1 /*
2 * Copyright (C) International Business Machines Corp., 2000-2004
3 * Portions Copyright (C) Christoph Hellwig, 2001-2002
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 /*
21 * jfs_logmgr.c: log manager
22 *
23 * for related information, see transaction manager (jfs_txnmgr.c), and
24 * recovery manager (jfs_logredo.c).
25 *
26 * note: for detail, RTFS.
27 *
28 * log buffer manager:
29 * special purpose buffer manager supporting log i/o requirements.
30 * per log serial pageout of logpage
31 * queuing i/o requests and redrive i/o at iodone
32 * maintain current logpage buffer
33 * no caching since append only
34 * appropriate jfs buffer cache buffers as needed
35 *
36 * group commit:
37 * transactions which wrote COMMIT records in the same in-memory
38 * log page during the pageout of previous/current log page(s) are
39 * committed together by the pageout of the page.
40 *
41 * TBD lazy commit:
42 * transactions are committed asynchronously when the log page
43 * containing it COMMIT is paged out when it becomes full;
44 *
45 * serialization:
46 * . a per log lock serialize log write.
47 * . a per log lock serialize group commit.
48 * . a per log lock serialize log open/close;
49 *
50 * TBD log integrity:
51 * careful-write (ping-pong) of last logpage to recover from crash
52 * in overwrite.
53 * detection of split (out-of-order) write of physical sectors
54 * of last logpage via timestamp at end of each sector
55 * with its mirror data array at trailer).
56 *
57 * alternatives:
58 * lsn - 64-bit monotonically increasing integer vs
59 * 32-bit lspn and page eor.
60 */
61
62 #include <linux/fs.h>
63 #include <linux/blkdev.h>
64 #include <linux/interrupt.h>
65 #include <linux/completion.h>
66 #include <linux/kthread.h>
67 #include <linux/buffer_head.h> /* for sync_blockdev() */
68 #include <linux/bio.h>
69 #include <linux/freezer.h>
70 #include <linux/delay.h>
71 #include <linux/mutex.h>
72 #include <linux/seq_file.h>
73 #include <linux/slab.h>
74 #include "jfs_incore.h"
75 #include "jfs_filsys.h"
76 #include "jfs_metapage.h"
77 #include "jfs_superblock.h"
78 #include "jfs_txnmgr.h"
79 #include "jfs_debug.h"
80
81
82 /*
83 * lbuf's ready to be redriven. Protected by log_redrive_lock (jfsIO thread)
84 */
85 static struct lbuf *log_redrive_list;
86 static DEFINE_SPINLOCK(log_redrive_lock);
87
88
89 /*
90 * log read/write serialization (per log)
91 */
92 #define LOG_LOCK_INIT(log) mutex_init(&(log)->loglock)
93 #define LOG_LOCK(log) mutex_lock(&((log)->loglock))
94 #define LOG_UNLOCK(log) mutex_unlock(&((log)->loglock))
95
96
97 /*
98 * log group commit serialization (per log)
99 */
100
101 #define LOGGC_LOCK_INIT(log) spin_lock_init(&(log)->gclock)
102 #define LOGGC_LOCK(log) spin_lock_irq(&(log)->gclock)
103 #define LOGGC_UNLOCK(log) spin_unlock_irq(&(log)->gclock)
104 #define LOGGC_WAKEUP(tblk) wake_up_all(&(tblk)->gcwait)
105
106 /*
107 * log sync serialization (per log)
108 */
109 #define LOGSYNC_DELTA(logsize) min((logsize)/8, 128*LOGPSIZE)
110 #define LOGSYNC_BARRIER(logsize) ((logsize)/4)
111 /*
112 #define LOGSYNC_DELTA(logsize) min((logsize)/4, 256*LOGPSIZE)
113 #define LOGSYNC_BARRIER(logsize) ((logsize)/2)
114 */
115
116
117 /*
118 * log buffer cache synchronization
119 */
120 static DEFINE_SPINLOCK(jfsLCacheLock);
121
122 #define LCACHE_LOCK(flags) spin_lock_irqsave(&jfsLCacheLock, flags)
123 #define LCACHE_UNLOCK(flags) spin_unlock_irqrestore(&jfsLCacheLock, flags)
124
125 /*
126 * See __SLEEP_COND in jfs_locks.h
127 */
128 #define LCACHE_SLEEP_COND(wq, cond, flags) \
129 do { \
130 if (cond) \
131 break; \
132 __SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \
133 } while (0)
134
135 #define LCACHE_WAKEUP(event) wake_up(event)
136
137
138 /*
139 * lbuf buffer cache (lCache) control
140 */
141 /* log buffer manager pageout control (cumulative, inclusive) */
142 #define lbmREAD 0x0001
143 #define lbmWRITE 0x0002 /* enqueue at tail of write queue;
144 * init pageout if at head of queue;
145 */
146 #define lbmRELEASE 0x0004 /* remove from write queue
147 * at completion of pageout;
148 * do not free/recycle it yet:
149 * caller will free it;
150 */
151 #define lbmSYNC 0x0008 /* do not return to freelist
152 * when removed from write queue;
153 */
154 #define lbmFREE 0x0010 /* return to freelist
155 * at completion of pageout;
156 * the buffer may be recycled;
157 */
158 #define lbmDONE 0x0020
159 #define lbmERROR 0x0040
160 #define lbmGC 0x0080 /* lbmIODone to perform post-GC processing
161 * of log page
162 */
163 #define lbmDIRECT 0x0100
164
165 /*
166 * Global list of active external journals
167 */
168 static LIST_HEAD(jfs_external_logs);
169 static struct jfs_log *dummy_log = NULL;
170 static DEFINE_MUTEX(jfs_log_mutex);
171
172 /*
173 * forward references
174 */
175 static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk,
176 struct lrd * lrd, struct tlock * tlck);
177
178 static int lmNextPage(struct jfs_log * log);
179 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
180 int activate);
181
182 static int open_inline_log(struct super_block *sb);
183 static int open_dummy_log(struct super_block *sb);
184 static int lbmLogInit(struct jfs_log * log);
185 static void lbmLogShutdown(struct jfs_log * log);
186 static struct lbuf *lbmAllocate(struct jfs_log * log, int);
187 static void lbmFree(struct lbuf * bp);
188 static void lbmfree(struct lbuf * bp);
189 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp);
190 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block);
191 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag);
192 static int lbmIOWait(struct lbuf * bp, int flag);
193 static bio_end_io_t lbmIODone;
194 static void lbmStartIO(struct lbuf * bp);
195 static void lmGCwrite(struct jfs_log * log, int cant_block);
196 static int lmLogSync(struct jfs_log * log, int hard_sync);
197
198
199
200 /*
201 * statistics
202 */
203 #ifdef CONFIG_JFS_STATISTICS
204 static struct lmStat {
205 uint commit; /* # of commit */
206 uint pagedone; /* # of page written */
207 uint submitted; /* # of pages submitted */
208 uint full_page; /* # of full pages submitted */
209 uint partial_page; /* # of partial pages submitted */
210 } lmStat;
211 #endif
212
write_special_inodes(struct jfs_log * log,int (* writer)(struct address_space *))213 static void write_special_inodes(struct jfs_log *log,
214 int (*writer)(struct address_space *))
215 {
216 struct jfs_sb_info *sbi;
217
218 list_for_each_entry(sbi, &log->sb_list, log_list) {
219 writer(sbi->ipbmap->i_mapping);
220 writer(sbi->ipimap->i_mapping);
221 writer(sbi->direct_inode->i_mapping);
222 }
223 }
224
225 /*
226 * NAME: lmLog()
227 *
228 * FUNCTION: write a log record;
229 *
230 * PARAMETER:
231 *
232 * RETURN: lsn - offset to the next log record to write (end-of-log);
233 * -1 - error;
234 *
235 * note: todo: log error handler
236 */
lmLog(struct jfs_log * log,struct tblock * tblk,struct lrd * lrd,struct tlock * tlck)237 int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
238 struct tlock * tlck)
239 {
240 int lsn;
241 int diffp, difft;
242 struct metapage *mp = NULL;
243 unsigned long flags;
244
245 jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p",
246 log, tblk, lrd, tlck);
247
248 LOG_LOCK(log);
249
250 /* log by (out-of-transaction) JFS ? */
251 if (tblk == NULL)
252 goto writeRecord;
253
254 /* log from page ? */
255 if (tlck == NULL ||
256 tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL)
257 goto writeRecord;
258
259 /*
260 * initialize/update page/transaction recovery lsn
261 */
262 lsn = log->lsn;
263
264 LOGSYNC_LOCK(log, flags);
265
266 /*
267 * initialize page lsn if first log write of the page
268 */
269 if (mp->lsn == 0) {
270 mp->log = log;
271 mp->lsn = lsn;
272 log->count++;
273
274 /* insert page at tail of logsynclist */
275 list_add_tail(&mp->synclist, &log->synclist);
276 }
277
278 /*
279 * initialize/update lsn of tblock of the page
280 *
281 * transaction inherits oldest lsn of pages associated
282 * with allocation/deallocation of resources (their
283 * log records are used to reconstruct allocation map
284 * at recovery time: inode for inode allocation map,
285 * B+-tree index of extent descriptors for block
286 * allocation map);
287 * allocation map pages inherit transaction lsn at
288 * commit time to allow forwarding log syncpt past log
289 * records associated with allocation/deallocation of
290 * resources only after persistent map of these map pages
291 * have been updated and propagated to home.
