1 /*
2  * linux/fs/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/sched.h>
27 #include <linux/fs.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/locks.h>
32 #include <linux/smp_lock.h>
33 #include <linux/sched.h>
34 #include <linux/init.h>
35 #include <linux/mm.h>
36 #include <asm/uaccess.h>
37 #include <linux/proc_fs.h>
38 
39 EXPORT_SYMBOL(journal_start);
40 EXPORT_SYMBOL(journal_try_start);
41 EXPORT_SYMBOL(journal_restart);
42 EXPORT_SYMBOL(journal_extend);
43 EXPORT_SYMBOL(journal_stop);
44 EXPORT_SYMBOL(journal_lock_updates);
45 EXPORT_SYMBOL(journal_unlock_updates);
46 EXPORT_SYMBOL(journal_get_write_access);
47 EXPORT_SYMBOL(journal_get_create_access);
48 EXPORT_SYMBOL(journal_get_undo_access);
49 EXPORT_SYMBOL(journal_dirty_data);
50 EXPORT_SYMBOL(journal_dirty_metadata);
51 #if 0
52 EXPORT_SYMBOL(journal_release_buffer);
53 #endif
54 EXPORT_SYMBOL(journal_forget);
55 #if 0
56 EXPORT_SYMBOL(journal_sync_buffer);
57 #endif
58 EXPORT_SYMBOL(journal_flush);
59 EXPORT_SYMBOL(journal_revoke);
60 EXPORT_SYMBOL(journal_callback_set);
61 
62 EXPORT_SYMBOL(journal_init_dev);
63 EXPORT_SYMBOL(journal_init_inode);
64 EXPORT_SYMBOL(journal_update_format);
65 EXPORT_SYMBOL(journal_check_used_features);
66 EXPORT_SYMBOL(journal_check_available_features);
67 EXPORT_SYMBOL(journal_set_features);
68 EXPORT_SYMBOL(journal_create);
69 EXPORT_SYMBOL(journal_load);
70 EXPORT_SYMBOL(journal_destroy);
71 EXPORT_SYMBOL(journal_recover);
72 EXPORT_SYMBOL(journal_update_superblock);
73 EXPORT_SYMBOL(journal_abort);
74 EXPORT_SYMBOL(journal_errno);
75 EXPORT_SYMBOL(journal_ack_err);
76 EXPORT_SYMBOL(journal_clear_err);
77 EXPORT_SYMBOL(log_wait_commit);
78 EXPORT_SYMBOL(log_start_commit);
79 EXPORT_SYMBOL(journal_wipe);
80 EXPORT_SYMBOL(journal_blocks_per_page);
81 EXPORT_SYMBOL(journal_flushpage);
82 EXPORT_SYMBOL(journal_try_to_free_buffers);
83 EXPORT_SYMBOL(journal_bmap);
84 EXPORT_SYMBOL(journal_force_commit);
85 
86 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
87 
88 /*
89  * journal_datalist_lock is used to protect data buffers:
90  *
91  *	bh->b_transaction
92  *	bh->b_tprev
93  *	bh->b_tnext
94  *
95  * journal_free_buffer() is called from journal_try_to_free_buffer(), and is
96  * async wrt everything else.
97  *
98  * It is also used for checkpoint data, also to protect against
99  * journal_try_to_free_buffer():
100  *
101  *	bh->b_cp_transaction
102  *	bh->b_cpnext
103  *	bh->b_cpprev
104  *	transaction->t_checkpoint_list
105  *	transaction->t_cpnext
106  *	transaction->t_cpprev
107  *	journal->j_checkpoint_transactions
108  *
109  * It is global at this time rather than per-journal because it's
110  * impossible for __journal_free_buffer to go from a buffer_head
111  * back to a journal_t unracily (well, not true.  Fix later)
112  *
113  *
114  * The `datalist' and `checkpoint list' functions are quite
115  * separate and we could use two spinlocks here.
116  *
117  * lru_list_lock nests inside journal_datalist_lock.
118  */
119 spinlock_t journal_datalist_lock = SPIN_LOCK_UNLOCKED;
120 
121 /*
122  * jh_splice_lock needs explantion.
123  *
124  * In a number of places we want to do things like:
125  *
126  *	if (buffer_jbd(bh) && bh2jh(bh)->foo)
127  *
128  * This is racy on SMP, because another CPU could remove the journal_head
129  * in the middle of this expression.  We need locking.
130  *
131  * But we can greatly optimise the locking cost by testing BH_JBD
132  * outside the lock.  So, effectively:
133  *
134  *	ret = 0;
135  *	if (buffer_jbd(bh)) {
136  *		spin_lock(&jh_splice_lock);
137  *		if (buffer_jbd(bh)) {	 (* Still there? *)
138  *			ret = bh2jh(bh)->foo;
139  *		}
140  *		spin_unlock(&jh_splice_lock);
141  *	}
142  *	return ret;
143  *
144  * Now, that protects us from races where another CPU can remove the
145  * journal_head.  But it doesn't defend us from the situation where another
146  * CPU can *add* a journal_head.  This is a correctness issue.  But it's not
147  * a problem because a) the calling code was *already* racy and b) it often
148  * can't happen at the call site and c) the places where we add journal_heads
149  * tend to be under external locking.
150  */
151 spinlock_t jh_splice_lock = SPIN_LOCK_UNLOCKED;
152 
153 /*
154  * List of all journals in the system.  Protected by the BKL.
155  */
156 static LIST_HEAD(all_journals);
157 
158 /*
159  * Helper function used to manage commit timeouts
160  */
161 
commit_timeout(unsigned long __data)162 static void commit_timeout(unsigned long __data)
163 {
164 	struct task_struct * p = (struct task_struct *) __data;
165 
166 	wake_up_process(p);
167 }
168 
169 /* Static check for data structure consistency.  There's no code
170  * invoked --- we'll just get a linker failure if things aren't right.
171  */
__journal_internal_check(void)172 void __journal_internal_check(void)
173 {
174 	extern void journal_bad_superblock_size(void);
175 	if (sizeof(struct journal_superblock_s) != 1024)
176 		journal_bad_superblock_size();
177 }
178 
179 /*
180  * kjournald: The main thread function used to manage a logging device
181  * journal.
182  *
183  * This kernel thread is responsible for two things:
184  *
185  * 1) COMMIT:  Every so often we need to commit the current state of the
186  *    filesystem to disk.  The journal thread is responsible for writing
187  *    all of the metadata buffers to disk.
188  *
189  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
190  *    of the data in that part of the log has been rewritten elsewhere on
191  *    the disk.  Flushing these old buffers to reclaim space in the log is
192  *    known as checkpointing, and this thread is responsible for that job.
193  */
194 
195 journal_t *current_journal;		// AKPM: debug
196 
kjournald(void * arg)197 int kjournald(void *arg)
198 {
199 	journal_t *journal = (journal_t *) arg;
200 	transaction_t *transaction;
201 	struct timer_list timer;
202 
203 	current_journal = journal;
204 
205 	lock_kernel();
206 	daemonize();
207 	reparent_to_init();
208 	spin_lock_irq(&current->sigmask_lock);
209 	sigfillset(&current->blocked);
210 	recalc_sigpending(current);
211 	spin_unlock_irq(&current->sigmask_lock);
212 
213 	sprintf(current->comm, "kjournald");
214 
215 	/* Set up an interval timer which can be used to trigger a
216            commit wakeup after the commit interval expires */
217 	init_timer(&timer);
218 	timer.data = (unsigned long) current;
219 	timer.function = commit_timeout;
220 	journal->j_commit_timer = &timer;
221 
222 	/* Record that the journal thread is running */
223 	journal->j_task = current;
224 	wake_up(&journal->j_wait_done_commit);
225 
226 	printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
227 			journal->j_commit_interval / HZ);
228 	list_add(&journal->j_all_journals, &all_journals);
229 
230 	/* And now, wait forever for commit wakeup events. */
231 	while (1) {
232 		if (journal->j_flags & JFS_UNMOUNT)
233 			break;
234 
235 		jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
236 			journal->j_commit_sequence, journal->j_commit_request);
237 
238 		if (journal->j_commit_sequence != journal->j_commit_request) {
239 			jbd_debug(1, "OK, requests differ\n");
240 			if (journal->j_commit_timer_active) {
241 				journal->j_commit_timer_active = 0;
242 				del_timer(journal->j_commit_timer);
243 			}
244 
245 			journal_commit_transaction(journal);
246 			continue;
247 		}
248 
249 		wake_up(&journal->j_wait_done_commit);
250 		interruptible_sleep_on(&journal->j_wait_commit);
251 
252 		jbd_debug(1, "kjournald wakes\n");
253 
254 		/* Were we woken up by a commit wakeup event? */
255 		if ((transaction = journal->j_running_transaction) != NULL &&
256 		    journal->j_commit_interval &&
257 		    time_after_eq(jiffies, transaction->t_expires)) {
258 			journal->j_commit_request = transaction->t_tid;
259 			jbd_debug(1, "woke because of timeout\n");
260 		}
261 	}
262 
263 	if (journal->j_commit_timer_active) {
264 		journal->j_commit_timer_active = 0;
265 		del_timer_sync(journal->j_commit_timer);
266 	}
267 
268 	list_del(&journal->j_all_journals);
269 
270 	journal->j_task = NULL;
271 	wake_up(&journal->j_wait_done_commit);
272 	unlock_kernel();
273 	jbd_debug(1, "Journal thread exiting.\n");
274 	return 0;
275 }
276 
journal_start_thread(journal_t * journal)277 static void journal_start_thread(journal_t *journal)
278 {
279 	kernel_thread(kjournald, (void *) journal,
280 		      CLONE_VM | CLONE_FS | CLONE_FILES);
281 	while (!journal->j_task)
282 		sleep_on(&journal->j_wait_done_commit);
283 }
284 
journal_kill_thread(journal_t * journal)285 static void journal_kill_thread(journal_t *journal)
286 {
287 	journal->j_flags |= JFS_UNMOUNT;
288 
289 	while (journal->j_task) {
290 		wake_up(&journal->j_wait_commit);
291 		sleep_on(&journal->j_wait_done_commit);
