1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "locking.h"
26
27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
28 *root, struct btrfs_path *path, int level);
29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_key *ins_key,
31 struct btrfs_path *path, int data_size, int extend);
32 static int push_node_left(struct btrfs_trans_handle *trans,
33 struct btrfs_root *root, struct extent_buffer *dst,
34 struct extent_buffer *src, int empty);
35 static int balance_node_right(struct btrfs_trans_handle *trans,
36 struct btrfs_root *root,
37 struct extent_buffer *dst_buf,
38 struct extent_buffer *src_buf);
39 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
40 struct btrfs_path *path, int level, int slot);
41 static int setup_items_for_insert(struct btrfs_trans_handle *trans,
42 struct btrfs_root *root, struct btrfs_path *path,
43 struct btrfs_key *cpu_key, u32 *data_size,
44 u32 total_data, u32 total_size, int nr);
45
46
btrfs_alloc_path(void)47 struct btrfs_path *btrfs_alloc_path(void)
48 {
49 struct btrfs_path *path;
50 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
51 if (path)
52 path->reada = 1;
53 return path;
54 }
55
56 /*
57 * set all locked nodes in the path to blocking locks. This should
58 * be done before scheduling
59 */
btrfs_set_path_blocking(struct btrfs_path * p)60 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
61 {
62 int i;
63 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
64 if (p->nodes[i] && p->locks[i])
65 btrfs_set_lock_blocking(p->nodes[i]);
66 }
67 }
68
69 /*
70 * reset all the locked nodes in the patch to spinning locks.
71 *
72 * held is used to keep lockdep happy, when lockdep is enabled
73 * we set held to a blocking lock before we go around and
74 * retake all the spinlocks in the path. You can safely use NULL
75 * for held
76 */
btrfs_clear_path_blocking(struct btrfs_path * p,struct extent_buffer * held)77 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
78 struct extent_buffer *held)
79 {
80 int i;
81
82 #ifdef CONFIG_DEBUG_LOCK_ALLOC
83 /* lockdep really cares that we take all of these spinlocks
84 * in the right order. If any of the locks in the path are not
85 * currently blocking, it is going to complain. So, make really
86 * really sure by forcing the path to blocking before we clear
87 * the path blocking.
88 */
89 if (held)
90 btrfs_set_lock_blocking(held);
91 btrfs_set_path_blocking(p);
92 #endif
93
94 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
95 if (p->nodes[i] && p->locks[i])
96 btrfs_clear_lock_blocking(p->nodes[i]);
97 }
98
99 #ifdef CONFIG_DEBUG_LOCK_ALLOC
100 if (held)
101 btrfs_clear_lock_blocking(held);
102 #endif
103 }
104
105 /* this also releases the path */
btrfs_free_path(struct btrfs_path * p)106 void btrfs_free_path(struct btrfs_path *p)
107 {
108 if (!p)
109 return;
110 btrfs_release_path(NULL, p);
111 kmem_cache_free(btrfs_path_cachep, p);
112 }
113
114 /*
115 * path release drops references on the extent buffers in the path
116 * and it drops any locks held by this path
117 *
118 * It is safe to call this on paths that no locks or extent buffers held.
119 */
btrfs_release_path(struct btrfs_root * root,struct btrfs_path * p)120 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
121 {
122 int i;
123
124 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
125 p->slots[i] = 0;
126 if (!p->nodes[i])
127 continue;
128 if (p->locks[i]) {
129 btrfs_tree_unlock(p->nodes[i]);
130 p->locks[i] = 0;
131 }
132 free_extent_buffer(p->nodes[i]);
133 p->nodes[i] = NULL;
134 }
135 }
136
137 /*
138 * safely gets a reference on the root node of a tree. A lock
139 * is not taken, so a concurrent writer may put a different node
140 * at the root of the tree. See btrfs_lock_root_node for the
141 * looping required.
142 *
143 * The extent buffer returned by this has a reference taken, so
144 * it won't disappear. It may stop being the root of the tree
145 * at any time because there are no locks held.
146 */
btrfs_root_node(struct btrfs_root * root)147 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
148 {
149 struct extent_buffer *eb;
150
151 rcu_read_lock();
152 eb = rcu_dereference(root->node);
153 extent_buffer_get(eb);
154 rcu_read_unlock();
155 return eb;
156 }
157
158 /* loop around taking references on and locking the root node of the
159 * tree until you end up with a lock on the root. A locked buffer
160 * is returned, with a reference held.
161 */
btrfs_lock_root_node(struct btrfs_root * root)162 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
163 {
164 struct extent_buffer *eb;
165
166 while (1) {
167 eb = btrfs_root_node(root);
168 btrfs_tree_lock(eb);
169 if (eb == root->node)
170 break;
171 btrfs_tree_unlock(eb);
172 free_extent_buffer(eb);
173 }
174 return eb;
175 }
176
177 /* cowonly root (everything not a reference counted cow subvolume), just get
178 * put onto a simple dirty list. transaction.c walks this to make sure they
179 * get properly updated on disk.
180 */
add_root_to_dirty_list(struct btrfs_root * root)181 static void add_root_to_dirty_list(struct btrfs_root *root)
182 {
183 if (root->track_dirty && list_empty(&root->dirty_list)) {
184 list_add(&root->dirty_list,
185 &root->fs_info->dirty_cowonly_roots);
186 }
187 }
188
189 /*
190 * used by snapshot creation to make a copy of a root for a tree with
191 * a given objectid. The buffer with the new root node is returned in
192 * cow_ret, and this func returns zero on success or a negative error code.
193 */
btrfs_copy_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer ** cow_ret,u64 new_root_objectid)194 int btrfs_copy_root(struct btrfs_trans_handle *trans,
195 struct btrfs_root *root,
196 struct extent_buffer *buf,
197 struct extent_buffer **cow_ret, u64 new_root_objectid)
198 {
199 struct extent_buffer *cow;
200 int ret = 0;
201 int level;
202 struct btrfs_disk_key disk_key;
203
204 WARN_ON(root->ref_cows && trans->transid !=
205 root->fs_info->running_transaction->transid);
206 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
207
208 level = btrfs_header_level(buf);
209 if (level == 0)
210 btrfs_item_key(buf, &disk_key, 0);
211 else
212 btrfs_node_key(buf, &disk_key, 0);
213
214 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
215 new_root_objectid, &disk_key, level,
216 buf->start, 0);
217 if (IS_ERR(cow))
218 return PTR_ERR(cow);
219
220 copy_extent_buffer(cow, buf, 0, 0, cow->len);
221 btrfs_set_header_bytenr(cow, cow->start);
222 btrfs_set_header_generation(cow, trans->transid);
223 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
224 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
225 BTRFS_HEADER_FLAG_RELOC);
226 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
227 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
228 else
229 btrfs_set_header_owner(cow, new_root_objectid);
230
231 write_extent_buffer(cow, root->fs_info->fsid,
232 (unsigned long)btrfs_header_fsid(cow),
233 BTRFS_FSID_SIZE);
234
235 WARN_ON(btrfs_header_generation(buf) > trans->transid);
236 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
237 ret = btrfs_inc_ref(trans, root, cow, 1);
238 else
239 ret = btrfs_inc_ref(trans, root, cow, 0);
240
241 if (ret)
242 return ret;
243
244 btrfs_mark_buffer_dirty(cow);
245 *cow_ret = cow;
246 return 0;
247 }
248
249 /*
250 * check if the tree block can be shared by multiple trees
251 */
btrfs_block_can_be_shared(struct btrfs_root * root,struct extent_buffer * buf)252 int btrfs_block_can_be_shared(struct btrfs_root *root,
253 struct extent_buffer *buf)
254 {
255 /*
256 * Tree blocks not in refernece counted trees and tree roots
257 * are never shared. If a block was allocated after the last
258 * snapshot and the block was not allocated by tree relocation,
259 * we know the block is not shared.
260 */
261 if (root->ref_cows &&
262 buf != root->node && buf != root->commit_root &&
263 (btrfs_header_generation(buf) <=
264 btrfs_root_last_snapshot(&root->root_item) ||
265 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
266 return 1;
267 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
268 if (root->ref_cows &&
269 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
270 return 1;
271 #endif
272 return 0;
273 }
274
update_ref_for_cow(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow,int * last_ref)275 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
276 struct btrfs_root *root,
277 struct extent_buffer *buf,
278 struct extent_buffer *cow,
279 int *last_ref)
280 {
281 u64 refs;
282 u64 owner;
283 u64 flags;
284 u64 new_flags = 0;
285 int ret;
286
287 /*
288 * Backrefs update rules:
289 *
290 * Always use full backrefs for extent pointers in tree block
291 * allocated by tree relocation.
292 *
293 * If a shared tree block is no longer referenced by its owner
294 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
295 * use full backrefs for extent pointers in tree block.
296 *
297 * If a tree block is been relocating
298 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
299 * use full backrefs for extent pointers in tree block.
300 * The reason for this is some operations (such as drop tree)
301 * are only allowed for blocks use full backrefs.
302 */
303
304 if (btrfs_block_can_be_shared(root, buf)) {
305 ret = btrfs_lookup_extent_info(trans, root, buf->start,
306 buf->len, &refs, &flags);
307 BUG_ON(ret);
308 BUG_ON(refs == 0);
309 } else {
310 refs = 1;
311 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
312 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
313 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
314 else
315 flags = 0;
316 }
317
318 owner = btrfs_header_owner(buf);
319 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
320 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
321
322 if (refs > 1) {
323 if ((owner == root->root_key.objectid ||
324 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
325 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
326 ret = btrfs_inc_ref(trans, root, buf, 1);
327 BUG_ON(ret);
328
329 if (root->root_key.objectid ==
330 BTRFS_TREE_RELOC_OBJECTID) {
331 ret = btrfs_dec_ref(trans, root, buf, 0);
332 BUG_ON(ret);
333 ret = btrfs_inc_ref(trans, root, cow, 1);
334 BUG_ON(ret);
335 }
336 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
337 } else {
338
339 if (root->root_key.objectid ==
340 BTRFS_TREE_RELOC_OBJECTID)
341 ret = btrfs_inc_ref(trans, root, cow, 1);
342 else
343 ret = btrfs_inc_ref(trans, root, cow, 0);
344 BUG_ON(ret);
345 }
346 if (new_flags != 0) {
347 ret = btrfs_set_disk_extent_flags(trans, root,
348 buf->start,
349 buf->len,
350 new_flags, 0);
351 BUG_ON(ret);
352 }
353 } else {
354 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
355 if (root->root_key.objectid ==
356 BTRFS_TREE_RELOC_OBJECTID)
357 ret = btrfs_inc_ref(trans, root, cow, 1);
358 else
359 ret = btrfs_inc_ref(trans, root, cow, 0);
360 BUG_ON(ret);
361 ret = btrfs_dec_ref(trans, root, buf, 1);
362 BUG_ON(ret);
363 }
364 clean_tree_block(trans, root, buf);
365 *last_ref = 1;
366 }
367 return 0;
368 }
369
370 /*
371 * does the dirty work in cow of a single block. The parent block (if
372 * supplied) is updated to point to the new cow copy. The new buffer is marked
373 * dirty and returned locked. If you modify the block it needs to be marked
374 * dirty again.
375 *
376 * search_start -- an allocation hint for the new block
377 *
378 * empty_size -- a hint that you plan on doing more cow. This is the size in
379 * bytes the allocator should try to find free next to the block it returns.
380 * This is just a hint and may be ignored by the allocator.
381 */
__btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,u64 search_start,u64 empty_size)382 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
383 struct btrfs_root *root,
384 struct extent_buffer *buf,
385 struct extent_buffer *parent, int parent_slot,
386 struct extent_buffer **cow_ret,
387 u64 search_start, u64 empty_size)
388 {
389 struct btrfs_disk_key disk_key;
390 struct extent_buffer *cow;
391 int level;
392 int last_ref = 0;
393 int unlock_orig = 0;
394 u64 parent_start;
395
396 if (*cow_ret == buf)
397 unlock_orig = 1;
398
399 btrfs_assert_tree_locked(buf);
400
401 WARN_ON(root->ref_cows && trans->transid !=
402 root->fs_info->running_transaction->transid);
403 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
404
405 level = btrfs_header_level(buf);
406
407 if (level == 0)
408 btrfs_item_key(buf, &disk_key, 0);
409 else
410 btrfs_node_key(buf, &disk_key, 0);
411
412 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
413 if (parent)
414 parent_start = parent->start;
415 else
416 parent_start = 0;
417 } else
418 parent_start = 0;
419
420 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
421 root->root_key.objectid, &disk_key,
422 level, search_start, empty_size);
423 if (IS_ERR(cow))
424 return PTR_ERR(cow);
425
426 /* cow is set to blocking by btrfs_init_new_buffer */
427
428 copy_extent_buffer(cow, buf, 0, 0, cow->len);
429 btrfs_set_header_bytenr(cow, cow->start);
430 btrfs_set_header_generation(cow, trans->transid);
431 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
432 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
433 BTRFS_HEADER_FLAG_RELOC);
434 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
435 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
436 else
437 btrfs_set_header_owner(cow, root->root_key.objectid);
438
439 write_extent_buffer(cow, root->fs_info->fsid,
440 (unsigned long)btrfs_header_fsid(cow),
441 BTRFS_FSID_SIZE);
442
443 update_ref_for_cow(trans, root, buf, cow, &last_ref);
444
445 if (root->ref_cows)
446 btrfs_reloc_cow_block(trans, root, buf, cow);
447
448 if (buf == root->node) {
449 WARN_ON(parent && parent != buf);
450 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
451 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
452 parent_start = buf->start;
453 else
454 parent_start = 0;
455
456 extent_buffer_get(cow);
457 rcu_assign_pointer(root->node, cow);
458
459 btrfs_free_tree_block(trans, root, buf, parent_start,
460 last_ref);
461 free_extent_buffer(buf);
462 add_root_to_dirty_list(root);
463 } else {
464 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
465 parent_start = parent->start;
466 else
467 parent_start = 0;
468
469 WARN_ON(trans->transid != btrfs_header_generation(parent));
470 btrfs_set_node_blockptr(parent, parent_slot,
471 cow->start);
472 btrfs_set_node_ptr_generation(parent, parent_slot,
473 trans->transid);
474 btrfs_mark_buffer_dirty(parent);
475 btrfs_free_tree_block(trans, root, buf, parent_start,
476 last_ref);
477 }
478 if (unlock_orig)
479 btrfs_tree_unlock(buf);
480 free_extent_buffer(buf);
481 btrfs_mark_buffer_dirty(cow);
482 *cow_ret = cow;
483 return 0;
484 }
485
should_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)486 static inline int should_cow_block(struct btrfs_trans_handle *trans,
487 struct btrfs_root *root,
488 struct extent_buffer *buf)
489 {
490 if (btrfs_header_generation(buf) == trans->transid &&
491 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
492 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
493 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
494 return 0;
495 return 1;
496 }
497
498 /*
499 * cows a single block, see __btrfs_cow_block for the real work.
