1 /*
2  * File Name:
3  *   skfddi.c
4  *
5  * Copyright Information:
6  *   Copyright SysKonnect 1998,1999.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * The information in this file is provided "AS IS" without warranty.
14  *
15  * Abstract:
16  *   A Linux device driver supporting the SysKonnect FDDI PCI controller
17  *   familie.
18  *
19  * Maintainers:
20  *   CG    Christoph Goos (cgoos@syskonnect.de)
21  *
22  * Contributors:
23  *   DM    David S. Miller
24  *
25  * Address all question to:
26  *   linux@syskonnect.de
27  *
28  * The technical manual for the adapters is available from SysKonnect's
29  * web pages: www.syskonnect.com
30  * Goto "Support" and search Knowledge Base for "manual".
31  *
32  * Driver Architecture:
33  *   The driver architecture is based on the DEC FDDI driver by
34  *   Lawrence V. Stefani and several ethernet drivers.
35  *   I also used an existing Windows NT miniport driver.
36  *   All hardware dependent functions are handled by the SysKonnect
37  *   Hardware Module.
38  *   The only headerfiles that are directly related to this source
39  *   are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
40  *   The others belong to the SysKonnect FDDI Hardware Module and
41  *   should better not be changed.
42  *
43  * Modification History:
44  *              Date            Name    Description
45  *              02-Mar-98       CG	Created.
46  *
47  *		10-Mar-99	CG	Support for 2.2.x added.
48  *		25-Mar-99	CG	Corrected IRQ routing for SMP (APIC)
49  *		26-Oct-99	CG	Fixed compilation error on 2.2.13
50  *		12-Nov-99	CG	Source code release
51  *		22-Nov-99	CG	Included in kernel source.
52  *		07-May-00	DM	64 bit fixes, new dma interface
53  *		31-Jul-03	DB	Audit copy_*_user in skfp_ioctl
54  *					  Daniele Bellucci <bellucda@tiscali.it>
55  *		03-Dec-03	SH	Convert to PCI device model
56  *
57  * Compilation options (-Dxxx):
58  *              DRIVERDEBUG     print lots of messages to log file
59  *              DUMPPACKETS     print received/transmitted packets to logfile
60  *
61  * Tested cpu architectures:
62  *	- i386
63  *	- sparc64
64  */
65 
66 /* Version information string - should be updated prior to */
67 /* each new release!!! */
68 #define VERSION		"2.07"
69 
70 static const char * const boot_msg =
71 	"SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
72 	"  SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
73 
74 /* Include files */
75 
76 #include <linux/capability.h>
77 #include <linux/module.h>
78 #include <linux/kernel.h>
79 #include <linux/errno.h>
80 #include <linux/ioport.h>
81 #include <linux/interrupt.h>
82 #include <linux/pci.h>
83 #include <linux/netdevice.h>
84 #include <linux/fddidevice.h>
85 #include <linux/skbuff.h>
86 #include <linux/bitops.h>
87 #include <linux/gfp.h>
88 
89 #include <asm/byteorder.h>
90 #include <asm/io.h>
91 #include <asm/uaccess.h>
92 
93 #include	"h/types.h"
94 #undef ADDR			// undo Linux definition
95 #include	"h/skfbi.h"
96 #include	"h/fddi.h"
97 #include	"h/smc.h"
98 #include	"h/smtstate.h"
99 
100 
101 // Define module-wide (static) routines
102 static int skfp_driver_init(struct net_device *dev);
103 static int skfp_open(struct net_device *dev);
104 static int skfp_close(struct net_device *dev);
105 static irqreturn_t skfp_interrupt(int irq, void *dev_id);
106 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
107 static void skfp_ctl_set_multicast_list(struct net_device *dev);
108 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
109 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
110 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
111 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
112 				       struct net_device *dev);
113 static void send_queued_packets(struct s_smc *smc);
114 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
115 static void ResetAdapter(struct s_smc *smc);
116 
117 
118 // Functions needed by the hardware module
119 void *mac_drv_get_space(struct s_smc *smc, u_int size);
120 void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
121 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
122 unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
123 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
124 		  int flag);
125 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
126 void llc_restart_tx(struct s_smc *smc);
127 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
128 			 int frag_count, int len);
129 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
130 			 int frag_count);
131 void mac_drv_fill_rxd(struct s_smc *smc);
132 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
133 		       int frag_count);
134 int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
135 		    int la_len);
136 void dump_data(unsigned char *Data, int length);
137 
138 // External functions from the hardware module
139 extern u_int mac_drv_check_space(void);
140 extern int mac_drv_init(struct s_smc *smc);
141 extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
142 			int len, int frame_status);
143 extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
144 		       int frame_len, int frame_status);
145 extern void fddi_isr(struct s_smc *smc);
146 extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
147 			int len, int frame_status);
148 extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
149 extern void mac_drv_clear_rx_queue(struct s_smc *smc);
150 extern void enable_tx_irq(struct s_smc *smc, u_short queue);
151 
152 static DEFINE_PCI_DEVICE_TABLE(skfddi_pci_tbl) = {
153 	{ PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
154 	{ }			/* Terminating entry */
155 };
156 MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
157 MODULE_LICENSE("GPL");
158 MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
159 
160 // Define module-wide (static) variables
161 
162 static int num_boards;	/* total number of adapters configured */
163 
164 static const struct net_device_ops skfp_netdev_ops = {
165 	.ndo_open		= skfp_open,
166 	.ndo_stop		= skfp_close,
167 	.ndo_start_xmit		= skfp_send_pkt,
168 	.ndo_get_stats		= skfp_ctl_get_stats,
169 	.ndo_change_mtu		= fddi_change_mtu,
170 	.ndo_set_rx_mode	= skfp_ctl_set_multicast_list,
171 	.ndo_set_mac_address	= skfp_ctl_set_mac_address,
172 	.ndo_do_ioctl		= skfp_ioctl,
173 };
174 
175 /*
176  * =================
177  * = skfp_init_one =
178  * =================
179  *
180  * Overview:
181  *   Probes for supported FDDI PCI controllers
182  *
183  * Returns:
184  *   Condition code
185  *
186  * Arguments:
187  *   pdev - pointer to PCI device information
188  *
189  * Functional Description:
190  *   This is now called by PCI driver registration process
191  *   for each board found.
192  *
193  * Return Codes:
194  *   0           - This device (fddi0, fddi1, etc) configured successfully
195  *   -ENODEV - No devices present, or no SysKonnect FDDI PCI device
196  *                         present for this device name
197  *
198  *
199  * Side Effects:
200  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
201  *   initialized and the board resources are read and stored in
202  *   the device structure.
203  */
skfp_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)204 static int skfp_init_one(struct pci_dev *pdev,
205 				const struct pci_device_id *ent)
206 {
207 	struct net_device *dev;
208 	struct s_smc *smc;	/* board pointer */
209 	void __iomem *mem;
210 	int err;
211 
212 	pr_debug("entering skfp_init_one\n");
213 
214 	if (num_boards == 0)
215 		printk("%s\n", boot_msg);
216 
217 	err = pci_enable_device(pdev);
218 	if (err)
219 		return err;
220 
221 	err = pci_request_regions(pdev, "skfddi");
222 	if (err)
223 		goto err_out1;
224 
225 	pci_set_master(pdev);
226 
227 #ifdef MEM_MAPPED_IO
228 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
229 		printk(KERN_ERR "skfp: region is not an MMIO resource\n");
230 		err = -EIO;
231 		goto err_out2;
232 	}
233 
234 	mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
235 #else
236 	if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
237 		printk(KERN_ERR "skfp: region is not PIO resource\n");
238 		err = -EIO;
239 		goto err_out2;
240 	}
241 
242 	mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
243 #endif
244 	if (!mem) {
245 		printk(KERN_ERR "skfp:  Unable to map register, "
246 				"FDDI adapter will be disabled.\n");
247 		err = -EIO;
248 		goto err_out2;
249 	}
250 
251 	dev = alloc_fddidev(sizeof(struct s_smc));
252 	if (!dev) {
253 		printk(KERN_ERR "skfp: Unable to allocate fddi device, "
254 				"FDDI adapter will be disabled.\n");
255 		err = -ENOMEM;
256 		goto err_out3;
257 	}
258 
259 	dev->irq = pdev->irq;
260 	dev->netdev_ops = &skfp_netdev_ops;
261 
262 	SET_NETDEV_DEV(dev, &pdev->dev);
263 
264 	/* Initialize board structure with bus-specific info */
265 	smc = netdev_priv(dev);
266 	smc->os.dev = dev;
267 	smc->os.bus_type = SK_BUS_TYPE_PCI;
268 	smc->os.pdev = *pdev;
269 	smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
270 	smc->os.MaxFrameSize = MAX_FRAME_SIZE;
271 	smc->os.dev = dev;
272 	smc->hw.slot = -1;
273 	smc->hw.iop = mem;
274 	smc->os.ResetRequested = FALSE;
275 	skb_queue_head_init(&smc->os.SendSkbQueue);
276 
277 	dev->base_addr = (unsigned long)mem;
278 
279 	err = skfp_driver_init(dev);
280 	if (err)
281 		goto err_out4;
282 
283 	err = register_netdev(dev);
284 	if (err)
285 		goto err_out5;
286 
287 	++num_boards;
288 	pci_set_drvdata(pdev, dev);
289 
290 	if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
291 	    (pdev->subsystem_device & 0xff00) == 0x5800)
292 		printk("%s: SysKonnect FDDI PCI adapter"
293 		       " found (SK-%04X)\n", dev->name,
294 		       pdev->subsystem_device);
295 	else
296 		printk("%s: FDDI PCI adapter found\n", dev->name);
297 
298 	return 0;
299 err_out5:
300 	if (smc->os.SharedMemAddr)
301 		pci_free_consistent(pdev, smc->os.SharedMemSize,
302 				    smc->os.SharedMemAddr,
303 				    smc->os.SharedMemDMA);
304 	pci_free_consistent(pdev, MAX_FRAME_SIZE,
305 			    smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
306 err_out4:
307 	free_netdev(dev);
308 err_out3:
309 #ifdef MEM_MAPPED_IO
310 	iounmap(mem);
311 #else
312 	ioport_unmap(mem);
313 #endif
314 err_out2:
315 	pci_release_regions(pdev);
316 err_out1:
317 	pci_disable_device(pdev);
318 	return err;
319 }
320 
321 /*
322  * Called for each adapter board from pci_unregister_driver
323  */
skfp_remove_one(struct pci_dev * pdev)324 static void __devexit skfp_remove_one(struct pci_dev *pdev)
325 {
326 	struct net_device *p = pci_get_drvdata(pdev);
327 	struct s_smc *lp = netdev_priv(p);
328 
329 	unregister_netdev(p);
330 
331 	if (lp->os.SharedMemAddr) {
332 		pci_free_consistent(&lp->os.pdev,
333 				    lp->os.SharedMemSize,
334 				    lp->os.SharedMemAddr,
335 				    lp->os.SharedMemDMA);
336 		lp->os.SharedMemAddr = NULL;
337 	}
338 	if (lp->os.LocalRxBuffer) {
339 		pci_free_consistent(&lp->os.pdev,
340 				    MAX_FRAME_SIZE,
341 				    lp->os.LocalRxBuffer,
342 				    lp->os.LocalRxBufferDMA);
343 		lp->os.LocalRxBuffer = NULL;
344 	}
345 #ifdef MEM_MAPPED_IO
346 	iounmap(lp->hw.iop);
347 #else
348 	ioport_unmap(lp->hw.iop);
349 #endif
350 	pci_release_regions(pdev);
351 	free_netdev(p);
352 
353 	pci_disable_device(pdev);
354 	pci_set_drvdata(pdev, NULL);
355 }
356 
357 /*
358  * ====================
359  * = skfp_driver_init =
360  * ====================
361  *
362  * Overview:
363  *   Initializes remaining adapter board structure information
364  *   and makes sure adapter is in a safe state prior to skfp_open().
