1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2 #pragma once
3 
4 #include <stdbool.h>
5 #include <stdio.h>
6 
7 #include "sd-bus.h"
8 #include "sd-device.h"
9 #include "sd-event.h"
10 
11 #include "cgroup-util.h"
12 #include "cgroup.h"
13 #include "fdset.h"
14 #include "hashmap.h"
15 #include "list.h"
16 #include "prioq.h"
17 #include "ratelimit.h"
18 #include "varlink.h"
19 
20 struct libmnt_monitor;
21 typedef struct Unit Unit;
22 
23 /* Enforce upper limit how many names we allow */
24 #define MANAGER_MAX_NAMES 131072 /* 128K */
25 
26 typedef struct Manager Manager;
27 
28 /* An externally visible state. We don't actually maintain this as state variable, but derive it from various fields
29  * when requested */
30 typedef enum ManagerState {
31         MANAGER_INITIALIZING,
32         MANAGER_STARTING,
33         MANAGER_RUNNING,
34         MANAGER_DEGRADED,
35         MANAGER_MAINTENANCE,
36         MANAGER_STOPPING,
37         _MANAGER_STATE_MAX,
38         _MANAGER_STATE_INVALID = -EINVAL,
39 } ManagerState;
40 
41 typedef enum ManagerObjective {
42         MANAGER_OK,
43         MANAGER_EXIT,
44         MANAGER_RELOAD,
45         MANAGER_REEXECUTE,
46         MANAGER_REBOOT,
47         MANAGER_POWEROFF,
48         MANAGER_HALT,
49         MANAGER_KEXEC,
50         MANAGER_SWITCH_ROOT,
51         _MANAGER_OBJECTIVE_MAX,
52         _MANAGER_OBJECTIVE_INVALID = -EINVAL,
53 } ManagerObjective;
54 
55 typedef enum StatusType {
56         STATUS_TYPE_EPHEMERAL,
57         STATUS_TYPE_NORMAL,
58         STATUS_TYPE_NOTICE,
59         STATUS_TYPE_EMERGENCY,
60 } StatusType;
61 
62 typedef enum OOMPolicy {
63         OOM_CONTINUE,          /* The kernel or systemd-oomd kills the process it wants to kill, and that's it */
64         OOM_STOP,              /* The kernel or systemd-oomd kills the process it wants to kill, and we stop the unit */
65         OOM_KILL,              /* The kernel or systemd-oomd kills the process it wants to kill, and all others in the unit, and we stop the unit */
66         _OOM_POLICY_MAX,
67         _OOM_POLICY_INVALID = -EINVAL,
68 } OOMPolicy;
69 
70 /* Notes:
71  * 1. TIMESTAMP_FIRMWARE, TIMESTAMP_LOADER, TIMESTAMP_KERNEL, TIMESTAMP_INITRD,
72  *    TIMESTAMP_SECURITY_START, and TIMESTAMP_SECURITY_FINISH are set only when
73  *    the manager is system and not running under container environment.
74  *
75  * 2. The monotonic timestamp of TIMESTAMP_KERNEL is always zero.
76  *
77  * 3. The realtime timestamp of TIMESTAMP_KERNEL will be unset if the system does not
78  *    have RTC.
79  *
80  * 4. TIMESTAMP_FIRMWARE and TIMESTAMP_LOADER will be unset if the system does not
81  *    have RTC, or systemd is built without EFI support.
82  *
83  * 5. The monotonic timestamps of TIMESTAMP_FIRMWARE and TIMESTAMP_LOADER are stored as
84  *    negative of the actual value.
85  *
86  * 6. TIMESTAMP_USERSPACE is the timestamp of when the manager was started.
87  *
88  * 7. TIMESTAMP_INITRD_* are set only when the system is booted with an initrd.