500 * This version of it has extra checks so that a block isn't cow'd more than
501 * once per transaction, as long as it hasn't been written yet
502 */
btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret)503 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
504 struct btrfs_root *root, struct extent_buffer *buf,
505 struct extent_buffer *parent, int parent_slot,
506 struct extent_buffer **cow_ret)
507 {
508 u64 search_start;
509 int ret;
510
511 if (trans->transaction != root->fs_info->running_transaction) {
512 printk(KERN_CRIT "trans %llu running %llu\n",
513 (unsigned long long)trans->transid,
514 (unsigned long long)
515 root->fs_info->running_transaction->transid);
516 WARN_ON(1);
517 }
518 if (trans->transid != root->fs_info->generation) {
519 printk(KERN_CRIT "trans %llu running %llu\n",
520 (unsigned long long)trans->transid,
521 (unsigned long long)root->fs_info->generation);
522 WARN_ON(1);
523 }
524
525 if (!should_cow_block(trans, root, buf)) {
526 *cow_ret = buf;
527 return 0;
528 }
529
530 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
531
532 if (parent)
533 btrfs_set_lock_blocking(parent);
534 btrfs_set_lock_blocking(buf);
535
536 ret = __btrfs_cow_block(trans, root, buf, parent,
537 parent_slot, cow_ret, search_start, 0);
538
539 trace_btrfs_cow_block(root, buf, *cow_ret);
540
541 return ret;
542 }
543
544 /*
545 * helper function for defrag to decide if two blocks pointed to by a
546 * node are actually close by
547 */
close_blocks(u64 blocknr,u64 other,u32 blocksize)548 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
549 {
550 if (blocknr < other && other - (blocknr + blocksize) < 32768)
551 return 1;
552 if (blocknr > other && blocknr - (other + blocksize) < 32768)
553 return 1;
554 return 0;
555 }
556
557 /*
558 * compare two keys in a memcmp fashion
559 */
comp_keys(struct btrfs_disk_key * disk,struct btrfs_key * k2)560 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
561 {
562 struct btrfs_key k1;
563
564 btrfs_disk_key_to_cpu(&k1, disk);
565
566 return btrfs_comp_cpu_keys(&k1, k2);
567 }
568
569 /*
570 * same as comp_keys only with two btrfs_key's
571 */
btrfs_comp_cpu_keys(struct btrfs_key * k1,struct btrfs_key * k2)572 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
573 {
574 if (k1->objectid > k2->objectid)
575 return 1;
576 if (k1->objectid < k2->objectid)
577 return -1;
578 if (k1->type > k2->type)
579 return 1;
580 if (k1->type < k2->type)
581 return -1;
582 if (k1->offset > k2->offset)
583 return 1;
584 if (k1->offset < k2->offset)
585 return -1;
586 return 0;
587 }
588
589 /*
590 * this is used by the defrag code to go through all the
591 * leaves pointed to by a node and reallocate them so that
592 * disk order is close to key order
593 */
btrfs_realloc_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * parent,int start_slot,int cache_only,u64 * last_ret,struct btrfs_key * progress)594 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
595 struct btrfs_root *root, struct extent_buffer *parent,
596 int start_slot, int cache_only, u64 *last_ret,
597 struct btrfs_key *progress)
598 {
599 struct extent_buffer *cur;
600 u64 blocknr;
601 u64 gen;
602 u64 search_start = *last_ret;
603 u64 last_block = 0;
604 u64 other;
605 u32 parent_nritems;
606 int end_slot;
607 int i;
608 int err = 0;
609 int parent_level;
610 int uptodate;
611 u32 blocksize;
612 int progress_passed = 0;
613 struct btrfs_disk_key disk_key;
614
615 parent_level = btrfs_header_level(parent);
616 if (cache_only && parent_level != 1)
617 return 0;
618
619 if (trans->transaction != root->fs_info->running_transaction)
620 WARN_ON(1);
621 if (trans->transid != root->fs_info->generation)
622 WARN_ON(1);
623
624 parent_nritems = btrfs_header_nritems(parent);
625 blocksize = btrfs_level_size(root, parent_level - 1);
626 end_slot = parent_nritems;
627
628 if (parent_nritems == 1)
629 return 0;
630
631 btrfs_set_lock_blocking(parent);
632
633 for (i = start_slot; i < end_slot; i++) {
634 int close = 1;
635
636 if (!parent->map_token) {
637 map_extent_buffer(parent,
638 btrfs_node_key_ptr_offset(i),
639 sizeof(struct btrfs_key_ptr),
640 &parent->map_token, &parent->kaddr,
641 &parent->map_start, &parent->map_len,
642 KM_USER1);
643 }
644 btrfs_node_key(parent, &disk_key, i);
645 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
646 continue;
647
648 progress_passed = 1;
649 blocknr = btrfs_node_blockptr(parent, i);
650 gen = btrfs_node_ptr_generation(parent, i);
651 if (last_block == 0)
652 last_block = blocknr;
653
654 if (i > 0) {
655 other = btrfs_node_blockptr(parent, i - 1);
656 close = close_blocks(blocknr, other, blocksize);
657 }
658 if (!close && i < end_slot - 2) {
659 other = btrfs_node_blockptr(parent, i + 1);
660 close = close_blocks(blocknr, other, blocksize);
661 }
662 if (close) {
663 last_block = blocknr;
664 continue;
665 }
666 if (parent->map_token) {
667 unmap_extent_buffer(parent, parent->map_token,
668 KM_USER1);
669 parent->map_token = NULL;
670 }
671
672 cur = btrfs_find_tree_block(root, blocknr, blocksize);
673 if (cur)
674 uptodate = btrfs_buffer_uptodate(cur, gen);
675 else
676 uptodate = 0;
677 if (!cur || !uptodate) {
678 if (cache_only) {
679 free_extent_buffer(cur);
680 continue;
681 }
682 if (!cur) {
683 cur = read_tree_block(root, blocknr,
684 blocksize, gen);
685 if (!cur)
686 return -EIO;
687 } else if (!uptodate) {
688 btrfs_read_buffer(cur, gen);
689 }
690 }
691 if (search_start == 0)
692 search_start = last_block;
693
694 btrfs_tree_lock(cur);
695 btrfs_set_lock_blocking(cur);
696 err = __btrfs_cow_block(trans, root, cur, parent, i,
697 &cur, search_start,
698 min(16 * blocksize,
699 (end_slot - i) * blocksize));
700 if (err) {
701 btrfs_tree_unlock(cur);
702 free_extent_buffer(cur);
703 break;
704 }
705 search_start = cur->start;
706 last_block = cur->start;
707 *last_ret = search_start;
708 btrfs_tree_unlock(cur);
709 free_extent_buffer(cur);
710 }
711 if (parent->map_token) {
712 unmap_extent_buffer(parent, parent->map_token,
713 KM_USER1);
714 parent->map_token = NULL;
715 }
716 return err;
717 }
718
719 /*
720 * The leaf data grows from end-to-front in the node.
721 * this returns the address of the start of the last item,
722 * which is the stop of the leaf data stack
723 */
leaf_data_end(struct btrfs_root * root,struct extent_buffer * leaf)724 static inline unsigned int leaf_data_end(struct btrfs_root *root,
725 struct extent_buffer *leaf)
726 {
727 u32 nr = btrfs_header_nritems(leaf);
728 if (nr == 0)
729 return BTRFS_LEAF_DATA_SIZE(root);
730 return btrfs_item_offset_nr(leaf, nr - 1);
731 }
732
733
734 /*
735 * search for key in the extent_buffer. The items start at offset p,
736 * and they are item_size apart. There are 'max' items in p.
737 *
738 * the slot in the array is returned via slot, and it points to
739 * the place where you would insert key if it is not found in
740 * the array.
741 *
742 * slot may point to max if the key is bigger than all of the keys
743 */
generic_bin_search(struct extent_buffer * eb,unsigned long p,int item_size,struct btrfs_key * key,int max,int * slot)744 static noinline int generic_bin_search(struct extent_buffer *eb,
745 unsigned long p,
746 int item_size, struct btrfs_key *key,
747 int max, int *slot)
748 {
749 int low = 0;
750 int high = max;
751 int mid;
752 int ret;
753 struct btrfs_disk_key *tmp = NULL;
754 struct btrfs_disk_key unaligned;
755 unsigned long offset;
756 char *map_token = NULL;
757 char *kaddr = NULL;
758 unsigned long map_start = 0;
759 unsigned long map_len = 0;
760 int err;
761
762 while (low < high) {
763 mid = (low + high) / 2;
764 offset = p + mid * item_size;
765
766 if (!map_token || offset < map_start ||
767 (offset + sizeof(struct btrfs_disk_key)) >
768 map_start + map_len) {
769 if (map_token) {
770 unmap_extent_buffer(eb, map_token, KM_USER0);
771 map_token = NULL;
772 }
773
774 err = map_private_extent_buffer(eb, offset,
775 sizeof(struct btrfs_disk_key),
776 &map_token, &kaddr,
777 &map_start, &map_len, KM_USER0);
778
779 if (!err) {
780 tmp = (struct btrfs_disk_key *)(kaddr + offset -
781 map_start);
782 } else {
783 read_extent_buffer(eb, &unaligned,
784 offset, sizeof(unaligned));
785 tmp = &unaligned;
786 }
787
788 } else {
789 tmp = (struct btrfs_disk_key *)(kaddr + offset -
790 map_start);
791 }
792 ret = comp_keys(tmp, key);
793
794 if (ret < 0)
795 low = mid + 1;
796 else if (ret > 0)
797 high = mid;
798 else {
799 *slot = mid;
800 if (map_token)
801 unmap_extent_buffer(eb, map_token, KM_USER0);
802 return 0;
803 }
804 }
805 *slot = low;
806 if (map_token)
807 unmap_extent_buffer(eb, map_token, KM_USER0);
808 return 1;
809 }
810
811 /*
812 * simple bin_search frontend that does the right thing for
813 * leaves vs nodes
814 */
bin_search(struct extent_buffer * eb,struct btrfs_key * key,int level,int * slot)815 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
816 int level, int *slot)
817 {
818 if (level == 0) {
819 return generic_bin_search(eb,
820 offsetof(struct btrfs_leaf, items),
821 sizeof(struct btrfs_item),
822 key, btrfs_header_nritems(eb),
823 slot);
824 } else {
825 return generic_bin_search(eb,
826 offsetof(struct btrfs_node, ptrs),
827 sizeof(struct btrfs_key_ptr),
828 key, btrfs_header_nritems(eb),
829 slot);
830 }
831 return -1;
832 }
833
btrfs_bin_search(struct extent_buffer * eb,struct btrfs_key * key,int level,int * slot)834 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
835 int level, int *slot)
836 {
837 return bin_search(eb, key, level, slot);
838 }
839
root_add_used(struct btrfs_root * root,u32 size)840 static void root_add_used(struct btrfs_root *root, u32 size)
841 {
842 spin_lock(&root->accounting_lock);
843 btrfs_set_root_used(&root->root_item,
844 btrfs_root_used(&root->root_item) + size);
845 spin_unlock(&root->accounting_lock);
846 }
847
root_sub_used(struct btrfs_root * root,u32 size)848 static void root_sub_used(struct btrfs_root *root, u32 size)
849 {
850 spin_lock(&root->accounting_lock);
851 btrfs_set_root_used(&root->root_item,
852 btrfs_root_used(&root->root_item) - size);
853 spin_unlock(&root->accounting_lock);
854 }
855
856 /* given a node and slot number, this reads the blocks it points to. The
857 * extent buffer is returned with a reference taken (but unlocked).
858 * NULL is returned on error.
859 */
read_node_slot(struct btrfs_root * root,struct extent_buffer * parent,int slot)860 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
861 struct extent_buffer *parent, int slot)
862 {
863 int level = btrfs_header_level(parent);
864 if (slot < 0)
865 return NULL;
866 if (slot >= btrfs_header_nritems(parent))
867 return NULL;
868
869 BUG_ON(level == 0);
870
871 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
872 btrfs_level_size(root, level - 1),
873 btrfs_node_ptr_generation(parent, slot));
874 }
875
876 /*
877 * node level balancing, used to make sure nodes are in proper order for
878 * item deletion. We balance from the top down, so we have to make sure
879 * that a deletion won't leave an node completely empty later on.
880 */
balance_level(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)881 static noinline int balance_level(struct btrfs_trans_handle *trans,
882 struct btrfs_root *root,
883 struct btrfs_path *path, int level)
884 {
885 struct extent_buffer *right = NULL;
886 struct extent_buffer *mid;
887 struct extent_buffer *left = NULL;
888 struct extent_buffer *parent = NULL;
889 int ret = 0;
890 int wret;
891 int pslot;
892 int orig_slot = path->slots[level];
893 u64 orig_ptr;
894
895 if (level == 0)
896 return 0;
897
898 mid = path->nodes[level];
899
900 WARN_ON(!path->locks[level]);
901 WARN_ON(btrfs_header_generation(mid) != trans->transid);
902
903 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
904
905 if (level < BTRFS_MAX_LEVEL - 1)
906 parent = path->nodes[level + 1];
907 pslot = path->slots[level + 1];
908
909 /*
910 * deal with the case where there is only one pointer in the root
911 * by promoting the node below to a root
912 */
913 if (!parent) {
914 struct extent_buffer *child;
915
916 if (btrfs_header_nritems(mid) != 1)
917 return 0;
918
919 /* promote the child to a root */
920 child = read_node_slot(root, mid, 0);
921 BUG_ON(!child);
922 btrfs_tree_lock(child);
923 btrfs_set_lock_blocking(child);
924 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
925 if (ret) {
926 btrfs_tree_unlock(child);
927 free_extent_buffer(child);
928 goto enospc;
929 }
930
931 rcu_assign_pointer(root->node, child);
932
933 add_root_to_dirty_list(root);
934 btrfs_tree_unlock(child);
935
936 path->locks[level] = 0;
937 path->nodes[level] = NULL;
938 clean_tree_block(trans, root, mid);
939 btrfs_tree_unlock(mid);
940 /* once for the path */
941 free_extent_buffer(mid);
942
943 root_sub_used(root, mid->len);
944 btrfs_free_tree_block(trans, root, mid, 0, 1);
945 /* once for the root ptr */
946 free_extent_buffer(mid);
947 return 0;
948 }
949 if (btrfs_header_nritems(mid) >
950 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
951 return 0;
952
953 btrfs_header_nritems(mid);
954
955 left = read_node_slot(root, parent, pslot - 1);
956 if (left) {
957 btrfs_tree_lock(left);
958 btrfs_set_lock_blocking(left);
959 wret = btrfs_cow_block(trans, root, left,
960 parent, pslot - 1, &left);
961 if (wret) {
962 ret = wret;
963 goto enospc;
964 }
965 }
966 right = read_node_slot(root, parent, pslot + 1);
967 if (right) {
968 btrfs_tree_lock(right);
969 btrfs_set_lock_blocking(right);
970 wret = btrfs_cow_block(trans, root, right,
971 parent, pslot + 1, &right);
972 if (wret) {
973 ret = wret;
974 goto enospc;
975 }
976 }
977
978 /* first, try to make some room in the middle buffer */
979 if (left) {
980 orig_slot += btrfs_header_nritems(left);
981 wret = push_node_left(trans, root, left, mid, 1);
982 if (wret < 0)
983 ret = wret;
984 btrfs_header_nritems(mid);
985 }
986
987 /*
988 * then try to empty the right most buffer into the middle
989 */
990 if (right) {
991 wret = push_node_left(trans, root, mid, right, 1);
992 if (wret < 0 && wret != -ENOSPC)
993 ret = wret;
994 if (btrfs_header_nritems(right) == 0) {
995 clean_tree_block(trans, root, right);
996 btrfs_tree_unlock(right);
997 wret = del_ptr(trans, root, path, level + 1, pslot +
998 1);
999 if (wret)
1000 ret = wret;
1001 root_sub_used(root, right->len);
1002 btrfs_free_tree_block(trans, root, right, 0, 1);
1003 free_extent_buffer(right);
1004 right = NULL;
1005 } else {
1006 struct btrfs_disk_key right_key;
1007 btrfs_node_key(right, &right_key, 0);
1008 btrfs_set_node_key(parent, &right_key, pslot + 1);
1009 btrfs_mark_buffer_dirty(parent);
1010 }
1011 }
1012 if (btrfs_header_nritems(mid) == 1) {
1013 /*
1014 * we're not allowed to leave a node with one item in the
1015 * tree during a delete. A deletion from lower in the tree
1016 * could try to delete the only pointer in this node.
1017 * So, pull some keys from the left.
1018 * There has to be a left pointer at this point because
1019 * otherwise we would have pulled some pointers from the
1020 * right
1021 */
1022 BUG_ON(!left);
1023 wret = balance_node_right(trans, root, mid, left);
1024 if (wret < 0) {
1025 ret = wret;
1026 goto enospc;
1027 }
1028 if (wret == 1) {
1029 wret = push_node_left(trans, root, left, mid, 1);
1030 if (wret < 0)
1031 ret = wret;
1032 }
1033 BUG_ON(wret == 1);
1034 }
1035 if (btrfs_header_nritems(mid) == 0) {
1036 clean_tree_block(trans, root, mid);
1037 btrfs_tree_unlock(mid);
1038 wret = del_ptr(trans, root, path, level + 1, pslot);
1039 if (wret)
1040 ret = wret;
1041 root_sub_used(root, mid->len);
1042 btrfs_free_tree_block(trans, root, mid, 0, 1);
1043 free_extent_buffer(mid);
1044 mid = NULL;
1045 } else {
1046 /* update the parent key to reflect our changes */
1047 struct btrfs_disk_key mid_key;
1048 btrfs_node_key(mid, &mid_key, 0);
1049 btrfs_set_node_key(parent, &mid_key, pslot);
1050 btrfs_mark_buffer_dirty(parent);
1051 }
1052
1053 /* update the path */
1054 if (left) {
1055 if (btrfs_header_nritems(left) > orig_slot) {
1056 extent_buffer_get(left);
1057 /* left was locked after cow */
1058 path->nodes[level] = left;
1059 path->slots[level + 1] -= 1;
1060 path->slots[level] = orig_slot;
1061 if (mid) {
1062 btrfs_tree_unlock(mid);
1063 free_extent_buffer(mid);
1064 }
1065 } else {
1066 orig_slot -= btrfs_header_nritems(left);
1067 path->slots[level] = orig_slot;
1068 }
1069 }
1070 /* double check we haven't messed things up */
1071 if (orig_ptr !=
1072 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1073 BUG();
1074 enospc:
1075 if (right) {
1076 btrfs_tree_unlock(right);
1077 free_extent_buffer(right);
1078 }
1079 if (left) {
1080 if (path->nodes[level] != left)
1081 btrfs_tree_unlock(left);
1082 free_extent_buffer(left);
1083 }
1084 return ret;
1085 }
1086
1087 /* Node balancing for insertion. Here we only split or push nodes around
1088 * when they are completely full. This is also done top down, so we
1089 * have to be pessimistic.