365  *
366  * Returns:
367  *   Condition code
368  *
369  * Arguments:
370  *   dev - pointer to device information
371  *
372  * Functional Description:
373  *   This function allocates additional resources such as the host memory
374  *   blocks needed by the adapter.
375  *   The adapter is also reset. The OS must call skfp_open() to open
376  *   the adapter and bring it on-line.
377  *
378  * Return Codes:
379  *    0 - initialization succeeded
380  *   -1 - initialization failed
381  */
skfp_driver_init(struct net_device * dev)382 static  int skfp_driver_init(struct net_device *dev)
383 {
384 	struct s_smc *smc = netdev_priv(dev);
385 	skfddi_priv *bp = &smc->os;
386 	int err = -EIO;
387 
388 	pr_debug("entering skfp_driver_init\n");
389 
390 	// set the io address in private structures
391 	bp->base_addr = dev->base_addr;
392 
393 	// Get the interrupt level from the PCI Configuration Table
394 	smc->hw.irq = dev->irq;
395 
396 	spin_lock_init(&bp->DriverLock);
397 
398 	// Allocate invalid frame
399 	bp->LocalRxBuffer = pci_alloc_consistent(&bp->pdev, MAX_FRAME_SIZE, &bp->LocalRxBufferDMA);
400 	if (!bp->LocalRxBuffer) {
401 		printk("could not allocate mem for ");
402 		printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
403 		goto fail;
404 	}
405 
406 	// Determine the required size of the 'shared' memory area.
407 	bp->SharedMemSize = mac_drv_check_space();
408 	pr_debug("Memory for HWM: %ld\n", bp->SharedMemSize);
409 	if (bp->SharedMemSize > 0) {
410 		bp->SharedMemSize += 16;	// for descriptor alignment
411 
412 		bp->SharedMemAddr = pci_alloc_consistent(&bp->pdev,
413 							 bp->SharedMemSize,
414 							 &bp->SharedMemDMA);
415 		if (!bp->SharedMemAddr) {
416 			printk("could not allocate mem for ");
417 			printk("hardware module: %ld byte\n",
418 			       bp->SharedMemSize);
419 			goto fail;
420 		}
421 		bp->SharedMemHeap = 0;	// Nothing used yet.
422 
423 	} else {
424 		bp->SharedMemAddr = NULL;
425 		bp->SharedMemHeap = 0;
426 	}			// SharedMemSize > 0
427 
428 	memset(bp->SharedMemAddr, 0, bp->SharedMemSize);
429 
430 	card_stop(smc);		// Reset adapter.
431 
432 	pr_debug("mac_drv_init()..\n");
433 	if (mac_drv_init(smc) != 0) {
434 		pr_debug("mac_drv_init() failed\n");
435 		goto fail;
436 	}
437 	read_address(smc, NULL);
438 	pr_debug("HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a);
439 	memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
440 
441 	smt_reset_defaults(smc, 0);
442 
443 	return 0;
444 
445 fail:
446 	if (bp->SharedMemAddr) {
447 		pci_free_consistent(&bp->pdev,
448 				    bp->SharedMemSize,
449 				    bp->SharedMemAddr,
450 				    bp->SharedMemDMA);
451 		bp->SharedMemAddr = NULL;
452 	}
453 	if (bp->LocalRxBuffer) {
454 		pci_free_consistent(&bp->pdev, MAX_FRAME_SIZE,
455 				    bp->LocalRxBuffer, bp->LocalRxBufferDMA);
456 		bp->LocalRxBuffer = NULL;
457 	}
458 	return err;
459 }				// skfp_driver_init
460 
461 
462 /*
463  * =============
464  * = skfp_open =
465  * =============
466  *
467  * Overview:
468  *   Opens the adapter
469  *
470  * Returns:
471  *   Condition code
472  *
473  * Arguments:
474  *   dev - pointer to device information
475  *
476  * Functional Description:
477  *   This function brings the adapter to an operational state.
478  *
479  * Return Codes:
480  *   0           - Adapter was successfully opened
481  *   -EAGAIN - Could not register IRQ
482  */
skfp_open(struct net_device * dev)483 static int skfp_open(struct net_device *dev)
484 {
485 	struct s_smc *smc = netdev_priv(dev);
486 	int err;
487 
488 	pr_debug("entering skfp_open\n");
489 	/* Register IRQ - support shared interrupts by passing device ptr */
490 	err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED,
491 			  dev->name, dev);
492 	if (err)
493 		return err;
494 
495 	/*
496 	 * Set current address to factory MAC address
497 	 *
498 	 * Note: We've already done this step in skfp_driver_init.
499 	 *       However, it's possible that a user has set a node
500 	 *               address override, then closed and reopened the
501 	 *               adapter.  Unless we reset the device address field
502 	 *               now, we'll continue to use the existing modified
503 	 *               address.
504 	 */
505 	read_address(smc, NULL);
506 	memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
507 
508 	init_smt(smc, NULL);
509 	smt_online(smc, 1);
510 	STI_FBI();
511 
512 	/* Clear local multicast address tables */
513 	mac_clear_multicast(smc);
514 
515 	/* Disable promiscuous filter settings */
516 	mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
517 
518 	netif_start_queue(dev);
519 	return 0;
520 }				// skfp_open
521 
522 
523 /*
524  * ==============
525  * = skfp_close =
526  * ==============
527  *
528  * Overview:
529  *   Closes the device/module.
530  *
531  * Returns:
532  *   Condition code
533  *
534  * Arguments:
535  *   dev - pointer to device information
536  *
537  * Functional Description:
538  *   This routine closes the adapter and brings it to a safe state.
539  *   The interrupt service routine is deregistered with the OS.
540  *   The adapter can be opened again with another call to skfp_open().
541  *
542  * Return Codes:
543  *   Always return 0.
544  *
545  * Assumptions:
546  *   No further requests for this adapter are made after this routine is
547  *   called.  skfp_open() can be called to reset and reinitialize the
548  *   adapter.
549  */
skfp_close(struct net_device * dev)550 static int skfp_close(struct net_device *dev)
551 {
552 	struct s_smc *smc = netdev_priv(dev);
553 	skfddi_priv *bp = &smc->os;
554 
555 	CLI_FBI();
556 	smt_reset_defaults(smc, 1);
557 	card_stop(smc);
558 	mac_drv_clear_tx_queue(smc);
559 	mac_drv_clear_rx_queue(smc);
560 
561 	netif_stop_queue(dev);
562 	/* Deregister (free) IRQ */
563 	free_irq(dev->irq, dev);
564 
565 	skb_queue_purge(&bp->SendSkbQueue);
566 	bp->QueueSkb = MAX_TX_QUEUE_LEN;
567 
568 	return 0;
569 }				// skfp_close
570 
571 
572 /*
573  * ==================
574  * = skfp_interrupt =
575  * ==================
576  *
577  * Overview:
578  *   Interrupt processing routine
579  *
580  * Returns:
581  *   None
582  *
583  * Arguments:
584  *   irq        - interrupt vector
585  *   dev_id     - pointer to device information
586  *
587  * Functional Description:
588  *   This routine calls the interrupt processing routine for this adapter.  It
589  *   disables and reenables adapter interrupts, as appropriate.  We can support
590  *   shared interrupts since the incoming dev_id pointer provides our device
591  *   structure context. All the real work is done in the hardware module.