292 */
293 /*
294 * initialize transaction lsn:
295 */
296 if (tblk->lsn == 0) {
297 /* inherit lsn of its first page logged */
298 tblk->lsn = mp->lsn;
299 log->count++;
300
301 /* insert tblock after the page on logsynclist */
302 list_add(&tblk->synclist, &mp->synclist);
303 }
304 /*
305 * update transaction lsn:
306 */
307 else {
308 /* inherit oldest/smallest lsn of page */
309 logdiff(diffp, mp->lsn, log);
310 logdiff(difft, tblk->lsn, log);
311 if (diffp < difft) {
312 /* update tblock lsn with page lsn */
313 tblk->lsn = mp->lsn;
314
315 /* move tblock after page on logsynclist */
316 list_move(&tblk->synclist, &mp->synclist);
317 }
318 }
319
320 LOGSYNC_UNLOCK(log, flags);
321
322 /*
323 * write the log record
324 */
325 writeRecord:
326 lsn = lmWriteRecord(log, tblk, lrd, tlck);
327
328 /*
329 * forward log syncpt if log reached next syncpt trigger
330 */
331 logdiff(diffp, lsn, log);
332 if (diffp >= log->nextsync)
333 lsn = lmLogSync(log, 0);
334
335 /* update end-of-log lsn */
336 log->lsn = lsn;
337
338 LOG_UNLOCK(log);
339
340 /* return end-of-log address */
341 return lsn;
342 }
343
344 /*
345 * NAME: lmWriteRecord()
346 *
347 * FUNCTION: move the log record to current log page
348 *
349 * PARAMETER: cd - commit descriptor
350 *
351 * RETURN: end-of-log address
352 *
353 * serialization: LOG_LOCK() held on entry/exit
354 */
355 static int
lmWriteRecord(struct jfs_log * log,struct tblock * tblk,struct lrd * lrd,struct tlock * tlck)356 lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
357 struct tlock * tlck)
358 {
359 int lsn = 0; /* end-of-log address */
360 struct lbuf *bp; /* dst log page buffer */
361 struct logpage *lp; /* dst log page */
362 caddr_t dst; /* destination address in log page */
363 int dstoffset; /* end-of-log offset in log page */
364 int freespace; /* free space in log page */
365 caddr_t p; /* src meta-data page */
366 caddr_t src;
367 int srclen;
368 int nbytes; /* number of bytes to move */
369 int i;
370 int len;
371 struct linelock *linelock;
372 struct lv *lv;
373 struct lvd *lvd;
374 int l2linesize;
375
376 len = 0;
377
378 /* retrieve destination log page to write */
379 bp = (struct lbuf *) log->bp;
380 lp = (struct logpage *) bp->l_ldata;
381 dstoffset = log->eor;
382
383 /* any log data to write ? */
384 if (tlck == NULL)
385 goto moveLrd;
386
387 /*
388 * move log record data
389 */
390 /* retrieve source meta-data page to log */
391 if (tlck->flag & tlckPAGELOCK) {
392 p = (caddr_t) (tlck->mp->data);
393 linelock = (struct linelock *) & tlck->lock;
394 }
395 /* retrieve source in-memory inode to log */
396 else if (tlck->flag & tlckINODELOCK) {
397 if (tlck->type & tlckDTREE)
398 p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot;
399 else
400 p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot;
401 linelock = (struct linelock *) & tlck->lock;
402 }
403 #ifdef _JFS_WIP
404 else if (tlck->flag & tlckINLINELOCK) {
405
406 inlinelock = (struct inlinelock *) & tlck;
407 p = (caddr_t) & inlinelock->pxd;
408 linelock = (struct linelock *) & tlck;
409 }
410 #endif /* _JFS_WIP */
411 else {
412 jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck);
413 return 0; /* Probably should trap */
414 }
415 l2linesize = linelock->l2linesize;
416
417 moveData:
418 ASSERT(linelock->index <= linelock->maxcnt);
419
420 lv = linelock->lv;
421 for (i = 0; i < linelock->index; i++, lv++) {
422 if (lv->length == 0)
423 continue;
424
425 /* is page full ? */
426 if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) {
427 /* page become full: move on to next page */
428 lmNextPage(log);
429
430 bp = log->bp;
431 lp = (struct logpage *) bp->l_ldata;
432 dstoffset = LOGPHDRSIZE;
433 }
434
435 /*
436 * move log vector data
437 */
438 src = (u8 *) p + (lv->offset << l2linesize);
439 srclen = lv->length << l2linesize;
440 len += srclen;
441 while (srclen > 0) {
442 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
443 nbytes = min(freespace, srclen);
444 dst = (caddr_t) lp + dstoffset;
445 memcpy(dst, src, nbytes);
446 dstoffset += nbytes;
447
448 /* is page not full ? */
449 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
450 break;
451
452 /* page become full: move on to next page */
453 lmNextPage(log);
454
455 bp = (struct lbuf *) log->bp;
456 lp = (struct logpage *) bp->l_ldata;
457 dstoffset = LOGPHDRSIZE;
458
459 srclen -= nbytes;
460 src += nbytes;
461 }
462
463 /*
464 * move log vector descriptor
465 */
466 len += 4;
467 lvd = (struct lvd *) ((caddr_t) lp + dstoffset);
468 lvd->offset = cpu_to_le16(lv->offset);
469 lvd->length = cpu_to_le16(lv->length);
470 dstoffset += 4;
471 jfs_info("lmWriteRecord: lv offset:%d length:%d",
472 lv->offset, lv->length);
473 }
474
475 if ((i = linelock->next)) {
476 linelock = (struct linelock *) lid_to_tlock(i);
477 goto moveData;
478 }
479
480 /*
481 * move log record descriptor
482 */
483 moveLrd:
484 lrd->length = cpu_to_le16(len);
485
486 src = (caddr_t) lrd;
487 srclen = LOGRDSIZE;
488
489 while (srclen > 0) {
490 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
491 nbytes = min(freespace, srclen);
492 dst = (caddr_t) lp + dstoffset;
493 memcpy(dst, src, nbytes);
494
495 dstoffset += nbytes;
496 srclen -= nbytes;
497
498 /* are there more to move than freespace of page ? */
499 if (srclen)
500 goto pageFull;
501
502 /*
503 * end of log record descriptor
504 */
505
506 /* update last log record eor */
507 log->eor = dstoffset;
508 bp->l_eor = dstoffset;
509 lsn = (log->page << L2LOGPSIZE) + dstoffset;
510
511 if (lrd->type & cpu_to_le16(LOG_COMMIT)) {
512 tblk->clsn = lsn;
513 jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn,
514 bp->l_eor);
515
516 INCREMENT(lmStat.commit); /* # of commit */
517
518 /*
519 * enqueue tblock for group commit:
520 *
521 * enqueue tblock of non-trivial/synchronous COMMIT
522 * at tail of group commit queue
523 * (trivial/asynchronous COMMITs are ignored by
524 * group commit.)
525 */
526 LOGGC_LOCK(log);
527
528 /* init tblock gc state */
529 tblk->flag = tblkGC_QUEUE;
530 tblk->bp = log->bp;
531 tblk->pn = log->page;
532 tblk->eor = log->eor;
533
534 /* enqueue transaction to commit queue */
535 list_add_tail(&tblk->cqueue, &log->cqueue);
536
537 LOGGC_UNLOCK(log);
538 }
539
540 jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x",
541 le16_to_cpu(lrd->type), log->bp, log->page, dstoffset);
542
543 /* page not full ? */
544 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
545 return lsn;
546
547 pageFull:
548 /* page become full: move on to next page */
549 lmNextPage(log);
550
551 bp = (struct lbuf *) log->bp;
552 lp = (struct logpage *) bp->l_ldata;
553 dstoffset = LOGPHDRSIZE;
554 src += nbytes;
555 }
556
557 return lsn;
558 }
559
560
561 /*
562 * NAME: lmNextPage()
563 *
564 * FUNCTION: write current page and allocate next page.
565 *
566 * PARAMETER: log
567 *
568 * RETURN: 0
569 *
570 * serialization: LOG_LOCK() held on entry/exit
571 */
lmNextPage(struct jfs_log * log)572 static int lmNextPage(struct jfs_log * log)
573 {
574 struct logpage *lp;
575 int lspn; /* log sequence page number */
576 int pn; /* current page number */
577 struct lbuf *bp;
578 struct lbuf *nextbp;
579 struct tblock *tblk;
580
581 /* get current log page number and log sequence page number */
582 pn = log->page;
583 bp = log->bp;
584 lp = (struct logpage *) bp->l_ldata;
585 lspn = le32_to_cpu(lp->h.page);
586
587 LOGGC_LOCK(log);
588
589 /*
590 * write or queue the full page at the tail of write queue
591 */
592 /* get the tail tblk on commit queue */
593 if (list_empty(&log->cqueue))
594 tblk = NULL;
595 else
596 tblk = list_entry(log->cqueue.prev, struct tblock, cqueue);
597
598 /* every tblk who has COMMIT record on the current page,
599 * and has not been committed, must be on commit queue
600 * since tblk is queued at commit queueu at the time
601 * of writing its COMMIT record on the page before
602 * page becomes full (even though the tblk thread
603 * who wrote COMMIT record may have been suspended
604 * currently);
605 */
606
607 /* is page bound with outstanding tail tblk ? */
608 if (tblk && tblk->pn == pn) {
609 /* mark tblk for end-of-page */
610 tblk->flag |= tblkGC_EOP;
611
612 if (log->cflag & logGC_PAGEOUT) {
613 /* if page is not already on write queue,
614 * just enqueue (no lbmWRITE to prevent redrive)
615 * buffer to wqueue to ensure correct serial order
616 * of the pages since log pages will be added
617 * continuously
618 */
619 if (bp->l_wqnext == NULL)
620 lbmWrite(log, bp, 0, 0);
621 } else {
622 /*
623 * No current GC leader, initiate group commit
624 */
625 log->cflag |= logGC_PAGEOUT;
626 lmGCwrite(log, 0);
627 }
628 }
629 /* page is not bound with outstanding tblk:
630 * init write or mark it to be redriven (lbmWRITE)
631 */
632 else {
633 /* finalize the page */
634 bp->l_ceor = bp->l_eor;
635 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
636 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0);
637 }
638 LOGGC_UNLOCK(log);
639
640 /*
641 * allocate/initialize next page
642 */
643 /* if log wraps, the first data page of log is 2
644 * (0 never used, 1 is superblock).
645 */
646 log->page = (pn == log->size - 1) ? 2 : pn + 1;
647 log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */
648
649 /* allocate/initialize next log page buffer */
650 nextbp = lbmAllocate(log, log->page);
651 nextbp->l_eor = log->eor;
652 log->bp = nextbp;
653
654 /* initialize next log page */
655 lp = (struct logpage *) nextbp->l_ldata;
656 lp->h.page = lp->t.page = cpu_to_le32(lspn + 1);
657 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
658
659 return 0;
660 }
661
662
663 /*
664 * NAME: lmGroupCommit()
665 *
666 * FUNCTION: group commit
667 * initiate pageout of the pages with COMMIT in the order of
668 * page number - redrive pageout of the page at the head of
669 * pageout queue until full page has been written.