1090 */
push_nodes_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1091 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1092 struct btrfs_root *root,
1093 struct btrfs_path *path, int level)
1094 {
1095 struct extent_buffer *right = NULL;
1096 struct extent_buffer *mid;
1097 struct extent_buffer *left = NULL;
1098 struct extent_buffer *parent = NULL;
1099 int ret = 0;
1100 int wret;
1101 int pslot;
1102 int orig_slot = path->slots[level];
1103
1104 if (level == 0)
1105 return 1;
1106
1107 mid = path->nodes[level];
1108 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1109
1110 if (level < BTRFS_MAX_LEVEL - 1)
1111 parent = path->nodes[level + 1];
1112 pslot = path->slots[level + 1];
1113
1114 if (!parent)
1115 return 1;
1116
1117 left = read_node_slot(root, parent, pslot - 1);
1118
1119 /* first, try to make some room in the middle buffer */
1120 if (left) {
1121 u32 left_nr;
1122
1123 btrfs_tree_lock(left);
1124 btrfs_set_lock_blocking(left);
1125
1126 left_nr = btrfs_header_nritems(left);
1127 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1128 wret = 1;
1129 } else {
1130 ret = btrfs_cow_block(trans, root, left, parent,
1131 pslot - 1, &left);
1132 if (ret)
1133 wret = 1;
1134 else {
1135 wret = push_node_left(trans, root,
1136 left, mid, 0);
1137 }
1138 }
1139 if (wret < 0)
1140 ret = wret;
1141 if (wret == 0) {
1142 struct btrfs_disk_key disk_key;
1143 orig_slot += left_nr;
1144 btrfs_node_key(mid, &disk_key, 0);
1145 btrfs_set_node_key(parent, &disk_key, pslot);
1146 btrfs_mark_buffer_dirty(parent);
1147 if (btrfs_header_nritems(left) > orig_slot) {
1148 path->nodes[level] = left;
1149 path->slots[level + 1] -= 1;
1150 path->slots[level] = orig_slot;
1151 btrfs_tree_unlock(mid);
1152 free_extent_buffer(mid);
1153 } else {
1154 orig_slot -=
1155 btrfs_header_nritems(left);
1156 path->slots[level] = orig_slot;
1157 btrfs_tree_unlock(left);
1158 free_extent_buffer(left);
1159 }
1160 return 0;
1161 }
1162 btrfs_tree_unlock(left);
1163 free_extent_buffer(left);
1164 }
1165 right = read_node_slot(root, parent, pslot + 1);
1166
1167 /*
1168 * then try to empty the right most buffer into the middle
1169 */
1170 if (right) {
1171 u32 right_nr;
1172
1173 btrfs_tree_lock(right);
1174 btrfs_set_lock_blocking(right);
1175
1176 right_nr = btrfs_header_nritems(right);
1177 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1178 wret = 1;
1179 } else {
1180 ret = btrfs_cow_block(trans, root, right,
1181 parent, pslot + 1,
1182 &right);
1183 if (ret)
1184 wret = 1;
1185 else {
1186 wret = balance_node_right(trans, root,
1187 right, mid);
1188 }
1189 }
1190 if (wret < 0)
1191 ret = wret;
1192 if (wret == 0) {
1193 struct btrfs_disk_key disk_key;
1194
1195 btrfs_node_key(right, &disk_key, 0);
1196 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1197 btrfs_mark_buffer_dirty(parent);
1198
1199 if (btrfs_header_nritems(mid) <= orig_slot) {
1200 path->nodes[level] = right;
1201 path->slots[level + 1] += 1;
1202 path->slots[level] = orig_slot -
1203 btrfs_header_nritems(mid);
1204 btrfs_tree_unlock(mid);
1205 free_extent_buffer(mid);
1206 } else {
1207 btrfs_tree_unlock(right);
1208 free_extent_buffer(right);
1209 }
1210 return 0;
1211 }
1212 btrfs_tree_unlock(right);
1213 free_extent_buffer(right);
1214 }
1215 return 1;
1216 }
1217
1218 /*
1219 * readahead one full node of leaves, finding things that are close
1220 * to the block in 'slot', and triggering ra on them.
1221 */
reada_for_search(struct btrfs_root * root,struct btrfs_path * path,int level,int slot,u64 objectid)1222 static void reada_for_search(struct btrfs_root *root,
1223 struct btrfs_path *path,
1224 int level, int slot, u64 objectid)
1225 {
1226 struct extent_buffer *node;
1227 struct btrfs_disk_key disk_key;
1228 u32 nritems;
1229 u64 search;
1230 u64 target;
1231 u64 nread = 0;
1232 int direction = path->reada;
1233 struct extent_buffer *eb;
1234 u32 nr;
1235 u32 blocksize;
1236 u32 nscan = 0;
1237
1238 if (level != 1)
1239 return;
1240
1241 if (!path->nodes[level])
1242 return;
1243
1244 node = path->nodes[level];
1245
1246 search = btrfs_node_blockptr(node, slot);
1247 blocksize = btrfs_level_size(root, level - 1);
1248 eb = btrfs_find_tree_block(root, search, blocksize);
1249 if (eb) {
1250 free_extent_buffer(eb);
1251 return;
1252 }
1253
1254 target = search;
1255
1256 nritems = btrfs_header_nritems(node);
1257 nr = slot;
1258 while (1) {
1259 if (direction < 0) {
1260 if (nr == 0)
1261 break;
1262 nr--;
1263 } else if (direction > 0) {
1264 nr++;
1265 if (nr >= nritems)
1266 break;
1267 }
1268 if (path->reada < 0 && objectid) {
1269 btrfs_node_key(node, &disk_key, nr);
1270 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1271 break;
1272 }
1273 search = btrfs_node_blockptr(node, nr);
1274 if ((search <= target && target - search <= 65536) ||
1275 (search > target && search - target <= 65536)) {
1276 readahead_tree_block(root, search, blocksize,
1277 btrfs_node_ptr_generation(node, nr));
1278 nread += blocksize;
1279 }
1280 nscan++;
1281 if ((nread > 65536 || nscan > 32))
1282 break;
1283 }
1284 }
1285
1286 /*
1287 * returns -EAGAIN if it had to drop the path, or zero if everything was in
1288 * cache
1289 */
reada_for_balance(struct btrfs_root * root,struct btrfs_path * path,int level)1290 static noinline int reada_for_balance(struct btrfs_root *root,
1291 struct btrfs_path *path, int level)
1292 {
1293 int slot;
1294 int nritems;
1295 struct extent_buffer *parent;
1296 struct extent_buffer *eb;
1297 u64 gen;
1298 u64 block1 = 0;
1299 u64 block2 = 0;
1300 int ret = 0;
1301 int blocksize;
1302
1303 parent = path->nodes[level + 1];
1304 if (!parent)
1305 return 0;
1306
1307 nritems = btrfs_header_nritems(parent);
1308 slot = path->slots[level + 1];
1309 blocksize = btrfs_level_size(root, level);
1310
1311 if (slot > 0) {
1312 block1 = btrfs_node_blockptr(parent, slot - 1);
1313 gen = btrfs_node_ptr_generation(parent, slot - 1);
1314 eb = btrfs_find_tree_block(root, block1, blocksize);
1315 if (eb && btrfs_buffer_uptodate(eb, gen))
1316 block1 = 0;
1317 free_extent_buffer(eb);
1318 }
1319 if (slot + 1 < nritems) {
1320 block2 = btrfs_node_blockptr(parent, slot + 1);
1321 gen = btrfs_node_ptr_generation(parent, slot + 1);
1322 eb = btrfs_find_tree_block(root, block2, blocksize);
1323 if (eb && btrfs_buffer_uptodate(eb, gen))
1324 block2 = 0;
1325 free_extent_buffer(eb);
1326 }
1327 if (block1 || block2) {
1328 ret = -EAGAIN;
1329
1330 /* release the whole path */
1331 btrfs_release_path(root, path);
1332
1333 /* read the blocks */
1334 if (block1)
1335 readahead_tree_block(root, block1, blocksize, 0);
1336 if (block2)
1337 readahead_tree_block(root, block2, blocksize, 0);
1338
1339 if (block1) {
1340 eb = read_tree_block(root, block1, blocksize, 0);
1341 free_extent_buffer(eb);
1342 }
1343 if (block2) {
1344 eb = read_tree_block(root, block2, blocksize, 0);
1345 free_extent_buffer(eb);
1346 }
1347 }
1348 return ret;
1349 }
1350
1351
1352 /*
1353 * when we walk down the tree, it is usually safe to unlock the higher layers
1354 * in the tree. The exceptions are when our path goes through slot 0, because
1355 * operations on the tree might require changing key pointers higher up in the
1356 * tree.
1357 *
1358 * callers might also have set path->keep_locks, which tells this code to keep
1359 * the lock if the path points to the last slot in the block. This is part of
1360 * walking through the tree, and selecting the next slot in the higher block.
1361 *
1362 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1363 * if lowest_unlock is 1, level 0 won't be unlocked
1364 */
unlock_up(struct btrfs_path * path,int level,int lowest_unlock)1365 static noinline void unlock_up(struct btrfs_path *path, int level,
1366 int lowest_unlock)
1367 {
1368 int i;
1369 int skip_level = level;
1370 int no_skips = 0;
1371 struct extent_buffer *t;
1372
1373 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1374 if (!path->nodes[i])
1375 break;
1376 if (!path->locks[i])
1377 break;
1378 if (!no_skips && path->slots[i] == 0) {
1379 skip_level = i + 1;
1380 continue;
1381 }
1382 if (!no_skips && path->keep_locks) {
1383 u32 nritems;
1384 t = path->nodes[i];
1385 nritems = btrfs_header_nritems(t);
1386 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1387 skip_level = i + 1;
1388 continue;
1389 }
1390 }
1391 if (skip_level < i && i >= lowest_unlock)
1392 no_skips = 1;
1393
1394 t = path->nodes[i];
1395 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1396 btrfs_tree_unlock(t);
1397 path->locks[i] = 0;
1398 }
1399 }
1400 }
1401
1402 /*
1403 * This releases any locks held in the path starting at level and
1404 * going all the way up to the root.
1405 *
1406 * btrfs_search_slot will keep the lock held on higher nodes in a few
1407 * corner cases, such as COW of the block at slot zero in the node. This
1408 * ignores those rules, and it should only be called when there are no
1409 * more updates to be done higher up in the tree.
1410 */
btrfs_unlock_up_safe(struct btrfs_path * path,int level)1411 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1412 {
1413 int i;
1414
1415 if (path->keep_locks)
1416 return;
1417
1418 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1419 if (!path->nodes[i])
1420 continue;
1421 if (!path->locks[i])
1422 continue;
1423 btrfs_tree_unlock(path->nodes[i]);
1424 path->locks[i] = 0;
1425 }
1426 }
1427
1428 /*
1429 * helper function for btrfs_search_slot. The goal is to find a block
1430 * in cache without setting the path to blocking. If we find the block
1431 * we return zero and the path is unchanged.
1432 *
1433 * If we can't find the block, we set the path blocking and do some
1434 * reada. -EAGAIN is returned and the search must be repeated.
1435 */
1436 static int
read_block_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer ** eb_ret,int level,int slot,struct btrfs_key * key)1437 read_block_for_search(struct btrfs_trans_handle *trans,
1438 struct btrfs_root *root, struct btrfs_path *p,
1439 struct extent_buffer **eb_ret, int level, int slot,
1440 struct btrfs_key *key)
1441 {
1442 u64 blocknr;
1443 u64 gen;
1444 u32 blocksize;
1445 struct extent_buffer *b = *eb_ret;
1446 struct extent_buffer *tmp;
1447 int ret;
1448
1449 blocknr = btrfs_node_blockptr(b, slot);
1450 gen = btrfs_node_ptr_generation(b, slot);
1451 blocksize = btrfs_level_size(root, level - 1);
1452
1453 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1454 if (tmp) {
1455 if (btrfs_buffer_uptodate(tmp, 0)) {
1456 if (btrfs_buffer_uptodate(tmp, gen)) {
1457 /*
1458 * we found an up to date block without
1459 * sleeping, return
1460 * right away
1461 */
1462 *eb_ret = tmp;
1463 return 0;
1464 }
1465 /* the pages were up to date, but we failed
1466 * the generation number check. Do a full
1467 * read for the generation number that is correct.
1468 * We must do this without dropping locks so
1469 * we can trust our generation number
1470 */
1471 free_extent_buffer(tmp);
1472 tmp = read_tree_block(root, blocknr, blocksize, gen);
1473 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1474 *eb_ret = tmp;
1475 return 0;
1476 }
1477 free_extent_buffer(tmp);
1478 btrfs_release_path(NULL, p);
1479 return -EIO;
1480 }
1481 }
1482
1483 /*
1484 * reduce lock contention at high levels
1485 * of the btree by dropping locks before
1486 * we read. Don't release the lock on the current
1487 * level because we need to walk this node to figure
1488 * out which blocks to read.
1489 */
1490 btrfs_unlock_up_safe(p, level + 1);
1491 btrfs_set_path_blocking(p);
1492
1493 free_extent_buffer(tmp);
1494 if (p->reada)
1495 reada_for_search(root, p, level, slot, key->objectid);
1496
1497 btrfs_release_path(NULL, p);
1498
1499 ret = -EAGAIN;
1500 tmp = read_tree_block(root, blocknr, blocksize, 0);
1501 if (tmp) {
1502 /*
1503 * If the read above didn't mark this buffer up to date,
1504 * it will never end up being up to date. Set ret to EIO now
1505 * and give up so that our caller doesn't loop forever
1506 * on our EAGAINs.
1507 */
1508 if (!btrfs_buffer_uptodate(tmp, 0))
1509 ret = -EIO;
1510 free_extent_buffer(tmp);
1511 }
1512 return ret;
1513 }
1514
1515 /*
1516 * helper function for btrfs_search_slot. This does all of the checks
1517 * for node-level blocks and does any balancing required based on
1518 * the ins_len.
1519 *
1520 * If no extra work was required, zero is returned. If we had to
1521 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1522 * start over
1523 */
1524 static int
setup_nodes_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer * b,int level,int ins_len)1525 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1526 struct btrfs_root *root, struct btrfs_path *p,
1527 struct extent_buffer *b, int level, int ins_len)
1528 {
1529 int ret;
1530 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1531 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1532 int sret;
1533
1534 sret = reada_for_balance(root, p, level);
1535 if (sret)
1536 goto again;
1537
1538 btrfs_set_path_blocking(p);
1539 sret = split_node(trans, root, p, level);
1540 btrfs_clear_path_blocking(p, NULL);
1541
1542 BUG_ON(sret > 0);
1543 if (sret) {
1544 ret = sret;
1545 goto done;
1546 }
1547 b = p->nodes[level];
1548 } else if (ins_len < 0 && btrfs_header_nritems(b) <
1549 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1550 int sret;
1551
1552 sret = reada_for_balance(root, p, level);
1553 if (sret)
1554 goto again;
1555
1556 btrfs_set_path_blocking(p);
1557 sret = balance_level(trans, root, p, level);
1558 btrfs_clear_path_blocking(p, NULL);
1559
1560 if (sret) {
1561 ret = sret;
1562 goto done;
1563 }
1564 b = p->nodes[level];
1565 if (!b) {
1566 btrfs_release_path(NULL, p);
1567 goto again;
1568 }
1569 BUG_ON(btrfs_header_nritems(b) == 1);
1570 }
1571 return 0;
1572
1573 again:
1574 ret = -EAGAIN;
1575 done:
1576 return ret;
1577 }
1578
1579 /*
1580 * look for key in the tree. path is filled in with nodes along the way
1581 * if key is found, we return zero and you can find the item in the leaf
1582 * level of the path (level 0)
1583 *
1584 * If the key isn't found, the path points to the slot where it should
1585 * be inserted, and 1 is returned. If there are other errors during the
1586 * search a negative error number is returned.
1587 *
1588 * if ins_len > 0, nodes and leaves will be split as we walk down the
1589 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1590 * possible)
1591 */
btrfs_search_slot(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * p,int ins_len,int cow)1592 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1593 *root, struct btrfs_key *key, struct btrfs_path *p, int
1594 ins_len, int cow)
1595 {
1596 struct extent_buffer *b;
1597 int slot;
1598 int ret;
1599 int err;
1600 int level;
1601 int lowest_unlock = 1;
1602 u8 lowest_level = 0;
1603
1604 lowest_level = p->lowest_level;
1605 WARN_ON(lowest_level && ins_len > 0);
1606 WARN_ON(p->nodes[0] != NULL);
1607
1608 if (ins_len < 0)
1609 lowest_unlock = 2;
1610
1611 again:
1612 if (p->search_commit_root) {
1613 b = root->commit_root;
1614 extent_buffer_get(b);
1615 if (!p->skip_locking)
1616 btrfs_tree_lock(b);
1617 } else {
1618 if (p->skip_locking)
1619 b = btrfs_root_node(root);
1620 else
1621 b = btrfs_lock_root_node(root);
1622 }
1623
1624 while (b) {
1625 level = btrfs_header_level(b);
1626
1627 /*
1628 * setup the path here so we can release it under lock
1629 * contention with the cow code
1630 */
1631 p->nodes[level] = b;
1632 if (!p->skip_locking)
1633 p->locks[level] = 1;
1634
1635 if (cow) {
1636 /*
1637 * if we don't really need to cow this block
1638 * then we don't want to set the path blocking,
1639 * so we test it here
1640 */
1641 if (!should_cow_block(trans, root, b))
1642 goto cow_done;
1643
1644 btrfs_set_path_blocking(p);
1645
1646 err = btrfs_cow_block(trans, root, b,
1647 p->nodes[level + 1],
1648 p->slots[level + 1], &b);
1649 if (err) {
1650 ret = err;
1651 goto done;
1652 }
1653 }
1654 cow_done:
1655 BUG_ON(!cow && ins_len);
1656 if (level != btrfs_header_level(b))
1657 WARN_ON(1);
1658 level = btrfs_header_level(b);
1659
1660 p->nodes[level] = b;
1661 if (!p->skip_locking)
1662 p->locks[level] = 1;
1663
1664 btrfs_clear_path_blocking(p, NULL);
1665
1666 /*
1667 * we have a lock on b and as long as we aren't changing
1668 * the tree, there is no way to for the items in b to change.
1669 * It is safe to drop the lock on our parent before we
1670 * go through the expensive btree search on b.
