1 /*
2  * Copyright 2005-2006 Erik Waling
3  * Copyright 2006 Stephane Marchesin
4  * Copyright 2007-2009 Stuart Bennett
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
20  * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
21  * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "drmP.h"
26 #define NV_DEBUG_NOTRACE
27 #include "nouveau_drv.h"
28 #include "nouveau_hw.h"
29 #include "nouveau_encoder.h"
30 #include "nouveau_gpio.h"
31 
32 #include <linux/io-mapping.h>
33 
34 /* these defines are made up */
35 #define NV_CIO_CRE_44_HEADA 0x0
36 #define NV_CIO_CRE_44_HEADB 0x3
37 #define FEATURE_MOBILE 0x10	/* also FEATURE_QUADRO for BMP */
38 
39 #define EDID1_LEN 128
40 
41 #define BIOSLOG(sip, fmt, arg...) NV_DEBUG(sip->dev, fmt, ##arg)
42 #define LOG_OLD_VALUE(x)
43 
44 struct init_exec {
45 	bool execute;
46 	bool repeat;
47 };
48 
nv_cksum(const uint8_t * data,unsigned int length)49 static bool nv_cksum(const uint8_t *data, unsigned int length)
50 {
51 	/*
52 	 * There's a few checksums in the BIOS, so here's a generic checking
53 	 * function.
54 	 */
55 	int i;
56 	uint8_t sum = 0;
57 
58 	for (i = 0; i < length; i++)
59 		sum += data[i];
60 
61 	if (sum)
62 		return true;
63 
64 	return false;
65 }
66 
67 static int
score_vbios(struct nvbios * bios,const bool writeable)68 score_vbios(struct nvbios *bios, const bool writeable)
69 {
70 	if (!bios->data || bios->data[0] != 0x55 || bios->data[1] != 0xAA) {
71 		NV_TRACEWARN(bios->dev, "... BIOS signature not found\n");
72 		return 0;
73 	}
74 
75 	if (nv_cksum(bios->data, bios->data[2] * 512)) {
76 		NV_TRACEWARN(bios->dev, "... BIOS checksum invalid\n");
77 		/* if a ro image is somewhat bad, it's probably all rubbish */
78 		return writeable ? 2 : 1;
79 	}
80 
81 	NV_TRACE(bios->dev, "... appears to be valid\n");
82 	return 3;
83 }
84 
85 static void
bios_shadow_prom(struct nvbios * bios)86 bios_shadow_prom(struct nvbios *bios)
87 {
88 	struct drm_device *dev = bios->dev;
89 	struct drm_nouveau_private *dev_priv = dev->dev_private;
90 	u32 pcireg, access;
91 	u16 pcir;
92 	int i;
93 
94 	/* enable access to rom */
95 	if (dev_priv->card_type >= NV_50)
96 		pcireg = 0x088050;
97 	else
98 		pcireg = NV_PBUS_PCI_NV_20;
99 	access = nv_mask(dev, pcireg, 0x00000001, 0x00000000);
100 
101 	/* bail if no rom signature, with a workaround for a PROM reading
102 	 * issue on some chipsets.  the first read after a period of
103 	 * inactivity returns the wrong result, so retry the first header
104 	 * byte a few times before giving up as a workaround
105 	 */
106 	i = 16;
107 	do {
108 		if (nv_rd08(dev, NV_PROM_OFFSET + 0) == 0x55)
109 			break;
110 	} while (i--);
111 
112 	if (!i || nv_rd08(dev, NV_PROM_OFFSET + 1) != 0xaa)
113 		goto out;
114 
115 	/* additional check (see note below) - read PCI record header */
116 	pcir = nv_rd08(dev, NV_PROM_OFFSET + 0x18) |
117 	       nv_rd08(dev, NV_PROM_OFFSET + 0x19) << 8;
118 	if (nv_rd08(dev, NV_PROM_OFFSET + pcir + 0) != 'P' ||
119 	    nv_rd08(dev, NV_PROM_OFFSET + pcir + 1) != 'C' ||
120 	    nv_rd08(dev, NV_PROM_OFFSET + pcir + 2) != 'I' ||
121 	    nv_rd08(dev, NV_PROM_OFFSET + pcir + 3) != 'R')
122 		goto out;
123 
124 	/* read entire bios image to system memory */
125 	bios->length = nv_rd08(dev, NV_PROM_OFFSET + 2) * 512;
126 	bios->data = kmalloc(bios->length, GFP_KERNEL);
127 	if (bios->data) {
128 		for (i = 0; i < bios->length; i++)
129 			bios->data[i] = nv_rd08(dev, NV_PROM_OFFSET + i);
130 	}
131 
132 out:
133 	/* disable access to rom */
134 	nv_wr32(dev, pcireg, access);
135 }
136 
137 static void
bios_shadow_pramin(struct nvbios * bios)138 bios_shadow_pramin(struct nvbios *bios)
139 {
140 	struct drm_device *dev = bios->dev;
141 	struct drm_nouveau_private *dev_priv = dev->dev_private;
142 	u32 bar0 = 0;
143 	int i;
144 
145 	if (dev_priv->card_type >= NV_50) {
146 		u64 addr = (u64)(nv_rd32(dev, 0x619f04) & 0xffffff00) << 8;
147 		if (!addr) {
148 			addr  = (u64)nv_rd32(dev, 0x001700) << 16;
149 			addr += 0xf0000;
150 		}
151 
152 		bar0 = nv_mask(dev, 0x001700, 0xffffffff, addr >> 16);
153 	}
154 
155 	/* bail if no rom signature */
156 	if (nv_rd08(dev, NV_PRAMIN_OFFSET + 0) != 0x55 ||
157 	    nv_rd08(dev, NV_PRAMIN_OFFSET + 1) != 0xaa)
158 		goto out;
159 
160 	bios->length = nv_rd08(dev, NV_PRAMIN_OFFSET + 2) * 512;
161 	bios->data = kmalloc(bios->length, GFP_KERNEL);
162 	if (bios->data) {
163 		for (i = 0; i < bios->length; i++)
164 			bios->data[i] = nv_rd08(dev, NV_PRAMIN_OFFSET + i);
165 	}
166 
167 out:
168 	if (dev_priv->card_type >= NV_50)
169 		nv_wr32(dev, 0x001700, bar0);
170 }
171 
172 static void
bios_shadow_pci(struct nvbios * bios)173 bios_shadow_pci(struct nvbios *bios)
174 {
175 	struct pci_dev *pdev = bios->dev->pdev;
176 	size_t length;
177 
178 	if (!pci_enable_rom(pdev)) {
179 		void __iomem *rom = pci_map_rom(pdev, &length);
180 		if (rom && length) {
181 			bios->data = kmalloc(length, GFP_KERNEL);
182 			if (bios->data) {
183 				memcpy_fromio(bios->data, rom, length);
184 				bios->length = length;
185 			}
186 		}
187 		if (rom)
188 			pci_unmap_rom(pdev, rom);
189 
190 		pci_disable_rom(pdev);
191 	}
192 }
193 
194 static void
bios_shadow_acpi(struct nvbios * bios)195 bios_shadow_acpi(struct nvbios *bios)
196 {
197 	struct pci_dev *pdev = bios->dev->pdev;
198 	int ptr, len, ret;
199 	u8 data[3];
200 
201 	if (!nouveau_acpi_rom_supported(pdev))
202 		return;
203 
204 	ret = nouveau_acpi_get_bios_chunk(data, 0, sizeof(data));
205 	if (ret != sizeof(data))
206 		return;
207 
208 	bios->length = min(data[2] * 512, 65536);
209 	bios->data = kmalloc(bios->length, GFP_KERNEL);
210 	if (!bios->data)
211 		return;
212 
213 	len = bios->length;
214 	ptr = 0;
215 	while (len) {
216 		int size = (len > ROM_BIOS_PAGE) ? ROM_BIOS_PAGE : len;
217 
218 		ret = nouveau_acpi_get_bios_chunk(bios->data, ptr, size);
219 		if (ret != size) {
220 			kfree(bios->data);
221 			bios->data = NULL;
222 			return;
223 		}
224 
225 		len -= size;
226 		ptr += size;
227 	}
228 }
229 
230 struct methods {
231 	const char desc[8];
232 	void (*shadow)(struct nvbios *);
233 	const bool rw;
234 	int score;
235 	u32 size;
236 	u8 *data;
237 };
238 
239 static bool
bios_shadow(struct drm_device * dev)240 bios_shadow(struct drm_device *dev)
241 {
242 	struct methods shadow_methods[] = {
243 		{ "PRAMIN", bios_shadow_pramin, true, 0, 0, NULL },
244 		{ "PROM", bios_shadow_prom, false, 0, 0, NULL },
245 		{ "ACPI", bios_shadow_acpi, true, 0, 0, NULL },
246 		{ "PCIROM", bios_shadow_pci, true, 0, 0, NULL },
247 		{}
248 	};
249 	struct drm_nouveau_private *dev_priv = dev->dev_private;
250 	struct nvbios *bios = &dev_priv->vbios;
251 	struct methods *mthd, *best;
252 
253 	if (nouveau_vbios) {
254 		mthd = shadow_methods;
255 		do {
256 			if (strcasecmp(nouveau_vbios, mthd->desc))
257 				continue;
258 			NV_INFO(dev, "VBIOS source: %s\n", mthd->desc);
259 
260 			mthd->shadow(bios);
261 			mthd->score = score_vbios(bios, mthd->rw);
262 			if (mthd->score)
263 				return true;
264 		} while ((++mthd)->shadow);
265 
266 		NV_ERROR(dev, "VBIOS source \'%s\' invalid\n", nouveau_vbios);
267 	}
268 
269 	mthd = shadow_methods;
270 	do {
271 		NV_TRACE(dev, "Checking %s for VBIOS\n", mthd->desc);
272 		mthd->shadow(bios);
273 		mthd->score = score_vbios(bios, mthd->rw);
274 		mthd->size = bios->length;
275 		mthd->data = bios->data;
276 	} while (mthd->score != 3 && (++mthd)->shadow);
277 
278 	mthd = shadow_methods;
279 	best = mthd;
280 	do {
281 		if (mthd->score > best->score) {
282 			kfree(best->data);
283 			best = mthd;
284 		}
285 	} while ((++mthd)->shadow);
286 
287 	if (best->score) {
288 		NV_TRACE(dev, "Using VBIOS from %s\n", best->desc);
289 		bios->length = best->size;
290 		bios->data = best->data;
291 		return true;
292 	}
293 
294 	NV_ERROR(dev, "No valid VBIOS image found\n");
295 	return false;
296 }
297 
298 struct init_tbl_entry {
299 	char *name;
300 	uint8_t id;
301 	/* Return:
302 	 *  > 0: success, length of opcode
303 	 *    0: success, but abort further parsing of table (INIT_DONE etc)
304 	 *  < 0: failure, table parsing will be aborted
305 	 */
306 	int (*handler)(struct nvbios *, uint16_t, struct init_exec *);
307 };
308 
309 static int parse_init_table(struct nvbios *, uint16_t, struct init_exec *);
310 
311 #define MACRO_INDEX_SIZE	2
312 #define MACRO_SIZE		8
313 #define CONDITION_SIZE		12
314 #define IO_FLAG_CONDITION_SIZE	9
315 #define IO_CONDITION_SIZE	5
316 #define MEM_INIT_SIZE		66
317 
still_alive(void)318 static void still_alive(void)
319 {
320 #if 0
321 	sync();
322 	mdelay(2);
323 #endif
324 }
325 
326 static uint32_t
munge_reg(struct nvbios * bios,uint32_t reg)327 munge_reg(struct nvbios *bios, uint32_t reg)
328 {
329 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
330 	struct dcb_entry *dcbent = bios->display.output;
331 
332 	if (dev_priv->card_type < NV_50)
333 		return reg;
334 
335 	if (reg & 0x80000000) {
336 		BUG_ON(bios->display.crtc < 0);
337 		reg += bios->display.crtc * 0x800;
338 	}
339 
340 	if (reg & 0x40000000) {
341 		BUG_ON(!dcbent);
342 
343 		reg += (ffs(dcbent->or) - 1) * 0x800;
344 		if ((reg & 0x20000000) && !(dcbent->sorconf.link & 1))
345 			reg += 0x00000080;
346 	}
347 
348 	reg &= ~0xe0000000;
349 	return reg;
350 }
351 
352 static int
valid_reg(struct nvbios * bios,uint32_t reg)353 valid_reg(struct nvbios *bios, uint32_t reg)
354 {
355 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
356 	struct drm_device *dev = bios->dev;
357 
358 	/* C51 has misaligned regs on purpose. Marvellous */
359 	if (reg & 0x2 ||
360 	    (reg & 0x1 && dev_priv->vbios.chip_version != 0x51))
361 		NV_ERROR(dev, "======= misaligned reg 0x%08X =======\n", reg);
362 
363 	/* warn on C51 regs that haven't been verified accessible in tracing */
364 	if (reg & 0x1 && dev_priv->vbios.chip_version == 0x51 &&
365 	    reg != 0x130d && reg != 0x1311 && reg != 0x60081d)
366 		NV_WARN(dev, "=== C51 misaligned reg 0x%08X not verified ===\n",
367 			reg);
368 
369 	if (reg >= (8*1024*1024)) {
370 		NV_ERROR(dev, "=== reg 0x%08x out of mapped bounds ===\n", reg);
371 		return 0;
372 	}
373 
374 	return 1;
375 }
376 
377 static bool
valid_idx_port(struct nvbios * bios,uint16_t port)378 valid_idx_port(struct nvbios *bios, uint16_t port)
379 {
380 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
381 	struct drm_device *dev = bios->dev;
382 
383 	/*
384 	 * If adding more ports here, the read/write functions below will need
385 	 * updating so that the correct mmio range (PRMCIO, PRMDIO, PRMVIO) is
386 	 * used for the port in question
387 	 */
388 	if (dev_priv->card_type < NV_50) {
389 		if (port == NV_CIO_CRX__COLOR)
390 			return true;
391 		if (port == NV_VIO_SRX)
392 			return true;
393 	} else {
394 		if (port == NV_CIO_CRX__COLOR)
395 			return true;
396 	}
397 
398 	NV_ERROR(dev, "========== unknown indexed io port 0x%04X ==========\n",
399 		 port);
400 
401 	return false;
402 }
403 
404 static bool
valid_port(struct nvbios * bios,uint16_t port)405 valid_port(struct nvbios *bios, uint16_t port)
406 {
407 	struct drm_device *dev = bios->dev;
408 
409 	/*
410 	 * If adding more ports here, the read/write functions below will need
411 	 * updating so that the correct mmio range (PRMCIO, PRMDIO, PRMVIO) is
412 	 * used for the port in question
413 	 */
414 	if (port == NV_VIO_VSE2)
415 		return true;
416 
417 	NV_ERROR(dev, "========== unknown io port 0x%04X ==========\n", port);
418 
419 	return false;
420 }
421 
422 static uint32_t
bios_rd32(struct nvbios * bios,uint32_t reg)423 bios_rd32(struct nvbios *bios, uint32_t reg)
424 {
425 	uint32_t data;
426 
427 	reg = munge_reg(bios, reg);
428 	if (!valid_reg(bios, reg))
429 		return 0;
430 
431 	/*
432 	 * C51 sometimes uses regs with bit0 set in the address. For these
433 	 * cases there should exist a translation in a BIOS table to an IO
434 	 * port address which the BIOS uses for accessing the reg
435 	 *
436 	 * These only seem to appear for the power control regs to a flat panel,
437 	 * and the GPIO regs at 0x60081*.  In C51 mmio traces the normal regs
438 	 * for 0x1308 and 0x1310 are used - hence the mask below.  An S3
439 	 * suspend-resume mmio trace from a C51 will be required to see if this
440 	 * is true for the power microcode in 0x14.., or whether the direct IO
441 	 * port access method is needed
442 	 */
443 	if (reg & 0x1)
444 		reg &= ~0x1;
445 
446 	data = nv_rd32(bios->dev, reg);
447 
448 	BIOSLOG(bios, "	Read:  Reg: 0x%08X, Data: 0x%08X\n", reg, data);
449 
450 	return data;
451 }
452 
453 static void
bios_wr32(struct nvbios * bios,uint32_t reg,uint32_t data)454 bios_wr32(struct nvbios *bios, uint32_t reg, uint32_t data)
455 {
456 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
457 
458 	reg = munge_reg(bios, reg);
459 	if (!valid_reg(bios, reg))
460 		return;
461 
462 	/* see note in bios_rd32 */
463 	if (reg & 0x1)
464 		reg &= 0xfffffffe;
465 
466 	LOG_OLD_VALUE(bios_rd32(bios, reg));
467 	BIOSLOG(bios, "	Write: Reg: 0x%08X, Data: 0x%08X\n", reg, data);
468 
469 	if (dev_priv->vbios.execute) {
470 		still_alive();
471 		nv_wr32(bios->dev, reg, data);
472 	}
473 }
474 
475 static uint8_t
bios_idxprt_rd(struct nvbios * bios,uint16_t port,uint8_t index)476 bios_idxprt_rd(struct nvbios *bios, uint16_t port, uint8_t index)
477 {
478 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
479 	struct drm_device *dev = bios->dev;
480 	uint8_t data;
481 
482 	if (!valid_idx_port(bios, port))
483 		return 0;
484 
485 	if (dev_priv->card_type < NV_50) {
486 		if (port == NV_VIO_SRX)
487 			data = NVReadVgaSeq(dev, bios->state.crtchead, index);
488 		else	/* assume NV_CIO_CRX__COLOR */
489 			data = NVReadVgaCrtc(dev, bios->state.crtchead, index);
490 	} else {
491 		uint32_t data32;
492 
493 		data32 = bios_rd32(bios, NV50_PDISPLAY_VGACRTC(index & ~3));
494 		data = (data32 >> ((index & 3) << 3)) & 0xff;
495 	}
496 
497 	BIOSLOG(bios, "	Indexed IO read:  Port: 0x%04X, Index: 0x%02X, "
498 		      "Head: 0x%02X, Data: 0x%02X\n",
499 		port, index, bios->state.crtchead, data);
500 	return data;
501 }
502 
503 static void
bios_idxprt_wr(struct nvbios * bios,uint16_t port,uint8_t index,uint8_t data)504 bios_idxprt_wr(struct nvbios *bios, uint16_t port, uint8_t index, uint8_t data)
505 {
506 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
507 	struct drm_device *dev = bios->dev;
508 
509 	if (!valid_idx_port(bios, port))
510 		return;
511 
512 	/*
513 	 * The current head is maintained in the nvbios member  state.crtchead.
514 	 * We trap changes to CR44 and update the head variable and hence the
515 	 * register set written.
516 	 * As CR44 only exists on CRTC0, we update crtchead to head0 in advance
517 	 * of the write, and to head1 after the write
518 	 */
519 	if (port == NV_CIO_CRX__COLOR && index == NV_CIO_CRE_44 &&
520 	    data != NV_CIO_CRE_44_HEADB)
521 		bios->state.crtchead = 0;
522 
523 	LOG_OLD_VALUE(bios_idxprt_rd(bios, port, index));
524 	BIOSLOG(bios, "	Indexed IO write: Port: 0x%04X, Index: 0x%02X, "
525 		      "Head: 0x%02X, Data: 0x%02X\n",
526 		port, index, bios->state.crtchead, data);
527 
528 	if (bios->execute && dev_priv->card_type < NV_50) {
529 		still_alive();
530 		if (port == NV_VIO_SRX)
531 			NVWriteVgaSeq(dev, bios->state.crtchead, index, data);
532 		else	/* assume NV_CIO_CRX__COLOR */
533 			NVWriteVgaCrtc(dev, bios->state.crtchead, index, data);
534 	} else
535 	if (bios->execute) {
536 		uint32_t data32, shift = (index & 3) << 3;
537 
538 		still_alive();
539 
540 		data32  = bios_rd32(bios, NV50_PDISPLAY_VGACRTC(index & ~3));
541 		data32 &= ~(0xff << shift);
542 		data32 |= (data << shift);
543 		bios_wr32(bios, NV50_PDISPLAY_VGACRTC(index & ~3), data32);
544 	}
545 
546 	if (port == NV_CIO_CRX__COLOR &&
547 	    index == NV_CIO_CRE_44 && data == NV_CIO_CRE_44_HEADB)
548 		bios->state.crtchead = 1;
549 }
550 
551 static uint8_t
bios_port_rd(struct nvbios * bios,uint16_t port)552 bios_port_rd(struct nvbios *bios, uint16_t port)
553 {
554 	uint8_t data, head = bios->state.crtchead;
555 
556 	if (!valid_port(bios, port))
557 		return 0;
558 
559 	data = NVReadPRMVIO(bios->dev, head, NV_PRMVIO0_OFFSET + port);
560 
561 	BIOSLOG(bios, "	IO read:  Port: 0x%04X, Head: 0x%02X, Data: 0x%02X\n",
562 		port, head, data);
563 
564 	return data;
565 }
566 
567 static void
bios_port_wr(struct nvbios * bios,uint16_t port,uint8_t data)568 bios_port_wr(struct nvbios *bios, uint16_t port, uint8_t data)
569 {
570 	int head = bios->state.crtchead;
571 
572 	if (!valid_port(bios, port))
573 		return;
574 
575 	LOG_OLD_VALUE(bios_port_rd(bios, port));
576 	BIOSLOG(bios, "	IO write: Port: 0x%04X, Head: 0x%02X, Data: 0x%02X\n",
577 		port, head, data);
578 
579 	if (!bios->execute)
580 		return;
581 
582 	still_alive();
583 	NVWritePRMVIO(bios->dev, head, NV_PRMVIO0_OFFSET + port, data);
584 }
585 
586 static bool
io_flag_condition_met(struct nvbios * bios,uint16_t offset,uint8_t cond)587 io_flag_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
588 {
589 	/*
590 	 * The IO flag condition entry has 2 bytes for the CRTC port; 1 byte
591 	 * for the CRTC index; 1 byte for the mask to apply to the value
592 	 * retrieved from the CRTC; 1 byte for the shift right to apply to the
593 	 * masked CRTC value; 2 bytes for the offset to the flag array, to
594 	 * which the shifted value is added; 1 byte for the mask applied to the
595 	 * value read from the flag array; and 1 byte for the value to compare
596 	 * against the masked byte from the flag table.
597 	 */
598 
599 	uint16_t condptr = bios->io_flag_condition_tbl_ptr + cond * IO_FLAG_CONDITION_SIZE;
600 	uint16_t crtcport = ROM16(bios->data[condptr]);
601 	uint8_t crtcindex = bios->data[condptr + 2];
602 	uint8_t mask = bios->data[condptr + 3];
603 	uint8_t shift = bios->data[condptr + 4];
604 	uint16_t flagarray = ROM16(bios->data[condptr + 5]);
605 	uint8_t flagarraymask = bios->data[condptr + 7];
606 	uint8_t cmpval = bios->data[condptr + 8];
607 	uint8_t data;
608 
609 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
610 		      "Shift: 0x%02X, FlagArray: 0x%04X, FAMask: 0x%02X, "
611 		      "Cmpval: 0x%02X\n",
612 		offset, crtcport, crtcindex, mask, shift, flagarray, flagarraymask, cmpval);
613 
614 	data = bios_idxprt_rd(bios, crtcport, crtcindex);
615 
616 	data = bios->data[flagarray + ((data & mask) >> shift)];
617 	data &= flagarraymask;
618 
619 	BIOSLOG(bios, "0x%04X: Checking if 0x%02X equals 0x%02X\n",
620 		offset, data, cmpval);
621 
622 	return (data == cmpval);
623 }
624 
625 static bool
bios_condition_met(struct nvbios * bios,uint16_t offset,uint8_t cond)626 bios_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
627 {
628 	/*
629 	 * The condition table entry has 4 bytes for the address of the
630 	 * register to check, 4 bytes for a mask to apply to the register and
631 	 * 4 for a test comparison value
632 	 */
633 
634 	uint16_t condptr = bios->condition_tbl_ptr + cond * CONDITION_SIZE;
635 	uint32_t reg = ROM32(bios->data[condptr]);
636 	uint32_t mask = ROM32(bios->data[condptr + 4]);
637 	uint32_t cmpval = ROM32(bios->data[condptr + 8]);
638 	uint32_t data;
639 
640 	BIOSLOG(bios, "0x%04X: Cond: 0x%02X, Reg: 0x%08X, Mask: 0x%08X\n",
641 		offset, cond, reg, mask);
642 
643 	data = bios_rd32(bios, reg) & mask;
644 
645 	BIOSLOG(bios, "0x%04X: Checking if 0x%08X equals 0x%08X\n",
646 		offset, data, cmpval);
647 
648 	return (data == cmpval);
649 }
650 
651 static bool
io_condition_met(struct nvbios * bios,uint16_t offset,uint8_t cond)652 io_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
653 {
654 	/*
655 	 * The IO condition entry has 2 bytes for the IO port address; 1 byte
656 	 * for the index to write to io_port; 1 byte for the mask to apply to
657 	 * the byte read from io_port+1; and 1 byte for the value to compare
658 	 * against the masked byte.
659 	 */
660 
661 	uint16_t condptr = bios->io_condition_tbl_ptr + cond * IO_CONDITION_SIZE;
662 	uint16_t io_port = ROM16(bios->data[condptr]);
663 	uint8_t port_index = bios->data[condptr + 2];
664 	uint8_t mask = bios->data[condptr + 3];
665 	uint8_t cmpval = bios->data[condptr + 4];
666 
667 	uint8_t data = bios_idxprt_rd(bios, io_port, port_index) & mask;
668 
669 	BIOSLOG(bios, "0x%04X: Checking if 0x%02X equals 0x%02X\n",
670 		offset, data, cmpval);
671 
672 	return (data == cmpval);
673 }
674 
675 static int
nv50_pll_set(struct drm_device * dev,uint32_t reg,uint32_t clk)676 nv50_pll_set(struct drm_device *dev, uint32_t reg, uint32_t clk)
677 {
678 	struct drm_nouveau_private *dev_priv = dev->dev_private;
679 	struct nouveau_pll_vals pll;
680 	struct pll_lims pll_limits;
681 	u32 ctrl, mask, coef;
682 	int ret;
683 
684 	ret = get_pll_limits(dev, reg, &pll_limits);
685 	if (ret)
686 		return ret;
687 
688 	clk = nouveau_calc_pll_mnp(dev, &pll_limits, clk, &pll);
689 	if (!clk)
690 		return -ERANGE;
691 
692 	coef = pll.N1 << 8 | pll.M1;
693 	ctrl = pll.log2P << 16;
694 	mask = 0x00070000;
695 	if (reg == 0x004008) {
696 		mask |= 0x01f80000;
697 		ctrl |= (pll_limits.log2p_bias << 19);
698 		ctrl |= (pll.log2P << 22);
699 	}
700 
701 	if (!dev_priv->vbios.execute)
702 		return 0;
703 
704 	nv_mask(dev, reg + 0, mask, ctrl);
705 	nv_wr32(dev, reg + 4, coef);
706 	return 0;
707 }
708 
709 static int
setPLL(struct nvbios * bios,uint32_t reg,uint32_t clk)710 setPLL(struct nvbios *bios, uint32_t reg, uint32_t clk)
711 {
712 	struct drm_device *dev = bios->dev;
713 	struct drm_nouveau_private *dev_priv = dev->dev_private;
714 	/* clk in kHz */
715 	struct pll_lims pll_lim;
716 	struct nouveau_pll_vals pllvals;
717 	int ret;
718 
719 	if (dev_priv->card_type >= NV_50)
720 		return nv50_pll_set(dev, reg, clk);
721 
722 	/* high regs (such as in the mac g5 table) are not -= 4 */
723 	ret = get_pll_limits(dev, reg > 0x405c ? reg : reg - 4, &pll_lim);
724 	if (ret)
725 		return ret;
726 
727 	clk = nouveau_calc_pll_mnp(dev, &pll_lim, clk, &pllvals);
728 	if (!clk)
729 		return -ERANGE;
730 
731 	if (bios->execute) {
732 		still_alive();
733 		nouveau_hw_setpll(dev, reg, &pllvals);
734 	}
735 
736 	return 0;
737 }
738 
dcb_entry_idx_from_crtchead(struct drm_device * dev)739 static int dcb_entry_idx_from_crtchead(struct drm_device *dev)
740 {
741 	struct drm_nouveau_private *dev_priv = dev->dev_private;
742 	struct nvbios *bios = &dev_priv->vbios;
743 
744 	/*
745 	 * For the results of this function to be correct, CR44 must have been
746 	 * set (using bios_idxprt_wr to set crtchead), CR58 set for CR57 = 0,
747 	 * and the DCB table parsed, before the script calling the function is
748 	 * run.  run_digital_op_script is example of how to do such setup
749 	 */
750 
751 	uint8_t dcb_entry = NVReadVgaCrtc5758(dev, bios->state.crtchead, 0);
752 
753 	if (dcb_entry > bios->dcb.entries) {
754 		NV_ERROR(dev, "CR58 doesn't have a valid DCB entry currently "
755 				"(%02X)\n", dcb_entry);
756 		dcb_entry = 0x7f;	/* unused / invalid marker */
757 	}
758 
759 	return dcb_entry;
760 }
761 
762 static struct nouveau_i2c_chan *
init_i2c_device_find(struct drm_device * dev,int i2c_index)763 init_i2c_device_find(struct drm_device *dev, int i2c_index)
764 {
765 	if (i2c_index == 0xff) {
766 		struct drm_nouveau_private *dev_priv = dev->dev_private;
767 		struct dcb_table *dcb = &dev_priv->vbios.dcb;
768 		/* note: dcb_entry_idx_from_crtchead needs pre-script set-up */
769 		int idx = dcb_entry_idx_from_crtchead(dev);
770 
771 		i2c_index = NV_I2C_DEFAULT(0);
772 		if (idx != 0x7f && dcb->entry[idx].i2c_upper_default)
773 			i2c_index = NV_I2C_DEFAULT(1);
774 	}
775 
776 	return nouveau_i2c_find(dev, i2c_index);
777 }
778 
779 static uint32_t
get_tmds_index_reg(struct drm_device * dev,uint8_t mlv)780 get_tmds_index_reg(struct drm_device *dev, uint8_t mlv)
781 {
782 	/*
783 	 * For mlv < 0x80, it is an index into a table of TMDS base addresses.
784 	 * For mlv == 0x80 use the "or" value of the dcb_entry indexed by
785 	 * CR58 for CR57 = 0 to index a table of offsets to the basic
786 	 * 0x6808b0 address.
787 	 * For mlv == 0x81 use the "or" value of the dcb_entry indexed by
788 	 * CR58 for CR57 = 0 to index a table of offsets to the basic
789 	 * 0x6808b0 address, and then flip the offset by 8.
790 	 */
791 
792 	struct drm_nouveau_private *dev_priv = dev->dev_private;
793 	struct nvbios *bios = &dev_priv->vbios;
794 	const int pramdac_offset[13] = {
795 		0, 0, 0x8, 0, 0x2000, 0, 0, 0, 0x2008, 0, 0, 0, 0x2000 };
796 	const uint32_t pramdac_table[4] = {
797 		0x6808b0, 0x6808b8, 0x6828b0, 0x6828b8 };
798 
799 	if (mlv >= 0x80) {
800 		int dcb_entry, dacoffset;
801 
802 		/* note: dcb_entry_idx_from_crtchead needs pre-script set-up */
803 		dcb_entry = dcb_entry_idx_from_crtchead(dev);
804 		if (dcb_entry == 0x7f)
805 			return 0;
806 		dacoffset = pramdac_offset[bios->dcb.entry[dcb_entry].or];
807 		if (mlv == 0x81)
808 			dacoffset ^= 8;
809 		return 0x6808b0 + dacoffset;
810 	} else {
811 		if (mlv >= ARRAY_SIZE(pramdac_table)) {
812 			NV_ERROR(dev, "Magic Lookup Value too big (%02X)\n",
813 									mlv);
814 			return 0;
815 		}
816 		return pramdac_table[mlv];
817 	}
818 }
819 
820 static int
init_io_restrict_prog(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)821 init_io_restrict_prog(struct nvbios *bios, uint16_t offset,
822 		      struct init_exec *iexec)
823 {
824 	/*
825 	 * INIT_IO_RESTRICT_PROG   opcode: 0x32 ('2')
826 	 *
827 	 * offset      (8  bit): opcode
828 	 * offset + 1  (16 bit): CRTC port
829 	 * offset + 3  (8  bit): CRTC index
830 	 * offset + 4  (8  bit): mask
831 	 * offset + 5  (8  bit): shift
832 	 * offset + 6  (8  bit): count
833 	 * offset + 7  (32 bit): register
834 	 * offset + 11 (32 bit): configuration 1
835 	 * ...
836 	 *
837 	 * Starting at offset + 11 there are "count" 32 bit values.