670 *
671 * RETURN:
672 *
673 * NOTE:
674 * LOGGC_LOCK serializes log group commit queue, and
675 * transaction blocks on the commit queue.
676 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
677 */
lmGroupCommit(struct jfs_log * log,struct tblock * tblk)678 int lmGroupCommit(struct jfs_log * log, struct tblock * tblk)
679 {
680 int rc = 0;
681
682 LOGGC_LOCK(log);
683
684 /* group committed already ? */
685 if (tblk->flag & tblkGC_COMMITTED) {
686 if (tblk->flag & tblkGC_ERROR)
687 rc = -EIO;
688
689 LOGGC_UNLOCK(log);
690 return rc;
691 }
692 jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc);
693
694 if (tblk->xflag & COMMIT_LAZY)
695 tblk->flag |= tblkGC_LAZY;
696
697 if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) &&
698 (!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag)
699 || jfs_tlocks_low)) {
700 /*
701 * No pageout in progress
702 *
703 * start group commit as its group leader.
704 */
705 log->cflag |= logGC_PAGEOUT;
706
707 lmGCwrite(log, 0);
708 }
709
710 if (tblk->xflag & COMMIT_LAZY) {
711 /*
712 * Lazy transactions can leave now
713 */
714 LOGGC_UNLOCK(log);
715 return 0;
716 }
717
718 /* lmGCwrite gives up LOGGC_LOCK, check again */
719
720 if (tblk->flag & tblkGC_COMMITTED) {
721 if (tblk->flag & tblkGC_ERROR)
722 rc = -EIO;
723
724 LOGGC_UNLOCK(log);
725 return rc;
726 }
727
728 /* upcount transaction waiting for completion
729 */
730 log->gcrtc++;
731 tblk->flag |= tblkGC_READY;
732
733 __SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED),
734 LOGGC_LOCK(log), LOGGC_UNLOCK(log));
735
736 /* removed from commit queue */
737 if (tblk->flag & tblkGC_ERROR)
738 rc = -EIO;
739
740 LOGGC_UNLOCK(log);
741 return rc;
742 }
743
744 /*
745 * NAME: lmGCwrite()
746 *
747 * FUNCTION: group commit write
748 * initiate write of log page, building a group of all transactions
749 * with commit records on that page.
750 *
751 * RETURN: None
752 *
753 * NOTE:
754 * LOGGC_LOCK must be held by caller.
755 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
756 */
lmGCwrite(struct jfs_log * log,int cant_write)757 static void lmGCwrite(struct jfs_log * log, int cant_write)
758 {
759 struct lbuf *bp;
760 struct logpage *lp;
761 int gcpn; /* group commit page number */
762 struct tblock *tblk;
763 struct tblock *xtblk = NULL;
764
765 /*
766 * build the commit group of a log page
767 *
768 * scan commit queue and make a commit group of all
769 * transactions with COMMIT records on the same log page.
770 */
771 /* get the head tblk on the commit queue */
772 gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn;
773
774 list_for_each_entry(tblk, &log->cqueue, cqueue) {
775 if (tblk->pn != gcpn)
776 break;
777
778 xtblk = tblk;
779
780 /* state transition: (QUEUE, READY) -> COMMIT */
781 tblk->flag |= tblkGC_COMMIT;
782 }
783 tblk = xtblk; /* last tblk of the page */
784
785 /*
786 * pageout to commit transactions on the log page.
787 */
788 bp = (struct lbuf *) tblk->bp;
789 lp = (struct logpage *) bp->l_ldata;
790 /* is page already full ? */
791 if (tblk->flag & tblkGC_EOP) {
792 /* mark page to free at end of group commit of the page */
793 tblk->flag &= ~tblkGC_EOP;
794 tblk->flag |= tblkGC_FREE;
795 bp->l_ceor = bp->l_eor;
796 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
797 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC,
798 cant_write);
799 INCREMENT(lmStat.full_page);
800 }
801 /* page is not yet full */
802 else {
803 bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */
804 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
805 lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write);
806 INCREMENT(lmStat.partial_page);
807 }
808 }
809
810 /*
811 * NAME: lmPostGC()
812 *
813 * FUNCTION: group commit post-processing
814 * Processes transactions after their commit records have been written
815 * to disk, redriving log I/O if necessary.
816 *
817 * RETURN: None
818 *
819 * NOTE:
820 * This routine is called a interrupt time by lbmIODone
821 */
lmPostGC(struct lbuf * bp)822 static void lmPostGC(struct lbuf * bp)
823 {
824 unsigned long flags;
825 struct jfs_log *log = bp->l_log;
826 struct logpage *lp;
827 struct tblock *tblk, *temp;
828
829 //LOGGC_LOCK(log);
830 spin_lock_irqsave(&log->gclock, flags);
831 /*
832 * current pageout of group commit completed.
833 *
834 * remove/wakeup transactions from commit queue who were
835 * group committed with the current log page
836 */
837 list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) {
838 if (!(tblk->flag & tblkGC_COMMIT))
839 break;
840 /* if transaction was marked GC_COMMIT then
841 * it has been shipped in the current pageout
842 * and made it to disk - it is committed.
843 */
844
845 if (bp->l_flag & lbmERROR)
846 tblk->flag |= tblkGC_ERROR;
847
848 /* remove it from the commit queue */
849 list_del(&tblk->cqueue);
850 tblk->flag &= ~tblkGC_QUEUE;
851
852 if (tblk == log->flush_tblk) {
853 /* we can stop flushing the log now */
854 clear_bit(log_FLUSH, &log->flag);
855 log->flush_tblk = NULL;
856 }
857
858 jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk,
859 tblk->flag);
860
861 if (!(tblk->xflag & COMMIT_FORCE))
862 /*
863 * Hand tblk over to lazy commit thread
864 */
865 txLazyUnlock(tblk);
866 else {
867 /* state transition: COMMIT -> COMMITTED */
868 tblk->flag |= tblkGC_COMMITTED;
869
870 if (tblk->flag & tblkGC_READY)
871 log->gcrtc--;
872
873 LOGGC_WAKEUP(tblk);
874 }
875
876 /* was page full before pageout ?
877 * (and this is the last tblk bound with the page)
878 */
879 if (tblk->flag & tblkGC_FREE)
880 lbmFree(bp);
881 /* did page become full after pageout ?
882 * (and this is the last tblk bound with the page)
883 */
884 else if (tblk->flag & tblkGC_EOP) {
885 /* finalize the page */
886 lp = (struct logpage *) bp->l_ldata;
887 bp->l_ceor = bp->l_eor;
888 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
889 jfs_info("lmPostGC: calling lbmWrite");
890 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE,
891 1);
892 }
893
894 }
895
896 /* are there any transactions who have entered lnGroupCommit()
897 * (whose COMMITs are after that of the last log page written.
898 * They are waiting for new group commit (above at (SLEEP 1))
899 * or lazy transactions are on a full (queued) log page,
900 * select the latest ready transaction as new group leader and
901 * wake her up to lead her group.
902 */
903 if ((!list_empty(&log->cqueue)) &&
904 ((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) ||
905 test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low))
906 /*
907 * Call lmGCwrite with new group leader
908 */
909 lmGCwrite(log, 1);
910
911 /* no transaction are ready yet (transactions are only just
912 * queued (GC_QUEUE) and not entered for group commit yet).
913 * the first transaction entering group commit
914 * will elect herself as new group leader.
915 */
916 else
917 log->cflag &= ~logGC_PAGEOUT;
918
919 //LOGGC_UNLOCK(log);
920 spin_unlock_irqrestore(&log->gclock, flags);
921 return;
922 }
923
924 /*
925 * NAME: lmLogSync()
926 *
927 * FUNCTION: write log SYNCPT record for specified log
928 * if new sync address is available
929 * (normally the case if sync() is executed by back-ground
930 * process).
931 * calculate new value of i_nextsync which determines when
932 * this code is called again.
933 *
934 * PARAMETERS: log - log structure
935 * hard_sync - 1 to force all metadata to be written
936 *
937 * RETURN: 0
938 *
939 * serialization: LOG_LOCK() held on entry/exit
940 */
lmLogSync(struct jfs_log * log,int hard_sync)941 static int lmLogSync(struct jfs_log * log, int hard_sync)
942 {
943 int logsize;
944 int written; /* written since last syncpt */
945 int free; /* free space left available */
946 int delta; /* additional delta to write normally */
947 int more; /* additional write granted */
948 struct lrd lrd;
949 int lsn;
950 struct logsyncblk *lp;
951 unsigned long flags;
952
953 /* push dirty metapages out to disk */
954 if (hard_sync)
955 write_special_inodes(log, filemap_fdatawrite);
956 else
957 write_special_inodes(log, filemap_flush);
958
959 /*
960 * forward syncpt
961 */
962 /* if last sync is same as last syncpt,
963 * invoke sync point forward processing to update sync.
964 */
965
966 if (log->sync == log->syncpt) {
967 LOGSYNC_LOCK(log, flags);
968 if (list_empty(&log->synclist))
969 log->sync = log->lsn;
970 else {
971 lp = list_entry(log->synclist.next,
972 struct logsyncblk, synclist);
973 log->sync = lp->lsn;
974 }
975 LOGSYNC_UNLOCK(log, flags);
976
977 }
978
979 /* if sync is different from last syncpt,
980 * write a SYNCPT record with syncpt = sync.
981 * reset syncpt = sync
982 */
983 if (log->sync != log->syncpt) {
984 lrd.logtid = 0;
985 lrd.backchain = 0;
986 lrd.type = cpu_to_le16(LOG_SYNCPT);
987 lrd.length = 0;
988 lrd.log.syncpt.sync = cpu_to_le32(log->sync);
989 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
990
991 log->syncpt = log->sync;
992 } else
993 lsn = log->lsn;
994
995 /*
996 * setup next syncpt trigger (SWAG)
997 */
998 logsize = log->logsize;
999
1000 logdiff(written, lsn, log);
1001 free = logsize - written;
1002 delta = LOGSYNC_DELTA(logsize);
1003 more = min(free / 2, delta);
1004 if (more < 2 * LOGPSIZE) {
1005 jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n");
1006 /*
1007 * log wrapping
1008 *
1009 * option 1 - panic ? No.!