592  *
593  * Return Codes:
594  *   None
595  *
596  * Assumptions:
597  *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
598  *   on Intel-based systems) is done by the operating system outside this
599  *   routine.
600  *
601  *       System interrupts are enabled through this call.
602  *
603  * Side Effects:
604  *   Interrupts are disabled, then reenabled at the adapter.
605  */
606 
skfp_interrupt(int irq,void * dev_id)607 static irqreturn_t skfp_interrupt(int irq, void *dev_id)
608 {
609 	struct net_device *dev = dev_id;
610 	struct s_smc *smc;	/* private board structure pointer */
611 	skfddi_priv *bp;
612 
613 	smc = netdev_priv(dev);
614 	bp = &smc->os;
615 
616 	// IRQs enabled or disabled ?
617 	if (inpd(ADDR(B0_IMSK)) == 0) {
618 		// IRQs are disabled: must be shared interrupt
619 		return IRQ_NONE;
620 	}
621 	// Note: At this point, IRQs are enabled.
622 	if ((inpd(ISR_A) & smc->hw.is_imask) == 0) {	// IRQ?
623 		// Adapter did not issue an IRQ: must be shared interrupt
624 		return IRQ_NONE;
625 	}
626 	CLI_FBI();		// Disable IRQs from our adapter.
627 	spin_lock(&bp->DriverLock);
628 
629 	// Call interrupt handler in hardware module (HWM).
630 	fddi_isr(smc);
631 
632 	if (smc->os.ResetRequested) {
633 		ResetAdapter(smc);
634 		smc->os.ResetRequested = FALSE;
635 	}
636 	spin_unlock(&bp->DriverLock);
637 	STI_FBI();		// Enable IRQs from our adapter.
638 
639 	return IRQ_HANDLED;
640 }				// skfp_interrupt
641 
642 
643 /*
644  * ======================
645  * = skfp_ctl_get_stats =
646  * ======================
647  *
648  * Overview:
649  *   Get statistics for FDDI adapter
650  *
651  * Returns:
652  *   Pointer to FDDI statistics structure
653  *
654  * Arguments:
655  *   dev - pointer to device information
656  *
657  * Functional Description:
658  *   Gets current MIB objects from adapter, then
659  *   returns FDDI statistics structure as defined
660  *   in if_fddi.h.
661  *
662  *   Note: Since the FDDI statistics structure is
663  *   still new and the device structure doesn't
664  *   have an FDDI-specific get statistics handler,
665  *   we'll return the FDDI statistics structure as
666  *   a pointer to an Ethernet statistics structure.
667  *   That way, at least the first part of the statistics
668  *   structure can be decoded properly.
669  *   We'll have to pay attention to this routine as the
670  *   device structure becomes more mature and LAN media
671  *   independent.
672  *
673  */
skfp_ctl_get_stats(struct net_device * dev)674 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
675 {
676 	struct s_smc *bp = netdev_priv(dev);
677 
678 	/* Fill the bp->stats structure with driver-maintained counters */
679 
680 	bp->os.MacStat.port_bs_flag[0] = 0x1234;
681 	bp->os.MacStat.port_bs_flag[1] = 0x5678;
682 // goos: need to fill out fddi statistic
683 #if 0
684 	/* Get FDDI SMT MIB objects */
685 
686 /* Fill the bp->stats structure with the SMT MIB object values */
687 
688 	memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
689 	bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
690 	bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
691 	bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
692 	memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
693 	bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
694 	bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
695 	bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
696 	bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
697 	bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
698 	bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
699 	bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
700 	bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
701 	bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
702 	bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
703 	bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
704 	bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
705 	bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
706 	bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
707 	bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
708 	bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
709 	bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
710 	bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
711 	bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
712 	bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
713 	bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
714 	bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
715 	bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
716 	bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
717 	memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
718 	memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
719 	memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
720 	memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
721 	bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
722 	bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
723 	bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
724 	memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
725 	bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
726 	bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
727 	bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
728 	bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
729 	bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
730 	bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
731 	bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
732 	bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
733 	bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
734 	bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
735 	bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
736 	bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
737 	bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
738 	bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
739 	bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
740 	bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
741 	memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
742 	bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
743 	bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
744 	bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
745 	bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
746 	bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
747 	bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
748 	bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
749 	bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
750 	bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
751 	bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
752 	memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
753 	memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
754 	bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
755 	bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
756 	bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
757 	bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
758 	bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
759 	bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
760 	bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
761 	bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
762 	bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
763 	bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
764 	bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
765 	bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
766 	bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
767 	bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
768 	bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
769 	bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
770 	bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
771 	bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
772 	bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
773 	bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
774 	bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
775 	bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
776 	bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
777 	bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
778 	bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
779 	bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
780 
781 
782 	/* Fill the bp->stats structure with the FDDI counter values */
783 
784 	bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
785 	bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
786 	bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
787 	bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
788 	bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
789 	bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
790 	bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
791 	bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
792 	bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
793 	bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
794 	bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
795 
796 #endif
797 	return (struct net_device_stats *)&bp->os.MacStat;
798 }				// ctl_get_stat
799 
800 
801 /*
802  * ==============================
803  * = skfp_ctl_set_multicast_list =
804  * ==============================
805  *
806  * Overview:
807  *   Enable/Disable LLC frame promiscuous mode reception
808  *   on the adapter and/or update multicast address table.
809  *
810  * Returns:
811  *   None
812  *
813  * Arguments:
814  *   dev - pointer to device information
815  *
816  * Functional Description:
817  *   This function acquires the driver lock and only calls
818  *   skfp_ctl_set_multicast_list_wo_lock then.
819  *   This routine follows a fairly simple algorithm for setting the
820  *   adapter filters and CAM:
821  *
822  *      if IFF_PROMISC flag is set
823  *              enable promiscuous mode
824  *      else
825  *              disable promiscuous mode
826  *              if number of multicast addresses <= max. multicast number
827  *                      add mc addresses to adapter table
828  *              else
829  *                      enable promiscuous mode
830  *              update adapter filters
831  *
832  * Assumptions:
833  *   Multicast addresses are presented in canonical (LSB) format.
834  *
835  * Side Effects:
836  *   On-board adapter filters are updated.
837  */
skfp_ctl_set_multicast_list(struct net_device * dev)838 static void skfp_ctl_set_multicast_list(struct net_device *dev)
839 {
840 	struct s_smc *smc = netdev_priv(dev);
841 	skfddi_priv *bp = &smc->os;
842 	unsigned long Flags;
843 
844 	spin_lock_irqsave(&bp->DriverLock, Flags);
845 	skfp_ctl_set_multicast_list_wo_lock(dev);
846 	spin_unlock_irqrestore(&bp->DriverLock, Flags);
847 }				// skfp_ctl_set_multicast_list
848 
849 
850 
skfp_ctl_set_multicast_list_wo_lock(struct net_device * dev)851 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
852 {
853 	struct s_smc *smc = netdev_priv(dev);
854 	struct netdev_hw_addr *ha;
855 
856 	/* Enable promiscuous mode, if necessary */
857 	if (dev->flags & IFF_PROMISC) {
858 		mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
859 		pr_debug("PROMISCUOUS MODE ENABLED\n");
860 	}
861 	/* Else, update multicast address table */
862 	else {
863 		mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
864 		pr_debug("PROMISCUOUS MODE DISABLED\n");
865 
866 		// Reset all MC addresses
867 		mac_clear_multicast(smc);
868 		mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
869 
870 		if (dev->flags & IFF_ALLMULTI) {
871 			mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
872 			pr_debug("ENABLE ALL MC ADDRESSES\n");
873 		} else if (!netdev_mc_empty(dev)) {
874 			if (netdev_mc_count(dev) <= FPMAX_MULTICAST) {
875 				/* use exact filtering */
876 
877 				// point to first multicast addr
878 				netdev_for_each_mc_addr(ha, dev) {
879 					mac_add_multicast(smc,
880 						(struct fddi_addr *)ha->addr,
881 						1);
882 
883 					pr_debug("ENABLE MC ADDRESS: %pMF\n",
884 						 ha->addr);
885 				}
886 
887 			} else {	// more MC addresses than HW supports
888 
889 				mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
890 				pr_debug("ENABLE ALL MC ADDRESSES\n");
891 			}
892 		} else {	// no MC addresses
893 
894 			pr_debug("DISABLE ALL MC ADDRESSES\n");
895 		}
896 
897 		/* Update adapter filters */
898 		mac_update_multicast(smc);
899 	}
900 }				// skfp_ctl_set_multicast_list_wo_lock
901 
902 
903 /*
904  * ===========================
905  * = skfp_ctl_set_mac_address =
906  * ===========================
907  *
908  * Overview:
909  *   set new mac address on adapter and update dev_addr field in device table.
910  *
911  * Returns:
912  *   None
913  *
914  * Arguments:
915  *   dev  - pointer to device information
916  *   addr - pointer to sockaddr structure containing unicast address to set
917  *
918  * Assumptions:
919  *   The address pointed to by addr->sa_data is a valid unicast
920  *   address and is presented in canonical (LSB) format.
