1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28 
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31 
32 struct pagevec;
33 
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition)					\
38 	do {								\
39 		if (WARN_ON(condition))					\
40 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41 	} while (0)
42 #endif
43 
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_KVMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_PAGE_GET,
49 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
50 	FAULT_ALLOC_NID,
51 	FAULT_ORPHAN,
52 	FAULT_BLOCK,
53 	FAULT_DIR_DEPTH,
54 	FAULT_EVICT_INODE,
55 	FAULT_TRUNCATE,
56 	FAULT_READ_IO,
57 	FAULT_CHECKPOINT,
58 	FAULT_DISCARD,
59 	FAULT_WRITE_IO,
60 	FAULT_SLAB_ALLOC,
61 	FAULT_DQUOT_INIT,
62 	FAULT_LOCK_OP,
63 	FAULT_MAX,
64 };
65 
66 #ifdef CONFIG_F2FS_FAULT_INJECTION
67 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
68 
69 struct f2fs_fault_info {
70 	atomic_t inject_ops;
71 	unsigned int inject_rate;
72 	unsigned int inject_type;
73 };
74 
75 extern const char *f2fs_fault_name[FAULT_MAX];
76 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
77 #endif
78 
79 /*
80  * For mount options
81  */
82 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
83 #define F2FS_MOUNT_DISCARD		0x00000004
84 #define F2FS_MOUNT_NOHEAP		0x00000008
85 #define F2FS_MOUNT_XATTR_USER		0x00000010
86 #define F2FS_MOUNT_POSIX_ACL		0x00000020
87 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
88 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
89 #define F2FS_MOUNT_INLINE_DATA		0x00000100
90 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
91 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
92 #define F2FS_MOUNT_NOBARRIER		0x00000800
93 #define F2FS_MOUNT_FASTBOOT		0x00001000
94 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
95 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
96 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
97 #define F2FS_MOUNT_USRQUOTA		0x00080000
98 #define F2FS_MOUNT_GRPQUOTA		0x00100000
99 #define F2FS_MOUNT_PRJQUOTA		0x00200000
100 #define F2FS_MOUNT_QUOTA		0x00400000
101 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
102 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
103 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
104 #define F2FS_MOUNT_NORECOVERY		0x04000000
105 #define F2FS_MOUNT_ATGC			0x08000000
106 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
107 #define	F2FS_MOUNT_GC_MERGE		0x20000000
108 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
109 
110 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
111 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
112 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
113 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
114 
115 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
116 		typecheck(unsigned long long, b) &&			\
117 		((long long)((a) - (b)) > 0))
118 
119 typedef u32 block_t;	/*
120 			 * should not change u32, since it is the on-disk block
121 			 * address format, __le32.
122 			 */
123 typedef u32 nid_t;
124 
125 #define COMPRESS_EXT_NUM		16
126 
127 /*
128  * An implementation of an rwsem that is explicitly unfair to readers. This
129  * prevents priority inversion when a low-priority reader acquires the read lock
130  * while sleeping on the write lock but the write lock is needed by
131  * higher-priority clients.
132  */
133 
134 struct f2fs_rwsem {
135         struct rw_semaphore internal_rwsem;
136 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
137         wait_queue_head_t read_waiters;
138 #endif
139 };
140 
141 struct f2fs_mount_info {
142 	unsigned int opt;
143 	int write_io_size_bits;		/* Write IO size bits */
144 	block_t root_reserved_blocks;	/* root reserved blocks */
145 	kuid_t s_resuid;		/* reserved blocks for uid */
146 	kgid_t s_resgid;		/* reserved blocks for gid */
147 	int active_logs;		/* # of active logs */
148 	int inline_xattr_size;		/* inline xattr size */
149 #ifdef CONFIG_F2FS_FAULT_INJECTION
150 	struct f2fs_fault_info fault_info;	/* For fault injection */
151 #endif
152 #ifdef CONFIG_QUOTA
153 	/* Names of quota files with journalled quota */
154 	char *s_qf_names[MAXQUOTAS];
155 	int s_jquota_fmt;			/* Format of quota to use */
156 #endif
157 	/* For which write hints are passed down to block layer */
158 	int alloc_mode;			/* segment allocation policy */
159 	int fsync_mode;			/* fsync policy */
160 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
161 	int bggc_mode;			/* bggc mode: off, on or sync */
162 	int memory_mode;		/* memory mode */
163 	int discard_unit;		/*
164 					 * discard command's offset/size should
165 					 * be aligned to this unit: block,
166 					 * segment or section
167 					 */
168 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
169 	block_t unusable_cap_perc;	/* percentage for cap */
170 	block_t unusable_cap;		/* Amount of space allowed to be
171 					 * unusable when disabling checkpoint
172 					 */
173 
174 	/* For compression */
175 	unsigned char compress_algorithm;	/* algorithm type */
176 	unsigned char compress_log_size;	/* cluster log size */
177 	unsigned char compress_level;		/* compress level */
178 	bool compress_chksum;			/* compressed data chksum */
179 	unsigned char compress_ext_cnt;		/* extension count */
180 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
181 	int compress_mode;			/* compression mode */
182 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
183 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
184 };
185 
186 #define F2FS_FEATURE_ENCRYPT		0x0001
187 #define F2FS_FEATURE_BLKZONED		0x0002
188 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
189 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
190 #define F2FS_FEATURE_PRJQUOTA		0x0010
191 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
192 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
193 #define F2FS_FEATURE_QUOTA_INO		0x0080
194 #define F2FS_FEATURE_INODE_CRTIME	0x0100
195 #define F2FS_FEATURE_LOST_FOUND		0x0200
196 #define F2FS_FEATURE_VERITY		0x0400
197 #define F2FS_FEATURE_SB_CHKSUM		0x0800
198 #define F2FS_FEATURE_CASEFOLD		0x1000
199 #define F2FS_FEATURE_COMPRESSION	0x2000
200 #define F2FS_FEATURE_RO			0x4000
201 
202 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
203 	((raw_super->feature & cpu_to_le32(mask)) != 0)
204 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
205 #define F2FS_SET_FEATURE(sbi, mask)					\
206 	(sbi->raw_super->feature |= cpu_to_le32(mask))
207 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
208 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
209 
210 /*
211  * Default values for user and/or group using reserved blocks
212  */
213 #define	F2FS_DEF_RESUID		0
214 #define	F2FS_DEF_RESGID		0
215 
216 /*
217  * For checkpoint manager
218  */
219 enum {
220 	NAT_BITMAP,
221 	SIT_BITMAP
222 };
223 
224 #define	CP_UMOUNT	0x00000001
225 #define	CP_FASTBOOT	0x00000002
226 #define	CP_SYNC		0x00000004
227 #define	CP_RECOVERY	0x00000008
228 #define	CP_DISCARD	0x00000010
229 #define CP_TRIMMED	0x00000020
230 #define CP_PAUSE	0x00000040
231 #define CP_RESIZE 	0x00000080
232 
233 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
234 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
235 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
236 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
237 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
238 #define DEF_CP_INTERVAL			60	/* 60 secs */
239 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
240 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
241 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
242 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
243 
244 struct cp_control {
245 	int reason;
246 	__u64 trim_start;
247 	__u64 trim_end;
248 	__u64 trim_minlen;
249 };
250 
251 /*
252  * indicate meta/data type
253  */
254 enum {
255 	META_CP,
256 	META_NAT,
257 	META_SIT,
258 	META_SSA,
259 	META_MAX,
260 	META_POR,
261 	DATA_GENERIC,		/* check range only */
262 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
263 	DATA_GENERIC_ENHANCE_READ,	/*
264 					 * strong check on range and segment
265 					 * bitmap but no warning due to race
266 					 * condition of read on truncated area
267 					 * by extent_cache
268 					 */
269 	DATA_GENERIC_ENHANCE_UPDATE,	/*
270 					 * strong check on range and segment
271 					 * bitmap for update case
272 					 */
273 	META_GENERIC,
274 };
275 
276 /* for the list of ino */
277 enum {
278 	ORPHAN_INO,		/* for orphan ino list */
279 	APPEND_INO,		/* for append ino list */
280 	UPDATE_INO,		/* for update ino list */
281 	TRANS_DIR_INO,		/* for transactions dir ino list */
282 	FLUSH_INO,		/* for multiple device flushing */
283 	MAX_INO_ENTRY,		/* max. list */
284 };
285 
286 struct ino_entry {
287 	struct list_head list;		/* list head */
288 	nid_t ino;			/* inode number */
289 	unsigned int dirty_device;	/* dirty device bitmap */
290 };
291 
292 /* for the list of inodes to be GCed */
293 struct inode_entry {
294 	struct list_head list;	/* list head */
295 	struct inode *inode;	/* vfs inode pointer */
296 };
297 
298 struct fsync_node_entry {
299 	struct list_head list;	/* list head */
300 	struct page *page;	/* warm node page pointer */
301 	unsigned int seq_id;	/* sequence id */
302 };
303 
304 struct ckpt_req {
305 	struct completion wait;		/* completion for checkpoint done */
306 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
307 	int ret;			/* return code of checkpoint */
308 	ktime_t queue_time;		/* request queued time */
309 };
310 
311 struct ckpt_req_control {
312 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
313 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
314 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
315 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
316 	atomic_t total_ckpt;		/* # of total ckpts */
317 	atomic_t queued_ckpt;		/* # of queued ckpts */
318 	struct llist_head issue_list;	/* list for command issue */
319 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
320 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
321 	unsigned int peak_time;		/* peak wait time in msec until now */
322 };
323 
324 /* for the bitmap indicate blocks to be discarded */
325 struct discard_entry {
326 	struct list_head list;	/* list head */
327 	block_t start_blkaddr;	/* start blockaddr of current segment */
328 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
329 };
330 
331 /* default discard granularity of inner discard thread, unit: block count */
332 #define DEFAULT_DISCARD_GRANULARITY		16
333 
334 /* max discard pend list number */
335 #define MAX_PLIST_NUM		512
336 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
337 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
338 
339 enum {
340 	D_PREP,			/* initial */
341 	D_PARTIAL,		/* partially submitted */
342 	D_SUBMIT,		/* all submitted */
343 	D_DONE,			/* finished */
344 };
345 
346 struct discard_info {
347 	block_t lstart;			/* logical start address */
348 	block_t len;			/* length */
349 	block_t start;			/* actual start address in dev */
350 };
351 
352 struct discard_cmd {
353 	struct rb_node rb_node;		/* rb node located in rb-tree */
354 	union {
355 		struct {
356 			block_t lstart;	/* logical start address */
357 			block_t len;	/* length */
358 			block_t start;	/* actual start address in dev */
359 		};
360 		struct discard_info di;	/* discard info */
361 
362 	};
363 	struct list_head list;		/* command list */
364 	struct completion wait;		/* compleation */
365 	struct block_device *bdev;	/* bdev */
366 	unsigned short ref;		/* reference count */
367 	unsigned char state;		/* state */
368 	unsigned char queued;		/* queued discard */
369 	int error;			/* bio error */
370 	spinlock_t lock;		/* for state/bio_ref updating */
371 	unsigned short bio_ref;		/* bio reference count */
372 };
373 
374 enum {
375 	DPOLICY_BG,
376 	DPOLICY_FORCE,
377 	DPOLICY_FSTRIM,
378 	DPOLICY_UMOUNT,
379 	MAX_DPOLICY,
380 };
381 
382 struct discard_policy {
383 	int type;			/* type of discard */
384 	unsigned int min_interval;	/* used for candidates exist */
385 	unsigned int mid_interval;	/* used for device busy */
386 	unsigned int max_interval;	/* used for candidates not exist */
387 	unsigned int max_requests;	/* # of discards issued per round */
388 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
389 	bool io_aware;			/* issue discard in idle time */
390 	bool sync;			/* submit discard with REQ_SYNC flag */
391 	bool ordered;			/* issue discard by lba order */
392 	bool timeout;			/* discard timeout for put_super */
393 	unsigned int granularity;	/* discard granularity */
394 };
395 
396 struct discard_cmd_control {
397 	struct task_struct *f2fs_issue_discard;	/* discard thread */
398 	struct list_head entry_list;		/* 4KB discard entry list */
399 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
400 	struct list_head wait_list;		/* store on-flushing entries */
401 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
402 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
403 	unsigned int discard_wake;		/* to wake up discard thread */
404 	struct mutex cmd_lock;
405 	unsigned int nr_discards;		/* # of discards in the list */
406 	unsigned int max_discards;		/* max. discards to be issued */
407 	unsigned int max_discard_request;	/* max. discard request per round */
408 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
409 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
410 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
411 	unsigned int discard_granularity;	/* discard granularity */
412 	unsigned int undiscard_blks;		/* # of undiscard blocks */
413 	unsigned int next_pos;			/* next discard position */
414 	atomic_t issued_discard;		/* # of issued discard */
415 	atomic_t queued_discard;		/* # of queued discard */
416 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
417 	struct rb_root_cached root;		/* root of discard rb-tree */
418 	bool rbtree_check;			/* config for consistence check */
419 };
420 
421 /* for the list of fsync inodes, used only during recovery */
422 struct fsync_inode_entry {
423 	struct list_head list;	/* list head */
424 	struct inode *inode;	/* vfs inode pointer */
425 	block_t blkaddr;	/* block address locating the last fsync */
426 	block_t last_dentry;	/* block address locating the last dentry */
427 };
428 
429 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
430 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
431 
432 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
433 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
434 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
435 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
436 
437 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
438 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
439 
update_nats_in_cursum(struct f2fs_journal * journal,int i)440 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
441 {
442 	int before = nats_in_cursum(journal);
443 
444 	journal->n_nats = cpu_to_le16(before + i);
445 	return before;
446 }
447 
update_sits_in_cursum(struct f2fs_journal * journal,int i)448 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
449 {
450 	int before = sits_in_cursum(journal);
451 
452 	journal->n_sits = cpu_to_le16(before + i);
453 	return before;
454 }
455 
__has_cursum_space(struct f2fs_journal * journal,int size,int type)456 static inline bool __has_cursum_space(struct f2fs_journal *journal,
457 							int size, int type)
458 {
459 	if (type == NAT_JOURNAL)
460 		return size <= MAX_NAT_JENTRIES(journal);
461 	return size <= MAX_SIT_JENTRIES(journal);
462 }
463 
464 /* for inline stuff */
465 #define DEF_INLINE_RESERVED_SIZE	1
466 static inline int get_extra_isize(struct inode *inode);
467 static inline int get_inline_xattr_addrs(struct inode *inode);
468 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
469 				(CUR_ADDRS_PER_INODE(inode) -		\
470 				get_inline_xattr_addrs(inode) -	\
471 				DEF_INLINE_RESERVED_SIZE))
472 
473 /* for inline dir */
474 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
475 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
476 				BITS_PER_BYTE + 1))
477 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
478 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
479 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
480 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
481 				NR_INLINE_DENTRY(inode) + \
482 				INLINE_DENTRY_BITMAP_SIZE(inode)))
483 
484 /*
485  * For INODE and NODE manager
486  */
487 /* for directory operations */
488 
489 struct f2fs_filename {
490 	/*
491 	 * The filename the user specified.  This is NULL for some
492 	 * filesystem-internal operations, e.g. converting an inline directory
493 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
494 	 */
495 	const struct qstr *usr_fname;
496 
497 	/*
498 	 * The on-disk filename.  For encrypted directories, this is encrypted.
499 	 * This may be NULL for lookups in an encrypted dir without the key.
500 	 */
501 	struct fscrypt_str disk_name;
502 
503 	/* The dirhash of this filename */
504 	f2fs_hash_t hash;
505 
506 #ifdef CONFIG_FS_ENCRYPTION
507 	/*
508 	 * For lookups in encrypted directories: either the buffer backing
509 	 * disk_name, or a buffer that holds the decoded no-key name.
510 	 */
511 	struct fscrypt_str crypto_buf;
512 #endif
513 #if IS_ENABLED(CONFIG_UNICODE)
514 	/*
515 	 * For casefolded directories: the casefolded name, but it's left NULL
516 	 * if the original name is not valid Unicode, if the original name is
517 	 * "." or "..", if the directory is both casefolded and encrypted and
518 	 * its encryption key is unavailable, or if the filesystem is doing an
519 	 * internal operation where usr_fname is also NULL.  In all these cases
520 	 * we fall back to treating the name as an opaque byte sequence.
521 	 */
522 	struct fscrypt_str cf_name;
523 #endif
524 };
525 
526 struct f2fs_dentry_ptr {
527 	struct inode *inode;
528 	void *bitmap;
529 	struct f2fs_dir_entry *dentry;
530 	__u8 (*filename)[F2FS_SLOT_LEN];
531 	int max;
532 	int nr_bitmap;
533 };
534 
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)535 static inline void make_dentry_ptr_block(struct inode *inode,
536 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
537 {
538 	d->inode = inode;
539 	d->max = NR_DENTRY_IN_BLOCK;
540 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
541 	d->bitmap = t->dentry_bitmap;
542 	d->dentry = t->dentry;
543 	d->filename = t->filename;
544 }
545 
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)546 static inline void make_dentry_ptr_inline(struct inode *inode,
547 					struct f2fs_dentry_ptr *d, void *t)
548 {
549 	int entry_cnt = NR_INLINE_DENTRY(inode);
550 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
551 	int reserved_size = INLINE_RESERVED_SIZE(inode);
552 
553 	d->inode = inode;
554 	d->max = entry_cnt;
555 	d->nr_bitmap = bitmap_size;
556 	d->bitmap = t;
557 	d->dentry = t + bitmap_size + reserved_size;
558 	d->filename = t + bitmap_size + reserved_size +
559 					SIZE_OF_DIR_ENTRY * entry_cnt;
560 }
561 
562 /*
563  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
564  * as its node offset to distinguish from index node blocks.