292 	}
293 }
294 
295 #if 0
296 
297 This is no longer needed - we do it in commit quite efficiently.
298 Note that if this function is resurrected, the loop needs to
299 be reorganised into the next_jh/last_jh algorithm.
300 
301 /*
302  * journal_clean_data_list: cleanup after data IO.
303  *
304  * Once the IO system has finished writing the buffers on the transaction's
305  * data list, we can remove those buffers from the list.  This function
306  * scans the list for such buffers and removes them cleanly.
307  *
308  * We assume that the journal is already locked.
309  * We are called with journal_datalist_lock held.
310  *
311  * AKPM: This function looks inefficient.  Approximately O(n^2)
312  * for potentially thousands of buffers.  It no longer shows on profiles
313  * because these buffers are mainly dropped in journal_commit_transaction().
314  */
315 
316 void __journal_clean_data_list(transaction_t *transaction)
317 {
318 	struct journal_head *jh, *next;
319 
320 	assert_spin_locked(&journal_datalist_lock);
321 
322 restart:
323 	jh = transaction->t_sync_datalist;
324 	if (!jh)
325 		goto out;
326 	do {
327 		next = jh->b_tnext;
328 		if (!buffer_locked(jh2bh(jh)) && !buffer_dirty(jh2bh(jh))) {
329 			struct buffer_head *bh = jh2bh(jh);
330 			BUFFER_TRACE(bh, "data writeout complete: unfile");
331 			__journal_unfile_buffer(jh);
332 			jh->b_transaction = NULL;
333 			__journal_remove_journal_head(bh);
334 			refile_buffer(bh);
335 			__brelse(bh);
336 			goto restart;
337 		}
338 		jh = next;
339 	} while (transaction->t_sync_datalist &&
340 			jh != transaction->t_sync_datalist);
341 out:
342 	return;
343 }
344 #endif
345 
346 /*
347  * journal_write_metadata_buffer: write a metadata buffer to the journal.
348  *
349  * Writes a metadata buffer to a given disk block.  The actual IO is not
350  * performed but a new buffer_head is constructed which labels the data
351  * to be written with the correct destination disk block.
352  *
353  * Any magic-number escaping which needs to be done will cause a
354  * copy-out here.  If the buffer happens to start with the
355  * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
356  * magic number is only written to the log for descripter blocks.  In
357  * this case, we copy the data and replace the first word with 0, and we
358  * return a result code which indicates that this buffer needs to be
359  * marked as an escaped buffer in the corresponding log descriptor
360  * block.  The missing word can then be restored when the block is read
361  * during recovery.
362  *
363  * If the source buffer has already been modified by a new transaction
364  * since we took the last commit snapshot, we use the frozen copy of
365  * that data for IO.  If we end up using the existing buffer_head's data
366  * for the write, then we *have* to lock the buffer to prevent anyone
367  * else from using and possibly modifying it while the IO is in
368  * progress.
369  *
370  * The function returns a pointer to the buffer_heads to be used for IO.
371  *
372  * We assume that the journal has already been locked in this function.
373  *
374  * Return value:
375  *  <0: Error
376  * >=0: Finished OK
377  *
378  * On success:
379  * Bit 0 set == escape performed on the data
380  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
381  */
382 
virt_to_offset(void * p)383 static inline unsigned long virt_to_offset(void *p)
384 {return ((unsigned long) p) & ~PAGE_MASK;}
385 
journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct journal_head ** jh_out,int blocknr)386 int journal_write_metadata_buffer(transaction_t *transaction,
387 				  struct journal_head  *jh_in,
388 				  struct journal_head **jh_out,
389 				  int blocknr)
390 {
391 	int need_copy_out = 0;
392 	int done_copy_out = 0;
393 	int do_escape = 0;
394 	char *mapped_data;
395 	struct buffer_head *new_bh;
396 	struct journal_head * new_jh;
397 	struct page *new_page;
398 	unsigned int new_offset;
399 
400 	/*
401 	 * The buffer really shouldn't be locked: only the current committing
402 	 * transaction is allowed to write it, so nobody else is allowed
403 	 * to do any IO.
404 	 *
405 	 * akpm: except if we're journalling data, and write() output is
406 	 * also part of a shared mapping, and another thread has
407 	 * decided to launch a writepage() against this buffer.
408 	 */
409 	J_ASSERT_JH(jh_in, buffer_jdirty(jh2bh(jh_in)));
410 
411 	/*
412 	 * If a new transaction has already done a buffer copy-out, then
413 	 * we use that version of the data for the commit.
414 	 */
415 
416 	if (jh_in->b_frozen_data) {
417 		done_copy_out = 1;
418 		new_page = virt_to_page(jh_in->b_frozen_data);
419 		new_offset = virt_to_offset(jh_in->b_frozen_data);
420 	} else {
421 		new_page = jh2bh(jh_in)->b_page;
422 		new_offset = virt_to_offset(jh2bh(jh_in)->b_data);
423 	}
424 
425 	mapped_data = ((char *) kmap(new_page)) + new_offset;
426 
427 	/*
428 	 * Check for escaping
429 	 */
430 	if (* ((unsigned int *) mapped_data) == htonl(JFS_MAGIC_NUMBER)) {
431 		need_copy_out = 1;
432 		do_escape = 1;
433 	}
434 
435 	/*
436 	 * Do we need to do a data copy?
437 	 */
438 
439 	if (need_copy_out && !done_copy_out) {
440 		char *tmp;
441 		tmp = jbd_rep_kmalloc(jh2bh(jh_in)->b_size, GFP_NOFS);
442 
443 		jh_in->b_frozen_data = tmp;
444 		memcpy (tmp, mapped_data, jh2bh(jh_in)->b_size);
445 
446 		/* If we get to this path, we'll always need the new
447 		   address kmapped so that we can clear the escaped
448 		   magic number below. */
449 		kunmap(new_page);
450 		new_page = virt_to_page(tmp);
451 		new_offset = virt_to_offset(tmp);
452 		mapped_data = ((char *) kmap(new_page)) + new_offset;
453 
454 		done_copy_out = 1;
455 	}
456 
457 	/*
458 	 * Right, time to make up the new buffer_head.
459 	 */
460 	do {
461 		new_bh = get_unused_buffer_head(0);
462 		if (!new_bh) {
463 			printk (KERN_NOTICE "%s: ENOMEM at "
464 				"get_unused_buffer_head, trying again.\n",
465 				__FUNCTION__);
466 			yield();
467 		}
468 	} while (!new_bh);
469 	/* keep subsequent assertions sane */
470 	new_bh->b_prev_free = 0;
471 	new_bh->b_next_free = 0;
472 	new_bh->b_state = 0;
473 	init_buffer(new_bh, NULL, NULL);
474 	atomic_set(&new_bh->b_count, 1);
475 	new_jh = journal_add_journal_head(new_bh);
476 
477 	set_bh_page(new_bh, new_page, new_offset);
478 
479 	new_jh->b_transaction = NULL;
480 	new_bh->b_size = jh2bh(jh_in)->b_size;
481 	new_bh->b_dev = transaction->t_journal->j_dev;
482 	new_bh->b_blocknr = blocknr;
483 	new_bh->b_state |= (1 << BH_Mapped) | (1 << BH_Dirty);
484 
485 	*jh_out = new_jh;
486 
487 	/*
488 	 * Did we need to do an escaping?  Now we've done all the
489 	 * copying, we can finally do so.
490 	 */
491 
492 	if (do_escape)
493 		* ((unsigned int *) mapped_data) = 0;
494 	kunmap(new_page);
495 
496 	/*
497 	 * The to-be-written buffer needs to get moved to the io queue,
498 	 * and the original buffer whose contents we are shadowing or
499 	 * copying is moved to the transaction's shadow queue.