921  */
skfp_ctl_set_mac_address(struct net_device * dev,void * addr)922 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
923 {
924 	struct s_smc *smc = netdev_priv(dev);
925 	struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
926 	skfddi_priv *bp = &smc->os;
927 	unsigned long Flags;
928 
929 
930 	memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
931 	spin_lock_irqsave(&bp->DriverLock, Flags);
932 	ResetAdapter(smc);
933 	spin_unlock_irqrestore(&bp->DriverLock, Flags);
934 
935 	return 0;		/* always return zero */
936 }				// skfp_ctl_set_mac_address
937 
938 
939 /*
940  * ==============
941  * = skfp_ioctl =
942  * ==============
943  *
944  * Overview:
945  *
946  * Perform IOCTL call functions here. Some are privileged operations and the
947  * effective uid is checked in those cases.
948  *
949  * Returns:
950  *   status value
951  *   0 - success
952  *   other - failure
953  *
954  * Arguments:
955  *   dev  - pointer to device information
956  *   rq - pointer to ioctl request structure
957  *   cmd - ?
958  *
959  */
960 
961 
skfp_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)962 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
963 {
964 	struct s_smc *smc = netdev_priv(dev);
965 	skfddi_priv *lp = &smc->os;
966 	struct s_skfp_ioctl ioc;
967 	int status = 0;
968 
969 	if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl)))
970 		return -EFAULT;
971 
972 	switch (ioc.cmd) {
973 	case SKFP_GET_STATS:	/* Get the driver statistics */
974 		ioc.len = sizeof(lp->MacStat);
975 		status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
976 				? -EFAULT : 0;
977 		break;
978 	case SKFP_CLR_STATS:	/* Zero out the driver statistics */
979 		if (!capable(CAP_NET_ADMIN)) {
980 			status = -EPERM;
981 		} else {
982 			memset(&lp->MacStat, 0, sizeof(lp->MacStat));
983 		}
984 		break;
985 	default:
986 		printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd);
987 		status = -EOPNOTSUPP;
988 
989 	}			// switch
990 
991 	return status;
992 }				// skfp_ioctl
993 
994 
995 /*
996  * =====================
997  * = skfp_send_pkt     =
998  * =====================
999  *
1000  * Overview:
1001  *   Queues a packet for transmission and try to transmit it.
1002  *
1003  * Returns:
1004  *   Condition code
1005  *
1006  * Arguments:
1007  *   skb - pointer to sk_buff to queue for transmission
1008  *   dev - pointer to device information
1009  *
1010  * Functional Description:
1011  *   Here we assume that an incoming skb transmit request
1012  *   is contained in a single physically contiguous buffer
1013  *   in which the virtual address of the start of packet
1014  *   (skb->data) can be converted to a physical address
1015  *   by using pci_map_single().
1016  *
1017  *   We have an internal queue for packets we can not send
1018  *   immediately. Packets in this queue can be given to the
1019  *   adapter if transmit buffers are freed.
1020  *
1021  *   We can't free the skb until after it's been DMA'd
1022  *   out by the adapter, so we'll keep it in the driver and
1023  *   return it in mac_drv_tx_complete.
1024  *
1025  * Return Codes:
1026  *   0 - driver has queued and/or sent packet
1027  *       1 - caller should requeue the sk_buff for later transmission
1028  *
1029  * Assumptions:
1030  *   The entire packet is stored in one physically
1031  *   contiguous buffer which is not cached and whose
1032  *   32-bit physical address can be determined.
1033  *
1034  *   It's vital that this routine is NOT reentered for the
1035  *   same board and that the OS is not in another section of
1036  *   code (eg. skfp_interrupt) for the same board on a
1037  *   different thread.
1038  *
1039  * Side Effects:
1040  *   None
1041  */
skfp_send_pkt(struct sk_buff * skb,struct net_device * dev)1042 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
1043 				       struct net_device *dev)
1044 {
1045 	struct s_smc *smc = netdev_priv(dev);
1046 	skfddi_priv *bp = &smc->os;
1047 
1048 	pr_debug("skfp_send_pkt\n");
1049 
1050 	/*
1051 	 * Verify that incoming transmit request is OK
1052 	 *
1053 	 * Note: The packet size check is consistent with other
1054 	 *               Linux device drivers, although the correct packet
1055 	 *               size should be verified before calling the
1056 	 *               transmit routine.
1057 	 */
1058 
1059 	if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1060 		bp->MacStat.gen.tx_errors++;	/* bump error counter */
1061 		// dequeue packets from xmt queue and send them
1062 		netif_start_queue(dev);
1063 		dev_kfree_skb(skb);
1064 		return NETDEV_TX_OK;	/* return "success" */
1065 	}
1066 	if (bp->QueueSkb == 0) {	// return with tbusy set: queue full
1067 
1068 		netif_stop_queue(dev);
1069 		return NETDEV_TX_BUSY;
1070 	}
1071 	bp->QueueSkb--;
1072 	skb_queue_tail(&bp->SendSkbQueue, skb);
1073 	send_queued_packets(netdev_priv(dev));
1074 	if (bp->QueueSkb == 0) {
1075 		netif_stop_queue(dev);
1076 	}
1077 	return NETDEV_TX_OK;
1078 
1079 }				// skfp_send_pkt
1080 
1081 
1082 /*
1083  * =======================
1084  * = send_queued_packets =
1085  * =======================
1086  *
1087  * Overview:
1088  *   Send packets from the driver queue as long as there are some and
1089  *   transmit resources are available.
1090  *
1091  * Returns:
1092  *   None
1093  *
1094  * Arguments:
1095  *   smc - pointer to smc (adapter) structure
1096  *
1097  * Functional Description:
1098  *   Take a packet from queue if there is any. If not, then we are done.
1099  *   Check if there are resources to send the packet. If not, requeue it
1100  *   and exit.
1101  *   Set packet descriptor flags and give packet to adapter.
1102  *   Check if any send resources can be freed (we do not use the
1103  *   transmit complete interrupt).
1104  */
send_queued_packets(struct s_smc * smc)1105 static void send_queued_packets(struct s_smc *smc)
1106 {
1107 	skfddi_priv *bp = &smc->os;
1108 	struct sk_buff *skb;
1109 	unsigned char fc;
1110 	int queue;
1111 	struct s_smt_fp_txd *txd;	// Current TxD.
1112 	dma_addr_t dma_address;
1113 	unsigned long Flags;
1114 
1115 	int frame_status;	// HWM tx frame status.
1116 
1117 	pr_debug("send queued packets\n");
1118 	for (;;) {
1119 		// send first buffer from queue
1120 		skb = skb_dequeue(&bp->SendSkbQueue);
1121 
1122 		if (!skb) {
1123 			pr_debug("queue empty\n");
1124 			return;
1125 		}		// queue empty !
1126 
1127 		spin_lock_irqsave(&bp->DriverLock, Flags);
1128 		fc = skb->data[0];
1129 		queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1130 #ifdef ESS
1131 		// Check if the frame may/must be sent as a synchronous frame.
1132 
1133 		if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1134 			// It's an LLC frame.
1135 			if (!smc->ess.sync_bw_available)
1136 				fc &= ~FC_SYNC_BIT; // No bandwidth available.
1137 
1138 			else {	// Bandwidth is available.
1139 
1140 				if (smc->mib.fddiESSSynchTxMode) {
1141 					// Send as sync. frame.
1142 					fc |= FC_SYNC_BIT;
1143 				}
1144 			}
1145 		}
1146 #endif				// ESS
1147 		frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1148 
1149 		if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1150 			// Unable to send the frame.
1151 
1152 			if ((frame_status & RING_DOWN) != 0) {
1153 				// Ring is down.
1154 				pr_debug("Tx attempt while ring down.\n");
1155 			} else if ((frame_status & OUT_OF_TXD) != 0) {
1156 				pr_debug("%s: out of TXDs.\n", bp->dev->name);
1157 			} else {
1158 				pr_debug("%s: out of transmit resources",
1159 					bp->dev->name);
1160 			}
1161 
1162 			// Note: We will retry the operation as soon as
1163 			// transmit resources become available.
1164 			skb_queue_head(&bp->SendSkbQueue, skb);
1165 			spin_unlock_irqrestore(&bp->DriverLock, Flags);
1166 			return;	// Packet has been queued.
1167 
1168 		}		// if (unable to send frame)
1169 
1170 		bp->QueueSkb++;	// one packet less in local queue
1171 
1172 		// source address in packet ?
1173 		CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1174 
1175 		txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1176 
1177 		dma_address = pci_map_single(&bp->pdev, skb->data,
1178 					     skb->len, PCI_DMA_TODEVICE);
1179 		if (frame_status & LAN_TX) {
1180 			txd->txd_os.skb = skb;			// save skb
1181 			txd->txd_os.dma_addr = dma_address;	// save dma mapping
1182 		}
1183 		hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1184                       frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1185 
1186 		if (!(frame_status & LAN_TX)) {		// local only frame
1187 			pci_unmap_single(&bp->pdev, dma_address,
1188 					 skb->len, PCI_DMA_TODEVICE);
1189 			dev_kfree_skb_irq(skb);
1190 		}
1191 		spin_unlock_irqrestore(&bp->DriverLock, Flags);
1192 	}			// for
1193 
1194 	return;			// never reached
1195 
1196 }				// send_queued_packets
1197 
1198 
1199 /************************
1200  *
1201  * CheckSourceAddress
1202  *
1203  * Verify if the source address is set. Insert it if necessary.