838 	 * To find out which value to use read index "CRTC index" on "CRTC
839 	 * port", AND this value with "mask" and then bit shift right "shift"
840 	 * bits.  Read the appropriate value using this index and write to
841 	 * "register"
842 	 */
843 
844 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
845 	uint8_t crtcindex = bios->data[offset + 3];
846 	uint8_t mask = bios->data[offset + 4];
847 	uint8_t shift = bios->data[offset + 5];
848 	uint8_t count = bios->data[offset + 6];
849 	uint32_t reg = ROM32(bios->data[offset + 7]);
850 	uint8_t config;
851 	uint32_t configval;
852 	int len = 11 + count * 4;
853 
854 	if (!iexec->execute)
855 		return len;
856 
857 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
858 		      "Shift: 0x%02X, Count: 0x%02X, Reg: 0x%08X\n",
859 		offset, crtcport, crtcindex, mask, shift, count, reg);
860 
861 	config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
862 	if (config > count) {
863 		NV_ERROR(bios->dev,
864 			 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
865 			 offset, config, count);
866 		return len;
867 	}
868 
869 	configval = ROM32(bios->data[offset + 11 + config * 4]);
870 
871 	BIOSLOG(bios, "0x%04X: Writing config %02X\n", offset, config);
872 
873 	bios_wr32(bios, reg, configval);
874 
875 	return len;
876 }
877 
878 static int
init_repeat(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)879 init_repeat(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
880 {
881 	/*
882 	 * INIT_REPEAT   opcode: 0x33 ('3')
883 	 *
884 	 * offset      (8 bit): opcode
885 	 * offset + 1  (8 bit): count
886 	 *
887 	 * Execute script following this opcode up to INIT_REPEAT_END
888 	 * "count" times
889 	 */
890 
891 	uint8_t count = bios->data[offset + 1];
892 	uint8_t i;
893 
894 	/* no iexec->execute check by design */
895 
896 	BIOSLOG(bios, "0x%04X: Repeating following segment %d times\n",
897 		offset, count);
898 
899 	iexec->repeat = true;
900 
901 	/*
902 	 * count - 1, as the script block will execute once when we leave this
903 	 * opcode -- this is compatible with bios behaviour as:
904 	 * a) the block is always executed at least once, even if count == 0
905 	 * b) the bios interpreter skips to the op following INIT_END_REPEAT,
906 	 * while we don't
907 	 */
908 	for (i = 0; i < count - 1; i++)
909 		parse_init_table(bios, offset + 2, iexec);
910 
911 	iexec->repeat = false;
912 
913 	return 2;
914 }
915 
916 static int
init_io_restrict_pll(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)917 init_io_restrict_pll(struct nvbios *bios, uint16_t offset,
918 		     struct init_exec *iexec)
919 {
920 	/*
921 	 * INIT_IO_RESTRICT_PLL   opcode: 0x34 ('4')
922 	 *
923 	 * offset      (8  bit): opcode
924 	 * offset + 1  (16 bit): CRTC port
925 	 * offset + 3  (8  bit): CRTC index
926 	 * offset + 4  (8  bit): mask
927 	 * offset + 5  (8  bit): shift
928 	 * offset + 6  (8  bit): IO flag condition index
929 	 * offset + 7  (8  bit): count
930 	 * offset + 8  (32 bit): register
931 	 * offset + 12 (16 bit): frequency 1
932 	 * ...
933 	 *
934 	 * Starting at offset + 12 there are "count" 16 bit frequencies (10kHz).
935 	 * Set PLL register "register" to coefficients for frequency n,
936 	 * selected by reading index "CRTC index" of "CRTC port" ANDed with
937 	 * "mask" and shifted right by "shift".
938 	 *
939 	 * If "IO flag condition index" > 0, and condition met, double
940 	 * frequency before setting it.
941 	 */
942 
943 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
944 	uint8_t crtcindex = bios->data[offset + 3];
945 	uint8_t mask = bios->data[offset + 4];
946 	uint8_t shift = bios->data[offset + 5];
947 	int8_t io_flag_condition_idx = bios->data[offset + 6];
948 	uint8_t count = bios->data[offset + 7];
949 	uint32_t reg = ROM32(bios->data[offset + 8]);
950 	uint8_t config;
951 	uint16_t freq;
952 	int len = 12 + count * 2;
953 
954 	if (!iexec->execute)
955 		return len;
956 
957 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
958 		      "Shift: 0x%02X, IO Flag Condition: 0x%02X, "
959 		      "Count: 0x%02X, Reg: 0x%08X\n",
960 		offset, crtcport, crtcindex, mask, shift,
961 		io_flag_condition_idx, count, reg);
962 
963 	config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
964 	if (config > count) {
965 		NV_ERROR(bios->dev,
966 			 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
967 			 offset, config, count);
968 		return len;
969 	}
970 
971 	freq = ROM16(bios->data[offset + 12 + config * 2]);
972 
973 	if (io_flag_condition_idx > 0) {
974 		if (io_flag_condition_met(bios, offset, io_flag_condition_idx)) {
975 			BIOSLOG(bios, "0x%04X: Condition fulfilled -- "
976 				      "frequency doubled\n", offset);
977 			freq *= 2;
978 		} else
979 			BIOSLOG(bios, "0x%04X: Condition not fulfilled -- "
980 				      "frequency unchanged\n", offset);
981 	}
982 
983 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Config: 0x%02X, Freq: %d0kHz\n",
984 		offset, reg, config, freq);
985 
986 	setPLL(bios, reg, freq * 10);
987 
988 	return len;
989 }
990 
991 static int
init_end_repeat(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)992 init_end_repeat(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
993 {
994 	/*
995 	 * INIT_END_REPEAT   opcode: 0x36 ('6')
996 	 *
997 	 * offset      (8 bit): opcode
998 	 *
999 	 * Marks the end of the block for INIT_REPEAT to repeat
1000 	 */
1001 
1002 	/* no iexec->execute check by design */
1003 
1004 	/*
1005 	 * iexec->repeat flag necessary to go past INIT_END_REPEAT opcode when
1006 	 * we're not in repeat mode
1007 	 */
1008 	if (iexec->repeat)
1009 		return 0;
1010 
1011 	return 1;
1012 }
1013 
1014 static int
init_copy(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1015 init_copy(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1016 {
1017 	/*
1018 	 * INIT_COPY   opcode: 0x37 ('7')
1019 	 *
1020 	 * offset      (8  bit): opcode
1021 	 * offset + 1  (32 bit): register
1022 	 * offset + 5  (8  bit): shift
1023 	 * offset + 6  (8  bit): srcmask
1024 	 * offset + 7  (16 bit): CRTC port
1025 	 * offset + 9  (8 bit): CRTC index
1026 	 * offset + 10  (8 bit): mask
1027 	 *
1028 	 * Read index "CRTC index" on "CRTC port", AND with "mask", OR with
1029 	 * (REGVAL("register") >> "shift" & "srcmask") and write-back to CRTC
1030 	 * port
1031 	 */
1032 
1033 	uint32_t reg = ROM32(bios->data[offset + 1]);
1034 	uint8_t shift = bios->data[offset + 5];
1035 	uint8_t srcmask = bios->data[offset + 6];
1036 	uint16_t crtcport = ROM16(bios->data[offset + 7]);
1037 	uint8_t crtcindex = bios->data[offset + 9];
1038 	uint8_t mask = bios->data[offset + 10];
1039 	uint32_t data;
1040 	uint8_t crtcdata;
1041 
1042 	if (!iexec->execute)
1043 		return 11;
1044 
1045 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Shift: 0x%02X, SrcMask: 0x%02X, "
1046 		      "Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X\n",
1047 		offset, reg, shift, srcmask, crtcport, crtcindex, mask);
1048 
1049 	data = bios_rd32(bios, reg);
1050 
1051 	if (shift < 0x80)
1052 		data >>= shift;
1053 	else
1054 		data <<= (0x100 - shift);
1055 
1056 	data &= srcmask;
1057 
1058 	crtcdata  = bios_idxprt_rd(bios, crtcport, crtcindex) & mask;
1059 	crtcdata |= (uint8_t)data;
1060 	bios_idxprt_wr(bios, crtcport, crtcindex, crtcdata);
1061 
1062 	return 11;
1063 }
1064 
1065 static int
init_not(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1066 init_not(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1067 {
1068 	/*
1069 	 * INIT_NOT   opcode: 0x38 ('8')
1070 	 *
1071 	 * offset      (8  bit): opcode
1072 	 *
1073 	 * Invert the current execute / no-execute condition (i.e. "else")
1074 	 */
1075 	if (iexec->execute)
1076 		BIOSLOG(bios, "0x%04X: ------ Skipping following commands  ------\n", offset);
1077 	else
1078 		BIOSLOG(bios, "0x%04X: ------ Executing following commands ------\n", offset);
1079 
1080 	iexec->execute = !iexec->execute;
1081 	return 1;
1082 }
1083 
1084 static int
init_io_flag_condition(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1085 init_io_flag_condition(struct nvbios *bios, uint16_t offset,
1086 		       struct init_exec *iexec)
1087 {
1088 	/*
1089 	 * INIT_IO_FLAG_CONDITION   opcode: 0x39 ('9')
1090 	 *
1091 	 * offset      (8 bit): opcode
1092 	 * offset + 1  (8 bit): condition number
1093 	 *
1094 	 * Check condition "condition number" in the IO flag condition table.
1095 	 * If condition not met skip subsequent opcodes until condition is
1096 	 * inverted (INIT_NOT), or we hit INIT_RESUME
1097 	 */
1098 
1099 	uint8_t cond = bios->data[offset + 1];
1100 
1101 	if (!iexec->execute)
1102 		return 2;
1103 
1104 	if (io_flag_condition_met(bios, offset, cond))
1105 		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
1106 	else {
1107 		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
1108 		iexec->execute = false;
1109 	}
1110 
1111 	return 2;
1112 }
1113 
1114 static int
init_dp_condition(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1115 init_dp_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1116 {
1117 	/*
1118 	 * INIT_DP_CONDITION   opcode: 0x3A ('')
1119 	 *
1120 	 * offset      (8 bit): opcode
1121 	 * offset + 1  (8 bit): "sub" opcode
1122 	 * offset + 2  (8 bit): unknown
1123 	 *
1124 	 */
1125 
1126 	struct dcb_entry *dcb = bios->display.output;
1127 	struct drm_device *dev = bios->dev;
1128 	uint8_t cond = bios->data[offset + 1];
1129 	uint8_t *table, *entry;
1130 
1131 	BIOSLOG(bios, "0x%04X: subop 0x%02X\n", offset, cond);
1132 
1133 	if (!iexec->execute)
1134 		return 3;
1135 
1136 	table = nouveau_dp_bios_data(dev, dcb, &entry);
1137 	if (!table)
1138 		return 3;
1139 
1140 	switch (cond) {
1141 	case 0:
1142 		entry = dcb_conn(dev, dcb->connector);
1143 		if (!entry || entry[0] != DCB_CONNECTOR_eDP)
1144 			iexec->execute = false;
1145 		break;
1146 	case 1:
1147 	case 2:
1148 		if ((table[0]  < 0x40 && !(entry[5] & cond)) ||
1149 		    (table[0] == 0x40 && !(entry[4] & cond)))
1150 			iexec->execute = false;
1151 		break;
1152 	case 5:
1153 	{
1154 		struct nouveau_i2c_chan *auxch;
1155 		int ret;
1156 
1157 		auxch = nouveau_i2c_find(dev, bios->display.output->i2c_index);
1158 		if (!auxch) {
1159 			NV_ERROR(dev, "0x%04X: couldn't get auxch\n", offset);
1160 			return 3;
1161 		}
1162 
1163 		ret = nouveau_dp_auxch(auxch, 9, 0xd, &cond, 1);
1164 		if (ret) {
1165 			NV_ERROR(dev, "0x%04X: auxch rd fail: %d\n", offset, ret);
1166 			return 3;
1167 		}
1168 
1169 		if (!(cond & 1))
1170 			iexec->execute = false;
1171 	}
1172 		break;
1173 	default:
1174 		NV_WARN(dev, "0x%04X: unknown INIT_3A op: %d\n", offset, cond);
1175 		break;
1176 	}
1177 
1178 	if (iexec->execute)
1179 		BIOSLOG(bios, "0x%04X: continuing to execute\n", offset);
1180 	else
1181 		BIOSLOG(bios, "0x%04X: skipping following commands\n", offset);
1182 
1183 	return 3;
1184 }
1185 
1186 static int
init_op_3b(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1187 init_op_3b(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1188 {
1189 	/*
1190 	 * INIT_3B   opcode: 0x3B ('')
1191 	 *
1192 	 * offset      (8 bit): opcode
1193 	 * offset + 1  (8 bit): crtc index
1194 	 *
1195 	 */
1196 
1197 	uint8_t or = ffs(bios->display.output->or) - 1;
1198 	uint8_t index = bios->data[offset + 1];
1199 	uint8_t data;
1200 
1201 	if (!iexec->execute)
1202 		return 2;
1203 
1204 	data = bios_idxprt_rd(bios, 0x3d4, index);
1205 	bios_idxprt_wr(bios, 0x3d4, index, data & ~(1 << or));
1206 	return 2;
1207 }
1208 
1209 static int
init_op_3c(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1210 init_op_3c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1211 {
1212 	/*
1213 	 * INIT_3C   opcode: 0x3C ('')
1214 	 *
1215 	 * offset      (8 bit): opcode
1216 	 * offset + 1  (8 bit): crtc index
1217 	 *
1218 	 */
1219 
1220 	uint8_t or = ffs(bios->display.output->or) - 1;
1221 	uint8_t index = bios->data[offset + 1];
1222 	uint8_t data;
1223 
1224 	if (!iexec->execute)
1225 		return 2;
1226 
1227 	data = bios_idxprt_rd(bios, 0x3d4, index);
1228 	bios_idxprt_wr(bios, 0x3d4, index, data | (1 << or));
1229 	return 2;
1230 }
1231 
1232 static int
init_idx_addr_latched(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1233 init_idx_addr_latched(struct nvbios *bios, uint16_t offset,
1234 		      struct init_exec *iexec)
1235 {
1236 	/*
1237 	 * INIT_INDEX_ADDRESS_LATCHED   opcode: 0x49 ('I')
1238 	 *
1239 	 * offset      (8  bit): opcode
1240 	 * offset + 1  (32 bit): control register
1241 	 * offset + 5  (32 bit): data register
1242 	 * offset + 9  (32 bit): mask
1243 	 * offset + 13 (32 bit): data
1244 	 * offset + 17 (8  bit): count
1245 	 * offset + 18 (8  bit): address 1
1246 	 * offset + 19 (8  bit): data 1
1247 	 * ...
1248 	 *
1249 	 * For each of "count" address and data pairs, write "data n" to
1250 	 * "data register", read the current value of "control register",
1251 	 * and write it back once ANDed with "mask", ORed with "data",
1252 	 * and ORed with "address n"
1253 	 */
1254 
1255 	uint32_t controlreg = ROM32(bios->data[offset + 1]);
1256 	uint32_t datareg = ROM32(bios->data[offset + 5]);
1257 	uint32_t mask = ROM32(bios->data[offset + 9]);
1258 	uint32_t data = ROM32(bios->data[offset + 13]);
1259 	uint8_t count = bios->data[offset + 17];
1260 	int len = 18 + count * 2;
1261 	uint32_t value;
1262 	int i;
1263 
1264 	if (!iexec->execute)
1265 		return len;
1266 
1267 	BIOSLOG(bios, "0x%04X: ControlReg: 0x%08X, DataReg: 0x%08X, "
1268 		      "Mask: 0x%08X, Data: 0x%08X, Count: 0x%02X\n",
1269 		offset, controlreg, datareg, mask, data, count);
1270 
1271 	for (i = 0; i < count; i++) {
1272 		uint8_t instaddress = bios->data[offset + 18 + i * 2];
1273 		uint8_t instdata = bios->data[offset + 19 + i * 2];
1274 
1275 		BIOSLOG(bios, "0x%04X: Address: 0x%02X, Data: 0x%02X\n",
1276 			offset, instaddress, instdata);
1277 
1278 		bios_wr32(bios, datareg, instdata);
1279 		value  = bios_rd32(bios, controlreg) & mask;
1280 		value |= data;
1281 		value |= instaddress;
1282 		bios_wr32(bios, controlreg, value);
1283 	}
1284 
1285 	return len;
1286 }
1287 
1288 static int
init_io_restrict_pll2(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1289 init_io_restrict_pll2(struct nvbios *bios, uint16_t offset,
1290 		      struct init_exec *iexec)
1291 {
1292 	/*
1293 	 * INIT_IO_RESTRICT_PLL2   opcode: 0x4A ('J')
1294 	 *
1295 	 * offset      (8  bit): opcode
1296 	 * offset + 1  (16 bit): CRTC port
1297 	 * offset + 3  (8  bit): CRTC index
1298 	 * offset + 4  (8  bit): mask
1299 	 * offset + 5  (8  bit): shift
1300 	 * offset + 6  (8  bit): count
1301 	 * offset + 7  (32 bit): register
1302 	 * offset + 11 (32 bit): frequency 1
1303 	 * ...
1304 	 *
1305 	 * Starting at offset + 11 there are "count" 32 bit frequencies (kHz).
1306 	 * Set PLL register "register" to coefficients for frequency n,
1307 	 * selected by reading index "CRTC index" of "CRTC port" ANDed with
1308 	 * "mask" and shifted right by "shift".
1309 	 */
1310 
1311 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
1312 	uint8_t crtcindex = bios->data[offset + 3];
1313 	uint8_t mask = bios->data[offset + 4];
1314 	uint8_t shift = bios->data[offset + 5];
1315 	uint8_t count = bios->data[offset + 6];
1316 	uint32_t reg = ROM32(bios->data[offset + 7]);
1317 	int len = 11 + count * 4;
1318 	uint8_t config;
1319 	uint32_t freq;
1320 
1321 	if (!iexec->execute)
1322 		return len;
1323 
1324 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
1325 		      "Shift: 0x%02X, Count: 0x%02X, Reg: 0x%08X\n",
1326 		offset, crtcport, crtcindex, mask, shift, count, reg);
1327 
1328 	if (!reg)
1329 		return len;
1330 
1331 	config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
1332 	if (config > count) {
1333 		NV_ERROR(bios->dev,
1334 			 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
1335 			 offset, config, count);
1336 		return len;
1337 	}
1338 
1339 	freq = ROM32(bios->data[offset + 11 + config * 4]);
1340 
1341 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Config: 0x%02X, Freq: %dkHz\n",
1342 		offset, reg, config, freq);
1343 
1344 	setPLL(bios, reg, freq);
1345 
1346 	return len;
1347 }
1348 
1349 static int
init_pll2(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1350 init_pll2(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1351 {
1352 	/*
1353 	 * INIT_PLL2   opcode: 0x4B ('K')
1354 	 *
1355 	 * offset      (8  bit): opcode
1356 	 * offset + 1  (32 bit): register
1357 	 * offset + 5  (32 bit): freq
1358 	 *
1359 	 * Set PLL register "register" to coefficients for frequency "freq"
1360 	 */
1361 
1362 	uint32_t reg = ROM32(bios->data[offset + 1]);
1363 	uint32_t freq = ROM32(bios->data[offset + 5]);
1364 
1365 	if (!iexec->execute)
1366 		return 9;
1367 
1368 	BIOSLOG(bios, "0x%04X: Reg: 0x%04X, Freq: %dkHz\n",
1369 		offset, reg, freq);
1370 
1371 	setPLL(bios, reg, freq);
1372 	return 9;
1373 }
1374 
1375 static int
init_i2c_byte(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1376 init_i2c_byte(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1377 {
1378 	/*
1379 	 * INIT_I2C_BYTE   opcode: 0x4C ('L')
1380 	 *
1381 	 * offset      (8 bit): opcode
1382 	 * offset + 1  (8 bit): DCB I2C table entry index
1383 	 * offset + 2  (8 bit): I2C slave address
1384 	 * offset + 3  (8 bit): count
1385 	 * offset + 4  (8 bit): I2C register 1
1386 	 * offset + 5  (8 bit): mask 1
1387 	 * offset + 6  (8 bit): data 1
1388 	 * ...
1389 	 *
1390 	 * For each of "count" registers given by "I2C register n" on the device
1391 	 * addressed by "I2C slave address" on the I2C bus given by
1392 	 * "DCB I2C table entry index", read the register, AND the result with
1393 	 * "mask n" and OR it with "data n" before writing it back to the device
1394 	 */
1395 
1396 	struct drm_device *dev = bios->dev;
1397 	uint8_t i2c_index = bios->data[offset + 1];
1398 	uint8_t i2c_address = bios->data[offset + 2] >> 1;
1399 	uint8_t count = bios->data[offset + 3];
1400 	struct nouveau_i2c_chan *chan;
1401 	int len = 4 + count * 3;
1402 	int ret, i;
1403 
1404 	if (!iexec->execute)
1405 		return len;
1406 
1407 	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
1408 		      "Count: 0x%02X\n",
1409 		offset, i2c_index, i2c_address, count);
1410 
1411 	chan = init_i2c_device_find(dev, i2c_index);
1412 	if (!chan) {
1413 		NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset);
1414 		return len;
1415 	}
1416 
1417 	for (i = 0; i < count; i++) {
1418 		uint8_t reg = bios->data[offset + 4 + i * 3];
1419 		uint8_t mask = bios->data[offset + 5 + i * 3];
1420 		uint8_t data = bios->data[offset + 6 + i * 3];
1421 		union i2c_smbus_data val;
1422 
1423 		ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
1424 				     I2C_SMBUS_READ, reg,
1425 				     I2C_SMBUS_BYTE_DATA, &val);
1426 		if (ret < 0) {
1427 			NV_ERROR(dev, "0x%04X: i2c rd fail: %d\n", offset, ret);
1428 			return len;
1429 		}
1430 
1431 		BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: 0x%02X, "
1432 			      "Mask: 0x%02X, Data: 0x%02X\n",
1433 			offset, reg, val.byte, mask, data);
1434 
1435 		if (!bios->execute)
1436 			continue;
1437 
1438 		val.byte &= mask;
1439 		val.byte |= data;
1440 		ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
1441 				     I2C_SMBUS_WRITE, reg,
1442 				     I2C_SMBUS_BYTE_DATA, &val);
1443 		if (ret < 0) {
1444 			NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret);
1445 			return len;
1446 		}
1447 	}
1448 
1449 	return len;
1450 }
1451 
1452 static int
init_zm_i2c_byte(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1453 init_zm_i2c_byte(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1454 {
1455 	/*
1456 	 * INIT_ZM_I2C_BYTE   opcode: 0x4D ('M')
1457 	 *
1458 	 * offset      (8 bit): opcode
1459 	 * offset + 1  (8 bit): DCB I2C table entry index
1460 	 * offset + 2  (8 bit): I2C slave address
1461 	 * offset + 3  (8 bit): count
1462 	 * offset + 4  (8 bit): I2C register 1
1463 	 * offset + 5  (8 bit): data 1
1464 	 * ...
1465 	 *
1466 	 * For each of "count" registers given by "I2C register n" on the device
1467 	 * addressed by "I2C slave address" on the I2C bus given by
1468 	 * "DCB I2C table entry index", set the register to "data n"
1469 	 */
1470 
1471 	struct drm_device *dev = bios->dev;
1472 	uint8_t i2c_index = bios->data[offset + 1];
1473 	uint8_t i2c_address = bios->data[offset + 2] >> 1;
1474 	uint8_t count = bios->data[offset + 3];
1475 	struct nouveau_i2c_chan *chan;
1476 	int len = 4 + count * 2;
1477 	int ret, i;
1478 
1479 	if (!iexec->execute)
1480 		return len;
1481 
1482 	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
1483 		      "Count: 0x%02X\n",
1484 		offset, i2c_index, i2c_address, count);
1485 
1486 	chan = init_i2c_device_find(dev, i2c_index);
1487 	if (!chan) {
1488 		NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset);
1489 		return len;
1490 	}
1491 
1492 	for (i = 0; i < count; i++) {
1493 		uint8_t reg = bios->data[offset + 4 + i * 2];
1494 		union i2c_smbus_data val;
1495 
1496 		val.byte = bios->data[offset + 5 + i * 2];
1497 
1498 		BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Data: 0x%02X\n",
1499 			offset, reg, val.byte);
1500 
1501 		if (!bios->execute)
1502 			continue;
1503 
1504 		ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
1505 				     I2C_SMBUS_WRITE, reg,
1506 				     I2C_SMBUS_BYTE_DATA, &val);
1507 		if (ret < 0) {
1508 			NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret);
1509 			return len;
1510 		}
1511 	}
1512 
1513 	return len;
1514 }
1515 
1516 static int
init_zm_i2c(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1517 init_zm_i2c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1518 {
1519 	/*
1520 	 * INIT_ZM_I2C   opcode: 0x4E ('N')
1521 	 *
1522 	 * offset      (8 bit): opcode
1523 	 * offset + 1  (8 bit): DCB I2C table entry index
1524 	 * offset + 2  (8 bit): I2C slave address
1525 	 * offset + 3  (8 bit): count
1526 	 * offset + 4  (8 bit): data 1
1527 	 * ...
1528 	 *
1529 	 * Send "count" bytes ("data n") to the device addressed by "I2C slave
1530 	 * address" on the I2C bus given by "DCB I2C table entry index"
1531 	 */
1532 
1533 	struct drm_device *dev = bios->dev;
1534 	uint8_t i2c_index = bios->data[offset + 1];
1535 	uint8_t i2c_address = bios->data[offset + 2] >> 1;
1536 	uint8_t count = bios->data[offset + 3];
1537 	int len = 4 + count;
1538 	struct nouveau_i2c_chan *chan;
1539 	struct i2c_msg msg;
1540 	uint8_t data[256];
1541 	int ret, i;
1542 
1543 	if (!iexec->execute)
1544 		return len;
1545 
1546 	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
1547 		      "Count: 0x%02X\n",
1548 		offset, i2c_index, i2c_address, count);
1549 
1550 	chan = init_i2c_device_find(dev, i2c_index);
1551 	if (!chan) {
1552 		NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset);
1553 		return len;
1554 	}
1555 
1556 	for (i = 0; i < count; i++) {
1557 		data[i] = bios->data[offset + 4 + i];
1558 
1559 		BIOSLOG(bios, "0x%04X: Data: 0x%02X\n", offset, data[i]);
1560 	}
1561 
1562 	if (bios->execute) {
1563 		msg.addr = i2c_address;
1564 		msg.flags = 0;
1565 		msg.len = count;
1566 		msg.buf = data;
1567 		ret = i2c_transfer(&chan->adapter, &msg, 1);
1568 		if (ret != 1) {
1569 			NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret);
1570 			return len;
1571 		}
1572 	}
1573 
1574 	return len;
1575 }
1576 
1577 static int
init_tmds(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1578 init_tmds(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1579 {
1580 	/*
1581 	 * INIT_TMDS   opcode: 0x4F ('O')	(non-canon name)
1582 	 *
1583 	 * offset      (8 bit): opcode
1584 	 * offset + 1  (8 bit): magic lookup value
1585 	 * offset + 2  (8 bit): TMDS address
1586 	 * offset + 3  (8 bit): mask
1587 	 * offset + 4  (8 bit): data
1588 	 *
1589 	 * Read the data reg for TMDS address "TMDS address", AND it with mask
1590 	 * and OR it with data, then write it back
1591 	 * "magic lookup value" determines which TMDS base address register is
1592 	 * used -- see get_tmds_index_reg()
1593 	 */
1594 
1595 	struct drm_device *dev = bios->dev;
1596 	uint8_t mlv = bios->data[offset + 1];
1597 	uint32_t tmdsaddr = bios->data[offset + 2];
1598 	uint8_t mask = bios->data[offset + 3];
1599 	uint8_t data = bios->data[offset + 4];
1600 	uint32_t reg, value;
1601 
1602 	if (!iexec->execute)
1603 		return 5;
1604 
1605 	BIOSLOG(bios, "0x%04X: MagicLookupValue: 0x%02X, TMDSAddr: 0x%02X, "
1606 		      "Mask: 0x%02X, Data: 0x%02X\n",
1607 		offset, mlv, tmdsaddr, mask, data);
1608 
1609 	reg = get_tmds_index_reg(bios->dev, mlv);
1610 	if (!reg) {
1611 		NV_ERROR(dev, "0x%04X: no tmds_index_reg\n", offset);
1612 		return 5;
1613 	}
1614 
1615 	bios_wr32(bios, reg,
1616 		  tmdsaddr | NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE);
1617 	value = (bios_rd32(bios, reg + 4) & mask) | data;
1618 	bios_wr32(bios, reg + 4, value);
1619 	bios_wr32(bios, reg, tmdsaddr);
1620 
1621 	return 5;
1622 }
1623 
1624 static int
init_zm_tmds_group(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1625 init_zm_tmds_group(struct nvbios *bios, uint16_t offset,
1626 		   struct init_exec *iexec)
1627 {
1628 	/*
1629 	 * INIT_ZM_TMDS_GROUP   opcode: 0x50 ('P')	(non-canon name)
1630 	 *
1631 	 * offset      (8 bit): opcode
1632 	 * offset + 1  (8 bit): magic lookup value
1633 	 * offset + 2  (8 bit): count
1634 	 * offset + 3  (8 bit): addr 1
1635 	 * offset + 4  (8 bit): data 1
1636 	 * ...
1637 	 *
1638 	 * For each of "count" TMDS address and data pairs write "data n" to
1639 	 * "addr n".  "magic lookup value" determines which TMDS base address
1640 	 * register is used -- see get_tmds_index_reg()
1641 	 */
1642 
1643 	struct drm_device *dev = bios->dev;
1644 	uint8_t mlv = bios->data[offset + 1];
1645 	uint8_t count = bios->data[offset + 2];
1646 	int len = 3 + count * 2;
1647 	uint32_t reg;
1648 	int i;
1649 
1650 	if (!iexec->execute)
1651 		return len;
1652 
1653 	BIOSLOG(bios, "0x%04X: MagicLookupValue: 0x%02X, Count: 0x%02X\n",
1654 		offset, mlv, count);
1655 
1656 	reg = get_tmds_index_reg(bios->dev, mlv);
1657 	if (!reg) {
1658 		NV_ERROR(dev, "0x%04X: no tmds_index_reg\n", offset);
1659 		return len;
1660 	}
1661 
1662 	for (i = 0; i < count; i++) {
1663 		uint8_t tmdsaddr = bios->data[offset + 3 + i * 2];
1664 		uint8_t tmdsdata = bios->data[offset + 4 + i * 2];
1665 
1666 		bios_wr32(bios, reg + 4, tmdsdata);
1667 		bios_wr32(bios, reg, tmdsaddr);
1668 	}
1669 
1670 	return len;
1671 }
1672 
1673 static int
init_cr_idx_adr_latch(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1674 init_cr_idx_adr_latch(struct nvbios *bios, uint16_t offset,
1675 		      struct init_exec *iexec)
1676 {
1677 	/*
1678 	 * INIT_CR_INDEX_ADDRESS_LATCHED   opcode: 0x51 ('Q')
1679 	 *
1680 	 * offset      (8 bit): opcode
1681 	 * offset + 1  (8 bit): CRTC index1
1682 	 * offset + 2  (8 bit): CRTC index2
1683 	 * offset + 3  (8 bit): baseaddr
1684 	 * offset + 4  (8 bit): count
1685 	 * offset + 5  (8 bit): data 1
1686 	 * ...
1687 	 *
1688 	 * For each of "count" address and data pairs, write "baseaddr + n" to
1689 	 * "CRTC index1" and "data n" to "CRTC index2"
1690 	 * Once complete, restore initial value read from "CRTC index1"
1691 	 */
1692 	uint8_t crtcindex1 = bios->data[offset + 1];
1693 	uint8_t crtcindex2 = bios->data[offset + 2];
1694 	uint8_t baseaddr = bios->data[offset + 3];
1695 	uint8_t count = bios->data[offset + 4];
1696 	int len = 5 + count;
1697 	uint8_t oldaddr, data;
1698 	int i;
1699 
1700 	if (!iexec->execute)
1701 		return len;
1702 
1703 	BIOSLOG(bios, "0x%04X: Index1: 0x%02X, Index2: 0x%02X, "
1704 		      "BaseAddr: 0x%02X, Count: 0x%02X\n",
1705 		offset, crtcindex1, crtcindex2, baseaddr, count);
1706 
1707 	oldaddr = bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, crtcindex1);
1708 
1709 	for (i = 0; i < count; i++) {
1710 		bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex1,
1711 				     baseaddr + i);
1712 		data = bios->data[offset + 5 + i];
1713 		bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex2, data);
1714 	}
1715 
1716 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex1, oldaddr);
1717 
1718 	return len;
1719 }
1720 
1721 static int
init_cr(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1722 init_cr(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1723 {
1724 	/*
1725 	 * INIT_CR   opcode: 0x52 ('R')
1726 	 *
1727 	 * offset      (8  bit): opcode
1728 	 * offset + 1  (8  bit): CRTC index
1729 	 * offset + 2  (8  bit): mask
1730 	 * offset + 3  (8  bit): data
1731 	 *
1732 	 * Assign the value of at "CRTC index" ANDed with mask and ORed with
1733 	 * data back to "CRTC index"
1734 	 */
1735 
1736 	uint8_t crtcindex = bios->data[offset + 1];
1737 	uint8_t mask = bios->data[offset + 2];
1738 	uint8_t data = bios->data[offset + 3];
1739 	uint8_t value;
1740 
1741 	if (!iexec->execute)
1742 		return 4;
1743 
1744 	BIOSLOG(bios, "0x%04X: Index: 0x%02X, Mask: 0x%02X, Data: 0x%02X\n",
1745 		offset, crtcindex, mask, data);
1746 
1747 	value  = bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, crtcindex) & mask;
1748 	value |= data;
1749 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex, value);
1750 
1751 	return 4;
1752 }
1753 
1754 static int
init_zm_cr(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1755 init_zm_cr(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1756 {
1757 	/*
1758 	 * INIT_ZM_CR   opcode: 0x53 ('S')
1759 	 *
1760 	 * offset      (8 bit): opcode
1761 	 * offset + 1  (8 bit): CRTC index
1762 	 * offset + 2  (8 bit): value
1763 	 *
1764 	 * Assign "value" to CRTC register with index "CRTC index".