565  * But some bits are used to mark the node block.
566  */
567 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
568 				>> OFFSET_BIT_SHIFT)
569 enum {
570 	ALLOC_NODE,			/* allocate a new node page if needed */
571 	LOOKUP_NODE,			/* look up a node without readahead */
572 	LOOKUP_NODE_RA,			/*
573 					 * look up a node with readahead called
574 					 * by get_data_block.
575 					 */
576 };
577 
578 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
579 
580 /* congestion wait timeout value, default: 20ms */
581 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
582 
583 /* maximum retry quota flush count */
584 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
585 
586 /* maximum retry of EIO'ed page */
587 #define MAX_RETRY_PAGE_EIO			100
588 
589 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
590 
591 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
592 
593 /* dirty segments threshold for triggering CP */
594 #define DEFAULT_DIRTY_THRESHOLD		4
595 
596 /* for in-memory extent cache entry */
597 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
598 
599 /* number of extent info in extent cache we try to shrink */
600 #define EXTENT_CACHE_SHRINK_NUMBER	128
601 
602 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
603 #define RECOVERY_MIN_RA_BLOCKS		1
604 
605 #define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
606 
607 struct rb_entry {
608 	struct rb_node rb_node;		/* rb node located in rb-tree */
609 	union {
610 		struct {
611 			unsigned int ofs;	/* start offset of the entry */
612 			unsigned int len;	/* length of the entry */
613 		};
614 		unsigned long long key;		/* 64-bits key */
615 	} __packed;
616 };
617 
618 struct extent_info {
619 	unsigned int fofs;		/* start offset in a file */
620 	unsigned int len;		/* length of the extent */
621 	u32 blk;			/* start block address of the extent */
622 #ifdef CONFIG_F2FS_FS_COMPRESSION
623 	unsigned int c_len;		/* physical extent length of compressed blocks */
624 #endif
625 };
626 
627 struct extent_node {
628 	struct rb_node rb_node;		/* rb node located in rb-tree */
629 	struct extent_info ei;		/* extent info */
630 	struct list_head list;		/* node in global extent list of sbi */
631 	struct extent_tree *et;		/* extent tree pointer */
632 };
633 
634 struct extent_tree {
635 	nid_t ino;			/* inode number */
636 	struct rb_root_cached root;	/* root of extent info rb-tree */
637 	struct extent_node *cached_en;	/* recently accessed extent node */
638 	struct extent_info largest;	/* largested extent info */
639 	struct list_head list;		/* to be used by sbi->zombie_list */
640 	rwlock_t lock;			/* protect extent info rb-tree */
641 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
642 	bool largest_updated;		/* largest extent updated */
643 };
644 
645 /*
646  * This structure is taken from ext4_map_blocks.
647  *
648  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
649  */
650 #define F2FS_MAP_NEW		(1 << BH_New)
651 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
652 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
653 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
654 				F2FS_MAP_UNWRITTEN)
655 
656 struct f2fs_map_blocks {
657 	struct block_device *m_bdev;	/* for multi-device dio */
658 	block_t m_pblk;
659 	block_t m_lblk;
660 	unsigned int m_len;
661 	unsigned int m_flags;
662 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
663 	pgoff_t *m_next_extent;		/* point to next possible extent */
664 	int m_seg_type;
665 	bool m_may_create;		/* indicate it is from write path */
666 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
667 };
668 
669 /* for flag in get_data_block */
670 enum {
671 	F2FS_GET_BLOCK_DEFAULT,
672 	F2FS_GET_BLOCK_FIEMAP,
673 	F2FS_GET_BLOCK_BMAP,
674 	F2FS_GET_BLOCK_DIO,
675 	F2FS_GET_BLOCK_PRE_DIO,
676 	F2FS_GET_BLOCK_PRE_AIO,
677 	F2FS_GET_BLOCK_PRECACHE,
678 };
679 
680 /*
681  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
682  */
683 #define FADVISE_COLD_BIT	0x01
684 #define FADVISE_LOST_PINO_BIT	0x02
685 #define FADVISE_ENCRYPT_BIT	0x04
686 #define FADVISE_ENC_NAME_BIT	0x08
687 #define FADVISE_KEEP_SIZE_BIT	0x10
688 #define FADVISE_HOT_BIT		0x20
689 #define FADVISE_VERITY_BIT	0x40
690 #define FADVISE_TRUNC_BIT	0x80
691 
692 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
693 
694 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
695 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
696 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
697 
698 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
699 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
700 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
701 
702 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
703 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
704 
705 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
706 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
707 
708 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
709 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
710 
711 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
712 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
713 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
714 
715 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
716 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
717 
718 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
719 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
720 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
721 
722 #define DEF_DIR_LEVEL		0
723 
724 enum {
725 	GC_FAILURE_PIN,
726 	MAX_GC_FAILURE
727 };
728 
729 /* used for f2fs_inode_info->flags */
730 enum {
731 	FI_NEW_INODE,		/* indicate newly allocated inode */
732 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
733 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
734 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
735 	FI_INC_LINK,		/* need to increment i_nlink */
736 	FI_ACL_MODE,		/* indicate acl mode */
737 	FI_NO_ALLOC,		/* should not allocate any blocks */
738 	FI_FREE_NID,		/* free allocated nide */
739 	FI_NO_EXTENT,		/* not to use the extent cache */
740 	FI_INLINE_XATTR,	/* used for inline xattr */
741 	FI_INLINE_DATA,		/* used for inline data*/
742 	FI_INLINE_DENTRY,	/* used for inline dentry */
743 	FI_APPEND_WRITE,	/* inode has appended data */
744 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
745 	FI_NEED_IPU,		/* used for ipu per file */
746 	FI_ATOMIC_FILE,		/* indicate atomic file */
747 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
748 	FI_DROP_CACHE,		/* drop dirty page cache */
749 	FI_DATA_EXIST,		/* indicate data exists */
750 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
751 	FI_SKIP_WRITES,		/* should skip data page writeback */
752 	FI_OPU_WRITE,		/* used for opu per file */
753 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
754 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
755 	FI_HOT_DATA,		/* indicate file is hot */
756 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
757 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
758 	FI_PIN_FILE,		/* indicate file should not be gced */
759 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
760 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
761 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
762 	FI_MMAP_FILE,		/* indicate file was mmapped */
763 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
764 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
765 	FI_ALIGNED_WRITE,	/* enable aligned write */
766 	FI_COW_FILE,		/* indicate COW file */
767 	FI_MAX,			/* max flag, never be used */
768 };
769 
770 struct f2fs_inode_info {
771 	struct inode vfs_inode;		/* serve a vfs inode */
772 	unsigned long i_flags;		/* keep an inode flags for ioctl */
773 	unsigned char i_advise;		/* use to give file attribute hints */
774 	unsigned char i_dir_level;	/* use for dentry level for large dir */
775 	unsigned int i_current_depth;	/* only for directory depth */
776 	/* for gc failure statistic */
777 	unsigned int i_gc_failures[MAX_GC_FAILURE];
778 	unsigned int i_pino;		/* parent inode number */
779 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
780 
781 	/* Use below internally in f2fs*/
782 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
783 	struct f2fs_rwsem i_sem;	/* protect fi info */
784 	atomic_t dirty_pages;		/* # of dirty pages */
785 	f2fs_hash_t chash;		/* hash value of given file name */
786 	unsigned int clevel;		/* maximum level of given file name */
787 	struct task_struct *task;	/* lookup and create consistency */
788 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
789 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
790 	nid_t i_xattr_nid;		/* node id that contains xattrs */
791 	loff_t	last_disk_size;		/* lastly written file size */
792 	spinlock_t i_size_lock;		/* protect last_disk_size */
793 
794 #ifdef CONFIG_QUOTA
795 	struct dquot *i_dquot[MAXQUOTAS];
796 
797 	/* quota space reservation, managed internally by quota code */
798 	qsize_t i_reserved_quota;
799 #endif
800 	struct list_head dirty_list;	/* dirty list for dirs and files */
801 	struct list_head gdirty_list;	/* linked in global dirty list */
802 	struct task_struct *atomic_write_task;	/* store atomic write task */
803 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
804 	struct inode *cow_inode;	/* copy-on-write inode for atomic write */
805 
806 	/* avoid racing between foreground op and gc */
807 	struct f2fs_rwsem i_gc_rwsem[2];
808 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
809 
810 	int i_extra_isize;		/* size of extra space located in i_addr */
811 	kprojid_t i_projid;		/* id for project quota */
812 	int i_inline_xattr_size;	/* inline xattr size */
813 	struct timespec64 i_crtime;	/* inode creation time */
814 	struct timespec64 i_disk_time[4];/* inode disk times */
815 
816 	/* for file compress */
817 	atomic_t i_compr_blocks;		/* # of compressed blocks */
818 	unsigned char i_compress_algorithm;	/* algorithm type */
819 	unsigned char i_log_cluster_size;	/* log of cluster size */
820 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
821 	unsigned short i_compress_flag;		/* compress flag */
822 	unsigned int i_cluster_size;		/* cluster size */
823 
824 	unsigned int atomic_write_cnt;
825 };
826 
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)827 static inline void get_extent_info(struct extent_info *ext,
828 					struct f2fs_extent *i_ext)
829 {
830 	ext->fofs = le32_to_cpu(i_ext->fofs);
831 	ext->blk = le32_to_cpu(i_ext->blk);
832 	ext->len = le32_to_cpu(i_ext->len);
833 }
834 
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)835 static inline void set_raw_extent(struct extent_info *ext,
836 					struct f2fs_extent *i_ext)
837 {
838 	i_ext->fofs = cpu_to_le32(ext->fofs);
839 	i_ext->blk = cpu_to_le32(ext->blk);
840 	i_ext->len = cpu_to_le32(ext->len);
841 }
842 
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)843 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
844 						u32 blk, unsigned int len)
845 {
846 	ei->fofs = fofs;
847 	ei->blk = blk;
848 	ei->len = len;
849 #ifdef CONFIG_F2FS_FS_COMPRESSION
850 	ei->c_len = 0;
851 #endif
852 }
853 
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)854 static inline bool __is_discard_mergeable(struct discard_info *back,
855 			struct discard_info *front, unsigned int max_len)
856 {
857 	return (back->lstart + back->len == front->lstart) &&
858 		(back->len + front->len <= max_len);
859 }
860 
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)861 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
862 			struct discard_info *back, unsigned int max_len)
863 {
864 	return __is_discard_mergeable(back, cur, max_len);
865 }
866 
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)867 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
868 			struct discard_info *front, unsigned int max_len)
869 {
870 	return __is_discard_mergeable(cur, front, max_len);
871 }
872 
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)873 static inline bool __is_extent_mergeable(struct extent_info *back,
874 						struct extent_info *front)
875 {
876 #ifdef CONFIG_F2FS_FS_COMPRESSION
877 	if (back->c_len && back->len != back->c_len)
878 		return false;
879 	if (front->c_len && front->len != front->c_len)
880 		return false;
881 #endif
882 	return (back->fofs + back->len == front->fofs &&
883 			back->blk + back->len == front->blk);
884 }
885 
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)886 static inline bool __is_back_mergeable(struct extent_info *cur,
887 						struct extent_info *back)
888 {
889 	return __is_extent_mergeable(back, cur);
890 }
891 
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)892 static inline bool __is_front_mergeable(struct extent_info *cur,
893 						struct extent_info *front)
894 {
895 	return __is_extent_mergeable(cur, front);
896 }
897 
898 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)899 static inline void __try_update_largest_extent(struct extent_tree *et,
900 						struct extent_node *en)
901 {
902 	if (en->ei.len > et->largest.len) {
903 		et->largest = en->ei;
904 		et->largest_updated = true;
905 	}
906 }
907 
908 /*
909  * For free nid management
910  */
911 enum nid_state {
912 	FREE_NID,		/* newly added to free nid list */
913 	PREALLOC_NID,		/* it is preallocated */
914 	MAX_NID_STATE,
915 };
916 
917 enum nat_state {
918 	TOTAL_NAT,
919 	DIRTY_NAT,
920 	RECLAIMABLE_NAT,
921 	MAX_NAT_STATE,
922 };
923 
924 struct f2fs_nm_info {
925 	block_t nat_blkaddr;		/* base disk address of NAT */
926 	nid_t max_nid;			/* maximum possible node ids */
927 	nid_t available_nids;		/* # of available node ids */
928 	nid_t next_scan_nid;		/* the next nid to be scanned */
929 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
930 	unsigned int ram_thresh;	/* control the memory footprint */
931 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
932 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
933 
934 	/* NAT cache management */
935 	struct radix_tree_root nat_root;/* root of the nat entry cache */
936 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
937 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
938 	struct list_head nat_entries;	/* cached nat entry list (clean) */
939 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
940 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
941 	unsigned int nat_blocks;	/* # of nat blocks */
942 
943 	/* free node ids management */
944 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
945 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
946 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
947 	spinlock_t nid_list_lock;	/* protect nid lists ops */
948 	struct mutex build_lock;	/* lock for build free nids */
949 	unsigned char **free_nid_bitmap;
950 	unsigned char *nat_block_bitmap;
951 	unsigned short *free_nid_count;	/* free nid count of NAT block */
952 
953 	/* for checkpoint */
954 	char *nat_bitmap;		/* NAT bitmap pointer */
955 
956 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
957 	unsigned char *nat_bits;	/* NAT bits blocks */
958 	unsigned char *full_nat_bits;	/* full NAT pages */
959 	unsigned char *empty_nat_bits;	/* empty NAT pages */
960 #ifdef CONFIG_F2FS_CHECK_FS
961 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
962 #endif
963 	int bitmap_size;		/* bitmap size */
964 };
965 
966 /*
967  * this structure is used as one of function parameters.
968  * all the information are dedicated to a given direct node block determined
969  * by the data offset in a file.
970  */
971 struct dnode_of_data {
972 	struct inode *inode;		/* vfs inode pointer */
973 	struct page *inode_page;	/* its inode page, NULL is possible */
974 	struct page *node_page;		/* cached direct node page */
975 	nid_t nid;			/* node id of the direct node block */
976 	unsigned int ofs_in_node;	/* data offset in the node page */
977 	bool inode_page_locked;		/* inode page is locked or not */
978 	bool node_changed;		/* is node block changed */
979 	char cur_level;			/* level of hole node page */
980 	char max_level;			/* level of current page located */
981 	block_t	data_blkaddr;		/* block address of the node block */
982 };
983 
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)984 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
985 		struct page *ipage, struct page *npage, nid_t nid)
986 {
987 	memset(dn, 0, sizeof(*dn));
988 	dn->inode = inode;
989 	dn->inode_page = ipage;
990 	dn->node_page = npage;
991 	dn->nid = nid;
992 }
993 
994 /*
995  * For SIT manager
996  *
997  * By default, there are 6 active log areas across the whole main area.
998  * When considering hot and cold data separation to reduce cleaning overhead,
999  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1000  * respectively.
1001  * In the current design, you should not change the numbers intentionally.
1002  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1003  * logs individually according to the underlying devices. (default: 6)
1004  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1005  * data and 8 for node logs.
1006  */
1007 #define	NR_CURSEG_DATA_TYPE	(3)
1008 #define NR_CURSEG_NODE_TYPE	(3)
1009 #define NR_CURSEG_INMEM_TYPE	(2)
1010 #define NR_CURSEG_RO_TYPE	(2)
1011 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1012 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1013 
1014 enum {
1015 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1016 	CURSEG_WARM_DATA,	/* data blocks */
1017 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1018 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1019 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1020 	CURSEG_COLD_NODE,	/* indirect node blocks */
1021 	NR_PERSISTENT_LOG,	/* number of persistent log */
1022 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1023 				/* pinned file that needs consecutive block address */
1024 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1025 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1026 };
1027 
1028 struct flush_cmd {
1029 	struct completion wait;
1030 	struct llist_node llnode;
1031 	nid_t ino;
1032 	int ret;
1033 };
1034 
1035 struct flush_cmd_control {
1036 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1037 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1038 	atomic_t issued_flush;			/* # of issued flushes */
1039 	atomic_t queued_flush;			/* # of queued flushes */
1040 	struct llist_head issue_list;		/* list for command issue */
1041 	struct llist_node *dispatch_list;	/* list for command dispatch */
1042 };
1043 
1044 struct f2fs_sm_info {
1045 	struct sit_info *sit_info;		/* whole segment information */
1046 	struct free_segmap_info *free_info;	/* free segment information */
1047 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1048 	struct curseg_info *curseg_array;	/* active segment information */
1049 
1050 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1051 
1052 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1053 	block_t main_blkaddr;		/* start block address of main area */
1054 	block_t ssa_blkaddr;		/* start block address of SSA area */
1055 
1056 	unsigned int segment_count;	/* total # of segments */
1057 	unsigned int main_segments;	/* # of segments in main area */
1058 	unsigned int reserved_segments;	/* # of reserved segments */
1059 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1060 	unsigned int ovp_segments;	/* # of overprovision segments */
1061 
1062 	/* a threshold to reclaim prefree segments */
1063 	unsigned int rec_prefree_segments;
1064 
1065 	/* for batched trimming */
1066 	unsigned int trim_sections;		/* # of sections to trim */
1067 
1068 	struct list_head sit_entry_set;	/* sit entry set list */
1069 
1070 	unsigned int ipu_policy;	/* in-place-update policy */
1071 	unsigned int min_ipu_util;	/* in-place-update threshold */
1072 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1073 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1074 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1075 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1076 
1077 	/* for flush command control */
1078 	struct flush_cmd_control *fcc_info;
1079 
1080 	/* for discard command control */
1081 	struct discard_cmd_control *dcc_info;
1082 };
1083 
1084 /*
1085  * For superblock
1086  */
1087 /*
1088  * COUNT_TYPE for monitoring
1089  *
1090  * f2fs monitors the number of several block types such as on-writeback,
1091  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1092  */
1093 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1094 enum count_type {
1095 	F2FS_DIRTY_DENTS,
1096 	F2FS_DIRTY_DATA,
1097 	F2FS_DIRTY_QDATA,
1098 	F2FS_DIRTY_NODES,
1099 	F2FS_DIRTY_META,
1100 	F2FS_DIRTY_IMETA,
1101 	F2FS_WB_CP_DATA,
1102 	F2FS_WB_DATA,
1103 	F2FS_RD_DATA,
1104 	F2FS_RD_NODE,
1105 	F2FS_RD_META,
1106 	F2FS_DIO_WRITE,
1107 	F2FS_DIO_READ,
1108 	NR_COUNT_TYPE,
1109 };
1110 
1111 /*
1112  * The below are the page types of bios used in submit_bio().
