1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * This file contains the routines for TLB flushing.
4 * On machines where the MMU does not use a hash table to store virtual to
5 * physical translations (ie, SW loaded TLBs or Book3E compilant processors,
6 * this does -not- include 603 however which shares the implementation with
7 * hash based processors)
8 *
9 * -- BenH
10 *
11 * Copyright 2008,2009 Ben Herrenschmidt <benh@kernel.crashing.org>
12 * IBM Corp.
13 *
14 * Derived from arch/ppc/mm/init.c:
15 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
16 *
17 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
18 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
19 * Copyright (C) 1996 Paul Mackerras
20 *
21 * Derived from "arch/i386/mm/init.c"
22 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
23 */
24
25 #include <linux/kernel.h>
26 #include <linux/export.h>
27 #include <linux/mm.h>
28 #include <linux/init.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/preempt.h>
32 #include <linux/spinlock.h>
33 #include <linux/memblock.h>
34 #include <linux/of_fdt.h>
35 #include <linux/hugetlb.h>
36
37 #include <asm/pgalloc.h>
38 #include <asm/tlbflush.h>
39 #include <asm/tlb.h>
40 #include <asm/code-patching.h>
41 #include <asm/cputhreads.h>
42 #include <asm/hugetlb.h>
43 #include <asm/paca.h>
44
45 #include <mm/mmu_decl.h>
46
47 /*
48 * This struct lists the sw-supported page sizes. The hardawre MMU may support
49 * other sizes not listed here. The .ind field is only used on MMUs that have
50 * indirect page table entries.
51 */
52 #ifdef CONFIG_PPC_E500
53 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
54 [MMU_PAGE_4K] = {
55 .shift = 12,
56 .enc = BOOK3E_PAGESZ_4K,
57 },
58 [MMU_PAGE_2M] = {
59 .shift = 21,
60 .enc = BOOK3E_PAGESZ_2M,
61 },
62 [MMU_PAGE_4M] = {
63 .shift = 22,
64 .enc = BOOK3E_PAGESZ_4M,
65 },
66 [MMU_PAGE_16M] = {
67 .shift = 24,
68 .enc = BOOK3E_PAGESZ_16M,
69 },
70 [MMU_PAGE_64M] = {
71 .shift = 26,
72 .enc = BOOK3E_PAGESZ_64M,
73 },
74 [MMU_PAGE_256M] = {
75 .shift = 28,
76 .enc = BOOK3E_PAGESZ_256M,
77 },
78 [MMU_PAGE_1G] = {
79 .shift = 30,
80 .enc = BOOK3E_PAGESZ_1GB,
81 },
82 };
83
mmu_get_tsize(int psize)84 static inline int mmu_get_tsize(int psize)
85 {
86 return mmu_psize_defs[psize].enc;
87 }
88 #else
mmu_get_tsize(int psize)89 static inline int mmu_get_tsize(int psize)
90 {
91 /* This isn't used on !Book3E for now */
92 return 0;
93 }
94 #endif
95
96 #ifdef CONFIG_PPC_8xx
97 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
98 [MMU_PAGE_4K] = {
99 .shift = 12,
100 },
101 [MMU_PAGE_16K] = {
102 .shift = 14,
103 },
104 [MMU_PAGE_512K] = {
105 .shift = 19,
106 },
107 [MMU_PAGE_8M] = {
108 .shift = 23,
109 },
110 };
111 #endif
112
113 /* The variables below are currently only used on 64-bit Book3E
114 * though this will probably be made common with other nohash
115 * implementations at some point
116 */
117 #ifdef CONFIG_PPC64
118
119 int mmu_pte_psize; /* Page size used for PTE pages */
120 int mmu_vmemmap_psize; /* Page size used for the virtual mem map */
121 int book3e_htw_mode; /* HW tablewalk? Value is PPC_HTW_* */
122 unsigned long linear_map_top; /* Top of linear mapping */
123
124
125 /*
126 * Number of bytes to add to SPRN_SPRG_TLB_EXFRAME on crit/mcheck/debug
127 * exceptions. This is used for bolted and e6500 TLB miss handlers which
128 * do not modify this SPRG in the TLB miss code; for other TLB miss handlers,
129 * this is set to zero.