500 	 */
501 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
502 	journal_file_buffer(jh_in, transaction, BJ_Shadow);
503 	JBUFFER_TRACE(new_jh, "file as BJ_IO");
504 	journal_file_buffer(new_jh, transaction, BJ_IO);
505 
506 	return do_escape | (done_copy_out << 1);
507 }
508 
509 /*
510  * Allocation code for the journal file.  Manage the space left in the
511  * journal, so that we can begin checkpointing when appropriate.
512  */
513 
514 /*
515  * log_space_left: Return the number of free blocks left in the journal.
516  *
517  * Called with the journal already locked.
518  */
519 
log_space_left(journal_t * journal)520 int log_space_left (journal_t *journal)
521 {
522 	int left = journal->j_free;
523 
524 	/* Be pessimistic here about the number of those free blocks
525 	 * which might be required for log descriptor control blocks. */
526 
527 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
528 
529 	left -= MIN_LOG_RESERVED_BLOCKS;
530 
531 	if (left <= 0)
532 		return 0;
533 	left -= (left >> 3);
534 	return left;
535 }
536 
537 /*
538  * This function must be non-allocating for PF_MEMALLOC tasks
539  */
log_start_commit(journal_t * journal,transaction_t * transaction)540 tid_t log_start_commit (journal_t *journal, transaction_t *transaction)
541 {
542 	tid_t target = journal->j_commit_request;
543 
544 	lock_kernel(); /* Protect journal->j_running_transaction */
545 
546 	/*
547 	 * A NULL transaction asks us to commit the currently running
548 	 * transaction, if there is one.
549 	 */
550 	if (transaction)
551 		target = transaction->t_tid;
552 	else {
553 		transaction = journal->j_running_transaction;
554 		if (!transaction)
555 			goto out;
556 		target = transaction->t_tid;
557 	}
558 
559 	/*
560 	 * Are we already doing a recent enough commit?
561 	 */
562 	if (tid_geq(journal->j_commit_request, target))
563 		goto out;
564 
565 	/*
566 	 * We want a new commit: OK, mark the request and wakup the
567 	 * commit thread.  We do _not_ do the commit ourselves.
568 	 */
569 
570 	journal->j_commit_request = target;
571 	jbd_debug(1, "JBD: requesting commit %d/%d\n",
572 		  journal->j_commit_request,
573 		  journal->j_commit_sequence);
574 	wake_up(&journal->j_wait_commit);
575 
576 out:
577 	unlock_kernel();
578 	return target;
579 }
580 
581 /*
582  * Wait for a specified commit to complete.
583  * The caller may not hold the journal lock.
584  */
log_wait_commit(journal_t * journal,tid_t tid)585 void log_wait_commit (journal_t *journal, tid_t tid)
586 {
587 	lock_kernel();
588 #ifdef CONFIG_JBD_DEBUG
589 	lock_journal(journal);
590 	if (!tid_geq(journal->j_commit_request, tid)) {
591 		printk(KERN_EMERG "%s: error: j_commit_request=%d, tid=%d\n",
592 			__FUNCTION__, journal->j_commit_request, tid);
593 	}
594 	unlock_journal(journal);
595 #endif
596 	while (tid_gt(tid, journal->j_commit_sequence)) {
597 		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
598 				  tid, journal->j_commit_sequence);
599 		wake_up(&journal->j_wait_commit);
600 		sleep_on(&journal->j_wait_done_commit);
601 	}
602 	unlock_kernel();
603 }
604 
605 /*
606  * Log buffer allocation routines:
607  */
608 
journal_next_log_block(journal_t * journal,unsigned long * retp)609 int journal_next_log_block(journal_t *journal, unsigned long *retp)
610 {
611 	unsigned long blocknr;
612 
613 	J_ASSERT(journal->j_free > 1);
614 
615 	blocknr = journal->j_head;
616 	journal->j_head++;
617 	journal->j_free--;
618 	if (journal->j_head == journal->j_last)
619 		journal->j_head = journal->j_first;
620 	return journal_bmap(journal, blocknr, retp);
621 }
622 
623 /*
624  * Conversion of logical to physical block numbers for the journal
625  *
626  * On external journals the journal blocks are identity-mapped, so
627  * this is a no-op.  If needed, we can use j_blk_offset - everything is
628  * ready.
629  */
journal_bmap(journal_t * journal,unsigned long blocknr,unsigned long * retp)630 int journal_bmap(journal_t *journal, unsigned long blocknr,
631 		 unsigned long *retp)
632 {
633 	int err = 0;
634 	unsigned long ret;
635 
636 	if (journal->j_inode) {
637 		ret = bmap(journal->j_inode, blocknr);
638 		if (ret)
639 			*retp = ret;
640 		else {
641 			printk (KERN_ALERT "%s: journal block not found "
642 				"at offset %lu on %s\n", __FUNCTION__,
643 				blocknr, bdevname(journal->j_dev));
644 			err = -EIO;
645 			__journal_abort_soft(journal, err);
646 		}
647 	} else {
648 		*retp = blocknr; /* +journal->j_blk_offset */
649 	}
650 	return err;
651 }
652 
653 /*
654  * We play buffer_head aliasing tricks to write data/metadata blocks to
655  * the journal without copying their contents, but for journal
656  * descriptor blocks we do need to generate bona fide buffers.
657  *
658  * We return a jh whose bh is locked and ready to be populated.
659  */
660 
journal_get_descriptor_buffer(journal_t * journal)661 struct journal_head * journal_get_descriptor_buffer(journal_t *journal)
662 {
663 	struct buffer_head *bh;
664 	unsigned long blocknr;
665 	int err;
666 
667 	err = journal_next_log_block(journal, &blocknr);
668 
669 	if (err)
670 		return NULL;
671 
672 	bh = getblk(journal->j_dev, blocknr, journal->j_blocksize);
673 	lock_buffer(bh);
674 	memset(bh->b_data, 0, journal->j_blocksize);
675 	BUFFER_TRACE(bh, "return this buffer");
676 	return journal_add_journal_head(bh);
677 }
678 
679 /*
680  * Management for journal control blocks: functions to create and
681  * destroy journal_t structures, and to initialise and read existing
682  * journal blocks from disk.  */
683 
684 /* First: create and setup a journal_t object in memory.  We initialise
685  * very few fields yet: that has to wait until we have created the
686  * journal structures from from scratch, or loaded them from disk. */
687 
journal_init_common(void)688 static journal_t * journal_init_common (void)
689 {
690 	journal_t *journal;
691 	int err;
692 
693 	MOD_INC_USE_COUNT;
694 
695 	journal = jbd_kmalloc(sizeof(*journal), GFP_KERNEL);
696 	if (!journal)
697 		goto fail;
698 	memset(journal, 0, sizeof(*journal));
699 
700 	init_waitqueue_head(&journal->j_wait_transaction_locked);
701 	init_waitqueue_head(&journal->j_wait_logspace);
702 	init_waitqueue_head(&journal->j_wait_done_commit);
703 	init_waitqueue_head(&journal->j_wait_checkpoint);
704 	init_waitqueue_head(&journal->j_wait_commit);
705 	init_waitqueue_head(&journal->j_wait_updates);
706 	init_MUTEX(&journal->j_barrier);
707 	init_MUTEX(&journal->j_checkpoint_sem);
708 	init_MUTEX(&journal->j_sem);
709 
710 	journal->j_commit_interval = get_buffer_flushtime();
711 
712 	/* The journal is marked for error until we succeed with recovery! */
713 	journal->j_flags = JFS_ABORT;
714 
715 	/* Set up a default-sized revoke table for the new mount. */
716 	err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
717 	if (err) {
718 		kfree(journal);
719 		goto fail;
720 	}
721 	return journal;
722 fail:
723 	MOD_DEC_USE_COUNT;
724 	return NULL;
725 }
726 
727 /* journal_init_dev and journal_init_inode:
728  *
729  * Create a journal structure assigned some fixed set of disk blocks to
730  * the journal.  We don't actually touch those disk blocks yet, but we
731  * need to set up all of the mapping information to tell the journaling
732  * system where the journal blocks are.
733  *
734  */
735 
736  /**
737   *  journal_t * journal_init_dev() - creates an initialises a journal structure
738   *  @kdev: Block device on which to create the journal
739   *  @fs_dev: Device which hold journalled filesystem for this journal.
740   *  @start: Block nr Start of journal.
741   *  @len:  Lenght of the journal in blocks.
742   *  @blocksize: blocksize of journalling device
743   *  @returns: a newly created journal_t *
744   *
745   *  journal_init_dev creates a journal which maps a fixed contiguous
746   *  range of blocks on an arbitrary block device.
