpfc_scsi_buf *lpfc_cmd)
154 {
155 	struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
156 	struct lpfc_nodelist *pnode = rdata->pnode;
157 	struct scsi_cmnd *cmd = lpfc_cmd->pCmd;
158 	unsigned long flags;
159 	struct Scsi_Host  *shost = cmd->device->host;
160 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
161 	unsigned long latency;
162 	int i;
163 
164 	if (cmd->result)
165 		return;
166 
167 	latency = jiffies_to_msecs((long)jiffies - (long)lpfc_cmd->start_time);
168 
169 	spin_lock_irqsave(shost->host_lock, flags);
170 	if (!vport->stat_data_enabled ||
171 		vport->stat_data_blocked ||
172 		!pnode ||
173 		!pnode->lat_data ||
174 		(phba->bucket_type == LPFC_NO_BUCKET)) {
175 		spin_unlock_irqrestore(shost->host_lock, flags);
176 		return;
177 	}
178 
179 	if (phba->bucket_type == LPFC_LINEAR_BUCKET) {
180 		i = (latency + phba->bucket_step - 1 - phba->bucket_base)/
181 			phba->bucket_step;
182 		/* check array subscript bounds */
183 		if (i < 0)
184 			i = 0;
185 		else if (i >= LPFC_MAX_BUCKET_COUNT)
186 			i = LPFC_MAX_BUCKET_COUNT - 1;
187 	} else {
188 		for (i = 0; i < LPFC_MAX_BUCKET_COUNT-1; i++)
189 			if (latency <= (phba->bucket_base +
190 				((1<<i)*phba->bucket_step)))
191 				break;
192 	}
193 
194 	pnode->lat_data[i].cmd_count++;
195 	spin_unlock_irqrestore(shost->host_lock, flags);
196 }
197 
198 /**
199  * lpfc_send_sdev_queuedepth_change_event - Posts a queuedepth change event
200  * @phba: Pointer to HBA context object.
201  * @vport: Pointer to vport object.
202  * @ndlp: Pointer to FC node associated with the target.
203  * @lun: Lun number of the scsi device.
204  * @old_val: Old value of the queue depth.
205  * @new_val: New value of the queue depth.
206  *
207  * This function sends an event to the mgmt application indicating
208  * there is a change in the scsi device queue depth.
209  **/
210 static void
lpfc_send_sdev_queuedepth_change_event(struct lpfc_hba * phba,struct lpfc_vport * vport,struct lpfc_nodelist * ndlp,uint32_t lun,uint32_t old_val,uint32_t new_val)211 lpfc_send_sdev_queuedepth_change_event(struct lpfc_hba *phba,
212 		struct lpfc_vport  *vport,
213 		struct lpfc_nodelist *ndlp,
214 		uint32_t lun,
215 		uint32_t old_val,
216 		uint32_t new_val)
217 {
218 	struct lpfc_fast_path_event *fast_path_evt;
219 	unsigned long flags;
220 
221 	fast_path_evt = lpfc_alloc_fast_evt(phba);
222 	if (!fast_path_evt)
223 		return;
224 
225 	fast_path_evt->un.queue_depth_evt.scsi_event.event_type =
226 		FC_REG_SCSI_EVENT;
227 	fast_path_evt->un.queue_depth_evt.scsi_event.subcategory =
228 		LPFC_EVENT_VARQUEDEPTH;
229 
230 	/* Report all luns with change in queue depth */
231 	fast_path_evt->un.queue_depth_evt.scsi_event.lun = lun;
232 	if (ndlp && NLP_CHK_NODE_ACT(ndlp)) {
233 		memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwpn,
234 			&ndlp->nlp_portname, sizeof(struct lpfc_name));
235 		memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwnn,
236 			&ndlp->nlp_nodename, sizeof(struct lpfc_name));
237 	}
238 
239 	fast_path_evt->un.queue_depth_evt.oldval = old_val;
240 	fast_path_evt->un.queue_depth_evt.newval = new_val;
241 	fast_path_evt->vport = vport;
242 
243 	fast_path_evt->work_evt.evt = LPFC_EVT_FASTPATH_MGMT_EVT;
244 	spin_lock_irqsave(&phba->hbalock, flags);
245 	list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list);
246 	spin_unlock_irqrestore(&phba->hbalock, flags);
247 	lpfc_worker_wake_up(phba);
248 
249 	return;
250 }
251 
252 /**
253  * lpfc_change_queue_depth - Alter scsi device queue depth
254  * @sdev: Pointer the scsi device on which to change the queue depth.
255  * @qdepth: New queue depth to set the sdev to.
256  * @reason: The reason for the queue depth change.
257  *
258  * This function is called by the midlayer and the LLD to alter the queue
259  * depth for a scsi device. This function sets the queue depth to the new
260  * value and sends an event out to log the queue depth change.
261  **/
262 int
lpfc_change_queue_depth(struct scsi_device * sdev,int qdepth,int reason)263 lpfc_change_queue_depth(struct scsi_device *sdev, int qdepth, int reason)
264 {
265 	struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
266 	struct lpfc_hba   *phba = vport->phba;
267 	struct lpfc_rport_data *rdata;
268 	unsigned long new_queue_depth, old_queue_depth;
269 
270 	old_queue_depth = sdev->queue_depth;
271 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
272 	new_queue_depth = sdev->queue_depth;
273 	rdata = sdev->hostdata;
274 	if (rdata)
275 		lpfc_send_sdev_queuedepth_change_event(phba, vport,
276 						       rdata->pnode, sdev->lun,
277 						       old_queue_depth,
278 						       new_queue_depth);
279 	return sdev->queue_depth;
280 }
281 
282 /**
283  * lpfc_rampdown_queue_depth - Post RAMP_DOWN_QUEUE event to worker thread
284  * @phba: The Hba for which this call is being executed.
285  *
286  * This routine is called when there is resource error in driver or firmware.
287  * This routine posts WORKER_RAMP_DOWN_QUEUE event for @phba. This routine
288  * posts at most 1 event each second. This routine wakes up worker thread of
289  * @phba to process WORKER_RAM_DOWN_EVENT event.
290  *
291  * This routine should be called with no lock held.
292  **/
293 void
lpfc_rampdown_queue_depth(struct lpfc_hba * phba)294 lpfc_rampdown_queue_depth(struct lpfc_hba *phba)
295 {
296 	unsigned long flags;
297 	uint32_t evt_posted;
298 
299 	spin_lock_irqsave(&phba->hbalock, flags);
300 	atomic_inc(&phba->num_rsrc_err);
301 	phba->last_rsrc_error_time = jiffies;
302 
303 	if ((phba->last_ramp_down_time + QUEUE_RAMP_DOWN_INTERVAL) > jiffies) {
304 		spin_unlock_irqrestore(&phba->hbalock, flags);
305 		return;
306 	}
307 
308 	phba->last_ramp_down_time = jiffies;
309 
310 	spin_unlock_irqrestore(&phba->hbalock, flags);
311 
312 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
313 	evt_posted = phba->pport->work_port_events & WORKER_RAMP_DOWN_QUEUE;
314 	if (!evt_posted)
315 		phba->pport->work_port_events |= WORKER_RAMP_DOWN_QUEUE;
316 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
317 
318 	if (!evt_posted)
319 		lpfc_worker_wake_up(phba);
320 	return;
321 }
322 
323 /**
324  * lpfc_rampup_queue_depth - Post RAMP_UP_QUEUE event for worker thread
325  * @phba: The Hba for which this call is being executed.
326  *
327  * This routine post WORKER_RAMP_UP_QUEUE event for @phba vport. This routine
328  * post at most 1 event every 5 minute after last_ramp_up_time or
329  * last_rsrc_error_time.  This routine wakes up worker thread of @phba
330  * to process WORKER_RAM_DOWN_EVENT event.
331  *
332  * This routine should be called with no lock held.
333  **/
334 static inline void
lpfc_rampup_queue_depth(struct lpfc_vport * vport,uint32_t queue_depth)335 lpfc_rampup_queue_depth(struct lpfc_vport  *vport,
336 			uint32_t queue_depth)
337 {
338 	unsigned long flags;
339 	struct lpfc_hba *phba = vport->phba;
340 	uint32_t evt_posted;
341 	atomic_inc(&phba->num_cmd_success);
342 
343 	if (vport->cfg_lun_queue_depth <= queue_depth)
344 		return;
345 	spin_lock_irqsave(&phba->hbalock, flags);
346 	if (time_before(jiffies,
347 			phba->last_ramp_up_time + QUEUE_RAMP_UP_INTERVAL) ||
348 	    time_before(jiffies,
349 			phba->last_rsrc_error_time + QUEUE_RAMP_UP_INTERVAL)) {
350 		spin_unlock_irqrestore(&phba->hbalock, flags);
351 		return;
352 	}
353 	phba->last_ramp_up_time = jiffies;
354 	spin_unlock_irqrestore(&phba->hbalock, flags);
355 
356 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
357 	evt_posted = phba->pport->work_port_events & WORKER_RAMP_UP_QUEUE;
358 	if (!evt_posted)
359 		phba->pport->work_port_events |= WORKER_RAMP_UP_QUEUE;
360 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
361 
362 	if (!evt_posted)
363 		lpfc_worker_wake_up(phba);
364 	return;
365 }
366 
367 /**
368  * lpfc_ramp_down_queue_handler - WORKER_RAMP_DOWN_QUEUE event handler
369  * @phba: The Hba for which this call is being executed.
370  *
371  * This routine is called to  process WORKER_RAMP_DOWN_QUEUE event for worker
372  * thread.This routine reduces queue depth for all scsi device on each vport
373  * associated with @phba.
374  **/
375 void
lpfc_ramp_down_queue_handler(struct lpfc_hba * phba)376 lpfc_ramp_down_queue_handler(struct lpfc_hba *phba)
377 {
378 	struct lpfc_vport **vports;
379 	struct Scsi_Host  *shost;
380 	struct scsi_device *sdev;
381 	unsigned long new_queue_depth;
382 	unsigned long num_rsrc_err, num_cmd_success;
383 	int i;
384 
385 	num_rsrc_err = atomic_read(&phba->num_rsrc_err);
386 	num_cmd_success = atomic_read(&phba->num_cmd_success);
387 
388 	vports = lpfc_create_vport_work_array(phba);
389 	if (vports != NULL)
390 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
391 			shost = lpfc_shost_from_vport(vports[i]);
392 			shost_for_each_device(sdev, shost) {
393 				new_queue_depth =
394 					sdev->queue_depth * num_rsrc_err /
395 					(num_rsrc_err + num_cmd_success);
396 				if (!new_queue_depth)
397 					new_queue_depth = sdev->queue_depth - 1;
398 				else
399 					new_queue_depth = sdev->queue_depth -
400 								new_queue_depth;
401 				lpfc_change_queue_depth(sdev, new_queue_depth,
402 							SCSI_QDEPTH_DEFAULT);
403 			}
404 		}
405 	lpfc_destroy_vport_work_array(phba, vports);
406 	atomic_set(&phba->num_rsrc_err, 0);
407 	atomic_set(&phba->num_cmd_success, 0);
408 }
409 
410 /**
411  * lpfc_ramp_up_queue_handler - WORKER_RAMP_UP_QUEUE event handler
412  * @phba: The Hba for which this call is being executed.
413  *
414  * This routine is called to  process WORKER_RAMP_UP_QUEUE event for worker
415  * thread.This routine increases queue depth for all scsi device on each vport
416  * associated with @phba by 1. This routine also sets @phba num_rsrc_err and
417  * num_cmd_success to zero.
418  **/
419 void
lpfc_ramp_up_queue_handler(struct lpfc_hba * phba)420 lpfc_ramp_up_queue_handler(struct lpfc_hba *phba)
421 {
422 	struct lpfc_vport **vports;
423 	struct Scsi_Host  *shost;
424 	struct scsi_device *sdev;
425 	int i;
426 
427 	vports = lpfc_create_vport_work_array(phba);
428 	if (vports != NULL)
429 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
430 			shost = lpfc_shost_from_vport(vports[i]);
431 			shost_for_each_device(sdev, shost) {
432 				if (vports[i]->cfg_lun_queue_depth <=
433 				    sdev->queue_depth)
434 					continue;
435 				lpfc_change_queue_depth(sdev,
436 							sdev->queue_depth+1,
437 							SCSI_QDEPTH_RAMP_UP);
438 			}
439 		}
440 	lpfc_destroy_vport_work_array(phba, vports);
441 	atomic_set(&phba->num_rsrc_err, 0);
442 	atomic_set(&phba->num_cmd_success, 0);
443 }
444 
445 /**
446  * lpfc_scsi_dev_block - set all scsi hosts to block state
447  * @phba: Pointer to HBA context object.
448  *
449  * This function walks vport list and set each SCSI host to block state
450  * by invoking fc_remote_port_delete() routine. This function is invoked
451  * with EEH when device's PCI slot has been permanently disabled.
452  **/
453 void
lpfc_scsi_dev_block(struct lpfc_hba * phba)454 lpfc_scsi_dev_block(struct lpfc_hba *phba)
455 {
456 	struct lpfc_vport **vports;
457 	struct Scsi_Host  *shost;
458 	struct scsi_device *sdev;
459 	struct fc_rport *rport;
460 	int i;
461 
462 	vports = lpfc_create_vport_work_array(phba);
463 	if (vports != NULL)
464 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
465 			shost = lpfc_shost_from_vport(vports[i]);
466 			shost_for_each_device(sdev, shost) {
467 				rport = starget_to_rport(scsi_target(sdev));
468 				fc_remote_port_delete(rport);
469 			}
470 		}
471 	lpfc_destroy_vport_work_array(phba, vports);
472 }
473 
474 /**
475  * lpfc_new_scsi_buf_s3 - Scsi buffer allocator for HBA with SLI3 IF spec
476  * @vport: The virtual port for which this call being executed.
477  * @num_to_allocate: The requested number of buffers to allocate.
478  *
479  * This routine allocates a scsi buffer for device with SLI-3 interface spec,
480  * the scsi buffer contains all the necessary information needed to initiate
481  * a SCSI I/O. The non-DMAable buffer region contains information to build
482  * the IOCB. The DMAable region contains memory for the FCP CMND, FCP RSP,
483  * and the initial BPL. In addition to allocating memory, the FCP CMND and
484  * FCP RSP BDEs are setup in the BPL and the BPL BDE is setup in the IOCB.
485  *
486  * Return codes:
487  *   int - number of scsi buffers that were allocated.
488  *   0 = failure, less than num_to_alloc is a partial failure.
489  **/
490 static int
lpfc_new_scsi_buf_s3(struct lpfc_vport * vport,int num_to_alloc)491 lpfc_new_scsi_buf_s3(struct lpfc_vport *vport, int num_to_alloc)
492 {
493 	struct lpfc_hba *phba = vport->phba;
494 	struct lpfc_scsi_buf *psb;
495 	struct ulp_bde64 *bpl;
496 	IOCB_t *iocb;
497 	dma_addr_t pdma_phys_fcp_cmd;
498 	dma_addr_t pdma_phys_fcp_rsp;
499 	dma_addr_t pdma_phys_bpl;
500 	uint16_t iotag;
501 	int bcnt;
502 
503 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
504 		psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL);
505 		if (!psb)
506 			break;
507 
508 		/*
509 		 * Get memory from the pci pool to map the virt space to pci
510 		 * bus space for an I/O.  The DMA buffer includes space for the
511 		 * struct fcp_cmnd, struct fcp_rsp and the number of bde's
512 		 * necessary to support the sg_tablesize.
513 		 */
514 		psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool,
515 					GFP_KERNEL, &psb->dma_handle);
516 		if (!psb->data) {
517 			kfree(psb);
518 			break;
519 		}
520 
521 		/* Initialize virtual ptrs to dma_buf region. */
522 		memset(psb->data, 0, phba->cfg_sg_dma_buf_size);
523 
524 		/* Allocate iotag for psb->cur_iocbq. */
525 		iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq);
526 		if (iotag == 0) {
527 			pci_pool_free(phba->lpfc_scsi_dma_buf_pool,
528 					psb->data, psb->dma_handle);
529 			kfree(psb);
530 			break;
531 		}
532 		psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP;
533 
534 		psb->fcp_cmnd = psb->data;
535 		psb->fcp_rsp = psb->data + sizeof(struct fcp_cmnd);
536 		psb->fcp_bpl = psb->data + sizeof(struct fcp_cmnd) +
537 			sizeof(struct fcp_rsp);
538 
539 		/* Initialize local short-hand pointers. */
540 		bpl = psb->fcp_bpl;
541 		pdma_phys_fcp_cmd = psb->dma_handle;
542 		pdma_phys_fcp_rsp = psb->dma_handle + sizeof(struct fcp_cmnd);
543 		pdma_phys_bpl = psb->dma_handle + sizeof(struct fcp_cmnd) +
544 			sizeof(struct fcp_rsp);
545 
546 		/*
547 		 * The first two bdes are the FCP_CMD and FCP_RSP. The balance
548 		 * are sg list bdes.  Initialize the first two and leave the
549 		 * rest for queuecommand.
550 		 */
551 		bpl[0].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_cmd));
552 		bpl[0].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_cmd));
553 		bpl[0].tus.f.bdeSize = sizeof(struct fcp_cmnd);
554 		bpl[0].tus.f.bdeFlags = BUFF_TYPE_BDE_64;
555 		bpl[0].tus.w = le32_to_cpu(bpl[0].tus.w);
556 
557 		/* Setup the physical region for the FCP RSP */
558 		bpl[1].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_rsp));
559 		bpl[1].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_rsp));
560 		bpl[1].tus.f.bdeSize = sizeof(struct fcp_rsp);
561 		bpl[1].tus.f.bdeFlags = BUFF_TYPE_BDE_64;
562 		bpl[1].tus.w = le32_to_cpu(bpl[1].tus.w);
563 
564 		/*
565 		 * Since the IOCB for the FCP I/O is built into this
566 		 * lpfc_scsi_buf, initialize it with all known data now.
567 		 */
568 		iocb = &psb->cur_iocbq.iocb;
569 		iocb->un.fcpi64.bdl.ulpIoTag32 = 0;
570 		if ((phba->sli_rev == 3) &&
571 				!(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) {
572 			/* fill in immediate fcp command BDE */
573 			iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_IMMED;
574 			iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd);
575 			iocb->un.fcpi64.bdl.addrLow = offsetof(IOCB_t,
576 					unsli3.fcp_ext.icd);
577 			iocb->un.fcpi64.bdl.addrHigh = 0;
578 			iocb->ulpBdeCount = 0;
579 			iocb->ulpLe = 0;
580 			/* fill in response BDE */
581 			iocb->unsli3.fcp_ext.rbde.tus.f.bdeFlags =
582 							BUFF_TYPE_BDE_64;
583 			iocb->unsli3.fcp_ext.rbde.tus.f.bdeSize =
584 				sizeof(struct fcp_rsp);
585 			iocb->unsli3.fcp_ext.rbde.addrLow =
586 				putPaddrLow(pdma_phys_fcp_rsp);
587 			iocb->unsli3.fcp_ext.rbde.addrHigh =
588 				putPaddrHigh(pdma_phys_fcp_rsp);
589 		} else {
590 			iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
591 			iocb->un.fcpi64.bdl.bdeSize =
592 					(2 * sizeof(struct ulp_bde64));
593 			iocb->un.fcpi64.bdl.addrLow =
594 					putPaddrLow(pdma_phys_bpl);
595 			iocb->un.fcpi64.bdl.addrHigh =
596 					putPaddrHigh(pdma_phys_bpl);
597 			iocb->ulpBdeCount = 1;
598 			iocb->ulpLe = 1;
599 		}
600 		iocb->ulpClass = CLASS3;
601 		psb->status = IOSTAT_SUCCESS;
602 		/* Put it back into the SCSI buffer list */
603 		psb->cur_iocbq.context1  = psb;
604 		lpfc_release_scsi_buf_s3(phba, psb);
605 
606 	}
607 
608 	return bcnt;
609 }
610 
611 /**
612  * lpfc_sli4_vport_delete_fcp_xri_aborted -Remove all ndlp references for vport
613  * @vport: pointer to lpfc vport data structure.
614  *
615  * This routine is invoked by the vport cleanup for deletions and the cleanup
616  * for an ndlp on removal.
617  **/
618 void
lpfc_sli4_vport_delete_fcp_xri_aborted(struct lpfc_vport * vport)619 lpfc_sli4_vport_delete_fcp_xri_aborted(struct lpfc_vport *vport)
620 {
621 	struct lpfc_hba *phba = vport->phba;
622 	struct lpfc_scsi_buf *psb, *next_psb;
623 	unsigned long iflag = 0;
624 
625 	spin_lock_irqsave(&phba->hbalock, iflag);
626 	spin_lock(&phba->sli4_hba.abts_scsi_buf_list_lock);
627 	list_for_each_entry_safe(psb, next_psb,
628 				&phba->sli4_hba.lpfc_abts_scsi_buf_list, list) {
629 		if (psb->rdata && psb->rdata->pnode
630 			&& psb->rdata->pnode->vport == vport)
631 			psb->rdata = NULL;
632 	}
633 	spin_unlock(&phba->sli4_hba.abts_scsi_buf_list_lock);
634 	spin_unlock_irqrestore(&phba->hbalock, iflag);
635 }
636 
637 /**
638  * lpfc_sli4_fcp_xri_aborted - Fast-path process of fcp xri abort
639  * @phba: pointer to lpfc hba data structure.