1765 	 */
1766 
1767 	uint8_t crtcindex = ROM32(bios->data[offset + 1]);
1768 	uint8_t data = bios->data[offset + 2];
1769 
1770 	if (!iexec->execute)
1771 		return 3;
1772 
1773 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex, data);
1774 
1775 	return 3;
1776 }
1777 
1778 static int
init_zm_cr_group(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1779 init_zm_cr_group(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1780 {
1781 	/*
1782 	 * INIT_ZM_CR_GROUP   opcode: 0x54 ('T')
1783 	 *
1784 	 * offset      (8 bit): opcode
1785 	 * offset + 1  (8 bit): count
1786 	 * offset + 2  (8 bit): CRTC index 1
1787 	 * offset + 3  (8 bit): value 1
1788 	 * ...
1789 	 *
1790 	 * For "count", assign "value n" to CRTC register with index
1791 	 * "CRTC index n".
1792 	 */
1793 
1794 	uint8_t count = bios->data[offset + 1];
1795 	int len = 2 + count * 2;
1796 	int i;
1797 
1798 	if (!iexec->execute)
1799 		return len;
1800 
1801 	for (i = 0; i < count; i++)
1802 		init_zm_cr(bios, offset + 2 + 2 * i - 1, iexec);
1803 
1804 	return len;
1805 }
1806 
1807 static int
init_condition_time(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1808 init_condition_time(struct nvbios *bios, uint16_t offset,
1809 		    struct init_exec *iexec)
1810 {
1811 	/*
1812 	 * INIT_CONDITION_TIME   opcode: 0x56 ('V')
1813 	 *
1814 	 * offset      (8 bit): opcode
1815 	 * offset + 1  (8 bit): condition number
1816 	 * offset + 2  (8 bit): retries / 50
1817 	 *
1818 	 * Check condition "condition number" in the condition table.
1819 	 * Bios code then sleeps for 2ms if the condition is not met, and
1820 	 * repeats up to "retries" times, but on one C51 this has proved
1821 	 * insufficient.  In mmiotraces the driver sleeps for 20ms, so we do
1822 	 * this, and bail after "retries" times, or 2s, whichever is less.
1823 	 * If still not met after retries, clear execution flag for this table.
1824 	 */
1825 
1826 	uint8_t cond = bios->data[offset + 1];
1827 	uint16_t retries = bios->data[offset + 2] * 50;
1828 	unsigned cnt;
1829 
1830 	if (!iexec->execute)
1831 		return 3;
1832 
1833 	if (retries > 100)
1834 		retries = 100;
1835 
1836 	BIOSLOG(bios, "0x%04X: Condition: 0x%02X, Retries: 0x%02X\n",
1837 		offset, cond, retries);
1838 
1839 	if (!bios->execute) /* avoid 2s delays when "faking" execution */
1840 		retries = 1;
1841 
1842 	for (cnt = 0; cnt < retries; cnt++) {
1843 		if (bios_condition_met(bios, offset, cond)) {
1844 			BIOSLOG(bios, "0x%04X: Condition met, continuing\n",
1845 								offset);
1846 			break;
1847 		} else {
1848 			BIOSLOG(bios, "0x%04X: "
1849 				"Condition not met, sleeping for 20ms\n",
1850 								offset);
1851 			mdelay(20);
1852 		}
1853 	}
1854 
1855 	if (!bios_condition_met(bios, offset, cond)) {
1856 		NV_WARN(bios->dev,
1857 			"0x%04X: Condition still not met after %dms, "
1858 			"skipping following opcodes\n", offset, 20 * retries);
1859 		iexec->execute = false;
1860 	}
1861 
1862 	return 3;
1863 }
1864 
1865 static int
init_ltime(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1866 init_ltime(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1867 {
1868 	/*
1869 	 * INIT_LTIME   opcode: 0x57 ('V')
1870 	 *
1871 	 * offset      (8  bit): opcode
1872 	 * offset + 1  (16 bit): time
1873 	 *
1874 	 * Sleep for "time" milliseconds.
1875 	 */
1876 
1877 	unsigned time = ROM16(bios->data[offset + 1]);
1878 
1879 	if (!iexec->execute)
1880 		return 3;
1881 
1882 	BIOSLOG(bios, "0x%04X: Sleeping for 0x%04X milliseconds\n",
1883 		offset, time);
1884 
1885 	mdelay(time);
1886 
1887 	return 3;
1888 }
1889 
1890 static int
init_zm_reg_sequence(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1891 init_zm_reg_sequence(struct nvbios *bios, uint16_t offset,
1892 		     struct init_exec *iexec)
1893 {
1894 	/*
1895 	 * INIT_ZM_REG_SEQUENCE   opcode: 0x58 ('X')
1896 	 *
1897 	 * offset      (8  bit): opcode
1898 	 * offset + 1  (32 bit): base register
1899 	 * offset + 5  (8  bit): count
1900 	 * offset + 6  (32 bit): value 1
1901 	 * ...
1902 	 *
1903 	 * Starting at offset + 6 there are "count" 32 bit values.
1904 	 * For "count" iterations set "base register" + 4 * current_iteration
1905 	 * to "value current_iteration"
1906 	 */
1907 
1908 	uint32_t basereg = ROM32(bios->data[offset + 1]);
1909 	uint32_t count = bios->data[offset + 5];
1910 	int len = 6 + count * 4;
1911 	int i;
1912 
1913 	if (!iexec->execute)
1914 		return len;
1915 
1916 	BIOSLOG(bios, "0x%04X: BaseReg: 0x%08X, Count: 0x%02X\n",
1917 		offset, basereg, count);
1918 
1919 	for (i = 0; i < count; i++) {
1920 		uint32_t reg = basereg + i * 4;
1921 		uint32_t data = ROM32(bios->data[offset + 6 + i * 4]);
1922 
1923 		bios_wr32(bios, reg, data);
1924 	}
1925 
1926 	return len;
1927 }
1928 
1929 static int
init_sub_direct(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1930 init_sub_direct(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1931 {
1932 	/*
1933 	 * INIT_SUB_DIRECT   opcode: 0x5B ('[')
1934 	 *
1935 	 * offset      (8  bit): opcode
1936 	 * offset + 1  (16 bit): subroutine offset (in bios)
1937 	 *
1938 	 * Calls a subroutine that will execute commands until INIT_DONE
1939 	 * is found.
1940 	 */
1941 
1942 	uint16_t sub_offset = ROM16(bios->data[offset + 1]);
1943 
1944 	if (!iexec->execute)
1945 		return 3;
1946 
1947 	BIOSLOG(bios, "0x%04X: Executing subroutine at 0x%04X\n",
1948 		offset, sub_offset);
1949 
1950 	parse_init_table(bios, sub_offset, iexec);
1951 
1952 	BIOSLOG(bios, "0x%04X: End of 0x%04X subroutine\n", offset, sub_offset);
1953 
1954 	return 3;
1955 }
1956 
1957 static int
init_jump(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1958 init_jump(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1959 {
1960 	/*
1961 	 * INIT_JUMP   opcode: 0x5C ('\')
1962 	 *
1963 	 * offset      (8  bit): opcode
1964 	 * offset + 1  (16 bit): offset (in bios)
1965 	 *
1966 	 * Continue execution of init table from 'offset'
1967 	 */
1968 
1969 	uint16_t jmp_offset = ROM16(bios->data[offset + 1]);
1970 
1971 	if (!iexec->execute)
1972 		return 3;
1973 
1974 	BIOSLOG(bios, "0x%04X: Jump to 0x%04X\n", offset, jmp_offset);
1975 	return jmp_offset - offset;
1976 }
1977 
1978 static int
init_i2c_if(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1979 init_i2c_if(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1980 {
1981 	/*
1982 	 * INIT_I2C_IF   opcode: 0x5E ('^')
1983 	 *
1984 	 * offset      (8 bit): opcode
1985 	 * offset + 1  (8 bit): DCB I2C table entry index
1986 	 * offset + 2  (8 bit): I2C slave address
1987 	 * offset + 3  (8 bit): I2C register
1988 	 * offset + 4  (8 bit): mask
1989 	 * offset + 5  (8 bit): data
1990 	 *
1991 	 * Read the register given by "I2C register" on the device addressed
1992 	 * by "I2C slave address" on the I2C bus given by "DCB I2C table
1993 	 * entry index". Compare the result AND "mask" to "data".
1994 	 * If they're not equal, skip subsequent opcodes until condition is
1995 	 * inverted (INIT_NOT), or we hit INIT_RESUME
1996 	 */
1997 
1998 	uint8_t i2c_index = bios->data[offset + 1];
1999 	uint8_t i2c_address = bios->data[offset + 2] >> 1;
2000 	uint8_t reg = bios->data[offset + 3];
2001 	uint8_t mask = bios->data[offset + 4];
2002 	uint8_t data = bios->data[offset + 5];
2003 	struct nouveau_i2c_chan *chan;
2004 	union i2c_smbus_data val;
2005 	int ret;
2006 
2007 	/* no execute check by design */
2008 
2009 	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X\n",
2010 		offset, i2c_index, i2c_address);
2011 
2012 	chan = init_i2c_device_find(bios->dev, i2c_index);
2013 	if (!chan)
2014 		return -ENODEV;
2015 
2016 	ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
2017 			     I2C_SMBUS_READ, reg,
2018 			     I2C_SMBUS_BYTE_DATA, &val);
2019 	if (ret < 0) {
2020 		BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: [no device], "
2021 			      "Mask: 0x%02X, Data: 0x%02X\n",
2022 			offset, reg, mask, data);
2023 		iexec->execute = 0;
2024 		return 6;
2025 	}
2026 
2027 	BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: 0x%02X, "
2028 		      "Mask: 0x%02X, Data: 0x%02X\n",
2029 		offset, reg, val.byte, mask, data);
2030 
2031 	iexec->execute = ((val.byte & mask) == data);
2032 
2033 	return 6;
2034 }
2035 
2036 static int
init_copy_nv_reg(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2037 init_copy_nv_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2038 {
2039 	/*
2040 	 * INIT_COPY_NV_REG   opcode: 0x5F ('_')
2041 	 *
2042 	 * offset      (8  bit): opcode
2043 	 * offset + 1  (32 bit): src reg
2044 	 * offset + 5  (8  bit): shift
2045 	 * offset + 6  (32 bit): src mask
2046 	 * offset + 10 (32 bit): xor
2047 	 * offset + 14 (32 bit): dst reg
2048 	 * offset + 18 (32 bit): dst mask
2049 	 *
2050 	 * Shift REGVAL("src reg") right by (signed) "shift", AND result with
2051 	 * "src mask", then XOR with "xor". Write this OR'd with
2052 	 * (REGVAL("dst reg") AND'd with "dst mask") to "dst reg"
2053 	 */
2054 
2055 	uint32_t srcreg = *((uint32_t *)(&bios->data[offset + 1]));
2056 	uint8_t shift = bios->data[offset + 5];
2057 	uint32_t srcmask = *((uint32_t *)(&bios->data[offset + 6]));
2058 	uint32_t xor = *((uint32_t *)(&bios->data[offset + 10]));
2059 	uint32_t dstreg = *((uint32_t *)(&bios->data[offset + 14]));
2060 	uint32_t dstmask = *((uint32_t *)(&bios->data[offset + 18]));
2061 	uint32_t srcvalue, dstvalue;
2062 
2063 	if (!iexec->execute)
2064 		return 22;
2065 
2066 	BIOSLOG(bios, "0x%04X: SrcReg: 0x%08X, Shift: 0x%02X, SrcMask: 0x%08X, "
2067 		      "Xor: 0x%08X, DstReg: 0x%08X, DstMask: 0x%08X\n",
2068 		offset, srcreg, shift, srcmask, xor, dstreg, dstmask);
2069 
2070 	srcvalue = bios_rd32(bios, srcreg);
2071 
2072 	if (shift < 0x80)
2073 		srcvalue >>= shift;
2074 	else
2075 		srcvalue <<= (0x100 - shift);
2076 
2077 	srcvalue = (srcvalue & srcmask) ^ xor;
2078 
2079 	dstvalue = bios_rd32(bios, dstreg) & dstmask;
2080 
2081 	bios_wr32(bios, dstreg, dstvalue | srcvalue);
2082 
2083 	return 22;
2084 }
2085 
2086 static int
init_zm_index_io(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2087 init_zm_index_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2088 {
2089 	/*
2090 	 * INIT_ZM_INDEX_IO   opcode: 0x62 ('b')
2091 	 *
2092 	 * offset      (8  bit): opcode
2093 	 * offset + 1  (16 bit): CRTC port
2094 	 * offset + 3  (8  bit): CRTC index
2095 	 * offset + 4  (8  bit): data
2096 	 *
2097 	 * Write "data" to index "CRTC index" of "CRTC port"
2098 	 */
2099 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
2100 	uint8_t crtcindex = bios->data[offset + 3];
2101 	uint8_t data = bios->data[offset + 4];
2102 
2103 	if (!iexec->execute)
2104 		return 5;
2105 
2106 	bios_idxprt_wr(bios, crtcport, crtcindex, data);
2107 
2108 	return 5;
2109 }
2110 
2111 static inline void
bios_md32(struct nvbios * bios,uint32_t reg,uint32_t mask,uint32_t val)2112 bios_md32(struct nvbios *bios, uint32_t reg,
2113 	  uint32_t mask, uint32_t val)
2114 {
2115 	bios_wr32(bios, reg, (bios_rd32(bios, reg) & ~mask) | val);
2116 }
2117 
2118 static uint32_t
peek_fb(struct drm_device * dev,struct io_mapping * fb,uint32_t off)2119 peek_fb(struct drm_device *dev, struct io_mapping *fb,
2120 	uint32_t off)
2121 {
2122 	uint32_t val = 0;
2123 
2124 	if (off < pci_resource_len(dev->pdev, 1)) {
2125 		uint8_t __iomem *p =
2126 			io_mapping_map_atomic_wc(fb, off & PAGE_MASK);
2127 
2128 		val = ioread32(p + (off & ~PAGE_MASK));
2129 
2130 		io_mapping_unmap_atomic(p);
2131 	}
2132 
2133 	return val;
2134 }
2135 
2136 static void
poke_fb(struct drm_device * dev,struct io_mapping * fb,uint32_t off,uint32_t val)2137 poke_fb(struct drm_device *dev, struct io_mapping *fb,
2138 	uint32_t off, uint32_t val)
2139 {
2140 	if (off < pci_resource_len(dev->pdev, 1)) {
2141 		uint8_t __iomem *p =
2142 			io_mapping_map_atomic_wc(fb, off & PAGE_MASK);
2143 
2144 		iowrite32(val, p + (off & ~PAGE_MASK));
2145 		wmb();
2146 
2147 		io_mapping_unmap_atomic(p);
2148 	}
2149 }
2150 
2151 static inline bool
read_back_fb(struct drm_device * dev,struct io_mapping * fb,uint32_t off,uint32_t val)2152 read_back_fb(struct drm_device *dev, struct io_mapping *fb,
2153 	     uint32_t off, uint32_t val)
2154 {
2155 	poke_fb(dev, fb, off, val);
2156 	return val == peek_fb(dev, fb, off);
2157 }
2158 
2159 static int
nv04_init_compute_mem(struct nvbios * bios)2160 nv04_init_compute_mem(struct nvbios *bios)
2161 {
2162 	struct drm_device *dev = bios->dev;
2163 	uint32_t patt = 0xdeadbeef;
2164 	struct io_mapping *fb;
2165 	int i;
2166 
2167 	/* Map the framebuffer aperture */
2168 	fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
2169 				  pci_resource_len(dev->pdev, 1));
2170 	if (!fb)
2171 		return -ENOMEM;
2172 
2173 	/* Sequencer and refresh off */
2174 	NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) | 0x20);
2175 	bios_md32(bios, NV04_PFB_DEBUG_0, 0, NV04_PFB_DEBUG_0_REFRESH_OFF);
2176 
2177 	bios_md32(bios, NV04_PFB_BOOT_0, ~0,
2178 		  NV04_PFB_BOOT_0_RAM_AMOUNT_16MB |
2179 		  NV04_PFB_BOOT_0_RAM_WIDTH_128 |
2180 		  NV04_PFB_BOOT_0_RAM_TYPE_SGRAM_16MBIT);
2181 
2182 	for (i = 0; i < 4; i++)
2183 		poke_fb(dev, fb, 4 * i, patt);
2184 
2185 	poke_fb(dev, fb, 0x400000, patt + 1);
2186 
2187 	if (peek_fb(dev, fb, 0) == patt + 1) {
2188 		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_TYPE,
2189 			  NV04_PFB_BOOT_0_RAM_TYPE_SDRAM_16MBIT);
2190 		bios_md32(bios, NV04_PFB_DEBUG_0,
2191 			  NV04_PFB_DEBUG_0_REFRESH_OFF, 0);
2192 
2193 		for (i = 0; i < 4; i++)
2194 			poke_fb(dev, fb, 4 * i, patt);
2195 
2196 		if ((peek_fb(dev, fb, 0xc) & 0xffff) != (patt & 0xffff))
2197 			bios_md32(bios, NV04_PFB_BOOT_0,
2198 				  NV04_PFB_BOOT_0_RAM_WIDTH_128 |
2199 				  NV04_PFB_BOOT_0_RAM_AMOUNT,
2200 				  NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
2201 
2202 	} else if ((peek_fb(dev, fb, 0xc) & 0xffff0000) !=
2203 		   (patt & 0xffff0000)) {
2204 		bios_md32(bios, NV04_PFB_BOOT_0,
2205 			  NV04_PFB_BOOT_0_RAM_WIDTH_128 |
2206 			  NV04_PFB_BOOT_0_RAM_AMOUNT,
2207 			  NV04_PFB_BOOT_0_RAM_AMOUNT_4MB);
2208 
2209 	} else if (peek_fb(dev, fb, 0) != patt) {
2210 		if (read_back_fb(dev, fb, 0x800000, patt))
2211 			bios_md32(bios, NV04_PFB_BOOT_0,
2212 				  NV04_PFB_BOOT_0_RAM_AMOUNT,
2213 				  NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
2214 		else
2215 			bios_md32(bios, NV04_PFB_BOOT_0,
2216 				  NV04_PFB_BOOT_0_RAM_AMOUNT,
2217 				  NV04_PFB_BOOT_0_RAM_AMOUNT_4MB);
2218 
2219 		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_TYPE,
2220 			  NV04_PFB_BOOT_0_RAM_TYPE_SGRAM_8MBIT);
2221 
2222 	} else if (!read_back_fb(dev, fb, 0x800000, patt)) {
2223 		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
2224 			  NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
2225 
2226 	}
2227 
2228 	/* Refresh on, sequencer on */
2229 	bios_md32(bios, NV04_PFB_DEBUG_0, NV04_PFB_DEBUG_0_REFRESH_OFF, 0);
2230 	NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) & ~0x20);
2231 
2232 	io_mapping_free(fb);
2233 	return 0;
2234 }
2235 
2236 static const uint8_t *
nv05_memory_config(struct nvbios * bios)2237 nv05_memory_config(struct nvbios *bios)
2238 {
2239 	/* Defaults for BIOSes lacking a memory config table */
2240 	static const uint8_t default_config_tab[][2] = {
2241 		{ 0x24, 0x00 },
2242 		{ 0x28, 0x00 },
2243 		{ 0x24, 0x01 },
2244 		{ 0x1f, 0x00 },
2245 		{ 0x0f, 0x00 },
2246 		{ 0x17, 0x00 },
2247 		{ 0x06, 0x00 },
2248 		{ 0x00, 0x00 }
2249 	};
2250 	int i = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) &
2251 		 NV_PEXTDEV_BOOT_0_RAMCFG) >> 2;
2252 
2253 	if (bios->legacy.mem_init_tbl_ptr)
2254 		return &bios->data[bios->legacy.mem_init_tbl_ptr + 2 * i];
2255 	else
2256 		return default_config_tab[i];
2257 }
2258 
2259 static int
nv05_init_compute_mem(struct nvbios * bios)2260 nv05_init_compute_mem(struct nvbios *bios)
2261 {
2262 	struct drm_device *dev = bios->dev;
2263 	const uint8_t *ramcfg = nv05_memory_config(bios);
2264 	uint32_t patt = 0xdeadbeef;
2265 	struct io_mapping *fb;
2266 	int i, v;
2267 
2268 	/* Map the framebuffer aperture */
2269 	fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
2270 				  pci_resource_len(dev->pdev, 1));
2271 	if (!fb)
2272 		return -ENOMEM;
2273 
2274 	/* Sequencer off */
2275 	NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) | 0x20);
2276 
2277 	if (bios_rd32(bios, NV04_PFB_BOOT_0) & NV04_PFB_BOOT_0_UMA_ENABLE)
2278 		goto out;
2279 
2280 	bios_md32(bios, NV04_PFB_DEBUG_0, NV04_PFB_DEBUG_0_REFRESH_OFF, 0);
2281 
2282 	/* If present load the hardcoded scrambling table */
2283 	if (bios->legacy.mem_init_tbl_ptr) {
2284 		uint32_t *scramble_tab = (uint32_t *)&bios->data[
2285 			bios->legacy.mem_init_tbl_ptr + 0x10];
2286 
2287 		for (i = 0; i < 8; i++)
2288 			bios_wr32(bios, NV04_PFB_SCRAMBLE(i),
2289 				  ROM32(scramble_tab[i]));
2290 	}
2291 
2292 	/* Set memory type/width/length defaults depending on the straps */
2293 	bios_md32(bios, NV04_PFB_BOOT_0, 0x3f, ramcfg[0]);
2294 
2295 	if (ramcfg[1] & 0x80)
2296 		bios_md32(bios, NV04_PFB_CFG0, 0, NV04_PFB_CFG0_SCRAMBLE);
2297 
2298 	bios_md32(bios, NV04_PFB_CFG1, 0x700001, (ramcfg[1] & 1) << 20);
2299 	bios_md32(bios, NV04_PFB_CFG1, 0, 1);
2300 
2301 	/* Probe memory bus width */
2302 	for (i = 0; i < 4; i++)
2303 		poke_fb(dev, fb, 4 * i, patt);
2304 
2305 	if (peek_fb(dev, fb, 0xc) != patt)
2306 		bios_md32(bios, NV04_PFB_BOOT_0,
2307 			  NV04_PFB_BOOT_0_RAM_WIDTH_128, 0);
2308 
2309 	/* Probe memory length */
2310 	v = bios_rd32(bios, NV04_PFB_BOOT_0) & NV04_PFB_BOOT_0_RAM_AMOUNT;
2311 
2312 	if (v == NV04_PFB_BOOT_0_RAM_AMOUNT_32MB &&
2313 	    (!read_back_fb(dev, fb, 0x1000000, ++patt) ||
2314 	     !read_back_fb(dev, fb, 0, ++patt)))
2315 		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
2316 			  NV04_PFB_BOOT_0_RAM_AMOUNT_16MB);
2317 
2318 	if (v == NV04_PFB_BOOT_0_RAM_AMOUNT_16MB &&
2319 	    !read_back_fb(dev, fb, 0x800000, ++patt))
2320 		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
2321 			  NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
2322 
2323 	if (!read_back_fb(dev, fb, 0x400000, ++patt))
2324 		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
2325 			  NV04_PFB_BOOT_0_RAM_AMOUNT_4MB);
2326 
2327 out:
2328 	/* Sequencer on */
2329 	NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) & ~0x20);
2330 
2331 	io_mapping_free(fb);
2332 	return 0;
2333 }
2334 
2335 static int
nv10_init_compute_mem(struct nvbios * bios)2336 nv10_init_compute_mem(struct nvbios *bios)
2337 {
2338 	struct drm_device *dev = bios->dev;
2339 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
2340 	const int mem_width[] = { 0x10, 0x00, 0x20 };
2341 	const int mem_width_count = (dev_priv->chipset >= 0x17 ? 3 : 2);
2342 	uint32_t patt = 0xdeadbeef;
2343 	struct io_mapping *fb;
2344 	int i, j, k;
2345 
2346 	/* Map the framebuffer aperture */
2347 	fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
2348 				  pci_resource_len(dev->pdev, 1));
2349 	if (!fb)
2350 		return -ENOMEM;
2351 
2352 	bios_wr32(bios, NV10_PFB_REFCTRL, NV10_PFB_REFCTRL_VALID_1);
2353 
2354 	/* Probe memory bus width */
2355 	for (i = 0; i < mem_width_count; i++) {
2356 		bios_md32(bios, NV04_PFB_CFG0, 0x30, mem_width[i]);
2357 
2358 		for (j = 0; j < 4; j++) {
2359 			for (k = 0; k < 4; k++)
2360 				poke_fb(dev, fb, 0x1c, 0);
2361 
2362 			poke_fb(dev, fb, 0x1c, patt);
2363 			poke_fb(dev, fb, 0x3c, 0);
2364 
2365 			if (peek_fb(dev, fb, 0x1c) == patt)
2366 				goto mem_width_found;
2367 		}
2368 	}
2369 
2370 mem_width_found:
2371 	patt <<= 1;
2372 
2373 	/* Probe amount of installed memory */
2374 	for (i = 0; i < 4; i++) {
2375 		int off = bios_rd32(bios, NV04_PFB_FIFO_DATA) - 0x100000;
2376 
2377 		poke_fb(dev, fb, off, patt);
2378 		poke_fb(dev, fb, 0, 0);
2379 
2380 		peek_fb(dev, fb, 0);
2381 		peek_fb(dev, fb, 0);
2382 		peek_fb(dev, fb, 0);
2383 		peek_fb(dev, fb, 0);
2384 
2385 		if (peek_fb(dev, fb, off) == patt)
2386 			goto amount_found;
2387 	}
2388 
2389 	/* IC missing - disable the upper half memory space. */
2390 	bios_md32(bios, NV04_PFB_CFG0, 0x1000, 0);
2391 
2392 amount_found:
2393 	io_mapping_free(fb);
2394 	return 0;
2395 }
2396 
2397 static int
nv20_init_compute_mem(struct nvbios * bios)2398 nv20_init_compute_mem(struct nvbios *bios)
2399 {
2400 	struct drm_device *dev = bios->dev;
2401 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
2402 	uint32_t mask = (dev_priv->chipset >= 0x25 ? 0x300 : 0x900);
2403 	uint32_t amount, off;
2404 	struct io_mapping *fb;
2405 
2406 	/* Map the framebuffer aperture */
2407 	fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
2408 				  pci_resource_len(dev->pdev, 1));
2409 	if (!fb)
2410 		return -ENOMEM;
2411 
2412 	bios_wr32(bios, NV10_PFB_REFCTRL, NV10_PFB_REFCTRL_VALID_1);
2413 
2414 	/* Allow full addressing */
2415 	bios_md32(bios, NV04_PFB_CFG0, 0, mask);
2416 
2417 	amount = bios_rd32(bios, NV04_PFB_FIFO_DATA);
2418 	for (off = amount; off > 0x2000000; off -= 0x2000000)
2419 		poke_fb(dev, fb, off - 4, off);
2420 
2421 	amount = bios_rd32(bios, NV04_PFB_FIFO_DATA);
2422 	if (amount != peek_fb(dev, fb, amount - 4))
2423 		/* IC missing - disable the upper half memory space. */
2424 		bios_md32(bios, NV04_PFB_CFG0, mask, 0);
2425 
2426 	io_mapping_free(fb);
2427 	return 0;
2428 }
2429 
2430 static int
init_compute_mem(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2431 init_compute_mem(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2432 {
2433 	/*
2434 	 * INIT_COMPUTE_MEM   opcode: 0x63 ('c')
2435 	 *
2436 	 * offset      (8 bit): opcode
2437 	 *
2438 	 * This opcode is meant to set the PFB memory config registers
2439 	 * appropriately so that we can correctly calculate how much VRAM it
2440 	 * has (on nv10 and better chipsets the amount of installed VRAM is
2441 	 * subsequently reported in NV_PFB_CSTATUS (0x10020C)).
2442 	 *
2443 	 * The implementation of this opcode in general consists of several
2444 	 * parts:
2445 	 *
2446 	 * 1) Determination of memory type and density. Only necessary for
2447 	 *    really old chipsets, the memory type reported by the strap bits
2448 	 *    (0x101000) is assumed to be accurate on nv05 and newer.
2449 	 *
2450 	 * 2) Determination of the memory bus width. Usually done by a cunning
2451 	 *    combination of writes to offsets 0x1c and 0x3c in the fb, and
2452 	 *    seeing whether the written values are read back correctly.
2453 	 *
2454 	 *    Only necessary on nv0x-nv1x and nv34, on the other cards we can
2455 	 *    trust the straps.
2456 	 *
2457 	 * 3) Determination of how many of the card's RAM pads have ICs
2458 	 *    attached, usually done by a cunning combination of writes to an
2459 	 *    offset slightly less than the maximum memory reported by
2460 	 *    NV_PFB_CSTATUS, then seeing if the test pattern can be read back.
2461 	 *
2462 	 * This appears to be a NOP on IGPs and NV4x or newer chipsets, both io
2463 	 * logs of the VBIOS and kmmio traces of the binary driver POSTing the
2464 	 * card show nothing being done for this opcode. Why is it still listed
2465 	 * in the table?!
2466 	 */
2467 
2468 	/* no iexec->execute check by design */
2469 
2470 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
2471 	int ret;
2472 
2473 	if (dev_priv->chipset >= 0x40 ||
2474 	    dev_priv->chipset == 0x1a ||
2475 	    dev_priv->chipset == 0x1f)
2476 		ret = 0;
2477 	else if (dev_priv->chipset >= 0x20 &&
2478 		 dev_priv->chipset != 0x34)
2479 		ret = nv20_init_compute_mem(bios);
2480 	else if (dev_priv->chipset >= 0x10)
2481 		ret = nv10_init_compute_mem(bios);
2482 	else if (dev_priv->chipset >= 0x5)
2483 		ret = nv05_init_compute_mem(bios);
2484 	else
2485 		ret = nv04_init_compute_mem(bios);
2486 
2487 	if (ret)
2488 		return ret;
2489 
2490 	return 1;
2491 }
2492 
2493 static int
init_reset(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2494 init_reset(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2495 {
2496 	/*
2497 	 * INIT_RESET   opcode: 0x65 ('e')
2498 	 *
2499 	 * offset      (8  bit): opcode
2500 	 * offset + 1  (32 bit): register
2501 	 * offset + 5  (32 bit): value1
2502 	 * offset + 9  (32 bit): value2
2503 	 *
2504 	 * Assign "value1" to "register", then assign "value2" to "register"
2505 	 */
2506 
2507 	uint32_t reg = ROM32(bios->data[offset + 1]);
2508 	uint32_t value1 = ROM32(bios->data[offset + 5]);
2509 	uint32_t value2 = ROM32(bios->data[offset + 9]);
2510 	uint32_t pci_nv_19, pci_nv_20;
2511 
2512 	/* no iexec->execute check by design */
2513 
2514 	pci_nv_19 = bios_rd32(bios, NV_PBUS_PCI_NV_19);
2515 	bios_wr32(bios, NV_PBUS_PCI_NV_19, pci_nv_19 & ~0xf00);
2516 
2517 	bios_wr32(bios, reg, value1);
2518 
2519 	udelay(10);
2520 
2521 	bios_wr32(bios, reg, value2);
2522 	bios_wr32(bios, NV_PBUS_PCI_NV_19, pci_nv_19);
2523 
2524 	pci_nv_20 = bios_rd32(bios, NV_PBUS_PCI_NV_20);
2525 	pci_nv_20 &= ~NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED;	/* 0xfffffffe */
2526 	bios_wr32(bios, NV_PBUS_PCI_NV_20, pci_nv_20);
2527 
2528 	return 13;
2529 }
2530 
2531 static int
init_configure_mem(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2532 init_configure_mem(struct nvbios *bios, uint16_t offset,
2533 		   struct init_exec *iexec)
2534 {
2535 	/*
2536 	 * INIT_CONFIGURE_MEM   opcode: 0x66 ('f')
2537 	 *
2538 	 * offset      (8 bit): opcode
2539 	 *
2540 	 * Equivalent to INIT_DONE on bios version 3 or greater.