1113  * The available types are:
1114  * DATA			User data pages. It operates as async mode.
1115  * NODE			Node pages. It operates as async mode.
1116  * META			FS metadata pages such as SIT, NAT, CP.
1117  * NR_PAGE_TYPE		The number of page types.
1118  * META_FLUSH		Make sure the previous pages are written
1119  *			with waiting the bio's completion
1120  * ...			Only can be used with META.
1121  */
1122 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1123 enum page_type {
1124 	DATA = 0,
1125 	NODE = 1,	/* should not change this */
1126 	META,
1127 	NR_PAGE_TYPE,
1128 	META_FLUSH,
1129 	IPU,		/* the below types are used by tracepoints only. */
1130 	OPU,
1131 };
1132 
1133 enum temp_type {
1134 	HOT = 0,	/* must be zero for meta bio */
1135 	WARM,
1136 	COLD,
1137 	NR_TEMP_TYPE,
1138 };
1139 
1140 enum need_lock_type {
1141 	LOCK_REQ = 0,
1142 	LOCK_DONE,
1143 	LOCK_RETRY,
1144 };
1145 
1146 enum cp_reason_type {
1147 	CP_NO_NEEDED,
1148 	CP_NON_REGULAR,
1149 	CP_COMPRESSED,
1150 	CP_HARDLINK,
1151 	CP_SB_NEED_CP,
1152 	CP_WRONG_PINO,
1153 	CP_NO_SPC_ROLL,
1154 	CP_NODE_NEED_CP,
1155 	CP_FASTBOOT_MODE,
1156 	CP_SPEC_LOG_NUM,
1157 	CP_RECOVER_DIR,
1158 };
1159 
1160 enum iostat_type {
1161 	/* WRITE IO */
1162 	APP_DIRECT_IO,			/* app direct write IOs */
1163 	APP_BUFFERED_IO,		/* app buffered write IOs */
1164 	APP_WRITE_IO,			/* app write IOs */
1165 	APP_MAPPED_IO,			/* app mapped IOs */
1166 	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1167 	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1168 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1169 	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1170 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1171 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1172 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1173 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1174 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1175 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1176 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1177 
1178 	/* READ IO */
1179 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1180 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1181 	APP_READ_IO,			/* app read IOs */
1182 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1183 	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1184 	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1185 	FS_DATA_READ_IO,		/* data read IOs */
1186 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1187 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1188 	FS_NODE_READ_IO,		/* node read IOs */
1189 	FS_META_READ_IO,		/* meta read IOs */
1190 
1191 	/* other */
1192 	FS_DISCARD,			/* discard */
1193 	NR_IO_TYPE,
1194 };
1195 
1196 struct f2fs_io_info {
1197 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1198 	nid_t ino;		/* inode number */
1199 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1200 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1201 	enum req_op op;		/* contains REQ_OP_ */
1202 	blk_opf_t op_flags;	/* req_flag_bits */
1203 	block_t new_blkaddr;	/* new block address to be written */
1204 	block_t old_blkaddr;	/* old block address before Cow */
1205 	struct page *page;	/* page to be written */
1206 	struct page *encrypted_page;	/* encrypted page */
1207 	struct page *compressed_page;	/* compressed page */
1208 	struct list_head list;		/* serialize IOs */
1209 	bool submitted;		/* indicate IO submission */
1210 	int need_lock;		/* indicate we need to lock cp_rwsem */
1211 	bool in_list;		/* indicate fio is in io_list */
1212 	bool is_por;		/* indicate IO is from recovery or not */
1213 	bool retry;		/* need to reallocate block address */
1214 	int compr_blocks;	/* # of compressed block addresses */
1215 	bool encrypted;		/* indicate file is encrypted */
1216 	bool post_read;		/* require post read */
1217 	enum iostat_type io_type;	/* io type */
1218 	struct writeback_control *io_wbc; /* writeback control */
1219 	struct bio **bio;		/* bio for ipu */
1220 	sector_t *last_block;		/* last block number in bio */
1221 	unsigned char version;		/* version of the node */
1222 };
1223 
1224 struct bio_entry {
1225 	struct bio *bio;
1226 	struct list_head list;
1227 };
1228 
1229 #define is_read_io(rw) ((rw) == READ)
1230 struct f2fs_bio_info {
1231 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1232 	struct bio *bio;		/* bios to merge */
1233 	sector_t last_block_in_bio;	/* last block number */
1234 	struct f2fs_io_info fio;	/* store buffered io info. */
1235 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1236 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1237 	struct list_head io_list;	/* track fios */
1238 	struct list_head bio_list;	/* bio entry list head */
1239 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1240 };
1241 
1242 #define FDEV(i)				(sbi->devs[i])
1243 #define RDEV(i)				(raw_super->devs[i])
1244 struct f2fs_dev_info {
1245 	struct block_device *bdev;
1246 	char path[MAX_PATH_LEN];
1247 	unsigned int total_segments;
1248 	block_t start_blk;
1249 	block_t end_blk;
1250 #ifdef CONFIG_BLK_DEV_ZONED
1251 	unsigned int nr_blkz;		/* Total number of zones */
1252 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1253 #endif
1254 };
1255 
1256 enum inode_type {
1257 	DIR_INODE,			/* for dirty dir inode */
1258 	FILE_INODE,			/* for dirty regular/symlink inode */
1259 	DIRTY_META,			/* for all dirtied inode metadata */
1260 	NR_INODE_TYPE,
1261 };
1262 
1263 /* for inner inode cache management */
1264 struct inode_management {
1265 	struct radix_tree_root ino_root;	/* ino entry array */
1266 	spinlock_t ino_lock;			/* for ino entry lock */
1267 	struct list_head ino_list;		/* inode list head */
1268 	unsigned long ino_num;			/* number of entries */
1269 };
1270 
1271 /* for GC_AT */
1272 struct atgc_management {
1273 	bool atgc_enabled;			/* ATGC is enabled or not */
1274 	struct rb_root_cached root;		/* root of victim rb-tree */
1275 	struct list_head victim_list;		/* linked with all victim entries */
1276 	unsigned int victim_count;		/* victim count in rb-tree */
1277 	unsigned int candidate_ratio;		/* candidate ratio */
1278 	unsigned int max_candidate_count;	/* max candidate count */
1279 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1280 	unsigned long long age_threshold;	/* age threshold */
1281 };
1282 
1283 struct f2fs_gc_control {
1284 	unsigned int victim_segno;	/* target victim segment number */
1285 	int init_gc_type;		/* FG_GC or BG_GC */
1286 	bool no_bg_gc;			/* check the space and stop bg_gc */
1287 	bool should_migrate_blocks;	/* should migrate blocks */
1288 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1289 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1290 };
1291 
1292 /* For s_flag in struct f2fs_sb_info */
1293 enum {
1294 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1295 	SBI_IS_CLOSE,				/* specify unmounting */
1296 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1297 	SBI_POR_DOING,				/* recovery is doing or not */
1298 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1299 	SBI_NEED_CP,				/* need to checkpoint */
1300 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1301 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1302 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1303 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1304 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1305 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1306 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1307 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1308 	SBI_IS_FREEZING,			/* freezefs is in process */
1309 };
1310 
1311 enum {
1312 	CP_TIME,
1313 	REQ_TIME,
1314 	DISCARD_TIME,
1315 	GC_TIME,
1316 	DISABLE_TIME,
1317 	UMOUNT_DISCARD_TIMEOUT,
1318 	MAX_TIME,
1319 };
1320 
1321 enum {
1322 	GC_NORMAL,
1323 	GC_IDLE_CB,
1324 	GC_IDLE_GREEDY,
1325 	GC_IDLE_AT,
1326 	GC_URGENT_HIGH,
1327 	GC_URGENT_LOW,
1328 	GC_URGENT_MID,
1329 	MAX_GC_MODE,
1330 };
1331 
1332 enum {
1333 	BGGC_MODE_ON,		/* background gc is on */
1334 	BGGC_MODE_OFF,		/* background gc is off */
1335 	BGGC_MODE_SYNC,		/*
1336 				 * background gc is on, migrating blocks
1337 				 * like foreground gc
1338 				 */
1339 };
1340 
1341 enum {
1342 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1343 	FS_MODE_LFS,			/* use lfs allocation only */
1344 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1345 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1346 };
1347 
1348 enum {
1349 	ALLOC_MODE_DEFAULT,	/* stay default */
1350 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1351 };
1352 
1353 enum fsync_mode {
1354 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1355 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1356 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1357 };
1358 
1359 enum {
1360 	COMPR_MODE_FS,		/*
1361 				 * automatically compress compression
1362 				 * enabled files
1363 				 */
1364 	COMPR_MODE_USER,	/*
1365 				 * automatical compression is disabled.
1366 				 * user can control the file compression
1367 				 * using ioctls
1368 				 */
1369 };
1370 
1371 enum {
1372 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1373 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1374 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1375 };
1376 
1377 enum {
1378 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1379 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1380 };
1381 
1382 
1383 
1384 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1385 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1386 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1387 
1388 /*
1389  * Layout of f2fs page.private:
1390  *
1391  * Layout A: lowest bit should be 1
1392  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1393  * bit 0	PAGE_PRIVATE_NOT_POINTER
1394  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1395  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1396  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1397  * bit 4	PAGE_PRIVATE_INLINE_INODE
1398  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1399  * bit 6-	f2fs private data
1400  *
1401  * Layout B: lowest bit should be 0
1402  * page.private is a wrapped pointer.
1403  */
1404 enum {
1405 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1406 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1407 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1408 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1409 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1410 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1411 	PAGE_PRIVATE_MAX
1412 };
1413 
1414 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1415 static inline bool page_private_##name(struct page *page) \
1416 { \
1417 	return PagePrivate(page) && \
1418 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1419 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1420 }
1421 
1422 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1423 static inline void set_page_private_##name(struct page *page) \
1424 { \
1425 	if (!PagePrivate(page)) { \
1426 		get_page(page); \
1427 		SetPagePrivate(page); \
1428 		set_page_private(page, 0); \
1429 	} \
1430 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1431 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1432 }
1433 
1434 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1435 static inline void clear_page_private_##name(struct page *page) \
1436 { \
1437 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1438 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1439 		set_page_private(page, 0); \
1440 		if (PagePrivate(page)) { \
1441 			ClearPagePrivate(page); \
1442 			put_page(page); \
1443 		}\
1444 	} \
1445 }
1446 
1447 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1448 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1449 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1450 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1451 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1452 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1453 
1454 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1455 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1456 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1457 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1458 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1459 
1460 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1461 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1462 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1463 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1464 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1465 
get_page_private_data(struct page * page)1466 static inline unsigned long get_page_private_data(struct page *page)
1467 {
1468 	unsigned long data = page_private(page);
1469 
1470 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1471 		return 0;
1472 	return data >> PAGE_PRIVATE_MAX;
1473 }
1474 
set_page_private_data(struct page * page,unsigned long data)1475 static inline void set_page_private_data(struct page *page, unsigned long data)
1476 {
1477 	if (!PagePrivate(page)) {
1478 		get_page(page);
1479 		SetPagePrivate(page);
1480 		set_page_private(page, 0);
1481 	}
1482 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1483 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1484 }
1485 
clear_page_private_data(struct page * page)1486 static inline void clear_page_private_data(struct page *page)
1487 {
1488 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1489 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1490 		set_page_private(page, 0);
1491 		if (PagePrivate(page)) {
1492 			ClearPagePrivate(page);
1493 			put_page(page);
1494 		}
1495 	}
1496 }
1497 
1498 /* For compression */
1499 enum compress_algorithm_type {
1500 	COMPRESS_LZO,
1501 	COMPRESS_LZ4,
1502 	COMPRESS_ZSTD,
1503 	COMPRESS_LZORLE,
1504 	COMPRESS_MAX,
1505 };
1506 
1507 enum compress_flag {
1508 	COMPRESS_CHKSUM,
1509 	COMPRESS_MAX_FLAG,
1510 };
1511 
1512 #define	COMPRESS_WATERMARK			20
1513 #define	COMPRESS_PERCENT			20
1514 
1515 #define COMPRESS_DATA_RESERVED_SIZE		4
1516 struct compress_data {
1517 	__le32 clen;			/* compressed data size */
1518 	__le32 chksum;			/* compressed data chksum */
1519 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1520 	u8 cdata[];			/* compressed data */
1521 };
1522 
1523 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1524 
1525 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1526 
1527 #define	COMPRESS_LEVEL_OFFSET	8
1528 
1529 /* compress context */
1530 struct compress_ctx {
1531 	struct inode *inode;		/* inode the context belong to */
1532 	pgoff_t cluster_idx;		/* cluster index number */
1533 	unsigned int cluster_size;	/* page count in cluster */
1534 	unsigned int log_cluster_size;	/* log of cluster size */
1535 	struct page **rpages;		/* pages store raw data in cluster */
1536 	unsigned int nr_rpages;		/* total page number in rpages */
1537 	struct page **cpages;		/* pages store compressed data in cluster */
1538 	unsigned int nr_cpages;		/* total page number in cpages */
1539 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1540 	void *rbuf;			/* virtual mapped address on rpages */
1541 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1542 	size_t rlen;			/* valid data length in rbuf */
1543 	size_t clen;			/* valid data length in cbuf */
1544 	void *private;			/* payload buffer for specified compression algorithm */
1545 	void *private2;			/* extra payload buffer */
1546 };
1547 
1548 /* compress context for write IO path */
1549 struct compress_io_ctx {
1550 	u32 magic;			/* magic number to indicate page is compressed */
1551 	struct inode *inode;		/* inode the context belong to */
1552 	struct page **rpages;		/* pages store raw data in cluster */
1553 	unsigned int nr_rpages;		/* total page number in rpages */
1554 	atomic_t pending_pages;		/* in-flight compressed page count */
1555 };
1556 
1557 /* Context for decompressing one cluster on the read IO path */
1558 struct decompress_io_ctx {
1559 	u32 magic;			/* magic number to indicate page is compressed */
1560 	struct inode *inode;		/* inode the context belong to */
1561 	pgoff_t cluster_idx;		/* cluster index number */
1562 	unsigned int cluster_size;	/* page count in cluster */
1563 	unsigned int log_cluster_size;	/* log of cluster size */
1564 	struct page **rpages;		/* pages store raw data in cluster */
1565 	unsigned int nr_rpages;		/* total page number in rpages */
1566 	struct page **cpages;		/* pages store compressed data in cluster */
1567 	unsigned int nr_cpages;		/* total page number in cpages */
1568 	struct page **tpages;		/* temp pages to pad holes in cluster */
1569 	void *rbuf;			/* virtual mapped address on rpages */
1570 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1571 	size_t rlen;			/* valid data length in rbuf */
1572 	size_t clen;			/* valid data length in cbuf */
1573 
1574 	/*
1575 	 * The number of compressed pages remaining to be read in this cluster.
1576 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1577 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1578 	 * is decompressed (or an error is reported).
1579 	 *
1580 	 * If an error occurs before all the pages have been submitted for I/O,
1581 	 * then this will never reach 0.  In this case the I/O submitter is
1582 	 * responsible for calling f2fs_decompress_end_io() instead.
1583 	 */
1584 	atomic_t remaining_pages;
1585 
1586 	/*
1587 	 * Number of references to this decompress_io_ctx.
1588 	 *
1589 	 * One reference is held for I/O completion.  This reference is dropped
1590 	 * after the pagecache pages are updated and unlocked -- either after
1591 	 * decompression (and verity if enabled), or after an error.
1592 	 *
1593 	 * In addition, each compressed page holds a reference while it is in a
1594 	 * bio.  These references are necessary prevent compressed pages from
1595 	 * being freed while they are still in a bio.