640  * @axri: pointer to the fcp xri abort wcqe structure.
641  *
642  * This routine is invoked by the worker thread to process a SLI4 fast-path
643  * FCP aborted xri.
644  **/
645 void
lpfc_sli4_fcp_xri_aborted(struct lpfc_hba * phba,struct sli4_wcqe_xri_aborted * axri)646 lpfc_sli4_fcp_xri_aborted(struct lpfc_hba *phba,
647 			  struct sli4_wcqe_xri_aborted *axri)
648 {
649 	uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri);
650 	uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri);
651 	struct lpfc_scsi_buf *psb, *next_psb;
652 	unsigned long iflag = 0;
653 	struct lpfc_iocbq *iocbq;
654 	int i;
655 	struct lpfc_nodelist *ndlp;
656 	int rrq_empty = 0;
657 	struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING];
658 
659 	spin_lock_irqsave(&phba->hbalock, iflag);
660 	spin_lock(&phba->sli4_hba.abts_scsi_buf_list_lock);
661 	list_for_each_entry_safe(psb, next_psb,
662 		&phba->sli4_hba.lpfc_abts_scsi_buf_list, list) {
663 		if (psb->cur_iocbq.sli4_xritag == xri) {
664 			list_del(&psb->list);
665 			psb->exch_busy = 0;
666 			psb->status = IOSTAT_SUCCESS;
667 			spin_unlock(
668 				&phba->sli4_hba.abts_scsi_buf_list_lock);
669 			if (psb->rdata && psb->rdata->pnode)
670 				ndlp = psb->rdata->pnode;
671 			else
672 				ndlp = NULL;
673 
674 			rrq_empty = list_empty(&phba->active_rrq_list);
675 			spin_unlock_irqrestore(&phba->hbalock, iflag);
676 			if (ndlp)
677 				lpfc_set_rrq_active(phba, ndlp, xri, rxid, 1);
678 			lpfc_release_scsi_buf_s4(phba, psb);
679 			if (rrq_empty)
680 				lpfc_worker_wake_up(phba);
681 			return;
682 		}
683 	}
684 	spin_unlock(&phba->sli4_hba.abts_scsi_buf_list_lock);
685 	for (i = 1; i <= phba->sli.last_iotag; i++) {
686 		iocbq = phba->sli.iocbq_lookup[i];
687 
688 		if (!(iocbq->iocb_flag &  LPFC_IO_FCP) ||
689 			(iocbq->iocb_flag & LPFC_IO_LIBDFC))
690 			continue;
691 		if (iocbq->sli4_xritag != xri)
692 			continue;
693 		psb = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq);
694 		psb->exch_busy = 0;
695 		spin_unlock_irqrestore(&phba->hbalock, iflag);
696 		if (pring->txq_cnt)
697 			lpfc_worker_wake_up(phba);
698 		return;
699 
700 	}
701 	spin_unlock_irqrestore(&phba->hbalock, iflag);
702 }
703 
704 /**
705  * lpfc_sli4_repost_scsi_sgl_list - Repsot the Scsi buffers sgl pages as block
706  * @phba: pointer to lpfc hba data structure.
707  *
708  * This routine walks the list of scsi buffers that have been allocated and
709  * repost them to the HBA by using SGL block post. This is needed after a
710  * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
711  * is responsible for moving all scsi buffers on the lpfc_abts_scsi_sgl_list
712  * to the lpfc_scsi_buf_list. If the repost fails, reject all scsi buffers.
713  *
714  * Returns: 0 = success, non-zero failure.
715  **/
716 int
lpfc_sli4_repost_scsi_sgl_list(struct lpfc_hba * phba)717 lpfc_sli4_repost_scsi_sgl_list(struct lpfc_hba *phba)
718 {
719 	struct lpfc_scsi_buf *psb;
720 	int index, status, bcnt = 0, rcnt = 0, rc = 0;
721 	LIST_HEAD(sblist);
722 
723 	for (index = 0; index < phba->sli4_hba.scsi_xri_cnt; index++) {
724 		psb = phba->sli4_hba.lpfc_scsi_psb_array[index];
725 		if (psb) {
726 			/* Remove from SCSI buffer list */
727 			list_del(&psb->list);
728 			/* Add it to a local SCSI buffer list */
729 			list_add_tail(&psb->list, &sblist);
730 			if (++rcnt == LPFC_NEMBED_MBOX_SGL_CNT) {
731 				bcnt = rcnt;
732 				rcnt = 0;
733 			}
734 		} else
735 			/* A hole present in the XRI array, need to skip */
736 			bcnt = rcnt;
737 
738 		if (index == phba->sli4_hba.scsi_xri_cnt - 1)
739 			/* End of XRI array for SCSI buffer, complete */
740 			bcnt = rcnt;
741 
742 		/* Continue until collect up to a nembed page worth of sgls */
743 		if (bcnt == 0)
744 			continue;
745 		/* Now, post the SCSI buffer list sgls as a block */
746 		status = lpfc_sli4_post_scsi_sgl_block(phba, &sblist, bcnt);
747 		/* Reset SCSI buffer count for next round of posting */
748 		bcnt = 0;
749 		while (!list_empty(&sblist)) {
750 			list_remove_head(&sblist, psb, struct lpfc_scsi_buf,
751 					 list);
752 			if (status) {
753 				/* Put this back on the abort scsi list */
754 				psb->exch_busy = 1;
755 				rc++;
756 			} else {
757 				psb->exch_busy = 0;
758 				psb->status = IOSTAT_SUCCESS;
759 			}
760 			/* Put it back into the SCSI buffer list */
761 			lpfc_release_scsi_buf_s4(phba, psb);
762 		}
763 	}
764 	return rc;
765 }
766 
767 /**
768  * lpfc_new_scsi_buf_s4 - Scsi buffer allocator for HBA with SLI4 IF spec
769  * @vport: The virtual port for which this call being executed.
770  * @num_to_allocate: The requested number of buffers to allocate.
771  *
772  * This routine allocates a scsi buffer for device with SLI-4 interface spec,
773  * the scsi buffer contains all the necessary information needed to initiate
774  * a SCSI I/O.
775  *
776  * Return codes:
777  *   int - number of scsi buffers that were allocated.
778  *   0 = failure, less than num_to_alloc is a partial failure.
779  **/
780 static int
lpfc_new_scsi_buf_s4(struct lpfc_vport * vport,int num_to_alloc)781 lpfc_new_scsi_buf_s4(struct lpfc_vport *vport, int num_to_alloc)
782 {
783 	struct lpfc_hba *phba = vport->phba;
784 	struct lpfc_scsi_buf *psb;
785 	struct sli4_sge *sgl;
786 	IOCB_t *iocb;
787 	dma_addr_t pdma_phys_fcp_cmd;
788 	dma_addr_t pdma_phys_fcp_rsp;
789 	dma_addr_t pdma_phys_bpl, pdma_phys_bpl1;
790 	uint16_t iotag, last_xritag = NO_XRI;
791 	int status = 0, index;
792 	int bcnt;
793 	int non_sequential_xri = 0;
794 	LIST_HEAD(sblist);
795 
796 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
797 		psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL);
798 		if (!psb)
799 			break;
800 
801 		/*
802 		 * Get memory from the pci pool to map the virt space to pci bus
803 		 * space for an I/O.  The DMA buffer includes space for the
804 		 * struct fcp_cmnd, struct fcp_rsp and the number of bde's
805 		 * necessary to support the sg_tablesize.
806 		 */
807 		psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool,
808 						GFP_KERNEL, &psb->dma_handle);
809 		if (!psb->data) {
810 			kfree(psb);
811 			break;
812 		}
813 
814 		/* Initialize virtual ptrs to dma_buf region. */
815 		memset(psb->data, 0, phba->cfg_sg_dma_buf_size);
816 
817 		/* Allocate iotag for psb->cur_iocbq. */
818 		iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq);
819 		if (iotag == 0) {
820 			pci_pool_free(phba->lpfc_scsi_dma_buf_pool,
821 				psb->data, psb->dma_handle);
822 			kfree(psb);
823 			break;
824 		}
825 
826 		psb->cur_iocbq.sli4_xritag = lpfc_sli4_next_xritag(phba);
827 		if (psb->cur_iocbq.sli4_xritag == NO_XRI) {
828 			pci_pool_free(phba->lpfc_scsi_dma_buf_pool,
829 			      psb->data, psb->dma_handle);
830 			kfree(psb);
831 			break;
832 		}
833 		if (last_xritag != NO_XRI
834 			&& psb->cur_iocbq.sli4_xritag != (last_xritag+1)) {
835 			non_sequential_xri = 1;
836 		} else
837 			list_add_tail(&psb->list, &sblist);
838 		last_xritag = psb->cur_iocbq.sli4_xritag;
839 
840 		index = phba->sli4_hba.scsi_xri_cnt++;
841 		psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP;
842 
843 		psb->fcp_bpl = psb->data;
844 		psb->fcp_cmnd = (psb->data + phba->cfg_sg_dma_buf_size)
845 			- (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp));
846 		psb->fcp_rsp = (struct fcp_rsp *)((uint8_t *)psb->fcp_cmnd +
847 					sizeof(struct fcp_cmnd));
848 
849 		/* Initialize local short-hand pointers. */
850 		sgl = (struct sli4_sge *)psb->fcp_bpl;
851 		pdma_phys_bpl = psb->dma_handle;
852 		pdma_phys_fcp_cmd =
853 			(psb->dma_handle + phba->cfg_sg_dma_buf_size)
854 			 - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp));
855 		pdma_phys_fcp_rsp = pdma_phys_fcp_cmd + sizeof(struct fcp_cmnd);
856 
857 		/*
858 		 * The first two bdes are the FCP_CMD and FCP_RSP.  The balance
859 		 * are sg list bdes.  Initialize the first two and leave the
860 		 * rest for queuecommand.
861 		 */
862 		sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_cmd));
863 		sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_cmd));
864 		bf_set(lpfc_sli4_sge_last, sgl, 0);
865 		sgl->word2 = cpu_to_le32(sgl->word2);
866 		sgl->sge_len = cpu_to_le32(sizeof(struct fcp_cmnd));
867 		sgl++;
868 
869 		/* Setup the physical region for the FCP RSP */
870 		sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_rsp));
871 		sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_rsp));
872 		bf_set(lpfc_sli4_sge_last, sgl, 1);
873 		sgl->word2 = cpu_to_le32(sgl->word2);
874 		sgl->sge_len = cpu_to_le32(sizeof(struct fcp_rsp));
875 
876 		/*
877 		 * Since the IOCB for the FCP I/O is built into this
878 		 * lpfc_scsi_buf, initialize it with all known data now.
879 		 */
880 		iocb = &psb->cur_iocbq.iocb;
881 		iocb->un.fcpi64.bdl.ulpIoTag32 = 0;
882 		iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
883 		/* setting the BLP size to 2 * sizeof BDE may not be correct.
884 		 * We are setting the bpl to point to out sgl. An sgl's
885 		 * entries are 16 bytes, a bpl entries are 12 bytes.
886 		 */
887 		iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd);
888 		iocb->un.fcpi64.bdl.addrLow = putPaddrLow(pdma_phys_fcp_cmd);
889 		iocb->un.fcpi64.bdl.addrHigh = putPaddrHigh(pdma_phys_fcp_cmd);
890 		iocb->ulpBdeCount = 1;
891 		iocb->ulpLe = 1;
892 		iocb->ulpClass = CLASS3;
893 		psb->cur_iocbq.context1  = psb;
894 		if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
895 			pdma_phys_bpl1 = pdma_phys_bpl + SGL_PAGE_SIZE;
896 		else
897 			pdma_phys_bpl1 = 0;
898 		psb->dma_phys_bpl = pdma_phys_bpl;
899 		phba->sli4_hba.lpfc_scsi_psb_array[index] = psb;
900 		if (non_sequential_xri) {
901 			status = lpfc_sli4_post_sgl(phba, pdma_phys_bpl,
902 						pdma_phys_bpl1,
903 						psb->cur_iocbq.sli4_xritag);
904 			if (status) {
905 				/* Put this back on the abort scsi list */
906 				psb->exch_busy = 1;
907 			} else {
908 				psb->exch_busy = 0;
909 				psb->status = IOSTAT_SUCCESS;
910 			}
911 			/* Put it back into the SCSI buffer list */
912 			lpfc_release_scsi_buf_s4(phba, psb);
913 			break;
914 		}
915 	}
916 	if (bcnt) {
917 		status = lpfc_sli4_post_scsi_sgl_block(phba, &sblist, bcnt);
918 		/* Reset SCSI buffer count for next round of posting */
919 		while (!list_empty(&sblist)) {
920 			list_remove_head(&sblist, psb, struct lpfc_scsi_buf,
921 				 list);
922 			if (status) {
923 				/* Put this back on the abort scsi list */
924 				psb->exch_busy = 1;
925 			} else {
926 				psb->exch_busy = 0;
927 				psb->status = IOSTAT_SUCCESS;
928 			}
929 			/* Put it back into the SCSI buffer list */
930 			lpfc_release_scsi_buf_s4(phba, psb);
931 		}
932 	}
933 
934 	return bcnt + non_sequential_xri;
935 }
936 
937 /**
938  * lpfc_new_scsi_buf - Wrapper funciton for scsi buffer allocator
939  * @vport: The virtual port for which this call being executed.
940  * @num_to_allocate: The requested number of buffers to allocate.
941  *
942  * This routine wraps the actual SCSI buffer allocator function pointer from
943  * the lpfc_hba struct.
944  *
945  * Return codes:
946  *   int - number of scsi buffers that were allocated.
947  *   0 = failure, less than num_to_alloc is a partial failure.
948  **/
949 static inline int
lpfc_new_scsi_buf(struct lpfc_vport * vport,int num_to_alloc)950 lpfc_new_scsi_buf(struct lpfc_vport *vport, int num_to_alloc)
951 {
952 	return vport->phba->lpfc_new_scsi_buf(vport, num_to_alloc);
953 }
954 
955 /**
956  * lpfc_get_scsi_buf_s3 - Get a scsi buffer from lpfc_scsi_buf_list of the HBA
957  * @phba: The HBA for which this call is being executed.
958  *
959  * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list
960  * and returns to caller.
961  *
962  * Return codes:
963  *   NULL - Error
964  *   Pointer to lpfc_scsi_buf - Success
965  **/
966 static struct lpfc_scsi_buf*
lpfc_get_scsi_buf_s3(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp)967 lpfc_get_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp)
968 {
969 	struct  lpfc_scsi_buf * lpfc_cmd = NULL;
970 	struct list_head *scsi_buf_list = &phba->lpfc_scsi_buf_list;
971 	unsigned long iflag = 0;
972 
973 	spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
974 	list_remove_head(scsi_buf_list, lpfc_cmd, struct lpfc_scsi_buf, list);
975 	if (lpfc_cmd) {
976 		lpfc_cmd->seg_cnt = 0;
977 		lpfc_cmd->nonsg_phys = 0;
978 		lpfc_cmd->prot_seg_cnt = 0;
979 	}
980 	spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
981 	return  lpfc_cmd;
982 }
983 /**
984  * lpfc_get_scsi_buf_s4 - Get a scsi buffer from lpfc_scsi_buf_list of the HBA
985  * @phba: The HBA for which this call is being executed.
986  *
987  * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list
988  * and returns to caller.
989  *
990  * Return codes:
991  *   NULL - Error
992  *   Pointer to lpfc_scsi_buf - Success
993  **/
994 static struct lpfc_scsi_buf*
lpfc_get_scsi_buf_s4(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp)995 lpfc_get_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp)
996 {
997 	struct lpfc_scsi_buf *lpfc_cmd ;
998 	unsigned long iflag = 0;
999 	int found = 0;
1000 
1001 	spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
1002 	list_for_each_entry(lpfc_cmd, &phba->lpfc_scsi_buf_list,
1003 							list) {
1004 		if (lpfc_test_rrq_active(phba, ndlp,
1005 					 lpfc_cmd->cur_iocbq.sli4_xritag))
1006 			continue;
1007 		list_del(&lpfc_cmd->list);
1008 		found = 1;
1009 		lpfc_cmd->seg_cnt = 0;
1010 		lpfc_cmd->nonsg_phys = 0;
1011 		lpfc_cmd->prot_seg_cnt = 0;
1012 		break;
1013 	}
1014 	spin_unlock_irqrestore(&phba->scsi_buf_list_lock,
1015 						 iflag);
1016 	if (!found)
1017 		return NULL;
1018 	else
1019 		return  lpfc_cmd;
1020 }
1021 /**
1022  * lpfc_get_scsi_buf - Get a scsi buffer from lpfc_scsi_buf_list of the HBA
1023  * @phba: The HBA for which this call is being executed.
1024  *
1025  * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list
1026  * and returns to caller.
1027  *
1028  * Return codes:
1029  *   NULL - Error
1030  *   Pointer to lpfc_scsi_buf - Success
1031  **/
1032 static struct lpfc_scsi_buf*
lpfc_get_scsi_buf(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp)1033 lpfc_get_scsi_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp)
1034 {
1035 	return  phba->lpfc_get_scsi_buf(phba, ndlp);
1036 }
1037 
1038 /**
1039  * lpfc_release_scsi_buf - Return a scsi buffer back to hba scsi buf list
1040  * @phba: The Hba for which this call is being executed.
1041  * @psb: The scsi buffer which is being released.
1042  *
1043  * This routine releases @psb scsi buffer by adding it to tail of @phba
1044  * lpfc_scsi_buf_list list.
1045  **/
1046 static void
lpfc_release_scsi_buf_s3(struct lpfc_hba * phba,struct lpfc_scsi_buf * psb)1047 lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
1048 {
1049 	unsigned long iflag = 0;
1050 
1051 	spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
1052 	psb->pCmd = NULL;
1053 	list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list);
1054 	spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
1055 }
1056 
1057 /**
1058  * lpfc_release_scsi_buf_s4: Return a scsi buffer back to hba scsi buf list.
1059  * @phba: The Hba for which this call is being executed.
1060  * @psb: The scsi buffer which is being released.
1061  *
1062  * This routine releases @psb scsi buffer by adding it to tail of @phba
1063  * lpfc_scsi_buf_list list. For SLI4 XRI's are tied to the scsi buffer
1064  * and cannot be reused for at least RA_TOV amount of time if it was
1065  * aborted.
1066  **/
1067 static void
lpfc_release_scsi_buf_s4(struct lpfc_hba * phba,struct lpfc_scsi_buf * psb)1068 lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
1069 {
1070 	unsigned long iflag = 0;
1071 
1072 	if (psb->exch_busy) {
1073 		spin_lock_irqsave(&phba->sli4_hba.abts_scsi_buf_list_lock,
1074 					iflag);
1075 		psb->pCmd = NULL;
1076 		list_add_tail(&psb->list,
1077 			&phba->sli4_hba.lpfc_abts_scsi_buf_list);
1078 		spin_unlock_irqrestore(&phba->sli4_hba.abts_scsi_buf_list_lock,
1079 					iflag);
1080 	} else {
1081 
1082 		spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
1083 		psb->pCmd = NULL;
1084 		list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list);
1085 		spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
1086 	}
1087 }
1088 
1089 /**
1090  * lpfc_release_scsi_buf: Return a scsi buffer back to hba scsi buf list.
1091  * @phba: The Hba for which this call is being executed.
1092  * @psb: The scsi buffer which is being released.
1093  *
1094  * This routine releases @psb scsi buffer by adding it to tail of @phba
1095  * lpfc_scsi_buf_list list.
1096  **/
1097 static void
lpfc_release_scsi_buf(struct lpfc_hba * phba,struct lpfc_scsi_buf * psb)1098 lpfc_release_scsi_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
1099 {
1100 
1101 	phba->lpfc_release_scsi_buf(phba, psb);
1102 }
1103 
1104 /**
1105  * lpfc_scsi_prep_dma_buf_s3 - DMA mapping for scsi buffer to SLI3 IF spec
1106  * @phba: The Hba for which this call is being executed.
1107  * @lpfc_cmd: The scsi buffer which is going to be mapped.
1108  *
1109  * This routine does the pci dma mapping for scatter-gather list of scsi cmnd
1110  * field of @lpfc_cmd for device with SLI-3 interface spec. This routine scans
1111  * through sg elements and format the bdea. This routine also initializes all
1112  * IOCB fields which are dependent on scsi command request buffer.
1113  *
1114  * Return codes:
1115  *   1 - Error
1116  *   0 - Success
1117  **/
1118 static int
lpfc_scsi_prep_dma_buf_s3(struct lpfc_hba * phba,struct lpfc_scsi_buf * lpfc_cmd)1119 lpfc_scsi_prep_dma_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
1120 {
1121 	struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
1122 	struct scatterlist *sgel = NULL;
1123 	struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
1124 	struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl;
1125 	struct lpfc_iocbq *iocbq = &lpfc_cmd->cur_iocbq;
1126 	IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
1127 	struct ulp_bde64 *data_bde = iocb_cmd->unsli3.fcp_ext.dbde;
1128 	dma_addr_t physaddr;
1129 	uint32_t num_bde = 0;
1130 	int nseg, datadir = scsi_cmnd->sc_data_direction;
1131 
1132 	/*
1133 	 * There are three possibilities here - use scatter-gather segment, use
1134 	 * the single mapping, or neither.  Start the lpfc command prep by
1135 	 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
1136 	 * data bde entry.
