1 /*
2  * fs/logfs/inode.c	- inode handling code
3  *
4  * As should be obvious for Linux kernel code, license is GPLv2
5  *
6  * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
7  */
8 #include "logfs.h"
9 #include <linux/slab.h>
10 #include <linux/writeback.h>
11 #include <linux/backing-dev.h>
12 
13 /*
14  * How soon to reuse old inode numbers?  LogFS doesn't store deleted inodes
15  * on the medium.  It therefore also lacks a method to store the previous
16  * generation number for deleted inodes.  Instead a single generation number
17  * is stored which will be used for new inodes.  Being just a 32bit counter,
18  * this can obvious wrap relatively quickly.  So we only reuse inodes if we
19  * know that a fair number of inodes can be created before we have to increment
20  * the generation again - effectively adding some bits to the counter.
21  * But being too aggressive here means we keep a very large and very sparse
22  * inode file, wasting space on indirect blocks.
23  * So what is a good value?  Beats me.  64k seems moderately bad on both
24  * fronts, so let's use that for now...
25  *
26  * NFS sucks, as everyone already knows.
27  */
28 #define INOS_PER_WRAP (0x10000)
29 
30 /*
31  * Logfs' requirement to read inodes for garbage collection makes life a bit
32  * harder.  GC may have to read inodes that are in I_FREEING state, when they
33  * are being written out - and waiting for GC to make progress, naturally.
34  *
35  * So we cannot just call iget() or some variant of it, but first have to check
36  * wether the inode in question might be in I_FREEING state.  Therefore we
37  * maintain our own per-sb list of "almost deleted" inodes and check against
38  * that list first.  Normally this should be at most 1-2 entries long.
39  *
40  * Also, inodes have logfs-specific reference counting on top of what the vfs
41  * does.  When .destroy_inode is called, normally the reference count will drop
42  * to zero and the inode gets deleted.  But if GC accessed the inode, its
43  * refcount will remain nonzero and final deletion will have to wait.
44  *
45  * As a result we have two sets of functions to get/put inodes:
46  * logfs_safe_iget/logfs_safe_iput	- safe to call from GC context
47  * logfs_iget/iput			- normal version
48  */
49 static struct kmem_cache *logfs_inode_cache;
50 
51 static DEFINE_SPINLOCK(logfs_inode_lock);
52 
logfs_inode_setops(struct inode * inode)53 static void logfs_inode_setops(struct inode *inode)
54 {
55 	switch (inode->i_mode & S_IFMT) {
56 	case S_IFDIR:
57 		inode->i_op = &logfs_dir_iops;
58 		inode->i_fop = &logfs_dir_fops;
59 		inode->i_mapping->a_ops = &logfs_reg_aops;
60 		break;
61 	case S_IFREG:
62 		inode->i_op = &logfs_reg_iops;
63 		inode->i_fop = &logfs_reg_fops;
64 		inode->i_mapping->a_ops = &logfs_reg_aops;
65 		break;
66 	case S_IFLNK:
67 		inode->i_op = &logfs_symlink_iops;
68 		inode->i_mapping->a_ops = &logfs_reg_aops;
69 		break;
70 	case S_IFSOCK:	/* fall through */
71 	case S_IFBLK:	/* fall through */
72 	case S_IFCHR:	/* fall through */
73 	case S_IFIFO:
74 		init_special_inode(inode, inode->i_mode, inode->i_rdev);
75 		break;
76 	default:
77 		BUG();
78 	}
79 }
80 
__logfs_iget(struct super_block * sb,ino_t ino)81 static struct inode *__logfs_iget(struct super_block *sb, ino_t ino)
82 {
83 	struct inode *inode = iget_locked(sb, ino);
84 	int err;
85 
86 	if (!inode)
87 		return ERR_PTR(-ENOMEM);
88 	if (!(inode->i_state & I_NEW))
89 		return inode;
90 
91 	err = logfs_read_inode(inode);
92 	if (err || inode->i_nlink == 0) {
93 		/* inode->i_nlink == 0 can be true when called from
94 		 * block validator */
95 		/* set i_nlink to 0 to prevent caching */
96 		inode->i_nlink = 0;
97 		logfs_inode(inode)->li_flags |= LOGFS_IF_ZOMBIE;
98 		iget_failed(inode);
99 		if (!err)
100 			err = -ENOENT;
101 		return ERR_PTR(err);
102 	}
103 
104 	logfs_inode_setops(inode);
105 	unlock_new_inode(inode);
106 	return inode;
107 }
108 
logfs_iget(struct super_block * sb,ino_t ino)109 struct inode *logfs_iget(struct super_block *sb, ino_t ino)
110 {
111 	BUG_ON(ino == LOGFS_INO_MASTER);
112 	BUG_ON(ino == LOGFS_INO_SEGFILE);
113 	return __logfs_iget(sb, ino);
114 }
115 
116 /*
117  * is_cached is set to 1 if we hand out a cached inode, 0 otherwise.