1596 	 */
1597 	refcount_t refcnt;
1598 
1599 	bool failed;			/* IO error occurred before decompression? */
1600 	bool need_verity;		/* need fs-verity verification after decompression? */
1601 	void *private;			/* payload buffer for specified decompression algorithm */
1602 	void *private2;			/* extra payload buffer */
1603 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1604 	struct work_struct free_work;	/* work for late free this structure itself */
1605 };
1606 
1607 #define NULL_CLUSTER			((unsigned int)(~0))
1608 #define MIN_COMPRESS_LOG_SIZE		2
1609 #define MAX_COMPRESS_LOG_SIZE		8
1610 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1611 
1612 struct f2fs_sb_info {
1613 	struct super_block *sb;			/* pointer to VFS super block */
1614 	struct proc_dir_entry *s_proc;		/* proc entry */
1615 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1616 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1617 	int valid_super_block;			/* valid super block no */
1618 	unsigned long s_flag;				/* flags for sbi */
1619 	struct mutex writepages;		/* mutex for writepages() */
1620 
1621 #ifdef CONFIG_BLK_DEV_ZONED
1622 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1623 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1624 #endif
1625 
1626 	/* for node-related operations */
1627 	struct f2fs_nm_info *nm_info;		/* node manager */
1628 	struct inode *node_inode;		/* cache node blocks */
1629 
1630 	/* for segment-related operations */
1631 	struct f2fs_sm_info *sm_info;		/* segment manager */
1632 
1633 	/* for bio operations */
1634 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1635 	/* keep migration IO order for LFS mode */
1636 	struct f2fs_rwsem io_order_lock;
1637 	mempool_t *write_io_dummy;		/* Dummy pages */
1638 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1639 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1640 
1641 	/* for checkpoint */
1642 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1643 	int cur_cp_pack;			/* remain current cp pack */
1644 	spinlock_t cp_lock;			/* for flag in ckpt */
1645 	struct inode *meta_inode;		/* cache meta blocks */
1646 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1647 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1648 	struct f2fs_rwsem node_write;		/* locking node writes */
1649 	struct f2fs_rwsem node_change;	/* locking node change */
1650 	wait_queue_head_t cp_wait;
1651 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1652 	long interval_time[MAX_TIME];		/* to store thresholds */
1653 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1654 
1655 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1656 
1657 	spinlock_t fsync_node_lock;		/* for node entry lock */
1658 	struct list_head fsync_node_list;	/* node list head */
1659 	unsigned int fsync_seg_id;		/* sequence id */
1660 	unsigned int fsync_node_num;		/* number of node entries */
1661 
1662 	/* for orphan inode, use 0'th array */
1663 	unsigned int max_orphans;		/* max orphan inodes */
1664 
1665 	/* for inode management */
1666 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1667 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1668 	struct mutex flush_lock;		/* for flush exclusion */
1669 
1670 	/* for extent tree cache */
1671 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1672 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1673 	struct list_head extent_list;		/* lru list for shrinker */
1674 	spinlock_t extent_lock;			/* locking extent lru list */
1675 	atomic_t total_ext_tree;		/* extent tree count */
1676 	struct list_head zombie_list;		/* extent zombie tree list */
1677 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1678 	atomic_t total_ext_node;		/* extent info count */
1679 
1680 	/* basic filesystem units */
1681 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1682 	unsigned int log_blocksize;		/* log2 block size */
1683 	unsigned int blocksize;			/* block size */
1684 	unsigned int root_ino_num;		/* root inode number*/
1685 	unsigned int node_ino_num;		/* node inode number*/
1686 	unsigned int meta_ino_num;		/* meta inode number*/
1687 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1688 	unsigned int blocks_per_seg;		/* blocks per segment */
1689 	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1690 	unsigned int segs_per_sec;		/* segments per section */
1691 	unsigned int secs_per_zone;		/* sections per zone */
1692 	unsigned int total_sections;		/* total section count */
1693 	unsigned int total_node_count;		/* total node block count */
1694 	unsigned int total_valid_node_count;	/* valid node block count */
1695 	int dir_level;				/* directory level */
1696 	int readdir_ra;				/* readahead inode in readdir */
1697 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1698 
1699 	block_t user_block_count;		/* # of user blocks */
1700 	block_t total_valid_block_count;	/* # of valid blocks */
1701 	block_t discard_blks;			/* discard command candidats */
1702 	block_t last_valid_block_count;		/* for recovery */
1703 	block_t reserved_blocks;		/* configurable reserved blocks */
1704 	block_t current_reserved_blocks;	/* current reserved blocks */
1705 
1706 	/* Additional tracking for no checkpoint mode */
1707 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1708 
1709 	unsigned int nquota_files;		/* # of quota sysfile */
1710 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1711 
1712 	/* # of pages, see count_type */
1713 	atomic_t nr_pages[NR_COUNT_TYPE];
1714 	/* # of allocated blocks */
1715 	struct percpu_counter alloc_valid_block_count;
1716 	/* # of node block writes as roll forward recovery */
1717 	struct percpu_counter rf_node_block_count;
1718 
1719 	/* writeback control */
1720 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1721 
1722 	/* valid inode count */
1723 	struct percpu_counter total_valid_inode_count;
1724 
1725 	struct f2fs_mount_info mount_opt;	/* mount options */
1726 
1727 	/* for cleaning operations */
1728 	struct f2fs_rwsem gc_lock;		/*
1729 						 * semaphore for GC, avoid
1730 						 * race between GC and GC or CP
1731 						 */
1732 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1733 	struct atgc_management am;		/* atgc management */
1734 	unsigned int cur_victim_sec;		/* current victim section num */
1735 	unsigned int gc_mode;			/* current GC state */
1736 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1737 	spinlock_t gc_urgent_high_lock;
1738 	unsigned int gc_urgent_high_remaining;	/* remaining trial count for GC_URGENT_HIGH */
1739 
1740 	/* for skip statistic */
1741 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1742 
1743 	/* threshold for gc trials on pinned files */
1744 	u64 gc_pin_file_threshold;
1745 	struct f2fs_rwsem pin_sem;
1746 
1747 	/* maximum # of trials to find a victim segment for SSR and GC */
1748 	unsigned int max_victim_search;
1749 	/* migration granularity of garbage collection, unit: segment */
1750 	unsigned int migration_granularity;
1751 
1752 	/*
1753 	 * for stat information.
1754 	 * one is for the LFS mode, and the other is for the SSR mode.
1755 	 */
1756 #ifdef CONFIG_F2FS_STAT_FS
1757 	struct f2fs_stat_info *stat_info;	/* FS status information */
1758 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1759 	unsigned int segment_count[2];		/* # of allocated segments */
1760 	unsigned int block_count[2];		/* # of allocated blocks */
1761 	atomic_t inplace_count;		/* # of inplace update */
1762 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1763 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1764 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1765 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1766 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1767 	atomic_t inline_inode;			/* # of inline_data inodes */
1768 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1769 	atomic_t compr_inode;			/* # of compressed inodes */
1770 	atomic64_t compr_blocks;		/* # of compressed blocks */
1771 	atomic_t swapfile_inode;		/* # of swapfile inodes */
1772 	atomic_t atomic_files;			/* # of opened atomic file */
1773 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1774 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1775 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1776 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1777 #endif
1778 	spinlock_t stat_lock;			/* lock for stat operations */
1779 
1780 	/* to attach REQ_META|REQ_FUA flags */
1781 	unsigned int data_io_flag;
1782 	unsigned int node_io_flag;
1783 
1784 	/* For sysfs support */
1785 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1786 	struct completion s_kobj_unregister;
1787 
1788 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1789 	struct completion s_stat_kobj_unregister;
1790 
1791 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1792 	struct completion s_feature_list_kobj_unregister;
1793 
1794 	/* For shrinker support */
1795 	struct list_head s_list;
1796 	struct mutex umount_mutex;
1797 	unsigned int shrinker_run_no;
1798 
1799 	/* For multi devices */
1800 	int s_ndevs;				/* number of devices */
1801 	struct f2fs_dev_info *devs;		/* for device list */
1802 	unsigned int dirty_device;		/* for checkpoint data flush */
1803 	spinlock_t dev_lock;			/* protect dirty_device */
1804 	bool aligned_blksize;			/* all devices has the same logical blksize */
1805 
1806 	/* For write statistics */
1807 	u64 sectors_written_start;
1808 	u64 kbytes_written;
1809 
1810 	/* Reference to checksum algorithm driver via cryptoapi */
1811 	struct crypto_shash *s_chksum_driver;
1812 
1813 	/* Precomputed FS UUID checksum for seeding other checksums */
1814 	__u32 s_chksum_seed;
1815 
1816 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1817 
1818 	unsigned char errors[MAX_F2FS_ERRORS];	/* error flags */
1819 	spinlock_t error_lock;			/* protect errors array */
1820 	bool error_dirty;			/* errors of sb is dirty */
1821 
1822 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1823 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1824 
1825 	/* For reclaimed segs statistics per each GC mode */
1826 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1827 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1828 
1829 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1830 
1831 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1832 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1833 
1834 	/* For atomic write statistics */
1835 	atomic64_t current_atomic_write;
1836 	s64 peak_atomic_write;
1837 	u64 committed_atomic_block;
1838 	u64 revoked_atomic_block;
1839 
1840 #ifdef CONFIG_F2FS_FS_COMPRESSION
1841 	struct kmem_cache *page_array_slab;	/* page array entry */
1842 	unsigned int page_array_slab_size;	/* default page array slab size */
1843 
1844 	/* For runtime compression statistics */
1845 	u64 compr_written_block;
1846 	u64 compr_saved_block;
1847 	u32 compr_new_inode;
1848 
1849 	/* For compressed block cache */
1850 	struct inode *compress_inode;		/* cache compressed blocks */
1851 	unsigned int compress_percent;		/* cache page percentage */
1852 	unsigned int compress_watermark;	/* cache page watermark */
1853 	atomic_t compress_page_hit;		/* cache hit count */
1854 #endif
1855 
1856 #ifdef CONFIG_F2FS_IOSTAT
1857 	/* For app/fs IO statistics */
1858 	spinlock_t iostat_lock;
1859 	unsigned long long rw_iostat[NR_IO_TYPE];
1860 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1861 	bool iostat_enable;
1862 	unsigned long iostat_next_period;
1863 	unsigned int iostat_period_ms;
1864 
1865 	/* For io latency related statistics info in one iostat period */
1866 	spinlock_t iostat_lat_lock;
1867 	struct iostat_lat_info *iostat_io_lat;
1868 #endif
1869 };
1870 
1871 #ifdef CONFIG_F2FS_FAULT_INJECTION
1872 #define f2fs_show_injection_info(sbi, type)					\
1873 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1874 		KERN_INFO, sbi->sb->s_id,				\
1875 		f2fs_fault_name[type],					\
1876 		__func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1877 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1878 {
1879 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1880 
1881 	if (!ffi->inject_rate)
1882 		return false;
1883 
1884 	if (!IS_FAULT_SET(ffi, type))
1885 		return false;
1886 
1887 	atomic_inc(&ffi->inject_ops);
1888 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1889 		atomic_set(&ffi->inject_ops, 0);
1890 		return true;
1891 	}
1892 	return false;
1893 }
1894 #else
1895 #define f2fs_show_injection_info(sbi, type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1896 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1897 {
1898 	return false;
1899 }
1900 #endif
1901 
1902 /*
1903  * Test if the mounted volume is a multi-device volume.
1904  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1905  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1906  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1907  */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1908 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1909 {
1910 	return sbi->s_ndevs > 1;
1911 }
1912 
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1913 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1914 {
1915 	unsigned long now = jiffies;
1916 
1917 	sbi->last_time[type] = now;
1918 
1919 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1920 	if (type == REQ_TIME) {
1921 		sbi->last_time[DISCARD_TIME] = now;
1922 		sbi->last_time[GC_TIME] = now;
1923 	}
1924 }
1925 
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1926 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1927 {
1928 	unsigned long interval = sbi->interval_time[type] * HZ;
1929 
1930 	return time_after(jiffies, sbi->last_time[type] + interval);
1931 }
1932 
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1933 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1934 						int type)
1935 {
1936 	unsigned long interval = sbi->interval_time[type] * HZ;
1937 	unsigned int wait_ms = 0;
1938 	long delta;
1939 
1940 	delta = (sbi->last_time[type] + interval) - jiffies;
1941 	if (delta > 0)
1942 		wait_ms = jiffies_to_msecs(delta);
1943 
1944 	return wait_ms;
1945 }
1946 
1947 /*
1948  * Inline functions
1949  */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1950 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1951 			      const void *address, unsigned int length)
1952 {
1953 	struct {
1954 		struct shash_desc shash;
1955 		char ctx[4];
1956 	} desc;
1957 	int err;
1958 
1959 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1960 
1961 	desc.shash.tfm = sbi->s_chksum_driver;
1962 	*(u32 *)desc.ctx = crc;
1963 
1964 	err = crypto_shash_update(&desc.shash, address, length);
1965 	BUG_ON(err);
1966 
1967 	return *(u32 *)desc.ctx;
1968 }
1969 
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1970 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1971 			   unsigned int length)
1972 {
1973 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1974 }
1975 
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1976 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1977 				  void *buf, size_t buf_size)
1978 {
1979 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1980 }
1981 
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1982 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1983 			      const void *address, unsigned int length)
1984 {
1985 	return __f2fs_crc32(sbi, crc, address, length);
1986 }
1987 
F2FS_I(struct inode * inode)1988 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1989 {
1990 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1991 }
1992 
F2FS_SB(struct super_block * sb)1993 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1994 {
1995 	return sb->s_fs_info;
1996 }
1997 
F2FS_I_SB(struct inode * inode)1998 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1999 {
2000 	return F2FS_SB(inode->i_sb);
2001 }
2002 
F2FS_M_SB(struct address_space * mapping)2003 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
2004 {
2005 	return F2FS_I_SB(mapping->host);
2006 }
2007 
F2FS_P_SB(struct page * page)2008 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
2009 {
2010 	return F2FS_M_SB(page_file_mapping(page));
2011 }
2012 
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)2013 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2014 {
2015 	return (struct f2fs_super_block *)(sbi->raw_super);
2016 }
2017 
F2FS_CKPT(struct f2fs_sb_info * sbi)2018 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2019 {
2020 	return (struct f2fs_checkpoint *)(sbi->ckpt);
2021 }
2022 
F2FS_NODE(struct page * page)2023 static inline struct f2fs_node *F2FS_NODE(struct page *page)
2024 {
2025 	return (struct f2fs_node *)page_address(page);
2026 }
2027 
F2FS_INODE(struct page * page)2028 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2029 {
2030 	return &((struct f2fs_node *)page_address(page))->i;
2031 }
2032 
NM_I(struct f2fs_sb_info * sbi)2033 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2034 {
2035 	return (struct f2fs_nm_info *)(sbi->nm_info);
2036 }
2037 
SM_I(struct f2fs_sb_info * sbi)2038 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2039 {
2040 	return (struct f2fs_sm_info *)(sbi->sm_info);
2041 }
2042 
SIT_I(struct f2fs_sb_info * sbi)2043 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2044 {
2045 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2046 }
2047 
FREE_I(struct f2fs_sb_info * sbi)2048 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2049 {
2050 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2051 }
2052 
DIRTY_I(struct f2fs_sb_info * sbi)2053 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2054 {
2055 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2056 }
2057 
META_MAPPING(struct f2fs_sb_info * sbi)2058 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2059 {
2060 	return sbi->meta_inode->i_mapping;
2061 }
2062 
NODE_MAPPING(struct f2fs_sb_info * sbi)2063 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2064 {
2065 	return sbi->node_inode->i_mapping;
2066 }
2067 
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2068 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2069 {
2070 	return test_bit(type, &sbi->s_flag);
2071 }
2072 
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2073 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2074 {
2075 	set_bit(type, &sbi->s_flag);
2076 }
2077 
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2078 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2079 {
2080 	clear_bit(type, &sbi->s_flag);
2081 }
2082 
cur_cp_version(struct f2fs_checkpoint * cp)2083 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2084 {
2085 	return le64_to_cpu(cp->checkpoint_ver);
2086 }
2087 
f2fs_qf_ino(struct super_block * sb,int type)2088 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2089 {
2090 	if (type < F2FS_MAX_QUOTAS)
2091 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2092 	return 0;
2093 }
2094 
cur_cp_crc(struct f2fs_checkpoint * cp)2095 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2096 {
2097 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2098 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2099 }
2100 
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2101 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2102 {
2103 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2104 
2105 	return ckpt_flags & f;
2106 }
2107 
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2108 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2109 {
2110 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2111 }
2112 
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2113 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2114 {
2115 	unsigned int ckpt_flags;
2116 
2117 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2118 	ckpt_flags |= f;
2119 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2120 }
2121 
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2122 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2123 {
2124 	unsigned long flags;
2125 
2126 	spin_lock_irqsave(&sbi->cp_lock, flags);
2127 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2128 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2129 }
2130 
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2131 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2132 {
2133 	unsigned int ckpt_flags;
2134 
2135 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2136 	ckpt_flags &= (~f);
2137 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2138 }