89  */
90 
91 typedef enum ManagerTimestamp {
92         MANAGER_TIMESTAMP_FIRMWARE,
93         MANAGER_TIMESTAMP_LOADER,
94         MANAGER_TIMESTAMP_KERNEL,
95         MANAGER_TIMESTAMP_INITRD,
96         MANAGER_TIMESTAMP_USERSPACE,
97         MANAGER_TIMESTAMP_FINISH,
98 
99         MANAGER_TIMESTAMP_SECURITY_START,
100         MANAGER_TIMESTAMP_SECURITY_FINISH,
101         MANAGER_TIMESTAMP_GENERATORS_START,
102         MANAGER_TIMESTAMP_GENERATORS_FINISH,
103         MANAGER_TIMESTAMP_UNITS_LOAD_START,
104         MANAGER_TIMESTAMP_UNITS_LOAD_FINISH,
105         MANAGER_TIMESTAMP_UNITS_LOAD,
106 
107         MANAGER_TIMESTAMP_INITRD_SECURITY_START,
108         MANAGER_TIMESTAMP_INITRD_SECURITY_FINISH,
109         MANAGER_TIMESTAMP_INITRD_GENERATORS_START,
110         MANAGER_TIMESTAMP_INITRD_GENERATORS_FINISH,
111         MANAGER_TIMESTAMP_INITRD_UNITS_LOAD_START,
112         MANAGER_TIMESTAMP_INITRD_UNITS_LOAD_FINISH,
113         _MANAGER_TIMESTAMP_MAX,
114         _MANAGER_TIMESTAMP_INVALID = -EINVAL,
115 } ManagerTimestamp;
116 
117 typedef enum WatchdogType {
118         WATCHDOG_RUNTIME,
119         WATCHDOG_REBOOT,
120         WATCHDOG_KEXEC,
121         WATCHDOG_PRETIMEOUT,
122         _WATCHDOG_TYPE_MAX,
123 } WatchdogType;
124 
125 #include "execute.h"
126 #include "job.h"
127 #include "path-lookup.h"
128 #include "show-status.h"
129 #include "unit-name.h"
130 
131 typedef enum ManagerTestRunFlags {
132         MANAGER_TEST_NORMAL                  = 0,       /* run normally */
133         MANAGER_TEST_RUN_MINIMAL             = 1 << 0,  /* create basic data structures */
134         MANAGER_TEST_RUN_BASIC               = 1 << 1,  /* interact with the environment */
135         MANAGER_TEST_RUN_ENV_GENERATORS      = 1 << 2,  /* also run env generators  */
136         MANAGER_TEST_RUN_GENERATORS          = 1 << 3,  /* also run unit generators */
137         MANAGER_TEST_RUN_IGNORE_DEPENDENCIES = 1 << 4,  /* run while ignoring dependencies */
138         MANAGER_TEST_FULL = MANAGER_TEST_RUN_BASIC | MANAGER_TEST_RUN_ENV_GENERATORS | MANAGER_TEST_RUN_GENERATORS,
139 } ManagerTestRunFlags;
140 
141 assert_cc((MANAGER_TEST_FULL & UINT8_MAX) == MANAGER_TEST_FULL);
142 
143 struct Manager {
144         /* Note that the set of units we know of is allowed to be
145          * inconsistent. However the subset of it that is loaded may
146          * not, and the list of jobs may neither. */
147 
148         /* Active jobs and units */
149         Hashmap *units;  /* name string => Unit object n:1 */
150         Hashmap *units_by_invocation_id;
151         Hashmap *jobs;   /* job id => Job object 1:1 */
152 
153         /* To make it easy to iterate through the units of a specific
154          * type we maintain a per type linked list */
155         LIST_HEAD(Unit, units_by_type[_UNIT_TYPE_MAX]);
156 
157         /* Units that need to be loaded */
158         LIST_HEAD(Unit, load_queue); /* this is actually more a stack than a queue, but uh. */
159 
160         /* Jobs that need to be run */
161         struct Prioq *run_queue;
162 
163         /* Units and jobs that have not yet been announced via
164          * D-Bus. When something about a job changes it is added here
165          * if it is not in there yet. This allows easy coalescing of
166          * D-Bus change signals. */
167         LIST_HEAD(Unit, dbus_unit_queue);
168         LIST_HEAD(Job, dbus_job_queue);
169 
170         /* Units to remove */
171         LIST_HEAD(Unit, cleanup_queue);
172 
173         /* Units and jobs to check when doing GC */
174         LIST_HEAD(Unit, gc_unit_queue);
175         LIST_HEAD(Job, gc_job_queue);
176 
177         /* Units that should be realized */
178         LIST_HEAD(Unit, cgroup_realize_queue);
179 
180         /* Units whose cgroup ran empty */
181         LIST_HEAD(Unit, cgroup_empty_queue);
182 
183         /* Units whose memory.event fired */
184         LIST_HEAD(Unit, cgroup_oom_queue);
185 
186         /* Target units whose default target dependencies haven't been set yet */
187         LIST_HEAD(Unit, target_deps_queue);
188 
189         /* Units that might be subject to StopWhenUnneeded= clean-up */
190         LIST_HEAD(Unit, stop_when_unneeded_queue);