747   *
748   */
journal_init_dev(kdev_t dev,kdev_t fs_dev,int start,int len,int blocksize)749 journal_t * journal_init_dev(kdev_t dev, kdev_t fs_dev,
750 			int start, int len, int blocksize)
751 {
752 	journal_t *journal = journal_init_common();
753 	struct buffer_head *bh;
754 
755 	if (!journal)
756 		return NULL;
757 
758 	journal->j_dev = dev;
759 	journal->j_fs_dev = fs_dev;
760 	journal->j_blk_offset = start;
761 	journal->j_maxlen = len;
762 	journal->j_blocksize = blocksize;
763 
764 	bh = getblk(journal->j_dev, start, journal->j_blocksize);
765 	J_ASSERT(bh != NULL);
766 	journal->j_sb_buffer = bh;
767 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
768 
769 	return journal;
770 }
771 
772 /**
773  *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
774  *  @inode: An inode to create the journal in
775  *
776  * journal_init_inode creates a journal which maps an on-disk inode as
777  * the journal.  The inode must exist already, must support bmap() and
778  * must have all data blocks preallocated.
779  */
journal_init_inode(struct inode * inode)780 journal_t * journal_init_inode (struct inode *inode)
781 {
782 	struct buffer_head *bh;
783 	journal_t *journal = journal_init_common();
784 	int err;
785 	unsigned long blocknr;
786 
787 	if (!journal)
788 		return NULL;
789 
790 	journal->j_dev = inode->i_dev;
791 	journal->j_fs_dev = inode->i_dev;
792 	journal->j_inode = inode;
793 	jbd_debug(1,
794 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
795 		  journal, bdevname(inode->i_dev), inode->i_ino,
796 		  (long long) inode->i_size,
797 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
798 
799 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
800 	journal->j_blocksize = inode->i_sb->s_blocksize;
801 
802 	err = journal_bmap(journal, 0, &blocknr);
803 	/* If that failed, give up */
804 	if (err) {
805 		printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
806 			__FUNCTION__);
807 		kfree(journal);
808 		return NULL;
809 	}
810 
811 	bh = getblk(journal->j_dev, blocknr, journal->j_blocksize);
812 	J_ASSERT(bh != NULL);
813 	journal->j_sb_buffer = bh;
814 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
815 
816 	return journal;
817 }
818 
819 /*
820  * If the journal init or create aborts, we need to mark the journal
821  * superblock as being NULL to prevent the journal destroy from writing
822  * back a bogus superblock.
823  */
journal_fail_superblock(journal_t * journal)824 static void journal_fail_superblock (journal_t *journal)
825 {
826 	struct buffer_head *bh = journal->j_sb_buffer;
827 	brelse(bh);
828 	journal->j_sb_buffer = NULL;
829 }
830 
831 /*
832  * Given a journal_t structure, initialise the various fields for
833  * startup of a new journaling session.  We use this both when creating
834  * a journal, and after recovering an old journal to reset it for
835  * subsequent use.
836  */
837 
journal_reset(journal_t * journal)838 static int journal_reset (journal_t *journal)
839 {
840 	journal_superblock_t *sb = journal->j_superblock;
841 	unsigned int first, last;
842 
843 	first = ntohl(sb->s_first);
844 	last = ntohl(sb->s_maxlen);
845 
846 	journal->j_first = first;
847 	journal->j_last = last;
848 
849 	journal->j_head = first;
850 	journal->j_tail = first;
851 	journal->j_free = last - first;
852 
853 	journal->j_tail_sequence = journal->j_transaction_sequence;
854 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
855 	journal->j_commit_request = journal->j_commit_sequence;
856 
857 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
858 
859 	/* Add the dynamic fields and write it to disk. */
860 	journal_update_superblock(journal, 1);
861 
862 	lock_journal(journal);
863 	journal_start_thread(journal);
864 	unlock_journal(journal);
865 
866 	return 0;
867 }
868 
869 /**
870  * int journal_create() - Initialise the new journal file
871  * @journal: Journal to create. This structure must have been initialised
872  *
873  * Given a journal_t structure which tells us which disk blocks we can
874  * use, create a new journal superblock and initialise all of the
875  * journal fields from scratch.
876  **/
journal_create(journal_t * journal)877 int journal_create(journal_t *journal)
878 {
879 	unsigned long blocknr;
880 	struct buffer_head *bh;
881 	journal_superblock_t *sb;
882 	int i, err;
883 
884 	if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
885 		printk (KERN_ERR "Journal length (%d blocks) too short.\n",
886 			journal->j_maxlen);
887 		journal_fail_superblock(journal);
888 		return -EINVAL;
889 	}
890 
891 	if (journal->j_inode == NULL) {
892 		/*
893 		 * We don't know what block to start at!
894 		 */
895 		printk(KERN_EMERG "%s: creation of journal on external "
896 			"device!\n", __FUNCTION__);
897 		BUG();
898 	}
899 
900 	/* Zero out the entire journal on disk.  We cannot afford to
901 	   have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
902 	jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
903 	for (i = 0; i < journal->j_maxlen; i++) {
904 		err = journal_bmap(journal, i, &blocknr);
905 		if (err)
906 			return err;
907 		bh = getblk(journal->j_dev, blocknr, journal->j_blocksize);
908 		wait_on_buffer(bh);
909 		memset (bh->b_data, 0, journal->j_blocksize);
910 		BUFFER_TRACE(bh, "marking dirty");
911 		mark_buffer_dirty(bh);
912 		BUFFER_TRACE(bh, "marking uptodate");
913 		mark_buffer_uptodate(bh, 1);
914 		__brelse(bh);
915 	}
916 
917 	fsync_no_super(journal->j_dev);
918 	jbd_debug(1, "JBD: journal cleared.\n");
919 
920 	/* OK, fill in the initial static fields in the new superblock */
921 	sb = journal->j_superblock;
922 
923 	sb->s_header.h_magic	 = htonl(JFS_MAGIC_NUMBER);
924 	sb->s_header.h_blocktype = htonl(JFS_SUPERBLOCK_V2);
925 
926 	sb->s_blocksize	= htonl(journal->j_blocksize);
927 	sb->s_maxlen	= htonl(journal->j_maxlen);
928 	sb->s_first	= htonl(1);
929 
930 	journal->j_transaction_sequence = 1;
931 
932 	journal->j_flags &= ~JFS_ABORT;
933 	journal->j_format_version = 2;
934 
935 	return journal_reset(journal);
936 }
937 
938 /**
939  * void journal_update_superblock() - Update journal sb on disk.
940  * @journal: The journal to update.
941  * @wait: Set to '0' if you don't want to wait for IO completion.
942  *
943  * Update a journal's dynamic superblock fields and write it to disk,
944  * optionally waiting for the IO to complete.
945  */
journal_update_superblock(journal_t * journal,int wait)946 void journal_update_superblock(journal_t *journal, int wait)
947 {
948 	journal_superblock_t *sb = journal->j_superblock;
949 	struct buffer_head *bh = journal->j_sb_buffer;
950 
951 	jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
952 		  journal->j_tail, journal->j_tail_sequence, journal->j_errno);
953 
954 	sb->s_sequence = htonl(journal->j_tail_sequence);
955 	sb->s_start    = htonl(journal->j_tail);
956 	sb->s_errno    = htonl(journal->j_errno);
957 
958 	BUFFER_TRACE(bh, "marking dirty");
959 	mark_buffer_dirty(bh);
960 	ll_rw_block(WRITE, 1, &bh);
961 	if (wait)
962 		wait_on_buffer(bh);
963 
964 	/* If we have just flushed the log (by marking s_start==0), then
965 	 * any future commit will have to be careful to update the
966 	 * superblock again to re-record the true start of the log. */
967 
968 	if (sb->s_start)
969 		journal->j_flags &= ~JFS_FLUSHED;
970 	else
971 		journal->j_flags |= JFS_FLUSHED;
972 }
973 
974 
975 /*
976  * Read the superblock for a given journal, performing initial
977  * validation of the format.