1671 *
1672 * If cow is true, then we might be changing slot zero,
1673 * which may require changing the parent. So, we can't
1674 * drop the lock until after we know which slot we're
1675 * operating on.
1676 */
1677 if (!cow)
1678 btrfs_unlock_up_safe(p, level + 1);
1679
1680 ret = bin_search(b, key, level, &slot);
1681
1682 if (level != 0) {
1683 int dec = 0;
1684 if (ret && slot > 0) {
1685 dec = 1;
1686 slot -= 1;
1687 }
1688 p->slots[level] = slot;
1689 err = setup_nodes_for_search(trans, root, p, b, level,
1690 ins_len);
1691 if (err == -EAGAIN)
1692 goto again;
1693 if (err) {
1694 ret = err;
1695 goto done;
1696 }
1697 b = p->nodes[level];
1698 slot = p->slots[level];
1699
1700 unlock_up(p, level, lowest_unlock);
1701
1702 if (level == lowest_level) {
1703 if (dec)
1704 p->slots[level]++;
1705 goto done;
1706 }
1707
1708 err = read_block_for_search(trans, root, p,
1709 &b, level, slot, key);
1710 if (err == -EAGAIN)
1711 goto again;
1712 if (err) {
1713 ret = err;
1714 goto done;
1715 }
1716
1717 if (!p->skip_locking) {
1718 btrfs_clear_path_blocking(p, NULL);
1719 err = btrfs_try_spin_lock(b);
1720
1721 if (!err) {
1722 btrfs_set_path_blocking(p);
1723 btrfs_tree_lock(b);
1724 btrfs_clear_path_blocking(p, b);
1725 }
1726 }
1727 } else {
1728 p->slots[level] = slot;
1729 if (ins_len > 0 &&
1730 btrfs_leaf_free_space(root, b) < ins_len) {
1731 btrfs_set_path_blocking(p);
1732 err = split_leaf(trans, root, key,
1733 p, ins_len, ret == 0);
1734 btrfs_clear_path_blocking(p, NULL);
1735
1736 BUG_ON(err > 0);
1737 if (err) {
1738 ret = err;
1739 goto done;
1740 }
1741 }
1742 if (!p->search_for_split)
1743 unlock_up(p, level, lowest_unlock);
1744 goto done;
1745 }
1746 }
1747 ret = 1;
1748 done:
1749 /*
1750 * we don't really know what they plan on doing with the path
1751 * from here on, so for now just mark it as blocking
1752 */
1753 if (!p->leave_spinning)
1754 btrfs_set_path_blocking(p);
1755 if (ret < 0)
1756 btrfs_release_path(root, p);
1757 return ret;
1758 }
1759
1760 /*
1761 * adjust the pointers going up the tree, starting at level
1762 * making sure the right key of each node is points to 'key'.
1763 * This is used after shifting pointers to the left, so it stops
1764 * fixing up pointers when a given leaf/node is not in slot 0 of the
1765 * higher levels
1766 *
1767 * If this fails to write a tree block, it returns -1, but continues
1768 * fixing up the blocks in ram so the tree is consistent.
1769 */
fixup_low_keys(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_disk_key * key,int level)1770 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1771 struct btrfs_root *root, struct btrfs_path *path,
1772 struct btrfs_disk_key *key, int level)
1773 {
1774 int i;
1775 int ret = 0;
1776 struct extent_buffer *t;
1777
1778 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1779 int tslot = path->slots[i];
1780 if (!path->nodes[i])
1781 break;
1782 t = path->nodes[i];
1783 btrfs_set_node_key(t, key, tslot);
1784 btrfs_mark_buffer_dirty(path->nodes[i]);
1785 if (tslot != 0)
1786 break;
1787 }
1788 return ret;
1789 }
1790
1791 /*
1792 * update item key.
1793 *
1794 * This function isn't completely safe. It's the caller's responsibility
1795 * that the new key won't break the order
1796 */
btrfs_set_item_key_safe(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * new_key)1797 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1798 struct btrfs_root *root, struct btrfs_path *path,
1799 struct btrfs_key *new_key)
1800 {
1801 struct btrfs_disk_key disk_key;
1802 struct extent_buffer *eb;
1803 int slot;
1804
1805 eb = path->nodes[0];
1806 slot = path->slots[0];
1807 if (slot > 0) {
1808 btrfs_item_key(eb, &disk_key, slot - 1);
1809 if (comp_keys(&disk_key, new_key) >= 0)
1810 return -1;
1811 }
1812 if (slot < btrfs_header_nritems(eb) - 1) {
1813 btrfs_item_key(eb, &disk_key, slot + 1);
1814 if (comp_keys(&disk_key, new_key) <= 0)
1815 return -1;
1816 }
1817
1818 btrfs_cpu_key_to_disk(&disk_key, new_key);
1819 btrfs_set_item_key(eb, &disk_key, slot);
1820 btrfs_mark_buffer_dirty(eb);
1821 if (slot == 0)
1822 fixup_low_keys(trans, root, path, &disk_key, 1);
1823 return 0;
1824 }
1825
1826 /*
1827 * try to push data from one node into the next node left in the
1828 * tree.
1829 *
1830 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1831 * error, and > 0 if there was no room in the left hand block.
1832 */
push_node_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * dst,struct extent_buffer * src,int empty)1833 static int push_node_left(struct btrfs_trans_handle *trans,
1834 struct btrfs_root *root, struct extent_buffer *dst,
1835 struct extent_buffer *src, int empty)
1836 {
1837 int push_items = 0;
1838 int src_nritems;
1839 int dst_nritems;
1840 int ret = 0;
1841
1842 src_nritems = btrfs_header_nritems(src);
1843 dst_nritems = btrfs_header_nritems(dst);
1844 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1845 WARN_ON(btrfs_header_generation(src) != trans->transid);
1846 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1847
1848 if (!empty && src_nritems <= 8)
1849 return 1;
1850
1851 if (push_items <= 0)
1852 return 1;
1853
1854 if (empty) {
1855 push_items = min(src_nritems, push_items);
1856 if (push_items < src_nritems) {
1857 /* leave at least 8 pointers in the node if
1858 * we aren't going to empty it
1859 */
1860 if (src_nritems - push_items < 8) {
1861 if (push_items <= 8)
1862 return 1;
1863 push_items -= 8;
1864 }
1865 }
1866 } else
1867 push_items = min(src_nritems - 8, push_items);
1868
1869 copy_extent_buffer(dst, src,
1870 btrfs_node_key_ptr_offset(dst_nritems),
1871 btrfs_node_key_ptr_offset(0),
1872 push_items * sizeof(struct btrfs_key_ptr));
1873
1874 if (push_items < src_nritems) {
1875 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1876 btrfs_node_key_ptr_offset(push_items),
1877 (src_nritems - push_items) *
1878 sizeof(struct btrfs_key_ptr));
1879 }
1880 btrfs_set_header_nritems(src, src_nritems - push_items);
1881 btrfs_set_header_nritems(dst, dst_nritems + push_items);
1882 btrfs_mark_buffer_dirty(src);
1883 btrfs_mark_buffer_dirty(dst);
1884
1885 return ret;
1886 }
1887
1888 /*
1889 * try to push data from one node into the next node right in the
1890 * tree.
1891 *
1892 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1893 * error, and > 0 if there was no room in the right hand block.
1894 *
1895 * this will only push up to 1/2 the contents of the left node over
1896 */
balance_node_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * dst,struct extent_buffer * src)1897 static int balance_node_right(struct btrfs_trans_handle *trans,
1898 struct btrfs_root *root,
1899 struct extent_buffer *dst,
1900 struct extent_buffer *src)
1901 {
1902 int push_items = 0;
1903 int max_push;
1904 int src_nritems;
1905 int dst_nritems;
1906 int ret = 0;
1907
1908 WARN_ON(btrfs_header_generation(src) != trans->transid);
1909 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1910
1911 src_nritems = btrfs_header_nritems(src);
1912 dst_nritems = btrfs_header_nritems(dst);
1913 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1914 if (push_items <= 0)
1915 return 1;
1916
1917 if (src_nritems < 4)
1918 return 1;
1919
1920 max_push = src_nritems / 2 + 1;
1921 /* don't try to empty the node */
1922 if (max_push >= src_nritems)
1923 return 1;
1924
1925 if (max_push < push_items)
1926 push_items = max_push;
1927
1928 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
1929 btrfs_node_key_ptr_offset(0),
1930 (dst_nritems) *
1931 sizeof(struct btrfs_key_ptr));
1932
1933 copy_extent_buffer(dst, src,
1934 btrfs_node_key_ptr_offset(0),
1935 btrfs_node_key_ptr_offset(src_nritems - push_items),
1936 push_items * sizeof(struct btrfs_key_ptr));
1937
1938 btrfs_set_header_nritems(src, src_nritems - push_items);
1939 btrfs_set_header_nritems(dst, dst_nritems + push_items);
1940
1941 btrfs_mark_buffer_dirty(src);
1942 btrfs_mark_buffer_dirty(dst);
1943
1944 return ret;
1945 }
1946
1947 /*
1948 * helper function to insert a new root level in the tree.
1949 * A new node is allocated, and a single item is inserted to
1950 * point to the existing root
1951 *
1952 * returns zero on success or < 0 on failure.
1953 */
insert_new_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1954 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
1955 struct btrfs_root *root,
1956 struct btrfs_path *path, int level)
1957 {
1958 u64 lower_gen;
1959 struct extent_buffer *lower;
1960 struct extent_buffer *c;
1961 struct extent_buffer *old;
1962 struct btrfs_disk_key lower_key;
1963
1964 BUG_ON(path->nodes[level]);
1965 BUG_ON(path->nodes[level-1] != root->node);
1966
1967 lower = path->nodes[level-1];
1968 if (level == 1)
1969 btrfs_item_key(lower, &lower_key, 0);
1970 else
1971 btrfs_node_key(lower, &lower_key, 0);
1972
1973 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
1974 root->root_key.objectid, &lower_key,
1975 level, root->node->start, 0);
1976 if (IS_ERR(c))
1977 return PTR_ERR(c);
1978
1979 root_add_used(root, root->nodesize);
1980
1981 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
1982 btrfs_set_header_nritems(c, 1);
1983 btrfs_set_header_level(c, level);
1984 btrfs_set_header_bytenr(c, c->start);
1985 btrfs_set_header_generation(c, trans->transid);
1986 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
1987 btrfs_set_header_owner(c, root->root_key.objectid);
1988
1989 write_extent_buffer(c, root->fs_info->fsid,
1990 (unsigned long)btrfs_header_fsid(c),
1991 BTRFS_FSID_SIZE);
1992
1993 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
1994 (unsigned long)btrfs_header_chunk_tree_uuid(c),
1995 BTRFS_UUID_SIZE);
1996
1997 btrfs_set_node_key(c, &lower_key, 0);
1998 btrfs_set_node_blockptr(c, 0, lower->start);
1999 lower_gen = btrfs_header_generation(lower);
2000 WARN_ON(lower_gen != trans->transid);
2001
2002 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2003
2004 btrfs_mark_buffer_dirty(c);
2005
2006 old = root->node;
2007 rcu_assign_pointer(root->node, c);
2008
2009 /* the super has an extra ref to root->node */
2010 free_extent_buffer(old);
2011
2012 add_root_to_dirty_list(root);
2013 extent_buffer_get(c);
2014 path->nodes[level] = c;
2015 path->locks[level] = 1;
2016 path->slots[level] = 0;
2017 return 0;
2018 }
2019
2020 /*
2021 * worker function to insert a single pointer in a node.
2022 * the node should have enough room for the pointer already
2023 *
2024 * slot and level indicate where you want the key to go, and
2025 * blocknr is the block the key points to.
2026 *
2027 * returns zero on success and < 0 on any error
2028 */
insert_ptr(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_disk_key * key,u64 bytenr,int slot,int level)2029 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2030 *root, struct btrfs_path *path, struct btrfs_disk_key
2031 *key, u64 bytenr, int slot, int level)
2032 {
2033 struct extent_buffer *lower;
2034 int nritems;
2035
2036 BUG_ON(!path->nodes[level]);
2037 btrfs_assert_tree_locked(path->nodes[level]);
2038 lower = path->nodes[level];
2039 nritems = btrfs_header_nritems(lower);
2040 BUG_ON(slot > nritems);
2041 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2042 BUG();
2043 if (slot != nritems) {
2044 memmove_extent_buffer(lower,
2045 btrfs_node_key_ptr_offset(slot + 1),
2046 btrfs_node_key_ptr_offset(slot),
2047 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2048 }
2049 btrfs_set_node_key(lower, key, slot);
2050 btrfs_set_node_blockptr(lower, slot, bytenr);
2051 WARN_ON(trans->transid == 0);
2052 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2053 btrfs_set_header_nritems(lower, nritems + 1);
2054 btrfs_mark_buffer_dirty(lower);
2055 return 0;
2056 }
2057
2058 /*
2059 * split the node at the specified level in path in two.
2060 * The path is corrected to point to the appropriate node after the split
2061 *
2062 * Before splitting this tries to make some room in the node by pushing
2063 * left and right, if either one works, it returns right away.