1204  *
1205  ************************/
CheckSourceAddress(unsigned char * frame,unsigned char * hw_addr)1206 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1207 {
1208 	unsigned char SRBit;
1209 
1210 	if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1211 
1212 		return;
1213 	if ((unsigned short) frame[1 + 10] != 0)
1214 		return;
1215 	SRBit = frame[1 + 6] & 0x01;
1216 	memcpy(&frame[1 + 6], hw_addr, 6);
1217 	frame[8] |= SRBit;
1218 }				// CheckSourceAddress
1219 
1220 
1221 /************************
1222  *
1223  *	ResetAdapter
1224  *
1225  *	Reset the adapter and bring it back to operational mode.
1226  * Args
1227  *	smc - A pointer to the SMT context struct.
1228  * Out
1229  *	Nothing.
1230  *
1231  ************************/
ResetAdapter(struct s_smc * smc)1232 static void ResetAdapter(struct s_smc *smc)
1233 {
1234 
1235 	pr_debug("[fddi: ResetAdapter]\n");
1236 
1237 	// Stop the adapter.
1238 
1239 	card_stop(smc);		// Stop all activity.
1240 
1241 	// Clear the transmit and receive descriptor queues.
1242 	mac_drv_clear_tx_queue(smc);
1243 	mac_drv_clear_rx_queue(smc);
1244 
1245 	// Restart the adapter.
1246 
1247 	smt_reset_defaults(smc, 1);	// Initialize the SMT module.
1248 
1249 	init_smt(smc, (smc->os.dev)->dev_addr);	// Initialize the hardware.
1250 
1251 	smt_online(smc, 1);	// Insert into the ring again.
1252 	STI_FBI();
1253 
1254 	// Restore original receive mode (multicasts, promiscuous, etc.).
1255 	skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1256 }				// ResetAdapter
1257 
1258 
1259 //--------------- functions called by hardware module ----------------
1260 
1261 /************************
1262  *
1263  *	llc_restart_tx
1264  *
1265  *	The hardware driver calls this routine when the transmit complete
1266  *	interrupt bits (end of frame) for the synchronous or asynchronous
1267  *	queue is set.
1268  *
1269  * NOTE The hardware driver calls this function also if no packets are queued.
1270  *	The routine must be able to handle this case.
1271  * Args
1272  *	smc - A pointer to the SMT context struct.
1273  * Out
1274  *	Nothing.
1275  *
1276  ************************/
llc_restart_tx(struct s_smc * smc)1277 void llc_restart_tx(struct s_smc *smc)
1278 {
1279 	skfddi_priv *bp = &smc->os;
1280 
1281 	pr_debug("[llc_restart_tx]\n");
1282 
1283 	// Try to send queued packets
1284 	spin_unlock(&bp->DriverLock);
1285 	send_queued_packets(smc);
1286 	spin_lock(&bp->DriverLock);
1287 	netif_start_queue(bp->dev);// system may send again if it was blocked
1288 
1289 }				// llc_restart_tx
1290 
1291 
1292 /************************
1293  *
1294  *	mac_drv_get_space
1295  *
1296  *	The hardware module calls this function to allocate the memory
1297  *	for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1298  * Args
1299  *	smc - A pointer to the SMT context struct.
1300  *
1301  *	size - Size of memory in bytes to allocate.
1302  * Out
1303  *	!= 0	A pointer to the virtual address of the allocated memory.
1304  *	== 0	Allocation error.
1305  *
1306  ************************/
mac_drv_get_space(struct s_smc * smc,unsigned int size)1307 void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1308 {
1309 	void *virt;
1310 
1311 	pr_debug("mac_drv_get_space (%d bytes), ", size);
1312 	virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1313 
1314 	if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1315 		printk("Unexpected SMT memory size requested: %d\n", size);
1316 		return NULL;
1317 	}
1318 	smc->os.SharedMemHeap += size;	// Move heap pointer.
1319 
1320 	pr_debug("mac_drv_get_space end\n");
1321 	pr_debug("virt addr: %lx\n", (ulong) virt);
1322 	pr_debug("bus  addr: %lx\n", (ulong)
1323 	       (smc->os.SharedMemDMA +
1324 		((char *) virt - (char *)smc->os.SharedMemAddr)));
1325 	return virt;
1326 }				// mac_drv_get_space
1327 
1328 
1329 /************************
1330  *
1331  *	mac_drv_get_desc_mem
1332  *
1333  *	This function is called by the hardware dependent module.
1334  *	It allocates the memory for the RxD and TxD descriptors.
1335  *
1336  *	This memory must be non-cached, non-movable and non-swappable.
1337  *	This memory should start at a physical page boundary.
1338  * Args
1339  *	smc - A pointer to the SMT context struct.
1340  *
1341  *	size - Size of memory in bytes to allocate.
1342  * Out
1343  *	!= 0	A pointer to the virtual address of the allocated memory.
1344  *	== 0	Allocation error.
1345  *
1346  ************************/
mac_drv_get_desc_mem(struct s_smc * smc,unsigned int size)1347 void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1348 {
1349 
1350 	char *virt;
1351 
1352 	pr_debug("mac_drv_get_desc_mem\n");
1353 
1354 	// Descriptor memory must be aligned on 16-byte boundary.
1355 
1356 	virt = mac_drv_get_space(smc, size);
1357 
1358 	size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1359 	size = size % 16;
1360 
1361 	pr_debug("Allocate %u bytes alignment gap ", size);
1362 	pr_debug("for descriptor memory.\n");
1363 
1364 	if (!mac_drv_get_space(smc, size)) {
1365 		printk("fddi: Unable to align descriptor memory.\n");
1366 		return NULL;
1367 	}
1368 	return virt + size;
1369 }				// mac_drv_get_desc_mem
1370 
1371 
1372 /************************
1373  *
1374  *	mac_drv_virt2phys
1375  *
1376  *	Get the physical address of a given virtual address.
1377  * Args
1378  *	smc - A pointer to the SMT context struct.
1379  *
1380  *	virt - A (virtual) pointer into our 'shared' memory area.
1381  * Out
1382  *	Physical address of the given virtual address.
1383  *
1384  ************************/
mac_drv_virt2phys(struct s_smc * smc,void * virt)1385 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1386 {
1387 	return smc->os.SharedMemDMA +
1388 		((char *) virt - (char *)smc->os.SharedMemAddr);
1389 }				// mac_drv_virt2phys
1390 
1391 
1392 /************************
1393  *
1394  *	dma_master
1395  *
1396  *	The HWM calls this function, when the driver leads through a DMA
1397  *	transfer. If the OS-specific module must prepare the system hardware
1398  *	for the DMA transfer, it should do it in this function.
1399  *
1400  *	The hardware module calls this dma_master if it wants to send an SMT
1401  *	frame.  This means that the virt address passed in here is part of
1402  *      the 'shared' memory area.
1403  * Args
1404  *	smc - A pointer to the SMT context struct.
1405  *
1406  *	virt - The virtual address of the data.
1407  *
1408  *	len - The length in bytes of the data.
1409  *
1410  *	flag - Indicates the transmit direction and the buffer type:
1411  *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
1412  *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
1413  *		SMT_BUF (0x80)	SMT buffer
1414  *
1415  *	>> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1416  * Out
1417  *	Returns the pyhsical address for the DMA transfer.
1418  *
1419  ************************/
dma_master(struct s_smc * smc,void * virt,int len,int flag)1420 u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1421 {
1422 	return smc->os.SharedMemDMA +
1423 		((char *) virt - (char *)smc->os.SharedMemAddr);
1424 }				// dma_master
1425 
1426 
1427 /************************
1428  *
1429  *	dma_complete
1430  *
1431  *	The hardware module calls this routine when it has completed a DMA
1432  *	transfer. If the operating system dependent module has set up the DMA
1433  *	channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1434  *	the DMA channel.
1435  * Args
1436  *	smc - A pointer to the SMT context struct.
1437  *
1438  *	descr - A pointer to a TxD or RxD, respectively.
1439  *
1440  *	flag - Indicates the DMA transfer direction / SMT buffer:
1441  *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
1442  *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
1443  *		SMT_BUF (0x80)	SMT buffer (managed by HWM)
1444  * Out
1445  *	Nothing.
1446  *
1447  ************************/
dma_complete(struct s_smc * smc,volatile union s_fp_descr * descr,int flag)1448 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1449 {
1450 	/* For TX buffers, there are two cases.  If it is an SMT transmit
1451 	 * buffer, there is nothing to do since we use consistent memory
1452 	 * for the 'shared' memory area.  The other case is for normal
1453 	 * transmit packets given to us by the networking stack, and in
1454 	 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1455 	 * below.
1456 	 *
1457 	 * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1458 	 * because the hardware module is about to potentially look at
1459 	 * the contents of the buffer.  If we did not call the PCI DMA
1460 	 * unmap first, the hardware module could read inconsistent data.
1461 	 */
1462 	if (flag & DMA_WR) {
1463 		skfddi_priv *bp = &smc->os;
1464 		volatile struct s_smt_fp_rxd *r = &descr->r;
1465 
1466 		/* If SKB is NULL, we used the local buffer. */
1467 		if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1468 			int MaxFrameSize = bp->MaxFrameSize;
1469 
1470 			pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
1471 					 MaxFrameSize, PCI_DMA_FROMDEVICE);
1472 			r->rxd_os.dma_addr = 0;
1473 		}
1474 	}
1475 }				// dma_complete
1476 
1477 
1478 /************************
1479  *
1480  *	mac_drv_tx_complete
1481  *
1482  *	Transmit of a packet is complete. Release the tx staging buffer.