978  */
979 
journal_get_superblock(journal_t * journal)980 static int journal_get_superblock(journal_t *journal)
981 {
982 	struct buffer_head *bh;
983 	journal_superblock_t *sb;
984 	int err = -EIO;
985 
986 	bh = journal->j_sb_buffer;
987 
988 	J_ASSERT(bh != NULL);
989 	if (!buffer_uptodate(bh)) {
990 		ll_rw_block(READ, 1, &bh);
991 		wait_on_buffer(bh);
992 		if (!buffer_uptodate(bh)) {
993 			printk (KERN_ERR
994 				"JBD: IO error reading journal superblock\n");
995 			goto out;
996 		}
997 	}
998 
999 	sb = journal->j_superblock;
1000 
1001 	err = -EINVAL;
1002 
1003 	if (sb->s_header.h_magic != htonl(JFS_MAGIC_NUMBER) ||
1004 	    sb->s_blocksize != htonl(journal->j_blocksize)) {
1005 		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1006 		goto out;
1007 	}
1008 
1009 	switch(ntohl(sb->s_header.h_blocktype)) {
1010 	case JFS_SUPERBLOCK_V1:
1011 		journal->j_format_version = 1;
1012 		break;
1013 	case JFS_SUPERBLOCK_V2:
1014 		journal->j_format_version = 2;
1015 		break;
1016 	default:
1017 		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1018 		goto out;
1019 	}
1020 
1021 	if (ntohl(sb->s_maxlen) < journal->j_maxlen)
1022 		journal->j_maxlen = ntohl(sb->s_maxlen);
1023 	else if (ntohl(sb->s_maxlen) > journal->j_maxlen) {
1024 		printk (KERN_WARNING "JBD: journal file too short\n");
1025 		goto out;
1026 	}
1027 
1028 	return 0;
1029 
1030 out:
1031 	journal_fail_superblock(journal);
1032 	return err;
1033 }
1034 
1035 /*
1036  * Load the on-disk journal superblock and read the key fields into the
1037  * journal_t.
1038  */
1039 
load_superblock(journal_t * journal)1040 static int load_superblock(journal_t *journal)
1041 {
1042 	int err;
1043 	journal_superblock_t *sb;
1044 
1045 	err = journal_get_superblock(journal);
1046 	if (err)
1047 		return err;
1048 
1049 	sb = journal->j_superblock;
1050 
1051 	journal->j_tail_sequence = ntohl(sb->s_sequence);
1052 	journal->j_tail = ntohl(sb->s_start);
1053 	journal->j_first = ntohl(sb->s_first);
1054 	journal->j_last = ntohl(sb->s_maxlen);
1055 	journal->j_errno = ntohl(sb->s_errno);
1056 
1057 	return 0;
1058 }
1059 
1060 
1061 /**
1062  * int journal_load() - Read journal from disk.
1063  * @journal: Journal to act on.
1064  *
1065  * Given a journal_t structure which tells us which disk blocks contain
1066  * a journal, read the journal from disk to initialise the in-memory
1067  * structures.
1068  */
journal_load(journal_t * journal)1069 int journal_load(journal_t *journal)
1070 {
1071 	int err;
1072 
1073 	err = load_superblock(journal);
1074 	if (err)
1075 		return err;
1076 
1077 	/* If this is a V2 superblock, then we have to check the
1078 	 * features flags on it. */
1079 
1080 	if (journal->j_format_version >= 2) {
1081 		journal_superblock_t *sb = journal->j_superblock;
1082 
1083 		if ((sb->s_feature_ro_compat &
1084 		     ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1085 		    (sb->s_feature_incompat &
1086 		     ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1087 			printk (KERN_WARNING
1088 				"JBD: Unrecognised features on journal\n");
1089 			return -EINVAL;
1090 		}
1091 	}
1092 
1093 	/* Let the recovery code check whether it needs to recover any
1094 	 * data from the journal. */
1095 	if (journal_recover(journal))
1096 		goto recovery_error;
1097 
1098 	/* OK, we've finished with the dynamic journal bits:
1099 	 * reinitialise the dynamic contents of the superblock in memory
1100 	 * and reset them on disk. */
1101 	if (journal_reset(journal))
1102 		goto recovery_error;
1103 
1104 	journal->j_flags &= ~JFS_ABORT;
1105 	journal->j_flags |= JFS_LOADED;
1106 	return 0;
1107 
1108 recovery_error:
1109 	printk (KERN_WARNING "JBD: recovery failed\n");
1110 	return -EIO;
1111 }
1112 
1113 /**
1114  * void journal_destroy() - Release a journal_t structure.
1115  * @journal: Journal to act on.
1116 *
1117  * Release a journal_t structure once it is no longer in use by the
1118  * journaled object.
1119  */
journal_destroy(journal_t * journal)1120 void journal_destroy (journal_t *journal)
1121 {
1122 	/* Wait for the commit thread to wake up and die. */
1123 	journal_kill_thread(journal);
1124 
1125 	/* Force a final log commit */
1126 	if (journal->j_running_transaction)
1127 		journal_commit_transaction(journal);
1128 
1129 	/* Force any old transactions to disk */
1130 	lock_journal(journal);
1131 	while (journal->j_checkpoint_transactions != NULL)
1132 		log_do_checkpoint(journal, 1);
1133 
1134 	J_ASSERT(journal->j_running_transaction == NULL);
1135 	J_ASSERT(journal->j_committing_transaction == NULL);
1136 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1137 
1138 	/* We can now mark the journal as empty. */
1139 	journal->j_tail = 0;
1140 	journal->j_tail_sequence = ++journal->j_transaction_sequence;
1141 	if (journal->j_sb_buffer) {
1142 		journal_update_superblock(journal, 1);
1143 		brelse(journal->j_sb_buffer);
1144 	}
1145 
1146 	if (journal->j_inode)
1147 		iput(journal->j_inode);
1148 	if (journal->j_revoke)
1149 		journal_destroy_revoke(journal);
1150 
1151 	unlock_journal(journal);
1152 	kfree(journal);
1153 	MOD_DEC_USE_COUNT;
1154 }
1155 
1156 
1157 /**
1158  *int journal_check_used_features () - Check if features specified are used.
1159  *
1160  * Check whether the journal uses all of a given set of
1161  * features.  Return true (non-zero) if it does.
1162  **/
1163 
journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1164 int journal_check_used_features (journal_t *journal, unsigned long compat,
1165 				 unsigned long ro, unsigned long incompat)
1166 {
1167 	journal_superblock_t *sb;
1168 
1169 	if (!compat && !ro && !incompat)
1170 		return 1;
1171 	if (journal->j_format_version == 1)
1172 		return 0;
1173 
1174 	sb = journal->j_superblock;
1175 
1176 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1177 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1178 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1179 		return 1;
1180 
1181 	return 0;
1182 }
1183 
1184 /**
1185  * int journal_check_available_features() - Check feature set in journalling layer
1186  *
1187  * Check whether the journaling code supports the use of
1188  * all of a given set of features on this journal.  Return true
1189  * (non-zero) if it can. */
1190 
journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1191 int journal_check_available_features (journal_t *journal, unsigned long compat,
1192 				      unsigned long ro, unsigned long incompat)
1193 {
1194 	journal_superblock_t *sb;
1195 
1196 	if (!compat && !ro && !incompat)
1197 		return 1;
1198 
1199 	sb = journal->j_superblock;
1200 
1201 	/* We can support any known requested features iff the
1202 	 * superblock is in version 2.  Otherwise we fail to support any
1203 	 * extended sb features. */
1204 
1205 	if (journal->j_format_version != 2)
1206 		return 0;
1207 
1208 	if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1209 	    (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1210 	    (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1211 		return 1;
1212 
1213 	return 0;
1214 }
1215 
1216 /**
1217  * int journal_set_features () - Mark a given journal feature in the superblock
1218  *
1219  * Mark a given journal feature as present on the
1220  * superblock.  Returns true if the requested features could be set.
1221  *
1222  */
1223 
journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1224 int journal_set_features (journal_t *journal, unsigned long compat,
1225 			  unsigned long ro, unsigned long incompat)
1226 {
1227 	journal_superblock_t *sb;
1228 
1229 	if (journal_check_used_features(journal, compat, ro, incompat))
1230 		return 1;
1231 
1232 	if (!journal_check_available_features(journal, compat, ro, incompat))
1233 		return 0;
1234 
1235 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1236 		  compat, ro, incompat);
1237 
1238 	sb = journal->j_superblock;
1239 
1240 	sb->s_feature_compat    |= cpu_to_be32(compat);
1241 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1242 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1243 
1244 	return 1;
1245 }
1246 
1247 
1248 /**
1249  * int journal_update_format () - Update on-disk journal structure.
1250  *
1251  * Given an initialised but unloaded journal struct, poke about in the
1252  * on-disk structure to update it to the most recent supported version.
1253  */
journal_update_format(journal_t * journal)1254 int journal_update_format (journal_t *journal)
1255 {
1256 	journal_superblock_t *sb;
1257 	int err;
1258 
1259 	err = journal_get_superblock(journal);
1260 	if (err)
1261 		return err;
1262 
1263 	sb = journal->j_superblock;
1264 
1265 	switch (ntohl(sb->s_header.h_blocktype)) {
1266 	case JFS_SUPERBLOCK_V2:
1267 		return 0;
1268 	case JFS_SUPERBLOCK_V1:
1269 		return journal_convert_superblock_v1(journal, sb);
1270 	default:
1271 		break;
1272 	}
1273 	return -EINVAL;
1274 }
1275 
journal_convert_superblock_v1(journal_t * journal,journal_superblock_t * sb)1276 static int journal_convert_superblock_v1(journal_t *journal,
1277 					 journal_superblock_t *sb)
1278 {
1279 	int offset, blocksize;
1280 	struct buffer_head *bh;
1281 
1282 	printk(KERN_WARNING
1283 		"JBD: Converting superblock from version 1 to 2.\n");
1284 
1285 	/* Pre-initialise new fields to zero */
1286 	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1287 	blocksize = ntohl(sb->s_blocksize);
1288 	memset(&sb->s_feature_compat, 0, blocksize-offset);
1289 
1290 	sb->s_nr_users = cpu_to_be32(1);
1291 	sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1292 	journal->j_format_version = 2;
1293 
1294 	bh = journal->j_sb_buffer;
1295 	BUFFER_TRACE(bh, "marking dirty");
1296 	mark_buffer_dirty(bh);
1297 	ll_rw_block(WRITE, 1, &bh);
1298 	wait_on_buffer(bh);
1299 	return 0;
1300 }
1301 
1302 
1303 /**
1304  * int journal_flush () - Flush journal
1305  * @journal: Journal to act on.