1137 	 */
1138 	bpl += 2;
1139 	if (scsi_sg_count(scsi_cmnd)) {
1140 		/*
1141 		 * The driver stores the segment count returned from pci_map_sg
1142 		 * because this a count of dma-mappings used to map the use_sg
1143 		 * pages.  They are not guaranteed to be the same for those
1144 		 * architectures that implement an IOMMU.
1145 		 */
1146 
1147 		nseg = dma_map_sg(&phba->pcidev->dev, scsi_sglist(scsi_cmnd),
1148 				  scsi_sg_count(scsi_cmnd), datadir);
1149 		if (unlikely(!nseg))
1150 			return 1;
1151 
1152 		lpfc_cmd->seg_cnt = nseg;
1153 		if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
1154 			lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1155 				"9064 BLKGRD: %s: Too many sg segments from "
1156 			       "dma_map_sg.  Config %d, seg_cnt %d\n",
1157 			       __func__, phba->cfg_sg_seg_cnt,
1158 			       lpfc_cmd->seg_cnt);
1159 			scsi_dma_unmap(scsi_cmnd);
1160 			return 1;
1161 		}
1162 
1163 		/*
1164 		 * The driver established a maximum scatter-gather segment count
1165 		 * during probe that limits the number of sg elements in any
1166 		 * single scsi command.  Just run through the seg_cnt and format
1167 		 * the bde's.
1168 		 * When using SLI-3 the driver will try to fit all the BDEs into
1169 		 * the IOCB. If it can't then the BDEs get added to a BPL as it
1170 		 * does for SLI-2 mode.
1171 		 */
1172 		scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) {
1173 			physaddr = sg_dma_address(sgel);
1174 			if (phba->sli_rev == 3 &&
1175 			    !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
1176 			    !(iocbq->iocb_flag & DSS_SECURITY_OP) &&
1177 			    nseg <= LPFC_EXT_DATA_BDE_COUNT) {
1178 				data_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1179 				data_bde->tus.f.bdeSize = sg_dma_len(sgel);
1180 				data_bde->addrLow = putPaddrLow(physaddr);
1181 				data_bde->addrHigh = putPaddrHigh(physaddr);
1182 				data_bde++;
1183 			} else {
1184 				bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1185 				bpl->tus.f.bdeSize = sg_dma_len(sgel);
1186 				bpl->tus.w = le32_to_cpu(bpl->tus.w);
1187 				bpl->addrLow =
1188 					le32_to_cpu(putPaddrLow(physaddr));
1189 				bpl->addrHigh =
1190 					le32_to_cpu(putPaddrHigh(physaddr));
1191 				bpl++;
1192 			}
1193 		}
1194 	}
1195 
1196 	/*
1197 	 * Finish initializing those IOCB fields that are dependent on the
1198 	 * scsi_cmnd request_buffer.  Note that for SLI-2 the bdeSize is
1199 	 * explicitly reinitialized and for SLI-3 the extended bde count is
1200 	 * explicitly reinitialized since all iocb memory resources are reused.
1201 	 */
1202 	if (phba->sli_rev == 3 &&
1203 	    !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
1204 	    !(iocbq->iocb_flag & DSS_SECURITY_OP)) {
1205 		if (num_bde > LPFC_EXT_DATA_BDE_COUNT) {
1206 			/*
1207 			 * The extended IOCB format can only fit 3 BDE or a BPL.
1208 			 * This I/O has more than 3 BDE so the 1st data bde will
1209 			 * be a BPL that is filled in here.
1210 			 */
1211 			physaddr = lpfc_cmd->dma_handle;
1212 			data_bde->tus.f.bdeFlags = BUFF_TYPE_BLP_64;
1213 			data_bde->tus.f.bdeSize = (num_bde *
1214 						   sizeof(struct ulp_bde64));
1215 			physaddr += (sizeof(struct fcp_cmnd) +
1216 				     sizeof(struct fcp_rsp) +
1217 				     (2 * sizeof(struct ulp_bde64)));
1218 			data_bde->addrHigh = putPaddrHigh(physaddr);
1219 			data_bde->addrLow = putPaddrLow(physaddr);
1220 			/* ebde count includes the response bde and data bpl */
1221 			iocb_cmd->unsli3.fcp_ext.ebde_count = 2;
1222 		} else {
1223 			/* ebde count includes the response bde and data bdes */
1224 			iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1);
1225 		}
1226 	} else {
1227 		iocb_cmd->un.fcpi64.bdl.bdeSize =
1228 			((num_bde + 2) * sizeof(struct ulp_bde64));
1229 		iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1);
1230 	}
1231 	fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd));
1232 
1233 	/*
1234 	 * Due to difference in data length between DIF/non-DIF paths,
1235 	 * we need to set word 4 of IOCB here
1236 	 */
1237 	iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd);
1238 	return 0;
1239 }
1240 
1241 /*
1242  * Given a scsi cmnd, determine the BlockGuard opcodes to be used with it
1243  * @sc: The SCSI command to examine
1244  * @txopt: (out) BlockGuard operation for transmitted data
1245  * @rxopt: (out) BlockGuard operation for received data
1246  *
1247  * Returns: zero on success; non-zero if tx and/or rx op cannot be determined
1248  *
1249  */
1250 static int
lpfc_sc_to_bg_opcodes(struct lpfc_hba * phba,struct scsi_cmnd * sc,uint8_t * txop,uint8_t * rxop)1251 lpfc_sc_to_bg_opcodes(struct lpfc_hba *phba, struct scsi_cmnd *sc,
1252 		uint8_t *txop, uint8_t *rxop)
1253 {
1254 	uint8_t guard_type = scsi_host_get_guard(sc->device->host);
1255 	uint8_t ret = 0;
1256 
1257 	if (guard_type == SHOST_DIX_GUARD_IP) {
1258 		switch (scsi_get_prot_op(sc)) {
1259 		case SCSI_PROT_READ_INSERT:
1260 		case SCSI_PROT_WRITE_STRIP:
1261 			*txop = BG_OP_IN_CSUM_OUT_NODIF;
1262 			*rxop = BG_OP_IN_NODIF_OUT_CSUM;
1263 			break;
1264 
1265 		case SCSI_PROT_READ_STRIP:
1266 		case SCSI_PROT_WRITE_INSERT:
1267 			*txop = BG_OP_IN_NODIF_OUT_CRC;
1268 			*rxop = BG_OP_IN_CRC_OUT_NODIF;
1269 			break;
1270 
1271 		case SCSI_PROT_READ_PASS:
1272 		case SCSI_PROT_WRITE_PASS:
1273 			*txop = BG_OP_IN_CSUM_OUT_CRC;
1274 			*rxop = BG_OP_IN_CRC_OUT_CSUM;
1275 			break;
1276 
1277 		case SCSI_PROT_NORMAL:
1278 		default:
1279 			lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1280 				"9063 BLKGRD: Bad op/guard:%d/%d combination\n",
1281 					scsi_get_prot_op(sc), guard_type);
1282 			ret = 1;
1283 			break;
1284 
1285 		}
1286 	} else if (guard_type == SHOST_DIX_GUARD_CRC) {
1287 		switch (scsi_get_prot_op(sc)) {
1288 		case SCSI_PROT_READ_STRIP:
1289 		case SCSI_PROT_WRITE_INSERT:
1290 			*txop = BG_OP_IN_NODIF_OUT_CRC;
1291 			*rxop = BG_OP_IN_CRC_OUT_NODIF;
1292 			break;
1293 
1294 		case SCSI_PROT_READ_PASS:
1295 		case SCSI_PROT_WRITE_PASS:
1296 			*txop = BG_OP_IN_CRC_OUT_CRC;
1297 			*rxop = BG_OP_IN_CRC_OUT_CRC;
1298 			break;
1299 
1300 		case SCSI_PROT_READ_INSERT:
1301 		case SCSI_PROT_WRITE_STRIP:
1302 		case SCSI_PROT_NORMAL:
1303 		default:
1304 			lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1305 				"9075 BLKGRD: Bad op/guard:%d/%d combination\n",
1306 					scsi_get_prot_op(sc), guard_type);
1307 			ret = 1;
1308 			break;
1309 		}
1310 	} else {
1311 		/* unsupported format */
1312 		BUG();
1313 	}
1314 
1315 	return ret;
1316 }
1317 
1318 struct scsi_dif_tuple {
1319 	__be16 guard_tag;       /* Checksum */
1320 	__be16 app_tag;         /* Opaque storage */
1321 	__be32 ref_tag;         /* Target LBA or indirect LBA */
1322 };
1323 
1324 static inline unsigned
lpfc_cmd_blksize(struct scsi_cmnd * sc)1325 lpfc_cmd_blksize(struct scsi_cmnd *sc)
1326 {
1327 	return sc->device->sector_size;
1328 }
1329 
1330 /**
1331  * lpfc_get_cmd_dif_parms - Extract DIF parameters from SCSI command
1332  * @sc:             in: SCSI command
1333  * @apptagmask:     out: app tag mask
1334  * @apptagval:      out: app tag value
1335  * @reftag:         out: ref tag (reference tag)
1336  *
1337  * Description:
1338  *   Extract DIF parameters from the command if possible.  Otherwise,
1339  *   use default parameters.
1340  *
1341  **/
1342 static inline void
lpfc_get_cmd_dif_parms(struct scsi_cmnd * sc,uint16_t * apptagmask,uint16_t * apptagval,uint32_t * reftag)1343 lpfc_get_cmd_dif_parms(struct scsi_cmnd *sc, uint16_t *apptagmask,
1344 		uint16_t *apptagval, uint32_t *reftag)
1345 {
1346 	struct  scsi_dif_tuple *spt;
1347 	unsigned char op = scsi_get_prot_op(sc);
1348 	unsigned int protcnt = scsi_prot_sg_count(sc);
1349 	static int cnt;
1350 
1351 	if (protcnt && (op == SCSI_PROT_WRITE_STRIP ||
1352 				op == SCSI_PROT_WRITE_PASS)) {
1353 
1354 		cnt++;
1355 		spt = page_address(sg_page(scsi_prot_sglist(sc))) +
1356 			scsi_prot_sglist(sc)[0].offset;
1357 		*apptagmask = 0;
1358 		*apptagval = 0;
1359 		*reftag = cpu_to_be32(spt->ref_tag);
1360 
1361 	} else {
1362 		/* SBC defines ref tag to be lower 32bits of LBA */
1363 		*reftag = (uint32_t) (0xffffffff & scsi_get_lba(sc));
1364 		*apptagmask = 0;
1365 		*apptagval = 0;
1366 	}
1367 }
1368 
1369 /*
1370  * This function sets up buffer list for protection groups of
1371  * type LPFC_PG_TYPE_NO_DIF
1372  *
1373  * This is usually used when the HBA is instructed to generate
1374  * DIFs and insert them into data stream (or strip DIF from
1375  * incoming data stream)
1376  *
1377  * The buffer list consists of just one protection group described
1378  * below:
1379  *                                +-------------------------+
1380  *   start of prot group  -->     |          PDE_5          |
1381  *                                +-------------------------+
1382  *                                |          PDE_6          |
1383  *                                +-------------------------+
1384  *                                |         Data BDE        |
1385  *                                +-------------------------+
1386  *                                |more Data BDE's ... (opt)|
1387  *                                +-------------------------+
1388  *
1389  * @sc: pointer to scsi command we're working on
1390  * @bpl: pointer to buffer list for protection groups
1391  * @datacnt: number of segments of data that have been dma mapped
1392  *
1393  * Note: Data s/g buffers have been dma mapped
1394  */
1395 static int
lpfc_bg_setup_bpl(struct lpfc_hba * phba,struct scsi_cmnd * sc,struct ulp_bde64 * bpl,int datasegcnt)1396 lpfc_bg_setup_bpl(struct lpfc_hba *phba, struct scsi_cmnd *sc,
1397 		struct ulp_bde64 *bpl, int datasegcnt)
1398 {
1399 	struct scatterlist *sgde = NULL; /* s/g data entry */
1400 	struct lpfc_pde5 *pde5 = NULL;
1401 	struct lpfc_pde6 *pde6 = NULL;
1402 	dma_addr_t physaddr;
1403 	int i = 0, num_bde = 0, status;
1404 	int datadir = sc->sc_data_direction;
1405 	unsigned blksize;
1406 	uint32_t reftag;
1407 	uint16_t apptagmask, apptagval;
1408 	uint8_t txop, rxop;
1409 
1410 	status  = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop);
1411 	if (status)
1412 		goto out;
1413 
1414 	/* extract some info from the scsi command for pde*/
1415 	blksize = lpfc_cmd_blksize(sc);
1416 	lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag);
1417 
1418 	/* setup PDE5 with what we have */
1419 	pde5 = (struct lpfc_pde5 *) bpl;
1420 	memset(pde5, 0, sizeof(struct lpfc_pde5));
1421 	bf_set(pde5_type, pde5, LPFC_PDE5_DESCRIPTOR);
1422 	pde5->reftag = reftag;
1423 
1424 	/* Endianness conversion if necessary for PDE5 */
1425 	pde5->word0 = cpu_to_le32(pde5->word0);
1426 	pde5->reftag = cpu_to_le32(pde5->reftag);
1427 
1428 	/* advance bpl and increment bde count */
1429 	num_bde++;
1430 	bpl++;
1431 	pde6 = (struct lpfc_pde6 *) bpl;
1432 
1433 	/* setup PDE6 with the rest of the info */
1434 	memset(pde6, 0, sizeof(struct lpfc_pde6));
1435 	bf_set(pde6_type, pde6, LPFC_PDE6_DESCRIPTOR);
1436 	bf_set(pde6_optx, pde6, txop);
1437 	bf_set(pde6_oprx, pde6, rxop);
1438 	if (datadir == DMA_FROM_DEVICE) {
1439 		bf_set(pde6_ce, pde6, 1);
1440 		bf_set(pde6_re, pde6, 1);
1441 		bf_set(pde6_ae, pde6, 1);
1442 	}
1443 	bf_set(pde6_ai, pde6, 1);
1444 	bf_set(pde6_apptagval, pde6, apptagval);
1445 
1446 	/* Endianness conversion if necessary for PDE6 */
1447 	pde6->word0 = cpu_to_le32(pde6->word0);
1448 	pde6->word1 = cpu_to_le32(pde6->word1);
1449 	pde6->word2 = cpu_to_le32(pde6->word2);
1450 
1451 	/* advance bpl and increment bde count */
1452 	num_bde++;
1453 	bpl++;
1454 
1455 	/* assumption: caller has already run dma_map_sg on command data */
1456 	scsi_for_each_sg(sc, sgde, datasegcnt, i) {
1457 		physaddr = sg_dma_address(sgde);
1458 		bpl->addrLow = le32_to_cpu(putPaddrLow(physaddr));
1459 		bpl->addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
1460 		bpl->tus.f.bdeSize = sg_dma_len(sgde);
1461 		if (datadir == DMA_TO_DEVICE)
1462 			bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1463 		else
1464 			bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I;
1465 		bpl->tus.w = le32_to_cpu(bpl->tus.w);
1466 		bpl++;
1467 		num_bde++;
1468 	}
1469 
1470 out:
1471 	return num_bde;
1472 }
1473 
1474 /*
1475  * This function sets up buffer list for protection groups of
1476  * type LPFC_PG_TYPE_DIF_BUF
1477  *
1478  * This is usually used when DIFs are in their own buffers,
1479  * separate from the data. The HBA can then by instructed
1480  * to place the DIFs in the outgoing stream.  For read operations,
1481  * The HBA could extract the DIFs and place it in DIF buffers.