130 */
131 int extlb_level_exc;
132
133 #endif /* CONFIG_PPC64 */
134
135 #ifdef CONFIG_PPC_E500
136 /* next_tlbcam_idx is used to round-robin tlbcam entry assignment */
137 DEFINE_PER_CPU(int, next_tlbcam_idx);
138 EXPORT_PER_CPU_SYMBOL(next_tlbcam_idx);
139 #endif
140
141 /*
142 * Base TLB flushing operations:
143 *
144 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
145 * - flush_tlb_page(vma, vmaddr) flushes one page
146 * - flush_tlb_range(vma, start, end) flushes a range of pages
147 * - flush_tlb_kernel_range(start, end) flushes kernel pages
148 *
149 * - local_* variants of page and mm only apply to the current
150 * processor
151 */
152
153 #ifndef CONFIG_PPC_8xx
154 /*
155 * These are the base non-SMP variants of page and mm flushing
156 */
local_flush_tlb_mm(struct mm_struct * mm)157 void local_flush_tlb_mm(struct mm_struct *mm)
158 {
159 unsigned int pid;
160
161 preempt_disable();
162 pid = mm->context.id;
163 if (pid != MMU_NO_CONTEXT)
164 _tlbil_pid(pid);
165 preempt_enable();
166 }
167 EXPORT_SYMBOL(local_flush_tlb_mm);
168
__local_flush_tlb_page(struct mm_struct * mm,unsigned long vmaddr,int tsize,int ind)169 void __local_flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
170 int tsize, int ind)
171 {
172 unsigned int pid;
173
174 preempt_disable();
175 pid = mm ? mm->context.id : 0;
176 if (pid != MMU_NO_CONTEXT)
177 _tlbil_va(vmaddr, pid, tsize, ind);
178 preempt_enable();
179 }
180
local_flush_tlb_page(struct vm_area_struct * vma,unsigned long vmaddr)181 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
182 {
183 __local_flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
184 mmu_get_tsize(mmu_virtual_psize), 0);
185 }
186 EXPORT_SYMBOL(local_flush_tlb_page);
187 #endif
188
189 /*
190 * And here are the SMP non-local implementations
191 */
192 #ifdef CONFIG_SMP
193
194 static DEFINE_RAW_SPINLOCK(tlbivax_lock);
195
196 struct tlb_flush_param {
197 unsigned long addr;
198 unsigned int pid;
199 unsigned int tsize;
200 unsigned int ind;
201 };
202
do_flush_tlb_mm_ipi(void * param)203 static void do_flush_tlb_mm_ipi(void *param)
204 {
205 struct tlb_flush_param *p = param;
206
207 _tlbil_pid(p ? p->pid : 0);
208 }
209
do_flush_tlb_page_ipi(void * param)210 static void do_flush_tlb_page_ipi(void *param)
211 {
212 struct tlb_flush_param *p = param;
213
214 _tlbil_va(p->addr, p->pid, p->tsize, p->ind);
215 }
216
217
218 /* Note on invalidations and PID:
219 *
220 * We snapshot the PID with preempt disabled. At this point, it can still
221 * change either because:
222 * - our context is being stolen (PID -> NO_CONTEXT) on another CPU
223 * - we are invaliating some target that isn't currently running here
224 * and is concurrently acquiring a new PID on another CPU
225 * - some other CPU is re-acquiring a lost PID for this mm
226 * etc...
227 *
228 * However, this shouldn't be a problem as we only guarantee
229 * invalidation of TLB entries present prior to this call, so we
230 * don't care about the PID changing, and invalidating a stale PID
231 * is generally harmless.
232 */
233
flush_tlb_mm(struct mm_struct * mm)234 void flush_tlb_mm(struct mm_struct *mm)
235 {
236 unsigned int pid;
237
238 preempt_disable();
239 pid = mm->context.id;
240 if (unlikely(pid == MMU_NO_CONTEXT))
241 goto no_context;
242 if (!mm_is_core_local(mm)) {
243 struct tlb_flush_param p = { .pid = pid };
244 /* Ignores smp_processor_id() even if set. */
245 smp_call_function_many(mm_cpumask(mm),
246 do_flush_tlb_mm_ipi, &p, 1);
247 }
248 _tlbil_pid(pid);
249 no_context:
250 preempt_enable();
251 }
252 EXPORT_SYMBOL(flush_tlb_mm);
253
__flush_tlb_page(struct mm_struct * mm,unsigned long vmaddr,int tsize,int ind)254 void __flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
255 int tsize, int ind)
256 {
257 struct cpumask *cpu_mask;
258 unsigned int pid;
259
260 /*
261 * This function as well as __local_flush_tlb_page() must only be called
262 * for user contexts.