191 
192         /* Units which are upheld by another other which we might need to act on */
193         LIST_HEAD(Unit, start_when_upheld_queue);
194 
195         /* Units that have BindsTo= another unit, and might need to be shutdown because the bound unit is not active. */
196         LIST_HEAD(Unit, stop_when_bound_queue);
197 
198         sd_event *event;
199 
200         /* This maps PIDs we care about to units that are interested in. We allow multiple units to be interested in
201          * the same PID and multiple PIDs to be relevant to the same unit. Since in most cases only a single unit will
202          * be interested in the same PID we use a somewhat special encoding here: the first unit interested in a PID is
203          * stored directly in the hashmap, keyed by the PID unmodified. If there are other units interested too they'll
204          * be stored in a NULL-terminated array, and keyed by the negative PID. This is safe as pid_t is signed and
205          * negative PIDs are not used for regular processes but process groups, which we don't care about in this
206          * context, but this allows us to use the negative range for our own purposes. */
207         Hashmap *watch_pids;  /* pid => unit as well as -pid => array of units */
208 
209         /* A set contains all units which cgroup should be refreshed after startup */
210         Set *startup_units;
211 
212         /* A set which contains all currently failed units */
213         Set *failed_units;
214 
215         sd_event_source *run_queue_event_source;
216 
217         char *notify_socket;
218         int notify_fd;
219         sd_event_source *notify_event_source;
220 
221         int cgroups_agent_fd;
222         sd_event_source *cgroups_agent_event_source;
223 
224         int signal_fd;
225         sd_event_source *signal_event_source;
226 
227         sd_event_source *sigchld_event_source;
228 
229         sd_event_source *time_change_event_source;
230 
231         sd_event_source *timezone_change_event_source;
232 
233         sd_event_source *jobs_in_progress_event_source;
234 
235         int user_lookup_fds[2];
236         sd_event_source *user_lookup_event_source;
237 
238         LookupScope unit_file_scope;
239         LookupPaths lookup_paths;
240         Hashmap *unit_id_map;
241         Hashmap *unit_name_map;
242         Set *unit_path_cache;
243         uint64_t unit_cache_timestamp_hash;
244 
245         char **transient_environment;  /* The environment, as determined from config files, kernel cmdline and environment generators */
246         char **client_environment;     /* Environment variables created by clients through the bus API */
247 
248         usec_t watchdog[_WATCHDOG_TYPE_MAX];
249         usec_t watchdog_overridden[_WATCHDOG_TYPE_MAX];
250         char *watchdog_pretimeout_governor;
251         char *watchdog_pretimeout_governor_overridden;
252 
253         dual_timestamp timestamps[_MANAGER_TIMESTAMP_MAX];
254 
255         /* Data specific to the device subsystem */
256         sd_device_monitor *device_monitor;
257         Hashmap *devices_by_sysfs;
258 
259         /* Data specific to the mount subsystem */
260         struct libmnt_monitor *mount_monitor;
261         sd_event_source *mount_event_source;
262 
263         /* Data specific to the swap filesystem */
264         FILE *proc_swaps;
265         sd_event_source *swap_event_source;
266         Hashmap *swaps_by_devnode;
267 
268         /* Data specific to the D-Bus subsystem */
269         sd_bus *api_bus, *system_bus;
270         Set *private_buses;
271         int private_listen_fd;
272         sd_event_source *private_listen_event_source;
273 
274         /* Contains all the clients that are subscribed to signals via
275         the API bus. Note that private bus connections are always
276         considered subscribes, since they last for very short only,
277         and it is much simpler that way. */
278         sd_bus_track *subscribed;
279         char **deserialized_subscribed;
280 
281         /* This is used during reloading: before the reload we queue
282          * the reply message here, and afterwards we send it */