1483  *
1484  * Args
1485  *	smc - A pointer to the SMT context struct.
1486  *
1487  *	txd - A pointer to the last TxD which is used by the frame.
1488  * Out
1489  *	Returns nothing.
1490  *
1491  ************************/
mac_drv_tx_complete(struct s_smc * smc,volatile struct s_smt_fp_txd * txd)1492 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1493 {
1494 	struct sk_buff *skb;
1495 
1496 	pr_debug("entering mac_drv_tx_complete\n");
1497 	// Check if this TxD points to a skb
1498 
1499 	if (!(skb = txd->txd_os.skb)) {
1500 		pr_debug("TXD with no skb assigned.\n");
1501 		return;
1502 	}
1503 	txd->txd_os.skb = NULL;
1504 
1505 	// release the DMA mapping
1506 	pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
1507 			 skb->len, PCI_DMA_TODEVICE);
1508 	txd->txd_os.dma_addr = 0;
1509 
1510 	smc->os.MacStat.gen.tx_packets++;	// Count transmitted packets.
1511 	smc->os.MacStat.gen.tx_bytes+=skb->len;	// Count bytes
1512 
1513 	// free the skb
1514 	dev_kfree_skb_irq(skb);
1515 
1516 	pr_debug("leaving mac_drv_tx_complete\n");
1517 }				// mac_drv_tx_complete
1518 
1519 
1520 /************************
1521  *
1522  * dump packets to logfile
1523  *
1524  ************************/
1525 #ifdef DUMPPACKETS
dump_data(unsigned char * Data,int length)1526 void dump_data(unsigned char *Data, int length)
1527 {
1528 	int i, j;
1529 	unsigned char s[255], sh[10];
1530 	if (length > 64) {
1531 		length = 64;
1532 	}
1533 	printk(KERN_INFO "---Packet start---\n");
1534 	for (i = 0, j = 0; i < length / 8; i++, j += 8)
1535 		printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n",
1536 		       Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3],
1537 		       Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]);
1538 	strcpy(s, "");
1539 	for (i = 0; i < length % 8; i++) {
1540 		sprintf(sh, "%02x ", Data[j + i]);
1541 		strcat(s, sh);
1542 	}
1543 	printk(KERN_INFO "%s\n", s);
1544 	printk(KERN_INFO "------------------\n");
1545 }				// dump_data
1546 #else
1547 #define dump_data(data,len)
1548 #endif				// DUMPPACKETS
1549 
1550 /************************
1551  *
1552  *	mac_drv_rx_complete
1553  *
1554  *	The hardware module calls this function if an LLC frame is received
1555  *	in a receive buffer. Also the SMT, NSA, and directed beacon frames
1556  *	from the network will be passed to the LLC layer by this function
1557  *	if passing is enabled.
1558  *
1559  *	mac_drv_rx_complete forwards the frame to the LLC layer if it should
1560  *	be received. It also fills the RxD ring with new receive buffers if
1561  *	some can be queued.
1562  * Args
1563  *	smc - A pointer to the SMT context struct.
1564  *
1565  *	rxd - A pointer to the first RxD which is used by the receive frame.
1566  *
1567  *	frag_count - Count of RxDs used by the received frame.
1568  *
1569  *	len - Frame length.
1570  * Out
1571  *	Nothing.
1572  *
1573  ************************/
mac_drv_rx_complete(struct s_smc * smc,volatile struct s_smt_fp_rxd * rxd,int frag_count,int len)1574 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1575 			 int frag_count, int len)
1576 {
1577 	skfddi_priv *bp = &smc->os;
1578 	struct sk_buff *skb;
1579 	unsigned char *virt, *cp;
1580 	unsigned short ri;
1581 	u_int RifLength;
1582 
1583 	pr_debug("entering mac_drv_rx_complete (len=%d)\n", len);
1584 	if (frag_count != 1) {	// This is not allowed to happen.
1585 
1586 		printk("fddi: Multi-fragment receive!\n");
1587 		goto RequeueRxd;	// Re-use the given RXD(s).
1588 
1589 	}
1590 	skb = rxd->rxd_os.skb;
1591 	if (!skb) {
1592 		pr_debug("No skb in rxd\n");
1593 		smc->os.MacStat.gen.rx_errors++;
1594 		goto RequeueRxd;
1595 	}
1596 	virt = skb->data;
1597 
1598 	// The DMA mapping was released in dma_complete above.
1599 
1600 	dump_data(skb->data, len);
1601 
1602 	/*
1603 	 * FDDI Frame format:
1604 	 * +-------+-------+-------+------------+--------+------------+
1605 	 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1606 	 * +-------+-------+-------+------------+--------+------------+
1607 	 *
1608 	 * FC = Frame Control
1609 	 * DA = Destination Address
1610 	 * SA = Source Address
1611 	 * RIF = Routing Information Field
1612 	 * LLC = Logical Link Control
1613 	 */
1614 
1615 	// Remove Routing Information Field (RIF), if present.
1616 
1617 	if ((virt[1 + 6] & FDDI_RII) == 0)
1618 		RifLength = 0;
1619 	else {
1620 		int n;
1621 // goos: RIF removal has still to be tested
1622 		pr_debug("RIF found\n");
1623 		// Get RIF length from Routing Control (RC) field.
1624 		cp = virt + FDDI_MAC_HDR_LEN;	// Point behind MAC header.
1625 
1626 		ri = ntohs(*((__be16 *) cp));
1627 		RifLength = ri & FDDI_RCF_LEN_MASK;
1628 		if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1629 			printk("fddi: Invalid RIF.\n");
1630 			goto RequeueRxd;	// Discard the frame.
1631 
1632 		}
1633 		virt[1 + 6] &= ~FDDI_RII;	// Clear RII bit.
1634 		// regions overlap
1635 
1636 		virt = cp + RifLength;
1637 		for (n = FDDI_MAC_HDR_LEN; n; n--)
1638 			*--virt = *--cp;
1639 		// adjust sbd->data pointer
1640 		skb_pull(skb, RifLength);
1641 		len -= RifLength;
1642 		RifLength = 0;
1643 	}
1644 
1645 	// Count statistics.
1646 	smc->os.MacStat.gen.rx_packets++;	// Count indicated receive
1647 						// packets.
1648 	smc->os.MacStat.gen.rx_bytes+=len;	// Count bytes.
1649 
1650 	// virt points to header again
1651 	if (virt[1] & 0x01) {	// Check group (multicast) bit.
1652 
1653 		smc->os.MacStat.gen.multicast++;
1654 	}
1655 
1656 	// deliver frame to system
1657 	rxd->rxd_os.skb = NULL;
1658 	skb_trim(skb, len);
1659 	skb->protocol = fddi_type_trans(skb, bp->dev);
1660 
1661 	netif_rx(skb);
1662 
1663 	HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1664 	return;
1665 
1666       RequeueRxd:
1667 	pr_debug("Rx: re-queue RXD.\n");
1668 	mac_drv_requeue_rxd(smc, rxd, frag_count);
1669 	smc->os.MacStat.gen.rx_errors++;	// Count receive packets
1670 						// not indicated.
1671 
1672 }				// mac_drv_rx_complete
1673 
1674 
1675 /************************
1676  *
1677  *	mac_drv_requeue_rxd
1678  *
1679  *	The hardware module calls this function to request the OS-specific
1680  *	module to queue the receive buffer(s) represented by the pointer
1681  *	to the RxD and the frag_count into the receive queue again. This
1682  *	buffer was filled with an invalid frame or an SMT frame.
1683  * Args
1684  *	smc - A pointer to the SMT context struct.
1685  *
1686  *	rxd - A pointer to the first RxD which is used by the receive frame.
1687  *
1688  *	frag_count - Count of RxDs used by the received frame.
1689  * Out
1690  *	Nothing.
1691  *
1692  ************************/
mac_drv_requeue_rxd(struct s_smc * smc,volatile struct s_smt_fp_rxd * rxd,int frag_count)1693 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1694 			 int frag_count)
1695 {
1696 	volatile struct s_smt_fp_rxd *next_rxd;
1697 	volatile struct s_smt_fp_rxd *src_rxd;
1698 	struct sk_buff *skb;
1699 	int MaxFrameSize;
1700 	unsigned char *v_addr;
1701 	dma_addr_t b_addr;
1702 
1703 	if (frag_count != 1)	// This is not allowed to happen.