1306  *
1307  * Flush all data for a given journal to disk and empty the journal.
1308  * Filesystems can use this when remounting readonly to ensure that
1309  * recovery does not need to happen on remount.
1310  */
1311 
journal_flush(journal_t * journal)1312 int journal_flush (journal_t *journal)
1313 {
1314 	int err = 0;
1315 	transaction_t *transaction = NULL;
1316 	unsigned long old_tail;
1317 
1318 	lock_kernel();
1319 
1320 	/* Force everything buffered to the log... */
1321 	if (journal->j_running_transaction) {
1322 		transaction = journal->j_running_transaction;
1323 		log_start_commit(journal, transaction);
1324 	} else if (journal->j_committing_transaction)
1325 		transaction = journal->j_committing_transaction;
1326 
1327 	/* Wait for the log commit to complete... */
1328 	if (transaction)
1329 		log_wait_commit(journal, transaction->t_tid);
1330 
1331 	/* ...and flush everything in the log out to disk. */
1332 	lock_journal(journal);
1333 	while (!err && journal->j_checkpoint_transactions != NULL)
1334 		err = log_do_checkpoint(journal, journal->j_maxlen);
1335 	cleanup_journal_tail(journal);
1336 
1337 	/* Finally, mark the journal as really needing no recovery.
1338 	 * This sets s_start==0 in the underlying superblock, which is
1339 	 * the magic code for a fully-recovered superblock.  Any future
1340 	 * commits of data to the journal will restore the current
1341 	 * s_start value. */
1342 	old_tail = journal->j_tail;
1343 	journal->j_tail = 0;
1344 	journal_update_superblock(journal, 1);
1345 	journal->j_tail = old_tail;
1346 
1347 	unlock_journal(journal);
1348 
1349 	J_ASSERT(!journal->j_running_transaction);
1350 	J_ASSERT(!journal->j_committing_transaction);
1351 	J_ASSERT(!journal->j_checkpoint_transactions);
1352 	J_ASSERT(journal->j_head == journal->j_tail);
1353 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1354 
1355 	unlock_kernel();
1356 
1357 	return err;
1358 }
1359 
1360 /**
1361  * int journal_wipe() - Wipe journal contents
1362  * @journal: Journal to act on.
1363  * @write: flag (see below)
1364  *
1365  * Wipe out all of the contents of a journal, safely.  This will produce
1366  * a warning if the journal contains any valid recovery information.
1367  * Must be called between journal_init_*() and journal_load().
1368  *
1369  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1370  * we merely suppress recovery.
1371  */
1372 
journal_wipe(journal_t * journal,int write)1373 int journal_wipe (journal_t *journal, int write)
1374 {
1375 	journal_superblock_t *sb;
1376 	int err = 0;
1377 
1378 	J_ASSERT (!(journal->j_flags & JFS_LOADED));
1379 
1380 	err = load_superblock(journal);
1381 	if (err)
1382 		return err;
1383 
1384 	sb = journal->j_superblock;
1385 
1386 	if (!journal->j_tail)
1387 		goto no_recovery;
1388 
1389 	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1390 		write ? "Clearing" : "Ignoring");
1391 
1392 	err = journal_skip_recovery(journal);
1393 	if (write)
1394 		journal_update_superblock(journal, 1);
1395 
1396  no_recovery:
1397 	return err;
1398 }
1399 
1400 /*
1401  * journal_dev_name: format a character string to describe on what
1402  * device this journal is present.
1403  */
1404 
journal_dev_name(journal_t * journal)1405 const char * journal_dev_name(journal_t *journal)
1406 {
1407 	kdev_t dev;
1408 
1409 	if (journal->j_inode)
1410 		dev = journal->j_inode->i_dev;
1411 	else
1412 		dev = journal->j_dev;
1413 
1414 	return bdevname(dev);
1415 }
1416 
1417 /*
1418  * Journal abort has very specific semantics, which we describe
1419  * for journal abort.
1420  *
1421  * Two internal function, which provide abort to te jbd layer
1422  * itself are here.
1423  */
1424 
1425 /* Quick version for internal journal use (doesn't lock the journal).
1426  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1427  * and don't attempt to make any other journal updates. */
__journal_abort_hard(journal_t * journal)1428 void __journal_abort_hard (journal_t *journal)
1429 {
1430 	transaction_t *transaction;
1431 
1432 	if (journal->j_flags & JFS_ABORT)
1433 		return;
1434 
1435 	printk (KERN_ERR "Aborting journal on device %s.\n",
1436 		journal_dev_name(journal));
1437 
1438 	journal->j_flags |= JFS_ABORT;
1439 	transaction = journal->j_running_transaction;
1440 	if (transaction)
1441 		log_start_commit(journal, transaction);
1442 }
1443 
1444 /* Soft abort: record the abort error status in the journal superblock,
1445  * but don't do any other IO. */
__journal_abort_soft(journal_t * journal,int errno)1446 void __journal_abort_soft (journal_t *journal, int errno)
1447 {
1448 	if (journal->j_flags & JFS_ABORT)
1449 		return;
1450 
1451 	if (!journal->j_errno)
1452 		journal->j_errno = errno;
1453 
1454 	__journal_abort_hard(journal);
1455 
1456 	if (errno)
1457 		journal_update_superblock(journal, 1);
1458 }
1459 
1460 /**
1461  * void journal_abort () - Shutdown the journal immediately.
1462  * @journal: the journal to shutdown.
1463  * @errno:   an error number to record in the journal indicating
1464  *           the reason for the shutdown.
1465  *
1466  * Perform a complete, immediate shutdown of the ENTIRE
1467  * journal (not of a single transaction).  This operation cannot be
1468  * undone without closing and reopening the journal.
1469  *
1470  * The journal_abort function is intended to support higher level error
1471  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1472  * mode.
1473  *
1474  * Journal abort has very specific semantics.  Any existing dirty,
1475  * unjournaled buffers in the main filesystem will still be written to
1476  * disk by bdflush, but the journaling mechanism will be suspended
1477  * immediately and no further transaction commits will be honoured.
1478  *
1479  * Any dirty, journaled buffers will be written back to disk without
1480  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1481  * filesystem, but we _do_ attempt to leave as much data as possible
1482  * behind for fsck to use for cleanup.
1483  *
1484  * Any attempt to get a new transaction handle on a journal which is in
1485  * ABORT state will just result in an -EROFS error return.  A
1486  * journal_stop on an existing handle will return -EIO if we have
1487  * entered abort state during the update.
1488  *
1489  * Recursive transactions are not disturbed by journal abort until the
1490  * final journal_stop, which will receive the -EIO error.
1491  *
1492  * Finally, the journal_abort call allows the caller to supply an errno
1493  * which will be recorded (if possible) in the journal superblock.  This
1494  * allows a client to record failure conditions in the middle of a
1495  * transaction without having to complete the transaction to record the
1496  * failure to disk.  ext3_error, for example, now uses this
1497  * functionality.
1498  *
1499  * Errors which originate from within the journaling layer will NOT
1500  * supply an errno; a null errno implies that absolutely no further
1501  * writes are done to the journal (unless there are any already in
1502  * progress).
1503  *
1504  */
1505 
journal_abort(journal_t * journal,int errno)1506 void journal_abort (journal_t *journal, int errno)
1507 {
1508 	lock_journal(journal);
1509 	__journal_abort_soft(journal, errno);
1510 	unlock_journal(journal);
1511 }
1512 
1513 /**
1514  * int journal_errno () - returns the journal's error state.
1515  * @journal: journal to examine.
1516  *
1517  * This is the errno numbet set with journal_abort(), the last
1518  * time the journal was mounted - if the journal was stopped
1519  * without calling abort this will be 0.
1520  *
1521  * If the journal has been aborted on this mount time -EROFS will
1522  * be returned.