2541 	 * For early bios versions, sets up the memory registers, using values
2542 	 * taken from the memory init table
2543 	 */
2544 
2545 	/* no iexec->execute check by design */
2546 
2547 	uint16_t meminitoffs = bios->legacy.mem_init_tbl_ptr + MEM_INIT_SIZE * (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX) >> 4);
2548 	uint16_t seqtbloffs = bios->legacy.sdr_seq_tbl_ptr, meminitdata = meminitoffs + 6;
2549 	uint32_t reg, data;
2550 
2551 	if (bios->major_version > 2)
2552 		return 0;
2553 
2554 	bios_idxprt_wr(bios, NV_VIO_SRX, NV_VIO_SR_CLOCK_INDEX, bios_idxprt_rd(
2555 		       bios, NV_VIO_SRX, NV_VIO_SR_CLOCK_INDEX) | 0x20);
2556 
2557 	if (bios->data[meminitoffs] & 1)
2558 		seqtbloffs = bios->legacy.ddr_seq_tbl_ptr;
2559 
2560 	for (reg = ROM32(bios->data[seqtbloffs]);
2561 	     reg != 0xffffffff;
2562 	     reg = ROM32(bios->data[seqtbloffs += 4])) {
2563 
2564 		switch (reg) {
2565 		case NV04_PFB_PRE:
2566 			data = NV04_PFB_PRE_CMD_PRECHARGE;
2567 			break;
2568 		case NV04_PFB_PAD:
2569 			data = NV04_PFB_PAD_CKE_NORMAL;
2570 			break;
2571 		case NV04_PFB_REF:
2572 			data = NV04_PFB_REF_CMD_REFRESH;
2573 			break;
2574 		default:
2575 			data = ROM32(bios->data[meminitdata]);
2576 			meminitdata += 4;
2577 			if (data == 0xffffffff)
2578 				continue;
2579 		}
2580 
2581 		bios_wr32(bios, reg, data);
2582 	}
2583 
2584 	return 1;
2585 }
2586 
2587 static int
init_configure_clk(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2588 init_configure_clk(struct nvbios *bios, uint16_t offset,
2589 		   struct init_exec *iexec)
2590 {
2591 	/*
2592 	 * INIT_CONFIGURE_CLK   opcode: 0x67 ('g')
2593 	 *
2594 	 * offset      (8 bit): opcode
2595 	 *
2596 	 * Equivalent to INIT_DONE on bios version 3 or greater.
2597 	 * For early bios versions, sets up the NVClk and MClk PLLs, using
2598 	 * values taken from the memory init table
2599 	 */
2600 
2601 	/* no iexec->execute check by design */
2602 
2603 	uint16_t meminitoffs = bios->legacy.mem_init_tbl_ptr + MEM_INIT_SIZE * (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX) >> 4);
2604 	int clock;
2605 
2606 	if (bios->major_version > 2)
2607 		return 0;
2608 
2609 	clock = ROM16(bios->data[meminitoffs + 4]) * 10;
2610 	setPLL(bios, NV_PRAMDAC_NVPLL_COEFF, clock);
2611 
2612 	clock = ROM16(bios->data[meminitoffs + 2]) * 10;
2613 	if (bios->data[meminitoffs] & 1) /* DDR */
2614 		clock *= 2;
2615 	setPLL(bios, NV_PRAMDAC_MPLL_COEFF, clock);
2616 
2617 	return 1;
2618 }
2619 
2620 static int
init_configure_preinit(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2621 init_configure_preinit(struct nvbios *bios, uint16_t offset,
2622 		       struct init_exec *iexec)
2623 {
2624 	/*
2625 	 * INIT_CONFIGURE_PREINIT   opcode: 0x68 ('h')
2626 	 *
2627 	 * offset      (8 bit): opcode
2628 	 *
2629 	 * Equivalent to INIT_DONE on bios version 3 or greater.
2630 	 * For early bios versions, does early init, loading ram and crystal
2631 	 * configuration from straps into CR3C
2632 	 */
2633 
2634 	/* no iexec->execute check by design */
2635 
2636 	uint32_t straps = bios_rd32(bios, NV_PEXTDEV_BOOT_0);
2637 	uint8_t cr3c = ((straps << 2) & 0xf0) | (straps & 0x40) >> 6;
2638 
2639 	if (bios->major_version > 2)
2640 		return 0;
2641 
2642 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR,
2643 			     NV_CIO_CRE_SCRATCH4__INDEX, cr3c);
2644 
2645 	return 1;
2646 }
2647 
2648 static int
init_io(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2649 init_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2650 {
2651 	/*
2652 	 * INIT_IO   opcode: 0x69 ('i')
2653 	 *
2654 	 * offset      (8  bit): opcode
2655 	 * offset + 1  (16 bit): CRTC port
2656 	 * offset + 3  (8  bit): mask
2657 	 * offset + 4  (8  bit): data
2658 	 *
2659 	 * Assign ((IOVAL("crtc port") & "mask") | "data") to "crtc port"
2660 	 */
2661 
2662 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
2663 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
2664 	uint8_t mask = bios->data[offset + 3];
2665 	uint8_t data = bios->data[offset + 4];
2666 
2667 	if (!iexec->execute)
2668 		return 5;
2669 
2670 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Mask: 0x%02X, Data: 0x%02X\n",
2671 		offset, crtcport, mask, data);
2672 
2673 	/*
2674 	 * I have no idea what this does, but NVIDIA do this magic sequence
2675 	 * in the places where this INIT_IO happens..
2676 	 */
2677 	if (dev_priv->card_type >= NV_50 && crtcport == 0x3c3 && data == 1) {
2678 		int i;
2679 
2680 		bios_wr32(bios, 0x614100, (bios_rd32(
2681 			  bios, 0x614100) & 0x0fffffff) | 0x00800000);
2682 
2683 		bios_wr32(bios, 0x00e18c, bios_rd32(
2684 			  bios, 0x00e18c) | 0x00020000);
2685 
2686 		bios_wr32(bios, 0x614900, (bios_rd32(
2687 			  bios, 0x614900) & 0x0fffffff) | 0x00800000);
2688 
2689 		bios_wr32(bios, 0x000200, bios_rd32(
2690 			  bios, 0x000200) & ~0x40000000);
2691 
2692 		mdelay(10);
2693 
2694 		bios_wr32(bios, 0x00e18c, bios_rd32(
2695 			  bios, 0x00e18c) & ~0x00020000);
2696 
2697 		bios_wr32(bios, 0x000200, bios_rd32(
2698 			  bios, 0x000200) | 0x40000000);
2699 
2700 		bios_wr32(bios, 0x614100, 0x00800018);
2701 		bios_wr32(bios, 0x614900, 0x00800018);
2702 
2703 		mdelay(10);
2704 
2705 		bios_wr32(bios, 0x614100, 0x10000018);
2706 		bios_wr32(bios, 0x614900, 0x10000018);
2707 
2708 		for (i = 0; i < 3; i++)
2709 			bios_wr32(bios, 0x614280 + (i*0x800), bios_rd32(
2710 				  bios, 0x614280 + (i*0x800)) & 0xf0f0f0f0);
2711 
2712 		for (i = 0; i < 2; i++)
2713 			bios_wr32(bios, 0x614300 + (i*0x800), bios_rd32(
2714 				  bios, 0x614300 + (i*0x800)) & 0xfffff0f0);
2715 
2716 		for (i = 0; i < 3; i++)
2717 			bios_wr32(bios, 0x614380 + (i*0x800), bios_rd32(
2718 				  bios, 0x614380 + (i*0x800)) & 0xfffff0f0);
2719 
2720 		for (i = 0; i < 2; i++)
2721 			bios_wr32(bios, 0x614200 + (i*0x800), bios_rd32(
2722 				  bios, 0x614200 + (i*0x800)) & 0xfffffff0);
2723 
2724 		for (i = 0; i < 2; i++)
2725 			bios_wr32(bios, 0x614108 + (i*0x800), bios_rd32(
2726 				  bios, 0x614108 + (i*0x800)) & 0x0fffffff);
2727 		return 5;
2728 	}
2729 
2730 	bios_port_wr(bios, crtcport, (bios_port_rd(bios, crtcport) & mask) |
2731 									data);
2732 	return 5;
2733 }
2734 
2735 static int
init_sub(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2736 init_sub(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2737 {
2738 	/*
2739 	 * INIT_SUB   opcode: 0x6B ('k')
2740 	 *
2741 	 * offset      (8 bit): opcode
2742 	 * offset + 1  (8 bit): script number
2743 	 *
2744 	 * Execute script number "script number", as a subroutine
2745 	 */
2746 
2747 	uint8_t sub = bios->data[offset + 1];
2748 
2749 	if (!iexec->execute)
2750 		return 2;
2751 
2752 	BIOSLOG(bios, "0x%04X: Calling script %d\n", offset, sub);
2753 
2754 	parse_init_table(bios,
2755 			 ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]),
2756 			 iexec);
2757 
2758 	BIOSLOG(bios, "0x%04X: End of script %d\n", offset, sub);
2759 
2760 	return 2;
2761 }
2762 
2763 static int
init_ram_condition(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2764 init_ram_condition(struct nvbios *bios, uint16_t offset,
2765 		   struct init_exec *iexec)
2766 {
2767 	/*
2768 	 * INIT_RAM_CONDITION   opcode: 0x6D ('m')
2769 	 *
2770 	 * offset      (8 bit): opcode
2771 	 * offset + 1  (8 bit): mask
2772 	 * offset + 2  (8 bit): cmpval
2773 	 *
2774 	 * Test if (NV04_PFB_BOOT_0 & "mask") equals "cmpval".
2775 	 * If condition not met skip subsequent opcodes until condition is
2776 	 * inverted (INIT_NOT), or we hit INIT_RESUME
2777 	 */
2778 
2779 	uint8_t mask = bios->data[offset + 1];
2780 	uint8_t cmpval = bios->data[offset + 2];
2781 	uint8_t data;
2782 
2783 	if (!iexec->execute)
2784 		return 3;
2785 
2786 	data = bios_rd32(bios, NV04_PFB_BOOT_0) & mask;
2787 
2788 	BIOSLOG(bios, "0x%04X: Checking if 0x%08X equals 0x%08X\n",
2789 		offset, data, cmpval);
2790 
2791 	if (data == cmpval)
2792 		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
2793 	else {
2794 		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
2795 		iexec->execute = false;
2796 	}
2797 
2798 	return 3;
2799 }
2800 
2801 static int
init_nv_reg(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2802 init_nv_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2803 {
2804 	/*
2805 	 * INIT_NV_REG   opcode: 0x6E ('n')
2806 	 *
2807 	 * offset      (8  bit): opcode
2808 	 * offset + 1  (32 bit): register
2809 	 * offset + 5  (32 bit): mask
2810 	 * offset + 9  (32 bit): data
2811 	 *
2812 	 * Assign ((REGVAL("register") & "mask") | "data") to "register"
2813 	 */
2814 
2815 	uint32_t reg = ROM32(bios->data[offset + 1]);
2816 	uint32_t mask = ROM32(bios->data[offset + 5]);
2817 	uint32_t data = ROM32(bios->data[offset + 9]);
2818 
2819 	if (!iexec->execute)
2820 		return 13;
2821 
2822 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Mask: 0x%08X, Data: 0x%08X\n",
2823 		offset, reg, mask, data);
2824 
2825 	bios_wr32(bios, reg, (bios_rd32(bios, reg) & mask) | data);
2826 
2827 	return 13;
2828 }
2829 
2830 static int
init_macro(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2831 init_macro(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2832 {
2833 	/*
2834 	 * INIT_MACRO   opcode: 0x6F ('o')
2835 	 *
2836 	 * offset      (8 bit): opcode
2837 	 * offset + 1  (8 bit): macro number
2838 	 *
2839 	 * Look up macro index "macro number" in the macro index table.
2840 	 * The macro index table entry has 1 byte for the index in the macro
2841 	 * table, and 1 byte for the number of times to repeat the macro.
2842 	 * The macro table entry has 4 bytes for the register address and
2843 	 * 4 bytes for the value to write to that register
2844 	 */
2845 
2846 	uint8_t macro_index_tbl_idx = bios->data[offset + 1];
2847 	uint16_t tmp = bios->macro_index_tbl_ptr + (macro_index_tbl_idx * MACRO_INDEX_SIZE);
2848 	uint8_t macro_tbl_idx = bios->data[tmp];
2849 	uint8_t count = bios->data[tmp + 1];
2850 	uint32_t reg, data;
2851 	int i;
2852 
2853 	if (!iexec->execute)
2854 		return 2;
2855 
2856 	BIOSLOG(bios, "0x%04X: Macro: 0x%02X, MacroTableIndex: 0x%02X, "
2857 		      "Count: 0x%02X\n",
2858 		offset, macro_index_tbl_idx, macro_tbl_idx, count);
2859 
2860 	for (i = 0; i < count; i++) {
2861 		uint16_t macroentryptr = bios->macro_tbl_ptr + (macro_tbl_idx + i) * MACRO_SIZE;
2862 
2863 		reg = ROM32(bios->data[macroentryptr]);
2864 		data = ROM32(bios->data[macroentryptr + 4]);
2865 
2866 		bios_wr32(bios, reg, data);
2867 	}
2868 
2869 	return 2;
2870 }
2871 
2872 static int
init_done(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2873 init_done(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2874 {
2875 	/*
2876 	 * INIT_DONE   opcode: 0x71 ('q')
2877 	 *
2878 	 * offset      (8  bit): opcode
2879 	 *
2880 	 * End the current script
2881 	 */
2882 
2883 	/* mild retval abuse to stop parsing this table */
2884 	return 0;
2885 }
2886 
2887 static int
init_resume(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2888 init_resume(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2889 {
2890 	/*
2891 	 * INIT_RESUME   opcode: 0x72 ('r')
2892 	 *
2893 	 * offset      (8  bit): opcode
2894 	 *
2895 	 * End the current execute / no-execute condition
2896 	 */
2897 
2898 	if (iexec->execute)
2899 		return 1;
2900 
2901 	iexec->execute = true;
2902 	BIOSLOG(bios, "0x%04X: ---- Executing following commands ----\n", offset);
2903 
2904 	return 1;
2905 }
2906 
2907 static int
init_time(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2908 init_time(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2909 {
2910 	/*
2911 	 * INIT_TIME   opcode: 0x74 ('t')
2912 	 *
2913 	 * offset      (8  bit): opcode
2914 	 * offset + 1  (16 bit): time
2915 	 *
2916 	 * Sleep for "time" microseconds.
2917 	 */
2918 
2919 	unsigned time = ROM16(bios->data[offset + 1]);
2920 
2921 	if (!iexec->execute)
2922 		return 3;
2923 
2924 	BIOSLOG(bios, "0x%04X: Sleeping for 0x%04X microseconds\n",
2925 		offset, time);
2926 
2927 	if (time < 1000)
2928 		udelay(time);
2929 	else
2930 		mdelay((time + 900) / 1000);
2931 
2932 	return 3;
2933 }
2934 
2935 static int
init_condition(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2936 init_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2937 {
2938 	/*
2939 	 * INIT_CONDITION   opcode: 0x75 ('u')
2940 	 *
2941 	 * offset      (8 bit): opcode
2942 	 * offset + 1  (8 bit): condition number
2943 	 *
2944 	 * Check condition "condition number" in the condition table.
2945 	 * If condition not met skip subsequent opcodes until condition is
2946 	 * inverted (INIT_NOT), or we hit INIT_RESUME
2947 	 */
2948 
2949 	uint8_t cond = bios->data[offset + 1];
2950 
2951 	if (!iexec->execute)
2952 		return 2;
2953 
2954 	BIOSLOG(bios, "0x%04X: Condition: 0x%02X\n", offset, cond);
2955 
2956 	if (bios_condition_met(bios, offset, cond))
2957 		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
2958 	else {
2959 		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
2960 		iexec->execute = false;
2961 	}
2962 
2963 	return 2;
2964 }
2965 
2966 static int
init_io_condition(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2967 init_io_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2968 {
2969 	/*
2970 	 * INIT_IO_CONDITION  opcode: 0x76
2971 	 *
2972 	 * offset      (8 bit): opcode
2973 	 * offset + 1  (8 bit): condition number
2974 	 *
2975 	 * Check condition "condition number" in the io condition table.
2976 	 * If condition not met skip subsequent opcodes until condition is
2977 	 * inverted (INIT_NOT), or we hit INIT_RESUME
2978 	 */
2979 
2980 	uint8_t cond = bios->data[offset + 1];
2981 
2982 	if (!iexec->execute)
2983 		return 2;
2984 
2985 	BIOSLOG(bios, "0x%04X: IO condition: 0x%02X\n", offset, cond);
2986 
2987 	if (io_condition_met(bios, offset, cond))
2988 		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
2989 	else {
2990 		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
2991 		iexec->execute = false;
2992 	}
2993 
2994 	return 2;
2995 }
2996 
2997 static int
init_index_io(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2998 init_index_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2999 {
3000 	/*
3001 	 * INIT_INDEX_IO   opcode: 0x78 ('x')
3002 	 *
3003 	 * offset      (8  bit): opcode
3004 	 * offset + 1  (16 bit): CRTC port
3005 	 * offset + 3  (8  bit): CRTC index
3006 	 * offset + 4  (8  bit): mask
3007 	 * offset + 5  (8  bit): data
3008 	 *
3009 	 * Read value at index "CRTC index" on "CRTC port", AND with "mask",
3010 	 * OR with "data", write-back
3011 	 */
3012 
3013 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
3014 	uint8_t crtcindex = bios->data[offset + 3];
3015 	uint8_t mask = bios->data[offset + 4];
3016 	uint8_t data = bios->data[offset + 5];
3017 	uint8_t value;
3018 
3019 	if (!iexec->execute)
3020 		return 6;
3021 
3022 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
3023 		      "Data: 0x%02X\n",
3024 		offset, crtcport, crtcindex, mask, data);
3025 
3026 	value = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) | data;
3027 	bios_idxprt_wr(bios, crtcport, crtcindex, value);
3028 
3029 	return 6;
3030 }
3031 
3032 static int
init_pll(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3033 init_pll(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3034 {
3035 	/*
3036 	 * INIT_PLL   opcode: 0x79 ('y')
3037 	 *
3038 	 * offset      (8  bit): opcode
3039 	 * offset + 1  (32 bit): register
3040 	 * offset + 5  (16 bit): freq
3041 	 *
3042 	 * Set PLL register "register" to coefficients for frequency (10kHz)
3043 	 * "freq"
3044 	 */
3045 
3046 	uint32_t reg = ROM32(bios->data[offset + 1]);
3047 	uint16_t freq = ROM16(bios->data[offset + 5]);
3048 
3049 	if (!iexec->execute)
3050 		return 7;
3051 
3052 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Freq: %d0kHz\n", offset, reg, freq);
3053 
3054 	setPLL(bios, reg, freq * 10);
3055 
3056 	return 7;
3057 }
3058 
3059 static int
init_zm_reg(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3060 init_zm_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3061 {
3062 	/*
3063 	 * INIT_ZM_REG   opcode: 0x7A ('z')
3064 	 *
3065 	 * offset      (8  bit): opcode
3066 	 * offset + 1  (32 bit): register
3067 	 * offset + 5  (32 bit): value
3068 	 *
3069 	 * Assign "value" to "register"
3070 	 */
3071 
3072 	uint32_t reg = ROM32(bios->data[offset + 1]);
3073 	uint32_t value = ROM32(bios->data[offset + 5]);
3074 
3075 	if (!iexec->execute)
3076 		return 9;
3077 
3078 	if (reg == 0x000200)
3079 		value |= 1;
3080 
3081 	bios_wr32(bios, reg, value);
3082 
3083 	return 9;
3084 }
3085 
3086 static int
init_ram_restrict_pll(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3087 init_ram_restrict_pll(struct nvbios *bios, uint16_t offset,
3088 		      struct init_exec *iexec)
3089 {
3090 	/*
3091 	 * INIT_RAM_RESTRICT_PLL   opcode: 0x87 ('')
3092 	 *
3093 	 * offset      (8 bit): opcode
3094 	 * offset + 1  (8 bit): PLL type
3095 	 * offset + 2 (32 bit): frequency 0
3096 	 *
3097 	 * Uses the RAMCFG strap of PEXTDEV_BOOT as an index into the table at
3098 	 * ram_restrict_table_ptr.  The value read from there is used to select
3099 	 * a frequency from the table starting at 'frequency 0' to be
3100 	 * programmed into the PLL corresponding to 'type'.
3101 	 *
3102 	 * The PLL limits table on cards using this opcode has a mapping of
3103 	 * 'type' to the relevant registers.
3104 	 */
3105 
3106 	struct drm_device *dev = bios->dev;
3107 	uint32_t strap = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) & 0x0000003c) >> 2;
3108 	uint8_t index = bios->data[bios->ram_restrict_tbl_ptr + strap];
3109 	uint8_t type = bios->data[offset + 1];
3110 	uint32_t freq = ROM32(bios->data[offset + 2 + (index * 4)]);
3111 	uint8_t *pll_limits = &bios->data[bios->pll_limit_tbl_ptr], *entry;
3112 	int len = 2 + bios->ram_restrict_group_count * 4;
3113 	int i;
3114 
3115 	if (!iexec->execute)
3116 		return len;
3117 
3118 	if (!bios->pll_limit_tbl_ptr || (pll_limits[0] & 0xf0) != 0x30) {
3119 		NV_ERROR(dev, "PLL limits table not version 3.x\n");
3120 		return len; /* deliberate, allow default clocks to remain */
3121 	}
3122 
3123 	entry = pll_limits + pll_limits[1];
3124 	for (i = 0; i < pll_limits[3]; i++, entry += pll_limits[2]) {
3125 		if (entry[0] == type) {
3126 			uint32_t reg = ROM32(entry[3]);
3127 
3128 			BIOSLOG(bios, "0x%04X: "
3129 				      "Type %02x Reg 0x%08x Freq %dKHz\n",
3130 				offset, type, reg, freq);
3131 
3132 			setPLL(bios, reg, freq);
3133 			return len;
3134 		}
3135 	}
3136 
3137 	NV_ERROR(dev, "PLL type 0x%02x not found in PLL limits table", type);
3138 	return len;
3139 }
3140 
3141 static int
init_8c(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3142 init_8c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3143 {
3144 	/*
3145 	 * INIT_8C   opcode: 0x8C ('')
3146 	 *
3147 	 * NOP so far....
3148 	 *
3149 	 */
3150 
3151 	return 1;
3152 }
3153 
3154 static int
init_8d(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3155 init_8d(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3156 {
3157 	/*
3158 	 * INIT_8D   opcode: 0x8D ('')
3159 	 *
3160 	 * NOP so far....
3161 	 *
3162 	 */
3163 
3164 	return 1;
3165 }
3166 
3167 static int
init_gpio(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3168 init_gpio(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3169 {
3170 	/*
3171 	 * INIT_GPIO   opcode: 0x8E ('')
3172 	 *
3173 	 * offset      (8 bit): opcode
3174 	 *
3175 	 * Loop over all entries in the DCB GPIO table, and initialise
3176 	 * each GPIO according to various values listed in each entry
3177 	 */
3178 
3179 	if (iexec->execute && bios->execute)
3180 		nouveau_gpio_reset(bios->dev);
3181 
3182 	return 1;
3183 }
3184 
3185 static int
init_ram_restrict_zm_reg_group(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3186 init_ram_restrict_zm_reg_group(struct nvbios *bios, uint16_t offset,
3187 			       struct init_exec *iexec)
3188 {
3189 	/*
3190 	 * INIT_RAM_RESTRICT_ZM_REG_GROUP   opcode: 0x8F ('')
3191 	 *
3192 	 * offset      (8  bit): opcode
3193 	 * offset + 1  (32 bit): reg
3194 	 * offset + 5  (8  bit): regincrement
3195 	 * offset + 6  (8  bit): count
3196 	 * offset + 7  (32 bit): value 1,1
3197 	 * ...
3198 	 *
3199 	 * Use the RAMCFG strap of PEXTDEV_BOOT as an index into the table at
3200 	 * ram_restrict_table_ptr. The value read from here is 'n', and
3201 	 * "value 1,n" gets written to "reg". This repeats "count" times and on
3202 	 * each iteration 'm', "reg" increases by "regincrement" and
3203 	 * "value m,n" is used. The extent of n is limited by a number read
3204 	 * from the 'M' BIT table, herein called "blocklen"
3205 	 */
3206 
3207 	uint32_t reg = ROM32(bios->data[offset + 1]);
3208 	uint8_t regincrement = bios->data[offset + 5];
3209 	uint8_t count = bios->data[offset + 6];
3210 	uint32_t strap_ramcfg, data;
3211 	/* previously set by 'M' BIT table */
3212 	uint16_t blocklen = bios->ram_restrict_group_count * 4;
3213 	int len = 7 + count * blocklen;
3214 	uint8_t index;
3215 	int i;
3216 
3217 	/* critical! to know the length of the opcode */;
3218 	if (!blocklen) {
3219 		NV_ERROR(bios->dev,
3220 			 "0x%04X: Zero block length - has the M table "
3221 			 "been parsed?\n", offset);
3222 		return -EINVAL;
3223 	}
3224 
3225 	if (!iexec->execute)
3226 		return len;
3227 
3228 	strap_ramcfg = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 2) & 0xf;
3229 	index = bios->data[bios->ram_restrict_tbl_ptr + strap_ramcfg];
3230 
3231 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, RegIncrement: 0x%02X, "
3232 		      "Count: 0x%02X, StrapRamCfg: 0x%02X, Index: 0x%02X\n",
3233 		offset, reg, regincrement, count, strap_ramcfg, index);
3234 
3235 	for (i = 0; i < count; i++) {
3236 		data = ROM32(bios->data[offset + 7 + index * 4 + blocklen * i]);
3237 
3238 		bios_wr32(bios, reg, data);
3239 
3240 		reg += regincrement;
3241 	}
3242 
3243 	return len;
3244 }
3245 
3246 static int
init_copy_zm_reg(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3247 init_copy_zm_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3248 {
3249 	/*
3250 	 * INIT_COPY_ZM_REG   opcode: 0x90 ('')
3251 	 *
3252 	 * offset      (8  bit): opcode
3253 	 * offset + 1  (32 bit): src reg
3254 	 * offset + 5  (32 bit): dst reg
3255 	 *
3256 	 * Put contents of "src reg" into "dst reg"
3257 	 */
3258 
3259 	uint32_t srcreg = ROM32(bios->data[offset + 1]);
3260 	uint32_t dstreg = ROM32(bios->data[offset + 5]);
3261 
3262 	if (!iexec->execute)
3263 		return 9;
3264 
3265 	bios_wr32(bios, dstreg, bios_rd32(bios, srcreg));
3266 
3267 	return 9;
3268 }
3269 
3270 static int
init_zm_reg_group_addr_latched(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3271 init_zm_reg_group_addr_latched(struct nvbios *bios, uint16_t offset,
3272 			       struct init_exec *iexec)
3273 {
3274 	/*
3275 	 * INIT_ZM_REG_GROUP_ADDRESS_LATCHED   opcode: 0x91 ('')
3276 	 *
3277 	 * offset      (8  bit): opcode
3278 	 * offset + 1  (32 bit): dst reg
3279 	 * offset + 5  (8  bit): count
3280 	 * offset + 6  (32 bit): data 1
3281 	 * ...
3282 	 *
3283 	 * For each of "count" values write "data n" to "dst reg"
3284 	 */
3285 
3286 	uint32_t reg = ROM32(bios->data[offset + 1]);
3287 	uint8_t count = bios->data[offset + 5];
3288 	int len = 6 + count * 4;
3289 	int i;
3290 
3291 	if (!iexec->execute)
3292 		return len;
3293 
3294 	for (i = 0; i < count; i++) {
3295 		uint32_t data = ROM32(bios->data[offset + 6 + 4 * i]);
3296 		bios_wr32(bios, reg, data);
3297 	}
3298 
3299 	return len;
3300 }
3301 
3302 static int
init_reserved(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3303 init_reserved(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3304 {
3305 	/*
3306 	 * INIT_RESERVED   opcode: 0x92 ('')
3307 	 *
3308 	 * offset      (8 bit): opcode
3309 	 *
3310 	 * Seemingly does nothing
3311 	 */
3312 
3313 	return 1;
3314 }
3315 
3316 static int
init_96(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3317 init_96(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3318 {
3319 	/*
3320 	 * INIT_96   opcode: 0x96 ('')
3321 	 *
3322 	 * offset      (8  bit): opcode
3323 	 * offset + 1  (32 bit): sreg
3324 	 * offset + 5  (8  bit): sshift
3325 	 * offset + 6  (8  bit): smask
3326 	 * offset + 7  (8  bit): index
3327 	 * offset + 8  (32 bit): reg
3328 	 * offset + 12 (32 bit): mask
3329 	 * offset + 16 (8  bit): shift
3330 	 *
3331 	 */
3332 
3333 	uint16_t xlatptr = bios->init96_tbl_ptr + (bios->data[offset + 7] * 2);
3334 	uint32_t reg = ROM32(bios->data[offset + 8]);
3335 	uint32_t mask = ROM32(bios->data[offset + 12]);
3336 	uint32_t val;
3337 
3338 	val = bios_rd32(bios, ROM32(bios->data[offset + 1]));
3339 	if (bios->data[offset + 5] < 0x80)
3340 		val >>= bios->data[offset + 5];
3341 	else
3342 		val <<= (0x100 - bios->data[offset + 5]);
3343 	val &= bios->data[offset + 6];
3344 
3345 	val   = bios->data[ROM16(bios->data[xlatptr]) + val];
3346 	val <<= bios->data[offset + 16];
3347 
3348 	if (!iexec->execute)
3349 		return 17;
3350 
3351 	bios_wr32(bios, reg, (bios_rd32(bios, reg) & mask) | val);
3352 	return 17;
3353 }
3354 
3355 static int
init_97(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3356 init_97(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3357 {
3358 	/*
3359 	 * INIT_97   opcode: 0x97 ('')
3360 	 *
3361 	 * offset      (8  bit): opcode
3362 	 * offset + 1  (32 bit): register
3363 	 * offset + 5  (32 bit): mask
3364 	 * offset + 9  (32 bit): value
3365 	 *
3366 	 * Adds "value" to "register" preserving the fields specified
3367 	 * by "mask"
3368 	 */
3369 
3370 	uint32_t reg = ROM32(bios->data[offset + 1]);
3371 	uint32_t mask = ROM32(bios->data[offset + 5]);
3372 	uint32_t add = ROM32(bios->data[offset + 9]);
3373 	uint32_t val;
3374 
3375 	val = bios_rd32(bios, reg);
3376 	val = (val & mask) | ((val + add) & ~mask);
3377 
3378 	if (!iexec->execute)
3379 		return 13;
3380 
3381 	bios_wr32(bios, reg, val);
3382 	return 13;
3383 }
3384 
3385 static int
init_auxch(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3386 init_auxch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3387 {
3388 	/*
3389 	 * INIT_AUXCH   opcode: 0x98 ('')
3390 	 *
3391 	 * offset      (8  bit): opcode
3392 	 * offset + 1  (32 bit): address
3393 	 * offset + 5  (8  bit): count
3394 	 * offset + 6  (8  bit): mask 0
3395 	 * offset + 7  (8  bit): data 0
3396 	 *  ...
3397 	 *
3398 	 */
3399 
3400 	struct drm_device *dev = bios->dev;
3401 	struct nouveau_i2c_chan *auxch;
3402 	uint32_t addr = ROM32(bios->data[offset + 1]);
3403 	uint8_t count = bios->data[offset + 5];
3404 	int len = 6 + count * 2;
3405 	int ret, i;
3406 
3407 	if (!bios->display.output) {
3408 		NV_ERROR(dev, "INIT_AUXCH: no active output\n");
3409 		return len;
3410 	}
3411 
3412 	auxch = init_i2c_device_find(dev, bios->display.output->i2c_index);
3413 	if (!auxch) {
3414 		NV_ERROR(dev, "INIT_AUXCH: couldn't get auxch %d\n",
3415 			 bios->display.output->i2c_index);
3416 		return len;
3417 	}
3418 
3419 	if (!iexec->execute)
3420 		return len;
3421 
3422 	offset += 6;
3423 	for (i = 0; i < count; i++, offset += 2) {
3424 		uint8_t data;
3425 
3426 		ret = nouveau_dp_auxch(auxch, 9, addr, &data, 1);
3427 		if (ret) {
3428 			NV_ERROR(dev, "INIT_AUXCH: rd auxch fail %d\n", ret);
3429 			return len;
3430 		}
3431 
3432 		data &= bios->data[offset + 0];
3433 		data |= bios->data[offset + 1];
3434 
3435 		ret = nouveau_dp_auxch(auxch, 8, addr, &data, 1);
3436 		if (ret) {
3437 			NV_ERROR(dev, "INIT_AUXCH: wr auxch fail %d\n", ret);
3438 			return len;
3439 		}
3440 	}
3441 
3442 	return len;
3443 }
3444 
3445 static int
init_zm_auxch(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3446 init_zm_auxch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3447 {
3448 	/*
3449 	 * INIT_ZM_AUXCH   opcode: 0x99 ('')
3450 	 *
3451 	 * offset      (8  bit): opcode
3452 	 * offset + 1  (32 bit): address
3453 	 * offset + 5  (8  bit): count
3454 	 * offset + 6  (8  bit): data 0
3455 	 *  ...