1010 * option 2 - shutdown file systems
1011 * associated with log ?
1012 * option 3 - extend log ?
1013 * option 4 - second chance
1014 *
1015 * mark log wrapped, and continue.
1016 * when all active transactions are completed,
1017 * mark log valid for recovery.
1018 * if crashed during invalid state, log state
1019 * implies invalid log, forcing fsck().
1020 */
1021 /* mark log state log wrap in log superblock */
1022 /* log->state = LOGWRAP; */
1023
1024 /* reset sync point computation */
1025 log->syncpt = log->sync = lsn;
1026 log->nextsync = delta;
1027 } else
1028 /* next syncpt trigger = written + more */
1029 log->nextsync = written + more;
1030
1031 /* if number of bytes written from last sync point is more
1032 * than 1/4 of the log size, stop new transactions from
1033 * starting until all current transactions are completed
1034 * by setting syncbarrier flag.
1035 */
1036 if (!test_bit(log_SYNCBARRIER, &log->flag) &&
1037 (written > LOGSYNC_BARRIER(logsize)) && log->active) {
1038 set_bit(log_SYNCBARRIER, &log->flag);
1039 jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn,
1040 log->syncpt);
1041 /*
1042 * We may have to initiate group commit
1043 */
1044 jfs_flush_journal(log, 0);
1045 }
1046
1047 return lsn;
1048 }
1049
1050 /*
1051 * NAME: jfs_syncpt
1052 *
1053 * FUNCTION: write log SYNCPT record for specified log
1054 *
1055 * PARAMETERS: log - log structure
1056 * hard_sync - set to 1 to force metadata to be written
1057 */
jfs_syncpt(struct jfs_log * log,int hard_sync)1058 void jfs_syncpt(struct jfs_log *log, int hard_sync)
1059 { LOG_LOCK(log);
1060 lmLogSync(log, hard_sync);
1061 LOG_UNLOCK(log);
1062 }
1063
1064 /*
1065 * NAME: lmLogOpen()
1066 *
1067 * FUNCTION: open the log on first open;
1068 * insert filesystem in the active list of the log.
1069 *
1070 * PARAMETER: ipmnt - file system mount inode
1071 * iplog - log inode (out)
1072 *
1073 * RETURN:
1074 *
1075 * serialization:
1076 */
lmLogOpen(struct super_block * sb)1077 int lmLogOpen(struct super_block *sb)
1078 {
1079 int rc;
1080 struct block_device *bdev;
1081 struct jfs_log *log;
1082 struct jfs_sb_info *sbi = JFS_SBI(sb);
1083
1084 if (sbi->flag & JFS_NOINTEGRITY)
1085 return open_dummy_log(sb);
1086
1087 if (sbi->mntflag & JFS_INLINELOG)
1088 return open_inline_log(sb);
1089
1090 mutex_lock(&jfs_log_mutex);
1091 list_for_each_entry(log, &jfs_external_logs, journal_list) {
1092 if (log->bdev->bd_dev == sbi->logdev) {
1093 if (memcmp(log->uuid, sbi->loguuid,
1094 sizeof(log->uuid))) {
1095 jfs_warn("wrong uuid on JFS journal\n");
1096 mutex_unlock(&jfs_log_mutex);
1097 return -EINVAL;
1098 }
1099 /*
1100 * add file system to log active file system list
1101 */
1102 if ((rc = lmLogFileSystem(log, sbi, 1))) {
1103 mutex_unlock(&jfs_log_mutex);
1104 return rc;
1105 }
1106 goto journal_found;
1107 }
1108 }
1109
1110 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) {
1111 mutex_unlock(&jfs_log_mutex);
1112 return -ENOMEM;
1113 }
1114 INIT_LIST_HEAD(&log->sb_list);
1115 init_waitqueue_head(&log->syncwait);
1116
1117 /*
1118 * external log as separate logical volume
1119 *
1120 * file systems to log may have n-to-1 relationship;
1121 */
1122
1123 bdev = blkdev_get_by_dev(sbi->logdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1124 log);
1125 if (IS_ERR(bdev)) {
1126 rc = -PTR_ERR(bdev);
1127 goto free;
1128 }
1129
1130 log->bdev = bdev;
1131 memcpy(log->uuid, sbi->loguuid, sizeof(log->uuid));
1132
1133 /*
1134 * initialize log:
1135 */
1136 if ((rc = lmLogInit(log)))
1137 goto close;
1138
1139 list_add(&log->journal_list, &jfs_external_logs);
1140
1141 /*
1142 * add file system to log active file system list
1143 */
1144 if ((rc = lmLogFileSystem(log, sbi, 1)))
1145 goto shutdown;
1146
1147 journal_found:
1148 LOG_LOCK(log);
1149 list_add(&sbi->log_list, &log->sb_list);
1150 sbi->log = log;
1151 LOG_UNLOCK(log);
1152
1153 mutex_unlock(&jfs_log_mutex);
1154 return 0;
1155
1156 /*
1157 * unwind on error
1158 */
1159 shutdown: /* unwind lbmLogInit() */
1160 list_del(&log->journal_list);
1161 lbmLogShutdown(log);
1162
1163 close: /* close external log device */
1164 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1165
1166 free: /* free log descriptor */
1167 mutex_unlock(&jfs_log_mutex);
1168 kfree(log);
1169
1170 jfs_warn("lmLogOpen: exit(%d)", rc);
1171 return rc;
1172 }
1173
open_inline_log(struct super_block * sb)1174 static int open_inline_log(struct super_block *sb)
1175 {
1176 struct jfs_log *log;
1177 int rc;
1178
1179 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL)))
1180 return -ENOMEM;
1181 INIT_LIST_HEAD(&log->sb_list);
1182 init_waitqueue_head(&log->syncwait);
1183
1184 set_bit(log_INLINELOG, &log->flag);
1185 log->bdev = sb->s_bdev;
1186 log->base = addressPXD(&JFS_SBI(sb)->logpxd);
1187 log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >>
1188 (L2LOGPSIZE - sb->s_blocksize_bits);
1189 log->l2bsize = sb->s_blocksize_bits;
1190 ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits);
1191
1192 /*
1193 * initialize log.
1194 */
1195 if ((rc = lmLogInit(log))) {
1196 kfree(log);
1197 jfs_warn("lmLogOpen: exit(%d)", rc);
1198 return rc;
1199 }
1200
1201 list_add(&JFS_SBI(sb)->log_list, &log->sb_list);
1202 JFS_SBI(sb)->log = log;
1203
1204 return rc;
1205 }
1206
open_dummy_log(struct super_block * sb)1207 static int open_dummy_log(struct super_block *sb)
1208 {
1209 int rc;
1210
1211 mutex_lock(&jfs_log_mutex);
1212 if (!dummy_log) {
1213 dummy_log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL);
1214 if (!dummy_log) {
1215 mutex_unlock(&jfs_log_mutex);
1216 return -ENOMEM;
1217 }
1218 INIT_LIST_HEAD(&dummy_log->sb_list);
1219 init_waitqueue_head(&dummy_log->syncwait);
1220 dummy_log->no_integrity = 1;
1221 /* Make up some stuff */
1222 dummy_log->base = 0;
1223 dummy_log->size = 1024;
1224 rc = lmLogInit(dummy_log);
1225 if (rc) {
1226 kfree(dummy_log);
1227 dummy_log = NULL;
1228 mutex_unlock(&jfs_log_mutex);
1229 return rc;
1230 }
1231 }
1232
1233 LOG_LOCK(dummy_log);
1234 list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list);
1235 JFS_SBI(sb)->log = dummy_log;
1236 LOG_UNLOCK(dummy_log);
1237 mutex_unlock(&jfs_log_mutex);
1238
1239 return 0;
1240 }
1241
1242 /*
1243 * NAME: lmLogInit()
1244 *
1245 * FUNCTION: log initialization at first log open.
1246 *
1247 * logredo() (or logformat()) should have been run previously.
1248 * initialize the log from log superblock.
1249 * set the log state in the superblock to LOGMOUNT and
1250 * write SYNCPT log record.
1251 *
1252 * PARAMETER: log - log structure
1253 *
1254 * RETURN: 0 - if ok
1255 * -EINVAL - bad log magic number or superblock dirty
1256 * error returned from logwait()
1257 *
1258 * serialization: single first open thread
1259 */
lmLogInit(struct jfs_log * log)1260 int lmLogInit(struct jfs_log * log)
1261 {
1262 int rc = 0;
1263 struct lrd lrd;
1264 struct logsuper *logsuper;
1265 struct lbuf *bpsuper;
1266 struct lbuf *bp;
1267 struct logpage *lp;
1268 int lsn = 0;
1269
1270 jfs_info("lmLogInit: log:0x%p", log);
1271
1272 /* initialize the group commit serialization lock */
1273 LOGGC_LOCK_INIT(log);
1274
1275 /* allocate/initialize the log write serialization lock */
1276 LOG_LOCK_INIT(log);
1277
1278 LOGSYNC_LOCK_INIT(log);
1279
1280 INIT_LIST_HEAD(&log->synclist);
1281
1282 INIT_LIST_HEAD(&log->cqueue);
1283 log->flush_tblk = NULL;
1284
1285 log->count = 0;
1286
1287 /*
1288 * initialize log i/o
1289 */
1290 if ((rc = lbmLogInit(log)))
1291 return rc;
1292
1293 if (!test_bit(log_INLINELOG, &log->flag))
1294 log->l2bsize = L2LOGPSIZE;
1295
1296 /* check for disabled journaling to disk */
1297 if (log->no_integrity) {
1298 /*
1299 * Journal pages will still be filled. When the time comes
1300 * to actually do the I/O, the write is not done, and the
1301 * endio routine is called directly.