2064 *
2065 * returns 0 on success and < 0 on failure
2066 */
split_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2067 static noinline int split_node(struct btrfs_trans_handle *trans,
2068 struct btrfs_root *root,
2069 struct btrfs_path *path, int level)
2070 {
2071 struct extent_buffer *c;
2072 struct extent_buffer *split;
2073 struct btrfs_disk_key disk_key;
2074 int mid;
2075 int ret;
2076 int wret;
2077 u32 c_nritems;
2078
2079 c = path->nodes[level];
2080 WARN_ON(btrfs_header_generation(c) != trans->transid);
2081 if (c == root->node) {
2082 /* trying to split the root, lets make a new one */
2083 ret = insert_new_root(trans, root, path, level + 1);
2084 if (ret)
2085 return ret;
2086 } else {
2087 ret = push_nodes_for_insert(trans, root, path, level);
2088 c = path->nodes[level];
2089 if (!ret && btrfs_header_nritems(c) <
2090 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2091 return 0;
2092 if (ret < 0)
2093 return ret;
2094 }
2095
2096 c_nritems = btrfs_header_nritems(c);
2097 mid = (c_nritems + 1) / 2;
2098 btrfs_node_key(c, &disk_key, mid);
2099
2100 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2101 root->root_key.objectid,
2102 &disk_key, level, c->start, 0);
2103 if (IS_ERR(split))
2104 return PTR_ERR(split);
2105
2106 root_add_used(root, root->nodesize);
2107
2108 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2109 btrfs_set_header_level(split, btrfs_header_level(c));
2110 btrfs_set_header_bytenr(split, split->start);
2111 btrfs_set_header_generation(split, trans->transid);
2112 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2113 btrfs_set_header_owner(split, root->root_key.objectid);
2114 write_extent_buffer(split, root->fs_info->fsid,
2115 (unsigned long)btrfs_header_fsid(split),
2116 BTRFS_FSID_SIZE);
2117 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2118 (unsigned long)btrfs_header_chunk_tree_uuid(split),
2119 BTRFS_UUID_SIZE);
2120
2121
2122 copy_extent_buffer(split, c,
2123 btrfs_node_key_ptr_offset(0),
2124 btrfs_node_key_ptr_offset(mid),
2125 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2126 btrfs_set_header_nritems(split, c_nritems - mid);
2127 btrfs_set_header_nritems(c, mid);
2128 ret = 0;
2129
2130 btrfs_mark_buffer_dirty(c);
2131 btrfs_mark_buffer_dirty(split);
2132
2133 wret = insert_ptr(trans, root, path, &disk_key, split->start,
2134 path->slots[level + 1] + 1,
2135 level + 1);
2136 if (wret)
2137 ret = wret;
2138
2139 if (path->slots[level] >= mid) {
2140 path->slots[level] -= mid;
2141 btrfs_tree_unlock(c);
2142 free_extent_buffer(c);
2143 path->nodes[level] = split;
2144 path->slots[level + 1] += 1;
2145 } else {
2146 btrfs_tree_unlock(split);
2147 free_extent_buffer(split);
2148 }
2149 return ret;
2150 }
2151
2152 /*
2153 * how many bytes are required to store the items in a leaf. start
2154 * and nr indicate which items in the leaf to check. This totals up the
2155 * space used both by the item structs and the item data
2156 */
leaf_space_used(struct extent_buffer * l,int start,int nr)2157 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2158 {
2159 int data_len;
2160 int nritems = btrfs_header_nritems(l);
2161 int end = min(nritems, start + nr) - 1;
2162
2163 if (!nr)
2164 return 0;
2165 data_len = btrfs_item_end_nr(l, start);
2166 data_len = data_len - btrfs_item_offset_nr(l, end);
2167 data_len += sizeof(struct btrfs_item) * nr;
2168 WARN_ON(data_len < 0);
2169 return data_len;
2170 }
2171
2172 /*
2173 * The space between the end of the leaf items and
2174 * the start of the leaf data. IOW, how much room
2175 * the leaf has left for both items and data
2176 */
btrfs_leaf_free_space(struct btrfs_root * root,struct extent_buffer * leaf)2177 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2178 struct extent_buffer *leaf)
2179 {
2180 int nritems = btrfs_header_nritems(leaf);
2181 int ret;
2182 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2183 if (ret < 0) {
2184 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2185 "used %d nritems %d\n",
2186 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2187 leaf_space_used(leaf, 0, nritems), nritems);
2188 }
2189 return ret;
2190 }
2191
2192 /*
2193 * min slot controls the lowest index we're willing to push to the
2194 * right. We'll push up to and including min_slot, but no lower
2195 */
__push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * right,int free_space,u32 left_nritems,u32 min_slot)2196 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2197 struct btrfs_root *root,
2198 struct btrfs_path *path,
2199 int data_size, int empty,
2200 struct extent_buffer *right,
2201 int free_space, u32 left_nritems,
2202 u32 min_slot)
2203 {
2204 struct extent_buffer *left = path->nodes[0];
2205 struct extent_buffer *upper = path->nodes[1];
2206 struct btrfs_disk_key disk_key;
2207 int slot;
2208 u32 i;
2209 int push_space = 0;
2210 int push_items = 0;
2211 struct btrfs_item *item;
2212 u32 nr;
2213 u32 right_nritems;
2214 u32 data_end;
2215 u32 this_item_size;
2216
2217 if (empty)
2218 nr = 0;
2219 else
2220 nr = max_t(u32, 1, min_slot);
2221
2222 if (path->slots[0] >= left_nritems)
2223 push_space += data_size;
2224
2225 slot = path->slots[1];
2226 i = left_nritems - 1;
2227 while (i >= nr) {
2228 item = btrfs_item_nr(left, i);
2229
2230 if (!empty && push_items > 0) {
2231 if (path->slots[0] > i)
2232 break;
2233 if (path->slots[0] == i) {
2234 int space = btrfs_leaf_free_space(root, left);
2235 if (space + push_space * 2 > free_space)
2236 break;
2237 }
2238 }
2239
2240 if (path->slots[0] == i)
2241 push_space += data_size;
2242
2243 if (!left->map_token) {
2244 map_extent_buffer(left, (unsigned long)item,
2245 sizeof(struct btrfs_item),
2246 &left->map_token, &left->kaddr,
2247 &left->map_start, &left->map_len,
2248 KM_USER1);
2249 }
2250
2251 this_item_size = btrfs_item_size(left, item);
2252 if (this_item_size + sizeof(*item) + push_space > free_space)
2253 break;
2254
2255 push_items++;
2256 push_space += this_item_size + sizeof(*item);
2257 if (i == 0)
2258 break;
2259 i--;
2260 }
2261 if (left->map_token) {
2262 unmap_extent_buffer(left, left->map_token, KM_USER1);
2263 left->map_token = NULL;
2264 }
2265
2266 if (push_items == 0)
2267 goto out_unlock;
2268
2269 if (!empty && push_items == left_nritems)
2270 WARN_ON(1);
2271
2272 /* push left to right */
2273 right_nritems = btrfs_header_nritems(right);
2274
2275 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2276 push_space -= leaf_data_end(root, left);
2277
2278 /* make room in the right data area */
2279 data_end = leaf_data_end(root, right);
2280 memmove_extent_buffer(right,
2281 btrfs_leaf_data(right) + data_end - push_space,
2282 btrfs_leaf_data(right) + data_end,
2283 BTRFS_LEAF_DATA_SIZE(root) - data_end);
2284
2285 /* copy from the left data area */
2286 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2287 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2288 btrfs_leaf_data(left) + leaf_data_end(root, left),
2289 push_space);
2290
2291 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2292 btrfs_item_nr_offset(0),
2293 right_nritems * sizeof(struct btrfs_item));
2294
2295 /* copy the items from left to right */
2296 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2297 btrfs_item_nr_offset(left_nritems - push_items),
2298 push_items * sizeof(struct btrfs_item));
2299
2300 /* update the item pointers */
2301 right_nritems += push_items;
2302 btrfs_set_header_nritems(right, right_nritems);
2303 push_space = BTRFS_LEAF_DATA_SIZE(root);
2304 for (i = 0; i < right_nritems; i++) {
2305 item = btrfs_item_nr(right, i);
2306 if (!right->map_token) {
2307 map_extent_buffer(right, (unsigned long)item,
2308 sizeof(struct btrfs_item),
2309 &right->map_token, &right->kaddr,
2310 &right->map_start, &right->map_len,
2311 KM_USER1);
2312 }
2313 push_space -= btrfs_item_size(right, item);
2314 btrfs_set_item_offset(right, item, push_space);
2315 }
2316
2317 if (right->map_token) {
2318 unmap_extent_buffer(right, right->map_token, KM_USER1);
2319 right->map_token = NULL;
2320 }
2321 left_nritems -= push_items;
2322 btrfs_set_header_nritems(left, left_nritems);
2323
2324 if (left_nritems)
2325 btrfs_mark_buffer_dirty(left);
2326 else
2327 clean_tree_block(trans, root, left);
2328
2329 btrfs_mark_buffer_dirty(right);
2330
2331 btrfs_item_key(right, &disk_key, 0);
2332 btrfs_set_node_key(upper, &disk_key, slot + 1);
2333 btrfs_mark_buffer_dirty(upper);
2334
2335 /* then fixup the leaf pointer in the path */
2336 if (path->slots[0] >= left_nritems) {
2337 path->slots[0] -= left_nritems;
2338 if (btrfs_header_nritems(path->nodes[0]) == 0)
2339 clean_tree_block(trans, root, path->nodes[0]);
2340 btrfs_tree_unlock(path->nodes[0]);
2341 free_extent_buffer(path->nodes[0]);
2342 path->nodes[0] = right;
2343 path->slots[1] += 1;
2344 } else {
2345 btrfs_tree_unlock(right);
2346 free_extent_buffer(right);
2347 }
2348 return 0;
2349
2350 out_unlock:
2351 btrfs_tree_unlock(right);
2352 free_extent_buffer(right);
2353 return 1;
2354 }
2355
2356 /*
2357 * push some data in the path leaf to the right, trying to free up at
2358 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2359 *
2360 * returns 1 if the push failed because the other node didn't have enough
2361 * room, 0 if everything worked out and < 0 if there were major errors.
2362 *
2363 * this will push starting from min_slot to the end of the leaf. It won't
2364 * push any slot lower than min_slot
2365 */
push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 min_slot)2366 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2367 *root, struct btrfs_path *path,
2368 int min_data_size, int data_size,
2369 int empty, u32 min_slot)
2370 {
2371 struct extent_buffer *left = path->nodes[0];
2372 struct extent_buffer *right;
2373 struct extent_buffer *upper;
2374 int slot;
2375 int free_space;
2376 u32 left_nritems;
2377 int ret;
2378
2379 if (!path->nodes[1])
2380 return 1;
2381
2382 slot = path->slots[1];
2383 upper = path->nodes[1];
2384 if (slot >= btrfs_header_nritems(upper) - 1)
2385 return 1;
2386
2387 btrfs_assert_tree_locked(path->nodes[1]);
2388
2389 right = read_node_slot(root, upper, slot + 1);
2390 if (right == NULL)
2391 return 1;
2392
2393 btrfs_tree_lock(right);
2394 btrfs_set_lock_blocking(right);
2395
2396 free_space = btrfs_leaf_free_space(root, right);
2397 if (free_space < data_size)
2398 goto out_unlock;
2399
2400 /* cow and double check */
2401 ret = btrfs_cow_block(trans, root, right, upper,
2402 slot + 1, &right);
2403 if (ret)
2404 goto out_unlock;
2405
2406 free_space = btrfs_leaf_free_space(root, right);
2407 if (free_space < data_size)
2408 goto out_unlock;
2409
2410 left_nritems = btrfs_header_nritems(left);
2411 if (left_nritems == 0)
2412 goto out_unlock;
2413
2414 return __push_leaf_right(trans, root, path, min_data_size, empty,
2415 right, free_space, left_nritems, min_slot);
2416 out_unlock:
2417 btrfs_tree_unlock(right);
2418 free_extent_buffer(right);
2419 return 1;
2420 }
2421
2422 /*
2423 * push some data in the path leaf to the left, trying to free up at
2424 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2425 *
2426 * max_slot can put a limit on how far into the leaf we'll push items. The
2427 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
2428 * items
2429 */
__push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * left,int free_space,u32 right_nritems,u32 max_slot)2430 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2431 struct btrfs_root *root,
2432 struct btrfs_path *path, int data_size,
2433 int empty, struct extent_buffer *left,
2434 int free_space, u32 right_nritems,
2435 u32 max_slot)
2436 {
2437 struct btrfs_disk_key disk_key;
2438 struct extent_buffer *right = path->nodes[0];
2439 int i;
2440 int push_space = 0;
2441 int push_items = 0;
2442 struct btrfs_item *item;
2443 u32 old_left_nritems;
2444 u32 nr;
2445 int ret = 0;
2446 int wret;
2447 u32 this_item_size;
2448 u32 old_left_item_size;
2449
2450 if (empty)
2451 nr = min(right_nritems, max_slot);
2452 else
2453 nr = min(right_nritems - 1, max_slot);
2454
2455 for (i = 0; i < nr; i++) {
2456 item = btrfs_item_nr(right, i);
2457 if (!right->map_token) {
2458 map_extent_buffer(right, (unsigned long)item,
2459 sizeof(struct btrfs_item),
2460 &right->map_token, &right->kaddr,
2461 &right->map_start, &right->map_len,
2462 KM_USER1);
2463 }
2464
2465 if (!empty && push_items > 0) {
2466 if (path->slots[0] < i)
2467 break;
2468 if (path->slots[0] == i) {
2469 int space = btrfs_leaf_free_space(root, right);
2470 if (space + push_space * 2 > free_space)
2471 break;
2472 }
2473 }
2474
2475 if (path->slots[0] == i)
2476 push_space += data_size;
2477
2478 this_item_size = btrfs_item_size(right, item);
2479 if (this_item_size + sizeof(*item) + push_space > free_space)
2480 break;
2481
2482 push_items++;
2483 push_space += this_item_size + sizeof(*item);
2484 }
2485
2486 if (right->map_token) {
2487 unmap_extent_buffer(right, right->map_token, KM_USER1);
2488 right->map_token = NULL;
2489 }
2490
2491 if (push_items == 0) {
2492 ret = 1;
2493 goto out;
2494 }
2495 if (!empty && push_items == btrfs_header_nritems(right))
2496 WARN_ON(1);
2497
2498 /* push data from right to left */
2499 copy_extent_buffer(left, right,
2500 btrfs_item_nr_offset(btrfs_header_nritems(left)),
2501 btrfs_item_nr_offset(0),
2502 push_items * sizeof(struct btrfs_item));
2503
2504 push_space = BTRFS_LEAF_DATA_SIZE(root) -
2505 btrfs_item_offset_nr(right, push_items - 1);
2506
2507 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2508 leaf_data_end(root, left) - push_space,
2509 btrfs_leaf_data(right) +
2510 btrfs_item_offset_nr(right, push_items - 1),
2511 push_space);
2512 old_left_nritems = btrfs_header_nritems(left);
2513 BUG_ON(old_left_nritems <= 0);
2514
2515 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2516 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2517 u32 ioff;
2518
2519 item = btrfs_item_nr(left, i);
2520 if (!left->map_token) {
2521 map_extent_buffer(left, (unsigned long)item,
2522 sizeof(struct btrfs_item),
2523 &left->map_token, &left->kaddr,
2524 &left->map_start, &left->map_len,
2525 KM_USER1);
2526 }
2527
2528 ioff = btrfs_item_offset(left, item);
2529 btrfs_set_item_offset(left, item,
2530 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2531 }
2532 btrfs_set_header_nritems(left, old_left_nritems + push_items);
2533 if (left->map_token) {
2534 unmap_extent_buffer(left, left->map_token, KM_USER1);
2535 left->map_token = NULL;
2536 }
2537
2538 /* fixup right node */
2539 if (push_items > right_nritems) {
2540 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2541 right_nritems);
2542 WARN_ON(1);
2543 }
2544
2545 if (push_items < right_nritems) {
2546 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2547 leaf_data_end(root, right);
2548 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2549 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2550 btrfs_leaf_data(right) +
2551 leaf_data_end(root, right), push_space);
2552
2553 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2554 btrfs_item_nr_offset(push_items),
2555 (btrfs_header_nritems(right) - push_items) *
2556 sizeof(struct btrfs_item));
2557 }
2558 right_nritems -= push_items;
2559 btrfs_set_header_nritems(right, right_nritems);
2560 push_space = BTRFS_LEAF_DATA_SIZE(root);
2561 for (i = 0; i < right_nritems; i++) {
2562 item = btrfs_item_nr(right, i);
2563
2564 if (!right->map_token) {
2565 map_extent_buffer(right, (unsigned long)item,
2566 sizeof(struct btrfs_item),
2567 &right->map_token, &right->kaddr,
2568 &right->map_start, &right->map_len,
2569 KM_USER1);
2570 }
2571
2572 push_space = push_space - btrfs_item_size(right, item);
2573 btrfs_set_item_offset(right, item, push_space);
2574 }
2575 if (right->map_token) {
2576 unmap_extent_buffer(right, right->map_token, KM_USER1);
2577 right->map_token = NULL;
2578 }
2579
2580 btrfs_mark_buffer_dirty(left);
2581 if (right_nritems)
2582 btrfs_mark_buffer_dirty(right);
2583 else
2584 clean_tree_block(trans, root, right);
2585
2586 btrfs_item_key(right, &disk_key, 0);
2587 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2588 if (wret)
2589 ret = wret;
2590
2591 /* then fixup the leaf pointer in the path */
2592 if (path->slots[0] < push_items) {
2593 path->slots[0] += old_left_nritems;
2594 btrfs_tree_unlock(path->nodes[0]);
2595 free_extent_buffer(path->nodes[0]);
2596 path->nodes[0] = left;
2597 path->slots[1] -= 1;
2598 } else {
2599 btrfs_tree_unlock(left);
2600 free_extent_buffer(left);
2601 path->slots[0] -= push_items;
2602 }
2603 BUG_ON(path->slots[0] < 0);
2604 return ret;
2605 out:
2606 btrfs_tree_unlock(left);
2607 free_extent_buffer(left);
2608 return ret;
2609 }
2610
2611 /*
2612 * push some data in the path leaf to the left, trying to free up at
2613 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2614 *
2615 * max_slot can put a limit on how far into the leaf we'll push items. The
2616 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
2617 * items
2618 */
push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 max_slot)2619 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2620 *root, struct btrfs_path *path, int min_data_size,
2621 int data_size, int empty, u32 max_slot)
2622 {
2623 struct extent_buffer *right = path->nodes[0];
2624 struct extent_buffer *left;
2625 int slot;
2626 int free_space;
2627 u32 right_nritems;
2628 int ret = 0;
2629
2630 slot = path->slots[1];
2631 if (slot == 0)
2632 return 1;
2633 if (!path->nodes[1])
2634 return 1;
2635
2636 right_nritems = btrfs_header_nritems(right);
2637 if (right_nritems == 0)
2638 return 1;
2639
2640 btrfs_assert_tree_locked(path->nodes[1]);
2641
2642 left = read_node_slot(root, path->nodes[1], slot - 1);
2643 if (left == NULL)
2644 return 1;
2645
2646 btrfs_tree_lock(left);
2647 btrfs_set_lock_blocking(left);
2648
2649 free_space = btrfs_leaf_free_space(root, left);
2650 if (free_space < data_size) {
2651 ret = 1;
2652 goto out;
2653 }
2654
2655 /* cow and double check */
2656 ret = btrfs_cow_block(trans, root, left,
2657 path->nodes[1], slot - 1, &left);
2658 if (ret) {
2659 /* we hit -ENOSPC, but it isn't fatal here */
2660 ret = 1;
2661 goto out;
2662 }
2663
2664 free_space = btrfs_leaf_free_space(root, left);
2665 if (free_space < data_size) {
2666 ret = 1;
2667 goto out;
2668 }
2669
2670 return __push_leaf_left(trans, root, path, min_data_size,
2671 empty, left, free_space, right_nritems,
2672 max_slot);
2673 out:
2674 btrfs_tree_unlock(left);
2675 free_extent_buffer(left);
2676 return ret;
2677 }
2678
2679 /*
2680 * split the path's leaf in two, making sure there is at least data_size
2681 * available for the resulting leaf level of the path.
2682 *
2683 * returns 0 if all went well and < 0 on failure.