2139 
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2140 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2141 {
2142 	unsigned long flags;
2143 
2144 	spin_lock_irqsave(&sbi->cp_lock, flags);
2145 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2146 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2147 }
2148 
2149 #define init_f2fs_rwsem(sem)					\
2150 do {								\
2151 	static struct lock_class_key __key;			\
2152 								\
2153 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2154 } while (0)
2155 
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2156 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2157 		const char *sem_name, struct lock_class_key *key)
2158 {
2159 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2160 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2161 	init_waitqueue_head(&sem->read_waiters);
2162 #endif
2163 }
2164 
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2165 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2166 {
2167 	return rwsem_is_locked(&sem->internal_rwsem);
2168 }
2169 
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2170 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2171 {
2172 	return rwsem_is_contended(&sem->internal_rwsem);
2173 }
2174 
f2fs_down_read(struct f2fs_rwsem * sem)2175 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2176 {
2177 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2178 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2179 #else
2180 	down_read(&sem->internal_rwsem);
2181 #endif
2182 }
2183 
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2184 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2185 {
2186 	return down_read_trylock(&sem->internal_rwsem);
2187 }
2188 
2189 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2190 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2191 {
2192 	down_read_nested(&sem->internal_rwsem, subclass);
2193 }
2194 #else
2195 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2196 #endif
2197 
f2fs_up_read(struct f2fs_rwsem * sem)2198 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2199 {
2200 	up_read(&sem->internal_rwsem);
2201 }
2202 
f2fs_down_write(struct f2fs_rwsem * sem)2203 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2204 {
2205 	down_write(&sem->internal_rwsem);
2206 }
2207 
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2208 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2209 {
2210 	return down_write_trylock(&sem->internal_rwsem);
2211 }
2212 
f2fs_up_write(struct f2fs_rwsem * sem)2213 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2214 {
2215 	up_write(&sem->internal_rwsem);
2216 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2217 	wake_up_all(&sem->read_waiters);
2218 #endif
2219 }
2220 
f2fs_lock_op(struct f2fs_sb_info * sbi)2221 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2222 {
2223 	f2fs_down_read(&sbi->cp_rwsem);
2224 }
2225 
f2fs_trylock_op(struct f2fs_sb_info * sbi)2226 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2227 {
2228 	if (time_to_inject(sbi, FAULT_LOCK_OP)) {
2229 		f2fs_show_injection_info(sbi, FAULT_LOCK_OP);
2230 		return 0;
2231 	}
2232 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2233 }
2234 
f2fs_unlock_op(struct f2fs_sb_info * sbi)2235 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2236 {
2237 	f2fs_up_read(&sbi->cp_rwsem);
2238 }
2239 
f2fs_lock_all(struct f2fs_sb_info * sbi)2240 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2241 {
2242 	f2fs_down_write(&sbi->cp_rwsem);
2243 }
2244 
f2fs_unlock_all(struct f2fs_sb_info * sbi)2245 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2246 {
2247 	f2fs_up_write(&sbi->cp_rwsem);
2248 }
2249 
__get_cp_reason(struct f2fs_sb_info * sbi)2250 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2251 {
2252 	int reason = CP_SYNC;
2253 
2254 	if (test_opt(sbi, FASTBOOT))
2255 		reason = CP_FASTBOOT;
2256 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2257 		reason = CP_UMOUNT;
2258 	return reason;
2259 }
2260 
__remain_node_summaries(int reason)2261 static inline bool __remain_node_summaries(int reason)
2262 {
2263 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2264 }
2265 
__exist_node_summaries(struct f2fs_sb_info * sbi)2266 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2267 {
2268 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2269 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2270 }
2271 
2272 /*
2273  * Check whether the inode has blocks or not
2274  */
F2FS_HAS_BLOCKS(struct inode * inode)2275 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2276 {
2277 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2278 
2279 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2280 }
2281 
f2fs_has_xattr_block(unsigned int ofs)2282 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2283 {
2284 	return ofs == XATTR_NODE_OFFSET;
2285 }
2286 
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2287 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2288 					struct inode *inode, bool cap)
2289 {
2290 	if (!inode)
2291 		return true;
2292 	if (!test_opt(sbi, RESERVE_ROOT))
2293 		return false;
2294 	if (IS_NOQUOTA(inode))
2295 		return true;
2296 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2297 		return true;
2298 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2299 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2300 		return true;
2301 	if (cap && capable(CAP_SYS_RESOURCE))
2302 		return true;
2303 	return false;
2304 }
2305 
2306 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)2307 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2308 				 struct inode *inode, blkcnt_t *count)
2309 {
2310 	blkcnt_t diff = 0, release = 0;
2311 	block_t avail_user_block_count;
2312 	int ret;
2313 
2314 	ret = dquot_reserve_block(inode, *count);
2315 	if (ret)
2316 		return ret;
2317 
2318 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2319 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2320 		release = *count;
2321 		goto release_quota;
2322 	}
2323 
2324 	/*
2325 	 * let's increase this in prior to actual block count change in order
2326 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2327 	 */
2328 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2329 
2330 	spin_lock(&sbi->stat_lock);
2331 	sbi->total_valid_block_count += (block_t)(*count);
2332 	avail_user_block_count = sbi->user_block_count -
2333 					sbi->current_reserved_blocks;
2334 
2335 	if (!__allow_reserved_blocks(sbi, inode, true))
2336 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2337 
2338 	if (F2FS_IO_ALIGNED(sbi))
2339 		avail_user_block_count -= sbi->blocks_per_seg *
2340 				SM_I(sbi)->additional_reserved_segments;
2341 
2342 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2343 		if (avail_user_block_count > sbi->unusable_block_count)
2344 			avail_user_block_count -= sbi->unusable_block_count;
2345 		else
2346 			avail_user_block_count = 0;
2347 	}
2348 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2349 		diff = sbi->total_valid_block_count - avail_user_block_count;
2350 		if (diff > *count)
2351 			diff = *count;
2352 		*count -= diff;
2353 		release = diff;
2354 		sbi->total_valid_block_count -= diff;
2355 		if (!*count) {
2356 			spin_unlock(&sbi->stat_lock);
2357 			goto enospc;
2358 		}
2359 	}
2360 	spin_unlock(&sbi->stat_lock);
2361 
2362 	if (unlikely(release)) {
2363 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2364 		dquot_release_reservation_block(inode, release);
2365 	}
2366 	f2fs_i_blocks_write(inode, *count, true, true);
2367 	return 0;
2368 
2369 enospc:
2370 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2371 release_quota:
2372 	dquot_release_reservation_block(inode, release);
2373 	return -ENOSPC;
2374 }
2375 
2376 __printf(2, 3)
2377 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2378 
2379 #define f2fs_err(sbi, fmt, ...)						\
2380 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2381 #define f2fs_warn(sbi, fmt, ...)					\
2382 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2383 #define f2fs_notice(sbi, fmt, ...)					\
2384 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2385 #define f2fs_info(sbi, fmt, ...)					\
2386 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2387 #define f2fs_debug(sbi, fmt, ...)					\
2388 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2389 
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2390 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2391 						struct inode *inode,
2392 						block_t count)
2393 {
2394 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2395 
2396 	spin_lock(&sbi->stat_lock);
2397 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2398 	sbi->total_valid_block_count -= (block_t)count;
2399 	if (sbi->reserved_blocks &&
2400 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2401 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2402 					sbi->current_reserved_blocks + count);
2403 	spin_unlock(&sbi->stat_lock);
2404 	if (unlikely(inode->i_blocks < sectors)) {
2405 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2406 			  inode->i_ino,
2407 			  (unsigned long long)inode->i_blocks,
2408 			  (unsigned long long)sectors);
2409 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2410 		return;
2411 	}
2412 	f2fs_i_blocks_write(inode, count, false, true);
2413 }
2414 
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2415 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2416 {
2417 	atomic_inc(&sbi->nr_pages[count_type]);
2418 
2419 	if (count_type == F2FS_DIRTY_DENTS ||
2420 			count_type == F2FS_DIRTY_NODES ||
2421 			count_type == F2FS_DIRTY_META ||
2422 			count_type == F2FS_DIRTY_QDATA ||
2423 			count_type == F2FS_DIRTY_IMETA)
2424 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2425 }
2426 
inode_inc_dirty_pages(struct inode * inode)2427 static inline void inode_inc_dirty_pages(struct inode *inode)
2428 {
2429 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2430 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2431 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2432 	if (IS_NOQUOTA(inode))
2433 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2434 }
2435 
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2436 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2437 {
2438 	atomic_dec(&sbi->nr_pages[count_type]);
2439 }
2440 
inode_dec_dirty_pages(struct inode * inode)2441 static inline void inode_dec_dirty_pages(struct inode *inode)
2442 {
2443 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2444 			!S_ISLNK(inode->i_mode))
2445 		return;
2446 
2447 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2448 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2449 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2450 	if (IS_NOQUOTA(inode))
2451 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2452 }
2453 
inc_atomic_write_cnt(struct inode * inode)2454 static inline void inc_atomic_write_cnt(struct inode *inode)
2455 {
2456 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2457 	struct f2fs_inode_info *fi = F2FS_I(inode);
2458 	u64 current_write;
2459 
2460 	fi->atomic_write_cnt++;
2461 	atomic64_inc(&sbi->current_atomic_write);
2462 	current_write = atomic64_read(&sbi->current_atomic_write);
2463 	if (current_write > sbi->peak_atomic_write)
2464 		sbi->peak_atomic_write = current_write;
2465 }
2466 
release_atomic_write_cnt(struct inode * inode)2467 static inline void release_atomic_write_cnt(struct inode *inode)
2468 {
2469 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2470 	struct f2fs_inode_info *fi = F2FS_I(inode);
2471 
2472 	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2473 	fi->atomic_write_cnt = 0;
2474 }
2475 
get_pages(struct f2fs_sb_info * sbi,int count_type)2476 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2477 {
2478 	return atomic_read(&sbi->nr_pages[count_type]);
2479 }
2480 
get_dirty_pages(struct inode * inode)2481 static inline int get_dirty_pages(struct inode *inode)
2482 {
2483 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2484 }
2485 
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2486 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2487 {
2488 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2489 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2490 						sbi->log_blocks_per_seg;
2491 
2492 	return segs / sbi->segs_per_sec;
2493 }
2494 
valid_user_blocks(struct f2fs_sb_info * sbi)2495 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2496 {
2497 	return sbi->total_valid_block_count;
2498 }
2499 
discard_blocks(struct f2fs_sb_info * sbi)2500 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2501 {
2502 	return sbi->discard_blks;
2503 }
2504 
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2505 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2506 {
2507 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2508 
2509 	/* return NAT or SIT bitmap */
2510 	if (flag == NAT_BITMAP)
2511 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2512 	else if (flag == SIT_BITMAP)
2513 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2514 
2515 	return 0;
2516 }
2517 
__cp_payload(struct f2fs_sb_info * sbi)2518 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2519 {
2520 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2521 }
2522 
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2523 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2524 {
2525 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2526 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2527 	int offset;
2528 
2529 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2530 		offset = (flag == SIT_BITMAP) ?
2531 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2532 		/*
2533 		 * if large_nat_bitmap feature is enabled, leave checksum
2534 		 * protection for all nat/sit bitmaps.
2535 		 */
2536 		return tmp_ptr + offset + sizeof(__le32);
2537 	}
2538 
2539 	if (__cp_payload(sbi) > 0) {
2540 		if (flag == NAT_BITMAP)
2541 			return tmp_ptr;
2542 		else
2543 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2544 	} else {
2545 		offset = (flag == NAT_BITMAP) ?
2546 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2547 		return tmp_ptr + offset;
2548 	}
2549 }
2550 
__start_cp_addr(struct f2fs_sb_info * sbi)2551 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2552 {
2553 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2554 
2555 	if (sbi->cur_cp_pack == 2)
2556 		start_addr += sbi->blocks_per_seg;
2557 	return start_addr;
2558 }
2559 
__start_cp_next_addr(struct f2fs_sb_info * sbi)2560 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2561 {
2562 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2563 
2564 	if (sbi->cur_cp_pack == 1)
2565 		start_addr += sbi->blocks_per_seg;
2566 	return start_addr;
2567 }
2568 
__set_cp_next_pack(struct f2fs_sb_info * sbi)2569 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2570 {
2571 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2572 }
2573 
__start_sum_addr(struct f2fs_sb_info * sbi)2574 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2575 {
2576 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2577 }
2578 
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2579 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2580 					struct inode *inode, bool is_inode)
2581 {
2582 	block_t	valid_block_count;
2583 	unsigned int valid_node_count, user_block_count;
2584 	int err;
2585 
2586 	if (is_inode) {
2587 		if (inode) {
2588 			err = dquot_alloc_inode(inode);
2589 			if (err)
2590 				return err;
2591 		}
2592 	} else {
2593 		err = dquot_reserve_block(inode, 1);
2594 		if (err)
2595 			return err;
2596 	}
2597 
2598 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2599 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2600 		goto enospc;
2601 	}
2602 
2603 	spin_lock(&sbi->stat_lock);
2604 
2605 	valid_block_count = sbi->total_valid_block_count +
2606 					sbi->current_reserved_blocks + 1;
2607 
2608 	if (!__allow_reserved_blocks(sbi, inode, false))
2609 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2610 
2611 	if (F2FS_IO_ALIGNED(sbi))
2612 		valid_block_count += sbi->blocks_per_seg *
2613 				SM_I(sbi)->additional_reserved_segments;
2614 
2615 	user_block_count = sbi->user_block_count;
2616 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2617 		user_block_count -= sbi->unusable_block_count;
2618 
2619 	if (unlikely(valid_block_count > user_block_count)) {
2620 		spin_unlock(&sbi->stat_lock);
2621 		goto enospc;
2622 	}
2623 
2624 	valid_node_count = sbi->total_valid_node_count + 1;
2625 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2626 		spin_unlock(&sbi->stat_lock);
2627 		goto enospc;
2628 	}
2629 
2630 	sbi->total_valid_node_count++;
2631 	sbi->total_valid_block_count++;
2632 	spin_unlock(&sbi->stat_lock);
2633 
2634 	if (inode) {
2635 		if (is_inode)
2636 			f2fs_mark_inode_dirty_sync(inode, true);
2637 		else
2638 			f2fs_i_blocks_write(inode, 1, true, true);
2639 	}
2640 
2641 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2642 	return 0;
2643 
2644 enospc:
2645 	if (is_inode) {
2646 		if (inode)
2647 			dquot_free_inode(inode);
2648 	} else {
2649 		dquot_release_reservation_block(inode, 1);
2650 	}
2651 	return -ENOSPC;
2652 }
2653 
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2654 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2655 					struct inode *inode, bool is_inode)
2656 {
2657 	spin_lock(&sbi->stat_lock);
2658 
2659 	if (unlikely(!sbi->total_valid_block_count ||
2660 			!sbi->total_valid_node_count)) {
2661 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2662 			  sbi->total_valid_block_count,
2663 			  sbi->total_valid_node_count);
2664 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2665 	} else {
2666 		sbi->total_valid_block_count--;
2667 		sbi->total_valid_node_count--;
2668 	}
2669 
2670 	if (sbi->reserved_blocks &&
2671 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2672 		sbi->current_reserved_blocks++;
2673 
2674 	spin_unlock(&sbi->stat_lock);
2675 
2676 	if (is_inode) {
2677 		dquot_free_inode(inode);
2678 	} else {
2679 		if (unlikely(inode->i_blocks == 0)) {
2680 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2681 				  inode->i_ino,
2682 				  (unsigned long long)inode->i_blocks);
2683 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2684 			return;
2685 		}
2686 		f2fs_i_blocks_write(inode, 1, false, true);
2687 	}
2688 }
2689 
valid_node_count(struct f2fs_sb_info * sbi)2690 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2691 {
2692 	return sbi->total_valid_node_count;
2693 }
2694 
inc_valid_inode_count(struct f2fs_sb_info * sbi)2695 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2696 {
2697 	percpu_counter_inc(&sbi->total_valid_inode_count);
2698 }
2699 
dec_valid_inode_count(struct f2fs_sb_info * sbi)2700 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2701 {
2702 	percpu_counter_dec(&sbi->total_valid_inode_count);
2703 }
2704 
valid_inode_count(struct f2fs_sb_info * sbi)2705 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2706 {
2707 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2708 }
2709 
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2710 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2711 						pgoff_t index, bool for_write)
2712 {
2713 	struct page *page;
2714 	unsigned int flags;
2715 
2716 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2717 		if (!for_write)
2718 			page = find_get_page_flags(mapping, index,
2719 							FGP_LOCK | FGP_ACCESSED);
2720 		else
2721 			page = find_lock_page(mapping, index);
2722 		if (page)
2723 			return page;
2724 
2725 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2726 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2727 							FAULT_PAGE_ALLOC);
2728 			return NULL;
2729 		}
2730 	}
2731 
2732 	if (!for_write)
2733 		return grab_cache_page(mapping, index);
2734 
2735 	flags = memalloc_nofs_save();
2736 	page = grab_cache_page_write_begin(mapping, index);
2737 	memalloc_nofs_restore(flags);
2738 
2739 	return page;
2740 }
2741 
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2742 static inline struct page *f2fs_pagecache_get_page(
2743 				struct address_space *mapping, pgoff_t index,
2744 				int fgp_flags, gfp_t gfp_mask)
2745 {
2746 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2747 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2748 		return NULL;
2749 	}
2750 
2751 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2752 }