1302 */
1303 bp = lbmAllocate(log , 0);
1304 log->bp = bp;
1305 bp->l_pn = bp->l_eor = 0;
1306 } else {
1307 /*
1308 * validate log superblock
1309 */
1310 if ((rc = lbmRead(log, 1, &bpsuper)))
1311 goto errout10;
1312
1313 logsuper = (struct logsuper *) bpsuper->l_ldata;
1314
1315 if (logsuper->magic != cpu_to_le32(LOGMAGIC)) {
1316 jfs_warn("*** Log Format Error ! ***");
1317 rc = -EINVAL;
1318 goto errout20;
1319 }
1320
1321 /* logredo() should have been run successfully. */
1322 if (logsuper->state != cpu_to_le32(LOGREDONE)) {
1323 jfs_warn("*** Log Is Dirty ! ***");
1324 rc = -EINVAL;
1325 goto errout20;
1326 }
1327
1328 /* initialize log from log superblock */
1329 if (test_bit(log_INLINELOG,&log->flag)) {
1330 if (log->size != le32_to_cpu(logsuper->size)) {
1331 rc = -EINVAL;
1332 goto errout20;
1333 }
1334 jfs_info("lmLogInit: inline log:0x%p base:0x%Lx "
1335 "size:0x%x", log,
1336 (unsigned long long) log->base, log->size);
1337 } else {
1338 if (memcmp(logsuper->uuid, log->uuid, 16)) {
1339 jfs_warn("wrong uuid on JFS log device");
1340 goto errout20;
1341 }
1342 log->size = le32_to_cpu(logsuper->size);
1343 log->l2bsize = le32_to_cpu(logsuper->l2bsize);
1344 jfs_info("lmLogInit: external log:0x%p base:0x%Lx "
1345 "size:0x%x", log,
1346 (unsigned long long) log->base, log->size);
1347 }
1348
1349 log->page = le32_to_cpu(logsuper->end) / LOGPSIZE;
1350 log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page);
1351
1352 /*
1353 * initialize for log append write mode
1354 */
1355 /* establish current/end-of-log page/buffer */
1356 if ((rc = lbmRead(log, log->page, &bp)))
1357 goto errout20;
1358
1359 lp = (struct logpage *) bp->l_ldata;
1360
1361 jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d",
1362 le32_to_cpu(logsuper->end), log->page, log->eor,
1363 le16_to_cpu(lp->h.eor));
1364
1365 log->bp = bp;
1366 bp->l_pn = log->page;
1367 bp->l_eor = log->eor;
1368
1369 /* if current page is full, move on to next page */
1370 if (log->eor >= LOGPSIZE - LOGPTLRSIZE)
1371 lmNextPage(log);
1372
1373 /*
1374 * initialize log syncpoint
1375 */
1376 /*
1377 * write the first SYNCPT record with syncpoint = 0
1378 * (i.e., log redo up to HERE !);
1379 * remove current page from lbm write queue at end of pageout
1380 * (to write log superblock update), but do not release to
1381 * freelist;
1382 */
1383 lrd.logtid = 0;
1384 lrd.backchain = 0;
1385 lrd.type = cpu_to_le16(LOG_SYNCPT);
1386 lrd.length = 0;
1387 lrd.log.syncpt.sync = 0;
1388 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1389 bp = log->bp;
1390 bp->l_ceor = bp->l_eor;
1391 lp = (struct logpage *) bp->l_ldata;
1392 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1393 lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0);
1394 if ((rc = lbmIOWait(bp, 0)))
1395 goto errout30;
1396
1397 /*
1398 * update/write superblock
1399 */
1400 logsuper->state = cpu_to_le32(LOGMOUNT);
1401 log->serial = le32_to_cpu(logsuper->serial) + 1;
1402 logsuper->serial = cpu_to_le32(log->serial);
1403 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1404 if ((rc = lbmIOWait(bpsuper, lbmFREE)))
1405 goto errout30;
1406 }
1407
1408 /* initialize logsync parameters */
1409 log->logsize = (log->size - 2) << L2LOGPSIZE;
1410 log->lsn = lsn;
1411 log->syncpt = lsn;
1412 log->sync = log->syncpt;
1413 log->nextsync = LOGSYNC_DELTA(log->logsize);
1414
1415 jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x",
1416 log->lsn, log->syncpt, log->sync);
1417
1418 /*
1419 * initialize for lazy/group commit
1420 */
1421 log->clsn = lsn;
1422
1423 return 0;
1424
1425 /*
1426 * unwind on error
1427 */
1428 errout30: /* release log page */
1429 log->wqueue = NULL;
1430 bp->l_wqnext = NULL;
1431 lbmFree(bp);
1432
1433 errout20: /* release log superblock */
1434 lbmFree(bpsuper);
1435
1436 errout10: /* unwind lbmLogInit() */
1437 lbmLogShutdown(log);
1438
1439 jfs_warn("lmLogInit: exit(%d)", rc);
1440 return rc;
1441 }
1442
1443
1444 /*
1445 * NAME: lmLogClose()
1446 *
1447 * FUNCTION: remove file system <ipmnt> from active list of log <iplog>
1448 * and close it on last close.
1449 *
1450 * PARAMETER: sb - superblock
1451 *
1452 * RETURN: errors from subroutines
1453 *
1454 * serialization:
1455 */
lmLogClose(struct super_block * sb)1456 int lmLogClose(struct super_block *sb)
1457 {
1458 struct jfs_sb_info *sbi = JFS_SBI(sb);
1459 struct jfs_log *log = sbi->log;
1460 struct block_device *bdev;
1461 int rc = 0;
1462
1463 jfs_info("lmLogClose: log:0x%p", log);
1464
1465 mutex_lock(&jfs_log_mutex);
1466 LOG_LOCK(log);
1467 list_del(&sbi->log_list);
1468 LOG_UNLOCK(log);
1469 sbi->log = NULL;
1470
1471 /*
1472 * We need to make sure all of the "written" metapages
1473 * actually make it to disk
1474 */
1475 sync_blockdev(sb->s_bdev);
1476
1477 if (test_bit(log_INLINELOG, &log->flag)) {
1478 /*
1479 * in-line log in host file system
1480 */
1481 rc = lmLogShutdown(log);
1482 kfree(log);
1483 goto out;
1484 }
1485
1486 if (!log->no_integrity)
1487 lmLogFileSystem(log, sbi, 0);
1488
1489 if (!list_empty(&log->sb_list))
1490 goto out;
1491
1492 /*
1493 * TODO: ensure that the dummy_log is in a state to allow
1494 * lbmLogShutdown to deallocate all the buffers and call
1495 * kfree against dummy_log. For now, leave dummy_log & its
1496 * buffers in memory, and resuse if another no-integrity mount
1497 * is requested.
1498 */
1499 if (log->no_integrity)
1500 goto out;
1501
1502 /*
1503 * external log as separate logical volume
1504 */
1505 list_del(&log->journal_list);
1506 bdev = log->bdev;
1507 rc = lmLogShutdown(log);
1508
1509 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1510
1511 kfree(log);
1512
1513 out:
1514 mutex_unlock(&jfs_log_mutex);
1515 jfs_info("lmLogClose: exit(%d)", rc);
1516 return rc;
1517 }
1518
1519
1520 /*
1521 * NAME: jfs_flush_journal()
1522 *
1523 * FUNCTION: initiate write of any outstanding transactions to the journal
1524 * and optionally wait until they are all written to disk
1525 *
1526 * wait == 0 flush until latest txn is committed, don't wait
1527 * wait == 1 flush until latest txn is committed, wait
1528 * wait > 1 flush until all txn's are complete, wait
1529 */
jfs_flush_journal(struct jfs_log * log,int wait)1530 void jfs_flush_journal(struct jfs_log *log, int wait)
1531 {
1532 int i;
1533 struct tblock *target = NULL;
1534
1535 /* jfs_write_inode may call us during read-only mount */
1536 if (!log)
1537 return;
1538
1539 jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait);
1540
1541 LOGGC_LOCK(log);
1542
1543 if (!list_empty(&log->cqueue)) {
1544 /*
1545 * This ensures that we will keep writing to the journal as long
1546 * as there are unwritten commit records
1547 */
1548 target = list_entry(log->cqueue.prev, struct tblock, cqueue);
1549
1550 if (test_bit(log_FLUSH, &log->flag)) {
1551 /*
1552 * We're already flushing.
1553 * if flush_tblk is NULL, we are flushing everything,
1554 * so leave it that way. Otherwise, update it to the
1555 * latest transaction
1556 */
1557 if (log->flush_tblk)
1558 log->flush_tblk = target;
1559 } else {
1560 /* Only flush until latest transaction is committed */
1561 log->flush_tblk = target;
1562 set_bit(log_FLUSH, &log->flag);
1563
1564 /*
1565 * Initiate I/O on outstanding transactions
1566 */
1567 if (!(log->cflag & logGC_PAGEOUT)) {
1568 log->cflag |= logGC_PAGEOUT;
1569 lmGCwrite(log, 0);
1570 }
1571 }
1572 }
1573 if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) {
1574 /* Flush until all activity complete */
1575 set_bit(log_FLUSH, &log->flag);
1576 log->flush_tblk = NULL;
1577 }
1578
1579 if (wait && target && !(target->flag & tblkGC_COMMITTED)) {
1580 DECLARE_WAITQUEUE(__wait, current);
1581
1582 add_wait_queue(&target->gcwait, &__wait);
1583 set_current_state(TASK_UNINTERRUPTIBLE);
1584 LOGGC_UNLOCK(log);
1585 schedule();
1586 __set_current_state(TASK_RUNNING);
1587 LOGGC_LOCK(log);
1588 remove_wait_queue(&target->gcwait, &__wait);
1589 }
1590 LOGGC_UNLOCK(log);
1591
1592 if (wait < 2)
1593 return;
1594
1595 write_special_inodes(log, filemap_fdatawrite);
1596
1597 /*
1598 * If there was recent activity, we may need to wait
1599 * for the lazycommit thread to catch up
1600 */
1601 if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) {
1602 for (i = 0; i < 200; i++) { /* Too much? */
1603 msleep(250);
1604 write_special_inodes(log, filemap_fdatawrite);
1605 if (list_empty(&log->cqueue) &&
1606 list_empty(&log->synclist))
1607 break;
1608 }
1609 }
1610 assert(list_empty(&log->cqueue));
1611
1612 #ifdef CONFIG_JFS_DEBUG
1613 if (!list_empty(&log->synclist)) {
1614 struct logsyncblk *lp;
1615
1616 printk(KERN_ERR "jfs_flush_journal: synclist not empty\n");
1617 list_for_each_entry(lp, &log->synclist, synclist) {
1618 if (lp->xflag & COMMIT_PAGE) {
1619 struct metapage *mp = (struct metapage *)lp;
1620 print_hex_dump(KERN_ERR, "metapage: ",
1621 DUMP_PREFIX_ADDRESS, 16, 4,
1622 mp, sizeof(struct metapage), 0);
1623 print_hex_dump(KERN_ERR, "page: ",
1624 DUMP_PREFIX_ADDRESS, 16,
1625 sizeof(long), mp->page,
1626 sizeof(struct page), 0);
1627 } else
1628 print_hex_dump(KERN_ERR, "tblock:",
1629 DUMP_PREFIX_ADDRESS, 16, 4,
1630 lp, sizeof(struct tblock), 0);
1631 }
1632 }
1633 #else
1634 WARN_ON(!list_empty(&log->synclist));
1635 #endif
1636 clear_bit(log_FLUSH, &log->flag);
1637 }
1638
1639 /*
1640 * NAME: lmLogShutdown()
1641 *
1642 * FUNCTION: log shutdown at last LogClose().