1482  *
1483  * The buffer list for this type consists of one or more of the
1484  * protection groups described below:
1485  *                                    +-------------------------+
1486  *   start of first prot group  -->   |          PDE_5          |
1487  *                                    +-------------------------+
1488  *                                    |          PDE_6          |
1489  *                                    +-------------------------+
1490  *                                    |      PDE_7 (Prot BDE)   |
1491  *                                    +-------------------------+
1492  *                                    |        Data BDE         |
1493  *                                    +-------------------------+
1494  *                                    |more Data BDE's ... (opt)|
1495  *                                    +-------------------------+
1496  *   start of new  prot group  -->    |          PDE_5          |
1497  *                                    +-------------------------+
1498  *                                    |          ...            |
1499  *                                    +-------------------------+
1500  *
1501  * @sc: pointer to scsi command we're working on
1502  * @bpl: pointer to buffer list for protection groups
1503  * @datacnt: number of segments of data that have been dma mapped
1504  * @protcnt: number of segment of protection data that have been dma mapped
1505  *
1506  * Note: It is assumed that both data and protection s/g buffers have been
1507  *       mapped for DMA
1508  */
1509 static int
lpfc_bg_setup_bpl_prot(struct lpfc_hba * phba,struct scsi_cmnd * sc,struct ulp_bde64 * bpl,int datacnt,int protcnt)1510 lpfc_bg_setup_bpl_prot(struct lpfc_hba *phba, struct scsi_cmnd *sc,
1511 		struct ulp_bde64 *bpl, int datacnt, int protcnt)
1512 {
1513 	struct scatterlist *sgde = NULL; /* s/g data entry */
1514 	struct scatterlist *sgpe = NULL; /* s/g prot entry */
1515 	struct lpfc_pde5 *pde5 = NULL;
1516 	struct lpfc_pde6 *pde6 = NULL;
1517 	struct lpfc_pde7 *pde7 = NULL;
1518 	dma_addr_t dataphysaddr, protphysaddr;
1519 	unsigned short curr_data = 0, curr_prot = 0;
1520 	unsigned int split_offset;
1521 	unsigned int protgroup_len, protgroup_offset = 0, protgroup_remainder;
1522 	unsigned int protgrp_blks, protgrp_bytes;
1523 	unsigned int remainder, subtotal;
1524 	int status;
1525 	int datadir = sc->sc_data_direction;
1526 	unsigned char pgdone = 0, alldone = 0;
1527 	unsigned blksize;
1528 	uint32_t reftag;
1529 	uint16_t apptagmask, apptagval;
1530 	uint8_t txop, rxop;
1531 	int num_bde = 0;
1532 
1533 	sgpe = scsi_prot_sglist(sc);
1534 	sgde = scsi_sglist(sc);
1535 
1536 	if (!sgpe || !sgde) {
1537 		lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1538 				"9020 Invalid s/g entry: data=0x%p prot=0x%p\n",
1539 				sgpe, sgde);
1540 		return 0;
1541 	}
1542 
1543 	status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop);
1544 	if (status)
1545 		goto out;
1546 
1547 	/* extract some info from the scsi command */
1548 	blksize = lpfc_cmd_blksize(sc);
1549 	lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag);
1550 
1551 	split_offset = 0;
1552 	do {
1553 		/* setup PDE5 with what we have */
1554 		pde5 = (struct lpfc_pde5 *) bpl;
1555 		memset(pde5, 0, sizeof(struct lpfc_pde5));
1556 		bf_set(pde5_type, pde5, LPFC_PDE5_DESCRIPTOR);
1557 		pde5->reftag = reftag;
1558 
1559 		/* Endianness conversion if necessary for PDE5 */
1560 		pde5->word0 = cpu_to_le32(pde5->word0);
1561 		pde5->reftag = cpu_to_le32(pde5->reftag);
1562 
1563 		/* advance bpl and increment bde count */
1564 		num_bde++;
1565 		bpl++;
1566 		pde6 = (struct lpfc_pde6 *) bpl;
1567 
1568 		/* setup PDE6 with the rest of the info */
1569 		memset(pde6, 0, sizeof(struct lpfc_pde6));
1570 		bf_set(pde6_type, pde6, LPFC_PDE6_DESCRIPTOR);
1571 		bf_set(pde6_optx, pde6, txop);
1572 		bf_set(pde6_oprx, pde6, rxop);
1573 		bf_set(pde6_ce, pde6, 1);
1574 		bf_set(pde6_re, pde6, 1);
1575 		bf_set(pde6_ae, pde6, 1);
1576 		bf_set(pde6_ai, pde6, 1);
1577 		bf_set(pde6_apptagval, pde6, apptagval);
1578 
1579 		/* Endianness conversion if necessary for PDE6 */
1580 		pde6->word0 = cpu_to_le32(pde6->word0);
1581 		pde6->word1 = cpu_to_le32(pde6->word1);
1582 		pde6->word2 = cpu_to_le32(pde6->word2);
1583 
1584 		/* advance bpl and increment bde count */
1585 		num_bde++;
1586 		bpl++;
1587 
1588 		/* setup the first BDE that points to protection buffer */
1589 		protphysaddr = sg_dma_address(sgpe) + protgroup_offset;
1590 		protgroup_len = sg_dma_len(sgpe) - protgroup_offset;
1591 
1592 		/* must be integer multiple of the DIF block length */
1593 		BUG_ON(protgroup_len % 8);
1594 
1595 		pde7 = (struct lpfc_pde7 *) bpl;
1596 		memset(pde7, 0, sizeof(struct lpfc_pde7));
1597 		bf_set(pde7_type, pde7, LPFC_PDE7_DESCRIPTOR);
1598 
1599 		pde7->addrHigh = le32_to_cpu(putPaddrLow(protphysaddr));
1600 		pde7->addrLow = le32_to_cpu(putPaddrHigh(protphysaddr));
1601 
1602 		protgrp_blks = protgroup_len / 8;
1603 		protgrp_bytes = protgrp_blks * blksize;
1604 
1605 		/* check if this pde is crossing the 4K boundary; if so split */
1606 		if ((pde7->addrLow & 0xfff) + protgroup_len > 0x1000) {
1607 			protgroup_remainder = 0x1000 - (pde7->addrLow & 0xfff);
1608 			protgroup_offset += protgroup_remainder;
1609 			protgrp_blks = protgroup_remainder / 8;
1610 			protgrp_bytes = protgroup_remainder * blksize;
1611 		} else {
1612 			protgroup_offset = 0;
1613 			curr_prot++;
1614 		}
1615 
1616 		num_bde++;
1617 
1618 		/* setup BDE's for data blocks associated with DIF data */
1619 		pgdone = 0;
1620 		subtotal = 0; /* total bytes processed for current prot grp */
1621 		while (!pgdone) {
1622 			if (!sgde) {
1623 				lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1624 					"9065 BLKGRD:%s Invalid data segment\n",
1625 						__func__);
1626 				return 0;
1627 			}
1628 			bpl++;
1629 			dataphysaddr = sg_dma_address(sgde) + split_offset;
1630 			bpl->addrLow = le32_to_cpu(putPaddrLow(dataphysaddr));
1631 			bpl->addrHigh = le32_to_cpu(putPaddrHigh(dataphysaddr));
1632 
1633 			remainder = sg_dma_len(sgde) - split_offset;
1634 
1635 			if ((subtotal + remainder) <= protgrp_bytes) {
1636 				/* we can use this whole buffer */
1637 				bpl->tus.f.bdeSize = remainder;
1638 				split_offset = 0;
1639 
1640 				if ((subtotal + remainder) == protgrp_bytes)
1641 					pgdone = 1;
1642 			} else {
1643 				/* must split this buffer with next prot grp */
1644 				bpl->tus.f.bdeSize = protgrp_bytes - subtotal;
1645 				split_offset += bpl->tus.f.bdeSize;
1646 			}
1647 
1648 			subtotal += bpl->tus.f.bdeSize;
1649 
1650 			if (datadir == DMA_TO_DEVICE)
1651 				bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1652 			else
1653 				bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I;
1654 			bpl->tus.w = le32_to_cpu(bpl->tus.w);
1655 
1656 			num_bde++;
1657 			curr_data++;
1658 
1659 			if (split_offset)
1660 				break;
1661 
1662 			/* Move to the next s/g segment if possible */
1663 			sgde = sg_next(sgde);
1664 
1665 		}
1666 
1667 		if (protgroup_offset) {
1668 			/* update the reference tag */
1669 			reftag += protgrp_blks;
1670 			bpl++;
1671 			continue;
1672 		}
1673 
1674 		/* are we done ? */
1675 		if (curr_prot == protcnt) {
1676 			alldone = 1;
1677 		} else if (curr_prot < protcnt) {
1678 			/* advance to next prot buffer */
1679 			sgpe = sg_next(sgpe);
1680 			bpl++;
1681 
1682 			/* update the reference tag */
1683 			reftag += protgrp_blks;
1684 		} else {
1685 			/* if we're here, we have a bug */
1686 			lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1687 				"9054 BLKGRD: bug in %s\n", __func__);
1688 		}
1689 
1690 	} while (!alldone);
1691 
1692 out:
1693 
1694 	return num_bde;
1695 }
1696 
1697 /*
1698  * Given a SCSI command that supports DIF, determine composition of protection
1699  * groups involved in setting up buffer lists
1700  *
1701  * Returns:
1702  *			      for DIF (for both read and write)
1703  * */
1704 static int
lpfc_prot_group_type(struct lpfc_hba * phba,struct scsi_cmnd * sc)1705 lpfc_prot_group_type(struct lpfc_hba *phba, struct scsi_cmnd *sc)
1706 {
1707 	int ret = LPFC_PG_TYPE_INVALID;
1708 	unsigned char op = scsi_get_prot_op(sc);
1709 
1710 	switch (op) {
1711 	case SCSI_PROT_READ_STRIP:
1712 	case SCSI_PROT_WRITE_INSERT:
1713 		ret = LPFC_PG_TYPE_NO_DIF;
1714 		break;
1715 	case SCSI_PROT_READ_INSERT:
1716 	case SCSI_PROT_WRITE_STRIP:
1717 	case SCSI_PROT_READ_PASS:
1718 	case SCSI_PROT_WRITE_PASS:
1719 		ret = LPFC_PG_TYPE_DIF_BUF;
1720 		break;
1721 	default:
1722 		lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1723 				"9021 Unsupported protection op:%d\n", op);
1724 		break;
1725 	}
1726 
1727 	return ret;
1728 }
1729 
1730 /*
1731  * This is the protection/DIF aware version of
1732  * lpfc_scsi_prep_dma_buf(). It may be a good idea to combine the
1733  * two functions eventually, but for now, it's here
1734  */
1735 static int
lpfc_bg_scsi_prep_dma_buf(struct lpfc_hba * phba,struct lpfc_scsi_buf * lpfc_cmd)1736 lpfc_bg_scsi_prep_dma_buf(struct lpfc_hba *phba,
1737 		struct lpfc_scsi_buf *lpfc_cmd)
1738 {
1739 	struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
1740 	struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
1741 	struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl;
1742 	IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
1743 	uint32_t num_bde = 0;
1744 	int datasegcnt, protsegcnt, datadir = scsi_cmnd->sc_data_direction;
1745 	int prot_group_type = 0;
1746 	int diflen, fcpdl;
1747 	unsigned blksize;
1748 
1749 	/*
1750 	 * Start the lpfc command prep by bumping the bpl beyond fcp_cmnd
1751 	 *  fcp_rsp regions to the first data bde entry
1752 	 */
1753 	bpl += 2;
1754 	if (scsi_sg_count(scsi_cmnd)) {
1755 		/*
1756 		 * The driver stores the segment count returned from pci_map_sg
1757 		 * because this a count of dma-mappings used to map the use_sg
1758 		 * pages.  They are not guaranteed to be the same for those
1759 		 * architectures that implement an IOMMU.
1760 		 */
1761 		datasegcnt = dma_map_sg(&phba->pcidev->dev,
1762 					scsi_sglist(scsi_cmnd),
1763 					scsi_sg_count(scsi_cmnd), datadir);
1764 		if (unlikely(!datasegcnt))
1765 			return 1;
1766 
1767 		lpfc_cmd->seg_cnt = datasegcnt;
1768 		if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
1769 			lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1770 					"9067 BLKGRD: %s: Too many sg segments"
1771 					" from dma_map_sg.  Config %d, seg_cnt"
1772 					" %d\n",
1773 					__func__, phba->cfg_sg_seg_cnt,
1774 					lpfc_cmd->seg_cnt);
1775 			scsi_dma_unmap(scsi_cmnd);
1776 			return 1;
1777 		}
1778 
1779 		prot_group_type = lpfc_prot_group_type(phba, scsi_cmnd);
1780 
1781 		switch (prot_group_type) {
1782 		case LPFC_PG_TYPE_NO_DIF:
1783 			num_bde = lpfc_bg_setup_bpl(phba, scsi_cmnd, bpl,
1784 					datasegcnt);
1785 			/* we should have 2 or more entries in buffer list */
1786 			if (num_bde < 2)
1787 				goto err;
1788 			break;
1789 		case LPFC_PG_TYPE_DIF_BUF:{
1790 			/*
1791 			 * This type indicates that protection buffers are
1792 			 * passed to the driver, so that needs to be prepared
1793 			 * for DMA
1794 			 */
1795 			protsegcnt = dma_map_sg(&phba->pcidev->dev,
1796 					scsi_prot_sglist(scsi_cmnd),
1797 					scsi_prot_sg_count(scsi_cmnd), datadir);
1798 			if (unlikely(!protsegcnt)) {
1799 				scsi_dma_unmap(scsi_cmnd);
1800 				return 1;
1801 			}
1802 
1803 			lpfc_cmd->prot_seg_cnt = protsegcnt;
1804 			if (lpfc_cmd->prot_seg_cnt
1805 			    > phba->cfg_prot_sg_seg_cnt) {
1806 				lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1807 					"9068 BLKGRD: %s: Too many prot sg "
1808 					"segments from dma_map_sg.  Config %d,"
1809 						"prot_seg_cnt %d\n", __func__,
1810 						phba->cfg_prot_sg_seg_cnt,
1811 						lpfc_cmd->prot_seg_cnt);
1812 				dma_unmap_sg(&phba->pcidev->dev,
1813 					     scsi_prot_sglist(scsi_cmnd),
1814 					     scsi_prot_sg_count(scsi_cmnd),
1815 					     datadir);
1816 				scsi_dma_unmap(scsi_cmnd);
1817 				return 1;
1818 			}
1819 
1820 			num_bde = lpfc_bg_setup_bpl_prot(phba, scsi_cmnd, bpl,
1821 					datasegcnt, protsegcnt);
1822 			/* we should have 3 or more entries in buffer list */
1823 			if (num_bde < 3)
1824 				goto err;
1825 			break;
1826 		}
1827 		case LPFC_PG_TYPE_INVALID:
1828 		default:
1829 			lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1830 					"9022 Unexpected protection group %i\n",
1831 					prot_group_type);
1832 			return 1;
1833 		}
1834 	}
1835 
1836 	/*
1837 	 * Finish initializing those IOCB fields that are dependent on the
1838 	 * scsi_cmnd request_buffer.  Note that the bdeSize is explicitly
1839 	 * reinitialized since all iocb memory resources are used many times
1840 	 * for transmit, receive, and continuation bpl's.
1841 	 */
1842 	iocb_cmd->un.fcpi64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64));
1843 	iocb_cmd->un.fcpi64.bdl.bdeSize += (num_bde * sizeof(struct ulp_bde64));
1844 	iocb_cmd->ulpBdeCount = 1;
1845 	iocb_cmd->ulpLe = 1;
1846 
1847 	fcpdl = scsi_bufflen(scsi_cmnd);
1848 
1849 	if (scsi_get_prot_type(scsi_cmnd) == SCSI_PROT_DIF_TYPE1) {
1850 		/*
1851 		 * We are in DIF Type 1 mode
1852 		 * Every data block has a 8 byte DIF (trailer)
1853 		 * attached to it.  Must ajust FCP data length
1854 		 */
1855 		blksize = lpfc_cmd_blksize(scsi_cmnd);
1856 		diflen = (fcpdl / blksize) * 8;
1857 		fcpdl += diflen;
1858 	}
1859 	fcp_cmnd->fcpDl = be32_to_cpu(fcpdl);
1860 
1861 	/*
1862 	 * Due to difference in data length between DIF/non-DIF paths,
1863 	 * we need to set word 4 of IOCB here
1864 	 */
1865 	iocb_cmd->un.fcpi.fcpi_parm = fcpdl;
1866 
1867 	return 0;
1868 err:
1869 	lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1870 			"9023 Could not setup all needed BDE's"
1871 			"prot_group_type=%d, num_bde=%d\n",
1872 			prot_group_type, num_bde);
1873 	return 1;
1874 }
1875 
1876 /*
1877  * This function checks for BlockGuard errors detected by
1878  * the HBA.  In case of errors, the ASC/ASCQ fields in the
1879  * sense buffer will be set accordingly, paired with
1880  * ILLEGAL_REQUEST to signal to the kernel that the HBA
1881  * detected corruption.
1882  *
1883  * Returns:
1884  *  0 - No error found
1885  *  1 - BlockGuard error found
1886  * -1 - Internal error (bad profile, ...etc)
1887  */
1888 static int
lpfc_parse_bg_err(struct lpfc_hba * phba,struct lpfc_scsi_buf * lpfc_cmd,struct lpfc_iocbq * pIocbOut)1889 lpfc_parse_bg_err(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd,
1890 			struct lpfc_iocbq *pIocbOut)
1891 {
1892 	struct scsi_cmnd *cmd = lpfc_cmd->pCmd;
1893 	struct sli3_bg_fields *bgf = &pIocbOut->iocb.unsli3.sli3_bg;
1894 	int ret = 0;
1895 	uint32_t bghm = bgf->bghm;
1896 	uint32_t bgstat = bgf->bgstat;
1897 	uint64_t failing_sector = 0;
1898 
1899 	lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9069 BLKGRD: BG ERROR in cmd"
1900 			" 0x%x lba 0x%llx blk cnt 0x%x "
1901 			"bgstat=0x%x bghm=0x%x\n",
1902 			cmd->cmnd[0], (unsigned long long)scsi_get_lba(cmd),
1903 			blk_rq_sectors(cmd->request), bgstat, bghm);
1904 
1905 	spin_lock(&_dump_buf_lock);
1906 	if (!_dump_buf_done) {
1907 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,  "9070 BLKGRD: Saving"
1908 			" Data for %u blocks to debugfs\n",
1909 				(cmd->cmnd[7] << 8 | cmd->cmnd[8]));
1910 		lpfc_debug_save_data(phba, cmd);
1911 
1912 		/* If we have a prot sgl, save the DIF buffer */
1913 		if (lpfc_prot_group_type(phba, cmd) ==
1914 				LPFC_PG_TYPE_DIF_BUF) {
1915 			lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9071 BLKGRD: "
1916 				"Saving DIF for %u blocks to debugfs\n",
1917 				(cmd->cmnd[7] << 8 | cmd->cmnd[8]));
1918 			lpfc_debug_save_dif(phba, cmd);
1919 		}
1920 
1921 		_dump_buf_done = 1;
1922 	}
1923 	spin_unlock(&_dump_buf_lock);
1924 
1925 	if (lpfc_bgs_get_invalid_prof(bgstat)) {
1926 		cmd->result = ScsiResult(DID_ERROR, 0);
1927 		lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9072 BLKGRD: Invalid"
1928 			" BlockGuard profile. bgstat:0x%x\n",
1929 			bgstat);
1930 		ret = (-1);
1931 		goto out;
1932 	}
1933 
1934 	if (lpfc_bgs_get_uninit_dif_block(bgstat)) {
1935 		cmd->result = ScsiResult(DID_ERROR, 0);
1936 		lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9073 BLKGRD: "
1937 				"Invalid BlockGuard DIF Block. bgstat:0x%x\n",
1938 				bgstat);
1939 		ret = (-1);
1940 		goto out;
1941 	}
1942 
1943 	if (lpfc_bgs_get_guard_err(bgstat)) {
1944 		ret = 1;
1945 
1946 		scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST,
1947 				0x10, 0x1);
1948 		cmd->result = DRIVER_SENSE << 24
1949 			| ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION);
1950 		phba->bg_guard_err_cnt++;
1951 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1952 			"9055 BLKGRD: guard_tag error\n");
1953 	}
1954 
1955 	if (lpfc_bgs_get_reftag_err(bgstat)) {
1956 		ret = 1;
1957 
1958 		scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST,
1959 				0x10, 0x3);
1960 		cmd->result = DRIVER_SENSE << 24
1961 			| ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION);
1962 
1963 		phba->bg_reftag_err_cnt++;
1964 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1965 			"9056 BLKGRD: ref_tag error\n");
1966 	}
1967 
1968 	if (lpfc_bgs_get_apptag_err(bgstat)) {
1969 		ret = 1;
1970 
1971 		scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST,
1972 				0x10, 0x2);
1973 		cmd->result = DRIVER_SENSE << 24
1974 			| ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION);
1975 
1976 		phba->bg_apptag_err_cnt++;
1977 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1978 			"9061 BLKGRD: app_tag error\n");
1979 	}
1980 
1981 	if (lpfc_bgs_get_hi_water_mark_present(bgstat)) {
1982 		/*
1983 		 * setup sense data descriptor 0 per SPC-4 as an information
1984 		 * field, and put the failing LBA in it
1985 		 */
1986 		cmd->sense_buffer[8] = 0;     /* Information */
1987 		cmd->sense_buffer[9] = 0xa;   /* Add. length */
1988 		bghm /= cmd->device->sector_size;
1989 
1990 		failing_sector = scsi_get_lba(cmd);
1991 		failing_sector += bghm;
1992 
1993 		put_unaligned_be64(failing_sector, &cmd->sense_buffer[10]);
1994 	}
1995 
1996 	if (!ret) {
1997 		/* No error was reported - problem in FW? */
1998 		cmd->result = ScsiResult(DID_ERROR, 0);
1999 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
2000 			"9057 BLKGRD: no errors reported!\n");
2001 	}
2002 
2003 out:
2004 	return ret;
2005 }
2006 
2007 /**
2008  * lpfc_scsi_prep_dma_buf_s4 - DMA mapping for scsi buffer to SLI4 IF spec
2009  * @phba: The Hba for which this call is being executed.
2010  * @lpfc_cmd: The scsi buffer which is going to be mapped.
2011  *
2012  * This routine does the pci dma mapping for scatter-gather list of scsi cmnd
2013  * field of @lpfc_cmd for device with SLI-4 interface spec.
2014  *
2015  * Return codes:
2016  *	1 - Error
2017  *	0 - Success
2018  **/
2019 static int
lpfc_scsi_prep_dma_buf_s4(struct lpfc_hba * phba,struct lpfc_scsi_buf * lpfc_cmd)2020 lpfc_scsi_prep_dma_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
2021 {
2022 	struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
2023 	struct scatterlist *sgel = NULL;
2024 	struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
2025 	struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
2026 	struct sli4_sge *first_data_sgl;
2027 	IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
2028 	dma_addr_t physaddr;
2029 	uint32_t num_bde = 0;
2030 	uint32_t dma_len;
2031 	uint32_t dma_offset = 0;
2032 	int nseg;
2033 	struct ulp_bde64 *bde;
2034 
2035 	/*
2036 	 * There are three possibilities here - use scatter-gather segment, use
2037 	 * the single mapping, or neither.  Start the lpfc command prep by
2038 	 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
2039 	 * data bde entry.
2040 	 */
2041 	if (scsi_sg_count(scsi_cmnd)) {
2042 		/*
2043 		 * The driver stores the segment count returned from pci_map_sg
2044 		 * because this a count of dma-mappings used to map the use_sg
2045 		 * pages.  They are not guaranteed to be the same for those
2046 		 * architectures that implement an IOMMU.
2047 		 */
2048 
2049 		nseg = scsi_dma_map(scsi_cmnd);
2050 		if (unlikely(!nseg))
2051 			return 1;
2052 		sgl += 1;
2053 		/* clear the last flag in the fcp_rsp map entry */
2054 		sgl->word2 = le32_to_cpu(sgl->word2);
2055 		bf_set(lpfc_sli4_sge_last, sgl, 0);
2056 		sgl->word2 = cpu_to_le32(sgl->word2);
2057 		sgl += 1;
2058 		first_data_sgl = sgl;
2059 		lpfc_cmd->seg_cnt = nseg;
2060 		if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
2061 			lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9074 BLKGRD:"
2062 				" %s: Too many sg segments from "
2063 				"dma_map_sg.  Config %d, seg_cnt %d\n",
2064 				__func__, phba->cfg_sg_seg_cnt,
2065 			       lpfc_cmd->seg_cnt);
2066 			scsi_dma_unmap(scsi_cmnd);
2067 			return 1;
2068 		}
2069 
2070 		/*
2071 		 * The driver established a maximum scatter-gather segment count
2072 		 * during probe that limits the number of sg elements in any
2073 		 * single scsi command.  Just run through the seg_cnt and format
2074 		 * the sge's.
2075 		 * When using SLI-3 the driver will try to fit all the BDEs into
2076 		 * the IOCB. If it can't then the BDEs get added to a BPL as it
2077 		 * does for SLI-2 mode.