2753 
f2fs_put_page(struct page * page,int unlock)2754 static inline void f2fs_put_page(struct page *page, int unlock)
2755 {
2756 	if (!page)
2757 		return;
2758 
2759 	if (unlock) {
2760 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2761 		unlock_page(page);
2762 	}
2763 	put_page(page);
2764 }
2765 
f2fs_put_dnode(struct dnode_of_data * dn)2766 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2767 {
2768 	if (dn->node_page)
2769 		f2fs_put_page(dn->node_page, 1);
2770 	if (dn->inode_page && dn->node_page != dn->inode_page)
2771 		f2fs_put_page(dn->inode_page, 0);
2772 	dn->node_page = NULL;
2773 	dn->inode_page = NULL;
2774 }
2775 
f2fs_kmem_cache_create(const char * name,size_t size)2776 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2777 					size_t size)
2778 {
2779 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2780 }
2781 
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2782 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2783 						gfp_t flags)
2784 {
2785 	void *entry;
2786 
2787 	entry = kmem_cache_alloc(cachep, flags);
2788 	if (!entry)
2789 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2790 	return entry;
2791 }
2792 
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2793 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2794 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2795 {
2796 	if (nofail)
2797 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2798 
2799 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2800 		f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2801 		return NULL;
2802 	}
2803 
2804 	return kmem_cache_alloc(cachep, flags);
2805 }
2806 
is_inflight_io(struct f2fs_sb_info * sbi,int type)2807 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2808 {
2809 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2810 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2811 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2812 		get_pages(sbi, F2FS_DIO_READ) ||
2813 		get_pages(sbi, F2FS_DIO_WRITE))
2814 		return true;
2815 
2816 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2817 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2818 		return true;
2819 
2820 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2821 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2822 		return true;
2823 	return false;
2824 }
2825 
is_idle(struct f2fs_sb_info * sbi,int type)2826 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2827 {
2828 	if (sbi->gc_mode == GC_URGENT_HIGH)
2829 		return true;
2830 
2831 	if (is_inflight_io(sbi, type))
2832 		return false;
2833 
2834 	if (sbi->gc_mode == GC_URGENT_MID)
2835 		return true;
2836 
2837 	if (sbi->gc_mode == GC_URGENT_LOW &&
2838 			(type == DISCARD_TIME || type == GC_TIME))
2839 		return true;
2840 
2841 	return f2fs_time_over(sbi, type);
2842 }
2843 
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2844 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2845 				unsigned long index, void *item)
2846 {
2847 	while (radix_tree_insert(root, index, item))
2848 		cond_resched();
2849 }
2850 
2851 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2852 
IS_INODE(struct page * page)2853 static inline bool IS_INODE(struct page *page)
2854 {
2855 	struct f2fs_node *p = F2FS_NODE(page);
2856 
2857 	return RAW_IS_INODE(p);
2858 }
2859 
offset_in_addr(struct f2fs_inode * i)2860 static inline int offset_in_addr(struct f2fs_inode *i)
2861 {
2862 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2863 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2864 }
2865 
blkaddr_in_node(struct f2fs_node * node)2866 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2867 {
2868 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2869 }
2870 
2871 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2872 static inline block_t data_blkaddr(struct inode *inode,
2873 			struct page *node_page, unsigned int offset)
2874 {
2875 	struct f2fs_node *raw_node;
2876 	__le32 *addr_array;
2877 	int base = 0;
2878 	bool is_inode = IS_INODE(node_page);
2879 
2880 	raw_node = F2FS_NODE(node_page);
2881 
2882 	if (is_inode) {
2883 		if (!inode)
2884 			/* from GC path only */
2885 			base = offset_in_addr(&raw_node->i);
2886 		else if (f2fs_has_extra_attr(inode))
2887 			base = get_extra_isize(inode);
2888 	}
2889 
2890 	addr_array = blkaddr_in_node(raw_node);
2891 	return le32_to_cpu(addr_array[base + offset]);
2892 }
2893 
f2fs_data_blkaddr(struct dnode_of_data * dn)2894 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2895 {
2896 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2897 }
2898 
f2fs_test_bit(unsigned int nr,char * addr)2899 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2900 {
2901 	int mask;
2902 
2903 	addr += (nr >> 3);
2904 	mask = 1 << (7 - (nr & 0x07));
2905 	return mask & *addr;
2906 }
2907 
f2fs_set_bit(unsigned int nr,char * addr)2908 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2909 {
2910 	int mask;
2911 
2912 	addr += (nr >> 3);
2913 	mask = 1 << (7 - (nr & 0x07));
2914 	*addr |= mask;
2915 }
2916 
f2fs_clear_bit(unsigned int nr,char * addr)2917 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2918 {
2919 	int mask;
2920 
2921 	addr += (nr >> 3);
2922 	mask = 1 << (7 - (nr & 0x07));
2923 	*addr &= ~mask;
2924 }
2925 
f2fs_test_and_set_bit(unsigned int nr,char * addr)2926 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2927 {
2928 	int mask;
2929 	int ret;
2930 
2931 	addr += (nr >> 3);
2932 	mask = 1 << (7 - (nr & 0x07));
2933 	ret = mask & *addr;
2934 	*addr |= mask;
2935 	return ret;
2936 }
2937 
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2938 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2939 {
2940 	int mask;
2941 	int ret;
2942 
2943 	addr += (nr >> 3);
2944 	mask = 1 << (7 - (nr & 0x07));
2945 	ret = mask & *addr;
2946 	*addr &= ~mask;
2947 	return ret;
2948 }
2949 
f2fs_change_bit(unsigned int nr,char * addr)2950 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2951 {
2952 	int mask;
2953 
2954 	addr += (nr >> 3);
2955 	mask = 1 << (7 - (nr & 0x07));
2956 	*addr ^= mask;
2957 }
2958 
2959 /*
2960  * On-disk inode flags (f2fs_inode::i_flags)
2961  */
2962 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2963 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2964 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2965 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2966 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2967 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2968 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2969 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2970 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2971 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2972 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2973 
2974 /* Flags that should be inherited by new inodes from their parent. */
2975 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2976 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2977 			   F2FS_CASEFOLD_FL)
2978 
2979 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2980 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2981 				F2FS_CASEFOLD_FL))
2982 
2983 /* Flags that are appropriate for non-directories/regular files. */
2984 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2985 
f2fs_mask_flags(umode_t mode,__u32 flags)2986 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2987 {
2988 	if (S_ISDIR(mode))
2989 		return flags;
2990 	else if (S_ISREG(mode))
2991 		return flags & F2FS_REG_FLMASK;
2992 	else
2993 		return flags & F2FS_OTHER_FLMASK;
2994 }
2995 
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2996 static inline void __mark_inode_dirty_flag(struct inode *inode,
2997 						int flag, bool set)
2998 {
2999 	switch (flag) {
3000 	case FI_INLINE_XATTR:
3001 	case FI_INLINE_DATA:
3002 	case FI_INLINE_DENTRY:
3003 	case FI_NEW_INODE:
3004 		if (set)
3005 			return;
3006 		fallthrough;
3007 	case FI_DATA_EXIST:
3008 	case FI_INLINE_DOTS:
3009 	case FI_PIN_FILE:
3010 	case FI_COMPRESS_RELEASED:
3011 		f2fs_mark_inode_dirty_sync(inode, true);
3012 	}
3013 }
3014 
set_inode_flag(struct inode * inode,int flag)3015 static inline void set_inode_flag(struct inode *inode, int flag)
3016 {
3017 	set_bit(flag, F2FS_I(inode)->flags);
3018 	__mark_inode_dirty_flag(inode, flag, true);
3019 }
3020 
is_inode_flag_set(struct inode * inode,int flag)3021 static inline int is_inode_flag_set(struct inode *inode, int flag)
3022 {
3023 	return test_bit(flag, F2FS_I(inode)->flags);
3024 }
3025 
clear_inode_flag(struct inode * inode,int flag)3026 static inline void clear_inode_flag(struct inode *inode, int flag)
3027 {
3028 	clear_bit(flag, F2FS_I(inode)->flags);
3029 	__mark_inode_dirty_flag(inode, flag, false);
3030 }
3031 
f2fs_verity_in_progress(struct inode * inode)3032 static inline bool f2fs_verity_in_progress(struct inode *inode)
3033 {
3034 	return IS_ENABLED(CONFIG_FS_VERITY) &&
3035 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3036 }
3037 
set_acl_inode(struct inode * inode,umode_t mode)3038 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3039 {
3040 	F2FS_I(inode)->i_acl_mode = mode;
3041 	set_inode_flag(inode, FI_ACL_MODE);
3042 	f2fs_mark_inode_dirty_sync(inode, false);
3043 }
3044 
f2fs_i_links_write(struct inode * inode,bool inc)3045 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3046 {
3047 	if (inc)
3048 		inc_nlink(inode);
3049 	else
3050 		drop_nlink(inode);
3051 	f2fs_mark_inode_dirty_sync(inode, true);
3052 }
3053 
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3054 static inline void f2fs_i_blocks_write(struct inode *inode,
3055 					block_t diff, bool add, bool claim)
3056 {
3057 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3058 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3059 
3060 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3061 	if (add) {
3062 		if (claim)
3063 			dquot_claim_block(inode, diff);
3064 		else
3065 			dquot_alloc_block_nofail(inode, diff);
3066 	} else {
3067 		dquot_free_block(inode, diff);
3068 	}
3069 
3070 	f2fs_mark_inode_dirty_sync(inode, true);
3071 	if (clean || recover)
3072 		set_inode_flag(inode, FI_AUTO_RECOVER);
3073 }
3074 
f2fs_i_size_write(struct inode * inode,loff_t i_size)3075 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3076 {
3077 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3078 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3079 
3080 	if (i_size_read(inode) == i_size)
3081 		return;
3082 
3083 	i_size_write(inode, i_size);
3084 	f2fs_mark_inode_dirty_sync(inode, true);
3085 	if (clean || recover)
3086 		set_inode_flag(inode, FI_AUTO_RECOVER);
3087 }
3088 
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3089 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3090 {
3091 	F2FS_I(inode)->i_current_depth = depth;
3092 	f2fs_mark_inode_dirty_sync(inode, true);
3093 }
3094 
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3095 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3096 					unsigned int count)
3097 {
3098 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3099 	f2fs_mark_inode_dirty_sync(inode, true);
3100 }
3101 
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3102 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3103 {
3104 	F2FS_I(inode)->i_xattr_nid = xnid;
3105 	f2fs_mark_inode_dirty_sync(inode, true);
3106 }
3107 
f2fs_i_pino_write(struct inode * inode,nid_t pino)3108 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3109 {
3110 	F2FS_I(inode)->i_pino = pino;
3111 	f2fs_mark_inode_dirty_sync(inode, true);
3112 }
3113 
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3114 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3115 {
3116 	struct f2fs_inode_info *fi = F2FS_I(inode);
3117 
3118 	if (ri->i_inline & F2FS_INLINE_XATTR)
3119 		set_bit(FI_INLINE_XATTR, fi->flags);
3120 	if (ri->i_inline & F2FS_INLINE_DATA)
3121 		set_bit(FI_INLINE_DATA, fi->flags);
3122 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3123 		set_bit(FI_INLINE_DENTRY, fi->flags);
3124 	if (ri->i_inline & F2FS_DATA_EXIST)
3125 		set_bit(FI_DATA_EXIST, fi->flags);
3126 	if (ri->i_inline & F2FS_INLINE_DOTS)
3127 		set_bit(FI_INLINE_DOTS, fi->flags);
3128 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3129 		set_bit(FI_EXTRA_ATTR, fi->flags);
3130 	if (ri->i_inline & F2FS_PIN_FILE)
3131 		set_bit(FI_PIN_FILE, fi->flags);
3132 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3133 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3134 }
3135 
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3136 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3137 {
3138 	ri->i_inline = 0;
3139 
3140 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3141 		ri->i_inline |= F2FS_INLINE_XATTR;
3142 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3143 		ri->i_inline |= F2FS_INLINE_DATA;
3144 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3145 		ri->i_inline |= F2FS_INLINE_DENTRY;
3146 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3147 		ri->i_inline |= F2FS_DATA_EXIST;
3148 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3149 		ri->i_inline |= F2FS_INLINE_DOTS;
3150 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3151 		ri->i_inline |= F2FS_EXTRA_ATTR;
3152 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3153 		ri->i_inline |= F2FS_PIN_FILE;
3154 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3155 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3156 }
3157 
f2fs_has_extra_attr(struct inode * inode)3158 static inline int f2fs_has_extra_attr(struct inode *inode)
3159 {
3160 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3161 }
3162 
f2fs_has_inline_xattr(struct inode * inode)3163 static inline int f2fs_has_inline_xattr(struct inode *inode)
3164 {
3165 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3166 }
3167 
f2fs_compressed_file(struct inode * inode)3168 static inline int f2fs_compressed_file(struct inode *inode)
3169 {
3170 	return S_ISREG(inode->i_mode) &&
3171 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3172 }
3173 
f2fs_need_compress_data(struct inode * inode)3174 static inline bool f2fs_need_compress_data(struct inode *inode)
3175 {
3176 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3177 
3178 	if (!f2fs_compressed_file(inode))
3179 		return false;
3180 
3181 	if (compress_mode == COMPR_MODE_FS)
3182 		return true;
3183 	else if (compress_mode == COMPR_MODE_USER &&
3184 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3185 		return true;
3186 
3187 	return false;
3188 }
3189 
addrs_per_inode(struct inode * inode)3190 static inline unsigned int addrs_per_inode(struct inode *inode)
3191 {
3192 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3193 				get_inline_xattr_addrs(inode);
3194 
3195 	if (!f2fs_compressed_file(inode))
3196 		return addrs;
3197 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3198 }
3199 
addrs_per_block(struct inode * inode)3200 static inline unsigned int addrs_per_block(struct inode *inode)
3201 {
3202 	if (!f2fs_compressed_file(inode))
3203 		return DEF_ADDRS_PER_BLOCK;
3204 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3205 }
3206 
inline_xattr_addr(struct inode * inode,struct page * page)3207 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3208 {
3209 	struct f2fs_inode *ri = F2FS_INODE(page);
3210 
3211 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3212 					get_inline_xattr_addrs(inode)]);
3213 }
3214 
inline_xattr_size(struct inode * inode)3215 static inline int inline_xattr_size(struct inode *inode)
3216 {
3217 	if (f2fs_has_inline_xattr(inode))
3218 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3219 	return 0;
3220 }
3221 
3222 /*
3223  * Notice: check inline_data flag without inode page lock is unsafe.
3224  * It could change at any time by f2fs_convert_inline_page().
3225  */
f2fs_has_inline_data(struct inode * inode)3226 static inline int f2fs_has_inline_data(struct inode *inode)
3227 {
3228 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3229 }
3230 
f2fs_exist_data(struct inode * inode)3231 static inline int f2fs_exist_data(struct inode *inode)
3232 {
3233 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3234 }
3235 
f2fs_has_inline_dots(struct inode * inode)3236 static inline int f2fs_has_inline_dots(struct inode *inode)
3237 {
3238 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3239 }
3240 
f2fs_is_mmap_file(struct inode * inode)3241 static inline int f2fs_is_mmap_file(struct inode *inode)
3242 {
3243 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3244 }
3245 
f2fs_is_pinned_file(struct inode * inode)3246 static inline bool f2fs_is_pinned_file(struct inode *inode)
3247 {
3248 	return is_inode_flag_set(inode, FI_PIN_FILE);
3249 }
3250 
f2fs_is_atomic_file(struct inode * inode)3251 static inline bool f2fs_is_atomic_file(struct inode *inode)
3252 {
3253 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3254 }
3255 
f2fs_is_cow_file(struct inode * inode)3256 static inline bool f2fs_is_cow_file(struct inode *inode)
3257 {
3258 	return is_inode_flag_set(inode, FI_COW_FILE);
3259 }
3260 
f2fs_is_first_block_written(struct inode * inode)3261 static inline bool f2fs_is_first_block_written(struct inode *inode)
3262 {
3263 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3264 }
3265 
f2fs_is_drop_cache(struct inode * inode)3266 static inline bool f2fs_is_drop_cache(struct inode *inode)
3267 {
3268 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3269 }
3270 
inline_data_addr(struct inode * inode,struct page * page)3271 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3272 {
3273 	struct f2fs_inode *ri = F2FS_INODE(page);
3274 	int extra_size = get_extra_isize(inode);
3275 
3276 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3277 }
3278 
f2fs_has_inline_dentry(struct inode * inode)3279 static inline int f2fs_has_inline_dentry(struct inode *inode)
3280 {
3281 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3282 }
3283 
is_file(struct inode * inode,int type)3284 static inline int is_file(struct inode *inode, int type)
3285 {
3286 	return F2FS_I(inode)->i_advise & type;
3287 }
3288 
set_file(struct inode * inode,int type)3289 static inline void set_file(struct inode *inode, int type)
3290 {
3291 	if (is_file(inode, type))
3292 		return;
3293 	F2FS_I(inode)->i_advise |= type;
3294 	f2fs_mark_inode_dirty_sync(inode, true);
3295 }
3296 
clear_file(struct inode * inode,int type)3297 static inline void clear_file(struct inode *inode, int type)
3298 {
3299 	if (!is_file(inode, type))
3300 		return;
3301 	F2FS_I(inode)->i_advise &= ~type;
3302 	f2fs_mark_inode_dirty_sync(inode, true);
3303 }
3304 
f2fs_is_time_consistent(struct inode * inode)3305 static inline bool f2fs_is_time_consistent(struct inode *inode)
3306 {
3307 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3308 		return false;
3309 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3310 		return false;
3311 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3312 		return false;
3313 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3314 						&F2FS_I(inode)->i_crtime))
3315 		return false;
3316 	return true;
3317 }
3318 
f2fs_skip_inode_update(struct inode * inode,int dsync)3319 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3320 {
3321 	bool ret;
3322 
3323 	if (dsync) {
3324 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3325 
3326 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3327 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3328 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3329 		return ret;
3330 	}
3331 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3332 			file_keep_isize(inode) ||
3333 			i_size_read(inode) & ~PAGE_MASK)
3334 		return false;
3335 
3336 	if (!f2fs_is_time_consistent(inode))
3337 		return false;
3338 
3339 	spin_lock(&F2FS_I(inode)->i_size_lock);
3340 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3341 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3342 
3343 	return ret;
3344 }
3345 
f2fs_readonly(struct super_block * sb)3346 static inline bool f2fs_readonly(struct super_block *sb)
3347 {
3348 	return sb_rdonly(sb);
3349 }
3350 
f2fs_cp_error(struct f2fs_sb_info * sbi)3351 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3352 {
3353 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3354 }
3355 
is_dot_dotdot(const u8 * name,size_t len)3356 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3357 {
3358 	if (len == 1 && name[0] == '.')