3456 	 *
3457 	 */
3458 
3459 	struct drm_device *dev = bios->dev;
3460 	struct nouveau_i2c_chan *auxch;
3461 	uint32_t addr = ROM32(bios->data[offset + 1]);
3462 	uint8_t count = bios->data[offset + 5];
3463 	int len = 6 + count;
3464 	int ret, i;
3465 
3466 	if (!bios->display.output) {
3467 		NV_ERROR(dev, "INIT_ZM_AUXCH: no active output\n");
3468 		return len;
3469 	}
3470 
3471 	auxch = init_i2c_device_find(dev, bios->display.output->i2c_index);
3472 	if (!auxch) {
3473 		NV_ERROR(dev, "INIT_ZM_AUXCH: couldn't get auxch %d\n",
3474 			 bios->display.output->i2c_index);
3475 		return len;
3476 	}
3477 
3478 	if (!iexec->execute)
3479 		return len;
3480 
3481 	offset += 6;
3482 	for (i = 0; i < count; i++, offset++) {
3483 		ret = nouveau_dp_auxch(auxch, 8, addr, &bios->data[offset], 1);
3484 		if (ret) {
3485 			NV_ERROR(dev, "INIT_ZM_AUXCH: wr auxch fail %d\n", ret);
3486 			return len;
3487 		}
3488 	}
3489 
3490 	return len;
3491 }
3492 
3493 static int
init_i2c_long_if(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3494 init_i2c_long_if(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3495 {
3496 	/*
3497 	 * INIT_I2C_LONG_IF   opcode: 0x9A ('')
3498 	 *
3499 	 * offset      (8 bit): opcode
3500 	 * offset + 1  (8 bit): DCB I2C table entry index
3501 	 * offset + 2  (8 bit): I2C slave address
3502 	 * offset + 3  (16 bit): I2C register
3503 	 * offset + 5  (8 bit): mask
3504 	 * offset + 6  (8 bit): data
3505 	 *
3506 	 * Read the register given by "I2C register" on the device addressed
3507 	 * by "I2C slave address" on the I2C bus given by "DCB I2C table
3508 	 * entry index". Compare the result AND "mask" to "data".
3509 	 * If they're not equal, skip subsequent opcodes until condition is
3510 	 * inverted (INIT_NOT), or we hit INIT_RESUME
3511 	 */
3512 
3513 	uint8_t i2c_index = bios->data[offset + 1];
3514 	uint8_t i2c_address = bios->data[offset + 2] >> 1;
3515 	uint8_t reglo = bios->data[offset + 3];
3516 	uint8_t reghi = bios->data[offset + 4];
3517 	uint8_t mask = bios->data[offset + 5];
3518 	uint8_t data = bios->data[offset + 6];
3519 	struct nouveau_i2c_chan *chan;
3520 	uint8_t buf0[2] = { reghi, reglo };
3521 	uint8_t buf1[1];
3522 	struct i2c_msg msg[2] = {
3523 		{ i2c_address, 0, 1, buf0 },
3524 		{ i2c_address, I2C_M_RD, 1, buf1 },
3525 	};
3526 	int ret;
3527 
3528 	/* no execute check by design */
3529 
3530 	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X\n",
3531 		offset, i2c_index, i2c_address);
3532 
3533 	chan = init_i2c_device_find(bios->dev, i2c_index);
3534 	if (!chan)
3535 		return -ENODEV;
3536 
3537 
3538 	ret = i2c_transfer(&chan->adapter, msg, 2);
3539 	if (ret < 0) {
3540 		BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X:0x%02X, Value: [no device], "
3541 			      "Mask: 0x%02X, Data: 0x%02X\n",
3542 			offset, reghi, reglo, mask, data);
3543 		iexec->execute = 0;
3544 		return 7;
3545 	}
3546 
3547 	BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X:0x%02X, Value: 0x%02X, "
3548 		      "Mask: 0x%02X, Data: 0x%02X\n",
3549 		offset, reghi, reglo, buf1[0], mask, data);
3550 
3551 	iexec->execute = ((buf1[0] & mask) == data);
3552 
3553 	return 7;
3554 }
3555 
3556 static struct init_tbl_entry itbl_entry[] = {
3557 	/* command name                       , id  , length  , offset  , mult    , command handler                 */
3558 	/* INIT_PROG (0x31, 15, 10, 4) removed due to no example of use */
3559 	{ "INIT_IO_RESTRICT_PROG"             , 0x32, init_io_restrict_prog           },
3560 	{ "INIT_REPEAT"                       , 0x33, init_repeat                     },
3561 	{ "INIT_IO_RESTRICT_PLL"              , 0x34, init_io_restrict_pll            },
3562 	{ "INIT_END_REPEAT"                   , 0x36, init_end_repeat                 },
3563 	{ "INIT_COPY"                         , 0x37, init_copy                       },
3564 	{ "INIT_NOT"                          , 0x38, init_not                        },
3565 	{ "INIT_IO_FLAG_CONDITION"            , 0x39, init_io_flag_condition          },
3566 	{ "INIT_DP_CONDITION"                 , 0x3A, init_dp_condition               },
3567 	{ "INIT_OP_3B"                        , 0x3B, init_op_3b                      },
3568 	{ "INIT_OP_3C"                        , 0x3C, init_op_3c                      },
3569 	{ "INIT_INDEX_ADDRESS_LATCHED"        , 0x49, init_idx_addr_latched           },
3570 	{ "INIT_IO_RESTRICT_PLL2"             , 0x4A, init_io_restrict_pll2           },
3571 	{ "INIT_PLL2"                         , 0x4B, init_pll2                       },
3572 	{ "INIT_I2C_BYTE"                     , 0x4C, init_i2c_byte                   },
3573 	{ "INIT_ZM_I2C_BYTE"                  , 0x4D, init_zm_i2c_byte                },
3574 	{ "INIT_ZM_I2C"                       , 0x4E, init_zm_i2c                     },
3575 	{ "INIT_TMDS"                         , 0x4F, init_tmds                       },
3576 	{ "INIT_ZM_TMDS_GROUP"                , 0x50, init_zm_tmds_group              },
3577 	{ "INIT_CR_INDEX_ADDRESS_LATCHED"     , 0x51, init_cr_idx_adr_latch           },
3578 	{ "INIT_CR"                           , 0x52, init_cr                         },
3579 	{ "INIT_ZM_CR"                        , 0x53, init_zm_cr                      },
3580 	{ "INIT_ZM_CR_GROUP"                  , 0x54, init_zm_cr_group                },
3581 	{ "INIT_CONDITION_TIME"               , 0x56, init_condition_time             },
3582 	{ "INIT_LTIME"                        , 0x57, init_ltime                      },
3583 	{ "INIT_ZM_REG_SEQUENCE"              , 0x58, init_zm_reg_sequence            },
3584 	/* INIT_INDIRECT_REG (0x5A, 7, 0, 0) removed due to no example of use */
3585 	{ "INIT_SUB_DIRECT"                   , 0x5B, init_sub_direct                 },
3586 	{ "INIT_JUMP"                         , 0x5C, init_jump                       },
3587 	{ "INIT_I2C_IF"                       , 0x5E, init_i2c_if                     },
3588 	{ "INIT_COPY_NV_REG"                  , 0x5F, init_copy_nv_reg                },
3589 	{ "INIT_ZM_INDEX_IO"                  , 0x62, init_zm_index_io                },
3590 	{ "INIT_COMPUTE_MEM"                  , 0x63, init_compute_mem                },
3591 	{ "INIT_RESET"                        , 0x65, init_reset                      },
3592 	{ "INIT_CONFIGURE_MEM"                , 0x66, init_configure_mem              },
3593 	{ "INIT_CONFIGURE_CLK"                , 0x67, init_configure_clk              },
3594 	{ "INIT_CONFIGURE_PREINIT"            , 0x68, init_configure_preinit          },
3595 	{ "INIT_IO"                           , 0x69, init_io                         },
3596 	{ "INIT_SUB"                          , 0x6B, init_sub                        },
3597 	{ "INIT_RAM_CONDITION"                , 0x6D, init_ram_condition              },
3598 	{ "INIT_NV_REG"                       , 0x6E, init_nv_reg                     },
3599 	{ "INIT_MACRO"                        , 0x6F, init_macro                      },
3600 	{ "INIT_DONE"                         , 0x71, init_done                       },
3601 	{ "INIT_RESUME"                       , 0x72, init_resume                     },
3602 	/* INIT_RAM_CONDITION2 (0x73, 9, 0, 0) removed due to no example of use */
3603 	{ "INIT_TIME"                         , 0x74, init_time                       },
3604 	{ "INIT_CONDITION"                    , 0x75, init_condition                  },
3605 	{ "INIT_IO_CONDITION"                 , 0x76, init_io_condition               },
3606 	{ "INIT_INDEX_IO"                     , 0x78, init_index_io                   },
3607 	{ "INIT_PLL"                          , 0x79, init_pll                        },
3608 	{ "INIT_ZM_REG"                       , 0x7A, init_zm_reg                     },
3609 	{ "INIT_RAM_RESTRICT_PLL"             , 0x87, init_ram_restrict_pll           },
3610 	{ "INIT_8C"                           , 0x8C, init_8c                         },
3611 	{ "INIT_8D"                           , 0x8D, init_8d                         },
3612 	{ "INIT_GPIO"                         , 0x8E, init_gpio                       },
3613 	{ "INIT_RAM_RESTRICT_ZM_REG_GROUP"    , 0x8F, init_ram_restrict_zm_reg_group  },
3614 	{ "INIT_COPY_ZM_REG"                  , 0x90, init_copy_zm_reg                },
3615 	{ "INIT_ZM_REG_GROUP_ADDRESS_LATCHED" , 0x91, init_zm_reg_group_addr_latched  },
3616 	{ "INIT_RESERVED"                     , 0x92, init_reserved                   },
3617 	{ "INIT_96"                           , 0x96, init_96                         },
3618 	{ "INIT_97"                           , 0x97, init_97                         },
3619 	{ "INIT_AUXCH"                        , 0x98, init_auxch                      },
3620 	{ "INIT_ZM_AUXCH"                     , 0x99, init_zm_auxch                   },
3621 	{ "INIT_I2C_LONG_IF"                  , 0x9A, init_i2c_long_if                },
3622 	{ NULL                                , 0   , NULL                            }
3623 };
3624 
3625 #define MAX_TABLE_OPS 1000
3626 
3627 static int
parse_init_table(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3628 parse_init_table(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3629 {
3630 	/*
3631 	 * Parses all commands in an init table.
3632 	 *
3633 	 * We start out executing all commands found in the init table. Some
3634 	 * opcodes may change the status of iexec->execute to SKIP, which will
3635 	 * cause the following opcodes to perform no operation until the value
3636 	 * is changed back to EXECUTE.
3637 	 */
3638 
3639 	int count = 0, i, ret;
3640 	uint8_t id;
3641 
3642 	/* catch NULL script pointers */
3643 	if (offset == 0)
3644 		return 0;
3645 
3646 	/*
3647 	 * Loop until INIT_DONE causes us to break out of the loop
3648 	 * (or until offset > bios length just in case... )
3649 	 * (and no more than MAX_TABLE_OPS iterations, just in case... )
3650 	 */
3651 	while ((offset < bios->length) && (count++ < MAX_TABLE_OPS)) {
3652 		id = bios->data[offset];
3653 
3654 		/* Find matching id in itbl_entry */
3655 		for (i = 0; itbl_entry[i].name && (itbl_entry[i].id != id); i++)
3656 			;
3657 
3658 		if (!itbl_entry[i].name) {
3659 			NV_ERROR(bios->dev,
3660 				 "0x%04X: Init table command not found: "
3661 				 "0x%02X\n", offset, id);
3662 			return -ENOENT;
3663 		}
3664 
3665 		BIOSLOG(bios, "0x%04X: [ (0x%02X) - %s ]\n", offset,
3666 			itbl_entry[i].id, itbl_entry[i].name);
3667 
3668 		/* execute eventual command handler */
3669 		ret = (*itbl_entry[i].handler)(bios, offset, iexec);
3670 		if (ret < 0) {
3671 			NV_ERROR(bios->dev, "0x%04X: Failed parsing init "
3672 				 "table opcode: %s %d\n", offset,
3673 				 itbl_entry[i].name, ret);
3674 		}
3675 
3676 		if (ret <= 0)
3677 			break;
3678 
3679 		/*
3680 		 * Add the offset of the current command including all data
3681 		 * of that command. The offset will then be pointing on the
3682 		 * next op code.
3683 		 */
3684 		offset += ret;
3685 	}
3686 
3687 	if (offset >= bios->length)
3688 		NV_WARN(bios->dev,
3689 			"Offset 0x%04X greater than known bios image length.  "
3690 			"Corrupt image?\n", offset);
3691 	if (count >= MAX_TABLE_OPS)
3692 		NV_WARN(bios->dev,
3693 			"More than %d opcodes to a table is unlikely, "
3694 			"is the bios image corrupt?\n", MAX_TABLE_OPS);
3695 
3696 	return 0;
3697 }
3698 
3699 static void
parse_init_tables(struct nvbios * bios)3700 parse_init_tables(struct nvbios *bios)
3701 {
3702 	/* Loops and calls parse_init_table() for each present table. */
3703 
3704 	int i = 0;
3705 	uint16_t table;
3706 	struct init_exec iexec = {true, false};
3707 
3708 	if (bios->old_style_init) {
3709 		if (bios->init_script_tbls_ptr)
3710 			parse_init_table(bios, bios->init_script_tbls_ptr, &iexec);
3711 		if (bios->extra_init_script_tbl_ptr)
3712 			parse_init_table(bios, bios->extra_init_script_tbl_ptr, &iexec);
3713 
3714 		return;
3715 	}
3716 
3717 	while ((table = ROM16(bios->data[bios->init_script_tbls_ptr + i]))) {
3718 		NV_INFO(bios->dev,
3719 			"Parsing VBIOS init table %d at offset 0x%04X\n",
3720 			i / 2, table);
3721 		BIOSLOG(bios, "0x%04X: ------ Executing following commands ------\n", table);
3722 
3723 		parse_init_table(bios, table, &iexec);
3724 		i += 2;
3725 	}
3726 }
3727 
clkcmptable(struct nvbios * bios,uint16_t clktable,int pxclk)3728 static uint16_t clkcmptable(struct nvbios *bios, uint16_t clktable, int pxclk)
3729 {
3730 	int compare_record_len, i = 0;
3731 	uint16_t compareclk, scriptptr = 0;
3732 
3733 	if (bios->major_version < 5) /* pre BIT */
3734 		compare_record_len = 3;
3735 	else
3736 		compare_record_len = 4;
3737 
3738 	do {
3739 		compareclk = ROM16(bios->data[clktable + compare_record_len * i]);
3740 		if (pxclk >= compareclk * 10) {
3741 			if (bios->major_version < 5) {
3742 				uint8_t tmdssub = bios->data[clktable + 2 + compare_record_len * i];
3743 				scriptptr = ROM16(bios->data[bios->init_script_tbls_ptr + tmdssub * 2]);
3744 			} else
3745 				scriptptr = ROM16(bios->data[clktable + 2 + compare_record_len * i]);
3746 			break;
3747 		}
3748 		i++;
3749 	} while (compareclk);
3750 
3751 	return scriptptr;
3752 }
3753 
3754 static void
run_digital_op_script(struct drm_device * dev,uint16_t scriptptr,struct dcb_entry * dcbent,int head,bool dl)3755 run_digital_op_script(struct drm_device *dev, uint16_t scriptptr,
3756 		      struct dcb_entry *dcbent, int head, bool dl)
3757 {
3758 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3759 	struct nvbios *bios = &dev_priv->vbios;
3760 	struct init_exec iexec = {true, false};
3761 
3762 	NV_TRACE(dev, "0x%04X: Parsing digital output script table\n",
3763 		 scriptptr);
3764 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_44,
3765 		       head ? NV_CIO_CRE_44_HEADB : NV_CIO_CRE_44_HEADA);
3766 	/* note: if dcb entries have been merged, index may be misleading */
3767 	NVWriteVgaCrtc5758(dev, head, 0, dcbent->index);
3768 	parse_init_table(bios, scriptptr, &iexec);
3769 
3770 	nv04_dfp_bind_head(dev, dcbent, head, dl);
3771 }
3772 
call_lvds_manufacturer_script(struct drm_device * dev,struct dcb_entry * dcbent,int head,enum LVDS_script script)3773 static int call_lvds_manufacturer_script(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script)
3774 {
3775 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3776 	struct nvbios *bios = &dev_priv->vbios;
3777 	uint8_t sub = bios->data[bios->fp.xlated_entry + script] + (bios->fp.link_c_increment && dcbent->or & OUTPUT_C ? 1 : 0);
3778 	uint16_t scriptofs = ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]);
3779 
3780 	if (!bios->fp.xlated_entry || !sub || !scriptofs)
3781 		return -EINVAL;
3782 
3783 	run_digital_op_script(dev, scriptofs, dcbent, head, bios->fp.dual_link);
3784 
3785 	if (script == LVDS_PANEL_OFF) {
3786 		/* off-on delay in ms */
3787 		mdelay(ROM16(bios->data[bios->fp.xlated_entry + 7]));
3788 	}
3789 #ifdef __powerpc__
3790 	/* Powerbook specific quirks */
3791 	if (script == LVDS_RESET &&
3792 	    (dev->pci_device == 0x0179 || dev->pci_device == 0x0189 ||
3793 	     dev->pci_device == 0x0329))
3794 		nv_write_tmds(dev, dcbent->or, 0, 0x02, 0x72);
3795 #endif
3796 
3797 	return 0;
3798 }
3799 
run_lvds_table(struct drm_device * dev,struct dcb_entry * dcbent,int head,enum LVDS_script script,int pxclk)3800 static int run_lvds_table(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script, int pxclk)
3801 {
3802 	/*
3803 	 * The BIT LVDS table's header has the information to setup the
3804 	 * necessary registers. Following the standard 4 byte header are:
3805 	 * A bitmask byte and a dual-link transition pxclk value for use in
3806 	 * selecting the init script when not using straps; 4 script pointers
3807 	 * for panel power, selected by output and on/off; and 8 table pointers
3808 	 * for panel init, the needed one determined by output, and bits in the
3809 	 * conf byte. These tables are similar to the TMDS tables, consisting
3810 	 * of a list of pxclks and script pointers.
3811 	 */
3812 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3813 	struct nvbios *bios = &dev_priv->vbios;
3814 	unsigned int outputset = (dcbent->or == 4) ? 1 : 0;
3815 	uint16_t scriptptr = 0, clktable;
3816 
3817 	/*
3818 	 * For now we assume version 3.0 table - g80 support will need some
3819 	 * changes
3820 	 */
3821 
3822 	switch (script) {
3823 	case LVDS_INIT:
3824 		return -ENOSYS;
3825 	case LVDS_BACKLIGHT_ON:
3826 	case LVDS_PANEL_ON:
3827 		scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 7 + outputset * 2]);
3828 		break;
3829 	case LVDS_BACKLIGHT_OFF:
3830 	case LVDS_PANEL_OFF:
3831 		scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 11 + outputset * 2]);
3832 		break;
3833 	case LVDS_RESET:
3834 		clktable = bios->fp.lvdsmanufacturerpointer + 15;
3835 		if (dcbent->or == 4)
3836 			clktable += 8;
3837 
3838 		if (dcbent->lvdsconf.use_straps_for_mode) {
3839 			if (bios->fp.dual_link)
3840 				clktable += 4;
3841 			if (bios->fp.if_is_24bit)
3842 				clktable += 2;
3843 		} else {
3844 			/* using EDID */
3845 			int cmpval_24bit = (dcbent->or == 4) ? 4 : 1;
3846 
3847 			if (bios->fp.dual_link) {
3848 				clktable += 4;
3849 				cmpval_24bit <<= 1;
3850 			}
3851 
3852 			if (bios->fp.strapless_is_24bit & cmpval_24bit)
3853 				clktable += 2;
3854 		}
3855 
3856 		clktable = ROM16(bios->data[clktable]);
3857 		if (!clktable) {
3858 			NV_ERROR(dev, "Pixel clock comparison table not found\n");
3859 			return -ENOENT;
3860 		}
3861 		scriptptr = clkcmptable(bios, clktable, pxclk);
3862 	}
3863 
3864 	if (!scriptptr) {
3865 		NV_ERROR(dev, "LVDS output init script not found\n");
3866 		return -ENOENT;
3867 	}
3868 	run_digital_op_script(dev, scriptptr, dcbent, head, bios->fp.dual_link);
3869 
3870 	return 0;
3871 }
3872 
call_lvds_script(struct drm_device * dev,struct dcb_entry * dcbent,int head,enum LVDS_script script,int pxclk)3873 int call_lvds_script(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script, int pxclk)
3874 {
3875 	/*
3876 	 * LVDS operations are multiplexed in an effort to present a single API
3877 	 * which works with two vastly differing underlying structures.
3878 	 * This acts as the demux
3879 	 */
3880 
3881 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3882 	struct nvbios *bios = &dev_priv->vbios;
3883 	uint8_t lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer];
3884 	uint32_t sel_clk_binding, sel_clk;
3885 	int ret;
3886 
3887 	if (bios->fp.last_script_invoc == (script << 1 | head) || !lvds_ver ||
3888 	    (lvds_ver >= 0x30 && script == LVDS_INIT))
3889 		return 0;
3890 
3891 	if (!bios->fp.lvds_init_run) {
3892 		bios->fp.lvds_init_run = true;
3893 		call_lvds_script(dev, dcbent, head, LVDS_INIT, pxclk);
3894 	}
3895 
3896 	if (script == LVDS_PANEL_ON && bios->fp.reset_after_pclk_change)
3897 		call_lvds_script(dev, dcbent, head, LVDS_RESET, pxclk);
3898 	if (script == LVDS_RESET && bios->fp.power_off_for_reset)
3899 		call_lvds_script(dev, dcbent, head, LVDS_PANEL_OFF, pxclk);
3900 
3901 	NV_TRACE(dev, "Calling LVDS script %d:\n", script);
3902 
3903 	/* don't let script change pll->head binding */
3904 	sel_clk_binding = bios_rd32(bios, NV_PRAMDAC_SEL_CLK) & 0x50000;
3905 
3906 	if (lvds_ver < 0x30)
3907 		ret = call_lvds_manufacturer_script(dev, dcbent, head, script);
3908 	else
3909 		ret = run_lvds_table(dev, dcbent, head, script, pxclk);
3910 
3911 	bios->fp.last_script_invoc = (script << 1 | head);
3912 
3913 	sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000;
3914 	NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding);
3915 	/* some scripts set a value in NV_PBUS_POWERCTRL_2 and break video overlay */
3916 	nvWriteMC(dev, NV_PBUS_POWERCTRL_2, 0);
3917 
3918 	return ret;
3919 }
3920 
3921 struct lvdstableheader {
3922 	uint8_t lvds_ver, headerlen, recordlen;
3923 };
3924 
parse_lvds_manufacturer_table_header(struct drm_device * dev,struct nvbios * bios,struct lvdstableheader * lth)3925 static int parse_lvds_manufacturer_table_header(struct drm_device *dev, struct nvbios *bios, struct lvdstableheader *lth)
3926 {
3927 	/*
3928 	 * BMP version (0xa) LVDS table has a simple header of version and
3929 	 * record length. The BIT LVDS table has the typical BIT table header:
3930 	 * version byte, header length byte, record length byte, and a byte for
3931 	 * the maximum number of records that can be held in the table.
3932 	 */
3933 
3934 	uint8_t lvds_ver, headerlen, recordlen;
3935 
3936 	memset(lth, 0, sizeof(struct lvdstableheader));
3937 
3938 	if (bios->fp.lvdsmanufacturerpointer == 0x0) {
3939 		NV_ERROR(dev, "Pointer to LVDS manufacturer table invalid\n");
3940 		return -EINVAL;
3941 	}
3942 
3943 	lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer];
3944 
3945 	switch (lvds_ver) {
3946 	case 0x0a:	/* pre NV40 */
3947 		headerlen = 2;
3948 		recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
3949 		break;
3950 	case 0x30:	/* NV4x */
3951 		headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
3952 		if (headerlen < 0x1f) {
3953 			NV_ERROR(dev, "LVDS table header not understood\n");
3954 			return -EINVAL;
3955 		}
3956 		recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2];
3957 		break;
3958 	case 0x40:	/* G80/G90 */
3959 		headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
3960 		if (headerlen < 0x7) {
3961 			NV_ERROR(dev, "LVDS table header not understood\n");
3962 			return -EINVAL;
3963 		}
3964 		recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2];
3965 		break;
3966 	default:
3967 		NV_ERROR(dev,
3968 			 "LVDS table revision %d.%d not currently supported\n",
3969 			 lvds_ver >> 4, lvds_ver & 0xf);
3970 		return -ENOSYS;
3971 	}
3972 
3973 	lth->lvds_ver = lvds_ver;
3974 	lth->headerlen = headerlen;
3975 	lth->recordlen = recordlen;
3976 
3977 	return 0;
3978 }
3979 
3980 static int
get_fp_strap(struct drm_device * dev,struct nvbios * bios)3981 get_fp_strap(struct drm_device *dev, struct nvbios *bios)
3982 {
3983 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3984 
3985 	/*
3986 	 * The fp strap is normally dictated by the "User Strap" in
3987 	 * PEXTDEV_BOOT_0[20:16], but on BMP cards when bit 2 of the
3988 	 * Internal_Flags struct at 0x48 is set, the user strap gets overriden
3989 	 * by the PCI subsystem ID during POST, but not before the previous user
3990 	 * strap has been committed to CR58 for CR57=0xf on head A, which may be
3991 	 * read and used instead
3992 	 */
3993 
3994 	if (bios->major_version < 5 && bios->data[0x48] & 0x4)
3995 		return NVReadVgaCrtc5758(dev, 0, 0xf) & 0xf;
3996 
3997 	if (dev_priv->card_type >= NV_50)
3998 		return (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 24) & 0xf;
3999 	else
4000 		return (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 16) & 0xf;
4001 }
4002 
parse_fp_mode_table(struct drm_device * dev,struct nvbios * bios)4003 static int parse_fp_mode_table(struct drm_device *dev, struct nvbios *bios)
4004 {
4005 	uint8_t *fptable;
4006 	uint8_t fptable_ver, headerlen = 0, recordlen, fpentries = 0xf, fpindex;
4007 	int ret, ofs, fpstrapping;
4008 	struct lvdstableheader lth;
4009 
4010 	if (bios->fp.fptablepointer == 0x0) {
4011 		/* Apple cards don't have the fp table; the laptops use DDC */
4012 		/* The table is also missing on some x86 IGPs */
4013 #ifndef __powerpc__
4014 		NV_ERROR(dev, "Pointer to flat panel table invalid\n");
4015 #endif
4016 		bios->digital_min_front_porch = 0x4b;
4017 		return 0;
4018 	}
4019 
4020 	fptable = &bios->data[bios->fp.fptablepointer];
4021 	fptable_ver = fptable[0];
4022 
4023 	switch (fptable_ver) {
4024 	/*
4025 	 * BMP version 0x5.0x11 BIOSen have version 1 like tables, but no
4026 	 * version field, and miss one of the spread spectrum/PWM bytes.
4027 	 * This could affect early GF2Go parts (not seen any appropriate ROMs
4028 	 * though). Here we assume that a version of 0x05 matches this case
4029 	 * (combining with a BMP version check would be better), as the
4030 	 * common case for the panel type field is 0x0005, and that is in
4031 	 * fact what we are reading the first byte of.
4032 	 */
4033 	case 0x05:	/* some NV10, 11, 15, 16 */
4034 		recordlen = 42;
4035 		ofs = -1;
4036 		break;
4037 	case 0x10:	/* some NV15/16, and NV11+ */
4038 		recordlen = 44;
4039 		ofs = 0;
4040 		break;
4041 	case 0x20:	/* NV40+ */
4042 		headerlen = fptable[1];
4043 		recordlen = fptable[2];
4044 		fpentries = fptable[3];
4045 		/*
4046 		 * fptable[4] is the minimum
4047 		 * RAMDAC_FP_HCRTC -> RAMDAC_FP_HSYNC_START gap
4048 		 */
4049 		bios->digital_min_front_porch = fptable[4];
4050 		ofs = -7;
4051 		break;
4052 	default:
4053 		NV_ERROR(dev,
4054 			 "FP table revision %d.%d not currently supported\n",
4055 			 fptable_ver >> 4, fptable_ver & 0xf);
4056 		return -ENOSYS;
4057 	}
4058 
4059 	if (!bios->is_mobile) /* !mobile only needs digital_min_front_porch */
4060 		return 0;
4061 
4062 	ret = parse_lvds_manufacturer_table_header(dev, bios, &lth);
4063 	if (ret)
4064 		return ret;
4065 
4066 	if (lth.lvds_ver == 0x30 || lth.lvds_ver == 0x40) {
4067 		bios->fp.fpxlatetableptr = bios->fp.lvdsmanufacturerpointer +
4068 							lth.headerlen + 1;
4069 		bios->fp.xlatwidth = lth.recordlen;
4070 	}
4071 	if (bios->fp.fpxlatetableptr == 0x0) {
4072 		NV_ERROR(dev, "Pointer to flat panel xlat table invalid\n");
4073 		return -EINVAL;
4074 	}
4075 
4076 	fpstrapping = get_fp_strap(dev, bios);
4077 
4078 	fpindex = bios->data[bios->fp.fpxlatetableptr +
4079 					fpstrapping * bios->fp.xlatwidth];
4080 
4081 	if (fpindex > fpentries) {
4082 		NV_ERROR(dev, "Bad flat panel table index\n");
4083 		return -ENOENT;
4084 	}
4085 
4086 	/* nv4x cards need both a strap value and fpindex of 0xf to use DDC */
4087 	if (lth.lvds_ver > 0x10)
4088 		bios->fp_no_ddc = fpstrapping != 0xf || fpindex != 0xf;
4089 
4090 	/*
4091 	 * If either the strap or xlated fpindex value are 0xf there is no
4092 	 * panel using a strap-derived bios mode present.  this condition
4093 	 * includes, but is different from, the DDC panel indicator above
4094 	 */
4095 	if (fpstrapping == 0xf || fpindex == 0xf)
4096 		return 0;
4097 
4098 	bios->fp.mode_ptr = bios->fp.fptablepointer + headerlen +
4099 			    recordlen * fpindex + ofs;
4100 
4101 	NV_TRACE(dev, "BIOS FP mode: %dx%d (%dkHz pixel clock)\n",
4102 		 ROM16(bios->data[bios->fp.mode_ptr + 11]) + 1,
4103 		 ROM16(bios->data[bios->fp.mode_ptr + 25]) + 1,
4104 		 ROM16(bios->data[bios->fp.mode_ptr + 7]) * 10);
4105 
4106 	return 0;
4107 }
4108 
nouveau_bios_fp_mode(struct drm_device * dev,struct drm_display_mode * mode)4109 bool nouveau_bios_fp_mode(struct drm_device *dev, struct drm_display_mode *mode)
4110 {
4111 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4112 	struct nvbios *bios = &dev_priv->vbios;
4113 	uint8_t *mode_entry = &bios->data[bios->fp.mode_ptr];
4114 
4115 	if (!mode)	/* just checking whether we can produce a mode */
4116 		return bios->fp.mode_ptr;
4117 
4118 	memset(mode, 0, sizeof(struct drm_display_mode));
4119 	/*
4120 	 * For version 1.0 (version in byte 0):
4121 	 * bytes 1-2 are "panel type", including bits on whether Colour/mono,
4122 	 * single/dual link, and type (TFT etc.)
4123 	 * bytes 3-6 are bits per colour in RGBX
4124 	 */
4125 	mode->clock = ROM16(mode_entry[7]) * 10;
4126 	/* bytes 9-10 is HActive */
4127 	mode->hdisplay = ROM16(mode_entry[11]) + 1;
4128 	/*
4129 	 * bytes 13-14 is HValid Start
4130 	 * bytes 15-16 is HValid End
4131 	 */
4132 	mode->hsync_start = ROM16(mode_entry[17]) + 1;
4133 	mode->hsync_end = ROM16(mode_entry[19]) + 1;
4134 	mode->htotal = ROM16(mode_entry[21]) + 1;
4135 	/* bytes 23-24, 27-30 similarly, but vertical */
4136 	mode->vdisplay = ROM16(mode_entry[25]) + 1;
4137 	mode->vsync_start = ROM16(mode_entry[31]) + 1;
4138 	mode->vsync_end = ROM16(mode_entry[33]) + 1;
4139 	mode->vtotal = ROM16(mode_entry[35]) + 1;
4140 	mode->flags |= (mode_entry[37] & 0x10) ?