263 */
264 if (WARN_ON(!mm))
265 return;
266
267 preempt_disable();
268 pid = mm->context.id;
269 if (unlikely(pid == MMU_NO_CONTEXT))
270 goto bail;
271 cpu_mask = mm_cpumask(mm);
272 if (!mm_is_core_local(mm)) {
273 /* If broadcast tlbivax is supported, use it */
274 if (mmu_has_feature(MMU_FTR_USE_TLBIVAX_BCAST)) {
275 int lock = mmu_has_feature(MMU_FTR_LOCK_BCAST_INVAL);
276 if (lock)
277 raw_spin_lock(&tlbivax_lock);
278 _tlbivax_bcast(vmaddr, pid, tsize, ind);
279 if (lock)
280 raw_spin_unlock(&tlbivax_lock);
281 goto bail;
282 } else {
283 struct tlb_flush_param p = {
284 .pid = pid,
285 .addr = vmaddr,
286 .tsize = tsize,
287 .ind = ind,
288 };
289 /* Ignores smp_processor_id() even if set in cpu_mask */
290 smp_call_function_many(cpu_mask,
291 do_flush_tlb_page_ipi, &p, 1);
292 }
293 }
294 _tlbil_va(vmaddr, pid, tsize, ind);
295 bail:
296 preempt_enable();
297 }
298
flush_tlb_page(struct vm_area_struct * vma,unsigned long vmaddr)299 void flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
300 {
301 #ifdef CONFIG_HUGETLB_PAGE
302 if (vma && is_vm_hugetlb_page(vma))
303 flush_hugetlb_page(vma, vmaddr);
304 #endif
305
306 __flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
307 mmu_get_tsize(mmu_virtual_psize), 0);
308 }
309 EXPORT_SYMBOL(flush_tlb_page);
310
311 #endif /* CONFIG_SMP */
312
313 #ifdef CONFIG_PPC_47x
early_init_mmu_47x(void)314 void __init early_init_mmu_47x(void)
315 {
316 #ifdef CONFIG_SMP
317 unsigned long root = of_get_flat_dt_root();
318 if (of_get_flat_dt_prop(root, "cooperative-partition", NULL))
319 mmu_clear_feature(MMU_FTR_USE_TLBIVAX_BCAST);
320 #endif /* CONFIG_SMP */
321 }
322 #endif /* CONFIG_PPC_47x */
323
324 /*
325 * Flush kernel TLB entries in the given range
326 */
327 #ifndef CONFIG_PPC_8xx
flush_tlb_kernel_range(unsigned long start,unsigned long end)328 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
329 {
330 #ifdef CONFIG_SMP
331 preempt_disable();
332 smp_call_function(do_flush_tlb_mm_ipi, NULL, 1);
333 _tlbil_pid(0);
334 preempt_enable();
335 #else
336 _tlbil_pid(0);
337 #endif
338 }
339 EXPORT_SYMBOL(flush_tlb_kernel_range);
340 #endif
341
342 /*
343 * Currently, for range flushing, we just do a full mm flush. This should
344 * be optimized based on a threshold on the size of the range, since
345 * some implementation can stack multiple tlbivax before a tlbsync but
346 * for now, we keep it that way
347 */
flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)348 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
349 unsigned long end)
350
351 {
352 if (end - start == PAGE_SIZE && !(start & ~PAGE_MASK))
353 flush_tlb_page(vma, start);
354 else
355 flush_tlb_mm(vma->vm_mm);
356 }
357 EXPORT_SYMBOL(flush_tlb_range);
358
tlb_flush(struct mmu_gather * tlb)359 void tlb_flush(struct mmu_gather *tlb)
360 {
361 flush_tlb_mm(tlb->mm);
362 }
363
364 /*
365 * Below are functions specific to the 64-bit variant of Book3E though that
366 * may change in the future
367 */
368
369 #ifdef CONFIG_PPC64
370
371 /*
372 * Handling of virtual linear page tables or indirect TLB entries
373 * flushing when PTE pages are freed
374 */
tlb_flush_pgtable(struct mmu_gather * tlb,unsigned long address)375 void tlb_flush_pgtable(struct mmu_gather *tlb, unsigned long address)
376 {
377 int tsize = mmu_psize_defs[mmu_pte_psize].enc;
378
379 if (book3e_htw_mode != PPC_HTW_NONE) {
380 unsigned long start = address & PMD_MASK;