3359 		return true;
3360 
3361 	if (len == 2 && name[0] == '.' && name[1] == '.')
3362 		return true;
3363 
3364 	return false;
3365 }
3366 
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3367 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3368 					size_t size, gfp_t flags)
3369 {
3370 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3371 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3372 		return NULL;
3373 	}
3374 
3375 	return kmalloc(size, flags);
3376 }
3377 
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3378 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3379 					size_t size, gfp_t flags)
3380 {
3381 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3382 }
3383 
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3384 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3385 					size_t size, gfp_t flags)
3386 {
3387 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3388 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3389 		return NULL;
3390 	}
3391 
3392 	return kvmalloc(size, flags);
3393 }
3394 
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3395 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3396 					size_t size, gfp_t flags)
3397 {
3398 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3399 }
3400 
get_extra_isize(struct inode * inode)3401 static inline int get_extra_isize(struct inode *inode)
3402 {
3403 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3404 }
3405 
get_inline_xattr_addrs(struct inode * inode)3406 static inline int get_inline_xattr_addrs(struct inode *inode)
3407 {
3408 	return F2FS_I(inode)->i_inline_xattr_size;
3409 }
3410 
3411 #define f2fs_get_inode_mode(i) \
3412 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3413 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3414 
3415 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3416 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3417 	offsetof(struct f2fs_inode, i_extra_isize))	\
3418 
3419 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3420 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3421 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3422 		sizeof((f2fs_inode)->field))			\
3423 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3424 
3425 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3426 
3427 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3428 
3429 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3430 					block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3431 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3432 					block_t blkaddr, int type)
3433 {
3434 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3435 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3436 			 blkaddr, type);
3437 		f2fs_bug_on(sbi, 1);
3438 	}
3439 }
3440 
__is_valid_data_blkaddr(block_t blkaddr)3441 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3442 {
3443 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3444 			blkaddr == COMPRESS_ADDR)
3445 		return false;
3446 	return true;
3447 }
3448 
3449 /*
3450  * file.c
3451  */
3452 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3453 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3454 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3455 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3456 int f2fs_truncate(struct inode *inode);
3457 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3458 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3459 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3460 		 struct iattr *attr);
3461 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3462 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3463 int f2fs_precache_extents(struct inode *inode);
3464 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3465 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3466 		      struct dentry *dentry, struct fileattr *fa);
3467 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3468 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3469 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3470 int f2fs_pin_file_control(struct inode *inode, bool inc);
3471 
3472 /*
3473  * inode.c
3474  */
3475 void f2fs_set_inode_flags(struct inode *inode);
3476 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3477 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3478 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3479 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3480 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3481 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3482 void f2fs_update_inode_page(struct inode *inode);
3483 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3484 void f2fs_evict_inode(struct inode *inode);
3485 void f2fs_handle_failed_inode(struct inode *inode);
3486 
3487 /*
3488  * namei.c
3489  */
3490 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3491 							bool hot, bool set);
3492 struct dentry *f2fs_get_parent(struct dentry *child);
3493 int f2fs_get_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
3494 		     struct inode **new_inode);
3495 
3496 /*
3497  * dir.c
3498  */
3499 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3500 int f2fs_init_casefolded_name(const struct inode *dir,
3501 			      struct f2fs_filename *fname);
3502 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3503 			int lookup, struct f2fs_filename *fname);
3504 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3505 			struct f2fs_filename *fname);
3506 void f2fs_free_filename(struct f2fs_filename *fname);
3507 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3508 			const struct f2fs_filename *fname, int *max_slots);
3509 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3510 			unsigned int start_pos, struct fscrypt_str *fstr);
3511 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3512 			struct f2fs_dentry_ptr *d);
3513 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3514 			const struct f2fs_filename *fname, struct page *dpage);
3515 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3516 			unsigned int current_depth);
3517 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3518 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3519 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3520 					 const struct f2fs_filename *fname,
3521 					 struct page **res_page);
3522 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3523 			const struct qstr *child, struct page **res_page);
3524 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3525 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3526 			struct page **page);
3527 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3528 			struct page *page, struct inode *inode);
3529 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3530 			  const struct f2fs_filename *fname);
3531 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3532 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3533 			unsigned int bit_pos);
3534 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3535 			struct inode *inode, nid_t ino, umode_t mode);
3536 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3537 			struct inode *inode, nid_t ino, umode_t mode);
3538 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3539 			struct inode *inode, nid_t ino, umode_t mode);
3540 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3541 			struct inode *dir, struct inode *inode);
3542 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3543 bool f2fs_empty_dir(struct inode *dir);
3544 
f2fs_add_link(struct dentry * dentry,struct inode * inode)3545 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3546 {
3547 	if (fscrypt_is_nokey_name(dentry))
3548 		return -ENOKEY;
3549 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3550 				inode, inode->i_ino, inode->i_mode);
3551 }
3552 
3553 /*
3554  * super.c
3555  */
3556 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3557 void f2fs_inode_synced(struct inode *inode);
3558 int f2fs_dquot_initialize(struct inode *inode);
3559 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3560 int f2fs_quota_sync(struct super_block *sb, int type);
3561 loff_t max_file_blocks(struct inode *inode);
3562 void f2fs_quota_off_umount(struct super_block *sb);
3563 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason);
3564 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3565 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3566 int f2fs_sync_fs(struct super_block *sb, int sync);
3567 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3568 
3569 /*
3570  * hash.c
3571  */
3572 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3573 
3574 /*
3575  * node.c
3576  */
3577 struct node_info;
3578 
3579 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3580 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3581 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3582 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3583 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3584 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3585 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3586 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3587 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3588 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3589 				struct node_info *ni, bool checkpoint_context);
3590 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3591 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3592 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3593 int f2fs_truncate_xattr_node(struct inode *inode);
3594 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3595 					unsigned int seq_id);
3596 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3597 int f2fs_remove_inode_page(struct inode *inode);
3598 struct page *f2fs_new_inode_page(struct inode *inode);
3599 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3600 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3601 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3602 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3603 int f2fs_move_node_page(struct page *node_page, int gc_type);
3604 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3605 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3606 			struct writeback_control *wbc, bool atomic,
3607 			unsigned int *seq_id);
3608 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3609 			struct writeback_control *wbc,
3610 			bool do_balance, enum iostat_type io_type);
3611 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3612 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3613 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3614 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3615 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3616 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3617 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3618 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3619 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3620 			unsigned int segno, struct f2fs_summary_block *sum);
3621 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3622 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3623 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3624 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3625 int __init f2fs_create_node_manager_caches(void);
3626 void f2fs_destroy_node_manager_caches(void);
3627 
3628 /*
3629  * segment.c
3630  */
3631 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3632 int f2fs_commit_atomic_write(struct inode *inode);
3633 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3634 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3635 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3636 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3637 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3638 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3639 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3640 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3641 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3642 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3643 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3644 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3645 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3646 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3647 					struct cp_control *cpc);
3648 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3649 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3650 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3651 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3652 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3653 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3654 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3655 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3656 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3657 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3658 			unsigned int *newseg, bool new_sec, int dir);
3659 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3660 					unsigned int start, unsigned int end);
3661 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3662 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3663 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3664 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3665 					struct cp_control *cpc);
3666 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3667 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3668 					block_t blk_addr);
3669 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3670 						enum iostat_type io_type);
3671 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3672 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3673 			struct f2fs_io_info *fio);
3674 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3675 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3676 			block_t old_blkaddr, block_t new_blkaddr,
3677 			bool recover_curseg, bool recover_newaddr,
3678 			bool from_gc);
3679 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3680 			block_t old_addr, block_t new_addr,
3681 			unsigned char version, bool recover_curseg,
3682 			bool recover_newaddr);
3683 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3684 			block_t old_blkaddr, block_t *new_blkaddr,
3685 			struct f2fs_summary *sum, int type,
3686 			struct f2fs_io_info *fio);
3687 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3688 					block_t blkaddr, unsigned int blkcnt);
3689 void f2fs_wait_on_page_writeback(struct page *page,
3690 			enum page_type type, bool ordered, bool locked);
3691 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3692 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3693 								block_t len);
3694 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3695 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3696 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3697 			unsigned int val, int alloc);
3698 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3699 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3700 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3701 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3702 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3703 int __init f2fs_create_segment_manager_caches(void);
3704 void f2fs_destroy_segment_manager_caches(void);
3705 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3706 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3707 			unsigned int segno);
3708 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3709 			unsigned int segno);
3710 
3711 #define DEF_FRAGMENT_SIZE	4
3712 #define MIN_FRAGMENT_SIZE	1
3713 #define MAX_FRAGMENT_SIZE	512
3714 
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3715 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3716 {
3717 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3718 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3719 }
3720 
3721 /*
3722  * checkpoint.c
3723  */
3724 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3725 							unsigned char reason);
3726 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3727 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3728 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3729 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3730 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3731 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3732 					block_t blkaddr, int type);
3733 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3734 			int type, bool sync);
3735 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3736 							unsigned int ra_blocks);
3737 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3738 			long nr_to_write, enum iostat_type io_type);
3739 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3740 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3741 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3742 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3743 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3744 					unsigned int devidx, int type);
3745 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3746 					unsigned int devidx, int type);
3747 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3748 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3749 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3750 void f2fs_add_orphan_inode(struct inode *inode);
3751 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3752 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3753 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3754 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3755 void f2fs_remove_dirty_inode(struct inode *inode);
3756 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3757 								bool from_cp);
3758 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3759 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3760 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3761 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3762 int __init f2fs_create_checkpoint_caches(void);
3763 void f2fs_destroy_checkpoint_caches(void);
3764 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3765 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3766 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3767 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3768 
3769 /*
3770  * data.c
3771  */
3772 int __init f2fs_init_bioset(void);
3773 void f2fs_destroy_bioset(void);
3774 int f2fs_init_bio_entry_cache(void);
3775 void f2fs_destroy_bio_entry_cache(void);
3776 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3777 				struct bio *bio, enum page_type type);
3778 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3779 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3780 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3781 				struct inode *inode, struct page *page,
3782 				nid_t ino, enum page_type type);
3783 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3784 					struct bio **bio, struct page *page);
3785 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3786 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3787 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3788 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3789 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3790 		block_t blk_addr, sector_t *sector);
3791 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3792 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3793 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3794 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3795 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3796 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3797 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3798 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3799 			blk_opf_t op_flags, bool for_write);
3800 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3801 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3802 			bool for_write);
3803 struct page *f2fs_get_new_data_page(struct inode *inode,
3804 			struct page *ipage, pgoff_t index, bool new_i_size);
3805 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3806 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3807 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3808 			int create, int flag);
3809 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3810 			u64 start, u64 len);
3811 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3812 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3813 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3814 int f2fs_write_single_data_page(struct page *page, int *submitted,
3815 				struct bio **bio, sector_t *last_block,
3816 				struct writeback_control *wbc,
3817 				enum iostat_type io_type,
3818 				int compr_blocks, bool allow_balance);
3819 void f2fs_write_failed(struct inode *inode, loff_t to);
3820 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3821 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3822 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3823 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3824 int f2fs_init_post_read_processing(void);
3825 void f2fs_destroy_post_read_processing(void);
3826 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3827 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3828 extern const struct iomap_ops f2fs_iomap_ops;
3829 
3830 /*
3831  * gc.c
3832  */
3833 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3834 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3835 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3836 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3837 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3838 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3839 int __init f2fs_create_garbage_collection_cache(void);
3840 void f2fs_destroy_garbage_collection_cache(void);
3841 
3842 /*
3843  * recovery.c
3844  */
3845 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3846 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3847 int __init f2fs_create_recovery_cache(void);
3848 void f2fs_destroy_recovery_cache(void);
3849 
3850 /*
3851  * debug.c
3852  */
3853 #ifdef CONFIG_F2FS_STAT_FS
3854 struct f2fs_stat_info {
3855 	struct list_head stat_list;
3856 	struct f2fs_sb_info *sbi;
3857 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3858 	int main_area_segs, main_area_sections, main_area_zones;
3859 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3860 	unsigned long long hit_total, total_ext;
3861 	int ext_tree, zombie_tree, ext_node;
3862 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3863 	int ndirty_data, ndirty_qdata;
3864 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3865 	int nats, dirty_nats, sits, dirty_sits;
3866 	int free_nids, avail_nids, alloc_nids;
3867 	int total_count, utilization;
3868 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3869 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3870 	int nr_dio_read, nr_dio_write;
3871 	unsigned int io_skip_bggc, other_skip_bggc;
3872 	int nr_flushing, nr_flushed, flush_list_empty;
3873 	int nr_discarding, nr_discarded;
3874 	int nr_discard_cmd;
3875 	unsigned int undiscard_blks;
3876 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3877 	unsigned int cur_ckpt_time, peak_ckpt_time;
3878 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3879 	int compr_inode, swapfile_inode;
3880 	unsigned long long compr_blocks;
3881 	int aw_cnt, max_aw_cnt;
3882 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3883 	unsigned int bimodal, avg_vblocks;
3884 	int util_free, util_valid, util_invalid;
3885 	int rsvd_segs, overp_segs;
3886 	int dirty_count, node_pages, meta_pages, compress_pages;
3887 	int compress_page_hit;
3888 	int prefree_count, call_count, cp_count, bg_cp_count;
3889 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3890 	int bg_node_segs, bg_data_segs;
3891 	int tot_blks, data_blks, node_blks;
3892 	int bg_data_blks, bg_node_blks;
3893 	int curseg[NR_CURSEG_TYPE];
3894 	int cursec[NR_CURSEG_TYPE];
3895 	int curzone[NR_CURSEG_TYPE];
3896 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3897 	unsigned int full_seg[NR_CURSEG_TYPE];
3898 	unsigned int valid_blks[NR_CURSEG_TYPE];
3899 
3900 	unsigned int meta_count[META_MAX];
3901 	unsigned int segment_count[2];
3902 	unsigned int block_count[2];
3903 	unsigned int inplace_count;
3904 	unsigned long long base_mem, cache_mem, page_mem;
3905 };
3906 
F2FS_STAT(struct f2fs_sb_info * sbi)3907 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3908 {
3909 	return (struct f2fs_stat_info *)sbi->stat_info;
3910 }
3911 
3912 #define stat_inc_cp_count(si)		((si)->cp_count++)
3913 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3914 #define stat_inc_call_count(si)		((si)->call_count++)
3915 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3916 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3917 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3918 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3919 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3920 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3921 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3922 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3923 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3924 #define stat_inc_inline_xattr(inode)					\
3925 	do {								\
3926 		if (f2fs_has_inline_xattr(inode))			\
3927 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3928 	} while (0)
3929 #define stat_dec_inline_xattr(inode)					\
3930 	do {								\
3931 		if (f2fs_has_inline_xattr(inode))			\
3932 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3933 	} while (0)
3934 #define stat_inc_inline_inode(inode)					\
3935 	do {								\
3936 		if (f2fs_has_inline_data(inode))			\
3937 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3938 	} while (0)
3939 #define stat_dec_inline_inode(inode)					\
3940 	do {								\
3941 		if (f2fs_has_inline_data(inode))			\