283         sd_bus_message *pending_reload_message;
284 
285         Hashmap *watch_bus;  /* D-Bus names => Unit object n:1 */
286 
287         bool send_reloading_done;
288 
289         uint32_t current_job_id;
290         uint32_t default_unit_job_id;
291 
292         /* Data specific to the Automount subsystem */
293         int dev_autofs_fd;
294 
295         /* Data specific to the cgroup subsystem */
296         Hashmap *cgroup_unit;
297         CGroupMask cgroup_supported;
298         char *cgroup_root;
299 
300         /* Notifications from cgroups, when the unified hierarchy is used is done via inotify. */
301         int cgroup_inotify_fd;
302         sd_event_source *cgroup_inotify_event_source;
303 
304         /* Maps for finding the unit for each inotify watch descriptor for the cgroup.events and
305          * memory.events cgroupv2 attributes. */
306         Hashmap *cgroup_control_inotify_wd_unit;
307         Hashmap *cgroup_memory_inotify_wd_unit;
308 
309         /* A defer event for handling cgroup empty events and processing them after SIGCHLD in all cases. */
310         sd_event_source *cgroup_empty_event_source;
311         sd_event_source *cgroup_oom_event_source;
312 
313         /* Make sure the user cannot accidentally unmount our cgroup
314          * file system */
315         int pin_cgroupfs_fd;
316 
317         unsigned gc_marker;
318 
319         /* The stat() data the last time we saw /etc/localtime */
320         usec_t etc_localtime_mtime;
321         bool etc_localtime_accessible;
322 
323         ManagerObjective objective;
324 
325         /* Flags */
326         bool dispatching_load_queue;
327 
328         bool taint_usr;
329 
330         /* Have we already sent out the READY=1 notification? */
331         bool ready_sent;
332 
333         /* Was the last status sent "STATUS=Ready."? */
334         bool status_ready;
335 
336         /* Have we already printed the taint line if necessary? */
337         bool taint_logged;
338 
339         /* Have we ever changed the "kernel.pid_max" sysctl? */
340         bool sysctl_pid_max_changed;
341 
342         ManagerTestRunFlags test_run_flags;
343 
344         /* If non-zero, exit with the following value when the systemd
345          * process terminate. Useful for containers: systemd-nspawn could get
346          * the return value. */
347         uint8_t return_value;
348 
349         ShowStatus show_status;
350         ShowStatus show_status_overridden;
351         StatusUnitFormat status_unit_format;
352         char *confirm_spawn;
353         bool no_console_output;
354         bool service_watchdogs;
355 
356         ExecOutput default_std_output, default_std_error;
357 
358         usec_t default_restart_usec, default_timeout_start_usec, default_timeout_stop_usec;
359         usec_t default_timeout_abort_usec;
360         bool default_timeout_abort_set;
361 
362         usec_t default_start_limit_interval;
363         unsigned default_start_limit_burst;
364 
365         bool default_cpu_accounting;
366         bool default_memory_accounting;
367         bool default_io_accounting;
368         bool default_blockio_accounting;
369         bool default_tasks_accounting;
370         bool default_ip_accounting;
371 
372         TasksMax default_tasks_max;
373         usec_t default_timer_accuracy_usec;
374 
375         OOMPolicy default_oom_policy;
376         int default_oom_score_adjust;
377         bool default_oom_score_adjust_set;
378 
379         int original_log_level;
380         LogTarget original_log_target;
381         bool log_level_overridden;
382         bool log_target_overridden;
383 
384         struct rlimit *rlimit[_RLIMIT_MAX];
385 
386         /* non-zero if we are reloading or reexecuting, */
387         int n_reloading;
388 
389         unsigned n_installed_jobs;
390         unsigned n_failed_jobs;
391 
392         /* Jobs in progress watching */
393         unsigned n_running_jobs;
394         unsigned n_on_console;
395         unsigned jobs_in_progress_iteration;
396 
397         /* Do we have any outstanding password prompts? */
398         int have_ask_password;
399         int ask_password_inotify_fd;