381 unsigned long end = address + PMD_SIZE;
382 unsigned long size = 1UL << mmu_psize_defs[mmu_pte_psize].shift;
383
384 /* This isn't the most optimal, ideally we would factor out the
385 * while preempt & CPU mask mucking around, or even the IPI but
386 * it will do for now
387 */
388 while (start < end) {
389 __flush_tlb_page(tlb->mm, start, tsize, 1);
390 start += size;
391 }
392 } else {
393 unsigned long rmask = 0xf000000000000000ul;
394 unsigned long rid = (address & rmask) | 0x1000000000000000ul;
395 unsigned long vpte = address & ~rmask;
396
397 vpte = (vpte >> (PAGE_SHIFT - 3)) & ~0xffful;
398 vpte |= rid;
399 __flush_tlb_page(tlb->mm, vpte, tsize, 0);
400 }
401 }
402
setup_page_sizes(void)403 static void __init setup_page_sizes(void)
404 {
405 unsigned int tlb0cfg;
406 unsigned int tlb0ps;
407 unsigned int eptcfg;
408 int i, psize;
409
410 #ifdef CONFIG_PPC_E500
411 unsigned int mmucfg = mfspr(SPRN_MMUCFG);
412 int fsl_mmu = mmu_has_feature(MMU_FTR_TYPE_FSL_E);
413
414 if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V1) {
415 unsigned int tlb1cfg = mfspr(SPRN_TLB1CFG);
416 unsigned int min_pg, max_pg;
417
418 min_pg = (tlb1cfg & TLBnCFG_MINSIZE) >> TLBnCFG_MINSIZE_SHIFT;
419 max_pg = (tlb1cfg & TLBnCFG_MAXSIZE) >> TLBnCFG_MAXSIZE_SHIFT;
420
421 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
422 struct mmu_psize_def *def;
423 unsigned int shift;
424
425 def = &mmu_psize_defs[psize];
426 shift = def->shift;
427
428 if (shift == 0 || shift & 1)
429 continue;
430
431 /* adjust to be in terms of 4^shift Kb */
432 shift = (shift - 10) >> 1;
433
434 if ((shift >= min_pg) && (shift <= max_pg))
435 def->flags |= MMU_PAGE_SIZE_DIRECT;
436 }
437
438 goto out;
439 }
440
441 if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V2) {
442 u32 tlb1cfg, tlb1ps;
443
444 tlb0cfg = mfspr(SPRN_TLB0CFG);
445 tlb1cfg = mfspr(SPRN_TLB1CFG);
446 tlb1ps = mfspr(SPRN_TLB1PS);
447 eptcfg = mfspr(SPRN_EPTCFG);
448
449 if ((tlb1cfg & TLBnCFG_IND) && (tlb0cfg & TLBnCFG_PT))
450 book3e_htw_mode = PPC_HTW_E6500;
451
452 /*
453 * We expect 4K subpage size and unrestricted indirect size.
454 * The lack of a restriction on indirect size is a Freescale
455 * extension, indicated by PSn = 0 but SPSn != 0.
456 */
457 if (eptcfg != 2)
458 book3e_htw_mode = PPC_HTW_NONE;
459
460 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
461 struct mmu_psize_def *def = &mmu_psize_defs[psize];
462
463 if (!def->shift)
464 continue;
465
466 if (tlb1ps & (1U << (def->shift - 10))) {
467 def->flags |= MMU_PAGE_SIZE_DIRECT;
468
469 if (book3e_htw_mode && psize == MMU_PAGE_2M)
470 def->flags |= MMU_PAGE_SIZE_INDIRECT;
471 }
472 }
473
474 goto out;
475 }
476 #endif
477
478 tlb0cfg = mfspr(SPRN_TLB0CFG);
479 tlb0ps = mfspr(SPRN_TLB0PS);
480 eptcfg = mfspr(SPRN_EPTCFG);
481
482 /* Look for supported direct sizes */
483 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
484 struct mmu_psize_def *def = &mmu_psize_defs[psize];
485
486 if (tlb0ps & (1U << (def->shift - 10)))
487 def->flags |= MMU_PAGE_SIZE_DIRECT;
488 }
489
490 /* Indirect page sizes supported ? */
491 if ((tlb0cfg & TLBnCFG_IND) == 0 ||
492 (tlb0cfg & TLBnCFG_PT) == 0)
493 goto out;
494
495 book3e_htw_mode = PPC_HTW_IBM;
496
497 /* Now, we only deal with one IND page size for each
498 * direct size. Hopefully all implementations today are
499 * unambiguous, but we might want to be careful in the
500 * future.