2078 		 */
2079 		scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) {
2080 			physaddr = sg_dma_address(sgel);
2081 			dma_len = sg_dma_len(sgel);
2082 			sgl->addr_lo = cpu_to_le32(putPaddrLow(physaddr));
2083 			sgl->addr_hi = cpu_to_le32(putPaddrHigh(physaddr));
2084 			if ((num_bde + 1) == nseg)
2085 				bf_set(lpfc_sli4_sge_last, sgl, 1);
2086 			else
2087 				bf_set(lpfc_sli4_sge_last, sgl, 0);
2088 			bf_set(lpfc_sli4_sge_offset, sgl, dma_offset);
2089 			sgl->word2 = cpu_to_le32(sgl->word2);
2090 			sgl->sge_len = cpu_to_le32(dma_len);
2091 			dma_offset += dma_len;
2092 			sgl++;
2093 		}
2094 		/* setup the performance hint (first data BDE) if enabled */
2095 		if (phba->sli3_options & LPFC_SLI4_PERFH_ENABLED) {
2096 			bde = (struct ulp_bde64 *)
2097 					&(iocb_cmd->unsli3.sli3Words[5]);
2098 			bde->addrLow = first_data_sgl->addr_lo;
2099 			bde->addrHigh = first_data_sgl->addr_hi;
2100 			bde->tus.f.bdeSize =
2101 					le32_to_cpu(first_data_sgl->sge_len);
2102 			bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2103 			bde->tus.w = cpu_to_le32(bde->tus.w);
2104 		}
2105 	} else {
2106 		sgl += 1;
2107 		/* clear the last flag in the fcp_rsp map entry */
2108 		sgl->word2 = le32_to_cpu(sgl->word2);
2109 		bf_set(lpfc_sli4_sge_last, sgl, 1);
2110 		sgl->word2 = cpu_to_le32(sgl->word2);
2111 	}
2112 
2113 	/*
2114 	 * Finish initializing those IOCB fields that are dependent on the
2115 	 * scsi_cmnd request_buffer.  Note that for SLI-2 the bdeSize is
2116 	 * explicitly reinitialized.
2117 	 * all iocb memory resources are reused.
2118 	 */
2119 	fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd));
2120 
2121 	/*
2122 	 * Due to difference in data length between DIF/non-DIF paths,
2123 	 * we need to set word 4 of IOCB here
2124 	 */
2125 	iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd);
2126 	return 0;
2127 }
2128 
2129 /**
2130  * lpfc_scsi_prep_dma_buf - Wrapper function for DMA mapping of scsi buffer
2131  * @phba: The Hba for which this call is being executed.
2132  * @lpfc_cmd: The scsi buffer which is going to be mapped.
2133  *
2134  * This routine wraps the actual DMA mapping function pointer from the
2135  * lpfc_hba struct.
2136  *
2137  * Return codes:
2138  *	1 - Error
2139  *	0 - Success
2140  **/
2141 static inline int
lpfc_scsi_prep_dma_buf(struct lpfc_hba * phba,struct lpfc_scsi_buf * lpfc_cmd)2142 lpfc_scsi_prep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
2143 {
2144 	return phba->lpfc_scsi_prep_dma_buf(phba, lpfc_cmd);
2145 }
2146 
2147 /**
2148  * lpfc_send_scsi_error_event - Posts an event when there is SCSI error
2149  * @phba: Pointer to hba context object.
2150  * @vport: Pointer to vport object.
2151  * @lpfc_cmd: Pointer to lpfc scsi command which reported the error.
2152  * @rsp_iocb: Pointer to response iocb object which reported error.
2153  *
2154  * This function posts an event when there is a SCSI command reporting
2155  * error from the scsi device.
2156  **/
2157 static void
lpfc_send_scsi_error_event(struct lpfc_hba * phba,struct lpfc_vport * vport,struct lpfc_scsi_buf * lpfc_cmd,struct lpfc_iocbq * rsp_iocb)2158 lpfc_send_scsi_error_event(struct lpfc_hba *phba, struct lpfc_vport *vport,
2159 		struct lpfc_scsi_buf *lpfc_cmd, struct lpfc_iocbq *rsp_iocb) {
2160 	struct scsi_cmnd *cmnd = lpfc_cmd->pCmd;
2161 	struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp;
2162 	uint32_t resp_info = fcprsp->rspStatus2;
2163 	uint32_t scsi_status = fcprsp->rspStatus3;
2164 	uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm;
2165 	struct lpfc_fast_path_event *fast_path_evt = NULL;
2166 	struct lpfc_nodelist *pnode = lpfc_cmd->rdata->pnode;
2167 	unsigned long flags;
2168 
2169 	if (!pnode || !NLP_CHK_NODE_ACT(pnode))
2170 		return;
2171 
2172 	/* If there is queuefull or busy condition send a scsi event */
2173 	if ((cmnd->result == SAM_STAT_TASK_SET_FULL) ||
2174 		(cmnd->result == SAM_STAT_BUSY)) {
2175 		fast_path_evt = lpfc_alloc_fast_evt(phba);
2176 		if (!fast_path_evt)
2177 			return;
2178 		fast_path_evt->un.scsi_evt.event_type =
2179 			FC_REG_SCSI_EVENT;
2180 		fast_path_evt->un.scsi_evt.subcategory =
2181 		(cmnd->result == SAM_STAT_TASK_SET_FULL) ?
2182 		LPFC_EVENT_QFULL : LPFC_EVENT_DEVBSY;
2183 		fast_path_evt->un.scsi_evt.lun = cmnd->device->lun;
2184 		memcpy(&fast_path_evt->un.scsi_evt.wwpn,
2185 			&pnode->nlp_portname, sizeof(struct lpfc_name));
2186 		memcpy(&fast_path_evt->un.scsi_evt.wwnn,
2187 			&pnode->nlp_nodename, sizeof(struct lpfc_name));
2188 	} else if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen &&
2189 		((cmnd->cmnd[0] == READ_10) || (cmnd->cmnd[0] == WRITE_10))) {
2190 		fast_path_evt = lpfc_alloc_fast_evt(phba);
2191 		if (!fast_path_evt)
2192 			return;
2193 		fast_path_evt->un.check_cond_evt.scsi_event.event_type =
2194 			FC_REG_SCSI_EVENT;
2195 		fast_path_evt->un.check_cond_evt.scsi_event.subcategory =
2196 			LPFC_EVENT_CHECK_COND;
2197 		fast_path_evt->un.check_cond_evt.scsi_event.lun =
2198 			cmnd->device->lun;
2199 		memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwpn,
2200 			&pnode->nlp_portname, sizeof(struct lpfc_name));
2201 		memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwnn,
2202 			&pnode->nlp_nodename, sizeof(struct lpfc_name));
2203 		fast_path_evt->un.check_cond_evt.sense_key =
2204 			cmnd->sense_buffer[2] & 0xf;
2205 		fast_path_evt->un.check_cond_evt.asc = cmnd->sense_buffer[12];
2206 		fast_path_evt->un.check_cond_evt.ascq = cmnd->sense_buffer[13];
2207 	} else if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) &&
2208 		     fcpi_parm &&
2209 		     ((be32_to_cpu(fcprsp->rspResId) != fcpi_parm) ||
2210 			((scsi_status == SAM_STAT_GOOD) &&
2211 			!(resp_info & (RESID_UNDER | RESID_OVER))))) {
2212 		/*
2213 		 * If status is good or resid does not match with fcp_param and
2214 		 * there is valid fcpi_parm, then there is a read_check error
2215 		 */
2216 		fast_path_evt = lpfc_alloc_fast_evt(phba);
2217 		if (!fast_path_evt)
2218 			return;
2219 		fast_path_evt->un.read_check_error.header.event_type =
2220 			FC_REG_FABRIC_EVENT;
2221 		fast_path_evt->un.read_check_error.header.subcategory =
2222 			LPFC_EVENT_FCPRDCHKERR;
2223 		memcpy(&fast_path_evt->un.read_check_error.header.wwpn,
2224 			&pnode->nlp_portname, sizeof(struct lpfc_name));
2225 		memcpy(&fast_path_evt->un.read_check_error.header.wwnn,
2226 			&pnode->nlp_nodename, sizeof(struct lpfc_name));
2227 		fast_path_evt->un.read_check_error.lun = cmnd->device->lun;
2228 		fast_path_evt->un.read_check_error.opcode = cmnd->cmnd[0];
2229 		fast_path_evt->un.read_check_error.fcpiparam =
2230 			fcpi_parm;
2231 	} else
2232 		return;
2233 
2234 	fast_path_evt->vport = vport;
2235 	spin_lock_irqsave(&phba->hbalock, flags);
2236 	list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list);
2237 	spin_unlock_irqrestore(&phba->hbalock, flags);
2238 	lpfc_worker_wake_up(phba);
2239 	return;
2240 }
2241 
2242 /**
2243  * lpfc_scsi_unprep_dma_buf - Un-map DMA mapping of SG-list for dev
2244  * @phba: The HBA for which this call is being executed.
2245  * @psb: The scsi buffer which is going to be un-mapped.
2246  *
2247  * This routine does DMA un-mapping of scatter gather list of scsi command
2248  * field of @lpfc_cmd for device with SLI-3 interface spec.
2249  **/
2250 static void
lpfc_scsi_unprep_dma_buf(struct lpfc_hba * phba,struct lpfc_scsi_buf * psb)2251 lpfc_scsi_unprep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
2252 {
2253 	/*
2254 	 * There are only two special cases to consider.  (1) the scsi command
2255 	 * requested scatter-gather usage or (2) the scsi command allocated
2256 	 * a request buffer, but did not request use_sg.  There is a third
2257 	 * case, but it does not require resource deallocation.
2258 	 */
2259 	if (psb->seg_cnt > 0)
2260 		scsi_dma_unmap(psb->pCmd);
2261 	if (psb->prot_seg_cnt > 0)
2262 		dma_unmap_sg(&phba->pcidev->dev, scsi_prot_sglist(psb->pCmd),
2263 				scsi_prot_sg_count(psb->pCmd),
2264 				psb->pCmd->sc_data_direction);
2265 }
2266 
2267 /**
2268  * lpfc_handler_fcp_err - FCP response handler
2269  * @vport: The virtual port for which this call is being executed.
2270  * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure.
2271  * @rsp_iocb: The response IOCB which contains FCP error.
2272  *
2273  * This routine is called to process response IOCB with status field
2274  * IOSTAT_FCP_RSP_ERROR. This routine sets result field of scsi command
2275  * based upon SCSI and FCP error.
2276  **/
2277 static void
lpfc_handle_fcp_err(struct lpfc_vport * vport,struct lpfc_scsi_buf * lpfc_cmd,struct lpfc_iocbq * rsp_iocb)2278 lpfc_handle_fcp_err(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd,
2279 		    struct lpfc_iocbq *rsp_iocb)
2280 {
2281 	struct scsi_cmnd *cmnd = lpfc_cmd->pCmd;
2282 	struct fcp_cmnd *fcpcmd = lpfc_cmd->fcp_cmnd;
2283 	struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp;
2284 	uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm;
2285 	uint32_t resp_info = fcprsp->rspStatus2;
2286 	uint32_t scsi_status = fcprsp->rspStatus3;
2287 	uint32_t *lp;
2288 	uint32_t host_status = DID_OK;
2289 	uint32_t rsplen = 0;
2290 	uint32_t logit = LOG_FCP | LOG_FCP_ERROR;
2291 
2292 
2293 	/*
2294 	 *  If this is a task management command, there is no
2295 	 *  scsi packet associated with this lpfc_cmd.  The driver
2296 	 *  consumes it.
2297 	 */
2298 	if (fcpcmd->fcpCntl2) {
2299 		scsi_status = 0;
2300 		goto out;
2301 	}
2302 
2303 	if (resp_info & RSP_LEN_VALID) {
2304 		rsplen = be32_to_cpu(fcprsp->rspRspLen);
2305 		if (rsplen != 0 && rsplen != 4 && rsplen != 8) {
2306 			lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
2307 				 "2719 Invalid response length: "
2308 				 "tgt x%x lun x%x cmnd x%x rsplen x%x\n",
2309 				 cmnd->device->id,
2310 				 cmnd->device->lun, cmnd->cmnd[0],
2311 				 rsplen);
2312 			host_status = DID_ERROR;
2313 			goto out;
2314 		}
2315 		if (fcprsp->rspInfo3 != RSP_NO_FAILURE) {
2316 			lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
2317 				 "2757 Protocol failure detected during "
2318 				 "processing of FCP I/O op: "
2319 				 "tgt x%x lun x%x cmnd x%x rspInfo3 x%x\n",
2320 				 cmnd->device->id,
2321 				 cmnd->device->lun, cmnd->cmnd[0],
2322 				 fcprsp->rspInfo3);
2323 			host_status = DID_ERROR;
2324 			goto out;
2325 		}
2326 	}
2327 
2328 	if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen) {
2329 		uint32_t snslen = be32_to_cpu(fcprsp->rspSnsLen);
2330 		if (snslen > SCSI_SENSE_BUFFERSIZE)
2331 			snslen = SCSI_SENSE_BUFFERSIZE;
2332 
2333 		if (resp_info & RSP_LEN_VALID)
2334 		  rsplen = be32_to_cpu(fcprsp->rspRspLen);
2335 		memcpy(cmnd->sense_buffer, &fcprsp->rspInfo0 + rsplen, snslen);
2336 	}
2337 	lp = (uint32_t *)cmnd->sense_buffer;
2338 
2339 	if (!scsi_status && (resp_info & RESID_UNDER))
2340 		logit = LOG_FCP;
2341 
2342 	lpfc_printf_vlog(vport, KERN_WARNING, logit,
2343 			 "9024 FCP command x%x failed: x%x SNS x%x x%x "
2344 			 "Data: x%x x%x x%x x%x x%x\n",
2345 			 cmnd->cmnd[0], scsi_status,
2346 			 be32_to_cpu(*lp), be32_to_cpu(*(lp + 3)), resp_info,
2347 			 be32_to_cpu(fcprsp->rspResId),
2348 			 be32_to_cpu(fcprsp->rspSnsLen),
2349 			 be32_to_cpu(fcprsp->rspRspLen),
2350 			 fcprsp->rspInfo3);
2351 
2352 	scsi_set_resid(cmnd, 0);
2353 	if (resp_info & RESID_UNDER) {
2354 		scsi_set_resid(cmnd, be32_to_cpu(fcprsp->rspResId));
2355 
2356 		lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
2357 				 "9025 FCP Read Underrun, expected %d, "
2358 				 "residual %d Data: x%x x%x x%x\n",
2359 				 be32_to_cpu(fcpcmd->fcpDl),
2360 				 scsi_get_resid(cmnd), fcpi_parm, cmnd->cmnd[0],
2361 				 cmnd->underflow);
2362 
2363 		/*
2364 		 * If there is an under run check if under run reported by
2365 		 * storage array is same as the under run reported by HBA.
2366 		 * If this is not same, there is a dropped frame.
2367 		 */
2368 		if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) &&
2369 			fcpi_parm &&
2370 			(scsi_get_resid(cmnd) != fcpi_parm)) {
2371 			lpfc_printf_vlog(vport, KERN_WARNING,
2372 					 LOG_FCP | LOG_FCP_ERROR,
2373 					 "9026 FCP Read Check Error "
2374 					 "and Underrun Data: x%x x%x x%x x%x\n",
2375 					 be32_to_cpu(fcpcmd->fcpDl),
2376 					 scsi_get_resid(cmnd), fcpi_parm,
2377 					 cmnd->cmnd[0]);
2378 			scsi_set_resid(cmnd, scsi_bufflen(cmnd));
2379 			host_status = DID_ERROR;
2380 		}
2381 		/*
2382 		 * The cmnd->underflow is the minimum number of bytes that must
2383 		 * be transferred for this command.  Provided a sense condition
2384 		 * is not present, make sure the actual amount transferred is at
2385 		 * least the underflow value or fail.
2386 		 */
2387 		if (!(resp_info & SNS_LEN_VALID) &&
2388 		    (scsi_status == SAM_STAT_GOOD) &&
2389 		    (scsi_bufflen(cmnd) - scsi_get_resid(cmnd)
2390 		     < cmnd->underflow)) {
2391 			lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
2392 					 "9027 FCP command x%x residual "
2393 					 "underrun converted to error "
2394 					 "Data: x%x x%x x%x\n",
2395 					 cmnd->cmnd[0], scsi_bufflen(cmnd),
2396 					 scsi_get_resid(cmnd), cmnd->underflow);
2397 			host_status = DID_ERROR;
2398 		}
2399 	} else if (resp_info & RESID_OVER) {
2400 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
2401 				 "9028 FCP command x%x residual overrun error. "
2402 				 "Data: x%x x%x\n", cmnd->cmnd[0],
2403 				 scsi_bufflen(cmnd), scsi_get_resid(cmnd));
2404 		host_status = DID_ERROR;
2405 
2406 	/*
2407 	 * Check SLI validation that all the transfer was actually done
2408 	 * (fcpi_parm should be zero). Apply check only to reads.
2409 	 */
2410 	} else if (fcpi_parm && (cmnd->sc_data_direction == DMA_FROM_DEVICE)) {
2411 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP | LOG_FCP_ERROR,
2412 				 "9029 FCP Read Check Error Data: "
2413 				 "x%x x%x x%x x%x x%x\n",
2414 				 be32_to_cpu(fcpcmd->fcpDl),
2415 				 be32_to_cpu(fcprsp->rspResId),
2416 				 fcpi_parm, cmnd->cmnd[0], scsi_status);
2417 		switch (scsi_status) {
2418 		case SAM_STAT_GOOD:
2419 		case SAM_STAT_CHECK_CONDITION:
2420 			/* Fabric dropped a data frame. Fail any successful
2421 			 * command in which we detected dropped frames.
2422 			 * A status of good or some check conditions could
2423 			 * be considered a successful command.
2424 			 */
2425 			host_status = DID_ERROR;
2426 			break;
2427 		}
2428 		scsi_set_resid(cmnd, scsi_bufflen(cmnd));
2429 	}
2430 
2431  out:
2432 	cmnd->result = ScsiResult(host_status, scsi_status);
2433 	lpfc_send_scsi_error_event(vport->phba, vport, lpfc_cmd, rsp_iocb);
2434 }
2435 
2436 /**
2437  * lpfc_scsi_cmd_iocb_cmpl - Scsi cmnd IOCB completion routine
2438  * @phba: The Hba for which this call is being executed.
2439  * @pIocbIn: The command IOCBQ for the scsi cmnd.
2440  * @pIocbOut: The response IOCBQ for the scsi cmnd.
2441  *
2442  * This routine assigns scsi command result by looking into response IOCB
2443  * status field appropriately. This routine handles QUEUE FULL condition as
2444  * well by ramping down device queue depth.
2445  **/
2446 static void
lpfc_scsi_cmd_iocb_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * pIocbIn,struct lpfc_iocbq * pIocbOut)2447 lpfc_scsi_cmd_iocb_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *pIocbIn,
2448 			struct lpfc_iocbq *pIocbOut)
2449 {
2450 	struct lpfc_scsi_buf *lpfc_cmd =
2451 		(struct lpfc_scsi_buf *) pIocbIn->context1;
2452 	struct lpfc_vport      *vport = pIocbIn->vport;
2453 	struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
2454 	struct lpfc_nodelist *pnode = rdata->pnode;
2455 	struct scsi_cmnd *cmd;
2456 	int result;
2457 	struct scsi_device *tmp_sdev;
2458 	int depth;
2459 	unsigned long flags;
2460 	struct lpfc_fast_path_event *fast_path_evt;
2461 	struct Scsi_Host *shost;
2462 	uint32_t queue_depth, scsi_id;
2463 
2464 	/* Sanity check on return of outstanding command */
2465 	if (!(lpfc_cmd->pCmd))
2466 		return;
2467 	cmd = lpfc_cmd->pCmd;
2468 	shost = cmd->device->host;
2469 
2470 	lpfc_cmd->result = pIocbOut->iocb.un.ulpWord[4];
2471 	lpfc_cmd->status = pIocbOut->iocb.ulpStatus;
2472 	/* pick up SLI4 exhange busy status from HBA */
2473 	lpfc_cmd->exch_busy = pIocbOut->iocb_flag & LPFC_EXCHANGE_BUSY;
2474 
2475 	if (pnode && NLP_CHK_NODE_ACT(pnode))
2476 		atomic_dec(&pnode->cmd_pending);
2477 
2478 	if (lpfc_cmd->status) {
2479 		if (lpfc_cmd->status == IOSTAT_LOCAL_REJECT &&
2480 		    (lpfc_cmd->result & IOERR_DRVR_MASK))
2481 			lpfc_cmd->status = IOSTAT_DRIVER_REJECT;
2482 		else if (lpfc_cmd->status >= IOSTAT_CNT)
2483 			lpfc_cmd->status = IOSTAT_DEFAULT;
2484 
2485 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
2486 				 "9030 FCP cmd x%x failed <%d/%d> "
2487 				 "status: x%x result: x%x Data: x%x x%x\n",
2488 				 cmd->cmnd[0],
2489 				 cmd->device ? cmd->device->id : 0xffff,
2490 				 cmd->device ? cmd->device->lun : 0xffff,
2491 				 lpfc_cmd->status, lpfc_cmd->result,
2492 				 pIocbOut->iocb.ulpContext,
2493 				 lpfc_cmd->cur_iocbq.iocb.ulpIoTag);
2494 
2495 		switch (lpfc_cmd->status) {
2496 		case IOSTAT_FCP_RSP_ERROR:
2497 			/* Call FCP RSP handler to determine result */
2498 			lpfc_handle_fcp_err(vport, lpfc_cmd, pIocbOut);
2499 			break;
2500 		case IOSTAT_NPORT_BSY:
2501 		case IOSTAT_FABRIC_BSY:
2502 			cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 0);
2503 			fast_path_evt = lpfc_alloc_fast_evt(phba);
2504 			if (!fast_path_evt)
2505 				break;
2506 			fast_path_evt->un.fabric_evt.event_type =
2507 				FC_REG_FABRIC_EVENT;
2508 			fast_path_evt->un.fabric_evt.subcategory =
2509 				(lpfc_cmd->status == IOSTAT_NPORT_BSY) ?