400         sd_event_source *ask_password_event_source;
401 
402         /* Type=idle pipes */
403         int idle_pipe[4];
404         sd_event_source *idle_pipe_event_source;
405 
406         char *switch_root;
407         char *switch_root_init;
408 
409         /* This maps all possible path prefixes to the units needing
410          * them. It's a hashmap with a path string as key and a Set as
411          * value where Unit objects are contained. */
412         Hashmap *units_requiring_mounts_for;
413 
414         /* Used for processing polkit authorization responses */
415         Hashmap *polkit_registry;
416 
417         /* Dynamic users/groups, indexed by their name */
418         Hashmap *dynamic_users;
419 
420         /* Keep track of all UIDs and GIDs any of our services currently use. This is useful for the RemoveIPC= logic. */
421         Hashmap *uid_refs;
422         Hashmap *gid_refs;
423 
424         /* ExecRuntime, indexed by their owner unit id */
425         Hashmap *exec_runtime_by_id;
426 
427         /* When the user hits C-A-D more than 7 times per 2s, do something immediately... */
428         RateLimit ctrl_alt_del_ratelimit;
429         EmergencyAction cad_burst_action;
430 
431         const char *unit_log_field;
432         const char *unit_log_format_string;
433 
434         const char *invocation_log_field;
435         const char *invocation_log_format_string;
436 
437         int first_boot; /* tri-state */
438 
439         /* Prefixes of e.g. RuntimeDirectory= */
440         char *prefix[_EXEC_DIRECTORY_TYPE_MAX];
441         char *received_credentials_directory;
442         char *received_encrypted_credentials_directory;
443 
444         /* Used in the SIGCHLD and sd_notify() message invocation logic to avoid that we dispatch the same event
445          * multiple times on the same unit. */
446         unsigned sigchldgen;
447         unsigned notifygen;
448 
449         bool honor_device_enumeration;
450 
451         VarlinkServer *varlink_server;
452         /* When we're a system manager, this object manages the subscription from systemd-oomd to PID1 that's
453          * used to report changes in ManagedOOM settings (systemd server - oomd client). When
454          * we're a user manager, this object manages the client connection from the user manager to
455          * systemd-oomd to report changes in ManagedOOM settings (systemd client - oomd server). */
456         Varlink *managed_oom_varlink;
457 
458         /* Reference to RestrictFileSystems= BPF program */
459         struct restrict_fs_bpf *restrict_fs;
460 };
461 
manager_default_timeout_abort_usec(Manager * m)462 static inline usec_t manager_default_timeout_abort_usec(Manager *m) {
463         assert(m);
464         return m->default_timeout_abort_set ? m->default_timeout_abort_usec : m->default_timeout_stop_usec;
465 }
466 
467 #define MANAGER_IS_SYSTEM(m) ((m)->unit_file_scope == LOOKUP_SCOPE_SYSTEM)
468 #define MANAGER_IS_USER(m) ((m)->unit_file_scope != LOOKUP_SCOPE_SYSTEM)
469 
470 #define MANAGER_IS_RELOADING(m) ((m)->n_reloading > 0)
471 
472 #define MANAGER_IS_FINISHED(m) (dual_timestamp_is_set((m)->timestamps + MANAGER_TIMESTAMP_FINISH))
473 
474 /* The objective is set to OK as soon as we enter the main loop, and set otherwise as soon as we are done with it */
475 #define MANAGER_IS_RUNNING(m) ((m)->objective == MANAGER_OK)
476 
477 #define MANAGER_IS_TEST_RUN(m) ((m)->test_run_flags != 0)
478 
479 int manager_new(LookupScope scope, ManagerTestRunFlags test_run_flags, Manager **m);
480 Manager* manager_free(Manager *m);
481 DEFINE_TRIVIAL_CLEANUP_FUNC(Manager*, manager_free);
482 
483 int manager_startup(Manager *m, FILE *serialization, FDSet *fds, const char *root);
484 
485 Job *manager_get_job(Manager *m, uint32_t id);
486 Unit *manager_get_unit(Manager *m, const char *name);
487 
488 int manager_get_job_from_dbus_path(Manager *m, const char *s, Job **_j);
489 
490 bool manager_unit_cache_should_retry_load(Unit *u);
491 int manager_load_unit_prepare(Manager *m, const char *name, const char *path, sd_bus_error *e, Unit **_ret);
492 int manager_load_unit(Manager *m, const char *name, const char *path, sd_bus_error *e, Unit **_ret);