501 */
502 for (i = 0; i < 3; i++) {
503 unsigned int ps, sps;
504
505 sps = eptcfg & 0x1f;
506 eptcfg >>= 5;
507 ps = eptcfg & 0x1f;
508 eptcfg >>= 5;
509 if (!ps || !sps)
510 continue;
511 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
512 struct mmu_psize_def *def = &mmu_psize_defs[psize];
513
514 if (ps == (def->shift - 10))
515 def->flags |= MMU_PAGE_SIZE_INDIRECT;
516 if (sps == (def->shift - 10))
517 def->ind = ps + 10;
518 }
519 }
520
521 out:
522 /* Cleanup array and print summary */
523 pr_info("MMU: Supported page sizes\n");
524 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
525 struct mmu_psize_def *def = &mmu_psize_defs[psize];
526 const char *__page_type_names[] = {
527 "unsupported",
528 "direct",
529 "indirect",
530 "direct & indirect"
531 };
532 if (def->flags == 0) {
533 def->shift = 0;
534 continue;
535 }
536 pr_info(" %8ld KB as %s\n", 1ul << (def->shift - 10),
537 __page_type_names[def->flags & 0x3]);
538 }
539 }
540
setup_mmu_htw(void)541 static void __init setup_mmu_htw(void)
542 {
543 /*
544 * If we want to use HW tablewalk, enable it by patching the TLB miss
545 * handlers to branch to the one dedicated to it.
546 */
547
548 switch (book3e_htw_mode) {
549 case PPC_HTW_IBM:
550 patch_exception(0x1c0, exc_data_tlb_miss_htw_book3e);
551 patch_exception(0x1e0, exc_instruction_tlb_miss_htw_book3e);
552 break;
553 #ifdef CONFIG_PPC_E500
554 case PPC_HTW_E6500:
555 extlb_level_exc = EX_TLB_SIZE;
556 patch_exception(0x1c0, exc_data_tlb_miss_e6500_book3e);
557 patch_exception(0x1e0, exc_instruction_tlb_miss_e6500_book3e);
558 break;
559 #endif
560 }
561 pr_info("MMU: Book3E HW tablewalk %s\n",
562 book3e_htw_mode != PPC_HTW_NONE ? "enabled" : "not supported");
563 }
564
565 /*
566 * Early initialization of the MMU TLB code
567 */
early_init_this_mmu(void)568 static void early_init_this_mmu(void)
569 {
570 unsigned int mas4;
571
572 /* Set MAS4 based on page table setting */
573
574 mas4 = 0x4 << MAS4_WIMGED_SHIFT;
575 switch (book3e_htw_mode) {
576 case PPC_HTW_E6500:
577 mas4 |= MAS4_INDD;
578 mas4 |= BOOK3E_PAGESZ_2M << MAS4_TSIZED_SHIFT;
579 mas4 |= MAS4_TLBSELD(1);
580 mmu_pte_psize = MMU_PAGE_2M;
581 break;
582
583 case PPC_HTW_IBM:
584 mas4 |= MAS4_INDD;
585 mas4 |= BOOK3E_PAGESZ_1M << MAS4_TSIZED_SHIFT;
586 mmu_pte_psize = MMU_PAGE_1M;
587 break;
588
589 case PPC_HTW_NONE:
590 mas4 |= BOOK3E_PAGESZ_4K << MAS4_TSIZED_SHIFT;
591 mmu_pte_psize = mmu_virtual_psize;
592 break;
593 }
594 mtspr(SPRN_MAS4, mas4);
595
596 #ifdef CONFIG_PPC_E500
597 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
598 unsigned int num_cams;
599 bool map = true;
600
601 /* use a quarter of the TLBCAM for bolted linear map */
602 num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4;
603
604 /*
605 * Only do the mapping once per core, or else the
606 * transient mapping would cause problems.
607 */
608 #ifdef CONFIG_SMP
609 if (hweight32(get_tensr()) > 1)
610 map = false;
611 #endif
612
613 if (map)
614 linear_map_top = map_mem_in_cams(linear_map_top,
615 num_cams, false, true);
616 }
617 #endif
618
619 /* A sync won't hurt us after mucking around with
620 * the MMU configuration
621 */
622 mb();
623 }
624
early_init_mmu_global(void)625 static void __init early_init_mmu_global(void)
626 {
627 /* XXX This should be decided at runtime based on supported
628 * page sizes in the TLB, but for now let's assume 16M is
629 * always there and a good fit (which it probably is)
630 *
631 * Freescale booke only supports 4K pages in TLB0, so use that.