118  * this allows logfs_iput to do the right thing later
119  */
logfs_safe_iget(struct super_block * sb,ino_t ino,int * is_cached)120 struct inode *logfs_safe_iget(struct super_block *sb, ino_t ino, int *is_cached)
121 {
122 	struct logfs_super *super = logfs_super(sb);
123 	struct logfs_inode *li;
124 
125 	if (ino == LOGFS_INO_MASTER)
126 		return super->s_master_inode;
127 	if (ino == LOGFS_INO_SEGFILE)
128 		return super->s_segfile_inode;
129 
130 	spin_lock(&logfs_inode_lock);
131 	list_for_each_entry(li, &super->s_freeing_list, li_freeing_list)
132 		if (li->vfs_inode.i_ino == ino) {
133 			li->li_refcount++;
134 			spin_unlock(&logfs_inode_lock);
135 			*is_cached = 1;
136 			return &li->vfs_inode;
137 		}
138 	spin_unlock(&logfs_inode_lock);
139 
140 	*is_cached = 0;
141 	return __logfs_iget(sb, ino);
142 }
143 
logfs_i_callback(struct rcu_head * head)144 static void logfs_i_callback(struct rcu_head *head)
145 {
146 	struct inode *inode = container_of(head, struct inode, i_rcu);
147 	INIT_LIST_HEAD(&inode->i_dentry);
148 	kmem_cache_free(logfs_inode_cache, logfs_inode(inode));
149 }
150 
__logfs_destroy_inode(struct inode * inode)151 static void __logfs_destroy_inode(struct inode *inode)
152 {
153 	struct logfs_inode *li = logfs_inode(inode);
154 
155 	BUG_ON(li->li_block);
156 	list_del(&li->li_freeing_list);
157 	call_rcu(&inode->i_rcu, logfs_i_callback);
158 }
159 
logfs_destroy_inode(struct inode * inode)160 static void logfs_destroy_inode(struct inode *inode)
161 {
162 	struct logfs_inode *li = logfs_inode(inode);
163 
164 	BUG_ON(list_empty(&li->li_freeing_list));
165 	spin_lock(&logfs_inode_lock);
166 	li->li_refcount--;
167 	if (li->li_refcount == 0)
168 		__logfs_destroy_inode(inode);
169 	spin_unlock(&logfs_inode_lock);
170 }
171 
logfs_safe_iput(struct inode * inode,int is_cached)172 void logfs_safe_iput(struct inode *inode, int is_cached)
173 {
174 	if (inode->i_ino == LOGFS_INO_MASTER)
175 		return;
176 	if (inode->i_ino == LOGFS_INO_SEGFILE)
177 		return;
178 
179 	if (is_cached) {
180 		logfs_destroy_inode(inode);
181 		return;
182 	}
183 
184 	iput(inode);
185 }
186 
logfs_init_inode(struct super_block * sb,struct inode * inode)187 static void logfs_init_inode(struct super_block *sb, struct inode *inode)
188 {
189 	struct logfs_inode *li = logfs_inode(inode);
190 	int i;
191 
192 	li->li_flags	= 0;
193 	li->li_height	= 0;
194 	li->li_used_bytes = 0;
195 	li->li_block	= NULL;
196 	inode->i_uid	= 0;
197 	inode->i_gid	= 0;
198 	inode->i_size	= 0;
199 	inode->i_blocks	= 0;
200 	inode->i_ctime	= CURRENT_TIME;
201 	inode->i_mtime	= CURRENT_TIME;
202 	inode->i_nlink	= 1;
203 	li->li_refcount = 1;
204 	INIT_LIST_HEAD(&li->li_freeing_list);
205 
206 	for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++)
207 		li->li_data[i] = 0;
208 
209 	return;
210 }
211 
logfs_alloc_inode(struct super_block * sb)212 static struct inode *logfs_alloc_inode(struct super_block *sb)
213 {
214 	struct logfs_inode *li;
215 
216 	li = kmem_cache_alloc(logfs_inode_cache, GFP_NOFS);
217 	if (!li)
218 		return NULL;
219 	logfs_init_inode(sb, &li->vfs_inode);
220 	return &li->vfs_inode;
221 }
222 
223 /*
224  * In logfs inodes are written to an inode file.  The inode file, like any
225  * other file, is managed with a inode.  The inode file's inode, aka master
226  * inode, requires special handling in several respects.  First, it cannot be
227  * written to the inode file, so it is stored in the journal instead.