493 int manager_load_startable_unit_or_warn(Manager *m, const char *name, const char *path, Unit **ret);
494 int manager_load_unit_from_dbus_path(Manager *m, const char *s, sd_bus_error *e, Unit **_u);
495 
496 int manager_add_job(Manager *m, JobType type, Unit *unit, JobMode mode, Set *affected_jobs, sd_bus_error *e, Job **_ret);
497 int manager_add_job_by_name(Manager *m, JobType type, const char *name, JobMode mode, Set *affected_jobs, sd_bus_error *e, Job **_ret);
498 int manager_add_job_by_name_and_warn(Manager *m, JobType type, const char *name, JobMode mode, Set *affected_jobs,  Job **ret);
499 int manager_propagate_reload(Manager *m, Unit *unit, JobMode mode, sd_bus_error *e);
500 
501 void manager_clear_jobs(Manager *m);
502 
503 void manager_unwatch_pid(Manager *m, pid_t pid);
504 
505 unsigned manager_dispatch_load_queue(Manager *m);
506 
507 int manager_default_environment(Manager *m);
508 int manager_transient_environment_add(Manager *m, char **plus);
509 int manager_client_environment_modify(Manager *m, char **minus, char **plus);
510 int manager_get_effective_environment(Manager *m, char ***ret);
511 
512 int manager_set_default_rlimits(Manager *m, struct rlimit **default_rlimit);
513 
514 void manager_trigger_run_queue(Manager *m);
515 
516 int manager_loop(Manager *m);
517 
518 int manager_reload(Manager *m);
519 Manager* manager_reloading_start(Manager *m);
520 void manager_reloading_stopp(Manager **m);
521 
522 void manager_reset_failed(Manager *m);
523 
524 void manager_send_unit_audit(Manager *m, Unit *u, int type, bool success);
525 void manager_send_unit_plymouth(Manager *m, Unit *u);
526 
527 bool manager_unit_inactive_or_pending(Manager *m, const char *name);
528 
529 void manager_check_finished(Manager *m);
530 
531 void disable_printk_ratelimit(void);
532 void manager_recheck_dbus(Manager *m);
533 void manager_recheck_journal(Manager *m);
534 
535 bool manager_get_show_status_on(Manager *m);
536 void manager_set_show_status(Manager *m, ShowStatus mode, const char *reason);
537 void manager_override_show_status(Manager *m, ShowStatus mode, const char *reason);
538 
539 void manager_set_first_boot(Manager *m, bool b);
540 
541 void manager_status_printf(Manager *m, StatusType type, const char *status, const char *format, ...) _printf_(4,5);
542 
543 Set *manager_get_units_requiring_mounts_for(Manager *m, const char *path);
544 
545 ManagerState manager_state(Manager *m);
546 
547 int manager_update_failed_units(Manager *m, Unit *u, bool failed);
548 
549 void manager_unref_uid(Manager *m, uid_t uid, bool destroy_now);
550 int manager_ref_uid(Manager *m, uid_t uid, bool clean_ipc);
551 
552 void manager_unref_gid(Manager *m, gid_t gid, bool destroy_now);
553 int manager_ref_gid(Manager *m, gid_t gid, bool clean_ipc);
554 
555 char* manager_taint_string(const Manager *m);
556 
557 void manager_ref_console(Manager *m);
558 void manager_unref_console(Manager *m);
559 
560 void manager_override_log_level(Manager *m, int level);
561 void manager_restore_original_log_level(Manager *m);
562 
563 void manager_override_log_target(Manager *m, LogTarget target);
564 void manager_restore_original_log_target(Manager *m);
565 
566 const char *manager_state_to_string(ManagerState m) _const_;
567 ManagerState manager_state_from_string(const char *s) _pure_;
568 
569 const char *manager_get_confirm_spawn(Manager *m);
570 bool manager_is_confirm_spawn_disabled(Manager *m);
571 void manager_disable_confirm_spawn(void);
572 
573 const char *manager_timestamp_to_string(ManagerTimestamp m) _const_;
574 ManagerTimestamp manager_timestamp_from_string(const char *s) _pure_;
575 ManagerTimestamp manager_timestamp_initrd_mangle(ManagerTimestamp s);
576 
577 usec_t manager_get_watchdog(Manager *m, WatchdogType t);
578 void manager_set_watchdog(Manager *m, WatchdogType t, usec_t timeout);
579 void manager_override_watchdog(Manager *m, WatchdogType t, usec_t timeout);
580 int manager_set_watchdog_pretimeout_governor(Manager *m, const char *governor);
581 int manager_override_watchdog_pretimeout_governor(Manager *m, const char *governor);
582 
583 const char* oom_policy_to_string(OOMPolicy i) _const_;
584 OOMPolicy oom_policy_from_string(const char *s) _pure_;
585