2684 */
copy_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * l,struct extent_buffer * right,int slot,int mid,int nritems)2685 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2686 struct btrfs_root *root,
2687 struct btrfs_path *path,
2688 struct extent_buffer *l,
2689 struct extent_buffer *right,
2690 int slot, int mid, int nritems)
2691 {
2692 int data_copy_size;
2693 int rt_data_off;
2694 int i;
2695 int ret = 0;
2696 int wret;
2697 struct btrfs_disk_key disk_key;
2698
2699 nritems = nritems - mid;
2700 btrfs_set_header_nritems(right, nritems);
2701 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2702
2703 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2704 btrfs_item_nr_offset(mid),
2705 nritems * sizeof(struct btrfs_item));
2706
2707 copy_extent_buffer(right, l,
2708 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2709 data_copy_size, btrfs_leaf_data(l) +
2710 leaf_data_end(root, l), data_copy_size);
2711
2712 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2713 btrfs_item_end_nr(l, mid);
2714
2715 for (i = 0; i < nritems; i++) {
2716 struct btrfs_item *item = btrfs_item_nr(right, i);
2717 u32 ioff;
2718
2719 if (!right->map_token) {
2720 map_extent_buffer(right, (unsigned long)item,
2721 sizeof(struct btrfs_item),
2722 &right->map_token, &right->kaddr,
2723 &right->map_start, &right->map_len,
2724 KM_USER1);
2725 }
2726
2727 ioff = btrfs_item_offset(right, item);
2728 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2729 }
2730
2731 if (right->map_token) {
2732 unmap_extent_buffer(right, right->map_token, KM_USER1);
2733 right->map_token = NULL;
2734 }
2735
2736 btrfs_set_header_nritems(l, mid);
2737 ret = 0;
2738 btrfs_item_key(right, &disk_key, 0);
2739 wret = insert_ptr(trans, root, path, &disk_key, right->start,
2740 path->slots[1] + 1, 1);
2741 if (wret)
2742 ret = wret;
2743
2744 btrfs_mark_buffer_dirty(right);
2745 btrfs_mark_buffer_dirty(l);
2746 BUG_ON(path->slots[0] != slot);
2747
2748 if (mid <= slot) {
2749 btrfs_tree_unlock(path->nodes[0]);
2750 free_extent_buffer(path->nodes[0]);
2751 path->nodes[0] = right;
2752 path->slots[0] -= mid;
2753 path->slots[1] += 1;
2754 } else {
2755 btrfs_tree_unlock(right);
2756 free_extent_buffer(right);
2757 }
2758
2759 BUG_ON(path->slots[0] < 0);
2760
2761 return ret;
2762 }
2763
2764 /*
2765 * double splits happen when we need to insert a big item in the middle
2766 * of a leaf. A double split can leave us with 3 mostly empty leaves:
2767 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2768 * A B C
2769 *
2770 * We avoid this by trying to push the items on either side of our target
2771 * into the adjacent leaves. If all goes well we can avoid the double split
2772 * completely.
2773 */
push_for_double_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size)2774 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2775 struct btrfs_root *root,
2776 struct btrfs_path *path,
2777 int data_size)
2778 {
2779 int ret;
2780 int progress = 0;
2781 int slot;
2782 u32 nritems;
2783
2784 slot = path->slots[0];
2785
2786 /*
2787 * try to push all the items after our slot into the
2788 * right leaf
2789 */
2790 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2791 if (ret < 0)
2792 return ret;
2793
2794 if (ret == 0)
2795 progress++;
2796
2797 nritems = btrfs_header_nritems(path->nodes[0]);
2798 /*
2799 * our goal is to get our slot at the start or end of a leaf. If
2800 * we've done so we're done
2801 */
2802 if (path->slots[0] == 0 || path->slots[0] == nritems)
2803 return 0;
2804
2805 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2806 return 0;
2807
2808 /* try to push all the items before our slot into the next leaf */
2809 slot = path->slots[0];
2810 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
2811 if (ret < 0)
2812 return ret;
2813
2814 if (ret == 0)
2815 progress++;
2816
2817 if (progress)
2818 return 0;
2819 return 1;
2820 }
2821
2822 /*
2823 * split the path's leaf in two, making sure there is at least data_size
2824 * available for the resulting leaf level of the path.
2825 *
2826 * returns 0 if all went well and < 0 on failure.
2827 */
split_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * ins_key,struct btrfs_path * path,int data_size,int extend)2828 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2829 struct btrfs_root *root,
2830 struct btrfs_key *ins_key,
2831 struct btrfs_path *path, int data_size,
2832 int extend)
2833 {
2834 struct btrfs_disk_key disk_key;
2835 struct extent_buffer *l;
2836 u32 nritems;
2837 int mid;
2838 int slot;
2839 struct extent_buffer *right;
2840 int ret = 0;
2841 int wret;
2842 int split;
2843 int num_doubles = 0;
2844 int tried_avoid_double = 0;
2845
2846 l = path->nodes[0];
2847 slot = path->slots[0];
2848 if (extend && data_size + btrfs_item_size_nr(l, slot) +
2849 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2850 return -EOVERFLOW;
2851
2852 /* first try to make some room by pushing left and right */
2853 if (data_size) {
2854 wret = push_leaf_right(trans, root, path, data_size,
2855 data_size, 0, 0);
2856 if (wret < 0)
2857 return wret;
2858 if (wret) {
2859 wret = push_leaf_left(trans, root, path, data_size,
2860 data_size, 0, (u32)-1);
2861 if (wret < 0)
2862 return wret;
2863 }
2864 l = path->nodes[0];
2865
2866 /* did the pushes work? */
2867 if (btrfs_leaf_free_space(root, l) >= data_size)
2868 return 0;
2869 }
2870
2871 if (!path->nodes[1]) {
2872 ret = insert_new_root(trans, root, path, 1);
2873 if (ret)
2874 return ret;
2875 }
2876 again:
2877 split = 1;
2878 l = path->nodes[0];
2879 slot = path->slots[0];
2880 nritems = btrfs_header_nritems(l);
2881 mid = (nritems + 1) / 2;
2882
2883 if (mid <= slot) {
2884 if (nritems == 1 ||
2885 leaf_space_used(l, mid, nritems - mid) + data_size >
2886 BTRFS_LEAF_DATA_SIZE(root)) {
2887 if (slot >= nritems) {
2888 split = 0;
2889 } else {
2890 mid = slot;
2891 if (mid != nritems &&
2892 leaf_space_used(l, mid, nritems - mid) +
2893 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2894 if (data_size && !tried_avoid_double)
2895 goto push_for_double;
2896 split = 2;
2897 }
2898 }
2899 }
2900 } else {
2901 if (leaf_space_used(l, 0, mid) + data_size >
2902 BTRFS_LEAF_DATA_SIZE(root)) {
2903 if (!extend && data_size && slot == 0) {
2904 split = 0;
2905 } else if ((extend || !data_size) && slot == 0) {
2906 mid = 1;
2907 } else {
2908 mid = slot;
2909 if (mid != nritems &&
2910 leaf_space_used(l, mid, nritems - mid) +
2911 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2912 if (data_size && !tried_avoid_double)
2913 goto push_for_double;
2914 split = 2 ;
2915 }
2916 }
2917 }
2918 }
2919
2920 if (split == 0)
2921 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2922 else
2923 btrfs_item_key(l, &disk_key, mid);
2924
2925 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
2926 root->root_key.objectid,
2927 &disk_key, 0, l->start, 0);
2928 if (IS_ERR(right))
2929 return PTR_ERR(right);
2930
2931 root_add_used(root, root->leafsize);
2932
2933 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2934 btrfs_set_header_bytenr(right, right->start);
2935 btrfs_set_header_generation(right, trans->transid);
2936 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2937 btrfs_set_header_owner(right, root->root_key.objectid);
2938 btrfs_set_header_level(right, 0);
2939 write_extent_buffer(right, root->fs_info->fsid,
2940 (unsigned long)btrfs_header_fsid(right),
2941 BTRFS_FSID_SIZE);
2942
2943 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2944 (unsigned long)btrfs_header_chunk_tree_uuid(right),
2945 BTRFS_UUID_SIZE);
2946
2947 if (split == 0) {
2948 if (mid <= slot) {
2949 btrfs_set_header_nritems(right, 0);
2950 wret = insert_ptr(trans, root, path,
2951 &disk_key, right->start,
2952 path->slots[1] + 1, 1);
2953 if (wret)
2954 ret = wret;
2955
2956 btrfs_tree_unlock(path->nodes[0]);
2957 free_extent_buffer(path->nodes[0]);
2958 path->nodes[0] = right;
2959 path->slots[0] = 0;
2960 path->slots[1] += 1;
2961 } else {
2962 btrfs_set_header_nritems(right, 0);
2963 wret = insert_ptr(trans, root, path,
2964 &disk_key,
2965 right->start,
2966 path->slots[1], 1);
2967 if (wret)
2968 ret = wret;
2969 btrfs_tree_unlock(path->nodes[0]);
2970 free_extent_buffer(path->nodes[0]);
2971 path->nodes[0] = right;
2972 path->slots[0] = 0;
2973 if (path->slots[1] == 0) {
2974 wret = fixup_low_keys(trans, root,
2975 path, &disk_key, 1);
2976 if (wret)
2977 ret = wret;
2978 }
2979 }
2980 btrfs_mark_buffer_dirty(right);
2981 return ret;
2982 }
2983
2984 ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
2985 BUG_ON(ret);
2986
2987 if (split == 2) {
2988 BUG_ON(num_doubles != 0);
2989 num_doubles++;
2990 goto again;
2991 }
2992
2993 return ret;
2994
2995 push_for_double:
2996 push_for_double_split(trans, root, path, data_size);
2997 tried_avoid_double = 1;
2998 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2999 return 0;
3000 goto again;
3001 }
3002
setup_leaf_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int ins_len)3003 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3004 struct btrfs_root *root,
3005 struct btrfs_path *path, int ins_len)
3006 {
3007 struct btrfs_key key;
3008 struct extent_buffer *leaf;
3009 struct btrfs_file_extent_item *fi;
3010 u64 extent_len = 0;
3011 u32 item_size;
3012 int ret;
3013
3014 leaf = path->nodes[0];
3015 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3016
3017 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3018 key.type != BTRFS_EXTENT_CSUM_KEY);
3019
3020 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3021 return 0;
3022
3023 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3024 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3025 fi = btrfs_item_ptr(leaf, path->slots[0],
3026 struct btrfs_file_extent_item);
3027 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3028 }
3029 btrfs_release_path(root, path);
3030
3031 path->keep_locks = 1;
3032 path->search_for_split = 1;
3033 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3034 path->search_for_split = 0;
3035 if (ret < 0)
3036 goto err;
3037
3038 ret = -EAGAIN;
3039 leaf = path->nodes[0];
3040 /* if our item isn't there or got smaller, return now */
3041 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3042 goto err;
3043
3044 /* the leaf has changed, it now has room. return now */
3045 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3046 goto err;
3047
3048 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3049 fi = btrfs_item_ptr(leaf, path->slots[0],
3050 struct btrfs_file_extent_item);
3051 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3052 goto err;
3053 }
3054
3055 btrfs_set_path_blocking(path);
3056 ret = split_leaf(trans, root, &key, path, ins_len, 1);
3057 if (ret)
3058 goto err;
3059
3060 path->keep_locks = 0;
3061 btrfs_unlock_up_safe(path, 1);
3062 return 0;
3063 err:
3064 path->keep_locks = 0;
3065 return ret;
3066 }
3067
split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * new_key,unsigned long split_offset)3068 static noinline int split_item(struct btrfs_trans_handle *trans,
3069 struct btrfs_root *root,
3070 struct btrfs_path *path,
3071 struct btrfs_key *new_key,
3072 unsigned long split_offset)
3073 {
3074 struct extent_buffer *leaf;
3075 struct btrfs_item *item;
3076 struct btrfs_item *new_item;
3077 int slot;
3078 char *buf;
3079 u32 nritems;
3080 u32 item_size;
3081 u32 orig_offset;
3082 struct btrfs_disk_key disk_key;
3083
3084 leaf = path->nodes[0];
3085 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3086
3087 btrfs_set_path_blocking(path);
3088
3089 item = btrfs_item_nr(leaf, path->slots[0]);
3090 orig_offset = btrfs_item_offset(leaf, item);
3091 item_size = btrfs_item_size(leaf, item);
3092
3093 buf = kmalloc(item_size, GFP_NOFS);
3094 if (!buf)
3095 return -ENOMEM;
3096
3097 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3098 path->slots[0]), item_size);
3099
3100 slot = path->slots[0] + 1;
3101 nritems = btrfs_header_nritems(leaf);
3102 if (slot != nritems) {
3103 /* shift the items */
3104 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3105 btrfs_item_nr_offset(slot),
3106 (nritems - slot) * sizeof(struct btrfs_item));
3107 }
3108
3109 btrfs_cpu_key_to_disk(&disk_key, new_key);
3110 btrfs_set_item_key(leaf, &disk_key, slot);
3111
3112 new_item = btrfs_item_nr(leaf, slot);
3113
3114 btrfs_set_item_offset(leaf, new_item, orig_offset);
3115 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3116
3117 btrfs_set_item_offset(leaf, item,
3118 orig_offset + item_size - split_offset);
3119 btrfs_set_item_size(leaf, item, split_offset);
3120
3121 btrfs_set_header_nritems(leaf, nritems + 1);
3122
3123 /* write the data for the start of the original item */
3124 write_extent_buffer(leaf, buf,
3125 btrfs_item_ptr_offset(leaf, path->slots[0]),
3126 split_offset);
3127
3128 /* write the data for the new item */
3129 write_extent_buffer(leaf, buf + split_offset,
3130 btrfs_item_ptr_offset(leaf, slot),
3131 item_size - split_offset);
3132 btrfs_mark_buffer_dirty(leaf);
3133
3134 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3135 kfree(buf);
3136 return 0;
3137 }
3138
3139 /*
3140 * This function splits a single item into two items,
3141 * giving 'new_key' to the new item and splitting the
3142 * old one at split_offset (from the start of the item).
3143 *
3144 * The path may be released by this operation. After
3145 * the split, the path is pointing to the old item. The
3146 * new item is going to be in the same node as the old one.
3147 *
3148 * Note, the item being split must be smaller enough to live alone on
3149 * a tree block with room for one extra struct btrfs_item
3150 *
3151 * This allows us to split the item in place, keeping a lock on the
3152 * leaf the entire time.
3153 */
btrfs_split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * new_key,unsigned long split_offset)3154 int btrfs_split_item(struct btrfs_trans_handle *trans,
3155 struct btrfs_root *root,
3156 struct btrfs_path *path,
3157 struct btrfs_key *new_key,
3158 unsigned long split_offset)
3159 {
3160 int ret;
3161 ret = setup_leaf_for_split(trans, root, path,
3162 sizeof(struct btrfs_item));
3163 if (ret)
3164 return ret;
3165
3166 ret = split_item(trans, root, path, new_key, split_offset);
3167 return ret;
3168 }
3169
3170 /*
3171 * This function duplicate a item, giving 'new_key' to the new item.
3172 * It guarantees both items live in the same tree leaf and the new item
3173 * is contiguous with the original item.
3174 *
3175 * This allows us to split file extent in place, keeping a lock on the
3176 * leaf the entire time.
3177 */
btrfs_duplicate_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * new_key)3178 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3179 struct btrfs_root *root,
3180 struct btrfs_path *path,
3181 struct btrfs_key *new_key)
3182 {
3183 struct extent_buffer *leaf;
3184 int ret;
3185 u32 item_size;
3186
3187 leaf = path->nodes[0];
3188 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3189 ret = setup_leaf_for_split(trans, root, path,
3190 item_size + sizeof(struct btrfs_item));
3191 if (ret)
3192 return ret;
3193
3194 path->slots[0]++;
3195 ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3196 item_size, item_size +
3197 sizeof(struct btrfs_item), 1);
3198 BUG_ON(ret);
3199
3200 leaf = path->nodes[0];
3201 memcpy_extent_buffer(leaf,
3202 btrfs_item_ptr_offset(leaf, path->slots[0]),
3203 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3204 item_size);
3205 return 0;
3206 }
3207
3208 /*
3209 * make the item pointed to by the path smaller. new_size indicates
3210 * how small to make it, and from_end tells us if we just chop bytes
3211 * off the end of the item or if we shift the item to chop bytes off
3212 * the front.
3213 */
btrfs_truncate_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u32 new_size,int from_end)3214 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3215 struct btrfs_root *root,
3216 struct btrfs_path *path,
3217 u32 new_size, int from_end)
3218 {
3219 int ret = 0;
3220 int slot;
3221 struct extent_buffer *leaf;
3222 struct btrfs_item *item;
3223 u32 nritems;
3224 unsigned int data_end;
3225 unsigned int old_data_start;
3226 unsigned int old_size;
3227 unsigned int size_diff;
3228 int i;
3229
3230 leaf = path->nodes[0];
3231 slot = path->slots[0];
3232
3233 old_size = btrfs_item_size_nr(leaf, slot);
3234 if (old_size == new_size)
3235 return 0;
3236
3237 nritems = btrfs_header_nritems(leaf);
3238 data_end = leaf_data_end(root, leaf);
3239
3240 old_data_start = btrfs_item_offset_nr(leaf, slot);
3241
3242 size_diff = old_size - new_size;
3243
3244 BUG_ON(slot < 0);
3245 BUG_ON(slot >= nritems);
3246
3247 /*
3248 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3249 */
3250 /* first correct the data pointers */
3251 for (i = slot; i < nritems; i++) {
3252 u32 ioff;
3253 item = btrfs_item_nr(leaf, i);
3254
3255 if (!leaf->map_token) {
3256 map_extent_buffer(leaf, (unsigned long)item,
3257 sizeof(struct btrfs_item),
3258 &leaf->map_token, &leaf->kaddr,
3259 &leaf->map_start, &leaf->map_len,
3260 KM_USER1);
3261 }
3262
3263 ioff = btrfs_item_offset(leaf, item);
3264 btrfs_set_item_offset(leaf, item, ioff + size_diff);
3265 }
3266
3267 if (leaf->map_token) {
3268 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3269 leaf->map_token = NULL;
3270 }
3271
3272 /* shift the data */
3273 if (from_end) {
3274 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3275 data_end + size_diff, btrfs_leaf_data(leaf) +
3276 data_end, old_data_start + new_size - data_end);
3277 } else {
3278 struct btrfs_disk_key disk_key;
3279 u64 offset;
3280
3281 btrfs_item_key(leaf, &disk_key, slot);
3282
3283 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3284 unsigned long ptr;
3285 struct btrfs_file_extent_item *fi;
3286
3287 fi = btrfs_item_ptr(leaf, slot,
3288 struct btrfs_file_extent_item);
3289 fi = (struct btrfs_file_extent_item *)(
3290 (unsigned long)fi - size_diff);
3291
3292 if (btrfs_file_extent_type(leaf, fi) ==
3293 BTRFS_FILE_EXTENT_INLINE) {
3294 ptr = btrfs_item_ptr_offset(leaf, slot);
3295 memmove_extent_buffer(leaf, ptr,
3296 (unsigned long)fi,
3297 offsetof(struct btrfs_file_extent_item,
3298 disk_bytenr));
3299 }
3300 }
3301
3302 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3303 data_end + size_diff, btrfs_leaf_data(leaf) +
3304 data_end, old_data_start - data_end);
3305
3306 offset = btrfs_disk_key_offset(&disk_key);
3307 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3308 btrfs_set_item_key(leaf, &disk_key, slot);
3309 if (slot == 0)
3310 fixup_low_keys(trans, root, path, &disk_key, 1);
3311 }
3312
3313 item = btrfs_item_nr(leaf, slot);
3314 btrfs_set_item_size(leaf, item, new_size);
3315 btrfs_mark_buffer_dirty(leaf);
3316
3317 ret = 0;
3318 if (btrfs_leaf_free_space(root, leaf) < 0) {
3319 btrfs_print_leaf(root, leaf);
3320 BUG();
3321 }
3322 return ret;
3323 }
3324
3325 /*
3326 * make the item pointed to by the path bigger, data_size is the new size.