228  *
229  * Secondly, this inode cannot be written back and destroyed before all other
230  * inodes have been written.  The ordering is important.  Linux' VFS is happily
231  * unaware of the ordering constraint and would ordinarily destroy the master
232  * inode at umount time while other inodes are still in use and dirty.  Not
233  * good.
234  *
235  * So logfs makes sure the master inode is not written until all other inodes
236  * have been destroyed.  Sadly, this method has another side-effect.  The VFS
237  * will notice one remaining inode and print a frightening warning message.
238  * Worse, it is impossible to judge whether such a warning was caused by the
239  * master inode or any other inodes have leaked as well.
240  *
241  * Our attempt of solving this is with logfs_new_meta_inode() below.  Its
242  * purpose is to create a new inode that will not trigger the warning if such
243  * an inode is still in use.  An ugly hack, no doubt.  Suggections for
244  * improvement are welcome.
245  *
246  * AV: that's what ->put_super() is for...
247  */
logfs_new_meta_inode(struct super_block * sb,u64 ino)248 struct inode *logfs_new_meta_inode(struct super_block *sb, u64 ino)
249 {
250 	struct inode *inode;
251 
252 	inode = new_inode(sb);
253 	if (!inode)
254 		return ERR_PTR(-ENOMEM);
255 
256 	inode->i_mode = S_IFREG;
257 	inode->i_ino = ino;
258 	inode->i_data.a_ops = &logfs_reg_aops;
259 	mapping_set_gfp_mask(&inode->i_data, GFP_NOFS);
260 
261 	return inode;
262 }
263 
logfs_read_meta_inode(struct super_block * sb,u64 ino)264 struct inode *logfs_read_meta_inode(struct super_block *sb, u64 ino)
265 {
266 	struct inode *inode;
267 	int err;
268 
269 	inode = logfs_new_meta_inode(sb, ino);
270 	if (IS_ERR(inode))
271 		return inode;
272 
273 	err = logfs_read_inode(inode);
274 	if (err) {
275 		iput(inode);
276 		return ERR_PTR(err);
277 	}
278 	logfs_inode_setops(inode);
279 	return inode;
280 }
281 
logfs_write_inode(struct inode * inode,struct writeback_control * wbc)282 static int logfs_write_inode(struct inode *inode, struct writeback_control *wbc)
283 {
284 	int ret;
285 	long flags = WF_LOCK;
286 
287 	/* Can only happen if creat() failed.  Safe to skip. */
288 	if (logfs_inode(inode)->li_flags & LOGFS_IF_STILLBORN)
289 		return 0;
290 
291 	ret = __logfs_write_inode(inode, flags);
292 	LOGFS_BUG_ON(ret, inode->i_sb);
293 	return ret;
294 }
295 
296 /* called with inode->i_lock held */
logfs_drop_inode(struct inode * inode)297 static int logfs_drop_inode(struct inode *inode)
298 {
299 	struct logfs_super *super = logfs_super(inode->i_sb);
300 	struct logfs_inode *li = logfs_inode(inode);
301 
302 	spin_lock(&logfs_inode_lock);
303 	list_move(&li->li_freeing_list, &super->s_freeing_list);
304 	spin_unlock(&logfs_inode_lock);
305 	return generic_drop_inode(inode);
306 }
307 