2510 				LPFC_EVENT_PORT_BUSY : LPFC_EVENT_FABRIC_BUSY;
2511 			if (pnode && NLP_CHK_NODE_ACT(pnode)) {
2512 				memcpy(&fast_path_evt->un.fabric_evt.wwpn,
2513 					&pnode->nlp_portname,
2514 					sizeof(struct lpfc_name));
2515 				memcpy(&fast_path_evt->un.fabric_evt.wwnn,
2516 					&pnode->nlp_nodename,
2517 					sizeof(struct lpfc_name));
2518 			}
2519 			fast_path_evt->vport = vport;
2520 			fast_path_evt->work_evt.evt =
2521 				LPFC_EVT_FASTPATH_MGMT_EVT;
2522 			spin_lock_irqsave(&phba->hbalock, flags);
2523 			list_add_tail(&fast_path_evt->work_evt.evt_listp,
2524 				&phba->work_list);
2525 			spin_unlock_irqrestore(&phba->hbalock, flags);
2526 			lpfc_worker_wake_up(phba);
2527 			break;
2528 		case IOSTAT_LOCAL_REJECT:
2529 		case IOSTAT_REMOTE_STOP:
2530 			if (lpfc_cmd->result == IOERR_ELXSEC_KEY_UNWRAP_ERROR ||
2531 			    lpfc_cmd->result ==
2532 					IOERR_ELXSEC_KEY_UNWRAP_COMPARE_ERROR ||
2533 			    lpfc_cmd->result == IOERR_ELXSEC_CRYPTO_ERROR ||
2534 			    lpfc_cmd->result ==
2535 					IOERR_ELXSEC_CRYPTO_COMPARE_ERROR) {
2536 				cmd->result = ScsiResult(DID_NO_CONNECT, 0);
2537 				break;
2538 			}
2539 			if (lpfc_cmd->result == IOERR_INVALID_RPI ||
2540 			    lpfc_cmd->result == IOERR_NO_RESOURCES ||
2541 			    lpfc_cmd->result == IOERR_ABORT_REQUESTED ||
2542 			    lpfc_cmd->result == IOERR_SLER_CMD_RCV_FAILURE) {
2543 				cmd->result = ScsiResult(DID_REQUEUE, 0);
2544 				break;
2545 			}
2546 			if ((lpfc_cmd->result == IOERR_RX_DMA_FAILED ||
2547 			     lpfc_cmd->result == IOERR_TX_DMA_FAILED) &&
2548 			     pIocbOut->iocb.unsli3.sli3_bg.bgstat) {
2549 				if (scsi_get_prot_op(cmd) != SCSI_PROT_NORMAL) {
2550 					/*
2551 					 * This is a response for a BG enabled
2552 					 * cmd. Parse BG error
2553 					 */
2554 					lpfc_parse_bg_err(phba, lpfc_cmd,
2555 							pIocbOut);
2556 					break;
2557 				} else {
2558 					lpfc_printf_vlog(vport, KERN_WARNING,
2559 							LOG_BG,
2560 							"9031 non-zero BGSTAT "
2561 							"on unprotected cmd\n");
2562 				}
2563 			}
2564 			if ((lpfc_cmd->status == IOSTAT_REMOTE_STOP)
2565 				&& (phba->sli_rev == LPFC_SLI_REV4)
2566 				&& (pnode && NLP_CHK_NODE_ACT(pnode))) {
2567 				/* This IO was aborted by the target, we don't
2568 				 * know the rxid and because we did not send the
2569 				 * ABTS we cannot generate and RRQ.
2570 				 */
2571 				lpfc_set_rrq_active(phba, pnode,
2572 						lpfc_cmd->cur_iocbq.sli4_xritag,
2573 						0, 0);
2574 			}
2575 		/* else: fall through */
2576 		default:
2577 			cmd->result = ScsiResult(DID_ERROR, 0);
2578 			break;
2579 		}
2580 
2581 		if (!pnode || !NLP_CHK_NODE_ACT(pnode)
2582 		    || (pnode->nlp_state != NLP_STE_MAPPED_NODE))
2583 			cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED,
2584 						 SAM_STAT_BUSY);
2585 	} else
2586 		cmd->result = ScsiResult(DID_OK, 0);
2587 
2588 	if (cmd->result || lpfc_cmd->fcp_rsp->rspSnsLen) {
2589 		uint32_t *lp = (uint32_t *)cmd->sense_buffer;
2590 
2591 		lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
2592 				 "0710 Iodone <%d/%d> cmd %p, error "
2593 				 "x%x SNS x%x x%x Data: x%x x%x\n",
2594 				 cmd->device->id, cmd->device->lun, cmd,
2595 				 cmd->result, *lp, *(lp + 3), cmd->retries,
2596 				 scsi_get_resid(cmd));
2597 	}
2598 
2599 	lpfc_update_stats(phba, lpfc_cmd);
2600 	result = cmd->result;
2601 	if (vport->cfg_max_scsicmpl_time &&
2602 	   time_after(jiffies, lpfc_cmd->start_time +
2603 		msecs_to_jiffies(vport->cfg_max_scsicmpl_time))) {
2604 		spin_lock_irqsave(shost->host_lock, flags);
2605 		if (pnode && NLP_CHK_NODE_ACT(pnode)) {
2606 			if (pnode->cmd_qdepth >
2607 				atomic_read(&pnode->cmd_pending) &&
2608 				(atomic_read(&pnode->cmd_pending) >
2609 				LPFC_MIN_TGT_QDEPTH) &&
2610 				((cmd->cmnd[0] == READ_10) ||
2611 				(cmd->cmnd[0] == WRITE_10)))
2612 				pnode->cmd_qdepth =
2613 					atomic_read(&pnode->cmd_pending);
2614 
2615 			pnode->last_change_time = jiffies;
2616 		}
2617 		spin_unlock_irqrestore(shost->host_lock, flags);
2618 	} else if (pnode && NLP_CHK_NODE_ACT(pnode)) {
2619 		if ((pnode->cmd_qdepth < vport->cfg_tgt_queue_depth) &&
2620 		   time_after(jiffies, pnode->last_change_time +
2621 			      msecs_to_jiffies(LPFC_TGTQ_INTERVAL))) {
2622 			spin_lock_irqsave(shost->host_lock, flags);
2623 			depth = pnode->cmd_qdepth * LPFC_TGTQ_RAMPUP_PCENT
2624 				/ 100;
2625 			depth = depth ? depth : 1;
2626 			pnode->cmd_qdepth += depth;
2627 			if (pnode->cmd_qdepth > vport->cfg_tgt_queue_depth)
2628 				pnode->cmd_qdepth = vport->cfg_tgt_queue_depth;
2629 			pnode->last_change_time = jiffies;
2630 			spin_unlock_irqrestore(shost->host_lock, flags);
2631 		}
2632 	}
2633 
2634 	lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd);
2635 
2636 	/* The sdev is not guaranteed to be valid post scsi_done upcall. */
2637 	queue_depth = cmd->device->queue_depth;
2638 	scsi_id = cmd->device->id;
2639 	cmd->scsi_done(cmd);
2640 
2641 	if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
2642 		/*
2643 		 * If there is a thread waiting for command completion
2644 		 * wake up the thread.
2645 		 */
2646 		spin_lock_irqsave(shost->host_lock, flags);
2647 		lpfc_cmd->pCmd = NULL;
2648 		if (lpfc_cmd->waitq)
2649 			wake_up(lpfc_cmd->waitq);
2650 		spin_unlock_irqrestore(shost->host_lock, flags);
2651 		lpfc_release_scsi_buf(phba, lpfc_cmd);
2652 		return;
2653 	}
2654 
2655 	if (!result)
2656 		lpfc_rampup_queue_depth(vport, queue_depth);
2657 
2658 	/*
2659 	 * Check for queue full.  If the lun is reporting queue full, then
2660 	 * back off the lun queue depth to prevent target overloads.
2661 	 */
2662 	if (result == SAM_STAT_TASK_SET_FULL && pnode &&
2663 	    NLP_CHK_NODE_ACT(pnode)) {
2664 		shost_for_each_device(tmp_sdev, shost) {
2665 			if (tmp_sdev->id != scsi_id)
2666 				continue;
2667 			depth = scsi_track_queue_full(tmp_sdev,
2668 						      tmp_sdev->queue_depth-1);
2669 			if (depth <= 0)
2670 				continue;
2671 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
2672 					 "0711 detected queue full - lun queue "
2673 					 "depth adjusted to %d.\n", depth);
2674 			lpfc_send_sdev_queuedepth_change_event(phba, vport,
2675 							       pnode,
2676 							       tmp_sdev->lun,
2677 							       depth+1, depth);
2678 		}
2679 	}
2680 
2681 	/*
2682 	 * If there is a thread waiting for command completion
2683 	 * wake up the thread.
2684 	 */
2685 	spin_lock_irqsave(shost->host_lock, flags);
2686 	lpfc_cmd->pCmd = NULL;
2687 	if (lpfc_cmd->waitq)
2688 		wake_up(lpfc_cmd->waitq);
2689 	spin_unlock_irqrestore(shost->host_lock, flags);
2690 
2691 	lpfc_release_scsi_buf(phba, lpfc_cmd);
2692 }
2693 
2694 /**
2695  * lpfc_fcpcmd_to_iocb - copy the fcp_cmd data into the IOCB
2696  * @data: A pointer to the immediate command data portion of the IOCB.
2697  * @fcp_cmnd: The FCP Command that is provided by the SCSI layer.
2698  *
2699  * The routine copies the entire FCP command from @fcp_cmnd to @data while
2700  * byte swapping the data to big endian format for transmission on the wire.
2701  **/
2702 static void
lpfc_fcpcmd_to_iocb(uint8_t * data,struct fcp_cmnd * fcp_cmnd)2703 lpfc_fcpcmd_to_iocb(uint8_t *data, struct fcp_cmnd *fcp_cmnd)
2704 {
2705 	int i, j;
2706 	for (i = 0, j = 0; i < sizeof(struct fcp_cmnd);
2707 	     i += sizeof(uint32_t), j++) {
2708 		((uint32_t *)data)[j] = cpu_to_be32(((uint32_t *)fcp_cmnd)[j]);
2709 	}
2710 }
2711 
2712 /**
2713  * lpfc_scsi_prep_cmnd - Wrapper func for convert scsi cmnd to FCP info unit
2714  * @vport: The virtual port for which this call is being executed.
2715  * @lpfc_cmd: The scsi command which needs to send.
2716  * @pnode: Pointer to lpfc_nodelist.
2717  *
2718  * This routine initializes fcp_cmnd and iocb data structure from scsi command
2719  * to transfer for device with SLI3 interface spec.
2720  **/
2721 static void
lpfc_scsi_prep_cmnd(struct lpfc_vport * vport,struct lpfc_scsi_buf * lpfc_cmd,struct lpfc_nodelist * pnode)2722 lpfc_scsi_prep_cmnd(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd,
2723 		    struct lpfc_nodelist *pnode)
2724 {
2725 	struct lpfc_hba *phba = vport->phba;
2726 	struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
2727 	struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
2728 	IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
2729 	struct lpfc_iocbq *piocbq = &(lpfc_cmd->cur_iocbq);
2730 	int datadir = scsi_cmnd->sc_data_direction;
2731 	char tag[2];
2732 
2733 	if (!pnode || !NLP_CHK_NODE_ACT(pnode))
2734 		return;
2735 
2736 	lpfc_cmd->fcp_rsp->rspSnsLen = 0;
2737 	/* clear task management bits */
2738 	lpfc_cmd->fcp_cmnd->fcpCntl2 = 0;
2739 
2740 	int_to_scsilun(lpfc_cmd->pCmd->device->lun,
2741 			&lpfc_cmd->fcp_cmnd->fcp_lun);
2742 
2743 	memcpy(&fcp_cmnd->fcpCdb[0], scsi_cmnd->cmnd, 16);
2744 
2745 	if (scsi_populate_tag_msg(scsi_cmnd, tag)) {
2746 		switch (tag[0]) {
2747 		case HEAD_OF_QUEUE_TAG:
2748 			fcp_cmnd->fcpCntl1 = HEAD_OF_Q;
2749 			break;
2750 		case ORDERED_QUEUE_TAG:
2751 			fcp_cmnd->fcpCntl1 = ORDERED_Q;
2752 			break;
2753 		default:
2754 			fcp_cmnd->fcpCntl1 = SIMPLE_Q;
2755 			break;
2756 		}
2757 	} else
2758 		fcp_cmnd->fcpCntl1 = 0;
2759 
2760 	/*
2761 	 * There are three possibilities here - use scatter-gather segment, use
2762 	 * the single mapping, or neither.  Start the lpfc command prep by
2763 	 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
2764 	 * data bde entry.
2765 	 */
2766 	if (scsi_sg_count(scsi_cmnd)) {
2767 		if (datadir == DMA_TO_DEVICE) {
2768 			iocb_cmd->ulpCommand = CMD_FCP_IWRITE64_CR;
2769 			if (phba->sli_rev < LPFC_SLI_REV4) {
2770 				iocb_cmd->un.fcpi.fcpi_parm = 0;
2771 				iocb_cmd->ulpPU = 0;
2772 			} else
2773 				iocb_cmd->ulpPU = PARM_READ_CHECK;
2774 			fcp_cmnd->fcpCntl3 = WRITE_DATA;
2775 			phba->fc4OutputRequests++;
2776 		} else {
2777 			iocb_cmd->ulpCommand = CMD_FCP_IREAD64_CR;
2778 			iocb_cmd->ulpPU = PARM_READ_CHECK;
2779 			fcp_cmnd->fcpCntl3 = READ_DATA;
2780 			phba->fc4InputRequests++;
2781 		}
2782 	} else {
2783 		iocb_cmd->ulpCommand = CMD_FCP_ICMND64_CR;
2784 		iocb_cmd->un.fcpi.fcpi_parm = 0;
2785 		iocb_cmd->ulpPU = 0;
2786 		fcp_cmnd->fcpCntl3 = 0;
2787 		phba->fc4ControlRequests++;
2788 	}
2789 	if (phba->sli_rev == 3 &&
2790 	    !(phba->sli3_options & LPFC_SLI3_BG_ENABLED))
2791 		lpfc_fcpcmd_to_iocb(iocb_cmd->unsli3.fcp_ext.icd, fcp_cmnd);
2792 	/*
2793 	 * Finish initializing those IOCB fields that are independent
2794 	 * of the scsi_cmnd request_buffer
2795 	 */
2796 	piocbq->iocb.ulpContext = pnode->nlp_rpi;
2797 	if (pnode->nlp_fcp_info & NLP_FCP_2_DEVICE)
2798 		piocbq->iocb.ulpFCP2Rcvy = 1;
2799 	else
2800 		piocbq->iocb.ulpFCP2Rcvy = 0;
2801 
2802 	piocbq->iocb.ulpClass = (pnode->nlp_fcp_info & 0x0f);
2803 	piocbq->context1  = lpfc_cmd;
2804 	piocbq->iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl;
2805 	piocbq->iocb.ulpTimeout = lpfc_cmd->timeout;
2806 	piocbq->vport = vport;
2807 }
2808 
2809 /**
2810  * lpfc_scsi_prep_task_mgmt_cmnd - Convert SLI3 scsi TM cmd to FCP info unit
2811  * @vport: The virtual port for which this call is being executed.
2812  * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure.
2813  * @lun: Logical unit number.
2814  * @task_mgmt_cmd: SCSI task management command.
2815  *
2816  * This routine creates FCP information unit corresponding to @task_mgmt_cmd
2817  * for device with SLI-3 interface spec.
2818  *
2819  * Return codes:
2820  *   0 - Error
2821  *   1 - Success
2822  **/
2823 static int
lpfc_scsi_prep_task_mgmt_cmd(struct lpfc_vport * vport,struct lpfc_scsi_buf * lpfc_cmd,unsigned int lun,uint8_t task_mgmt_cmd)2824 lpfc_scsi_prep_task_mgmt_cmd(struct lpfc_vport *vport,
2825 			     struct lpfc_scsi_buf *lpfc_cmd,
2826 			     unsigned int lun,
2827 			     uint8_t task_mgmt_cmd)
2828 {
2829 	struct lpfc_iocbq *piocbq;
2830 	IOCB_t *piocb;
2831 	struct fcp_cmnd *fcp_cmnd;
2832 	struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
2833 	struct lpfc_nodelist *ndlp = rdata->pnode;
2834 
2835 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
2836 	    ndlp->nlp_state != NLP_STE_MAPPED_NODE)
2837 		return 0;
2838 
2839 	piocbq = &(lpfc_cmd->cur_iocbq);
2840 	piocbq->vport = vport;
2841 
2842 	piocb = &piocbq->iocb;
2843 
2844 	fcp_cmnd = lpfc_cmd->fcp_cmnd;
2845 	/* Clear out any old data in the FCP command area */
2846 	memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd));
2847 	int_to_scsilun(lun, &fcp_cmnd->fcp_lun);
2848 	fcp_cmnd->fcpCntl2 = task_mgmt_cmd;
2849 	if (vport->phba->sli_rev == 3 &&
2850 	    !(vport->phba->sli3_options & LPFC_SLI3_BG_ENABLED))
2851 		lpfc_fcpcmd_to_iocb(piocb->unsli3.fcp_ext.icd, fcp_cmnd);
2852 	piocb->ulpCommand = CMD_FCP_ICMND64_CR;
2853 	piocb->ulpContext = ndlp->nlp_rpi;
2854 	if (ndlp->nlp_fcp_info & NLP_FCP_2_DEVICE) {
2855 		piocb->ulpFCP2Rcvy = 1;
2856 	}
2857 	piocb->ulpClass = (ndlp->nlp_fcp_info & 0x0f);
2858 
2859 	/* ulpTimeout is only one byte */
2860 	if (lpfc_cmd->timeout > 0xff) {
2861 		/*
2862 		 * Do not timeout the command at the firmware level.
2863 		 * The driver will provide the timeout mechanism.
2864 		 */
2865 		piocb->ulpTimeout = 0;
2866 	} else
2867 		piocb->ulpTimeout = lpfc_cmd->timeout;
2868 
2869 	if (vport->phba->sli_rev == LPFC_SLI_REV4)
2870 		lpfc_sli4_set_rsp_sgl_last(vport->phba, lpfc_cmd);
2871 
2872 	return 1;
2873 }
2874 
2875 /**
2876  * lpfc_scsi_api_table_setup - Set up scsi api function jump table
2877  * @phba: The hba struct for which this call is being executed.
2878  * @dev_grp: The HBA PCI-Device group number.
2879  *
2880  * This routine sets up the SCSI interface API function jump table in @phba
2881  * struct.
2882  * Returns: 0 - success, -ENODEV - failure.
2883  **/
2884 int
lpfc_scsi_api_table_setup(struct lpfc_hba * phba,uint8_t dev_grp)2885 lpfc_scsi_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
2886 {
2887 
2888 	phba->lpfc_scsi_unprep_dma_buf = lpfc_scsi_unprep_dma_buf;
2889 	phba->lpfc_scsi_prep_cmnd = lpfc_scsi_prep_cmnd;
2890 
2891 	switch (dev_grp) {
2892 	case LPFC_PCI_DEV_LP:
2893 		phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s3;
2894 		phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s3;
2895 		phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s3;
2896 		phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf_s3;
2897 		break;
2898 	case LPFC_PCI_DEV_OC:
2899 		phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s4;
2900 		phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s4;
2901 		phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s4;
2902 		phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf_s4;
2903 		break;
2904 	default:
2905 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
2906 				"1418 Invalid HBA PCI-device group: 0x%x\n",
2907 				dev_grp);
2908 		return -ENODEV;
2909 		break;
2910 	}
2911 	phba->lpfc_rampdown_queue_depth = lpfc_rampdown_queue_depth;
2912 	phba->lpfc_scsi_cmd_iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl;
2913 	return 0;
2914 }
2915 
2916 /**
2917  * lpfc_taskmgmt_def_cmpl - IOCB completion routine for task management command
2918  * @phba: The Hba for which this call is being executed.
2919  * @cmdiocbq: Pointer to lpfc_iocbq data structure.
2920  * @rspiocbq: Pointer to lpfc_iocbq data structure.
2921  *
2922  * This routine is IOCB completion routine for device reset and target reset
2923  * routine. This routine release scsi buffer associated with lpfc_cmd.
2924  **/
2925 static void
lpfc_tskmgmt_def_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,struct lpfc_iocbq * rspiocbq)2926 lpfc_tskmgmt_def_cmpl(struct lpfc_hba *phba,
2927 			struct lpfc_iocbq *cmdiocbq,
2928 			struct lpfc_iocbq *rspiocbq)
2929 {
2930 	struct lpfc_scsi_buf *lpfc_cmd =
2931 		(struct lpfc_scsi_buf *) cmdiocbq->context1;
2932 	if (lpfc_cmd)
2933 		lpfc_release_scsi_buf(phba, lpfc_cmd);
2934 	return;
2935 }
2936 
2937 /**
2938  * lpfc_info - Info entry point of scsi_host_template data structure
2939  * @host: The scsi host for which this call is being executed.