3327 */
btrfs_extend_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u32 data_size)3328 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3329 struct btrfs_root *root, struct btrfs_path *path,
3330 u32 data_size)
3331 {
3332 int ret = 0;
3333 int slot;
3334 struct extent_buffer *leaf;
3335 struct btrfs_item *item;
3336 u32 nritems;
3337 unsigned int data_end;
3338 unsigned int old_data;
3339 unsigned int old_size;
3340 int i;
3341
3342 leaf = path->nodes[0];
3343
3344 nritems = btrfs_header_nritems(leaf);
3345 data_end = leaf_data_end(root, leaf);
3346
3347 if (btrfs_leaf_free_space(root, leaf) < data_size) {
3348 btrfs_print_leaf(root, leaf);
3349 BUG();
3350 }
3351 slot = path->slots[0];
3352 old_data = btrfs_item_end_nr(leaf, slot);
3353
3354 BUG_ON(slot < 0);
3355 if (slot >= nritems) {
3356 btrfs_print_leaf(root, leaf);
3357 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3358 slot, nritems);
3359 BUG_ON(1);
3360 }
3361
3362 /*
3363 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3364 */
3365 /* first correct the data pointers */
3366 for (i = slot; i < nritems; i++) {
3367 u32 ioff;
3368 item = btrfs_item_nr(leaf, i);
3369
3370 if (!leaf->map_token) {
3371 map_extent_buffer(leaf, (unsigned long)item,
3372 sizeof(struct btrfs_item),
3373 &leaf->map_token, &leaf->kaddr,
3374 &leaf->map_start, &leaf->map_len,
3375 KM_USER1);
3376 }
3377 ioff = btrfs_item_offset(leaf, item);
3378 btrfs_set_item_offset(leaf, item, ioff - data_size);
3379 }
3380
3381 if (leaf->map_token) {
3382 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3383 leaf->map_token = NULL;
3384 }
3385
3386 /* shift the data */
3387 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3388 data_end - data_size, btrfs_leaf_data(leaf) +
3389 data_end, old_data - data_end);
3390
3391 data_end = old_data;
3392 old_size = btrfs_item_size_nr(leaf, slot);
3393 item = btrfs_item_nr(leaf, slot);
3394 btrfs_set_item_size(leaf, item, old_size + data_size);
3395 btrfs_mark_buffer_dirty(leaf);
3396
3397 ret = 0;
3398 if (btrfs_leaf_free_space(root, leaf) < 0) {
3399 btrfs_print_leaf(root, leaf);
3400 BUG();
3401 }
3402 return ret;
3403 }
3404
3405 /*
3406 * Given a key and some data, insert items into the tree.
3407 * This does all the path init required, making room in the tree if needed.
3408 * Returns the number of keys that were inserted.
3409 */
btrfs_insert_some_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * cpu_key,u32 * data_size,int nr)3410 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3411 struct btrfs_root *root,
3412 struct btrfs_path *path,
3413 struct btrfs_key *cpu_key, u32 *data_size,
3414 int nr)
3415 {
3416 struct extent_buffer *leaf;
3417 struct btrfs_item *item;
3418 int ret = 0;
3419 int slot;
3420 int i;
3421 u32 nritems;
3422 u32 total_data = 0;
3423 u32 total_size = 0;
3424 unsigned int data_end;
3425 struct btrfs_disk_key disk_key;
3426 struct btrfs_key found_key;
3427
3428 for (i = 0; i < nr; i++) {
3429 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3430 BTRFS_LEAF_DATA_SIZE(root)) {
3431 break;
3432 nr = i;
3433 }
3434 total_data += data_size[i];
3435 total_size += data_size[i] + sizeof(struct btrfs_item);
3436 }
3437 BUG_ON(nr == 0);
3438
3439 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3440 if (ret == 0)
3441 return -EEXIST;
3442 if (ret < 0)
3443 goto out;
3444
3445 leaf = path->nodes[0];
3446
3447 nritems = btrfs_header_nritems(leaf);
3448 data_end = leaf_data_end(root, leaf);
3449
3450 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3451 for (i = nr; i >= 0; i--) {
3452 total_data -= data_size[i];
3453 total_size -= data_size[i] + sizeof(struct btrfs_item);
3454 if (total_size < btrfs_leaf_free_space(root, leaf))
3455 break;
3456 }
3457 nr = i;
3458 }
3459
3460 slot = path->slots[0];
3461 BUG_ON(slot < 0);
3462
3463 if (slot != nritems) {
3464 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3465
3466 item = btrfs_item_nr(leaf, slot);
3467 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3468
3469 /* figure out how many keys we can insert in here */
3470 total_data = data_size[0];
3471 for (i = 1; i < nr; i++) {
3472 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3473 break;
3474 total_data += data_size[i];
3475 }
3476 nr = i;
3477
3478 if (old_data < data_end) {
3479 btrfs_print_leaf(root, leaf);
3480 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3481 slot, old_data, data_end);
3482 BUG_ON(1);
3483 }
3484 /*
3485 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3486 */
3487 /* first correct the data pointers */
3488 WARN_ON(leaf->map_token);
3489 for (i = slot; i < nritems; i++) {
3490 u32 ioff;
3491
3492 item = btrfs_item_nr(leaf, i);
3493 if (!leaf->map_token) {
3494 map_extent_buffer(leaf, (unsigned long)item,
3495 sizeof(struct btrfs_item),
3496 &leaf->map_token, &leaf->kaddr,
3497 &leaf->map_start, &leaf->map_len,
3498 KM_USER1);
3499 }
3500
3501 ioff = btrfs_item_offset(leaf, item);
3502 btrfs_set_item_offset(leaf, item, ioff - total_data);
3503 }
3504 if (leaf->map_token) {
3505 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3506 leaf->map_token = NULL;
3507 }
3508
3509 /* shift the items */
3510 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3511 btrfs_item_nr_offset(slot),
3512 (nritems - slot) * sizeof(struct btrfs_item));
3513
3514 /* shift the data */
3515 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3516 data_end - total_data, btrfs_leaf_data(leaf) +
3517 data_end, old_data - data_end);
3518 data_end = old_data;
3519 } else {
3520 /*
3521 * this sucks but it has to be done, if we are inserting at
3522 * the end of the leaf only insert 1 of the items, since we
3523 * have no way of knowing whats on the next leaf and we'd have
3524 * to drop our current locks to figure it out
3525 */
3526 nr = 1;
3527 }
3528
3529 /* setup the item for the new data */
3530 for (i = 0; i < nr; i++) {
3531 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3532 btrfs_set_item_key(leaf, &disk_key, slot + i);
3533 item = btrfs_item_nr(leaf, slot + i);
3534 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3535 data_end -= data_size[i];
3536 btrfs_set_item_size(leaf, item, data_size[i]);
3537 }
3538 btrfs_set_header_nritems(leaf, nritems + nr);
3539 btrfs_mark_buffer_dirty(leaf);
3540
3541 ret = 0;
3542 if (slot == 0) {
3543 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3544 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3545 }
3546
3547 if (btrfs_leaf_free_space(root, leaf) < 0) {
3548 btrfs_print_leaf(root, leaf);
3549 BUG();
3550 }
3551 out:
3552 if (!ret)
3553 ret = nr;
3554 return ret;
3555 }
3556
3557 /*
3558 * this is a helper for btrfs_insert_empty_items, the main goal here is
3559 * to save stack depth by doing the bulk of the work in a function
3560 * that doesn't call btrfs_search_slot
3561 */
3562 static noinline_for_stack int
setup_items_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * cpu_key,u32 * data_size,u32 total_data,u32 total_size,int nr)3563 setup_items_for_insert(struct btrfs_trans_handle *trans,
3564 struct btrfs_root *root, struct btrfs_path *path,
3565 struct btrfs_key *cpu_key, u32 *data_size,
3566 u32 total_data, u32 total_size, int nr)
3567 {
3568 struct btrfs_item *item;
3569 int i;
3570 u32 nritems;
3571 unsigned int data_end;
3572 struct btrfs_disk_key disk_key;
3573 int ret;
3574 struct extent_buffer *leaf;
3575 int slot;
3576
3577 leaf = path->nodes[0];
3578 slot = path->slots[0];
3579
3580 nritems = btrfs_header_nritems(leaf);
3581 data_end = leaf_data_end(root, leaf);
3582
3583 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3584 btrfs_print_leaf(root, leaf);
3585 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3586 total_size, btrfs_leaf_free_space(root, leaf));
3587 BUG();
3588 }
3589
3590 if (slot != nritems) {
3591 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3592
3593 if (old_data < data_end) {
3594 btrfs_print_leaf(root, leaf);
3595 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3596 slot, old_data, data_end);
3597 BUG_ON(1);
3598 }
3599 /*
3600 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3601 */
3602 /* first correct the data pointers */
3603 WARN_ON(leaf->map_token);
3604 for (i = slot; i < nritems; i++) {
3605 u32 ioff;
3606
3607 item = btrfs_item_nr(leaf, i);
3608 if (!leaf->map_token) {
3609 map_extent_buffer(leaf, (unsigned long)item,
3610 sizeof(struct btrfs_item),
3611 &leaf->map_token, &leaf->kaddr,
3612 &leaf->map_start, &leaf->map_len,
3613 KM_USER1);
3614 }
3615
3616 ioff = btrfs_item_offset(leaf, item);
3617 btrfs_set_item_offset(leaf, item, ioff - total_data);
3618 }
3619 if (leaf->map_token) {
3620 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3621 leaf->map_token = NULL;
3622 }
3623
3624 /* shift the items */
3625 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3626 btrfs_item_nr_offset(slot),
3627 (nritems - slot) * sizeof(struct btrfs_item));
3628
3629 /* shift the data */
3630 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3631 data_end - total_data, btrfs_leaf_data(leaf) +
3632 data_end, old_data - data_end);
3633 data_end = old_data;
3634 }
3635
3636 /* setup the item for the new data */
3637 for (i = 0; i < nr; i++) {
3638 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3639 btrfs_set_item_key(leaf, &disk_key, slot + i);
3640 item = btrfs_item_nr(leaf, slot + i);
3641 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3642 data_end -= data_size[i];
3643 btrfs_set_item_size(leaf, item, data_size[i]);
3644 }
3645
3646 btrfs_set_header_nritems(leaf, nritems + nr);
3647
3648 ret = 0;
3649 if (slot == 0) {
3650 struct btrfs_disk_key disk_key;
3651 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3652 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3653 }
3654 btrfs_unlock_up_safe(path, 1);
3655 btrfs_mark_buffer_dirty(leaf);
3656
3657 if (btrfs_leaf_free_space(root, leaf) < 0) {
3658 btrfs_print_leaf(root, leaf);
3659 BUG();
3660 }
3661 return ret;
3662 }
3663
3664 /*
3665 * Given a key and some data, insert items into the tree.
3666 * This does all the path init required, making room in the tree if needed.
3667 */
btrfs_insert_empty_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * cpu_key,u32 * data_size,int nr)3668 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3669 struct btrfs_root *root,
3670 struct btrfs_path *path,
3671 struct btrfs_key *cpu_key, u32 *data_size,
3672 int nr)
3673 {
3674 int ret = 0;
3675 int slot;
3676 int i;
3677 u32 total_size = 0;
3678 u32 total_data = 0;
3679
3680 for (i = 0; i < nr; i++)
3681 total_data += data_size[i];
3682
3683 total_size = total_data + (nr * sizeof(struct btrfs_item));
3684 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3685 if (ret == 0)
3686 return -EEXIST;
3687 if (ret < 0)
3688 goto out;
3689
3690 slot = path->slots[0];
3691 BUG_ON(slot < 0);
3692
3693 ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3694 total_data, total_size, nr);
3695
3696 out:
3697 return ret;
3698 }
3699
3700 /*
3701 * Given a key and some data, insert an item into the tree.
3702 * This does all the path init required, making room in the tree if needed.
3703 */
btrfs_insert_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * cpu_key,void * data,u32 data_size)3704 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3705 *root, struct btrfs_key *cpu_key, void *data, u32
3706 data_size)
3707 {
3708 int ret = 0;
3709 struct btrfs_path *path;
3710 struct extent_buffer *leaf;
3711 unsigned long ptr;
3712
3713 path = btrfs_alloc_path();
3714 if (!path)
3715 return -ENOMEM;
3716 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3717 if (!ret) {
3718 leaf = path->nodes[0];
3719 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3720 write_extent_buffer(leaf, data, ptr, data_size);
3721 btrfs_mark_buffer_dirty(leaf);
3722 }
3723 btrfs_free_path(path);
3724 return ret;
3725 }
3726
3727 /*
3728 * delete the pointer from a given node.
3729 *
3730 * the tree should have been previously balanced so the deletion does not
3731 * empty a node.
3732 */
del_ptr(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level,int slot)3733 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3734 struct btrfs_path *path, int level, int slot)
3735 {
3736 struct extent_buffer *parent = path->nodes[level];
3737 u32 nritems;
3738 int ret = 0;
3739 int wret;
3740
3741 nritems = btrfs_header_nritems(parent);
3742 if (slot != nritems - 1) {
3743 memmove_extent_buffer(parent,
3744 btrfs_node_key_ptr_offset(slot),
3745 btrfs_node_key_ptr_offset(slot + 1),
3746 sizeof(struct btrfs_key_ptr) *
3747 (nritems - slot - 1));
3748 }
3749 nritems--;
3750 btrfs_set_header_nritems(parent, nritems);
3751 if (nritems == 0 && parent == root->node) {
3752 BUG_ON(btrfs_header_level(root->node) != 1);
3753 /* just turn the root into a leaf and break */
3754 btrfs_set_header_level(root->node, 0);
3755 } else if (slot == 0) {
3756 struct btrfs_disk_key disk_key;
3757
3758 btrfs_node_key(parent, &disk_key, 0);
3759 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3760 if (wret)
3761 ret = wret;
3762 }
3763 btrfs_mark_buffer_dirty(parent);
3764 return ret;
3765 }
3766
3767 /*
3768 * a helper function to delete the leaf pointed to by path->slots[1] and
3769 * path->nodes[1].
3770 *
3771 * This deletes the pointer in path->nodes[1] and frees the leaf
3772 * block extent. zero is returned if it all worked out, < 0 otherwise.
3773 *
3774 * The path must have already been setup for deleting the leaf, including
3775 * all the proper balancing. path->nodes[1] must be locked.
3776 */
btrfs_del_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * leaf)3777 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3778 struct btrfs_root *root,
3779 struct btrfs_path *path,
3780 struct extent_buffer *leaf)
3781 {
3782 int ret;
3783
3784 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3785 ret = del_ptr(trans, root, path, 1, path->slots[1]);
3786 if (ret)
3787 return ret;
3788
3789 /*
3790 * btrfs_free_extent is expensive, we want to make sure we
3791 * aren't holding any locks when we call it
3792 */
3793 btrfs_unlock_up_safe(path, 0);
3794
3795 root_sub_used(root, leaf->len);
3796
3797 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3798 return 0;
3799 }
3800 /*
3801 * delete the item at the leaf level in path. If that empties
3802 * the leaf, remove it from the tree
3803 */
btrfs_del_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int slot,int nr)3804 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3805 struct btrfs_path *path, int slot, int nr)
3806 {
3807 struct extent_buffer *leaf;
3808 struct btrfs_item *item;
3809 int last_off;
3810 int dsize = 0;
3811 int ret = 0;
3812 int wret;
3813 int i;
3814 u32 nritems;
3815
3816 leaf = path->nodes[0];
3817 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3818
3819 for (i = 0; i < nr; i++)
3820 dsize += btrfs_item_size_nr(leaf, slot + i);
3821
3822 nritems = btrfs_header_nritems(leaf);
3823
3824 if (slot + nr != nritems) {
3825 int data_end = leaf_data_end(root, leaf);
3826
3827 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3828 data_end + dsize,
3829 btrfs_leaf_data(leaf) + data_end,
3830 last_off - data_end);
3831
3832 for (i = slot + nr; i < nritems; i++) {
3833 u32 ioff;
3834
3835 item = btrfs_item_nr(leaf, i);
3836 if (!leaf->map_token) {
3837 map_extent_buffer(leaf, (unsigned long)item,
3838 sizeof(struct btrfs_item),
3839 &leaf->map_token, &leaf->kaddr,
3840 &leaf->map_start, &leaf->map_len,
3841 KM_USER1);
3842 }
3843 ioff = btrfs_item_offset(leaf, item);
3844 btrfs_set_item_offset(leaf, item, ioff + dsize);
3845 }
3846
3847 if (leaf->map_token) {
3848 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3849 leaf->map_token = NULL;
3850 }
3851
3852 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3853 btrfs_item_nr_offset(slot + nr),
3854 sizeof(struct btrfs_item) *
3855 (nritems - slot - nr));
3856 }
3857 btrfs_set_header_nritems(leaf, nritems - nr);
3858 nritems -= nr;
3859
3860 /* delete the leaf if we've emptied it */
3861 if (nritems == 0) {
3862 if (leaf == root->node) {
3863 btrfs_set_header_level(leaf, 0);
3864 } else {
3865 btrfs_set_path_blocking(path);
3866 clean_tree_block(trans, root, leaf);
3867 ret = btrfs_del_leaf(trans, root, path, leaf);
3868 BUG_ON(ret);
3869 }
3870 } else {
3871 int used = leaf_space_used(leaf, 0, nritems);
3872 if (slot == 0) {
3873 struct btrfs_disk_key disk_key;
3874
3875 btrfs_item_key(leaf, &disk_key, 0);
3876 wret = fixup_low_keys(trans, root, path,
3877 &disk_key, 1);
3878 if (wret)
3879 ret = wret;
3880 }
3881
3882 /* delete the leaf if it is mostly empty */
3883 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
3884 /* push_leaf_left fixes the path.