4141 			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
4142 	mode->flags |= (mode_entry[37] & 0x1) ?
4143 			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
4144 	/*
4145 	 * bytes 38-39 relate to spread spectrum settings
4146 	 * bytes 40-43 are something to do with PWM
4147 	 */
4148 
4149 	mode->status = MODE_OK;
4150 	mode->type = DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED;
4151 	drm_mode_set_name(mode);
4152 	return bios->fp.mode_ptr;
4153 }
4154 
nouveau_bios_parse_lvds_table(struct drm_device * dev,int pxclk,bool * dl,bool * if_is_24bit)4155 int nouveau_bios_parse_lvds_table(struct drm_device *dev, int pxclk, bool *dl, bool *if_is_24bit)
4156 {
4157 	/*
4158 	 * The LVDS table header is (mostly) described in
4159 	 * parse_lvds_manufacturer_table_header(): the BIT header additionally
4160 	 * contains the dual-link transition pxclk (in 10s kHz), at byte 5 - if
4161 	 * straps are not being used for the panel, this specifies the frequency
4162 	 * at which modes should be set up in the dual link style.
4163 	 *
4164 	 * Following the header, the BMP (ver 0xa) table has several records,
4165 	 * indexed by a separate xlat table, indexed in turn by the fp strap in
4166 	 * EXTDEV_BOOT. Each record had a config byte, followed by 6 script
4167 	 * numbers for use by INIT_SUB which controlled panel init and power,
4168 	 * and finally a dword of ms to sleep between power off and on
4169 	 * operations.
4170 	 *
4171 	 * In the BIT versions, the table following the header serves as an
4172 	 * integrated config and xlat table: the records in the table are
4173 	 * indexed by the FP strap nibble in EXTDEV_BOOT, and each record has
4174 	 * two bytes - the first as a config byte, the second for indexing the
4175 	 * fp mode table pointed to by the BIT 'D' table
4176 	 *
4177 	 * DDC is not used until after card init, so selecting the correct table
4178 	 * entry and setting the dual link flag for EDID equipped panels,
4179 	 * requiring tests against the native-mode pixel clock, cannot be done
4180 	 * until later, when this function should be called with non-zero pxclk
4181 	 */
4182 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4183 	struct nvbios *bios = &dev_priv->vbios;
4184 	int fpstrapping = get_fp_strap(dev, bios), lvdsmanufacturerindex = 0;
4185 	struct lvdstableheader lth;
4186 	uint16_t lvdsofs;
4187 	int ret, chip_version = bios->chip_version;
4188 
4189 	ret = parse_lvds_manufacturer_table_header(dev, bios, &lth);
4190 	if (ret)
4191 		return ret;
4192 
4193 	switch (lth.lvds_ver) {
4194 	case 0x0a:	/* pre NV40 */
4195 		lvdsmanufacturerindex = bios->data[
4196 					bios->fp.fpxlatemanufacturertableptr +
4197 					fpstrapping];
4198 
4199 		/* we're done if this isn't the EDID panel case */
4200 		if (!pxclk)
4201 			break;
4202 
4203 		if (chip_version < 0x25) {
4204 			/* nv17 behaviour
4205 			 *
4206 			 * It seems the old style lvds script pointer is reused
4207 			 * to select 18/24 bit colour depth for EDID panels.
4208 			 */
4209 			lvdsmanufacturerindex =
4210 				(bios->legacy.lvds_single_a_script_ptr & 1) ?
4211 									2 : 0;
4212 			if (pxclk >= bios->fp.duallink_transition_clk)
4213 				lvdsmanufacturerindex++;
4214 		} else if (chip_version < 0x30) {
4215 			/* nv28 behaviour (off-chip encoder)
4216 			 *
4217 			 * nv28 does a complex dance of first using byte 121 of
4218 			 * the EDID to choose the lvdsmanufacturerindex, then
4219 			 * later attempting to match the EDID manufacturer and
4220 			 * product IDs in a table (signature 'pidt' (panel id
4221 			 * table?)), setting an lvdsmanufacturerindex of 0 and
4222 			 * an fp strap of the match index (or 0xf if none)
4223 			 */
4224 			lvdsmanufacturerindex = 0;
4225 		} else {
4226 			/* nv31, nv34 behaviour */
4227 			lvdsmanufacturerindex = 0;
4228 			if (pxclk >= bios->fp.duallink_transition_clk)
4229 				lvdsmanufacturerindex = 2;
4230 			if (pxclk >= 140000)
4231 				lvdsmanufacturerindex = 3;
4232 		}
4233 
4234 		/*
4235 		 * nvidia set the high nibble of (cr57=f, cr58) to
4236 		 * lvdsmanufacturerindex in this case; we don't
4237 		 */
4238 		break;
4239 	case 0x30:	/* NV4x */
4240 	case 0x40:	/* G80/G90 */
4241 		lvdsmanufacturerindex = fpstrapping;
4242 		break;
4243 	default:
4244 		NV_ERROR(dev, "LVDS table revision not currently supported\n");
4245 		return -ENOSYS;
4246 	}
4247 
4248 	lvdsofs = bios->fp.xlated_entry = bios->fp.lvdsmanufacturerpointer + lth.headerlen + lth.recordlen * lvdsmanufacturerindex;
4249 	switch (lth.lvds_ver) {
4250 	case 0x0a:
4251 		bios->fp.power_off_for_reset = bios->data[lvdsofs] & 1;
4252 		bios->fp.reset_after_pclk_change = bios->data[lvdsofs] & 2;
4253 		bios->fp.dual_link = bios->data[lvdsofs] & 4;
4254 		bios->fp.link_c_increment = bios->data[lvdsofs] & 8;
4255 		*if_is_24bit = bios->data[lvdsofs] & 16;
4256 		break;
4257 	case 0x30:
4258 	case 0x40:
4259 		/*
4260 		 * No sign of the "power off for reset" or "reset for panel
4261 		 * on" bits, but it's safer to assume we should
4262 		 */
4263 		bios->fp.power_off_for_reset = true;
4264 		bios->fp.reset_after_pclk_change = true;
4265 
4266 		/*
4267 		 * It's ok lvdsofs is wrong for nv4x edid case; dual_link is
4268 		 * over-written, and if_is_24bit isn't used
4269 		 */
4270 		bios->fp.dual_link = bios->data[lvdsofs] & 1;
4271 		bios->fp.if_is_24bit = bios->data[lvdsofs] & 2;
4272 		bios->fp.strapless_is_24bit = bios->data[bios->fp.lvdsmanufacturerpointer + 4];
4273 		bios->fp.duallink_transition_clk = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 5]) * 10;
4274 		break;
4275 	}
4276 
4277 	/* set dual_link flag for EDID case */
4278 	if (pxclk && (chip_version < 0x25 || chip_version > 0x28))
4279 		bios->fp.dual_link = (pxclk >= bios->fp.duallink_transition_clk);
4280 
4281 	*dl = bios->fp.dual_link;
4282 
4283 	return 0;
4284 }
4285 
4286 /* BIT 'U'/'d' table encoder subtables have hashes matching them to
4287  * a particular set of encoders.
4288  *
4289  * This function returns true if a particular DCB entry matches.
4290  */
4291 bool
bios_encoder_match(struct dcb_entry * dcb,u32 hash)4292 bios_encoder_match(struct dcb_entry *dcb, u32 hash)
4293 {
4294 	if ((hash & 0x000000f0) != (dcb->location << 4))
4295 		return false;
4296 	if ((hash & 0x0000000f) != dcb->type)
4297 		return false;
4298 	if (!(hash & (dcb->or << 16)))
4299 		return false;
4300 
4301 	switch (dcb->type) {
4302 	case OUTPUT_TMDS:
4303 	case OUTPUT_LVDS:
4304 	case OUTPUT_DP:
4305 		if (hash & 0x00c00000) {
4306 			if (!(hash & (dcb->sorconf.link << 22)))
4307 				return false;
4308 		}
4309 	default:
4310 		return true;
4311 	}
4312 }
4313 
4314 int
nouveau_bios_run_display_table(struct drm_device * dev,u16 type,int pclk,struct dcb_entry * dcbent,int crtc)4315 nouveau_bios_run_display_table(struct drm_device *dev, u16 type, int pclk,
4316 			       struct dcb_entry *dcbent, int crtc)
4317 {
4318 	/*
4319 	 * The display script table is located by the BIT 'U' table.
4320 	 *
4321 	 * It contains an array of pointers to various tables describing
4322 	 * a particular output type.  The first 32-bits of the output
4323 	 * tables contains similar information to a DCB entry, and is
4324 	 * used to decide whether that particular table is suitable for
4325 	 * the output you want to access.
4326 	 *
4327 	 * The "record header length" field here seems to indicate the
4328 	 * offset of the first configuration entry in the output tables.
4329 	 * This is 10 on most cards I've seen, but 12 has been witnessed
4330 	 * on DP cards, and there's another script pointer within the
4331 	 * header.
4332 	 *
4333 	 * offset + 0   ( 8 bits): version
4334 	 * offset + 1   ( 8 bits): header length
4335 	 * offset + 2   ( 8 bits): record length
4336 	 * offset + 3   ( 8 bits): number of records
4337 	 * offset + 4   ( 8 bits): record header length
4338 	 * offset + 5   (16 bits): pointer to first output script table
4339 	 */
4340 
4341 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4342 	struct nvbios *bios = &dev_priv->vbios;
4343 	uint8_t *table = &bios->data[bios->display.script_table_ptr];
4344 	uint8_t *otable = NULL;
4345 	uint16_t script;
4346 	int i;
4347 
4348 	if (!bios->display.script_table_ptr) {
4349 		NV_ERROR(dev, "No pointer to output script table\n");
4350 		return 1;
4351 	}
4352 
4353 	/*
4354 	 * Nothing useful has been in any of the pre-2.0 tables I've seen,
4355 	 * so until they are, we really don't need to care.
4356 	 */
4357 	if (table[0] < 0x20)
4358 		return 1;
4359 
4360 	if (table[0] != 0x20 && table[0] != 0x21) {
4361 		NV_ERROR(dev, "Output script table version 0x%02x unknown\n",
4362 			 table[0]);
4363 		return 1;
4364 	}
4365 
4366 	/*
4367 	 * The output script tables describing a particular output type
4368 	 * look as follows:
4369 	 *
4370 	 * offset + 0   (32 bits): output this table matches (hash of DCB)
4371 	 * offset + 4   ( 8 bits): unknown
4372 	 * offset + 5   ( 8 bits): number of configurations
4373 	 * offset + 6   (16 bits): pointer to some script
4374 	 * offset + 8   (16 bits): pointer to some script
4375 	 *
4376 	 * headerlen == 10
4377 	 * offset + 10           : configuration 0
4378 	 *
4379 	 * headerlen == 12
4380 	 * offset + 10           : pointer to some script
4381 	 * offset + 12           : configuration 0
4382 	 *
4383 	 * Each config entry is as follows:
4384 	 *
4385 	 * offset + 0   (16 bits): unknown, assumed to be a match value
4386 	 * offset + 2   (16 bits): pointer to script table (clock set?)
4387 	 * offset + 4   (16 bits): pointer to script table (reset?)
4388 	 *
4389 	 * There doesn't appear to be a count value to say how many
4390 	 * entries exist in each script table, instead, a 0 value in
4391 	 * the first 16-bit word seems to indicate both the end of the
4392 	 * list and the default entry.  The second 16-bit word in the
4393 	 * script tables is a pointer to the script to execute.
4394 	 */
4395 
4396 	NV_DEBUG_KMS(dev, "Searching for output entry for %d %d %d\n",
4397 			dcbent->type, dcbent->location, dcbent->or);
4398 	for (i = 0; i < table[3]; i++) {
4399 		otable = ROMPTR(dev, table[table[1] + (i * table[2])]);
4400 		if (otable && bios_encoder_match(dcbent, ROM32(otable[0])))
4401 			break;
4402 	}
4403 
4404 	if (!otable) {
4405 		NV_DEBUG_KMS(dev, "failed to match any output table\n");
4406 		return 1;
4407 	}
4408 
4409 	if (pclk < -2 || pclk > 0) {
4410 		/* Try to find matching script table entry */
4411 		for (i = 0; i < otable[5]; i++) {
4412 			if (ROM16(otable[table[4] + i*6]) == type)
4413 				break;
4414 		}
4415 
4416 		if (i == otable[5]) {
4417 			NV_ERROR(dev, "Table 0x%04x not found for %d/%d, "
4418 				      "using first\n",
4419 				 type, dcbent->type, dcbent->or);
4420 			i = 0;
4421 		}
4422 	}
4423 
4424 	if (pclk == 0) {
4425 		script = ROM16(otable[6]);
4426 		if (!script) {
4427 			NV_DEBUG_KMS(dev, "output script 0 not found\n");
4428 			return 1;
4429 		}
4430 
4431 		NV_DEBUG_KMS(dev, "0x%04X: parsing output script 0\n", script);
4432 		nouveau_bios_run_init_table(dev, script, dcbent, crtc);
4433 	} else
4434 	if (pclk == -1) {
4435 		script = ROM16(otable[8]);
4436 		if (!script) {
4437 			NV_DEBUG_KMS(dev, "output script 1 not found\n");
4438 			return 1;
4439 		}
4440 
4441 		NV_DEBUG_KMS(dev, "0x%04X: parsing output script 1\n", script);
4442 		nouveau_bios_run_init_table(dev, script, dcbent, crtc);
4443 	} else
4444 	if (pclk == -2) {
4445 		if (table[4] >= 12)
4446 			script = ROM16(otable[10]);
4447 		else
4448 			script = 0;
4449 		if (!script) {
4450 			NV_DEBUG_KMS(dev, "output script 2 not found\n");
4451 			return 1;
4452 		}
4453 
4454 		NV_DEBUG_KMS(dev, "0x%04X: parsing output script 2\n", script);
4455 		nouveau_bios_run_init_table(dev, script, dcbent, crtc);
4456 	} else
4457 	if (pclk > 0) {
4458 		script = ROM16(otable[table[4] + i*6 + 2]);
4459 		if (script)
4460 			script = clkcmptable(bios, script, pclk);
4461 		if (!script) {
4462 			NV_DEBUG_KMS(dev, "clock script 0 not found\n");
4463 			return 1;
4464 		}
4465 
4466 		NV_DEBUG_KMS(dev, "0x%04X: parsing clock script 0\n", script);
4467 		nouveau_bios_run_init_table(dev, script, dcbent, crtc);
4468 	} else
4469 	if (pclk < 0) {
4470 		script = ROM16(otable[table[4] + i*6 + 4]);
4471 		if (script)
4472 			script = clkcmptable(bios, script, -pclk);
4473 		if (!script) {
4474 			NV_DEBUG_KMS(dev, "clock script 1 not found\n");
4475 			return 1;
4476 		}
4477 
4478 		NV_DEBUG_KMS(dev, "0x%04X: parsing clock script 1\n", script);
4479 		nouveau_bios_run_init_table(dev, script, dcbent, crtc);
4480 	}
4481 
4482 	return 0;
4483 }
4484 
4485 
run_tmds_table(struct drm_device * dev,struct dcb_entry * dcbent,int head,int pxclk)4486 int run_tmds_table(struct drm_device *dev, struct dcb_entry *dcbent, int head, int pxclk)
4487 {
4488 	/*
4489 	 * the pxclk parameter is in kHz
4490 	 *
4491 	 * This runs the TMDS regs setting code found on BIT bios cards
4492 	 *
4493 	 * For ffs(or) == 1 use the first table, for ffs(or) == 2 and
4494 	 * ffs(or) == 3, use the second.
4495 	 */
4496 
4497 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4498 	struct nvbios *bios = &dev_priv->vbios;
4499 	int cv = bios->chip_version;
4500 	uint16_t clktable = 0, scriptptr;
4501 	uint32_t sel_clk_binding, sel_clk;
4502 
4503 	/* pre-nv17 off-chip tmds uses scripts, post nv17 doesn't */
4504 	if (cv >= 0x17 && cv != 0x1a && cv != 0x20 &&
4505 	    dcbent->location != DCB_LOC_ON_CHIP)
4506 		return 0;
4507 
4508 	switch (ffs(dcbent->or)) {
4509 	case 1:
4510 		clktable = bios->tmds.output0_script_ptr;
4511 		break;
4512 	case 2:
4513 	case 3:
4514 		clktable = bios->tmds.output1_script_ptr;
4515 		break;
4516 	}
4517 
4518 	if (!clktable) {
4519 		NV_ERROR(dev, "Pixel clock comparison table not found\n");
4520 		return -EINVAL;
4521 	}
4522 
4523 	scriptptr = clkcmptable(bios, clktable, pxclk);
4524 
4525 	if (!scriptptr) {
4526 		NV_ERROR(dev, "TMDS output init script not found\n");
4527 		return -ENOENT;
4528 	}
4529 
4530 	/* don't let script change pll->head binding */
4531 	sel_clk_binding = bios_rd32(bios, NV_PRAMDAC_SEL_CLK) & 0x50000;
4532 	run_digital_op_script(dev, scriptptr, dcbent, head, pxclk >= 165000);
4533 	sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000;
4534 	NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding);
4535 
4536 	return 0;
4537 }
4538 
4539 struct pll_mapping {
4540 	u8  type;
4541 	u32 reg;
4542 };
4543 
4544 static struct pll_mapping nv04_pll_mapping[] = {
4545 	{ PLL_CORE  , NV_PRAMDAC_NVPLL_COEFF },
4546 	{ PLL_MEMORY, NV_PRAMDAC_MPLL_COEFF },
4547 	{ PLL_VPLL0 , NV_PRAMDAC_VPLL_COEFF },
4548 	{ PLL_VPLL1 , NV_RAMDAC_VPLL2 },
4549 	{}
4550 };
4551 
4552 static struct pll_mapping nv40_pll_mapping[] = {
4553 	{ PLL_CORE  , 0x004000 },
4554 	{ PLL_MEMORY, 0x004020 },
4555 	{ PLL_VPLL0 , NV_PRAMDAC_VPLL_COEFF },
4556 	{ PLL_VPLL1 , NV_RAMDAC_VPLL2 },
4557 	{}
4558 };
4559 
4560 static struct pll_mapping nv50_pll_mapping[] = {
4561 	{ PLL_CORE  , 0x004028 },
4562 	{ PLL_SHADER, 0x004020 },
4563 	{ PLL_UNK03 , 0x004000 },
4564 	{ PLL_MEMORY, 0x004008 },
4565 	{ PLL_UNK40 , 0x00e810 },
4566 	{ PLL_UNK41 , 0x00e818 },
4567 	{ PLL_UNK42 , 0x00e824 },
4568 	{ PLL_VPLL0 , 0x614100 },
4569 	{ PLL_VPLL1 , 0x614900 },
4570 	{}
4571 };
4572 
4573 static struct pll_mapping nv84_pll_mapping[] = {
4574 	{ PLL_CORE  , 0x004028 },
4575 	{ PLL_SHADER, 0x004020 },
4576 	{ PLL_MEMORY, 0x004008 },
4577 	{ PLL_VDEC  , 0x004030 },
4578 	{ PLL_UNK41 , 0x00e818 },
4579 	{ PLL_VPLL0 , 0x614100 },
4580 	{ PLL_VPLL1 , 0x614900 },
4581 	{}
4582 };
4583 
4584 u32
get_pll_register(struct drm_device * dev,enum pll_types type)4585 get_pll_register(struct drm_device *dev, enum pll_types type)
4586 {
4587 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4588 	struct nvbios *bios = &dev_priv->vbios;
4589 	struct pll_mapping *map;
4590 	int i;
4591 
4592 	if (dev_priv->card_type < NV_40)
4593 		map = nv04_pll_mapping;
4594 	else
4595 	if (dev_priv->card_type < NV_50)
4596 		map = nv40_pll_mapping;
4597 	else {
4598 		u8 *plim = &bios->data[bios->pll_limit_tbl_ptr];
4599 
4600 		if (plim[0] >= 0x30) {
4601 			u8 *entry = plim + plim[1];
4602 			for (i = 0; i < plim[3]; i++, entry += plim[2]) {
4603 				if (entry[0] == type)
4604 					return ROM32(entry[3]);
4605 			}
4606 
4607 			return 0;
4608 		}
4609 
4610 		if (dev_priv->chipset == 0x50)
4611 			map = nv50_pll_mapping;
4612 		else
4613 			map = nv84_pll_mapping;
4614 	}
4615 
4616 	while (map->reg) {
4617 		if (map->type == type)
4618 			return map->reg;
4619 		map++;
4620 	}
4621 
4622 	return 0;
4623 }
4624 
get_pll_limits(struct drm_device * dev,uint32_t limit_match,struct pll_lims * pll_lim)4625 int get_pll_limits(struct drm_device *dev, uint32_t limit_match, struct pll_lims *pll_lim)
4626 {
4627 	/*
4628 	 * PLL limits table
4629 	 *
4630 	 * Version 0x10: NV30, NV31
4631 	 * One byte header (version), one record of 24 bytes
4632 	 * Version 0x11: NV36 - Not implemented
4633 	 * Seems to have same record style as 0x10, but 3 records rather than 1
4634 	 * Version 0x20: Found on Geforce 6 cards
4635 	 * Trivial 4 byte BIT header. 31 (0x1f) byte record length
4636 	 * Version 0x21: Found on Geforce 7, 8 and some Geforce 6 cards
4637 	 * 5 byte header, fifth byte of unknown purpose. 35 (0x23) byte record
4638 	 * length in general, some (integrated) have an extra configuration byte
4639 	 * Version 0x30: Found on Geforce 8, separates the register mapping
4640 	 * from the limits tables.
4641 	 */
4642 
4643 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4644 	struct nvbios *bios = &dev_priv->vbios;
4645 	int cv = bios->chip_version, pllindex = 0;
4646 	uint8_t pll_lim_ver = 0, headerlen = 0, recordlen = 0, entries = 0;
4647 	uint32_t crystal_strap_mask, crystal_straps;
4648 
4649 	if (!bios->pll_limit_tbl_ptr) {
4650 		if (cv == 0x30 || cv == 0x31 || cv == 0x35 || cv == 0x36 ||
4651 		    cv >= 0x40) {
4652 			NV_ERROR(dev, "Pointer to PLL limits table invalid\n");
4653 			return -EINVAL;
4654 		}
4655 	} else
4656 		pll_lim_ver = bios->data[bios->pll_limit_tbl_ptr];
4657 
4658 	crystal_strap_mask = 1 << 6;
4659 	/* open coded dev->twoHeads test */
4660 	if (cv > 0x10 && cv != 0x15 && cv != 0x1a && cv != 0x20)
4661 		crystal_strap_mask |= 1 << 22;
4662 	crystal_straps = nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) &
4663 							crystal_strap_mask;
4664 
4665 	switch (pll_lim_ver) {
4666 	/*
4667 	 * We use version 0 to indicate a pre limit table bios (single stage
4668 	 * pll) and load the hard coded limits instead.
4669 	 */
4670 	case 0:
4671 		break;
4672 	case 0x10:
4673 	case 0x11:
4674 		/*
4675 		 * Strictly v0x11 has 3 entries, but the last two don't seem
4676 		 * to get used.
4677 		 */
4678 		headerlen = 1;
4679 		recordlen = 0x18;
4680 		entries = 1;
4681 		pllindex = 0;
4682 		break;
4683 	case 0x20:
4684 	case 0x21:
4685 	case 0x30:
4686 	case 0x40:
4687 		headerlen = bios->data[bios->pll_limit_tbl_ptr + 1];
4688 		recordlen = bios->data[bios->pll_limit_tbl_ptr + 2];
4689 		entries = bios->data[bios->pll_limit_tbl_ptr + 3];
4690 		break;
4691 	default:
4692 		NV_ERROR(dev, "PLL limits table revision 0x%X not currently "
4693 				"supported\n", pll_lim_ver);
4694 		return -ENOSYS;
4695 	}
4696 
4697 	/* initialize all members to zero */
4698 	memset(pll_lim, 0, sizeof(struct pll_lims));
4699 
4700 	/* if we were passed a type rather than a register, figure
4701 	 * out the register and store it
4702 	 */
4703 	if (limit_match > PLL_MAX)
4704 		pll_lim->reg = limit_match;
4705 	else {
4706 		pll_lim->reg = get_pll_register(dev, limit_match);
4707 		if (!pll_lim->reg)
4708 			return -ENOENT;
4709 	}
4710 
4711 	if (pll_lim_ver == 0x10 || pll_lim_ver == 0x11) {
4712 		uint8_t *pll_rec = &bios->data[bios->pll_limit_tbl_ptr + headerlen + recordlen * pllindex];
4713 
4714 		pll_lim->vco1.minfreq = ROM32(pll_rec[0]);
4715 		pll_lim->vco1.maxfreq = ROM32(pll_rec[4]);
4716 		pll_lim->vco2.minfreq = ROM32(pll_rec[8]);
4717 		pll_lim->vco2.maxfreq = ROM32(pll_rec[12]);
4718 		pll_lim->vco1.min_inputfreq = ROM32(pll_rec[16]);
4719 		pll_lim->vco2.min_inputfreq = ROM32(pll_rec[20]);
4720 		pll_lim->vco1.max_inputfreq = pll_lim->vco2.max_inputfreq = INT_MAX;
4721 
4722 		/* these values taken from nv30/31/36 */
4723 		pll_lim->vco1.min_n = 0x1;
4724 		if (cv == 0x36)
4725 			pll_lim->vco1.min_n = 0x5;
4726 		pll_lim->vco1.max_n = 0xff;
4727 		pll_lim->vco1.min_m = 0x1;
4728 		pll_lim->vco1.max_m = 0xd;
4729 		pll_lim->vco2.min_n = 0x4;
4730 		/*
4731 		 * On nv30, 31, 36 (i.e. all cards with two stage PLLs with this
4732 		 * table version (apart from nv35)), N2 is compared to
4733 		 * maxN2 (0x46) and 10 * maxM2 (0x4), so set maxN2 to 0x28 and
4734 		 * save a comparison
4735 		 */
4736 		pll_lim->vco2.max_n = 0x28;
4737 		if (cv == 0x30 || cv == 0x35)
4738 			/* only 5 bits available for N2 on nv30/35 */
4739 			pll_lim->vco2.max_n = 0x1f;
4740 		pll_lim->vco2.min_m = 0x1;
4741 		pll_lim->vco2.max_m = 0x4;
4742 		pll_lim->max_log2p = 0x7;
4743 		pll_lim->max_usable_log2p = 0x6;
4744 	} else if (pll_lim_ver == 0x20 || pll_lim_ver == 0x21) {
4745 		uint16_t plloffs = bios->pll_limit_tbl_ptr + headerlen;
4746 		uint8_t *pll_rec;
4747 		int i;
4748 
4749 		/*
4750 		 * First entry is default match, if nothing better. warn if
4751 		 * reg field nonzero
4752 		 */
4753 		if (ROM32(bios->data[plloffs]))
4754 			NV_WARN(dev, "Default PLL limit entry has non-zero "
4755 				       "register field\n");
4756 
4757 		for (i = 1; i < entries; i++)
4758 			if (ROM32(bios->data[plloffs + recordlen * i]) == pll_lim->reg) {
4759 				pllindex = i;
4760 				break;
4761 			}
4762 
4763 		if ((dev_priv->card_type >= NV_50) && (pllindex == 0)) {
4764 			NV_ERROR(dev, "Register 0x%08x not found in PLL "
4765 				 "limits table", pll_lim->reg);
4766 			return -ENOENT;
4767 		}
4768 
4769 		pll_rec = &bios->data[plloffs + recordlen * pllindex];
4770 
4771 		BIOSLOG(bios, "Loading PLL limits for reg 0x%08x\n",
4772 			pllindex ? pll_lim->reg : 0);
4773 
4774 		/*
4775 		 * Frequencies are stored in tables in MHz, kHz are more
4776 		 * useful, so we convert.