2940  *
2941  * This routine provides module information about hba.
2942  *
2943  * Reutrn code:
2944  *   Pointer to char - Success.
2945  **/
2946 const char *
lpfc_info(struct Scsi_Host * host)2947 lpfc_info(struct Scsi_Host *host)
2948 {
2949 	struct lpfc_vport *vport = (struct lpfc_vport *) host->hostdata;
2950 	struct lpfc_hba   *phba = vport->phba;
2951 	int len;
2952 	static char  lpfcinfobuf[384];
2953 
2954 	memset(lpfcinfobuf,0,384);
2955 	if (phba && phba->pcidev){
2956 		strncpy(lpfcinfobuf, phba->ModelDesc, 256);
2957 		len = strlen(lpfcinfobuf);
2958 		snprintf(lpfcinfobuf + len,
2959 			384-len,
2960 			" on PCI bus %02x device %02x irq %d",
2961 			phba->pcidev->bus->number,
2962 			phba->pcidev->devfn,
2963 			phba->pcidev->irq);
2964 		len = strlen(lpfcinfobuf);
2965 		if (phba->Port[0]) {
2966 			snprintf(lpfcinfobuf + len,
2967 				 384-len,
2968 				 " port %s",
2969 				 phba->Port);
2970 		}
2971 		len = strlen(lpfcinfobuf);
2972 		if (phba->sli4_hba.link_state.logical_speed) {
2973 			snprintf(lpfcinfobuf + len,
2974 				 384-len,
2975 				 " Logical Link Speed: %d Mbps",
2976 				 phba->sli4_hba.link_state.logical_speed * 10);
2977 		}
2978 	}
2979 	return lpfcinfobuf;
2980 }
2981 
2982 /**
2983  * lpfc_poll_rearm_time - Routine to modify fcp_poll timer of hba
2984  * @phba: The Hba for which this call is being executed.
2985  *
2986  * This routine modifies fcp_poll_timer  field of @phba by cfg_poll_tmo.
2987  * The default value of cfg_poll_tmo is 10 milliseconds.
2988  **/
lpfc_poll_rearm_timer(struct lpfc_hba * phba)2989 static __inline__ void lpfc_poll_rearm_timer(struct lpfc_hba * phba)
2990 {
2991 	unsigned long  poll_tmo_expires =
2992 		(jiffies + msecs_to_jiffies(phba->cfg_poll_tmo));
2993 
2994 	if (phba->sli.ring[LPFC_FCP_RING].txcmplq_cnt)
2995 		mod_timer(&phba->fcp_poll_timer,
2996 			  poll_tmo_expires);
2997 }
2998 
2999 /**
3000  * lpfc_poll_start_timer - Routine to start fcp_poll_timer of HBA
3001  * @phba: The Hba for which this call is being executed.
3002  *
3003  * This routine starts the fcp_poll_timer of @phba.
3004  **/
lpfc_poll_start_timer(struct lpfc_hba * phba)3005 void lpfc_poll_start_timer(struct lpfc_hba * phba)
3006 {
3007 	lpfc_poll_rearm_timer(phba);
3008 }
3009 
3010 /**
3011  * lpfc_poll_timeout - Restart polling timer
3012  * @ptr: Map to lpfc_hba data structure pointer.
3013  *
3014  * This routine restarts fcp_poll timer, when FCP ring  polling is enable
3015  * and FCP Ring interrupt is disable.
3016  **/
3017 
lpfc_poll_timeout(unsigned long ptr)3018 void lpfc_poll_timeout(unsigned long ptr)
3019 {
3020 	struct lpfc_hba *phba = (struct lpfc_hba *) ptr;
3021 
3022 	if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
3023 		lpfc_sli_handle_fast_ring_event(phba,
3024 			&phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ);
3025 
3026 		if (phba->cfg_poll & DISABLE_FCP_RING_INT)
3027 			lpfc_poll_rearm_timer(phba);
3028 	}
3029 }
3030 
3031 /**
3032  * lpfc_queuecommand - scsi_host_template queuecommand entry point
3033  * @cmnd: Pointer to scsi_cmnd data structure.
3034  * @done: Pointer to done routine.
3035  *
3036  * Driver registers this routine to scsi midlayer to submit a @cmd to process.
3037  * This routine prepares an IOCB from scsi command and provides to firmware.
3038  * The @done callback is invoked after driver finished processing the command.
3039  *
3040  * Return value :
3041  *   0 - Success
3042  *   SCSI_MLQUEUE_HOST_BUSY - Block all devices served by this host temporarily.
3043  **/
3044 static int
lpfc_queuecommand_lck(struct scsi_cmnd * cmnd,void (* done)(struct scsi_cmnd *))3045 lpfc_queuecommand_lck(struct scsi_cmnd *cmnd, void (*done) (struct scsi_cmnd *))
3046 {
3047 	struct Scsi_Host  *shost = cmnd->device->host;
3048 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3049 	struct lpfc_hba   *phba = vport->phba;
3050 	struct lpfc_rport_data *rdata = cmnd->device->hostdata;
3051 	struct lpfc_nodelist *ndlp;
3052 	struct lpfc_scsi_buf *lpfc_cmd;
3053 	struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device));
3054 	int err;
3055 
3056 	err = fc_remote_port_chkready(rport);
3057 	if (err) {
3058 		cmnd->result = err;
3059 		goto out_fail_command;
3060 	}
3061 	ndlp = rdata->pnode;
3062 
3063 	if (!(phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
3064 		scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) {
3065 
3066 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
3067 				"9058 BLKGRD: ERROR: rcvd protected cmd:%02x"
3068 				" op:%02x str=%s without registering for"
3069 				" BlockGuard - Rejecting command\n",
3070 				cmnd->cmnd[0], scsi_get_prot_op(cmnd),
3071 				dif_op_str[scsi_get_prot_op(cmnd)]);
3072 		goto out_fail_command;
3073 	}
3074 
3075 	/*
3076 	 * Catch race where our node has transitioned, but the
3077 	 * transport is still transitioning.
3078 	 */
3079 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
3080 		cmnd->result = ScsiResult(DID_IMM_RETRY, 0);
3081 		goto out_fail_command;
3082 	}
3083 	if (atomic_read(&ndlp->cmd_pending) >= ndlp->cmd_qdepth)
3084 		goto out_tgt_busy;
3085 
3086 	lpfc_cmd = lpfc_get_scsi_buf(phba, ndlp);
3087 	if (lpfc_cmd == NULL) {
3088 		lpfc_rampdown_queue_depth(phba);
3089 
3090 		lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
3091 				 "0707 driver's buffer pool is empty, "
3092 				 "IO busied\n");
3093 		goto out_host_busy;
3094 	}
3095 
3096 	/*
3097 	 * Store the midlayer's command structure for the completion phase
3098 	 * and complete the command initialization.
3099 	 */
3100 	lpfc_cmd->pCmd  = cmnd;
3101 	lpfc_cmd->rdata = rdata;
3102 	lpfc_cmd->timeout = 0;
3103 	lpfc_cmd->start_time = jiffies;
3104 	cmnd->host_scribble = (unsigned char *)lpfc_cmd;
3105 	cmnd->scsi_done = done;
3106 
3107 	if (scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) {
3108 		if (vport->phba->cfg_enable_bg) {
3109 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3110 				"9033 BLKGRD: rcvd protected cmd:%02x op:%02x "
3111 				"str=%s\n",
3112 				cmnd->cmnd[0], scsi_get_prot_op(cmnd),
3113 				dif_op_str[scsi_get_prot_op(cmnd)]);
3114 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3115 				"9034 BLKGRD: CDB: %02x %02x %02x %02x %02x "
3116 				"%02x %02x %02x %02x %02x\n",
3117 				cmnd->cmnd[0], cmnd->cmnd[1], cmnd->cmnd[2],
3118 				cmnd->cmnd[3], cmnd->cmnd[4], cmnd->cmnd[5],
3119 				cmnd->cmnd[6], cmnd->cmnd[7], cmnd->cmnd[8],
3120 				cmnd->cmnd[9]);
3121 			if (cmnd->cmnd[0] == READ_10)
3122 				lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3123 					"9035 BLKGRD: READ @ sector %llu, "
3124 					"count %u\n",
3125 					(unsigned long long)scsi_get_lba(cmnd),
3126 					blk_rq_sectors(cmnd->request));
3127 			else if (cmnd->cmnd[0] == WRITE_10)
3128 				lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3129 					"9036 BLKGRD: WRITE @ sector %llu, "
3130 					"count %u cmd=%p\n",
3131 					(unsigned long long)scsi_get_lba(cmnd),
3132 					blk_rq_sectors(cmnd->request),
3133 					cmnd);
3134 		}
3135 
3136 		err = lpfc_bg_scsi_prep_dma_buf(phba, lpfc_cmd);
3137 	} else {
3138 		if (vport->phba->cfg_enable_bg) {
3139 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3140 					"9038 BLKGRD: rcvd unprotected cmd:"
3141 					"%02x op:%02x str=%s\n",
3142 					cmnd->cmnd[0], scsi_get_prot_op(cmnd),
3143 					dif_op_str[scsi_get_prot_op(cmnd)]);
3144 				lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3145 					"9039 BLKGRD: CDB: %02x %02x %02x "
3146 					"%02x %02x %02x %02x %02x %02x %02x\n",
3147 					cmnd->cmnd[0], cmnd->cmnd[1],
3148 					cmnd->cmnd[2], cmnd->cmnd[3],
3149 					cmnd->cmnd[4], cmnd->cmnd[5],
3150 					cmnd->cmnd[6], cmnd->cmnd[7],
3151 					cmnd->cmnd[8], cmnd->cmnd[9]);
3152 			if (cmnd->cmnd[0] == READ_10)
3153 				lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3154 					"9040 dbg: READ @ sector %llu, "
3155 					"count %u\n",
3156 					(unsigned long long)scsi_get_lba(cmnd),
3157 					 blk_rq_sectors(cmnd->request));
3158 			else if (cmnd->cmnd[0] == WRITE_10)
3159 				lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3160 					 "9041 dbg: WRITE @ sector %llu, "
3161 					 "count %u cmd=%p\n",
3162 					 (unsigned long long)scsi_get_lba(cmnd),
3163 					 blk_rq_sectors(cmnd->request), cmnd);
3164 			else
3165 				lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3166 					 "9042 dbg: parser not implemented\n");
3167 		}
3168 		err = lpfc_scsi_prep_dma_buf(phba, lpfc_cmd);
3169 	}
3170 
3171 	if (err)
3172 		goto out_host_busy_free_buf;
3173 
3174 	lpfc_scsi_prep_cmnd(vport, lpfc_cmd, ndlp);
3175 
3176 	atomic_inc(&ndlp->cmd_pending);
3177 	err = lpfc_sli_issue_iocb(phba, LPFC_FCP_RING,
3178 				  &lpfc_cmd->cur_iocbq, SLI_IOCB_RET_IOCB);
3179 	if (err) {
3180 		atomic_dec(&ndlp->cmd_pending);
3181 		goto out_host_busy_free_buf;
3182 	}
3183 	if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
3184 		spin_unlock(shost->host_lock);
3185 		lpfc_sli_handle_fast_ring_event(phba,
3186 			&phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ);
3187 
3188 		spin_lock(shost->host_lock);
3189 		if (phba->cfg_poll & DISABLE_FCP_RING_INT)
3190 			lpfc_poll_rearm_timer(phba);
3191 	}
3192 
3193 	return 0;
3194 
3195  out_host_busy_free_buf:
3196 	lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd);
3197 	lpfc_release_scsi_buf(phba, lpfc_cmd);
3198  out_host_busy:
3199 	return SCSI_MLQUEUE_HOST_BUSY;
3200 
3201  out_tgt_busy:
3202 	return SCSI_MLQUEUE_TARGET_BUSY;
3203 
3204  out_fail_command:
3205 	done(cmnd);
3206 	return 0;
3207 }
3208 
DEF_SCSI_QCMD(lpfc_queuecommand)3209 static DEF_SCSI_QCMD(lpfc_queuecommand)
3210 
3211 /**
3212  * lpfc_abort_handler - scsi_host_template eh_abort_handler entry point
3213  * @cmnd: Pointer to scsi_cmnd data structure.
3214  *
3215  * This routine aborts @cmnd pending in base driver.
3216  *
3217  * Return code :
3218  *   0x2003 - Error
3219  *   0x2002 - Success
3220  **/
3221 static int
3222 lpfc_abort_handler(struct scsi_cmnd *cmnd)
3223 {
3224 	struct Scsi_Host  *shost = cmnd->device->host;
3225 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3226 	struct lpfc_hba   *phba = vport->phba;
3227 	struct lpfc_iocbq *iocb;
3228 	struct lpfc_iocbq *abtsiocb;
3229 	struct lpfc_scsi_buf *lpfc_cmd;
3230 	IOCB_t *cmd, *icmd;
3231 	int ret = SUCCESS;
3232 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waitq);
3233 
3234 	ret = fc_block_scsi_eh(cmnd);
3235 	if (ret)
3236 		return ret;
3237 	lpfc_cmd = (struct lpfc_scsi_buf *)cmnd->host_scribble;
3238 	if (!lpfc_cmd) {
3239 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3240 			 "2873 SCSI Layer I/O Abort Request IO CMPL Status "
3241 			 "x%x ID %d "
3242 			 "LUN %d snum %#lx\n", ret, cmnd->device->id,
3243 			 cmnd->device->lun, cmnd->serial_number);
3244 		return SUCCESS;
3245 	}
3246 
3247 	/*
3248 	 * If pCmd field of the corresponding lpfc_scsi_buf structure
3249 	 * points to a different SCSI command, then the driver has
3250 	 * already completed this command, but the midlayer did not
3251 	 * see the completion before the eh fired.  Just return
3252 	 * SUCCESS.
3253 	 */
3254 	iocb = &lpfc_cmd->cur_iocbq;
3255 	if (lpfc_cmd->pCmd != cmnd)
3256 		goto out;
3257 
3258 	BUG_ON(iocb->context1 != lpfc_cmd);
3259 
3260 	abtsiocb = lpfc_sli_get_iocbq(phba);
3261 	if (abtsiocb == NULL) {
3262 		ret = FAILED;
3263 		goto out;
3264 	}
3265 
3266 	/*
3267 	 * The scsi command can not be in txq and it is in flight because the
3268 	 * pCmd is still pointig at the SCSI command we have to abort. There
3269 	 * is no need to search the txcmplq. Just send an abort to the FW.
3270 	 */
3271 
3272 	cmd = &iocb->iocb;
3273 	icmd = &abtsiocb->iocb;
3274 	icmd->un.acxri.abortType = ABORT_TYPE_ABTS;
3275 	icmd->un.acxri.abortContextTag = cmd->ulpContext;
3276 	if (phba->sli_rev == LPFC_SLI_REV4)
3277 		icmd->un.acxri.abortIoTag = iocb->sli4_xritag;
3278 	else
3279 		icmd->un.acxri.abortIoTag = cmd->ulpIoTag;
3280 
3281 	icmd->ulpLe = 1;
3282 	icmd->ulpClass = cmd->ulpClass;
3283 
3284 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
3285 	abtsiocb->fcp_wqidx = iocb->fcp_wqidx;
3286 	abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
3287 
3288 	if (lpfc_is_link_up(phba))
3289 		icmd->ulpCommand = CMD_ABORT_XRI_CN;
3290 	else
3291 		icmd->ulpCommand = CMD_CLOSE_XRI_CN;
3292 
3293 	abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
3294 	abtsiocb->vport = vport;
3295 	if (lpfc_sli_issue_iocb(phba, LPFC_FCP_RING, abtsiocb, 0) ==
3296 	    IOCB_ERROR) {
3297 		lpfc_sli_release_iocbq(phba, abtsiocb);
3298 		ret = FAILED;
3299 		goto out;
3300 	}
3301 
3302 	if (phba->cfg_poll & DISABLE_FCP_RING_INT)
3303 		lpfc_sli_handle_fast_ring_event(phba,
3304 			&phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ);
3305 
3306 	lpfc_cmd->waitq = &waitq;
3307 	/* Wait for abort to complete */
3308 	wait_event_timeout(waitq,
3309 			  (lpfc_cmd->pCmd != cmnd),
3310 			   (2*vport->cfg_devloss_tmo*HZ));
3311 
3312 	spin_lock_irq(shost->host_lock);
3313 	lpfc_cmd->waitq = NULL;
3314 	spin_unlock_irq(shost->host_lock);
3315 
3316 	if (lpfc_cmd->pCmd == cmnd) {
3317 		ret = FAILED;
3318 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3319 				 "0748 abort handler timed out waiting "
3320 				 "for abort to complete: ret %#x, ID %d, "
3321 				 "LUN %d, snum %#lx\n",
3322 				 ret, cmnd->device->id, cmnd->device->lun,
3323 				 cmnd->serial_number);
3324 	}
3325 
3326  out:
3327 	lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3328 			 "0749 SCSI Layer I/O Abort Request Status x%x ID %d "
3329 			 "LUN %d snum %#lx\n", ret, cmnd->device->id,
3330 			 cmnd->device->lun, cmnd->serial_number);
3331 	return ret;
3332 }
3333 
3334 static char *
lpfc_taskmgmt_name(uint8_t task_mgmt_cmd)3335 lpfc_taskmgmt_name(uint8_t task_mgmt_cmd)
3336 {
3337 	switch (task_mgmt_cmd) {
3338 	case FCP_ABORT_TASK_SET:
3339 		return "ABORT_TASK_SET";
3340 	case FCP_CLEAR_TASK_SET:
3341 		return "FCP_CLEAR_TASK_SET";
3342 	case FCP_BUS_RESET:
3343 		return "FCP_BUS_RESET";
3344 	case FCP_LUN_RESET:
3345 		return "FCP_LUN_RESET";
3346 	case FCP_TARGET_RESET:
3347 		return "FCP_TARGET_RESET";
3348 	case FCP_CLEAR_ACA:
3349 		return "FCP_CLEAR_ACA";
3350 	case FCP_TERMINATE_TASK:
3351 		return "FCP_TERMINATE_TASK";
3352 	default:
3353 		return "unknown";
3354 	}
3355 }
3356 
3357 /**
3358  * lpfc_send_taskmgmt - Generic SCSI Task Mgmt Handler
3359  * @vport: The virtual port for which this call is being executed.
3360  * @rdata: Pointer to remote port local data
3361  * @tgt_id: Target ID of remote device.
3362  * @lun_id: Lun number for the TMF
3363  * @task_mgmt_cmd: type of TMF to send
3364  *
3365  * This routine builds and sends a TMF (SCSI Task Mgmt Function) to
3366  * a remote port.
3367  *
3368  * Return Code:
3369  *   0x2003 - Error
3370  *   0x2002 - Success.
3371  **/
3372 static int
lpfc_send_taskmgmt(struct lpfc_vport * vport,struct lpfc_rport_data * rdata,unsigned tgt_id,unsigned int lun_id,uint8_t task_mgmt_cmd)3373 lpfc_send_taskmgmt(struct lpfc_vport *vport, struct lpfc_rport_data *rdata,
3374 		    unsigned  tgt_id, unsigned int lun_id,
3375 		    uint8_t task_mgmt_cmd)
3376 {
3377 	struct lpfc_hba   *phba = vport->phba;
3378 	struct lpfc_scsi_buf *lpfc_cmd;
3379 	struct lpfc_iocbq *iocbq;
3380 	struct lpfc_iocbq *iocbqrsp;
3381 	struct lpfc_nodelist *pnode = rdata->pnode;
3382 	int ret;
3383 	int status;
3384 
3385 	if (!pnode || !NLP_CHK_NODE_ACT(pnode))
3386 		return FAILED;
3387 
3388 	lpfc_cmd = lpfc_get_scsi_buf(phba, rdata->pnode);
3389 	if (lpfc_cmd == NULL)
3390 		return FAILED;
3391 	lpfc_cmd->timeout = 60;
3392 	lpfc_cmd->rdata = rdata;
3393 
3394 	status = lpfc_scsi_prep_task_mgmt_cmd(vport, lpfc_cmd, lun_id,
3395 					   task_mgmt_cmd);
3396 	if (!status) {
3397 		lpfc_release_scsi_buf(phba, lpfc_cmd);
3398 		return FAILED;
3399 	}
3400 
3401 	iocbq = &lpfc_cmd->cur_iocbq;
3402 	iocbqrsp = lpfc_sli_get_iocbq(phba);
3403 	if (iocbqrsp == NULL) {
3404 		lpfc_release_scsi_buf(phba, lpfc_cmd);
3405 		return FAILED;
3406 	}
3407 
3408 	lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
3409 			 "0702 Issue %s to TGT %d LUN %d "
3410 			 "rpi x%x nlp_flag x%x\n",
3411 			 lpfc_taskmgmt_name(task_mgmt_cmd), tgt_id, lun_id,
3412 			 pnode->nlp_rpi, pnode->nlp_flag);
3413 
3414 	status = lpfc_sli_issue_iocb_wait(phba, LPFC_FCP_RING,
3415 					  iocbq, iocbqrsp, lpfc_cmd->timeout);
3416 	if (status != IOCB_SUCCESS) {
3417 		if (status == IOCB_TIMEDOUT) {
3418 			iocbq->iocb_cmpl = lpfc_tskmgmt_def_cmpl;
3419 			ret = TIMEOUT_ERROR;
3420 		} else
3421 			ret = FAILED;
3422 		lpfc_cmd->status = IOSTAT_DRIVER_REJECT;
3423 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3424 			 "0727 TMF %s to TGT %d LUN %d failed (%d, %d)\n",
3425 			 lpfc_taskmgmt_name(task_mgmt_cmd),
3426 			 tgt_id, lun_id, iocbqrsp->iocb.ulpStatus,
3427 			 iocbqrsp->iocb.un.ulpWord[4]);
3428 	} else if (status == IOCB_BUSY)
3429 		ret = FAILED;
3430 	else
3431 		ret = SUCCESS;
3432 
3433 	lpfc_sli_release_iocbq(phba, iocbqrsp);
3434 
3435 	if (ret != TIMEOUT_ERROR)
3436 		lpfc_release_scsi_buf(phba, lpfc_cmd);
3437 
3438 	return ret;
3439 }
3440 
3441 /**
3442  * lpfc_chk_tgt_mapped -
3443  * @vport: The virtual port to check on
3444  * @cmnd: Pointer to scsi_cmnd data structure.