3885 * make sure the path still points to our leaf
3886 * for possible call to del_ptr below
3887 */
3888 slot = path->slots[1];
3889 extent_buffer_get(leaf);
3890
3891 btrfs_set_path_blocking(path);
3892 wret = push_leaf_left(trans, root, path, 1, 1,
3893 1, (u32)-1);
3894 if (wret < 0 && wret != -ENOSPC)
3895 ret = wret;
3896
3897 if (path->nodes[0] == leaf &&
3898 btrfs_header_nritems(leaf)) {
3899 wret = push_leaf_right(trans, root, path, 1,
3900 1, 1, 0);
3901 if (wret < 0 && wret != -ENOSPC)
3902 ret = wret;
3903 }
3904
3905 if (btrfs_header_nritems(leaf) == 0) {
3906 path->slots[1] = slot;
3907 ret = btrfs_del_leaf(trans, root, path, leaf);
3908 BUG_ON(ret);
3909 free_extent_buffer(leaf);
3910 } else {
3911 /* if we're still in the path, make sure
3912 * we're dirty. Otherwise, one of the
3913 * push_leaf functions must have already
3914 * dirtied this buffer
3915 */
3916 if (path->nodes[0] == leaf)
3917 btrfs_mark_buffer_dirty(leaf);
3918 free_extent_buffer(leaf);
3919 }
3920 } else {
3921 btrfs_mark_buffer_dirty(leaf);
3922 }
3923 }
3924 return ret;
3925 }
3926
3927 /*
3928 * search the tree again to find a leaf with lesser keys
3929 * returns 0 if it found something or 1 if there are no lesser leaves.
3930 * returns < 0 on io errors.
3931 *
3932 * This may release the path, and so you may lose any locks held at the
3933 * time you call it.
3934 */
btrfs_prev_leaf(struct btrfs_root * root,struct btrfs_path * path)3935 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3936 {
3937 struct btrfs_key key;
3938 struct btrfs_disk_key found_key;
3939 int ret;
3940
3941 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3942
3943 if (key.offset > 0)
3944 key.offset--;
3945 else if (key.type > 0)
3946 key.type--;
3947 else if (key.objectid > 0)
3948 key.objectid--;
3949 else
3950 return 1;
3951
3952 btrfs_release_path(root, path);
3953 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3954 if (ret < 0)
3955 return ret;
3956 btrfs_item_key(path->nodes[0], &found_key, 0);
3957 ret = comp_keys(&found_key, &key);
3958 if (ret < 0)
3959 return 0;
3960 return 1;
3961 }
3962
3963 /*
3964 * A helper function to walk down the tree starting at min_key, and looking
3965 * for nodes or leaves that are either in cache or have a minimum
3966 * transaction id. This is used by the btree defrag code, and tree logging
3967 *
3968 * This does not cow, but it does stuff the starting key it finds back
3969 * into min_key, so you can call btrfs_search_slot with cow=1 on the
3970 * key and get a writable path.
3971 *
3972 * This does lock as it descends, and path->keep_locks should be set
3973 * to 1 by the caller.
3974 *
3975 * This honors path->lowest_level to prevent descent past a given level
3976 * of the tree.
3977 *
3978 * min_trans indicates the oldest transaction that you are interested
3979 * in walking through. Any nodes or leaves older than min_trans are
3980 * skipped over (without reading them).
3981 *
3982 * returns zero if something useful was found, < 0 on error and 1 if there
3983 * was nothing in the tree that matched the search criteria.
3984 */
btrfs_search_forward(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_key * max_key,struct btrfs_path * path,int cache_only,u64 min_trans)3985 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3986 struct btrfs_key *max_key,
3987 struct btrfs_path *path, int cache_only,
3988 u64 min_trans)
3989 {
3990 struct extent_buffer *cur;
3991 struct btrfs_key found_key;
3992 int slot;
3993 int sret;
3994 u32 nritems;
3995 int level;
3996 int ret = 1;
3997
3998 WARN_ON(!path->keep_locks);
3999 again:
4000 cur = btrfs_lock_root_node(root);
4001 level = btrfs_header_level(cur);
4002 WARN_ON(path->nodes[level]);
4003 path->nodes[level] = cur;
4004 path->locks[level] = 1;
4005
4006 if (btrfs_header_generation(cur) < min_trans) {
4007 ret = 1;
4008 goto out;
4009 }
4010 while (1) {
4011 nritems = btrfs_header_nritems(cur);
4012 level = btrfs_header_level(cur);
4013 sret = bin_search(cur, min_key, level, &slot);
4014
4015 /* at the lowest level, we're done, setup the path and exit */
4016 if (level == path->lowest_level) {
4017 if (slot >= nritems)
4018 goto find_next_key;
4019 ret = 0;
4020 path->slots[level] = slot;
4021 btrfs_item_key_to_cpu(cur, &found_key, slot);
4022 goto out;
4023 }
4024 if (sret && slot > 0)
4025 slot--;
4026 /*
4027 * check this node pointer against the cache_only and
4028 * min_trans parameters. If it isn't in cache or is too
4029 * old, skip to the next one.
4030 */
4031 while (slot < nritems) {
4032 u64 blockptr;
4033 u64 gen;
4034 struct extent_buffer *tmp;
4035 struct btrfs_disk_key disk_key;
4036
4037 blockptr = btrfs_node_blockptr(cur, slot);
4038 gen = btrfs_node_ptr_generation(cur, slot);
4039 if (gen < min_trans) {
4040 slot++;
4041 continue;
4042 }
4043 if (!cache_only)
4044 break;
4045
4046 if (max_key) {
4047 btrfs_node_key(cur, &disk_key, slot);
4048 if (comp_keys(&disk_key, max_key) >= 0) {
4049 ret = 1;
4050 goto out;
4051 }
4052 }
4053
4054 tmp = btrfs_find_tree_block(root, blockptr,
4055 btrfs_level_size(root, level - 1));
4056
4057 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4058 free_extent_buffer(tmp);
4059 break;
4060 }
4061 if (tmp)
4062 free_extent_buffer(tmp);
4063 slot++;
4064 }
4065 find_next_key:
4066 /*
4067 * we didn't find a candidate key in this node, walk forward
4068 * and find another one
4069 */
4070 if (slot >= nritems) {
4071 path->slots[level] = slot;
4072 btrfs_set_path_blocking(path);
4073 sret = btrfs_find_next_key(root, path, min_key, level,
4074 cache_only, min_trans);
4075 if (sret == 0) {
4076 btrfs_release_path(root, path);
4077 goto again;
4078 } else {
4079 goto out;
4080 }
4081 }
4082 /* save our key for returning back */
4083 btrfs_node_key_to_cpu(cur, &found_key, slot);
4084 path->slots[level] = slot;
4085 if (level == path->lowest_level) {
4086 ret = 0;
4087 unlock_up(path, level, 1);
4088 goto out;
4089 }
4090 btrfs_set_path_blocking(path);
4091 cur = read_node_slot(root, cur, slot);
4092 BUG_ON(!cur);
4093
4094 btrfs_tree_lock(cur);
4095
4096 path->locks[level - 1] = 1;
4097 path->nodes[level - 1] = cur;
4098 unlock_up(path, level, 1);
4099 btrfs_clear_path_blocking(path, NULL);
4100 }
4101 out:
4102 if (ret == 0)
4103 memcpy(min_key, &found_key, sizeof(found_key));
4104 btrfs_set_path_blocking(path);
4105 return ret;
4106 }
4107
4108 /*
4109 * this is similar to btrfs_next_leaf, but does not try to preserve
4110 * and fixup the path. It looks for and returns the next key in the
4111 * tree based on the current path and the cache_only and min_trans
4112 * parameters.
4113 *
4114 * 0 is returned if another key is found, < 0 if there are any errors
4115 * and 1 is returned if there are no higher keys in the tree
4116 *
4117 * path->keep_locks should be set to 1 on the search made before
4118 * calling this function.
4119 */
btrfs_find_next_key(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,int level,int cache_only,u64 min_trans)4120 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4121 struct btrfs_key *key, int level,
4122 int cache_only, u64 min_trans)
4123 {
4124 int slot;
4125 struct extent_buffer *c;
4126
4127 WARN_ON(!path->keep_locks);
4128 while (level < BTRFS_MAX_LEVEL) {
4129 if (!path->nodes[level])
4130 return 1;
4131
4132 slot = path->slots[level] + 1;
4133 c = path->nodes[level];
4134 next:
4135 if (slot >= btrfs_header_nritems(c)) {
4136 int ret;
4137 int orig_lowest;
4138 struct btrfs_key cur_key;
4139 if (level + 1 >= BTRFS_MAX_LEVEL ||
4140 !path->nodes[level + 1])
4141 return 1;
4142
4143 if (path->locks[level + 1]) {
4144 level++;
4145 continue;
4146 }
4147
4148 slot = btrfs_header_nritems(c) - 1;
4149 if (level == 0)
4150 btrfs_item_key_to_cpu(c, &cur_key, slot);
4151 else
4152 btrfs_node_key_to_cpu(c, &cur_key, slot);
4153
4154 orig_lowest = path->lowest_level;
4155 btrfs_release_path(root, path);
4156 path->lowest_level = level;
4157 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4158 0, 0);
4159 path->lowest_level = orig_lowest;
4160 if (ret < 0)
4161 return ret;
4162
4163 c = path->nodes[level];
4164 slot = path->slots[level];
4165 if (ret == 0)
4166 slot++;
4167 goto next;
4168 }
4169
4170 if (level == 0)
4171 btrfs_item_key_to_cpu(c, key, slot);
4172 else {
4173 u64 blockptr = btrfs_node_blockptr(c, slot);
4174 u64 gen = btrfs_node_ptr_generation(c, slot);
4175
4176 if (cache_only) {
4177 struct extent_buffer *cur;
4178 cur = btrfs_find_tree_block(root, blockptr,
4179 btrfs_level_size(root, level - 1));
4180 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4181 slot++;
4182 if (cur)
4183 free_extent_buffer(cur);
4184 goto next;
4185 }
4186 free_extent_buffer(cur);
4187 }
4188 if (gen < min_trans) {
4189 slot++;
4190 goto next;
4191 }
4192 btrfs_node_key_to_cpu(c, key, slot);
4193 }
4194 return 0;
4195 }
4196 return 1;
4197 }
4198
4199 /*
4200 * search the tree again to find a leaf with greater keys
4201 * returns 0 if it found something or 1 if there are no greater leaves.
4202 * returns < 0 on io errors.
4203 */
btrfs_next_leaf(struct btrfs_root * root,struct btrfs_path * path)4204 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4205 {
4206 int slot;
4207 int level;
4208 struct extent_buffer *c;
4209 struct extent_buffer *next;
4210 struct btrfs_key key;
4211 u32 nritems;
4212 int ret;
4213 int old_spinning = path->leave_spinning;
4214 int force_blocking = 0;
4215
4216 nritems = btrfs_header_nritems(path->nodes[0]);
4217 if (nritems == 0)
4218 return 1;
4219
4220 /*
4221 * we take the blocks in an order that upsets lockdep. Using
4222 * blocking mode is the only way around it.
4223 */
4224 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4225 force_blocking = 1;
4226 #endif
4227
4228 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4229 again:
4230 level = 1;
4231 next = NULL;
4232 btrfs_release_path(root, path);
4233
4234 path->keep_locks = 1;
4235
4236 if (!force_blocking)
4237 path->leave_spinning = 1;
4238
4239 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4240 path->keep_locks = 0;
4241
4242 if (ret < 0)
4243 return ret;
4244
4245 nritems = btrfs_header_nritems(path->nodes[0]);
4246 /*
4247 * by releasing the path above we dropped all our locks. A balance
4248 * could have added more items next to the key that used to be
4249 * at the very end of the block. So, check again here and
4250 * advance the path if there are now more items available.
4251 */
4252 if (nritems > 0 && path->slots[0] < nritems - 1) {
4253 if (ret == 0)
4254 path->slots[0]++;
4255 ret = 0;
4256 goto done;
4257 }
4258
4259 while (level < BTRFS_MAX_LEVEL) {
4260 if (!path->nodes[level]) {
4261 ret = 1;
4262 goto done;
4263 }
4264
4265 slot = path->slots[level] + 1;
4266 c = path->nodes[level];
4267 if (slot >= btrfs_header_nritems(c)) {
4268 level++;
4269 if (level == BTRFS_MAX_LEVEL) {
4270 ret = 1;
4271 goto done;
4272 }
4273 continue;
4274 }
4275
4276 if (next) {
4277 btrfs_tree_unlock(next);
4278 free_extent_buffer(next);
4279 }
4280
4281 next = c;
4282 ret = read_block_for_search(NULL, root, path, &next, level,
4283 slot, &key);
4284 if (ret == -EAGAIN)
4285 goto again;
4286
4287 if (ret < 0) {
4288 btrfs_release_path(root, path);
4289 goto done;
4290 }
4291
4292 if (!path->skip_locking) {
4293 ret = btrfs_try_spin_lock(next);
4294 if (!ret) {
4295 btrfs_set_path_blocking(path);
4296 btrfs_tree_lock(next);
4297 if (!force_blocking)
4298 btrfs_clear_path_blocking(path, next);
4299 }
4300 if (force_blocking)
4301 btrfs_set_lock_blocking(next);
4302 }
4303 break;
4304 }
4305 path->slots[level] = slot;
4306 while (1) {
4307 level--;
4308 c = path->nodes[level];
4309 if (path->locks[level])
4310 btrfs_tree_unlock(c);
4311
4312 free_extent_buffer(c);
4313 path->nodes[level] = next;
4314 path->slots[level] = 0;
4315 if (!path->skip_locking)
4316 path->locks[level] = 1;
4317
4318 if (!level)
4319 break;
4320
4321 ret = read_block_for_search(NULL, root, path, &next, level,
4322 0, &key);
4323 if (ret == -EAGAIN)
4324 goto again;
4325
4326 if (ret < 0) {
4327 btrfs_release_path(root, path);
4328 goto done;
4329 }
4330
4331 if (!path->skip_locking) {
4332 btrfs_assert_tree_locked(path->nodes[level]);
4333 ret = btrfs_try_spin_lock(next);
4334 if (!ret) {
4335 btrfs_set_path_blocking(path);
4336 btrfs_tree_lock(next);
4337 if (!force_blocking)
4338 btrfs_clear_path_blocking(path, next);
4339 }
4340 if (force_blocking)
4341 btrfs_set_lock_blocking(next);
4342 }
4343 }
4344 ret = 0;
4345 done:
4346 unlock_up(path, 0, 1);
4347 path->leave_spinning = old_spinning;
4348 if (!old_spinning)
4349 btrfs_set_path_blocking(path);
4350
4351 return ret;
4352 }
4353
4354 /*
4355 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4356 * searching until it gets past min_objectid or finds an item of 'type'
4357 *
4358 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4359 */
btrfs_previous_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid,int type)4360 int btrfs_previous_item(struct btrfs_root *root,
4361 struct btrfs_path *path, u64 min_objectid,
4362 int type)
4363 {
4364 struct btrfs_key found_key;
4365 struct extent_buffer *leaf;
4366 u32 nritems;
4367 int ret;
4368
4369 while (1) {
4370 if (path->slots[0] == 0) {
4371 btrfs_set_path_blocking(path);
4372 ret = btrfs_prev_leaf(root, path);
4373 if (ret != 0)
4374 return ret;
4375 } else {
4376 path->slots[0]--;
4377 }
4378 leaf = path->nodes[0];
4379 nritems = btrfs_header_nritems(leaf);
4380 if (nritems == 0)
4381 return 1;
4382 if (path->slots[0] == nritems)
4383 path->slots[0]--;
4384
4385 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4386 if (found_key.objectid < min_objectid)
4387 break;
4388 if (found_key.type == type)
4389 return 0;
4390 if (found_key.objectid == min_objectid &&
4391 found_key.type < type)
4392 break;
4393 }
4394 return 1;
4395 }
4396