1523  */
journal_errno(journal_t * journal)1524 int journal_errno (journal_t *journal)
1525 {
1526 	int err;
1527 
1528 	lock_journal(journal);
1529 	if (journal->j_flags & JFS_ABORT)
1530 		err = -EROFS;
1531 	else
1532 		err = journal->j_errno;
1533 	unlock_journal(journal);
1534 	return err;
1535 }
1536 
1537 
1538 
1539 /**
1540  * int journal_clear_err () - clears the journal's error state
1541  *
1542  * An error must be cleared or Acked to take a FS out of readonly
1543  * mode.
1544  */
journal_clear_err(journal_t * journal)1545 int journal_clear_err (journal_t *journal)
1546 {
1547 	int err = 0;
1548 
1549 	lock_journal(journal);
1550 	if (journal->j_flags & JFS_ABORT)
1551 		err = -EROFS;
1552 	else
1553 		journal->j_errno = 0;
1554 	unlock_journal(journal);
1555 	return err;
1556 }
1557 
1558 
1559 /**
1560  * void journal_ack_err() - Ack journal err.
1561  *
1562  * An error must be cleared or Acked to take a FS out of readonly
1563  * mode.
1564  */
journal_ack_err(journal_t * journal)1565 void journal_ack_err (journal_t *journal)
1566 {
1567 	lock_journal(journal);
1568 	if (journal->j_errno)
1569 		journal->j_flags |= JFS_ACK_ERR;
1570 	unlock_journal(journal);
1571 }
1572 
1573 
1574 /*
1575  * Report any unexpected dirty buffers which turn up.  Normally those
1576  * indicate an error, but they can occur if the user is running (say)
1577  * tune2fs to modify the live filesystem, so we need the option of
1578  * continuing as gracefully as possible.  #
1579  *
1580  * The caller should already hold the journal lock and
1581  * journal_datalist_lock spinlock: most callers will need those anyway
1582  * in order to probe the buffer's journaling state safely.
1583  */
__jbd_unexpected_dirty_buffer(const char * function,int line,struct journal_head * jh)1584 void __jbd_unexpected_dirty_buffer(const char *function, int line,
1585 				 struct journal_head *jh)
1586 {
1587 	struct buffer_head *bh = jh2bh(jh);
1588 	int jlist;
1589 
1590 	if (buffer_dirty(bh)) {
1591 		printk ("%sUnexpected dirty buffer encountered at "
1592 			"%s:%d (%s blocknr %lu)\n",
1593 			KERN_WARNING, function, line,
1594 			kdevname(bh->b_dev), bh->b_blocknr);
1595 #ifdef JBD_PARANOID_WRITES
1596 		J_ASSERT_BH (bh, !buffer_dirty(bh));
1597 #endif
1598 
1599 		/* If this buffer is one which might reasonably be dirty
1600 		 * --- ie. data, or not part of this journal --- then
1601 		 * we're OK to leave it alone, but otherwise we need to
1602 		 * move the dirty bit to the journal's own internal
1603 		 * JBDDirty bit. */
1604 		jlist = jh->b_jlist;
1605 
1606 		if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1607 		    jlist == BJ_Shadow || jlist == BJ_Forget) {
1608 			if (atomic_set_buffer_clean(jh2bh(jh))) {
1609 				set_bit(BH_JBDDirty, &jh2bh(jh)->b_state);
1610 			}
1611 		}
1612 	}
1613 }
1614 
1615 
journal_blocks_per_page(struct inode * inode)1616 int journal_blocks_per_page(struct inode *inode)
1617 {
1618 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1619 }
1620 
1621 /*
1622  * shrink_journal_memory().
1623  * Called when we're under memory pressure.  Free up all the written-back
1624  * checkpointed metadata buffers.
1625  */
shrink_journal_memory(void)1626 void shrink_journal_memory(void)
1627 {
1628 	struct list_head *list;
1629 
1630 	lock_kernel();
1631 	list_for_each(list, &all_journals) {
1632 		journal_t *journal =
1633 			list_entry(list, journal_t, j_all_journals);
1634 		spin_lock(&journal_datalist_lock);
1635 		__journal_clean_checkpoint_list(journal);
1636 		spin_unlock(&journal_datalist_lock);
1637 	}
1638 	unlock_kernel();
1639 }
1640 
1641 /*
1642  * Simple support for retying memory allocations.  Introduced to help to
1643  * debug different VM deadlock avoidance strategies.
1644  */
1645 /*
1646  * Simple support for retying memory allocations.  Introduced to help to
1647  * debug different VM deadlock avoidance strategies.
1648  */
__jbd_kmalloc(const char * where,size_t size,int flags,int retry)1649 void * __jbd_kmalloc (const char *where, size_t size, int flags, int retry)
1650 {
1651 	void *p;
1652 	static unsigned long last_warning;
1653 
1654 	while (1) {
1655 		p = kmalloc(size, flags);
1656 		if (p)
1657 			return p;
1658 		if (!retry)
1659 			return NULL;
1660 		/* Log every retry for debugging.  Also log them to the
1661 		 * syslog, but do rate-limiting on the non-debugging
1662 		 * messages. */
1663 		jbd_debug(1, "ENOMEM in %s, retrying.\n", where);
1664 
1665 		if (time_after(jiffies, last_warning + 120*HZ)) {
1666 			printk(KERN_NOTICE
1667 			       "ENOMEM in %s, retrying.\n", where);
1668 			last_warning = jiffies;
1669 		}
1670 
1671 		yield();
1672 	}
1673 }
1674 
1675 /*
1676  * Journal_head storage management
1677  */
1678 static kmem_cache_t *journal_head_cache;
1679 #ifdef CONFIG_JBD_DEBUG
1680 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1681 #endif
1682 
journal_init_journal_head_cache(void)1683 static int journal_init_journal_head_cache(void)
1684 {
1685 	int retval;
1686 
1687 	J_ASSERT(journal_head_cache == 0);
1688 	journal_head_cache = kmem_cache_create("journal_head",
1689 				sizeof(struct journal_head),
1690 				0,		/* offset */
1691 				0,		/* flags */
1692 				NULL,		/* ctor */
1693 				NULL);		/* dtor */
1694 	retval = 0;
1695 	if (journal_head_cache == 0) {
1696 		retval = -ENOMEM;
1697 		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1698 	}
1699 	return retval;
1700 }
1701 
journal_destroy_journal_head_cache(void)1702 static void journal_destroy_journal_head_cache(void)
1703 {
1704 	J_ASSERT(journal_head_cache != NULL);
1705 	kmem_cache_destroy(journal_head_cache);
1706 	journal_head_cache = 0;
1707 }
1708 
1709 /*
1710  * journal_head splicing and dicing
1711  */
journal_alloc_journal_head(void)1712 static struct journal_head *journal_alloc_journal_head(void)
1713 {
1714 	struct journal_head *ret;
1715 	static unsigned long last_warning;
1716 
1717 #ifdef CONFIG_JBD_DEBUG
1718 	atomic_inc(&nr_journal_heads);
1719 #endif
1720 	ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1721 	if (ret == 0) {
1722 		jbd_debug(1, "out of memory for journal_head\n");
1723 		if (time_after(jiffies, last_warning + 5*HZ)) {
1724 			printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1725 				__FUNCTION__);
1726 			last_warning = jiffies;
1727 		}
1728 		while (ret == 0) {
1729 			yield();
1730 			ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1731 		}
1732 	}
1733 	return ret;
1734 }
1735 
journal_free_journal_head(struct journal_head * jh)1736 static void journal_free_journal_head(struct journal_head *jh)
1737 {
1738 #ifdef CONFIG_JBD_DEBUG
1739 	atomic_dec(&nr_journal_heads);
1740 	memset(jh, 0x5b, sizeof(*jh));
1741 #endif
1742 	kmem_cache_free(journal_head_cache, jh);
1743 }
1744 
1745 /*
1746  * A journal_head is attached to a buffer_head whenever JBD has an
1747  * interest in the buffer.
1748  *
1749  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1750  * is set.  This bit is tested in core kernel code where we need to take
1751  * JBD-specific actions.  Testing the zeroness of ->b_journal_head is not
1752  * reliable there.
1753  *
1754  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1755  *
1756  * When a buffer has its BH_JBD bit set it is immune from being released by
1757  * core kernel code, mainly via ->b_count.
1758  *
1759  * A journal_head may be detached from its buffer_head when the journal_head's
1760  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1761  * Various places in JBD call journal_remove_journal_head() to indicate that the
1762  * journal_head can be dropped if needed.
1763  *
1764  * Various places in the kernel want to attach a journal_head to a buffer_head
1765  * _before_ attaching the journal_head to a transaction.  To protect the
1766  * journal_head in this situation, journal_add_journal_head elevates the
1767  * journal_head's b_jcount refcount by one.  The caller must call
1768  * journal_unlock_journal_head() to undo this.
1769  *
1770  * So the typical usage would be:
1771  *
1772  *	(Attach a journal_head if needed.  Increments b_jcount)
1773  *	struct journal_head *jh = journal_add_journal_head(bh);
1774  *	...