logfs_set_ino_generation(struct super_block * sb,struct inode * inode)308 static void logfs_set_ino_generation(struct super_block *sb,
309 		struct inode *inode)
310 {
311 	struct logfs_super *super = logfs_super(sb);
312 	u64 ino;
313 
314 	mutex_lock(&super->s_journal_mutex);
315 	ino = logfs_seek_hole(super->s_master_inode, super->s_last_ino + 1);
316 	super->s_last_ino = ino;
317 	super->s_inos_till_wrap--;
318 	if (super->s_inos_till_wrap < 0) {
319 		super->s_last_ino = LOGFS_RESERVED_INOS;
320 		super->s_generation++;
321 		super->s_inos_till_wrap = INOS_PER_WRAP;
322 	}
323 	inode->i_ino = ino;
324 	inode->i_generation = super->s_generation;
325 	mutex_unlock(&super->s_journal_mutex);
326 }
327 
logfs_new_inode(struct inode * dir,int mode)328 struct inode *logfs_new_inode(struct inode *dir, int mode)
329 {
330 	struct super_block *sb = dir->i_sb;
331 	struct inode *inode;
332 
333 	inode = new_inode(sb);
334 	if (!inode)
335 		return ERR_PTR(-ENOMEM);
336 
337 	logfs_init_inode(sb, inode);
338 
339 	/* inherit parent flags */
340 	logfs_inode(inode)->li_flags |=
341 		logfs_inode(dir)->li_flags & LOGFS_FL_INHERITED;
342 
343 	inode->i_mode = mode;
344 	logfs_set_ino_generation(sb, inode);
345 
346 	inode_init_owner(inode, dir, mode);
347 	logfs_inode_setops(inode);
348 	insert_inode_hash(inode);
349 
350 	return inode;
351 }
352 
logfs_init_once(void * _li)353 static void logfs_init_once(void *_li)
354 {
355 	struct logfs_inode *li = _li;
356 	int i;
357 
358 	li->li_flags = 0;
359 	li->li_used_bytes = 0;
360 	li->li_refcount = 1;
361 	for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++)
362 		li->li_data[i] = 0;
363 	inode_init_once(&li->vfs_inode);
364 }
365 
logfs_sync_fs(struct super_block * sb,int wait)366 static int logfs_sync_fs(struct super_block *sb, int wait)
367 {
368 	logfs_write_anchor(sb);
369 	return 0;
370 }
371 
logfs_put_super(struct super_block * sb)372 static void logfs_put_super(struct super_block *sb)
373 {
374 	struct logfs_super *super = logfs_super(sb);
375 	/* kill the meta-inodes */
376 	iput(super->s_master_inode);
377 	iput(super->s_segfile_inode);
378 	iput(super->s_mapping_inode);
379 }
380 
381 const struct super_operations logfs_super_operations = {
382 	.alloc_inode	= logfs_alloc_inode,
383 	.destroy_inode	= logfs_destroy_inode,
384 	.evict_inode	= logfs_evict_inode,
385 	.drop_inode	= logfs_drop_inode,
386 	.put_super	= logfs_put_super,
387 	.write_inode	= logfs_write_inode,
388 	.statfs		= logfs_statfs,
389 	.sync_fs	= logfs_sync_fs,
390 };
391 
logfs_init_inode_cache(void)392 int logfs_init_inode_cache(void)
393 {
394 	logfs_inode_cache = kmem_cache_create("logfs_inode_cache",
395 			sizeof(struct logfs_inode), 0, SLAB_RECLAIM_ACCOUNT,
396 			logfs_init_once);
397 	if (!logfs_inode_cache)
398 		return -ENOMEM;
399 	return 0;
400 }
401 
logfs_destroy_inode_cache(void)402 void logfs_destroy_inode_cache(void)
403 {
404 	kmem_cache_destroy(logfs_inode_cache);
405 }
406