1704 
1705 		printk("fddi: Multi-fragment requeue!\n");
1706 
1707 	MaxFrameSize = smc->os.MaxFrameSize;
1708 	src_rxd = rxd;
1709 	for (; frag_count > 0; frag_count--) {
1710 		next_rxd = src_rxd->rxd_next;
1711 		rxd = HWM_GET_CURR_RXD(smc);
1712 
1713 		skb = src_rxd->rxd_os.skb;
1714 		if (skb == NULL) {	// this should not happen
1715 
1716 			pr_debug("Requeue with no skb in rxd!\n");
1717 			skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1718 			if (skb) {
1719 				// we got a skb
1720 				rxd->rxd_os.skb = skb;
1721 				skb_reserve(skb, 3);
1722 				skb_put(skb, MaxFrameSize);
1723 				v_addr = skb->data;
1724 				b_addr = pci_map_single(&smc->os.pdev,
1725 							v_addr,
1726 							MaxFrameSize,
1727 							PCI_DMA_FROMDEVICE);
1728 				rxd->rxd_os.dma_addr = b_addr;
1729 			} else {
1730 				// no skb available, use local buffer
1731 				pr_debug("Queueing invalid buffer!\n");
1732 				rxd->rxd_os.skb = NULL;
1733 				v_addr = smc->os.LocalRxBuffer;
1734 				b_addr = smc->os.LocalRxBufferDMA;
1735 			}
1736 		} else {
1737 			// we use skb from old rxd
1738 			rxd->rxd_os.skb = skb;
1739 			v_addr = skb->data;
1740 			b_addr = pci_map_single(&smc->os.pdev,
1741 						v_addr,
1742 						MaxFrameSize,
1743 						PCI_DMA_FROMDEVICE);
1744 			rxd->rxd_os.dma_addr = b_addr;
1745 		}
1746 		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1747 			    FIRST_FRAG | LAST_FRAG);
1748 
1749 		src_rxd = next_rxd;
1750 	}
1751 }				// mac_drv_requeue_rxd
1752 
1753 
1754 /************************
1755  *
1756  *	mac_drv_fill_rxd
1757  *
1758  *	The hardware module calls this function at initialization time
1759  *	to fill the RxD ring with receive buffers. It is also called by
1760  *	mac_drv_rx_complete if rx_free is large enough to queue some new
1761  *	receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1762  *	receive buffers as long as enough RxDs and receive buffers are
1763  *	available.
1764  * Args
1765  *	smc - A pointer to the SMT context struct.
1766  * Out
1767  *	Nothing.
1768  *
1769  ************************/
mac_drv_fill_rxd(struct s_smc * smc)1770 void mac_drv_fill_rxd(struct s_smc *smc)
1771 {
1772 	int MaxFrameSize;
1773 	unsigned char *v_addr;
1774 	unsigned long b_addr;
1775 	struct sk_buff *skb;
1776 	volatile struct s_smt_fp_rxd *rxd;
1777 
1778 	pr_debug("entering mac_drv_fill_rxd\n");
1779 
1780 	// Walk through the list of free receive buffers, passing receive
1781 	// buffers to the HWM as long as RXDs are available.
1782 
1783 	MaxFrameSize = smc->os.MaxFrameSize;
1784 	// Check if there is any RXD left.
1785 	while (HWM_GET_RX_FREE(smc) > 0) {
1786 		pr_debug(".\n");
1787 
1788 		rxd = HWM_GET_CURR_RXD(smc);
1789 		skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1790 		if (skb) {
1791 			// we got a skb
1792 			skb_reserve(skb, 3);
1793 			skb_put(skb, MaxFrameSize);
1794 			v_addr = skb->data;
1795 			b_addr = pci_map_single(&smc->os.pdev,
1796 						v_addr,
1797 						MaxFrameSize,
1798 						PCI_DMA_FROMDEVICE);
1799 			rxd->rxd_os.dma_addr = b_addr;
1800 		} else {
1801 			// no skb available, use local buffer
1802 			// System has run out of buffer memory, but we want to
1803 			// keep the receiver running in hope of better times.
1804 			// Multiple descriptors may point to this local buffer,
1805 			// so data in it must be considered invalid.
1806 			pr_debug("Queueing invalid buffer!\n");
1807 			v_addr = smc->os.LocalRxBuffer;
1808 			b_addr = smc->os.LocalRxBufferDMA;
1809 		}
1810 
1811 		rxd->rxd_os.skb = skb;
1812 
1813 		// Pass receive buffer to HWM.
1814 		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1815 			    FIRST_FRAG | LAST_FRAG);
1816 	}
1817 	pr_debug("leaving mac_drv_fill_rxd\n");
1818 }				// mac_drv_fill_rxd
1819 
1820 
1821 /************************
1822  *
1823  *	mac_drv_clear_rxd
1824  *
1825  *	The hardware module calls this function to release unused
1826  *	receive buffers.
1827  * Args
1828  *	smc - A pointer to the SMT context struct.
1829  *
1830  *	rxd - A pointer to the first RxD which is used by the receive buffer.
1831  *
1832  *	frag_count - Count of RxDs used by the receive buffer.
1833  * Out
1834  *	Nothing.
1835  *
1836  ************************/
mac_drv_clear_rxd(struct s_smc * smc,volatile struct s_smt_fp_rxd * rxd,int frag_count)1837 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1838 		       int frag_count)
1839 {
1840 
1841 	struct sk_buff *skb;
1842 
1843 	pr_debug("entering mac_drv_clear_rxd\n");
1844 
1845 	if (frag_count != 1)	// This is not allowed to happen.
1846 
1847 		printk("fddi: Multi-fragment clear!\n");
1848 
1849 	for (; frag_count > 0; frag_count--) {
1850 		skb = rxd->rxd_os.skb;
1851 		if (skb != NULL) {
1852 			skfddi_priv *bp = &smc->os;
1853 			int MaxFrameSize = bp->MaxFrameSize;
1854 
1855 			pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
1856 					 MaxFrameSize, PCI_DMA_FROMDEVICE);
1857 
1858 			dev_kfree_skb(skb);
1859 			rxd->rxd_os.skb = NULL;
1860 		}
1861 		rxd = rxd->rxd_next;	// Next RXD.
1862 
1863 	}
1864 }				// mac_drv_clear_rxd
1865 
1866 
1867 /************************
1868  *
1869  *	mac_drv_rx_init
1870  *
1871  *	The hardware module calls this routine when an SMT or NSA frame of the
1872  *	local SMT should be delivered to the LLC layer.
1873  *
1874  *	It is necessary to have this function, because there is no other way to
1875  *	copy the contents of SMT MBufs into receive buffers.
1876  *
1877  *	mac_drv_rx_init allocates the required target memory for this frame,
1878  *	and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1879  * Args
1880  *	smc - A pointer to the SMT context struct.
1881  *
1882  *	len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1883  *
1884  *	fc - The Frame Control field of the received frame.
1885  *
1886  *	look_ahead - A pointer to the lookahead data buffer (may be NULL).
1887  *
1888  *	la_len - The length of the lookahead data stored in the lookahead
1889  *	buffer (may be zero).
1890  * Out
1891  *	Always returns zero (0).
1892  *
1893  ************************/
mac_drv_rx_init(struct s_smc * smc,int len,int fc,char * look_ahead,int la_len)1894 int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1895 		    char *look_ahead, int la_len)
1896 {
1897 	struct sk_buff *skb;
1898 
1899 	pr_debug("entering mac_drv_rx_init(len=%d)\n", len);
1900 
1901 	// "Received" a SMT or NSA frame of the local SMT.
1902 
1903 	if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1904 		pr_debug("fddi: Discard invalid local SMT frame\n");
1905 		pr_debug("  len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1906 		       len, la_len, (unsigned long) look_ahead);
1907 		return 0;
1908 	}
1909 	skb = alloc_skb(len + 3, GFP_ATOMIC);
1910 	if (!skb) {
1911 		pr_debug("fddi: Local SMT: skb memory exhausted.\n");
1912 		return 0;
1913 	}
1914 	skb_reserve(skb, 3);
1915 	skb_put(skb, len);
1916 	skb_copy_to_linear_data(skb, look_ahead, len);
1917 
1918 	// deliver frame to system
1919 	skb->protocol = fddi_type_trans(skb, smc->os.dev);
1920 	netif_rx(skb);
1921 
1922 	return 0;
1923 }				// mac_drv_rx_init
1924 
1925 
1926 /************************
1927  *
1928  *	smt_timer_poll
1929  *
1930  *	This routine is called periodically by the SMT module to clean up the
1931  *	driver.
1932  *
1933  *	Return any queued frames back to the upper protocol layers if the ring
1934  *	is down.
1935  * Args
1936  *	smc - A pointer to the SMT context struct.
1937  * Out
1938  *	Nothing.
1939  *
1940  ************************/
smt_timer_poll(struct s_smc * smc)1941 void smt_timer_poll(struct s_smc *smc)
1942 {
1943 }				// smt_timer_poll
1944 
1945 
1946 /************************
1947  *
1948  *	ring_status_indication
1949  *
1950  *	This function indicates a change of the ring state.
1951  * Args
1952  *	smc - A pointer to the SMT context struct.
1953  *
1954  *	status - The current ring status.
1955  * Out
1956  *	Nothing.