632 */
633 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
634 mmu_vmemmap_psize = MMU_PAGE_4K;
635 else
636 mmu_vmemmap_psize = MMU_PAGE_16M;
637
638 /* XXX This code only checks for TLB 0 capabilities and doesn't
639 * check what page size combos are supported by the HW. It
640 * also doesn't handle the case where a separate array holds
641 * the IND entries from the array loaded by the PT.
642 */
643 /* Look for supported page sizes */
644 setup_page_sizes();
645
646 /* Look for HW tablewalk support */
647 setup_mmu_htw();
648
649 #ifdef CONFIG_PPC_E500
650 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
651 if (book3e_htw_mode == PPC_HTW_NONE) {
652 extlb_level_exc = EX_TLB_SIZE;
653 patch_exception(0x1c0, exc_data_tlb_miss_bolted_book3e);
654 patch_exception(0x1e0,
655 exc_instruction_tlb_miss_bolted_book3e);
656 }
657 }
658 #endif
659
660 /* Set the global containing the top of the linear mapping
661 * for use by the TLB miss code
662 */
663 linear_map_top = memblock_end_of_DRAM();
664
665 ioremap_bot = IOREMAP_BASE;
666 }
667
early_mmu_set_memory_limit(void)668 static void __init early_mmu_set_memory_limit(void)
669 {
670 #ifdef CONFIG_PPC_E500
671 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
672 /*
673 * Limit memory so we dont have linear faults.
674 * Unlike memblock_set_current_limit, which limits
675 * memory available during early boot, this permanently
676 * reduces the memory available to Linux. We need to
677 * do this because highmem is not supported on 64-bit.
678 */
679 memblock_enforce_memory_limit(linear_map_top);
680 }
681 #endif
682
683 memblock_set_current_limit(linear_map_top);
684 }
685
686 /* boot cpu only */
early_init_mmu(void)687 void __init early_init_mmu(void)
688 {
689 early_init_mmu_global();
690 early_init_this_mmu();
691 early_mmu_set_memory_limit();
692 }
693
early_init_mmu_secondary(void)694 void early_init_mmu_secondary(void)
695 {
696 early_init_this_mmu();
697 }
698
setup_initial_memory_limit(phys_addr_t first_memblock_base,phys_addr_t first_memblock_size)699 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
700 phys_addr_t first_memblock_size)
701 {
702 /* On non-FSL Embedded 64-bit, we adjust the RMA size to match
703 * the bolted TLB entry. We know for now that only 1G
704 * entries are supported though that may eventually
705 * change.
706 *
707 * on FSL Embedded 64-bit, usually all RAM is bolted, but with
708 * unusual memory sizes it's possible for some RAM to not be mapped
709 * (such RAM is not used at all by Linux, since we don't support
710 * highmem on 64-bit). We limit ppc64_rma_size to what would be
711 * mappable if this memblock is the only one. Additional memblocks
712 * can only increase, not decrease, the amount that ends up getting
713 * mapped. We still limit max to 1G even if we'll eventually map
714 * more. This is due to what the early init code is set up to do.
715 *
716 * We crop it to the size of the first MEMBLOCK to
717 * avoid going over total available memory just in case...
718 */
719 #ifdef CONFIG_PPC_E500
720 if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
721 unsigned long linear_sz;
722 unsigned int num_cams;
723
724 /* use a quarter of the TLBCAM for bolted linear map */
725 num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4;
726
727 linear_sz = map_mem_in_cams(first_memblock_size, num_cams,
728 true, true);
729
730 ppc64_rma_size = min_t(u64, linear_sz, 0x40000000);
731 } else
732 #endif
733 ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
734
735 /* Finally limit subsequent allocations */
736 memblock_set_current_limit(first_memblock_base + ppc64_rma_size);
737 }
738 #else /* ! CONFIG_PPC64 */
early_init_mmu(void)739 void __init early_init_mmu(void)
740 {
741 #ifdef CONFIG_PPC_47x
742 early_init_mmu_47x();
743 #endif
744 }
745 #endif /* CONFIG_PPC64 */
746