3445  *
3446  * This routine delays until the scsi target (aka rport) for the
3447  * command exists (is present and logged in) or we declare it non-existent.
3448  *
3449  * Return code :
3450  *  0x2003 - Error
3451  *  0x2002 - Success
3452  **/
3453 static int
lpfc_chk_tgt_mapped(struct lpfc_vport * vport,struct scsi_cmnd * cmnd)3454 lpfc_chk_tgt_mapped(struct lpfc_vport *vport, struct scsi_cmnd *cmnd)
3455 {
3456 	struct lpfc_rport_data *rdata = cmnd->device->hostdata;
3457 	struct lpfc_nodelist *pnode;
3458 	unsigned long later;
3459 
3460 	if (!rdata) {
3461 		lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
3462 			"0797 Tgt Map rport failure: rdata x%p\n", rdata);
3463 		return FAILED;
3464 	}
3465 	pnode = rdata->pnode;
3466 	/*
3467 	 * If target is not in a MAPPED state, delay until
3468 	 * target is rediscovered or devloss timeout expires.
3469 	 */
3470 	later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies;
3471 	while (time_after(later, jiffies)) {
3472 		if (!pnode || !NLP_CHK_NODE_ACT(pnode))
3473 			return FAILED;
3474 		if (pnode->nlp_state == NLP_STE_MAPPED_NODE)
3475 			return SUCCESS;
3476 		schedule_timeout_uninterruptible(msecs_to_jiffies(500));
3477 		rdata = cmnd->device->hostdata;
3478 		if (!rdata)
3479 			return FAILED;
3480 		pnode = rdata->pnode;
3481 	}
3482 	if (!pnode || !NLP_CHK_NODE_ACT(pnode) ||
3483 	    (pnode->nlp_state != NLP_STE_MAPPED_NODE))
3484 		return FAILED;
3485 	return SUCCESS;
3486 }
3487 
3488 /**
3489  * lpfc_reset_flush_io_context -
3490  * @vport: The virtual port (scsi_host) for the flush context
3491  * @tgt_id: If aborting by Target contect - specifies the target id
3492  * @lun_id: If aborting by Lun context - specifies the lun id
3493  * @context: specifies the context level to flush at.
3494  *
3495  * After a reset condition via TMF, we need to flush orphaned i/o
3496  * contexts from the adapter. This routine aborts any contexts
3497  * outstanding, then waits for their completions. The wait is
3498  * bounded by devloss_tmo though.
3499  *
3500  * Return code :
3501  *  0x2003 - Error
3502  *  0x2002 - Success
3503  **/
3504 static int
lpfc_reset_flush_io_context(struct lpfc_vport * vport,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd context)3505 lpfc_reset_flush_io_context(struct lpfc_vport *vport, uint16_t tgt_id,
3506 			uint64_t lun_id, lpfc_ctx_cmd context)
3507 {
3508 	struct lpfc_hba   *phba = vport->phba;
3509 	unsigned long later;
3510 	int cnt;
3511 
3512 	cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context);
3513 	if (cnt)
3514 		lpfc_sli_abort_iocb(vport, &phba->sli.ring[phba->sli.fcp_ring],
3515 				    tgt_id, lun_id, context);
3516 	later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies;
3517 	while (time_after(later, jiffies) && cnt) {
3518 		schedule_timeout_uninterruptible(msecs_to_jiffies(20));
3519 		cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context);
3520 	}
3521 	if (cnt) {
3522 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3523 			"0724 I/O flush failure for context %s : cnt x%x\n",
3524 			((context == LPFC_CTX_LUN) ? "LUN" :
3525 			 ((context == LPFC_CTX_TGT) ? "TGT" :
3526 			  ((context == LPFC_CTX_HOST) ? "HOST" : "Unknown"))),
3527 			cnt);
3528 		return FAILED;
3529 	}
3530 	return SUCCESS;
3531 }
3532 
3533 /**
3534  * lpfc_device_reset_handler - scsi_host_template eh_device_reset entry point
3535  * @cmnd: Pointer to scsi_cmnd data structure.
3536  *
3537  * This routine does a device reset by sending a LUN_RESET task management
3538  * command.
3539  *
3540  * Return code :
3541  *  0x2003 - Error
3542  *  0x2002 - Success
3543  **/
3544 static int
lpfc_device_reset_handler(struct scsi_cmnd * cmnd)3545 lpfc_device_reset_handler(struct scsi_cmnd *cmnd)
3546 {
3547 	struct Scsi_Host  *shost = cmnd->device->host;
3548 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3549 	struct lpfc_rport_data *rdata = cmnd->device->hostdata;
3550 	struct lpfc_nodelist *pnode;
3551 	unsigned tgt_id = cmnd->device->id;
3552 	unsigned int lun_id = cmnd->device->lun;
3553 	struct lpfc_scsi_event_header scsi_event;
3554 	int status;
3555 
3556 	if (!rdata) {
3557 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3558 			"0798 Device Reset rport failure: rdata x%p\n", rdata);
3559 		return FAILED;
3560 	}
3561 	pnode = rdata->pnode;
3562 	status = fc_block_scsi_eh(cmnd);
3563 	if (status)
3564 		return status;
3565 
3566 	status = lpfc_chk_tgt_mapped(vport, cmnd);
3567 	if (status == FAILED) {
3568 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3569 			"0721 Device Reset rport failure: rdata x%p\n", rdata);
3570 		return FAILED;
3571 	}
3572 
3573 	scsi_event.event_type = FC_REG_SCSI_EVENT;
3574 	scsi_event.subcategory = LPFC_EVENT_LUNRESET;
3575 	scsi_event.lun = lun_id;
3576 	memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name));
3577 	memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name));
3578 
3579 	fc_host_post_vendor_event(shost, fc_get_event_number(),
3580 		sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID);
3581 
3582 	status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id,
3583 						FCP_LUN_RESET);
3584 
3585 	lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3586 			 "0713 SCSI layer issued Device Reset (%d, %d) "
3587 			 "return x%x\n", tgt_id, lun_id, status);
3588 
3589 	/*
3590 	 * We have to clean up i/o as : they may be orphaned by the TMF;
3591 	 * or if the TMF failed, they may be in an indeterminate state.
3592 	 * So, continue on.
3593 	 * We will report success if all the i/o aborts successfully.
3594 	 */
3595 	status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id,
3596 						LPFC_CTX_LUN);
3597 	return status;
3598 }
3599 
3600 /**
3601  * lpfc_target_reset_handler - scsi_host_template eh_target_reset entry point
3602  * @cmnd: Pointer to scsi_cmnd data structure.
3603  *
3604  * This routine does a target reset by sending a TARGET_RESET task management
3605  * command.
3606  *
3607  * Return code :
3608  *  0x2003 - Error
3609  *  0x2002 - Success
3610  **/
3611 static int
lpfc_target_reset_handler(struct scsi_cmnd * cmnd)3612 lpfc_target_reset_handler(struct scsi_cmnd *cmnd)
3613 {
3614 	struct Scsi_Host  *shost = cmnd->device->host;
3615 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3616 	struct lpfc_rport_data *rdata = cmnd->device->hostdata;
3617 	struct lpfc_nodelist *pnode;
3618 	unsigned tgt_id = cmnd->device->id;
3619 	unsigned int lun_id = cmnd->device->lun;
3620 	struct lpfc_scsi_event_header scsi_event;
3621 	int status;
3622 
3623 	if (!rdata) {
3624 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3625 			"0799 Target Reset rport failure: rdata x%p\n", rdata);
3626 		return FAILED;
3627 	}
3628 	pnode = rdata->pnode;
3629 	status = fc_block_scsi_eh(cmnd);
3630 	if (status)
3631 		return status;
3632 
3633 	status = lpfc_chk_tgt_mapped(vport, cmnd);
3634 	if (status == FAILED) {
3635 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3636 			"0722 Target Reset rport failure: rdata x%p\n", rdata);
3637 		return FAILED;
3638 	}
3639 
3640 	scsi_event.event_type = FC_REG_SCSI_EVENT;
3641 	scsi_event.subcategory = LPFC_EVENT_TGTRESET;
3642 	scsi_event.lun = 0;
3643 	memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name));
3644 	memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name));
3645 
3646 	fc_host_post_vendor_event(shost, fc_get_event_number(),
3647 		sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID);
3648 
3649 	status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id,
3650 					FCP_TARGET_RESET);
3651 
3652 	lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3653 			 "0723 SCSI layer issued Target Reset (%d, %d) "
3654 			 "return x%x\n", tgt_id, lun_id, status);
3655 
3656 	/*
3657 	 * We have to clean up i/o as : they may be orphaned by the TMF;
3658 	 * or if the TMF failed, they may be in an indeterminate state.
3659 	 * So, continue on.
3660 	 * We will report success if all the i/o aborts successfully.
3661 	 */
3662 	status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id,
3663 					LPFC_CTX_TGT);
3664 	return status;
3665 }
3666 
3667 /**
3668  * lpfc_bus_reset_handler - scsi_host_template eh_bus_reset_handler entry point
3669  * @cmnd: Pointer to scsi_cmnd data structure.
3670  *
3671  * This routine does target reset to all targets on @cmnd->device->host.
3672  * This emulates Parallel SCSI Bus Reset Semantics.
3673  *
3674  * Return code :
3675  *  0x2003 - Error
3676  *  0x2002 - Success
3677  **/
3678 static int
lpfc_bus_reset_handler(struct scsi_cmnd * cmnd)3679 lpfc_bus_reset_handler(struct scsi_cmnd *cmnd)
3680 {
3681 	struct Scsi_Host  *shost = cmnd->device->host;
3682 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3683 	struct lpfc_nodelist *ndlp = NULL;
3684 	struct lpfc_scsi_event_header scsi_event;
3685 	int match;
3686 	int ret = SUCCESS, status, i;
3687 
3688 	scsi_event.event_type = FC_REG_SCSI_EVENT;
3689 	scsi_event.subcategory = LPFC_EVENT_BUSRESET;
3690 	scsi_event.lun = 0;
3691 	memcpy(scsi_event.wwpn, &vport->fc_portname, sizeof(struct lpfc_name));
3692 	memcpy(scsi_event.wwnn, &vport->fc_nodename, sizeof(struct lpfc_name));
3693 
3694 	fc_host_post_vendor_event(shost, fc_get_event_number(),
3695 		sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID);
3696 
3697 	ret = fc_block_scsi_eh(cmnd);
3698 	if (ret)
3699 		return ret;
3700 
3701 	/*
3702 	 * Since the driver manages a single bus device, reset all
3703 	 * targets known to the driver.  Should any target reset
3704 	 * fail, this routine returns failure to the midlayer.
3705 	 */
3706 	for (i = 0; i < LPFC_MAX_TARGET; i++) {
3707 		/* Search for mapped node by target ID */
3708 		match = 0;
3709 		spin_lock_irq(shost->host_lock);
3710 		list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) {
3711 			if (!NLP_CHK_NODE_ACT(ndlp))
3712 				continue;
3713 			if (ndlp->nlp_state == NLP_STE_MAPPED_NODE &&
3714 			    ndlp->nlp_sid == i &&
3715 			    ndlp->rport) {
3716 				match = 1;
3717 				break;
3718 			}
3719 		}
3720 		spin_unlock_irq(shost->host_lock);
3721 		if (!match)
3722 			continue;
3723 
3724 		status = lpfc_send_taskmgmt(vport, ndlp->rport->dd_data,
3725 					i, 0, FCP_TARGET_RESET);
3726 
3727 		if (status != SUCCESS) {
3728 			lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3729 					 "0700 Bus Reset on target %d failed\n",
3730 					 i);
3731 			ret = FAILED;
3732 		}
3733 	}
3734 	/*
3735 	 * We have to clean up i/o as : they may be orphaned by the TMFs
3736 	 * above; or if any of the TMFs failed, they may be in an
3737 	 * indeterminate state.
3738 	 * We will report success if all the i/o aborts successfully.
3739 	 */
3740 
3741 	status = lpfc_reset_flush_io_context(vport, 0, 0, LPFC_CTX_HOST);
3742 	if (status != SUCCESS)
3743 		ret = FAILED;
3744 
3745 	lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3746 			 "0714 SCSI layer issued Bus Reset Data: x%x\n", ret);
3747 	return ret;
3748 }
3749 
3750 /**
3751  * lpfc_slave_alloc - scsi_host_template slave_alloc entry point
3752  * @sdev: Pointer to scsi_device.
3753  *
3754  * This routine populates the cmds_per_lun count + 2 scsi_bufs into  this host's
3755  * globally available list of scsi buffers. This routine also makes sure scsi
3756  * buffer is not allocated more than HBA limit conveyed to midlayer. This list
3757  * of scsi buffer exists for the lifetime of the driver.
3758  *
3759  * Return codes:
3760  *   non-0 - Error
3761  *   0 - Success
3762  **/
3763 static int
lpfc_slave_alloc(struct scsi_device * sdev)3764 lpfc_slave_alloc(struct scsi_device *sdev)
3765 {
3766 	struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
3767 	struct lpfc_hba   *phba = vport->phba;
3768 	struct fc_rport *rport = starget_to_rport(scsi_target(sdev));
3769 	uint32_t total = 0;
3770 	uint32_t num_to_alloc = 0;
3771 	int num_allocated = 0;
3772 	uint32_t sdev_cnt;
3773 
3774 	if (!rport || fc_remote_port_chkready(rport))
3775 		return -ENXIO;
3776 
3777 	sdev->hostdata = rport->dd_data;
3778 	sdev_cnt = atomic_inc_return(&phba->sdev_cnt);
3779 
3780 	/*
3781 	 * Populate the cmds_per_lun count scsi_bufs into this host's globally
3782 	 * available list of scsi buffers.  Don't allocate more than the
3783 	 * HBA limit conveyed to the midlayer via the host structure.  The
3784 	 * formula accounts for the lun_queue_depth + error handlers + 1
3785 	 * extra.  This list of scsi bufs exists for the lifetime of the driver.
3786 	 */
3787 	total = phba->total_scsi_bufs;
3788 	num_to_alloc = vport->cfg_lun_queue_depth + 2;
3789 
3790 	/* If allocated buffers are enough do nothing */
3791 	if ((sdev_cnt * (vport->cfg_lun_queue_depth + 2)) < total)
3792 		return 0;
3793 
3794 	/* Allow some exchanges to be available always to complete discovery */
3795 	if (total >= phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) {
3796 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3797 				 "0704 At limitation of %d preallocated "
3798 				 "command buffers\n", total);
3799 		return 0;
3800 	/* Allow some exchanges to be available always to complete discovery */
3801 	} else if (total + num_to_alloc >
3802 		phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) {
3803 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3804 				 "0705 Allocation request of %d "
3805 				 "command buffers will exceed max of %d.  "
3806 				 "Reducing allocation request to %d.\n",
3807 				 num_to_alloc, phba->cfg_hba_queue_depth,
3808 				 (phba->cfg_hba_queue_depth - total));
3809 		num_to_alloc = phba->cfg_hba_queue_depth - total;
3810 	}
3811 	num_allocated = lpfc_new_scsi_buf(vport, num_to_alloc);
3812 	if (num_to_alloc != num_allocated) {
3813 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3814 				 "0708 Allocation request of %d "
3815 				 "command buffers did not succeed.  "
3816 				 "Allocated %d buffers.\n",
3817 				 num_to_alloc, num_allocated);
3818 	}
3819 	if (num_allocated > 0)
3820 		phba->total_scsi_bufs += num_allocated;
3821 	return 0;
3822 }
3823 
3824 /**
3825  * lpfc_slave_configure - scsi_host_template slave_configure entry point
3826  * @sdev: Pointer to scsi_device.
3827  *
3828  * This routine configures following items
3829  *   - Tag command queuing support for @sdev if supported.
3830  *   - Enable SLI polling for fcp ring if ENABLE_FCP_RING_POLLING flag is set.
3831  *
3832  * Return codes:
3833  *   0 - Success
3834  **/
3835 static int
lpfc_slave_configure(struct scsi_device * sdev)3836 lpfc_slave_configure(struct scsi_device *sdev)
3837 {
3838 	struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
3839 	struct lpfc_hba   *phba = vport->phba;
3840 
3841 	if (sdev->tagged_supported)
3842 		scsi_activate_tcq(sdev, vport->cfg_lun_queue_depth);
3843 	else
3844 		scsi_deactivate_tcq(sdev, vport->cfg_lun_queue_depth);
3845 
3846 	if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
3847 		lpfc_sli_handle_fast_ring_event(phba,
3848 			&phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ);
3849 		if (phba->cfg_poll & DISABLE_FCP_RING_INT)
3850 			lpfc_poll_rearm_timer(phba);
3851 	}
3852 
3853 	return 0;
3854 }
3855 
3856 /**
3857  * lpfc_slave_destroy - slave_destroy entry point of SHT data structure
3858  * @sdev: Pointer to scsi_device.
3859  *
3860  * This routine sets @sdev hostatdata filed to null.
3861  **/
3862 static void
lpfc_slave_destroy(struct scsi_device * sdev)3863 lpfc_slave_destroy(struct scsi_device *sdev)
3864 {
3865 	struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
3866 	struct lpfc_hba   *phba = vport->phba;
3867 	atomic_dec(&phba->sdev_cnt);
3868 	sdev->hostdata = NULL;
3869 	return;
3870 }
3871 
3872 
3873 struct scsi_host_template lpfc_template = {
3874 	.module			= THIS_MODULE,
3875 	.name			= LPFC_DRIVER_NAME,
3876 	.info			= lpfc_info,
3877 	.queuecommand		= lpfc_queuecommand,
3878 	.eh_abort_handler	= lpfc_abort_handler,
3879 	.eh_device_reset_handler = lpfc_device_reset_handler,
3880 	.eh_target_reset_handler = lpfc_target_reset_handler,
3881 	.eh_bus_reset_handler	= lpfc_bus_reset_handler,
3882 	.slave_alloc		= lpfc_slave_alloc,
3883 	.slave_configure	= lpfc_slave_configure,
3884 	.slave_destroy		= lpfc_slave_destroy,
3885 	.scan_finished		= lpfc_scan_finished,
3886 	.this_id		= -1,
3887 	.sg_tablesize		= LPFC_DEFAULT_SG_SEG_CNT,
3888 	.cmd_per_lun		= LPFC_CMD_PER_LUN,
3889 	.use_clustering		= ENABLE_CLUSTERING,
3890 	.shost_attrs		= lpfc_hba_attrs,
3891 	.max_sectors		= 0xFFFF,
3892 	.vendor_id		= LPFC_NL_VENDOR_ID,
3893 	.change_queue_depth	= lpfc_change_queue_depth,
3894 };
3895 
3896 struct scsi_host_template lpfc_vport_template = {
3897 	.module			= THIS_MODULE,
3898 	.name			= LPFC_DRIVER_NAME,
3899 	.info			= lpfc_info,
3900 	.queuecommand		= lpfc_queuecommand,
3901 	.eh_abort_handler	= lpfc_abort_handler,
3902 	.eh_device_reset_handler = lpfc_device_reset_handler,
3903 	.eh_target_reset_handler = lpfc_target_reset_handler,
3904 	.eh_bus_reset_handler	= lpfc_bus_reset_handler,
3905 	.slave_alloc		= lpfc_slave_alloc,
3906 	.slave_configure	= lpfc_slave_configure,
3907 	.slave_destroy		= lpfc_slave_destroy,
3908 	.scan_finished		= lpfc_scan_finished,
3909 	.this_id		= -1,
3910 	.sg_tablesize		= LPFC_DEFAULT_SG_SEG_CNT,
3911 	.cmd_per_lun		= LPFC_CMD_PER_LUN,
3912 	.use_clustering		= ENABLE_CLUSTERING,
3913 	.shost_attrs		= lpfc_vport_attrs,
3914 	.max_sectors		= 0xFFFF,
3915 	.change_queue_depth	= lpfc_change_queue_depth,
3916 };
3917