1643 *
1644 * write log syncpt record.
1645 * update super block to set redone flag to 0.
1646 *
1647 * PARAMETER: log - log inode
1648 *
1649 * RETURN: 0 - success
1650 *
1651 * serialization: single last close thread
1652 */
lmLogShutdown(struct jfs_log * log)1653 int lmLogShutdown(struct jfs_log * log)
1654 {
1655 int rc;
1656 struct lrd lrd;
1657 int lsn;
1658 struct logsuper *logsuper;
1659 struct lbuf *bpsuper;
1660 struct lbuf *bp;
1661 struct logpage *lp;
1662
1663 jfs_info("lmLogShutdown: log:0x%p", log);
1664
1665 jfs_flush_journal(log, 2);
1666
1667 /*
1668 * write the last SYNCPT record with syncpoint = 0
1669 * (i.e., log redo up to HERE !)
1670 */
1671 lrd.logtid = 0;
1672 lrd.backchain = 0;
1673 lrd.type = cpu_to_le16(LOG_SYNCPT);
1674 lrd.length = 0;
1675 lrd.log.syncpt.sync = 0;
1676
1677 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1678 bp = log->bp;
1679 lp = (struct logpage *) bp->l_ldata;
1680 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1681 lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0);
1682 lbmIOWait(log->bp, lbmFREE);
1683 log->bp = NULL;
1684
1685 /*
1686 * synchronous update log superblock
1687 * mark log state as shutdown cleanly
1688 * (i.e., Log does not need to be replayed).
1689 */
1690 if ((rc = lbmRead(log, 1, &bpsuper)))
1691 goto out;
1692
1693 logsuper = (struct logsuper *) bpsuper->l_ldata;
1694 logsuper->state = cpu_to_le32(LOGREDONE);
1695 logsuper->end = cpu_to_le32(lsn);
1696 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1697 rc = lbmIOWait(bpsuper, lbmFREE);
1698
1699 jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d",
1700 lsn, log->page, log->eor);
1701
1702 out:
1703 /*
1704 * shutdown per log i/o
1705 */
1706 lbmLogShutdown(log);
1707
1708 if (rc) {
1709 jfs_warn("lmLogShutdown: exit(%d)", rc);
1710 }
1711 return rc;
1712 }
1713
1714
1715 /*
1716 * NAME: lmLogFileSystem()
1717 *
1718 * FUNCTION: insert (<activate> = true)/remove (<activate> = false)
1719 * file system into/from log active file system list.
1720 *
1721 * PARAMETE: log - pointer to logs inode.
1722 * fsdev - kdev_t of filesystem.
1723 * serial - pointer to returned log serial number
1724 * activate - insert/remove device from active list.
1725 *
1726 * RETURN: 0 - success
1727 * errors returned by vms_iowait().
1728 */
lmLogFileSystem(struct jfs_log * log,struct jfs_sb_info * sbi,int activate)1729 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
1730 int activate)
1731 {
1732 int rc = 0;
1733 int i;
1734 struct logsuper *logsuper;
1735 struct lbuf *bpsuper;
1736 char *uuid = sbi->uuid;
1737
1738 /*
1739 * insert/remove file system device to log active file system list.
1740 */
1741 if ((rc = lbmRead(log, 1, &bpsuper)))
1742 return rc;
1743
1744 logsuper = (struct logsuper *) bpsuper->l_ldata;
1745 if (activate) {
1746 for (i = 0; i < MAX_ACTIVE; i++)
1747 if (!memcmp(logsuper->active[i].uuid, NULL_UUID, 16)) {
1748 memcpy(logsuper->active[i].uuid, uuid, 16);
1749 sbi->aggregate = i;
1750 break;
1751 }
1752 if (i == MAX_ACTIVE) {
1753 jfs_warn("Too many file systems sharing journal!");
1754 lbmFree(bpsuper);
1755 return -EMFILE; /* Is there a better rc? */
1756 }
1757 } else {
1758 for (i = 0; i < MAX_ACTIVE; i++)
1759 if (!memcmp(logsuper->active[i].uuid, uuid, 16)) {
1760 memcpy(logsuper->active[i].uuid, NULL_UUID, 16);
1761 break;
1762 }
1763 if (i == MAX_ACTIVE) {
1764 jfs_warn("Somebody stomped on the journal!");
1765 lbmFree(bpsuper);
1766 return -EIO;
1767 }
1768
1769 }
1770
1771 /*
1772 * synchronous write log superblock:
1773 *
1774 * write sidestream bypassing write queue:
1775 * at file system mount, log super block is updated for
1776 * activation of the file system before any log record
1777 * (MOUNT record) of the file system, and at file system
1778 * unmount, all meta data for the file system has been
1779 * flushed before log super block is updated for deactivation
1780 * of the file system.
1781 */
1782 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1783 rc = lbmIOWait(bpsuper, lbmFREE);
1784
1785 return rc;
1786 }
1787
1788 /*
1789 * log buffer manager (lbm)
1790 * ------------------------
1791 *
1792 * special purpose buffer manager supporting log i/o requirements.
1793 *
1794 * per log write queue:
1795 * log pageout occurs in serial order by fifo write queue and
1796 * restricting to a single i/o in pregress at any one time.
1797 * a circular singly-linked list
1798 * (log->wrqueue points to the tail, and buffers are linked via
1799 * bp->wrqueue field), and
1800 * maintains log page in pageout ot waiting for pageout in serial pageout.
1801 */
1802
1803 /*
1804 * lbmLogInit()
1805 *
1806 * initialize per log I/O setup at lmLogInit()
1807 */
lbmLogInit(struct jfs_log * log)1808 static int lbmLogInit(struct jfs_log * log)
1809 { /* log inode */
1810 int i;
1811 struct lbuf *lbuf;
1812
1813 jfs_info("lbmLogInit: log:0x%p", log);
1814
1815 /* initialize current buffer cursor */
1816 log->bp = NULL;
1817
1818 /* initialize log device write queue */
1819 log->wqueue = NULL;
1820
1821 /*
1822 * Each log has its own buffer pages allocated to it. These are
1823 * not managed by the page cache. This ensures that a transaction
1824 * writing to the log does not block trying to allocate a page from
1825 * the page cache (for the log). This would be bad, since page
1826 * allocation waits on the kswapd thread that may be committing inodes
1827 * which would cause log activity. Was that clear? I'm trying to
1828 * avoid deadlock here.
1829 */
1830 init_waitqueue_head(&log->free_wait);
1831
1832 log->lbuf_free = NULL;
1833
1834 for (i = 0; i < LOGPAGES;) {
1835 char *buffer;
1836 uint offset;
1837 struct page *page;
1838
1839 buffer = (char *) get_zeroed_page(GFP_KERNEL);
1840 if (buffer == NULL)
1841 goto error;
1842 page = virt_to_page(buffer);
1843 for (offset = 0; offset < PAGE_SIZE; offset += LOGPSIZE) {
1844 lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL);
1845 if (lbuf == NULL) {
1846 if (offset == 0)
1847 free_page((unsigned long) buffer);
1848 goto error;
1849 }
1850 if (offset) /* we already have one reference */
1851 get_page(page);
1852 lbuf->l_offset = offset;
1853 lbuf->l_ldata = buffer + offset;
1854 lbuf->l_page = page;
1855 lbuf->l_log = log;
1856 init_waitqueue_head(&lbuf->l_ioevent);
1857
1858 lbuf->l_freelist = log->lbuf_free;
1859 log->lbuf_free = lbuf;
1860 i++;
1861 }
1862 }
1863
1864 return (0);
1865
1866 error:
1867 lbmLogShutdown(log);
1868 return -ENOMEM;
1869 }
1870
1871
1872 /*
1873 * lbmLogShutdown()
1874 *
1875 * finalize per log I/O setup at lmLogShutdown()
1876 */
lbmLogShutdown(struct jfs_log * log)1877 static void lbmLogShutdown(struct jfs_log * log)
1878 {
1879 struct lbuf *lbuf;
1880
1881 jfs_info("lbmLogShutdown: log:0x%p", log);
1882
1883 lbuf = log->lbuf_free;
1884 while (lbuf) {
1885 struct lbuf *next = lbuf->l_freelist;
1886 __free_page(lbuf->l_page);
1887 kfree(lbuf);
1888 lbuf = next;
1889 }
1890 }
1891
1892
1893 /*
1894 * lbmAllocate()
1895 *
1896 * allocate an empty log buffer
1897 */
lbmAllocate(struct jfs_log * log,int pn)1898 static struct lbuf *lbmAllocate(struct jfs_log * log, int pn)
1899 {
1900 struct lbuf *bp;
1901 unsigned long flags;
1902
1903 /*
1904 * recycle from log buffer freelist if any
1905 */
1906 LCACHE_LOCK(flags);
1907 LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags);
1908 log->lbuf_free = bp->l_freelist;
1909 LCACHE_UNLOCK(flags);
1910
1911 bp->l_flag = 0;
1912
1913 bp->l_wqnext = NULL;
1914 bp->l_freelist = NULL;
1915
1916 bp->l_pn = pn;
1917 bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize));
1918 bp->l_ceor = 0;
1919
1920 return bp;
1921 }
1922
1923
1924 /*
1925 * lbmFree()
1926 *
1927 * release a log buffer to freelist
1928 */
lbmFree(struct lbuf * bp)1929 static void lbmFree(struct lbuf * bp)
1930 {
1931 unsigned long flags;
1932
1933 LCACHE_LOCK(flags);
1934
1935 lbmfree(bp);
1936
1937 LCACHE_UNLOCK(flags);
1938 }
1939
lbmfree(struct lbuf * bp)1940 static void lbmfree(struct lbuf * bp)
1941 {
1942 struct jfs_log *log = bp->l_log;
1943
1944 assert(bp->l_wqnext == NULL);
1945
1946 /*
1947 * return the buffer to head of freelist
1948 */
1949 bp->l_freelist = log->lbuf_free;
1950 log->lbuf_free = bp;
1951
1952 wake_up(&log->free_wait);
1953 return;
1954 }
1955
1956
1957 /*
1958 * NAME: lbmRedrive
1959 *
1960 * FUNCTION: add a log buffer to the log redrive list
1961 *
1962 * PARAMETER:
1963 * bp - log buffer
1964 *
1965 * NOTES:
1966 * Takes log_redrive_lock.