1957  *
1958  ************************/
ring_status_indication(struct s_smc * smc,u_long status)1959 void ring_status_indication(struct s_smc *smc, u_long status)
1960 {
1961 	pr_debug("ring_status_indication( ");
1962 	if (status & RS_RES15)
1963 		pr_debug("RS_RES15 ");
1964 	if (status & RS_HARDERROR)
1965 		pr_debug("RS_HARDERROR ");
1966 	if (status & RS_SOFTERROR)
1967 		pr_debug("RS_SOFTERROR ");
1968 	if (status & RS_BEACON)
1969 		pr_debug("RS_BEACON ");
1970 	if (status & RS_PATHTEST)
1971 		pr_debug("RS_PATHTEST ");
1972 	if (status & RS_SELFTEST)
1973 		pr_debug("RS_SELFTEST ");
1974 	if (status & RS_RES9)
1975 		pr_debug("RS_RES9 ");
1976 	if (status & RS_DISCONNECT)
1977 		pr_debug("RS_DISCONNECT ");
1978 	if (status & RS_RES7)
1979 		pr_debug("RS_RES7 ");
1980 	if (status & RS_DUPADDR)
1981 		pr_debug("RS_DUPADDR ");
1982 	if (status & RS_NORINGOP)
1983 		pr_debug("RS_NORINGOP ");
1984 	if (status & RS_VERSION)
1985 		pr_debug("RS_VERSION ");
1986 	if (status & RS_STUCKBYPASSS)
1987 		pr_debug("RS_STUCKBYPASSS ");
1988 	if (status & RS_EVENT)
1989 		pr_debug("RS_EVENT ");
1990 	if (status & RS_RINGOPCHANGE)
1991 		pr_debug("RS_RINGOPCHANGE ");
1992 	if (status & RS_RES0)
1993 		pr_debug("RS_RES0 ");
1994 	pr_debug("]\n");
1995 }				// ring_status_indication
1996 
1997 
1998 /************************
1999  *
2000  *	smt_get_time
2001  *
2002  *	Gets the current time from the system.
2003  * Args
2004  *	None.
2005  * Out
2006  *	The current time in TICKS_PER_SECOND.
2007  *
2008  *	TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
2009  *	defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
2010  *	to the time returned by smt_get_time().
2011  *
2012  ************************/
smt_get_time(void)2013 unsigned long smt_get_time(void)
2014 {
2015 	return jiffies;
2016 }				// smt_get_time
2017 
2018 
2019 /************************
2020  *
2021  *	smt_stat_counter
2022  *
2023  *	Status counter update (ring_op, fifo full).
2024  * Args
2025  *	smc - A pointer to the SMT context struct.
2026  *
2027  *	stat -	= 0: A ring operational change occurred.
2028  *		= 1: The FORMAC FIFO buffer is full / FIFO overflow.
2029  * Out
2030  *	Nothing.
2031  *
2032  ************************/
smt_stat_counter(struct s_smc * smc,int stat)2033 void smt_stat_counter(struct s_smc *smc, int stat)
2034 {
2035 //      BOOLEAN RingIsUp ;
2036 
2037 	pr_debug("smt_stat_counter\n");
2038 	switch (stat) {
2039 	case 0:
2040 		pr_debug("Ring operational change.\n");
2041 		break;
2042 	case 1:
2043 		pr_debug("Receive fifo overflow.\n");
2044 		smc->os.MacStat.gen.rx_errors++;
2045 		break;
2046 	default:
2047 		pr_debug("Unknown status (%d).\n", stat);
2048 		break;
2049 	}
2050 }				// smt_stat_counter
2051 
2052 
2053 /************************
2054  *
2055  *	cfm_state_change
2056  *
2057  *	Sets CFM state in custom statistics.
2058  * Args
2059  *	smc - A pointer to the SMT context struct.
2060  *
2061  *	c_state - Possible values are:
2062  *
2063  *		EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2064  *		EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2065  * Out
2066  *	Nothing.
2067  *
2068  ************************/
cfm_state_change(struct s_smc * smc,int c_state)2069 void cfm_state_change(struct s_smc *smc, int c_state)
2070 {
2071 #ifdef DRIVERDEBUG
2072 	char *s;
2073 
2074 	switch (c_state) {
2075 	case SC0_ISOLATED:
2076 		s = "SC0_ISOLATED";
2077 		break;
2078 	case SC1_WRAP_A:
2079 		s = "SC1_WRAP_A";
2080 		break;
2081 	case SC2_WRAP_B:
2082 		s = "SC2_WRAP_B";
2083 		break;
2084 	case SC4_THRU_A:
2085 		s = "SC4_THRU_A";
2086 		break;
2087 	case SC5_THRU_B:
2088 		s = "SC5_THRU_B";
2089 		break;
2090 	case SC7_WRAP_S:
2091 		s = "SC7_WRAP_S";
2092 		break;
2093 	case SC9_C_WRAP_A:
2094 		s = "SC9_C_WRAP_A";
2095 		break;
2096 	case SC10_C_WRAP_B:
2097 		s = "SC10_C_WRAP_B";
2098 		break;
2099 	case SC11_C_WRAP_S:
2100 		s = "SC11_C_WRAP_S";
2101 		break;
2102 	default:
2103 		pr_debug("cfm_state_change: unknown %d\n", c_state);
2104 		return;
2105 	}
2106 	pr_debug("cfm_state_change: %s\n", s);
2107 #endif				// DRIVERDEBUG
2108 }				// cfm_state_change
2109 
2110 
2111 /************************
2112  *
2113  *	ecm_state_change
2114  *
2115  *	Sets ECM state in custom statistics.
2116  * Args
2117  *	smc - A pointer to the SMT context struct.
2118  *
2119  *	e_state - Possible values are:
2120  *
2121  *		SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2122  *		SC5_THRU_B (7), SC7_WRAP_S (8)
2123  * Out
2124  *	Nothing.
2125  *
2126  ************************/
ecm_state_change(struct s_smc * smc,int e_state)2127 void ecm_state_change(struct s_smc *smc, int e_state)
2128 {
2129 #ifdef DRIVERDEBUG
2130 	char *s;
2131 
2132 	switch (e_state) {
2133 	case EC0_OUT:
2134 		s = "EC0_OUT";
2135 		break;
2136 	case EC1_IN:
2137 		s = "EC1_IN";
2138 		break;
2139 	case EC2_TRACE:
2140 		s = "EC2_TRACE";
2141 		break;
2142 	case EC3_LEAVE:
2143 		s = "EC3_LEAVE";
2144 		break;
2145 	case EC4_PATH_TEST:
2146 		s = "EC4_PATH_TEST";
2147 		break;
2148 	case EC5_INSERT:
2149 		s = "EC5_INSERT";
2150 		break;
2151 	case EC6_CHECK:
2152 		s = "EC6_CHECK";
2153 		break;
2154 	case EC7_DEINSERT:
2155 		s = "EC7_DEINSERT";
2156 		break;
2157 	default:
2158 		s = "unknown";
2159 		break;
2160 	}
2161 	pr_debug("ecm_state_change: %s\n", s);
2162 #endif				//DRIVERDEBUG
2163 }				// ecm_state_change
2164 
2165 
2166 /************************
2167  *
2168  *	rmt_state_change
2169  *
2170  *	Sets RMT state in custom statistics.
2171  * Args
2172  *	smc - A pointer to the SMT context struct.
2173  *
2174  *	r_state - Possible values are:
2175  *
2176  *		RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2177  *		RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2178  * Out
2179  *	Nothing.
2180  *
2181  ************************/
rmt_state_change(struct s_smc * smc,int r_state)2182 void rmt_state_change(struct s_smc *smc, int r_state)
2183 {
2184 #ifdef DRIVERDEBUG
2185 	char *s;
2186 
2187 	switch (r_state) {
2188 	case RM0_ISOLATED:
2189 		s = "RM0_ISOLATED";
2190 		break;
2191 	case RM1_NON_OP:
2192 		s = "RM1_NON_OP - not operational";
2193 		break;
2194 	case RM2_RING_OP:
2195 		s = "RM2_RING_OP - ring operational";
2196 		break;
2197 	case RM3_DETECT:
2198 		s = "RM3_DETECT - detect dupl addresses";
2199 		break;
2200 	case RM4_NON_OP_DUP:
2201 		s = "RM4_NON_OP_DUP - dupl. addr detected";
2202 		break;
2203 	case RM5_RING_OP_DUP:
2204 		s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2205 		break;
2206 	case RM6_DIRECTED:
2207 		s = "RM6_DIRECTED - sending directed beacons";
2208 		break;
2209 	case RM7_TRACE:
2210 		s = "RM7_TRACE - trace initiated";
2211 		break;
2212 	default:
2213 		s = "unknown";
2214 		break;
2215 	}
2216 	pr_debug("[rmt_state_change: %s]\n", s);
2217 #endif				// DRIVERDEBUG
2218 }				// rmt_state_change
2219 
2220 
2221 /************************
2222  *
2223  *	drv_reset_indication
2224  *
2225  *	This function is called by the SMT when it has detected a severe
2226  *	hardware problem. The driver should perform a reset on the adapter
2227  *	as soon as possible, but not from within this function.
2228  * Args
2229  *	smc - A pointer to the SMT context struct.
2230  * Out
2231  *	Nothing.
2232  *
2233  ************************/
drv_reset_indication(struct s_smc * smc)2234 void drv_reset_indication(struct s_smc *smc)
2235 {
2236 	pr_debug("entering drv_reset_indication\n");
2237 
2238 	smc->os.ResetRequested = TRUE;	// Set flag.
2239 
2240 }				// drv_reset_indication
2241 
2242 static struct pci_driver skfddi_pci_driver = {
2243 	.name		= "skfddi",
2244 	.id_table	= skfddi_pci_tbl,
2245 	.probe		= skfp_init_one,
2246 	.remove		= __devexit_p(skfp_remove_one),
2247 };
2248 
skfd_init(void)2249 static int __init skfd_init(void)
2250 {
2251 	return pci_register_driver(&skfddi_pci_driver);
2252 }
2253 
skfd_exit(void)2254 static void __exit skfd_exit(void)
2255 {
2256 	pci_unregister_driver(&skfddi_pci_driver);
2257 }
2258 
2259 module_init(skfd_init);
2260 module_exit(skfd_exit);
2261