1775  *	jh->b_transaction = xxx;
1776  *	journal_unlock_journal_head(jh);
1777  *
1778  * Now, the journal_head's b_jcount is zero, but it is safe from being released
1779  * because it has a non-zero b_transaction.
1780  */
1781 
1782 /*
1783  * Give a buffer_head a journal_head.
1784  *
1785  * Doesn't need the journal lock.
1786  * May sleep.
1787  * Cannot be called with journal_datalist_lock held.
1788  */
journal_add_journal_head(struct buffer_head * bh)1789 struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1790 {
1791 	struct journal_head *jh;
1792 
1793 	spin_lock(&journal_datalist_lock);
1794 	if (buffer_jbd(bh)) {
1795 		jh = bh2jh(bh);
1796 	} else {
1797 		J_ASSERT_BH(bh,
1798 			(atomic_read(&bh->b_count) > 0) ||
1799 			(bh->b_page && bh->b_page->mapping));
1800 		spin_unlock(&journal_datalist_lock);
1801 		jh = journal_alloc_journal_head();
1802 		memset(jh, 0, sizeof(*jh));
1803 		spin_lock(&journal_datalist_lock);
1804 
1805 		if (buffer_jbd(bh)) {
1806 			/* Someone did it for us! */
1807 			J_ASSERT_BH(bh, bh->b_private != NULL);
1808 			journal_free_journal_head(jh);
1809 			jh = bh->b_private;
1810 		} else {
1811 			/*
1812 			 * We actually don't need jh_splice_lock when
1813 			 * adding a journal_head - only on removal.
1814 			 */
1815 			spin_lock(&jh_splice_lock);
1816 			set_bit(BH_JBD, &bh->b_state);
1817 			bh->b_private = jh;
1818 			jh->b_bh = bh;
1819 			atomic_inc(&bh->b_count);
1820 			spin_unlock(&jh_splice_lock);
1821 			BUFFER_TRACE(bh, "added journal_head");
1822 		}
1823 	}
1824 	jh->b_jcount++;
1825 	spin_unlock(&journal_datalist_lock);
1826 	return bh->b_private;
1827 }
1828 
1829 /*
1830  * journal_remove_journal_head(): if the buffer isn't attached to a transaction
1831  * and has a zero b_jcount then remove and release its journal_head.   If we did
1832  * see that the buffer is not used by any transaction we also "logically"
1833  * decrement ->b_count.
1834  *
1835  * We in fact take an additional increment on ->b_count as a convenience,
1836  * because the caller usually wants to do additional things with the bh
1837  * after calling here.
1838  * The caller of journal_remove_journal_head() *must* run __brelse(bh) at some
1839  * time.  Once the caller has run __brelse(), the buffer is eligible for
1840  * reaping by try_to_free_buffers().
1841  *
1842  * Requires journal_datalist_lock.
1843  */
__journal_remove_journal_head(struct buffer_head * bh)1844 void __journal_remove_journal_head(struct buffer_head *bh)
1845 {
1846 	struct journal_head *jh = bh2jh(bh);
1847 
1848 	assert_spin_locked(&journal_datalist_lock);
1849 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
1850 	atomic_inc(&bh->b_count);
1851 	if (jh->b_jcount == 0) {
1852 		if (jh->b_transaction == NULL &&
1853 				jh->b_next_transaction == NULL &&
1854 				jh->b_cp_transaction == NULL) {
1855 			J_ASSERT_BH(bh, buffer_jbd(bh));
1856 			J_ASSERT_BH(bh, jh2bh(jh) == bh);
1857 			BUFFER_TRACE(bh, "remove journal_head");
1858 			spin_lock(&jh_splice_lock);
1859 			bh->b_private = NULL;
1860 			jh->b_bh = NULL;	/* debug, really */
1861 			clear_bit(BH_JBD, &bh->b_state);
1862 			__brelse(bh);
1863 			spin_unlock(&jh_splice_lock);
1864 			journal_free_journal_head(jh);
1865 		} else {
1866 			BUFFER_TRACE(bh, "journal_head was locked");
1867 		}
1868 	}
1869 }
1870 
journal_unlock_journal_head(struct journal_head * jh)1871 void journal_unlock_journal_head(struct journal_head *jh)
1872 {
1873 	spin_lock(&journal_datalist_lock);
1874 	J_ASSERT_JH(jh, jh->b_jcount > 0);
1875 	--jh->b_jcount;
1876 	if (!jh->b_jcount && !jh->b_transaction) {
1877 		struct buffer_head *bh;
1878 		bh = jh2bh(jh);
1879 		__journal_remove_journal_head(bh);
1880 		__brelse(bh);
1881 	}
1882 
1883 	spin_unlock(&journal_datalist_lock);
1884 }
1885 
journal_remove_journal_head(struct buffer_head * bh)1886 void journal_remove_journal_head(struct buffer_head *bh)
1887 {
1888 	spin_lock(&journal_datalist_lock);
1889 	__journal_remove_journal_head(bh);
1890 	spin_unlock(&journal_datalist_lock);
1891 }
1892 
1893 /*
1894  * /proc tunables
1895  */
1896 #if defined(CONFIG_JBD_DEBUG)
1897 int journal_enable_debug;
1898 EXPORT_SYMBOL(journal_enable_debug);
1899 #endif
1900 
1901 #if defined(CONFIG_JBD_DEBUG) && defined(CONFIG_PROC_FS)
1902 
1903 static struct proc_dir_entry *proc_jbd_debug;
1904 
read_jbd_debug(char * page,char ** start,off_t off,int count,int * eof,void * data)1905 int read_jbd_debug(char *page, char **start, off_t off,
1906 			  int count, int *eof, void *data)
1907 {
1908 	int ret;
1909 
1910 	ret = sprintf(page + off, "%d\n", journal_enable_debug);
1911 	*eof = 1;
1912 	return ret;
1913 }
1914 
write_jbd_debug(struct file * file,const char * buffer,unsigned long count,void * data)1915 int write_jbd_debug(struct file *file, const char *buffer,
1916 			   unsigned long count, void *data)
1917 {
1918 	char buf[32];
1919 
1920 	if (count > ARRAY_SIZE(buf) - 1)
1921 		count = ARRAY_SIZE(buf) - 1;
1922 	if (copy_from_user(buf, buffer, count))
1923 		return -EFAULT;
1924 	buf[ARRAY_SIZE(buf) - 1] = '\0';
1925 	journal_enable_debug = simple_strtoul(buf, NULL, 10);
1926 	return count;
1927 }
1928 
1929 #define JBD_PROC_NAME "sys/fs/jbd-debug"
1930 
create_jbd_proc_entry(void)1931 static void __init create_jbd_proc_entry(void)
1932 {
1933 	proc_jbd_debug = create_proc_entry(JBD_PROC_NAME, 0644, NULL);
1934 	if (proc_jbd_debug) {
1935 		/* Why is this so hard? */
1936 		proc_jbd_debug->read_proc = read_jbd_debug;
1937 		proc_jbd_debug->write_proc = write_jbd_debug;
1938 	}
1939 }
1940 
remove_jbd_proc_entry(void)1941 static void __exit remove_jbd_proc_entry(void)
1942 {
1943 	if (proc_jbd_debug)
1944 		remove_proc_entry(JBD_PROC_NAME, NULL);
1945 }
1946 
1947 #else
1948 
1949 #define create_jbd_proc_entry() do {} while (0)
1950 #define remove_jbd_proc_entry() do {} while (0)
1951 
1952 #endif
1953 
1954 /*
1955  * Module startup and shutdown
1956  */
1957 
journal_init_caches(void)1958 static int __init journal_init_caches(void)
1959 {
1960 	int ret;
1961 
1962 	ret = journal_init_revoke_caches();
1963 	if (ret == 0)
1964 		ret = journal_init_journal_head_cache();
1965 	return ret;
1966 }
1967 
journal_destroy_caches(void)1968 static void journal_destroy_caches(void)
1969 {
1970 	journal_destroy_revoke_caches();
1971 	journal_destroy_journal_head_cache();
1972 }
1973 
journal_init(void)1974 static int __init journal_init(void)
1975 {
1976 	int ret;
1977 
1978 	printk(KERN_INFO "Journalled Block Device driver loaded\n");
1979 	ret = journal_init_caches();
1980 	if (ret != 0)
1981 		journal_destroy_caches();
1982 	create_jbd_proc_entry();
1983 	return ret;
1984 }
1985 
journal_exit(void)1986 static void __exit journal_exit(void)
1987 {
1988 #ifdef CONFIG_JBD_DEBUG
1989 	int n = atomic_read(&nr_journal_heads);
1990 	if (n)
1991 		printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
1992 #endif
1993 	remove_jbd_proc_entry();
1994 	journal_destroy_caches();
1995 }
1996 
1997 MODULE_LICENSE("GPL");
1998 module_init(journal_init);
1999 module_exit(journal_exit);
2000 
2001