1967 */
lbmRedrive(struct lbuf * bp)1968 static inline void lbmRedrive(struct lbuf *bp)
1969 {
1970 unsigned long flags;
1971
1972 spin_lock_irqsave(&log_redrive_lock, flags);
1973 bp->l_redrive_next = log_redrive_list;
1974 log_redrive_list = bp;
1975 spin_unlock_irqrestore(&log_redrive_lock, flags);
1976
1977 wake_up_process(jfsIOthread);
1978 }
1979
1980
1981 /*
1982 * lbmRead()
1983 */
lbmRead(struct jfs_log * log,int pn,struct lbuf ** bpp)1984 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp)
1985 {
1986 struct bio *bio;
1987 struct lbuf *bp;
1988
1989 /*
1990 * allocate a log buffer
1991 */
1992 *bpp = bp = lbmAllocate(log, pn);
1993 jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn);
1994
1995 bp->l_flag |= lbmREAD;
1996
1997 bio = bio_alloc(GFP_NOFS, 1);
1998
1999 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2000 bio->bi_bdev = log->bdev;
2001 bio->bi_io_vec[0].bv_page = bp->l_page;
2002 bio->bi_io_vec[0].bv_len = LOGPSIZE;
2003 bio->bi_io_vec[0].bv_offset = bp->l_offset;
2004
2005 bio->bi_vcnt = 1;
2006 bio->bi_idx = 0;
2007 bio->bi_size = LOGPSIZE;
2008
2009 bio->bi_end_io = lbmIODone;
2010 bio->bi_private = bp;
2011 submit_bio(READ_SYNC, bio);
2012
2013 wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD));
2014
2015 return 0;
2016 }
2017
2018
2019 /*
2020 * lbmWrite()
2021 *
2022 * buffer at head of pageout queue stays after completion of
2023 * partial-page pageout and redriven by explicit initiation of
2024 * pageout by caller until full-page pageout is completed and
2025 * released.
2026 *
2027 * device driver i/o done redrives pageout of new buffer at
2028 * head of pageout queue when current buffer at head of pageout
2029 * queue is released at the completion of its full-page pageout.
2030 *
2031 * LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit().
2032 * LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone()
2033 */
lbmWrite(struct jfs_log * log,struct lbuf * bp,int flag,int cant_block)2034 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag,
2035 int cant_block)
2036 {
2037 struct lbuf *tail;
2038 unsigned long flags;
2039
2040 jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn);
2041
2042 /* map the logical block address to physical block address */
2043 bp->l_blkno =
2044 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2045
2046 LCACHE_LOCK(flags); /* disable+lock */
2047
2048 /*
2049 * initialize buffer for device driver
2050 */
2051 bp->l_flag = flag;
2052
2053 /*
2054 * insert bp at tail of write queue associated with log
2055 *
2056 * (request is either for bp already/currently at head of queue
2057 * or new bp to be inserted at tail)
2058 */
2059 tail = log->wqueue;
2060
2061 /* is buffer not already on write queue ? */
2062 if (bp->l_wqnext == NULL) {
2063 /* insert at tail of wqueue */
2064 if (tail == NULL) {
2065 log->wqueue = bp;
2066 bp->l_wqnext = bp;
2067 } else {
2068 log->wqueue = bp;
2069 bp->l_wqnext = tail->l_wqnext;
2070 tail->l_wqnext = bp;
2071 }
2072
2073 tail = bp;
2074 }
2075
2076 /* is buffer at head of wqueue and for write ? */
2077 if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) {
2078 LCACHE_UNLOCK(flags); /* unlock+enable */
2079 return;
2080 }
2081
2082 LCACHE_UNLOCK(flags); /* unlock+enable */
2083
2084 if (cant_block)
2085 lbmRedrive(bp);
2086 else if (flag & lbmSYNC)
2087 lbmStartIO(bp);
2088 else {
2089 LOGGC_UNLOCK(log);
2090 lbmStartIO(bp);
2091 LOGGC_LOCK(log);
2092 }
2093 }
2094
2095
2096 /*
2097 * lbmDirectWrite()
2098 *
2099 * initiate pageout bypassing write queue for sidestream
2100 * (e.g., log superblock) write;
2101 */
lbmDirectWrite(struct jfs_log * log,struct lbuf * bp,int flag)2102 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag)
2103 {
2104 jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x",
2105 bp, flag, bp->l_pn);
2106
2107 /*
2108 * initialize buffer for device driver
2109 */
2110 bp->l_flag = flag | lbmDIRECT;
2111
2112 /* map the logical block address to physical block address */
2113 bp->l_blkno =
2114 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2115
2116 /*
2117 * initiate pageout of the page
2118 */
2119 lbmStartIO(bp);
2120 }
2121
2122
2123 /*
2124 * NAME: lbmStartIO()
2125 *
2126 * FUNCTION: Interface to DD strategy routine
2127 *
2128 * RETURN: none
2129 *
2130 * serialization: LCACHE_LOCK() is NOT held during log i/o;
2131 */
lbmStartIO(struct lbuf * bp)2132 static void lbmStartIO(struct lbuf * bp)
2133 {
2134 struct bio *bio;
2135 struct jfs_log *log = bp->l_log;
2136
2137 jfs_info("lbmStartIO\n");
2138
2139 bio = bio_alloc(GFP_NOFS, 1);
2140 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2141 bio->bi_bdev = log->bdev;
2142 bio->bi_io_vec[0].bv_page = bp->l_page;
2143 bio->bi_io_vec[0].bv_len = LOGPSIZE;
2144 bio->bi_io_vec[0].bv_offset = bp->l_offset;
2145
2146 bio->bi_vcnt = 1;
2147 bio->bi_idx = 0;
2148 bio->bi_size = LOGPSIZE;
2149
2150 bio->bi_end_io = lbmIODone;
2151 bio->bi_private = bp;
2152
2153 /* check if journaling to disk has been disabled */
2154 if (log->no_integrity) {
2155 bio->bi_size = 0;
2156 lbmIODone(bio, 0);
2157 } else {
2158 submit_bio(WRITE_SYNC, bio);
2159 INCREMENT(lmStat.submitted);
2160 }
2161 }
2162
2163
2164 /*
2165 * lbmIOWait()
2166 */
lbmIOWait(struct lbuf * bp,int flag)2167 static int lbmIOWait(struct lbuf * bp, int flag)
2168 {
2169 unsigned long flags;
2170 int rc = 0;
2171
2172 jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2173
2174 LCACHE_LOCK(flags); /* disable+lock */
2175
2176 LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags);
2177
2178 rc = (bp->l_flag & lbmERROR) ? -EIO : 0;
2179
2180 if (flag & lbmFREE)
2181 lbmfree(bp);
2182
2183 LCACHE_UNLOCK(flags); /* unlock+enable */
2184
2185 jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2186 return rc;
2187 }
2188
2189 /*
2190 * lbmIODone()
2191 *
2192 * executed at INTIODONE level
2193 */
lbmIODone(struct bio * bio,int error)2194 static void lbmIODone(struct bio *bio, int error)
2195 {
2196 struct lbuf *bp = bio->bi_private;
2197 struct lbuf *nextbp, *tail;
2198 struct jfs_log *log;
2199 unsigned long flags;
2200
2201 /*
2202 * get back jfs buffer bound to the i/o buffer
2203 */
2204 jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag);
2205
2206 LCACHE_LOCK(flags); /* disable+lock */
2207
2208 bp->l_flag |= lbmDONE;
2209
2210 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2211 bp->l_flag |= lbmERROR;
2212
2213 jfs_err("lbmIODone: I/O error in JFS log");
2214 }
2215
2216 bio_put(bio);
2217
2218 /*
2219 * pagein completion
2220 */
2221 if (bp->l_flag & lbmREAD) {
2222 bp->l_flag &= ~lbmREAD;
2223
2224 LCACHE_UNLOCK(flags); /* unlock+enable */
2225
2226 /* wakeup I/O initiator */
2227 LCACHE_WAKEUP(&bp->l_ioevent);
2228
2229 return;
2230 }
2231
2232 /*
2233 * pageout completion
2234 *
2235 * the bp at the head of write queue has completed pageout.
2236 *
2237 * if single-commit/full-page pageout, remove the current buffer
2238 * from head of pageout queue, and redrive pageout with
2239 * the new buffer at head of pageout queue;
2240 * otherwise, the partial-page pageout buffer stays at
2241 * the head of pageout queue to be redriven for pageout
2242 * by lmGroupCommit() until full-page pageout is completed.