4777 		 */
4778 
4779 		/* What output frequencies can each VCO generate? */
4780 		pll_lim->vco1.minfreq = ROM16(pll_rec[4]) * 1000;
4781 		pll_lim->vco1.maxfreq = ROM16(pll_rec[6]) * 1000;
4782 		pll_lim->vco2.minfreq = ROM16(pll_rec[8]) * 1000;
4783 		pll_lim->vco2.maxfreq = ROM16(pll_rec[10]) * 1000;
4784 
4785 		/* What input frequencies they accept (past the m-divider)? */
4786 		pll_lim->vco1.min_inputfreq = ROM16(pll_rec[12]) * 1000;
4787 		pll_lim->vco2.min_inputfreq = ROM16(pll_rec[14]) * 1000;
4788 		pll_lim->vco1.max_inputfreq = ROM16(pll_rec[16]) * 1000;
4789 		pll_lim->vco2.max_inputfreq = ROM16(pll_rec[18]) * 1000;
4790 
4791 		/* What values are accepted as multiplier and divider? */
4792 		pll_lim->vco1.min_n = pll_rec[20];
4793 		pll_lim->vco1.max_n = pll_rec[21];
4794 		pll_lim->vco1.min_m = pll_rec[22];
4795 		pll_lim->vco1.max_m = pll_rec[23];
4796 		pll_lim->vco2.min_n = pll_rec[24];
4797 		pll_lim->vco2.max_n = pll_rec[25];
4798 		pll_lim->vco2.min_m = pll_rec[26];
4799 		pll_lim->vco2.max_m = pll_rec[27];
4800 
4801 		pll_lim->max_usable_log2p = pll_lim->max_log2p = pll_rec[29];
4802 		if (pll_lim->max_log2p > 0x7)
4803 			/* pll decoding in nv_hw.c assumes never > 7 */
4804 			NV_WARN(dev, "Max log2 P value greater than 7 (%d)\n",
4805 				pll_lim->max_log2p);
4806 		if (cv < 0x60)
4807 			pll_lim->max_usable_log2p = 0x6;
4808 		pll_lim->log2p_bias = pll_rec[30];
4809 
4810 		if (recordlen > 0x22)
4811 			pll_lim->refclk = ROM32(pll_rec[31]);
4812 
4813 		if (recordlen > 0x23 && pll_rec[35])
4814 			NV_WARN(dev,
4815 				"Bits set in PLL configuration byte (%x)\n",
4816 				pll_rec[35]);
4817 
4818 		/* C51 special not seen elsewhere */
4819 		if (cv == 0x51 && !pll_lim->refclk) {
4820 			uint32_t sel_clk = bios_rd32(bios, NV_PRAMDAC_SEL_CLK);
4821 
4822 			if ((pll_lim->reg == NV_PRAMDAC_VPLL_COEFF && sel_clk & 0x20) ||
4823 			    (pll_lim->reg == NV_RAMDAC_VPLL2 && sel_clk & 0x80)) {
4824 				if (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_CHIP_ID_INDEX) < 0xa3)
4825 					pll_lim->refclk = 200000;
4826 				else
4827 					pll_lim->refclk = 25000;
4828 			}
4829 		}
4830 	} else if (pll_lim_ver == 0x30) { /* ver 0x30 */
4831 		uint8_t *entry = &bios->data[bios->pll_limit_tbl_ptr + headerlen];
4832 		uint8_t *record = NULL;
4833 		int i;
4834 
4835 		BIOSLOG(bios, "Loading PLL limits for register 0x%08x\n",
4836 			pll_lim->reg);
4837 
4838 		for (i = 0; i < entries; i++, entry += recordlen) {
4839 			if (ROM32(entry[3]) == pll_lim->reg) {
4840 				record = &bios->data[ROM16(entry[1])];
4841 				break;
4842 			}
4843 		}
4844 
4845 		if (!record) {
4846 			NV_ERROR(dev, "Register 0x%08x not found in PLL "
4847 				 "limits table", pll_lim->reg);
4848 			return -ENOENT;
4849 		}
4850 
4851 		pll_lim->vco1.minfreq = ROM16(record[0]) * 1000;
4852 		pll_lim->vco1.maxfreq = ROM16(record[2]) * 1000;
4853 		pll_lim->vco2.minfreq = ROM16(record[4]) * 1000;
4854 		pll_lim->vco2.maxfreq = ROM16(record[6]) * 1000;
4855 		pll_lim->vco1.min_inputfreq = ROM16(record[8]) * 1000;
4856 		pll_lim->vco2.min_inputfreq = ROM16(record[10]) * 1000;
4857 		pll_lim->vco1.max_inputfreq = ROM16(record[12]) * 1000;
4858 		pll_lim->vco2.max_inputfreq = ROM16(record[14]) * 1000;
4859 		pll_lim->vco1.min_n = record[16];
4860 		pll_lim->vco1.max_n = record[17];
4861 		pll_lim->vco1.min_m = record[18];
4862 		pll_lim->vco1.max_m = record[19];
4863 		pll_lim->vco2.min_n = record[20];
4864 		pll_lim->vco2.max_n = record[21];
4865 		pll_lim->vco2.min_m = record[22];
4866 		pll_lim->vco2.max_m = record[23];
4867 		pll_lim->max_usable_log2p = pll_lim->max_log2p = record[25];
4868 		pll_lim->log2p_bias = record[27];
4869 		pll_lim->refclk = ROM32(record[28]);
4870 	} else if (pll_lim_ver) { /* ver 0x40 */
4871 		uint8_t *entry = &bios->data[bios->pll_limit_tbl_ptr + headerlen];
4872 		uint8_t *record = NULL;
4873 		int i;
4874 
4875 		BIOSLOG(bios, "Loading PLL limits for register 0x%08x\n",
4876 			pll_lim->reg);
4877 
4878 		for (i = 0; i < entries; i++, entry += recordlen) {
4879 			if (ROM32(entry[3]) == pll_lim->reg) {
4880 				record = &bios->data[ROM16(entry[1])];
4881 				break;
4882 			}
4883 		}
4884 
4885 		if (!record) {
4886 			NV_ERROR(dev, "Register 0x%08x not found in PLL "
4887 				 "limits table", pll_lim->reg);
4888 			return -ENOENT;
4889 		}
4890 
4891 		pll_lim->vco1.minfreq = ROM16(record[0]) * 1000;
4892 		pll_lim->vco1.maxfreq = ROM16(record[2]) * 1000;
4893 		pll_lim->vco1.min_inputfreq = ROM16(record[4]) * 1000;
4894 		pll_lim->vco1.max_inputfreq = ROM16(record[6]) * 1000;
4895 		pll_lim->vco1.min_m = record[8];
4896 		pll_lim->vco1.max_m = record[9];
4897 		pll_lim->vco1.min_n = record[10];
4898 		pll_lim->vco1.max_n = record[11];
4899 		pll_lim->min_p = record[12];
4900 		pll_lim->max_p = record[13];
4901 		pll_lim->refclk = ROM16(entry[9]) * 1000;
4902 	}
4903 
4904 	/*
4905 	 * By now any valid limit table ought to have set a max frequency for
4906 	 * vco1, so if it's zero it's either a pre limit table bios, or one
4907 	 * with an empty limit table (seen on nv18)
4908 	 */
4909 	if (!pll_lim->vco1.maxfreq) {
4910 		pll_lim->vco1.minfreq = bios->fminvco;
4911 		pll_lim->vco1.maxfreq = bios->fmaxvco;
4912 		pll_lim->vco1.min_inputfreq = 0;
4913 		pll_lim->vco1.max_inputfreq = INT_MAX;
4914 		pll_lim->vco1.min_n = 0x1;
4915 		pll_lim->vco1.max_n = 0xff;
4916 		pll_lim->vco1.min_m = 0x1;
4917 		if (crystal_straps == 0) {
4918 			/* nv05 does this, nv11 doesn't, nv10 unknown */
4919 			if (cv < 0x11)
4920 				pll_lim->vco1.min_m = 0x7;
4921 			pll_lim->vco1.max_m = 0xd;
4922 		} else {
4923 			if (cv < 0x11)
4924 				pll_lim->vco1.min_m = 0x8;
4925 			pll_lim->vco1.max_m = 0xe;
4926 		}
4927 		if (cv < 0x17 || cv == 0x1a || cv == 0x20)
4928 			pll_lim->max_log2p = 4;
4929 		else
4930 			pll_lim->max_log2p = 5;
4931 		pll_lim->max_usable_log2p = pll_lim->max_log2p;
4932 	}
4933 
4934 	if (!pll_lim->refclk)
4935 		switch (crystal_straps) {
4936 		case 0:
4937 			pll_lim->refclk = 13500;
4938 			break;
4939 		case (1 << 6):
4940 			pll_lim->refclk = 14318;
4941 			break;
4942 		case (1 << 22):
4943 			pll_lim->refclk = 27000;
4944 			break;
4945 		case (1 << 22 | 1 << 6):
4946 			pll_lim->refclk = 25000;
4947 			break;
4948 		}
4949 
4950 	NV_DEBUG(dev, "pll.vco1.minfreq: %d\n", pll_lim->vco1.minfreq);
4951 	NV_DEBUG(dev, "pll.vco1.maxfreq: %d\n", pll_lim->vco1.maxfreq);
4952 	NV_DEBUG(dev, "pll.vco1.min_inputfreq: %d\n", pll_lim->vco1.min_inputfreq);
4953 	NV_DEBUG(dev, "pll.vco1.max_inputfreq: %d\n", pll_lim->vco1.max_inputfreq);
4954 	NV_DEBUG(dev, "pll.vco1.min_n: %d\n", pll_lim->vco1.min_n);
4955 	NV_DEBUG(dev, "pll.vco1.max_n: %d\n", pll_lim->vco1.max_n);
4956 	NV_DEBUG(dev, "pll.vco1.min_m: %d\n", pll_lim->vco1.min_m);
4957 	NV_DEBUG(dev, "pll.vco1.max_m: %d\n", pll_lim->vco1.max_m);
4958 	if (pll_lim->vco2.maxfreq) {
4959 		NV_DEBUG(dev, "pll.vco2.minfreq: %d\n", pll_lim->vco2.minfreq);
4960 		NV_DEBUG(dev, "pll.vco2.maxfreq: %d\n", pll_lim->vco2.maxfreq);
4961 		NV_DEBUG(dev, "pll.vco2.min_inputfreq: %d\n", pll_lim->vco2.min_inputfreq);
4962 		NV_DEBUG(dev, "pll.vco2.max_inputfreq: %d\n", pll_lim->vco2.max_inputfreq);
4963 		NV_DEBUG(dev, "pll.vco2.min_n: %d\n", pll_lim->vco2.min_n);
4964 		NV_DEBUG(dev, "pll.vco2.max_n: %d\n", pll_lim->vco2.max_n);
4965 		NV_DEBUG(dev, "pll.vco2.min_m: %d\n", pll_lim->vco2.min_m);
4966 		NV_DEBUG(dev, "pll.vco2.max_m: %d\n", pll_lim->vco2.max_m);
4967 	}
4968 	if (!pll_lim->max_p) {
4969 		NV_DEBUG(dev, "pll.max_log2p: %d\n", pll_lim->max_log2p);
4970 		NV_DEBUG(dev, "pll.log2p_bias: %d\n", pll_lim->log2p_bias);
4971 	} else {
4972 		NV_DEBUG(dev, "pll.min_p: %d\n", pll_lim->min_p);
4973 		NV_DEBUG(dev, "pll.max_p: %d\n", pll_lim->max_p);
4974 	}
4975 	NV_DEBUG(dev, "pll.refclk: %d\n", pll_lim->refclk);
4976 
4977 	return 0;
4978 }
4979 
parse_bios_version(struct drm_device * dev,struct nvbios * bios,uint16_t offset)4980 static void parse_bios_version(struct drm_device *dev, struct nvbios *bios, uint16_t offset)
4981 {
4982 	/*
4983 	 * offset + 0  (8 bits): Micro version
4984 	 * offset + 1  (8 bits): Minor version
4985 	 * offset + 2  (8 bits): Chip version
4986 	 * offset + 3  (8 bits): Major version
4987 	 */
4988 
4989 	bios->major_version = bios->data[offset + 3];
4990 	bios->chip_version = bios->data[offset + 2];
4991 	NV_TRACE(dev, "Bios version %02x.%02x.%02x.%02x\n",
4992 		 bios->data[offset + 3], bios->data[offset + 2],
4993 		 bios->data[offset + 1], bios->data[offset]);
4994 }
4995 
parse_script_table_pointers(struct nvbios * bios,uint16_t offset)4996 static void parse_script_table_pointers(struct nvbios *bios, uint16_t offset)
4997 {
4998 	/*
4999 	 * Parses the init table segment for pointers used in script execution.
5000 	 *
5001 	 * offset + 0  (16 bits): init script tables pointer
5002 	 * offset + 2  (16 bits): macro index table pointer
5003 	 * offset + 4  (16 bits): macro table pointer
5004 	 * offset + 6  (16 bits): condition table pointer
5005 	 * offset + 8  (16 bits): io condition table pointer
5006 	 * offset + 10 (16 bits): io flag condition table pointer
5007 	 * offset + 12 (16 bits): init function table pointer
5008 	 */
5009 
5010 	bios->init_script_tbls_ptr = ROM16(bios->data[offset]);
5011 	bios->macro_index_tbl_ptr = ROM16(bios->data[offset + 2]);
5012 	bios->macro_tbl_ptr = ROM16(bios->data[offset + 4]);
5013 	bios->condition_tbl_ptr = ROM16(bios->data[offset + 6]);
5014 	bios->io_condition_tbl_ptr = ROM16(bios->data[offset + 8]);
5015 	bios->io_flag_condition_tbl_ptr = ROM16(bios->data[offset + 10]);
5016 	bios->init_function_tbl_ptr = ROM16(bios->data[offset + 12]);
5017 }
5018 
parse_bit_A_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5019 static int parse_bit_A_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5020 {
5021 	/*
5022 	 * Parses the load detect values for g80 cards.
5023 	 *
5024 	 * offset + 0 (16 bits): loadval table pointer
5025 	 */
5026 
5027 	uint16_t load_table_ptr;
5028 	uint8_t version, headerlen, entrylen, num_entries;
5029 
5030 	if (bitentry->length != 3) {
5031 		NV_ERROR(dev, "Do not understand BIT A table\n");
5032 		return -EINVAL;
5033 	}
5034 
5035 	load_table_ptr = ROM16(bios->data[bitentry->offset]);
5036 
5037 	if (load_table_ptr == 0x0) {
5038 		NV_DEBUG(dev, "Pointer to BIT loadval table invalid\n");
5039 		return -EINVAL;
5040 	}
5041 
5042 	version = bios->data[load_table_ptr];
5043 
5044 	if (version != 0x10) {
5045 		NV_ERROR(dev, "BIT loadval table version %d.%d not supported\n",
5046 			 version >> 4, version & 0xF);
5047 		return -ENOSYS;
5048 	}
5049 
5050 	headerlen = bios->data[load_table_ptr + 1];
5051 	entrylen = bios->data[load_table_ptr + 2];
5052 	num_entries = bios->data[load_table_ptr + 3];
5053 
5054 	if (headerlen != 4 || entrylen != 4 || num_entries != 2) {
5055 		NV_ERROR(dev, "Do not understand BIT loadval table\n");
5056 		return -EINVAL;
5057 	}
5058 
5059 	/* First entry is normal dac, 2nd tv-out perhaps? */
5060 	bios->dactestval = ROM32(bios->data[load_table_ptr + headerlen]) & 0x3ff;
5061 
5062 	return 0;
5063 }
5064 
parse_bit_C_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5065 static int parse_bit_C_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5066 {
5067 	/*
5068 	 * offset + 8  (16 bits): PLL limits table pointer
5069 	 *
5070 	 * There's more in here, but that's unknown.
5071 	 */
5072 
5073 	if (bitentry->length < 10) {
5074 		NV_ERROR(dev, "Do not understand BIT C table\n");
5075 		return -EINVAL;
5076 	}
5077 
5078 	bios->pll_limit_tbl_ptr = ROM16(bios->data[bitentry->offset + 8]);
5079 
5080 	return 0;
5081 }
5082 
parse_bit_display_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5083 static int parse_bit_display_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5084 {
5085 	/*
5086 	 * Parses the flat panel table segment that the bit entry points to.
5087 	 * Starting at bitentry->offset:
5088 	 *
5089 	 * offset + 0  (16 bits): ??? table pointer - seems to have 18 byte
5090 	 * records beginning with a freq.
5091 	 * offset + 2  (16 bits): mode table pointer
5092 	 */
5093 
5094 	if (bitentry->length != 4) {
5095 		NV_ERROR(dev, "Do not understand BIT display table\n");
5096 		return -EINVAL;
5097 	}
5098 
5099 	bios->fp.fptablepointer = ROM16(bios->data[bitentry->offset + 2]);
5100 
5101 	return 0;
5102 }
5103 
parse_bit_init_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5104 static int parse_bit_init_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5105 {
5106 	/*
5107 	 * Parses the init table segment that the bit entry points to.
5108 	 *
5109 	 * See parse_script_table_pointers for layout
5110 	 */
5111 
5112 	if (bitentry->length < 14) {
5113 		NV_ERROR(dev, "Do not understand init table\n");
5114 		return -EINVAL;
5115 	}
5116 
5117 	parse_script_table_pointers(bios, bitentry->offset);
5118 
5119 	if (bitentry->length >= 16)
5120 		bios->some_script_ptr = ROM16(bios->data[bitentry->offset + 14]);
5121 	if (bitentry->length >= 18)
5122 		bios->init96_tbl_ptr = ROM16(bios->data[bitentry->offset + 16]);
5123 
5124 	return 0;
5125 }
5126 
parse_bit_i_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5127 static int parse_bit_i_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5128 {
5129 	/*
5130 	 * BIT 'i' (info?) table
5131 	 *
5132 	 * offset + 0  (32 bits): BIOS version dword (as in B table)
5133 	 * offset + 5  (8  bits): BIOS feature byte (same as for BMP?)
5134 	 * offset + 13 (16 bits): pointer to table containing DAC load
5135 	 * detection comparison values
5136 	 *
5137 	 * There's other things in the table, purpose unknown
5138 	 */
5139 
5140 	uint16_t daccmpoffset;
5141 	uint8_t dacver, dacheaderlen;
5142 
5143 	if (bitentry->length < 6) {
5144 		NV_ERROR(dev, "BIT i table too short for needed information\n");
5145 		return -EINVAL;
5146 	}
5147 
5148 	parse_bios_version(dev, bios, bitentry->offset);
5149 
5150 	/*
5151 	 * bit 4 seems to indicate a mobile bios (doesn't suffer from BMP's
5152 	 * Quadro identity crisis), other bits possibly as for BMP feature byte
5153 	 */
5154 	bios->feature_byte = bios->data[bitentry->offset + 5];
5155 	bios->is_mobile = bios->feature_byte & FEATURE_MOBILE;
5156 
5157 	if (bitentry->length < 15) {
5158 		NV_WARN(dev, "BIT i table not long enough for DAC load "
5159 			       "detection comparison table\n");
5160 		return -EINVAL;
5161 	}
5162 
5163 	daccmpoffset = ROM16(bios->data[bitentry->offset + 13]);
5164 
5165 	/* doesn't exist on g80 */
5166 	if (!daccmpoffset)
5167 		return 0;
5168 
5169 	/*
5170 	 * The first value in the table, following the header, is the
5171 	 * comparison value, the second entry is a comparison value for
5172 	 * TV load detection.
5173 	 */
5174 
5175 	dacver = bios->data[daccmpoffset];
5176 	dacheaderlen = bios->data[daccmpoffset + 1];
5177 
5178 	if (dacver != 0x00 && dacver != 0x10) {
5179 		NV_WARN(dev, "DAC load detection comparison table version "
5180 			       "%d.%d not known\n", dacver >> 4, dacver & 0xf);
5181 		return -ENOSYS;
5182 	}
5183 
5184 	bios->dactestval = ROM32(bios->data[daccmpoffset + dacheaderlen]);
5185 	bios->tvdactestval = ROM32(bios->data[daccmpoffset + dacheaderlen + 4]);
5186 
5187 	return 0;
5188 }
5189 
parse_bit_lvds_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5190 static int parse_bit_lvds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5191 {
5192 	/*
5193 	 * Parses the LVDS table segment that the bit entry points to.
5194 	 * Starting at bitentry->offset:
5195 	 *
5196 	 * offset + 0  (16 bits): LVDS strap xlate table pointer
5197 	 */
5198 
5199 	if (bitentry->length != 2) {
5200 		NV_ERROR(dev, "Do not understand BIT LVDS table\n");
5201 		return -EINVAL;
5202 	}
5203 
5204 	/*
5205 	 * No idea if it's still called the LVDS manufacturer table, but
5206 	 * the concept's close enough.
5207 	 */
5208 	bios->fp.lvdsmanufacturerpointer = ROM16(bios->data[bitentry->offset]);
5209 
5210 	return 0;
5211 }
5212 
5213 static int
parse_bit_M_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5214 parse_bit_M_tbl_entry(struct drm_device *dev, struct nvbios *bios,
5215 		      struct bit_entry *bitentry)
5216 {
5217 	/*
5218 	 * offset + 2  (8  bits): number of options in an
5219 	 * 	INIT_RAM_RESTRICT_ZM_REG_GROUP opcode option set
5220 	 * offset + 3  (16 bits): pointer to strap xlate table for RAM
5221 	 * 	restrict option selection
5222 	 *
5223 	 * There's a bunch of bits in this table other than the RAM restrict
5224 	 * stuff that we don't use - their use currently unknown
5225 	 */
5226 
5227 	/*
5228 	 * Older bios versions don't have a sufficiently long table for
5229 	 * what we want
5230 	 */
5231 	if (bitentry->length < 0x5)
5232 		return 0;
5233 
5234 	if (bitentry->version < 2) {
5235 		bios->ram_restrict_group_count = bios->data[bitentry->offset + 2];
5236 		bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 3]);
5237 	} else {
5238 		bios->ram_restrict_group_count = bios->data[bitentry->offset + 0];
5239 		bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 1]);
5240 	}
5241 
5242 	return 0;
5243 }
5244 
parse_bit_tmds_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5245 static int parse_bit_tmds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5246 {
5247 	/*
5248 	 * Parses the pointer to the TMDS table
5249 	 *
5250 	 * Starting at bitentry->offset:
5251 	 *
5252 	 * offset + 0  (16 bits): TMDS table pointer
5253 	 *
5254 	 * The TMDS table is typically found just before the DCB table, with a
5255 	 * characteristic signature of 0x11,0x13 (1.1 being version, 0x13 being
5256 	 * length?)
5257 	 *
5258 	 * At offset +7 is a pointer to a script, which I don't know how to
5259 	 * run yet.
5260 	 * At offset +9 is a pointer to another script, likewise
5261 	 * Offset +11 has a pointer to a table where the first word is a pxclk
5262 	 * frequency and the second word a pointer to a script, which should be
5263 	 * run if the comparison pxclk frequency is less than the pxclk desired.
5264 	 * This repeats for decreasing comparison frequencies
5265 	 * Offset +13 has a pointer to a similar table
5266 	 * The selection of table (and possibly +7/+9 script) is dictated by
5267 	 * "or" from the DCB.
5268 	 */
5269 
5270 	uint16_t tmdstableptr, script1, script2;
5271 
5272 	if (bitentry->length != 2) {
5273 		NV_ERROR(dev, "Do not understand BIT TMDS table\n");
5274 		return -EINVAL;
5275 	}
5276 
5277 	tmdstableptr = ROM16(bios->data[bitentry->offset]);
5278 	if (!tmdstableptr) {
5279 		NV_ERROR(dev, "Pointer to TMDS table invalid\n");
5280 		return -EINVAL;
5281 	}
5282 
5283 	NV_INFO(dev, "TMDS table version %d.%d\n",
5284 		bios->data[tmdstableptr] >> 4, bios->data[tmdstableptr] & 0xf);
5285 
5286 	/* nv50+ has v2.0, but we don't parse it atm */
5287 	if (bios->data[tmdstableptr] != 0x11)
5288 		return -ENOSYS;
5289 
5290 	/*
5291 	 * These two scripts are odd: they don't seem to get run even when
5292 	 * they are not stubbed.
5293 	 */
5294 	script1 = ROM16(bios->data[tmdstableptr + 7]);
5295 	script2 = ROM16(bios->data[tmdstableptr + 9]);
5296 	if (bios->data[script1] != 'q' || bios->data[script2] != 'q')
5297 		NV_WARN(dev, "TMDS table script pointers not stubbed\n");
5298 
5299 	bios->tmds.output0_script_ptr = ROM16(bios->data[tmdstableptr + 11]);
5300 	bios->tmds.output1_script_ptr = ROM16(bios->data[tmdstableptr + 13]);
5301 
5302 	return 0;
5303 }
5304 
5305 static int
parse_bit_U_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5306 parse_bit_U_tbl_entry(struct drm_device *dev, struct nvbios *bios,
5307 		      struct bit_entry *bitentry)
5308 {
5309 	/*
5310 	 * Parses the pointer to the G80 output script tables
5311 	 *
5312 	 * Starting at bitentry->offset:
5313 	 *
5314 	 * offset + 0  (16 bits): output script table pointer
5315 	 */
5316 
5317 	uint16_t outputscripttableptr;
5318 
5319 	if (bitentry->length != 3) {
5320 		NV_ERROR(dev, "Do not understand BIT U table\n");
5321 		return -EINVAL;
5322 	}
5323 
5324 	outputscripttableptr = ROM16(bios->data[bitentry->offset]);
5325 	bios->display.script_table_ptr = outputscripttableptr;
5326 	return 0;
5327 }
5328 
5329 struct bit_table {
5330 	const char id;
5331 	int (* const parse_fn)(struct drm_device *, struct nvbios *, struct bit_entry *);
5332 };
5333 
5334 #define BIT_TABLE(id, funcid) ((struct bit_table){ id, parse_bit_##funcid##_tbl_entry })
5335 
5336 int
bit_table(struct drm_device * dev,u8 id,struct bit_entry * bit)5337 bit_table(struct drm_device *dev, u8 id, struct bit_entry *bit)
5338 {
5339 	struct drm_nouveau_private *dev_priv = dev->dev_private;
5340 	struct nvbios *bios = &dev_priv->vbios;
5341 	u8 entries, *entry;
5342 
5343 	if (bios->type != NVBIOS_BIT)
5344 		return -ENODEV;
5345 
5346 	entries = bios->data[bios->offset + 10];
5347 	entry   = &bios->data[bios->offset + 12];
5348 	while (entries--) {
5349 		if (entry[0] == id) {
5350 			bit->id = entry[0];
5351 			bit->version = entry[1];
5352 			bit->length = ROM16(entry[2]);
5353 			bit->offset = ROM16(entry[4]);
5354 			bit->data = ROMPTR(dev, entry[4]);
5355 			return 0;
5356 		}
5357 
5358 		entry += bios->data[bios->offset + 9];
5359 	}
5360 
5361 	return -ENOENT;
5362 }
5363 
5364 static int
parse_bit_table(struct nvbios * bios,const uint16_t bitoffset,struct bit_table * table)5365 parse_bit_table(struct nvbios *bios, const uint16_t bitoffset,
5366 		struct bit_table *table)
5367 {
5368 	struct drm_device *dev = bios->dev;
5369 	struct bit_entry bitentry;
5370 
5371 	if (bit_table(dev, table->id, &bitentry) == 0)
5372 		return table->parse_fn(dev, bios, &bitentry);
5373 
5374 	NV_INFO(dev, "BIT table '%c' not found\n", table->id);
5375 	return -ENOSYS;
5376 }
5377 
5378 static int
parse_bit_structure(struct nvbios * bios,const uint16_t bitoffset)5379 parse_bit_structure(struct nvbios *bios, const uint16_t bitoffset)
5380 {
5381 	int ret;
5382 
5383 	/*
5384 	 * The only restriction on parsing order currently is having 'i' first
5385 	 * for use of bios->*_version or bios->feature_byte while parsing;
5386 	 * functions shouldn't be actually *doing* anything apart from pulling
5387 	 * data from the image into the bios struct, thus no interdependencies
5388 	 */
5389 	ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('i', i));
5390 	if (ret) /* info? */
5391 		return ret;
5392 	if (bios->major_version >= 0x60) /* g80+ */
5393 		parse_bit_table(bios, bitoffset, &BIT_TABLE('A', A));
5394 	ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('C', C));
5395 	if (ret)
5396 		return ret;
5397 	parse_bit_table(bios, bitoffset, &BIT_TABLE('D', display));
5398 	ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('I', init));
5399 	if (ret)
5400 		return ret;
5401 	parse_bit_table(bios, bitoffset, &BIT_TABLE('M', M)); /* memory? */
5402 	parse_bit_table(bios, bitoffset, &BIT_TABLE('L', lvds));
5403 	parse_bit_table(bios, bitoffset, &BIT_TABLE('T', tmds));
5404 	parse_bit_table(bios, bitoffset, &BIT_TABLE('U', U));
5405 
5406 	return 0;
5407 }
5408 
parse_bmp_structure(struct drm_device * dev,struct nvbios * bios,unsigned int offset)5409 static int parse_bmp_structure(struct drm_device *dev, struct nvbios *bios, unsigned int offset)
5410 {
5411 	/*
5412 	 * Parses the BMP structure for useful things, but does not act on them
5413 	 *
5414 	 * offset +   5: BMP major version
5415 	 * offset +   6: BMP minor version
5416 	 * offset +   9: BMP feature byte
5417 	 * offset +  10: BCD encoded BIOS version
5418 	 *
5419 	 * offset +  18: init script table pointer (for bios versions < 5.10h)
5420 	 * offset +  20: extra init script table pointer (for bios
5421 	 * versions < 5.10h)
5422 	 *
5423 	 * offset +  24: memory init table pointer (used on early bios versions)
5424 	 * offset +  26: SDR memory sequencing setup data table
5425 	 * offset +  28: DDR memory sequencing setup data table
5426 	 *
5427 	 * offset +  54: index of I2C CRTC pair to use for CRT output
5428 	 * offset +  55: index of I2C CRTC pair to use for TV output
5429 	 * offset +  56: index of I2C CRTC pair to use for flat panel output
5430 	 * offset +  58: write CRTC index for I2C pair 0
5431 	 * offset +  59: read CRTC index for I2C pair 0
5432 	 * offset +  60: write CRTC index for I2C pair 1
5433 	 * offset +  61: read CRTC index for I2C pair 1
5434 	 *
5435 	 * offset +  67: maximum internal PLL frequency (single stage PLL)
5436 	 * offset +  71: minimum internal PLL frequency (single stage PLL)
5437 	 *
5438 	 * offset +  75: script table pointers, as described in
5439 	 * parse_script_table_pointers
5440 	 *
5441 	 * offset +  89: TMDS single link output A table pointer
5442 	 * offset +  91: TMDS single link output B table pointer
5443 	 * offset +  95: LVDS single link output A table pointer
5444 	 * offset + 105: flat panel timings table pointer
5445 	 * offset + 107: flat panel strapping translation table pointer
5446 	 * offset + 117: LVDS manufacturer panel config table pointer
5447 	 * offset + 119: LVDS manufacturer strapping translation table pointer
5448 	 *
5449 	 * offset + 142: PLL limits table pointer
5450 	 *
5451 	 * offset + 156: minimum pixel clock for LVDS dual link
5452 	 */
5453 
5454 	uint8_t *bmp = &bios->data[offset], bmp_version_major, bmp_version_minor;
5455 	uint16_t bmplength;
5456 	uint16_t legacy_scripts_offset, legacy_i2c_offset;
5457 
5458 	/* load needed defaults in case we can't parse this info */
5459 	bios->digital_min_front_porch = 0x4b;
5460 	bios->fmaxvco = 256000;
5461 	bios->fminvco = 128000;
5462 	bios->fp.duallink_transition_clk = 90000;
5463 
5464 	bmp_version_major = bmp[5];
5465 	bmp_version_minor = bmp[6];
5466 
5467 	NV_TRACE(dev, "BMP version %d.%d\n",
5468 		 bmp_version_major, bmp_version_minor);
5469 
5470 	/*
5471 	 * Make sure that 0x36 is blank and can't be mistaken for a DCB
5472 	 * pointer on early versions
5473 	 */
5474 	if (bmp_version_major < 5)
5475 		*(uint16_t *)&bios->data[0x36] = 0;
5476 
5477 	/*
5478 	 * Seems that the minor version was 1 for all major versions prior
5479 	 * to 5. Version 6 could theoretically exist, but I suspect BIT
5480 	 * happened instead.
5481 	 */
5482 	if ((bmp_version_major < 5 && bmp_version_minor != 1) || bmp_version_major > 5) {
5483 		NV_ERROR(dev, "You have an unsupported BMP version. "
5484 				"Please send in your bios\n");
5485 		return -ENOSYS;
5486 	}
5487 
5488 	if (bmp_version_major == 0)
5489 		/* nothing that's currently useful in this version */
5490 		return 0;
5491 	else if (bmp_version_major == 1)
5492 		bmplength = 44; /* exact for 1.01 */
5493 	else if (bmp_version_major == 2)
5494 		bmplength = 48; /* exact for 2.01 */
5495 	else if (bmp_version_major == 3)
5496 		bmplength = 54;
5497 		/* guessed - mem init tables added in this version */
5498 	else if (bmp_version_major == 4 || bmp_version_minor < 0x1)
5499 		/* don't know if 5.0 exists... */
5500 		bmplength = 62;
5501 		/* guessed - BMP I2C indices added in version 4*/
5502 	else if (bmp_version_minor < 0x6)
5503 		bmplength = 67; /* exact for 5.01 */
5504 	else if (bmp_version_minor < 0x10)
5505 		bmplength = 75; /* exact for 5.06 */
5506 	else if (bmp_version_minor == 0x10)
5507 		bmplength = 89; /* exact for 5.10h */
5508 	else if (bmp_version_minor < 0x14)
5509 		bmplength = 118; /* exact for 5.11h */
5510 	else if (bmp_version_minor < 0x24)
5511 		/*
5512 		 * Not sure of version where pll limits came in;
5513 		 * certainly exist by 0x24 though.
5514 		 */
5515 		/* length not exact: this is long enough to get lvds members */
5516 		bmplength = 123;
5517 	else if (bmp_version_minor < 0x27)
5518 		/*
5519 		 * Length not exact: this is long enough to get pll limit
5520 		 * member
5521 		 */
5522 		bmplength = 144;
5523 	else
5524 		/*
5525 		 * Length not exact: this is long enough to get dual link
5526 		 * transition clock.
5527 		 */
5528 		bmplength = 158;
5529 
5530 	/* checksum */
5531 	if (nv_cksum(bmp, 8)) {
5532 		NV_ERROR(dev, "Bad BMP checksum\n");
5533 		return -EINVAL;
5534 	}
5535 
5536 	/*
5537 	 * Bit 4 seems to indicate either a mobile bios or a quadro card --
5538 	 * mobile behaviour consistent (nv11+), quadro only seen nv18gl-nv36gl
5539 	 * (not nv10gl), bit 5 that the flat panel tables are present, and
5540 	 * bit 6 a tv bios.
5541 	 */
5542 	bios->feature_byte = bmp[9];
5543 
5544 	parse_bios_version(dev, bios, offset + 10);
5545 
5546 	if (bmp_version_major < 5 || bmp_version_minor < 0x10)
5547 		bios->old_style_init = true;
5548 	legacy_scripts_offset = 18;
5549 	if (bmp_version_major < 2)
5550 		legacy_scripts_offset -= 4;
5551 	bios->init_script_tbls_ptr = ROM16(bmp[legacy_scripts_offset]);
5552 	bios->extra_init_script_tbl_ptr = ROM16(bmp[legacy_scripts_offset + 2]);
5553 
5554 	if (bmp_version_major > 2) {	/* appears in BMP 3 */
5555 		bios->legacy.mem_init_tbl_ptr = ROM16(bmp[24]);
5556 		bios->legacy.sdr_seq_tbl_ptr = ROM16(bmp[26]);
5557 		bios->legacy.ddr_seq_tbl_ptr = ROM16(bmp[28]);
5558 	}
5559 
5560 	legacy_i2c_offset = 0x48;	/* BMP version 2 & 3 */
5561 	if (bmplength > 61)
5562 		legacy_i2c_offset = offset + 54;
5563 	bios->legacy.i2c_indices.crt = bios->data[legacy_i2c_offset];
5564 	bios->legacy.i2c_indices.tv = bios->data[legacy_i2c_offset + 1];
5565 	bios->legacy.i2c_indices.panel = bios->data[legacy_i2c_offset + 2];
5566 
5567 	if (bmplength > 74) {
5568 		bios->fmaxvco = ROM32(bmp[67]);
5569 		bios->fminvco = ROM32(bmp[71]);
5570 	}
5571 	if (bmplength > 88)
5572 		parse_script_table_pointers(bios, offset + 75);
5573 	if (bmplength > 94) {
5574 		bios->tmds.output0_script_ptr = ROM16(bmp[89]);
5575 		bios->tmds.output1_script_ptr = ROM16(bmp[91]);
5576 		/*
5577 		 * Never observed in use with lvds scripts, but is reused for
5578 		 * 18/24 bit panel interface default for EDID equipped panels
5579 		 * (if_is_24bit not set directly to avoid any oscillation).