3942 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3943 	} while (0)
3944 #define stat_inc_inline_dir(inode)					\
3945 	do {								\
3946 		if (f2fs_has_inline_dentry(inode))			\
3947 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3948 	} while (0)
3949 #define stat_dec_inline_dir(inode)					\
3950 	do {								\
3951 		if (f2fs_has_inline_dentry(inode))			\
3952 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3953 	} while (0)
3954 #define stat_inc_compr_inode(inode)					\
3955 	do {								\
3956 		if (f2fs_compressed_file(inode))			\
3957 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3958 	} while (0)
3959 #define stat_dec_compr_inode(inode)					\
3960 	do {								\
3961 		if (f2fs_compressed_file(inode))			\
3962 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3963 	} while (0)
3964 #define stat_add_compr_blocks(inode, blocks)				\
3965 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3966 #define stat_sub_compr_blocks(inode, blocks)				\
3967 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3968 #define stat_inc_swapfile_inode(inode)					\
3969 		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
3970 #define stat_dec_swapfile_inode(inode)					\
3971 		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
3972 #define stat_inc_atomic_inode(inode)					\
3973 			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
3974 #define stat_dec_atomic_inode(inode)					\
3975 			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
3976 #define stat_inc_meta_count(sbi, blkaddr)				\
3977 	do {								\
3978 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3979 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3980 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3981 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3982 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3983 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3984 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3985 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3986 	} while (0)
3987 #define stat_inc_seg_type(sbi, curseg)					\
3988 		((sbi)->segment_count[(curseg)->alloc_type]++)
3989 #define stat_inc_block_count(sbi, curseg)				\
3990 		((sbi)->block_count[(curseg)->alloc_type]++)
3991 #define stat_inc_inplace_blocks(sbi)					\
3992 		(atomic_inc(&(sbi)->inplace_count))
3993 #define stat_update_max_atomic_write(inode)				\
3994 	do {								\
3995 		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
3996 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3997 		if (cur > max)						\
3998 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3999 	} while (0)
4000 #define stat_inc_seg_count(sbi, type, gc_type)				\
4001 	do {								\
4002 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4003 		si->tot_segs++;						\
4004 		if ((type) == SUM_TYPE_DATA) {				\
4005 			si->data_segs++;				\
4006 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
4007 		} else {						\
4008 			si->node_segs++;				\
4009 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
4010 		}							\
4011 	} while (0)
4012 
4013 #define stat_inc_tot_blk_count(si, blks)				\
4014 	((si)->tot_blks += (blks))
4015 
4016 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4017 	do {								\
4018 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4019 		stat_inc_tot_blk_count(si, blks);			\
4020 		si->data_blks += (blks);				\
4021 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4022 	} while (0)
4023 
4024 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4025 	do {								\
4026 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4027 		stat_inc_tot_blk_count(si, blks);			\
4028 		si->node_blks += (blks);				\
4029 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4030 	} while (0)
4031 
4032 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4033 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4034 void __init f2fs_create_root_stats(void);
4035 void f2fs_destroy_root_stats(void);
4036 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4037 #else
4038 #define stat_inc_cp_count(si)				do { } while (0)
4039 #define stat_inc_bg_cp_count(si)			do { } while (0)
4040 #define stat_inc_call_count(si)				do { } while (0)
4041 #define stat_inc_bggc_count(si)				do { } while (0)
4042 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4043 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4044 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4045 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4046 #define stat_inc_total_hit(sbi)				do { } while (0)
4047 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
4048 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4049 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
4050 #define stat_inc_inline_xattr(inode)			do { } while (0)
4051 #define stat_dec_inline_xattr(inode)			do { } while (0)
4052 #define stat_inc_inline_inode(inode)			do { } while (0)
4053 #define stat_dec_inline_inode(inode)			do { } while (0)
4054 #define stat_inc_inline_dir(inode)			do { } while (0)
4055 #define stat_dec_inline_dir(inode)			do { } while (0)
4056 #define stat_inc_compr_inode(inode)			do { } while (0)
4057 #define stat_dec_compr_inode(inode)			do { } while (0)
4058 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4059 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4060 #define stat_inc_swapfile_inode(inode)			do { } while (0)
4061 #define stat_dec_swapfile_inode(inode)			do { } while (0)
4062 #define stat_inc_atomic_inode(inode)			do { } while (0)
4063 #define stat_dec_atomic_inode(inode)			do { } while (0)
4064 #define stat_update_max_atomic_write(inode)		do { } while (0)
4065 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4066 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4067 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4068 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4069 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
4070 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4071 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4072 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4073 
f2fs_build_stats(struct f2fs_sb_info * sbi)4074 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4075 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4076 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4077 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4078 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4079 #endif
4080 
4081 extern const struct file_operations f2fs_dir_operations;
4082 extern const struct file_operations f2fs_file_operations;
4083 extern const struct inode_operations f2fs_file_inode_operations;
4084 extern const struct address_space_operations f2fs_dblock_aops;
4085 extern const struct address_space_operations f2fs_node_aops;
4086 extern const struct address_space_operations f2fs_meta_aops;
4087 extern const struct inode_operations f2fs_dir_inode_operations;
4088 extern const struct inode_operations f2fs_symlink_inode_operations;
4089 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4090 extern const struct inode_operations f2fs_special_inode_operations;
4091 extern struct kmem_cache *f2fs_inode_entry_slab;
4092 
4093 /*
4094  * inline.c
4095  */
4096 bool f2fs_may_inline_data(struct inode *inode);
4097 bool f2fs_sanity_check_inline_data(struct inode *inode);
4098 bool f2fs_may_inline_dentry(struct inode *inode);
4099 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4100 void f2fs_truncate_inline_inode(struct inode *inode,
4101 						struct page *ipage, u64 from);
4102 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4103 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4104 int f2fs_convert_inline_inode(struct inode *inode);
4105 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4106 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4107 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4108 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4109 					const struct f2fs_filename *fname,
4110 					struct page **res_page);
4111 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4112 			struct page *ipage);
4113 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4114 			struct inode *inode, nid_t ino, umode_t mode);
4115 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4116 				struct page *page, struct inode *dir,
4117 				struct inode *inode);
4118 bool f2fs_empty_inline_dir(struct inode *dir);
4119 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4120 			struct fscrypt_str *fstr);
4121 int f2fs_inline_data_fiemap(struct inode *inode,
4122 			struct fiemap_extent_info *fieinfo,
4123 			__u64 start, __u64 len);
4124 
4125 /*
4126  * shrinker.c
4127  */
4128 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4129 			struct shrink_control *sc);
4130 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4131 			struct shrink_control *sc);
4132 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4133 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4134 
4135 /*
4136  * extent_cache.c
4137  */
4138 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
4139 				struct rb_entry *cached_re, unsigned int ofs);
4140 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
4141 				struct rb_root_cached *root,
4142 				struct rb_node **parent,
4143 				unsigned long long key, bool *left_most);
4144 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
4145 				struct rb_root_cached *root,
4146 				struct rb_node **parent,
4147 				unsigned int ofs, bool *leftmost);
4148 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
4149 		struct rb_entry *cached_re, unsigned int ofs,
4150 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
4151 		struct rb_node ***insert_p, struct rb_node **insert_parent,
4152 		bool force, bool *leftmost);
4153 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
4154 				struct rb_root_cached *root, bool check_key);
4155 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
4156 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
4157 void f2fs_drop_extent_tree(struct inode *inode);
4158 unsigned int f2fs_destroy_extent_node(struct inode *inode);
4159 void f2fs_destroy_extent_tree(struct inode *inode);
4160 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
4161 			struct extent_info *ei);
4162 void f2fs_update_extent_cache(struct dnode_of_data *dn);
4163 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
4164 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4165 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4166 int __init f2fs_create_extent_cache(void);
4167 void f2fs_destroy_extent_cache(void);
4168 
4169 /*
4170  * sysfs.c
4171  */
4172 #define MIN_RA_MUL	2
4173 #define MAX_RA_MUL	256
4174 
4175 int __init f2fs_init_sysfs(void);
4176 void f2fs_exit_sysfs(void);
4177 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4178 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4179 
4180 /* verity.c */
4181 extern const struct fsverity_operations f2fs_verityops;
4182 
4183 /*
4184  * crypto support
4185  */
f2fs_encrypted_file(struct inode * inode)4186 static inline bool f2fs_encrypted_file(struct inode *inode)
4187 {
4188 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4189 }
4190 
f2fs_set_encrypted_inode(struct inode * inode)4191 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4192 {
4193 #ifdef CONFIG_FS_ENCRYPTION
4194 	file_set_encrypt(inode);
4195 	f2fs_set_inode_flags(inode);
4196 #endif
4197 }
4198 
4199 /*
4200  * Returns true if the reads of the inode's data need to undergo some
4201  * postprocessing step, like decryption or authenticity verification.
4202  */
f2fs_post_read_required(struct inode * inode)4203 static inline bool f2fs_post_read_required(struct inode *inode)
4204 {
4205 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4206 		f2fs_compressed_file(inode);
4207 }
4208 
4209 /*
4210  * compress.c
4211  */
4212 #ifdef CONFIG_F2FS_FS_COMPRESSION
4213 bool f2fs_is_compressed_page(struct page *page);
4214 struct page *f2fs_compress_control_page(struct page *page);
4215 int f2fs_prepare_compress_overwrite(struct inode *inode,
4216 			struct page **pagep, pgoff_t index, void **fsdata);
4217 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4218 					pgoff_t index, unsigned copied);
4219 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4220 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4221 bool f2fs_is_compress_backend_ready(struct inode *inode);
4222 int f2fs_init_compress_mempool(void);
4223 void f2fs_destroy_compress_mempool(void);
4224 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4225 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4226 				block_t blkaddr, bool in_task);
4227 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4228 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4229 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4230 				int index, int nr_pages, bool uptodate);
4231 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4232 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4233 int f2fs_write_multi_pages(struct compress_ctx *cc,
4234 						int *submitted,
4235 						struct writeback_control *wbc,
4236 						enum iostat_type io_type);
4237 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4238 void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4239 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4240 				unsigned int c_len);
4241 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4242 				unsigned nr_pages, sector_t *last_block_in_bio,
4243 				bool is_readahead, bool for_write);
4244 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4245 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4246 				bool in_task);
4247 void f2fs_put_page_dic(struct page *page, bool in_task);
4248 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4249 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4250 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4251 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4252 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4253 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4254 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4255 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4256 int __init f2fs_init_compress_cache(void);
4257 void f2fs_destroy_compress_cache(void);
4258 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4259 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4260 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4261 						nid_t ino, block_t blkaddr);
4262 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4263 								block_t blkaddr);
4264 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4265 #define inc_compr_inode_stat(inode)					\
4266 	do {								\
4267 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4268 		sbi->compr_new_inode++;					\
4269 	} while (0)
4270 #define add_compr_block_stat(inode, blocks)				\
4271 	do {								\
4272 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4273 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4274 		sbi->compr_written_block += blocks;			\
4275 		sbi->compr_saved_block += diff;				\
4276 	} while (0)
4277 #else
f2fs_is_compressed_page(struct page * page)4278 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4279 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4280 {
4281 	if (!f2fs_compressed_file(inode))
4282 		return true;
4283 	/* not support compression */
4284 	return false;
4285 }
f2fs_compress_control_page(struct page * page)4286 static inline struct page *f2fs_compress_control_page(struct page *page)
4287 {
4288 	WARN_ON_ONCE(1);
4289 	return ERR_PTR(-EINVAL);
4290 }
f2fs_init_compress_mempool(void)4291 static inline int f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4292 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4293 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4294 				bool in_task) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)4295 static inline void f2fs_end_read_compressed_page(struct page *page,
4296 				bool failed, block_t blkaddr, bool in_task)
4297 {
4298 	WARN_ON_ONCE(1);
4299 }
f2fs_put_page_dic(struct page * page,bool in_task)4300 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4301 {
4302 	WARN_ON_ONCE(1);
4303 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn)4304 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4305 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4306 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4307 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4308 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4309 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4310 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4311 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)4312 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4313 				block_t blkaddr) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4314 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4315 				struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4316 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4317 				struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4318 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4319 							nid_t ino) { }
4320 #define inc_compr_inode_stat(inode)		do { } while (0)
f2fs_update_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4321 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4322 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4323 				unsigned int c_len) { }
4324 #endif
4325 
set_compress_context(struct inode * inode)4326 static inline int set_compress_context(struct inode *inode)
4327 {
4328 #ifdef CONFIG_F2FS_FS_COMPRESSION
4329 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4330 
4331 	F2FS_I(inode)->i_compress_algorithm =
4332 			F2FS_OPTION(sbi).compress_algorithm;
4333 	F2FS_I(inode)->i_log_cluster_size =
4334 			F2FS_OPTION(sbi).compress_log_size;
4335 	F2FS_I(inode)->i_compress_flag =
4336 			F2FS_OPTION(sbi).compress_chksum ?
4337 				1 << COMPRESS_CHKSUM : 0;
4338 	F2FS_I(inode)->i_cluster_size =
4339 			1 << F2FS_I(inode)->i_log_cluster_size;
4340 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4341 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4342 			F2FS_OPTION(sbi).compress_level)
4343 		F2FS_I(inode)->i_compress_flag |=
4344 				F2FS_OPTION(sbi).compress_level <<
4345 				COMPRESS_LEVEL_OFFSET;
4346 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4347 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4348 	stat_inc_compr_inode(inode);
4349 	inc_compr_inode_stat(inode);
4350 	f2fs_mark_inode_dirty_sync(inode, true);
4351 	return 0;
4352 #else
4353 	return -EOPNOTSUPP;
4354 #endif
4355 }
4356 
f2fs_disable_compressed_file(struct inode * inode)4357 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4358 {
4359 	struct f2fs_inode_info *fi = F2FS_I(inode);
4360 
4361 	if (!f2fs_compressed_file(inode))
4362 		return true;
4363 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4364 		return false;
4365 
4366 	fi->i_flags &= ~F2FS_COMPR_FL;
4367 	stat_dec_compr_inode(inode);
4368 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4369 	f2fs_mark_inode_dirty_sync(inode, true);
4370 	return true;
4371 }
4372 
4373 #define F2FS_FEATURE_FUNCS(name, flagname) \
4374 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4375 { \
4376 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4377 }
4378 
4379 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4380 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4381 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4382 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4383 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4384 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4385 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4386 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4387 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4388 F2FS_FEATURE_FUNCS(verity, VERITY);
4389 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4390 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4391 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4392 F2FS_FEATURE_FUNCS(readonly, RO);
4393 
f2fs_may_extent_tree(struct inode * inode)4394 static inline bool f2fs_may_extent_tree(struct inode *inode)
4395 {
4396 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4397 
4398 	if (!test_opt(sbi, EXTENT_CACHE) ||
4399 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
4400 			(is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4401 			 !f2fs_sb_has_readonly(sbi)))
4402 		return false;
4403 
4404 	/*
4405 	 * for recovered files during mount do not create extents
4406 	 * if shrinker is not registered.
4407 	 */
4408 	if (list_empty(&sbi->s_list))
4409 		return false;
4410 
4411 	return S_ISREG(inode->i_mode);
4412 }
4413 
4414 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4415 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4416 				    block_t blkaddr)
4417 {
4418 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4419 
4420 	return test_bit(zno, FDEV(devi).blkz_seq);
4421 }
4422 #endif
4423 
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4424 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4425 {
4426 	return f2fs_sb_has_blkzoned(sbi);
4427 }
4428 
f2fs_bdev_support_discard(struct block_device * bdev)4429 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4430 {
4431 	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4432 }
4433 
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4434 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4435 {
4436 	int i;
4437 
4438 	if (!f2fs_is_multi_device(sbi))
4439 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4440 
4441 	for (i = 0; i < sbi->s_ndevs; i++)
4442 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4443 			return true;
4444 	return false;
4445 }
4446 
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4447 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4448 {
4449 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4450 					f2fs_hw_should_discard(sbi);
4451 }
4452 
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4453 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4454 {
4455 	int i;
4456 
4457 	if (!f2fs_is_multi_device(sbi))
4458 		return bdev_read_only(sbi->sb->s_bdev);
4459 
4460 	for (i = 0; i < sbi->s_ndevs; i++)
4461 		if (bdev_read_only(FDEV(i).bdev))
4462 			return true;
4463 	return false;
4464 }
4465 
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4466 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4467 {
4468 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4469 }
4470 
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4471 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4472 {
4473 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4474 }
4475 
f2fs_may_compress(struct inode * inode)4476 static inline bool f2fs_may_compress(struct inode *inode)
4477 {
4478 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4479 		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode))
4480 		return false;
4481 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4482 }
4483 
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4484 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4485 						u64 blocks, bool add)
4486 {
4487 	struct f2fs_inode_info *fi = F2FS_I(inode);
4488 	int diff = fi->i_cluster_size - blocks;
4489 
4490 	/* don't update i_compr_blocks if saved blocks were released */
4491 	if (!add && !atomic_read(&fi->i_compr_blocks))
4492 		return;
4493 
4494 	if (add) {
4495 		atomic_add(diff, &fi->i_compr_blocks);
4496 		stat_add_compr_blocks(inode, diff);
4497 	} else {
4498 		atomic_sub(diff, &fi->i_compr_blocks);
4499 		stat_sub_compr_blocks(inode, diff);
4500 	}
4501 	f2fs_mark_inode_dirty_sync(inode, true);
4502 }
4503 
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4504 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4505 								int flag)
4506 {
4507 	if (!f2fs_is_multi_device(sbi))
4508 		return false;
4509 	if (flag != F2FS_GET_BLOCK_DIO)
4510 		return false;
4511 	return sbi->aligned_blksize;
4512 }
4513 
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4514 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4515 {
4516 	return fsverity_active(inode) &&
4517 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4518 }
4519 
4520 #ifdef CONFIG_F2FS_FAULT_INJECTION
4521 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4522 							unsigned int type);
4523 #else
4524 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4525 #endif
4526 
is_journalled_quota(struct f2fs_sb_info * sbi)4527 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4528 {
4529 #ifdef CONFIG_QUOTA
4530 	if (f2fs_sb_has_quota_ino(sbi))
4531 		return true;
4532 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4533 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4534 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4535 		return true;
4536 #endif
4537 	return false;
4538 }
4539 
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4540 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4541 {
4542 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4543 }
4544 
f2fs_io_schedule_timeout(long timeout)4545 static inline void f2fs_io_schedule_timeout(long timeout)
4546 {
4547 	set_current_state(TASK_UNINTERRUPTIBLE);
4548 	io_schedule_timeout(timeout);
4549 }
4550 
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,pgoff_t ofs,enum page_type type)4551 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4552 					enum page_type type)
4553 {
4554 	if (unlikely(f2fs_cp_error(sbi)))
4555 		return;
4556 
4557 	if (ofs == sbi->page_eio_ofs[type]) {
4558 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4559 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4560 	} else {
4561 		sbi->page_eio_ofs[type] = ofs;
4562 		sbi->page_eio_cnt[type] = 0;
4563 	}
4564 }
4565 
4566 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4567 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4568 
4569 #endif /* _LINUX_F2FS_H */
4570