2243 */
2244 bp->l_flag &= ~lbmWRITE;
2245 INCREMENT(lmStat.pagedone);
2246
2247 /* update committed lsn */
2248 log = bp->l_log;
2249 log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor;
2250
2251 if (bp->l_flag & lbmDIRECT) {
2252 LCACHE_WAKEUP(&bp->l_ioevent);
2253 LCACHE_UNLOCK(flags);
2254 return;
2255 }
2256
2257 tail = log->wqueue;
2258
2259 /* single element queue */
2260 if (bp == tail) {
2261 /* remove head buffer of full-page pageout
2262 * from log device write queue
2263 */
2264 if (bp->l_flag & lbmRELEASE) {
2265 log->wqueue = NULL;
2266 bp->l_wqnext = NULL;
2267 }
2268 }
2269 /* multi element queue */
2270 else {
2271 /* remove head buffer of full-page pageout
2272 * from log device write queue
2273 */
2274 if (bp->l_flag & lbmRELEASE) {
2275 nextbp = tail->l_wqnext = bp->l_wqnext;
2276 bp->l_wqnext = NULL;
2277
2278 /*
2279 * redrive pageout of next page at head of write queue:
2280 * redrive next page without any bound tblk
2281 * (i.e., page w/o any COMMIT records), or
2282 * first page of new group commit which has been
2283 * queued after current page (subsequent pageout
2284 * is performed synchronously, except page without
2285 * any COMMITs) by lmGroupCommit() as indicated
2286 * by lbmWRITE flag;
2287 */
2288 if (nextbp->l_flag & lbmWRITE) {
2289 /*
2290 * We can't do the I/O at interrupt time.
2291 * The jfsIO thread can do it
2292 */
2293 lbmRedrive(nextbp);
2294 }
2295 }
2296 }
2297
2298 /*
2299 * synchronous pageout:
2300 *
2301 * buffer has not necessarily been removed from write queue
2302 * (e.g., synchronous write of partial-page with COMMIT):
2303 * leave buffer for i/o initiator to dispose
2304 */
2305 if (bp->l_flag & lbmSYNC) {
2306 LCACHE_UNLOCK(flags); /* unlock+enable */
2307
2308 /* wakeup I/O initiator */
2309 LCACHE_WAKEUP(&bp->l_ioevent);
2310 }
2311
2312 /*
2313 * Group Commit pageout:
2314 */
2315 else if (bp->l_flag & lbmGC) {
2316 LCACHE_UNLOCK(flags);
2317 lmPostGC(bp);
2318 }
2319
2320 /*
2321 * asynchronous pageout:
2322 *
2323 * buffer must have been removed from write queue:
2324 * insert buffer at head of freelist where it can be recycled
2325 */
2326 else {
2327 assert(bp->l_flag & lbmRELEASE);
2328 assert(bp->l_flag & lbmFREE);
2329 lbmfree(bp);
2330
2331 LCACHE_UNLOCK(flags); /* unlock+enable */
2332 }
2333 }
2334
jfsIOWait(void * arg)2335 int jfsIOWait(void *arg)
2336 {
2337 struct lbuf *bp;
2338
2339 do {
2340 spin_lock_irq(&log_redrive_lock);
2341 while ((bp = log_redrive_list)) {
2342 log_redrive_list = bp->l_redrive_next;
2343 bp->l_redrive_next = NULL;
2344 spin_unlock_irq(&log_redrive_lock);
2345 lbmStartIO(bp);
2346 spin_lock_irq(&log_redrive_lock);
2347 }
2348
2349 if (freezing(current)) {
2350 spin_unlock_irq(&log_redrive_lock);
2351 refrigerator();
2352 } else {
2353 set_current_state(TASK_INTERRUPTIBLE);
2354 spin_unlock_irq(&log_redrive_lock);
2355 schedule();
2356 __set_current_state(TASK_RUNNING);
2357 }
2358 } while (!kthread_should_stop());
2359
2360 jfs_info("jfsIOWait being killed!");
2361 return 0;
2362 }
2363
2364 /*
2365 * NAME: lmLogFormat()/jfs_logform()
2366 *
2367 * FUNCTION: format file system log
2368 *
2369 * PARAMETERS:
2370 * log - volume log
2371 * logAddress - start address of log space in FS block
2372 * logSize - length of log space in FS block;
2373 *
2374 * RETURN: 0 - success
2375 * -EIO - i/o error
2376 *
2377 * XXX: We're synchronously writing one page at a time. This needs to
2378 * be improved by writing multiple pages at once.
2379 */
lmLogFormat(struct jfs_log * log,s64 logAddress,int logSize)2380 int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize)
2381 {
2382 int rc = -EIO;
2383 struct jfs_sb_info *sbi;
2384 struct logsuper *logsuper;
2385 struct logpage *lp;
2386 int lspn; /* log sequence page number */
2387 struct lrd *lrd_ptr;
2388 int npages = 0;
2389 struct lbuf *bp;
2390
2391 jfs_info("lmLogFormat: logAddress:%Ld logSize:%d",
2392 (long long)logAddress, logSize);
2393
2394 sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list);
2395
2396 /* allocate a log buffer */
2397 bp = lbmAllocate(log, 1);
2398
2399 npages = logSize >> sbi->l2nbperpage;
2400
2401 /*
2402 * log space:
2403 *
2404 * page 0 - reserved;
2405 * page 1 - log superblock;
2406 * page 2 - log data page: A SYNC log record is written
2407 * into this page at logform time;
2408 * pages 3-N - log data page: set to empty log data pages;
2409 */
2410 /*
2411 * init log superblock: log page 1
2412 */
2413 logsuper = (struct logsuper *) bp->l_ldata;
2414
2415 logsuper->magic = cpu_to_le32(LOGMAGIC);
2416 logsuper->version = cpu_to_le32(LOGVERSION);
2417 logsuper->state = cpu_to_le32(LOGREDONE);
2418 logsuper->flag = cpu_to_le32(sbi->mntflag); /* ? */
2419 logsuper->size = cpu_to_le32(npages);
2420 logsuper->bsize = cpu_to_le32(sbi->bsize);
2421 logsuper->l2bsize = cpu_to_le32(sbi->l2bsize);
2422 logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE);
2423
2424 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2425 bp->l_blkno = logAddress + sbi->nbperpage;
2426 lbmStartIO(bp);
2427 if ((rc = lbmIOWait(bp, 0)))
2428 goto exit;
2429
2430 /*
2431 * init pages 2 to npages-1 as log data pages:
2432 *
2433 * log page sequence number (lpsn) initialization:
2434 *
2435 * pn: 0 1 2 3 n-1
2436 * +-----+-----+=====+=====+===.....===+=====+
2437 * lspn: N-1 0 1 N-2
2438 * <--- N page circular file ---->
2439 *
2440 * the N (= npages-2) data pages of the log is maintained as
2441 * a circular file for the log records;
2442 * lpsn grows by 1 monotonically as each log page is written
2443 * to the circular file of the log;
2444 * and setLogpage() will not reset the page number even if
2445 * the eor is equal to LOGPHDRSIZE. In order for binary search
2446 * still work in find log end process, we have to simulate the
2447 * log wrap situation at the log format time.
2448 * The 1st log page written will have the highest lpsn. Then
2449 * the succeeding log pages will have ascending order of
2450 * the lspn starting from 0, ... (N-2)
2451 */
2452 lp = (struct logpage *) bp->l_ldata;
2453 /*
2454 * initialize 1st log page to be written: lpsn = N - 1,
2455 * write a SYNCPT log record is written to this page
2456 */
2457 lp->h.page = lp->t.page = cpu_to_le32(npages - 3);
2458 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE);
2459
2460 lrd_ptr = (struct lrd *) &lp->data;
2461 lrd_ptr->logtid = 0;
2462 lrd_ptr->backchain = 0;
2463 lrd_ptr->type = cpu_to_le16(LOG_SYNCPT);
2464 lrd_ptr->length = 0;
2465 lrd_ptr->log.syncpt.sync = 0;
2466
2467 bp->l_blkno += sbi->nbperpage;
2468 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2469 lbmStartIO(bp);
2470 if ((rc = lbmIOWait(bp, 0)))
2471 goto exit;
2472
2473 /*
2474 * initialize succeeding log pages: lpsn = 0, 1, ..., (N-2)
2475 */
2476 for (lspn = 0; lspn < npages - 3; lspn++) {
2477 lp->h.page = lp->t.page = cpu_to_le32(lspn);
2478 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
2479
2480 bp->l_blkno += sbi->nbperpage;
2481 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2482 lbmStartIO(bp);
2483 if ((rc = lbmIOWait(bp, 0)))
2484 goto exit;
2485 }
2486
2487 rc = 0;
2488 exit:
2489 /*
2490 * finalize log
2491 */
2492 /* release the buffer */
2493 lbmFree(bp);
2494
2495 return rc;
2496 }
2497
2498 #ifdef CONFIG_JFS_STATISTICS
jfs_lmstats_proc_show(struct seq_file * m,void * v)2499 static int jfs_lmstats_proc_show(struct seq_file *m, void *v)
2500 {
2501 seq_printf(m,
2502 "JFS Logmgr stats\n"
2503 "================\n"
2504 "commits = %d\n"
2505 "writes submitted = %d\n"
2506 "writes completed = %d\n"
2507 "full pages submitted = %d\n"
2508 "partial pages submitted = %d\n",
2509 lmStat.commit,
2510 lmStat.submitted,
2511 lmStat.pagedone,
2512 lmStat.full_page,
2513 lmStat.partial_page);
2514 return 0;
2515 }
2516
jfs_lmstats_proc_open(struct inode * inode,struct file * file)2517 static int jfs_lmstats_proc_open(struct inode *inode, struct file *file)
2518 {
2519 return single_open(file, jfs_lmstats_proc_show, NULL);
2520 }
2521
2522 const struct file_operations jfs_lmstats_proc_fops = {
2523 .owner = THIS_MODULE,
2524 .open = jfs_lmstats_proc_open,
2525 .read = seq_read,
2526 .llseek = seq_lseek,
2527 .release = single_release,
2528 };
2529 #endif /* CONFIG_JFS_STATISTICS */
2530