5580 		 */
5581 		bios->legacy.lvds_single_a_script_ptr = ROM16(bmp[95]);
5582 	}
5583 	if (bmplength > 108) {
5584 		bios->fp.fptablepointer = ROM16(bmp[105]);
5585 		bios->fp.fpxlatetableptr = ROM16(bmp[107]);
5586 		bios->fp.xlatwidth = 1;
5587 	}
5588 	if (bmplength > 120) {
5589 		bios->fp.lvdsmanufacturerpointer = ROM16(bmp[117]);
5590 		bios->fp.fpxlatemanufacturertableptr = ROM16(bmp[119]);
5591 	}
5592 	if (bmplength > 143)
5593 		bios->pll_limit_tbl_ptr = ROM16(bmp[142]);
5594 
5595 	if (bmplength > 157)
5596 		bios->fp.duallink_transition_clk = ROM16(bmp[156]) * 10;
5597 
5598 	return 0;
5599 }
5600 
findstr(uint8_t * data,int n,const uint8_t * str,int len)5601 static uint16_t findstr(uint8_t *data, int n, const uint8_t *str, int len)
5602 {
5603 	int i, j;
5604 
5605 	for (i = 0; i <= (n - len); i++) {
5606 		for (j = 0; j < len; j++)
5607 			if (data[i + j] != str[j])
5608 				break;
5609 		if (j == len)
5610 			return i;
5611 	}
5612 
5613 	return 0;
5614 }
5615 
5616 void *
dcb_table(struct drm_device * dev)5617 dcb_table(struct drm_device *dev)
5618 {
5619 	struct drm_nouveau_private *dev_priv = dev->dev_private;
5620 	u8 *dcb = NULL;
5621 
5622 	if (dev_priv->card_type > NV_04)
5623 		dcb = ROMPTR(dev, dev_priv->vbios.data[0x36]);
5624 	if (!dcb) {
5625 		NV_WARNONCE(dev, "No DCB data found in VBIOS\n");
5626 		return NULL;
5627 	}
5628 
5629 	if (dcb[0] >= 0x41) {
5630 		NV_WARNONCE(dev, "DCB version 0x%02x unknown\n", dcb[0]);
5631 		return NULL;
5632 	} else
5633 	if (dcb[0] >= 0x30) {
5634 		if (ROM32(dcb[6]) == 0x4edcbdcb)
5635 			return dcb;
5636 	} else
5637 	if (dcb[0] >= 0x20) {
5638 		if (ROM32(dcb[4]) == 0x4edcbdcb)
5639 			return dcb;
5640 	} else
5641 	if (dcb[0] >= 0x15) {
5642 		if (!memcmp(&dcb[-7], "DEV_REC", 7))
5643 			return dcb;
5644 	} else {
5645 		/*
5646 		 * v1.4 (some NV15/16, NV11+) seems the same as v1.5, but
5647 		 * always has the same single (crt) entry, even when tv-out
5648 		 * present, so the conclusion is this version cannot really
5649 		 * be used.
5650 		 *
5651 		 * v1.2 tables (some NV6/10, and NV15+) normally have the
5652 		 * same 5 entries, which are not specific to the card and so
5653 		 * no use.
5654 		 *
5655 		 * v1.2 does have an I2C table that read_dcb_i2c_table can
5656 		 * handle, but cards exist (nv11 in #14821) with a bad i2c
5657 		 * table pointer, so use the indices parsed in
5658 		 * parse_bmp_structure.
5659 		 *
5660 		 * v1.1 (NV5+, maybe some NV4) is entirely unhelpful
5661 		 */
5662 		NV_WARNONCE(dev, "No useful DCB data in VBIOS\n");
5663 		return NULL;
5664 	}
5665 
5666 	NV_WARNONCE(dev, "DCB header validation failed\n");
5667 	return NULL;
5668 }
5669 
5670 void *
dcb_outp(struct drm_device * dev,u8 idx)5671 dcb_outp(struct drm_device *dev, u8 idx)
5672 {
5673 	u8 *dcb = dcb_table(dev);
5674 	if (dcb && dcb[0] >= 0x30) {
5675 		if (idx < dcb[2])
5676 			return dcb + dcb[1] + (idx * dcb[3]);
5677 	} else
5678 	if (dcb && dcb[0] >= 0x20) {
5679 		u8 *i2c = ROMPTR(dev, dcb[2]);
5680 		u8 *ent = dcb + 8 + (idx * 8);
5681 		if (i2c && ent < i2c)
5682 			return ent;
5683 	} else
5684 	if (dcb && dcb[0] >= 0x15) {
5685 		u8 *i2c = ROMPTR(dev, dcb[2]);
5686 		u8 *ent = dcb + 4 + (idx * 10);
5687 		if (i2c && ent < i2c)
5688 			return ent;
5689 	}
5690 
5691 	return NULL;
5692 }
5693 
5694 int
dcb_outp_foreach(struct drm_device * dev,void * data,int (* exec)(struct drm_device *,void *,int idx,u8 * outp))5695 dcb_outp_foreach(struct drm_device *dev, void *data,
5696 		 int (*exec)(struct drm_device *, void *, int idx, u8 *outp))
5697 {
5698 	int ret, idx = -1;
5699 	u8 *outp = NULL;
5700 	while ((outp = dcb_outp(dev, ++idx))) {
5701 		if (ROM32(outp[0]) == 0x00000000)
5702 			break; /* seen on an NV11 with DCB v1.5 */
5703 		if (ROM32(outp[0]) == 0xffffffff)
5704 			break; /* seen on an NV17 with DCB v2.0 */
5705 
5706 		if ((outp[0] & 0x0f) == OUTPUT_UNUSED)
5707 			continue;
5708 		if ((outp[0] & 0x0f) == OUTPUT_EOL)
5709 			break;
5710 
5711 		ret = exec(dev, data, idx, outp);
5712 		if (ret)
5713 			return ret;
5714 	}
5715 
5716 	return 0;
5717 }
5718 
5719 u8 *
dcb_conntab(struct drm_device * dev)5720 dcb_conntab(struct drm_device *dev)
5721 {
5722 	u8 *dcb = dcb_table(dev);
5723 	if (dcb && dcb[0] >= 0x30 && dcb[1] >= 0x16) {
5724 		u8 *conntab = ROMPTR(dev, dcb[0x14]);
5725 		if (conntab && conntab[0] >= 0x30 && conntab[0] <= 0x40)
5726 			return conntab;
5727 	}
5728 	return NULL;
5729 }
5730 
5731 u8 *
dcb_conn(struct drm_device * dev,u8 idx)5732 dcb_conn(struct drm_device *dev, u8 idx)
5733 {
5734 	u8 *conntab = dcb_conntab(dev);
5735 	if (conntab && idx < conntab[2])
5736 		return conntab + conntab[1] + (idx * conntab[3]);
5737 	return NULL;
5738 }
5739 
new_dcb_entry(struct dcb_table * dcb)5740 static struct dcb_entry *new_dcb_entry(struct dcb_table *dcb)
5741 {
5742 	struct dcb_entry *entry = &dcb->entry[dcb->entries];
5743 
5744 	memset(entry, 0, sizeof(struct dcb_entry));
5745 	entry->index = dcb->entries++;
5746 
5747 	return entry;
5748 }
5749 
fabricate_dcb_output(struct dcb_table * dcb,int type,int i2c,int heads,int or)5750 static void fabricate_dcb_output(struct dcb_table *dcb, int type, int i2c,
5751 				 int heads, int or)
5752 {
5753 	struct dcb_entry *entry = new_dcb_entry(dcb);
5754 
5755 	entry->type = type;
5756 	entry->i2c_index = i2c;
5757 	entry->heads = heads;
5758 	if (type != OUTPUT_ANALOG)
5759 		entry->location = !DCB_LOC_ON_CHIP; /* ie OFF CHIP */
5760 	entry->or = or;
5761 }
5762 
5763 static bool
parse_dcb20_entry(struct drm_device * dev,struct dcb_table * dcb,uint32_t conn,uint32_t conf,struct dcb_entry * entry)5764 parse_dcb20_entry(struct drm_device *dev, struct dcb_table *dcb,
5765 		  uint32_t conn, uint32_t conf, struct dcb_entry *entry)
5766 {
5767 	entry->type = conn & 0xf;
5768 	entry->i2c_index = (conn >> 4) & 0xf;
5769 	entry->heads = (conn >> 8) & 0xf;
5770 	entry->connector = (conn >> 12) & 0xf;
5771 	entry->bus = (conn >> 16) & 0xf;
5772 	entry->location = (conn >> 20) & 0x3;
5773 	entry->or = (conn >> 24) & 0xf;
5774 
5775 	switch (entry->type) {
5776 	case OUTPUT_ANALOG:
5777 		/*
5778 		 * Although the rest of a CRT conf dword is usually
5779 		 * zeros, mac biosen have stuff there so we must mask
5780 		 */
5781 		entry->crtconf.maxfreq = (dcb->version < 0x30) ?
5782 					 (conf & 0xffff) * 10 :
5783 					 (conf & 0xff) * 10000;
5784 		break;
5785 	case OUTPUT_LVDS:
5786 		{
5787 		uint32_t mask;
5788 		if (conf & 0x1)
5789 			entry->lvdsconf.use_straps_for_mode = true;
5790 		if (dcb->version < 0x22) {
5791 			mask = ~0xd;
5792 			/*
5793 			 * The laptop in bug 14567 lies and claims to not use
5794 			 * straps when it does, so assume all DCB 2.0 laptops
5795 			 * use straps, until a broken EDID using one is produced
5796 			 */
5797 			entry->lvdsconf.use_straps_for_mode = true;
5798 			/*
5799 			 * Both 0x4 and 0x8 show up in v2.0 tables; assume they
5800 			 * mean the same thing (probably wrong, but might work)
5801 			 */
5802 			if (conf & 0x4 || conf & 0x8)
5803 				entry->lvdsconf.use_power_scripts = true;
5804 		} else {
5805 			mask = ~0x7;
5806 			if (conf & 0x2)
5807 				entry->lvdsconf.use_acpi_for_edid = true;
5808 			if (conf & 0x4)
5809 				entry->lvdsconf.use_power_scripts = true;
5810 			entry->lvdsconf.sor.link = (conf & 0x00000030) >> 4;
5811 		}
5812 		if (conf & mask) {
5813 			/*
5814 			 * Until we even try to use these on G8x, it's
5815 			 * useless reporting unknown bits.  They all are.
5816 			 */
5817 			if (dcb->version >= 0x40)
5818 				break;
5819 
5820 			NV_ERROR(dev, "Unknown LVDS configuration bits, "
5821 				      "please report\n");
5822 		}
5823 		break;
5824 		}
5825 	case OUTPUT_TV:
5826 	{
5827 		if (dcb->version >= 0x30)
5828 			entry->tvconf.has_component_output = conf & (0x8 << 4);
5829 		else
5830 			entry->tvconf.has_component_output = false;
5831 
5832 		break;
5833 	}
5834 	case OUTPUT_DP:
5835 		entry->dpconf.sor.link = (conf & 0x00000030) >> 4;
5836 		switch ((conf & 0x00e00000) >> 21) {
5837 		case 0:
5838 			entry->dpconf.link_bw = 162000;
5839 			break;
5840 		default:
5841 			entry->dpconf.link_bw = 270000;
5842 			break;
5843 		}
5844 		switch ((conf & 0x0f000000) >> 24) {
5845 		case 0xf:
5846 			entry->dpconf.link_nr = 4;
5847 			break;
5848 		case 0x3:
5849 			entry->dpconf.link_nr = 2;
5850 			break;
5851 		default:
5852 			entry->dpconf.link_nr = 1;
5853 			break;
5854 		}
5855 		break;
5856 	case OUTPUT_TMDS:
5857 		if (dcb->version >= 0x40)
5858 			entry->tmdsconf.sor.link = (conf & 0x00000030) >> 4;
5859 		else if (dcb->version >= 0x30)
5860 			entry->tmdsconf.slave_addr = (conf & 0x00000700) >> 8;
5861 		else if (dcb->version >= 0x22)
5862 			entry->tmdsconf.slave_addr = (conf & 0x00000070) >> 4;
5863 
5864 		break;
5865 	case OUTPUT_EOL:
5866 		/* weird g80 mobile type that "nv" treats as a terminator */
5867 		dcb->entries--;
5868 		return false;
5869 	default:
5870 		break;
5871 	}
5872 
5873 	if (dcb->version < 0x40) {
5874 		/* Normal entries consist of a single bit, but dual link has
5875 		 * the next most significant bit set too
5876 		 */
5877 		entry->duallink_possible =
5878 			((1 << (ffs(entry->or) - 1)) * 3 == entry->or);
5879 	} else {
5880 		entry->duallink_possible = (entry->sorconf.link == 3);
5881 	}
5882 
5883 	/* unsure what DCB version introduces this, 3.0? */
5884 	if (conf & 0x100000)
5885 		entry->i2c_upper_default = true;
5886 
5887 	return true;
5888 }
5889 
5890 static bool
parse_dcb15_entry(struct drm_device * dev,struct dcb_table * dcb,uint32_t conn,uint32_t conf,struct dcb_entry * entry)5891 parse_dcb15_entry(struct drm_device *dev, struct dcb_table *dcb,
5892 		  uint32_t conn, uint32_t conf, struct dcb_entry *entry)
5893 {
5894 	switch (conn & 0x0000000f) {
5895 	case 0:
5896 		entry->type = OUTPUT_ANALOG;
5897 		break;
5898 	case 1:
5899 		entry->type = OUTPUT_TV;
5900 		break;
5901 	case 2:
5902 	case 4:
5903 		if (conn & 0x10)
5904 			entry->type = OUTPUT_LVDS;
5905 		else
5906 			entry->type = OUTPUT_TMDS;
5907 		break;
5908 	case 3:
5909 		entry->type = OUTPUT_LVDS;
5910 		break;
5911 	default:
5912 		NV_ERROR(dev, "Unknown DCB type %d\n", conn & 0x0000000f);
5913 		return false;
5914 	}
5915 
5916 	entry->i2c_index = (conn & 0x0003c000) >> 14;
5917 	entry->heads = ((conn & 0x001c0000) >> 18) + 1;
5918 	entry->or = entry->heads; /* same as heads, hopefully safe enough */
5919 	entry->location = (conn & 0x01e00000) >> 21;
5920 	entry->bus = (conn & 0x0e000000) >> 25;
5921 	entry->duallink_possible = false;
5922 
5923 	switch (entry->type) {
5924 	case OUTPUT_ANALOG:
5925 		entry->crtconf.maxfreq = (conf & 0xffff) * 10;
5926 		break;
5927 	case OUTPUT_TV:
5928 		entry->tvconf.has_component_output = false;
5929 		break;
5930 	case OUTPUT_LVDS:
5931 		if ((conn & 0x00003f00) >> 8 != 0x10)
5932 			entry->lvdsconf.use_straps_for_mode = true;
5933 		entry->lvdsconf.use_power_scripts = true;
5934 		break;
5935 	default:
5936 		break;
5937 	}
5938 
5939 	return true;
5940 }
5941 
5942 static
merge_like_dcb_entries(struct drm_device * dev,struct dcb_table * dcb)5943 void merge_like_dcb_entries(struct drm_device *dev, struct dcb_table *dcb)
5944 {
5945 	/*
5946 	 * DCB v2.0 lists each output combination separately.
5947 	 * Here we merge compatible entries to have fewer outputs, with
5948 	 * more options
5949 	 */
5950 
5951 	int i, newentries = 0;
5952 
5953 	for (i = 0; i < dcb->entries; i++) {
5954 		struct dcb_entry *ient = &dcb->entry[i];
5955 		int j;
5956 
5957 		for (j = i + 1; j < dcb->entries; j++) {
5958 			struct dcb_entry *jent = &dcb->entry[j];
5959 
5960 			if (jent->type == 100) /* already merged entry */
5961 				continue;
5962 
5963 			/* merge heads field when all other fields the same */
5964 			if (jent->i2c_index == ient->i2c_index &&
5965 			    jent->type == ient->type &&
5966 			    jent->location == ient->location &&
5967 			    jent->or == ient->or) {
5968 				NV_TRACE(dev, "Merging DCB entries %d and %d\n",
5969 					 i, j);
5970 				ient->heads |= jent->heads;
5971 				jent->type = 100; /* dummy value */
5972 			}
5973 		}
5974 	}
5975 
5976 	/* Compact entries merged into others out of dcb */
5977 	for (i = 0; i < dcb->entries; i++) {
5978 		if (dcb->entry[i].type == 100)
5979 			continue;
5980 
5981 		if (newentries != i) {
5982 			dcb->entry[newentries] = dcb->entry[i];
5983 			dcb->entry[newentries].index = newentries;
5984 		}
5985 		newentries++;
5986 	}
5987 
5988 	dcb->entries = newentries;
5989 }
5990 
5991 static bool
apply_dcb_encoder_quirks(struct drm_device * dev,int idx,u32 * conn,u32 * conf)5992 apply_dcb_encoder_quirks(struct drm_device *dev, int idx, u32 *conn, u32 *conf)
5993 {
5994 	struct drm_nouveau_private *dev_priv = dev->dev_private;
5995 	struct dcb_table *dcb = &dev_priv->vbios.dcb;
5996 
5997 	/* Dell Precision M6300
5998 	 *   DCB entry 2: 02025312 00000010
5999 	 *   DCB entry 3: 02026312 00000020
6000 	 *
6001 	 * Identical, except apparently a different connector on a
6002 	 * different SOR link.  Not a clue how we're supposed to know
6003 	 * which one is in use if it even shares an i2c line...
6004 	 *
6005 	 * Ignore the connector on the second SOR link to prevent
6006 	 * nasty problems until this is sorted (assuming it's not a
6007 	 * VBIOS bug).
6008 	 */
6009 	if (nv_match_device(dev, 0x040d, 0x1028, 0x019b)) {
6010 		if (*conn == 0x02026312 && *conf == 0x00000020)
6011 			return false;
6012 	}
6013 
6014 	/* GeForce3 Ti 200
6015 	 *
6016 	 * DCB reports an LVDS output that should be TMDS:
6017 	 *   DCB entry 1: f2005014 ffffffff
6018 	 */
6019 	if (nv_match_device(dev, 0x0201, 0x1462, 0x8851)) {
6020 		if (*conn == 0xf2005014 && *conf == 0xffffffff) {
6021 			fabricate_dcb_output(dcb, OUTPUT_TMDS, 1, 1, 1);
6022 			return false;
6023 		}
6024 	}
6025 
6026 	/* XFX GT-240X-YA
6027 	 *
6028 	 * So many things wrong here, replace the entire encoder table..
6029 	 */
6030 	if (nv_match_device(dev, 0x0ca3, 0x1682, 0x3003)) {
6031 		if (idx == 0) {
6032 			*conn = 0x02001300; /* VGA, connector 1 */
6033 			*conf = 0x00000028;
6034 		} else
6035 		if (idx == 1) {
6036 			*conn = 0x01010312; /* DVI, connector 0 */
6037 			*conf = 0x00020030;
6038 		} else
6039 		if (idx == 2) {
6040 			*conn = 0x01010310; /* VGA, connector 0 */
6041 			*conf = 0x00000028;
6042 		} else
6043 		if (idx == 3) {
6044 			*conn = 0x02022362; /* HDMI, connector 2 */
6045 			*conf = 0x00020010;
6046 		} else {
6047 			*conn = 0x0000000e; /* EOL */
6048 			*conf = 0x00000000;
6049 		}
6050 	}
6051 
6052 	/* Some other twisted XFX board (rhbz#694914)
6053 	 *
6054 	 * The DVI/VGA encoder combo that's supposed to represent the
6055 	 * DVI-I connector actually point at two different ones, and
6056 	 * the HDMI connector ends up paired with the VGA instead.
6057 	 *
6058 	 * Connector table is missing anything for VGA at all, pointing it
6059 	 * an invalid conntab entry 2 so we figure it out ourself.
6060 	 */
6061 	if (nv_match_device(dev, 0x0615, 0x1682, 0x2605)) {
6062 		if (idx == 0) {
6063 			*conn = 0x02002300; /* VGA, connector 2 */
6064 			*conf = 0x00000028;
6065 		} else
6066 		if (idx == 1) {
6067 			*conn = 0x01010312; /* DVI, connector 0 */
6068 			*conf = 0x00020030;
6069 		} else
6070 		if (idx == 2) {
6071 			*conn = 0x04020310; /* VGA, connector 0 */
6072 			*conf = 0x00000028;
6073 		} else
6074 		if (idx == 3) {
6075 			*conn = 0x02021322; /* HDMI, connector 1 */
6076 			*conf = 0x00020010;
6077 		} else {
6078 			*conn = 0x0000000e; /* EOL */
6079 			*conf = 0x00000000;
6080 		}
6081 	}
6082 
6083 	return true;
6084 }
6085 
6086 static void
fabricate_dcb_encoder_table(struct drm_device * dev,struct nvbios * bios)6087 fabricate_dcb_encoder_table(struct drm_device *dev, struct nvbios *bios)
6088 {
6089 	struct dcb_table *dcb = &bios->dcb;
6090 	int all_heads = (nv_two_heads(dev) ? 3 : 1);
6091 
6092 #ifdef __powerpc__
6093 	/* Apple iMac G4 NV17 */
6094 	if (of_machine_is_compatible("PowerMac4,5")) {
6095 		fabricate_dcb_output(dcb, OUTPUT_TMDS, 0, all_heads, 1);
6096 		fabricate_dcb_output(dcb, OUTPUT_ANALOG, 1, all_heads, 2);
6097 		return;
6098 	}
6099 #endif
6100 
6101 	/* Make up some sane defaults */
6102 	fabricate_dcb_output(dcb, OUTPUT_ANALOG,
6103 			     bios->legacy.i2c_indices.crt, 1, 1);
6104 
6105 	if (nv04_tv_identify(dev, bios->legacy.i2c_indices.tv) >= 0)
6106 		fabricate_dcb_output(dcb, OUTPUT_TV,
6107 				     bios->legacy.i2c_indices.tv,
6108 				     all_heads, 0);
6109 
6110 	else if (bios->tmds.output0_script_ptr ||
6111 		 bios->tmds.output1_script_ptr)
6112 		fabricate_dcb_output(dcb, OUTPUT_TMDS,
6113 				     bios->legacy.i2c_indices.panel,
6114 				     all_heads, 1);
6115 }
6116 
6117 static int
parse_dcb_entry(struct drm_device * dev,void * data,int idx,u8 * outp)6118 parse_dcb_entry(struct drm_device *dev, void *data, int idx, u8 *outp)
6119 {
6120 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6121 	struct dcb_table *dcb = &dev_priv->vbios.dcb;
6122 	u32 conf = (dcb->version >= 0x20) ? ROM32(outp[4]) : ROM32(outp[6]);
6123 	u32 conn = ROM32(outp[0]);
6124 	bool ret;
6125 
6126 	if (apply_dcb_encoder_quirks(dev, idx, &conn, &conf)) {
6127 		struct dcb_entry *entry = new_dcb_entry(dcb);
6128 
6129 		NV_TRACEWARN(dev, "DCB outp %02d: %08x %08x\n", idx, conn, conf);
6130 
6131 		if (dcb->version >= 0x20)
6132 			ret = parse_dcb20_entry(dev, dcb, conn, conf, entry);
6133 		else
6134 			ret = parse_dcb15_entry(dev, dcb, conn, conf, entry);
6135 		if (!ret)
6136 			return 1; /* stop parsing */
6137 
6138 		/* Ignore the I2C index for on-chip TV-out, as there
6139 		 * are cards with bogus values (nv31m in bug 23212),
6140 		 * and it's otherwise useless.
6141 		 */
6142 		if (entry->type == OUTPUT_TV &&
6143 		    entry->location == DCB_LOC_ON_CHIP)
6144 			entry->i2c_index = 0x0f;
6145 	}
6146 
6147 	return 0;
6148 }
6149 
6150 static void
dcb_fake_connectors(struct nvbios * bios)6151 dcb_fake_connectors(struct nvbios *bios)
6152 {
6153 	struct dcb_table *dcbt = &bios->dcb;
6154 	u8 map[16] = { };
6155 	int i, idx = 0;
6156 
6157 	/* heuristic: if we ever get a non-zero connector field, assume
6158 	 * that all the indices are valid and we don't need fake them.
6159 	 *
6160 	 * and, as usual, a blacklist of boards with bad bios data..
6161 	 */
6162 	if (!nv_match_device(bios->dev, 0x0392, 0x107d, 0x20a2)) {
6163 		for (i = 0; i < dcbt->entries; i++) {
6164 			if (dcbt->entry[i].connector)
6165 				return;
6166 		}
6167 	}
6168 
6169 	/* no useful connector info available, we need to make it up
6170 	 * ourselves.  the rule here is: anything on the same i2c bus
6171 	 * is considered to be on the same connector.  any output
6172 	 * without an associated i2c bus is assigned its own unique
6173 	 * connector index.
6174 	 */
6175 	for (i = 0; i < dcbt->entries; i++) {
6176 		u8 i2c = dcbt->entry[i].i2c_index;
6177 		if (i2c == 0x0f) {
6178 			dcbt->entry[i].connector = idx++;
6179 		} else {
6180 			if (!map[i2c])
6181 				map[i2c] = ++idx;
6182 			dcbt->entry[i].connector = map[i2c] - 1;
6183 		}
6184 	}
6185 
6186 	/* if we created more than one connector, destroy the connector
6187 	 * table - just in case it has random, rather than stub, entries.
6188 	 */
6189 	if (i > 1) {
6190 		u8 *conntab = dcb_conntab(bios->dev);
6191 		if (conntab)
6192 			conntab[0] = 0x00;
6193 	}
6194 }
6195 
6196 static int
parse_dcb_table(struct drm_device * dev,struct nvbios * bios)6197 parse_dcb_table(struct drm_device *dev, struct nvbios *bios)
6198 {
6199 	struct dcb_table *dcb = &bios->dcb;
6200 	u8 *dcbt, *conn;
6201 	int idx;
6202 
6203 	dcbt = dcb_table(dev);
6204 	if (!dcbt) {
6205 		/* handle pre-DCB boards */
6206 		if (bios->type == NVBIOS_BMP) {
6207 			fabricate_dcb_encoder_table(dev, bios);
6208 			return 0;
6209 		}
6210 
6211 		return -EINVAL;
6212 	}
6213 
6214 	NV_TRACE(dev, "DCB version %d.%d\n", dcbt[0] >> 4, dcbt[0] & 0xf);
6215 
6216 	dcb->version = dcbt[0];
6217 	dcb_outp_foreach(dev, NULL, parse_dcb_entry);
6218 
6219 	/*
6220 	 * apart for v2.1+ not being known for requiring merging, this
6221 	 * guarantees dcbent->index is the index of the entry in the rom image
6222 	 */
6223 	if (dcb->version < 0x21)
6224 		merge_like_dcb_entries(dev, dcb);
6225 
6226 	if (!dcb->entries)
6227 		return -ENXIO;
6228 
6229 	/* dump connector table entries to log, if any exist */
6230 	idx = -1;
6231 	while ((conn = dcb_conn(dev, ++idx))) {
6232 		if (conn[0] != 0xff) {
6233 			NV_TRACE(dev, "DCB conn %02d: ", idx);
6234 			if (dcb_conntab(dev)[3] < 4)
6235 				printk("%04x\n", ROM16(conn[0]));
6236 			else
6237 				printk("%08x\n", ROM32(conn[0]));
6238 		}
6239 	}
6240 	dcb_fake_connectors(bios);
6241 	return 0;
6242 }
6243 
load_nv17_hwsq_ucode_entry(struct drm_device * dev,struct nvbios * bios,uint16_t hwsq_offset,int entry)6244 static int load_nv17_hwsq_ucode_entry(struct drm_device *dev, struct nvbios *bios, uint16_t hwsq_offset, int entry)
6245 {
6246 	/*
6247 	 * The header following the "HWSQ" signature has the number of entries,
6248 	 * and the entry size
6249 	 *
6250 	 * An entry consists of a dword to write to the sequencer control reg
6251 	 * (0x00001304), followed by the ucode bytes, written sequentially,
6252 	 * starting at reg 0x00001400
6253 	 */
6254 
6255 	uint8_t bytes_to_write;
6256 	uint16_t hwsq_entry_offset;
6257 	int i;
6258 
6259 	if (bios->data[hwsq_offset] <= entry) {
6260 		NV_ERROR(dev, "Too few entries in HW sequencer table for "
6261 				"requested entry\n");
6262 		return -ENOENT;
6263 	}
6264 
6265 	bytes_to_write = bios->data[hwsq_offset + 1];
6266 
6267 	if (bytes_to_write != 36) {
6268 		NV_ERROR(dev, "Unknown HW sequencer entry size\n");
6269 		return -EINVAL;
6270 	}
6271 
6272 	NV_TRACE(dev, "Loading NV17 power sequencing microcode\n");
6273 
6274 	hwsq_entry_offset = hwsq_offset + 2 + entry * bytes_to_write;
6275 
6276 	/* set sequencer control */
6277 	bios_wr32(bios, 0x00001304, ROM32(bios->data[hwsq_entry_offset]));
6278 	bytes_to_write -= 4;
6279 
6280 	/* write ucode */
6281 	for (i = 0; i < bytes_to_write; i += 4)
6282 		bios_wr32(bios, 0x00001400 + i, ROM32(bios->data[hwsq_entry_offset + i + 4]));
6283 
6284 	/* twiddle NV_PBUS_DEBUG_4 */
6285 	bios_wr32(bios, NV_PBUS_DEBUG_4, bios_rd32(bios, NV_PBUS_DEBUG_4) | 0x18);
6286 
6287 	return 0;
6288 }
6289 
load_nv17_hw_sequencer_ucode(struct drm_device * dev,struct nvbios * bios)6290 static int load_nv17_hw_sequencer_ucode(struct drm_device *dev,
6291 					struct nvbios *bios)
6292 {
6293 	/*
6294 	 * BMP based cards, from NV17, need a microcode loading to correctly
6295 	 * control the GPIO etc for LVDS panels
6296 	 *
6297 	 * BIT based cards seem to do this directly in the init scripts
6298 	 *
6299 	 * The microcode entries are found by the "HWSQ" signature.
6300 	 */
6301 
6302 	const uint8_t hwsq_signature[] = { 'H', 'W', 'S', 'Q' };
6303 	const int sz = sizeof(hwsq_signature);
6304 	int hwsq_offset;
6305 
6306 	hwsq_offset = findstr(bios->data, bios->length, hwsq_signature, sz);
6307 	if (!hwsq_offset)
6308 		return 0;
6309 
6310 	/* always use entry 0? */
6311 	return load_nv17_hwsq_ucode_entry(dev, bios, hwsq_offset + sz, 0);
6312 }
6313 
nouveau_bios_embedded_edid(struct drm_device * dev)6314 uint8_t *nouveau_bios_embedded_edid(struct drm_device *dev)
6315 {
6316 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6317 	struct nvbios *bios = &dev_priv->vbios;
6318 	const uint8_t edid_sig[] = {
6319 			0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 };
6320 	uint16_t offset = 0;
6321 	uint16_t newoffset;
6322 	int searchlen = NV_PROM_SIZE;
6323 
6324 	if (bios->fp.edid)
6325 		return bios->fp.edid;
6326 
6327 	while (searchlen) {
6328 		newoffset = findstr(&bios->data[offset], searchlen,
6329 								edid_sig, 8);
6330 		if (!newoffset)
6331 			return NULL;
6332 		offset += newoffset;
6333 		if (!nv_cksum(&bios->data[offset], EDID1_LEN))
6334 			break;
6335 
6336 		searchlen -= offset;
6337 		offset++;
6338 	}
6339 
6340 	NV_TRACE(dev, "Found EDID in BIOS\n");
6341 
6342 	return bios->fp.edid = &bios->data[offset];
6343 }
6344 
6345 void
nouveau_bios_run_init_table(struct drm_device * dev,uint16_t table,struct dcb_entry * dcbent,int crtc)6346 nouveau_bios_run_init_table(struct drm_device *dev, uint16_t table,
6347 			    struct dcb_entry *dcbent, int crtc)
6348 {
6349 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6350 	struct nvbios *bios = &dev_priv->vbios;
6351 	struct init_exec iexec = { true, false };
6352 
6353 	spin_lock_bh(&bios->lock);
6354 	bios->display.output = dcbent;
6355 	bios->display.crtc = crtc;
6356 	parse_init_table(bios, table, &iexec);
6357 	bios->display.output = NULL;
6358 	spin_unlock_bh(&bios->lock);
6359 }
6360 
6361 void
nouveau_bios_init_exec(struct drm_device * dev,uint16_t table)6362 nouveau_bios_init_exec(struct drm_device *dev, uint16_t table)
6363 {
6364 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6365 	struct nvbios *bios = &dev_priv->vbios;
6366 	struct init_exec iexec = { true, false };
6367 
6368 	parse_init_table(bios, table, &iexec);
6369 }
6370 
NVInitVBIOS(struct drm_device * dev)6371 static bool NVInitVBIOS(struct drm_device *dev)
6372 {
6373 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6374 	struct nvbios *bios = &dev_priv->vbios;
6375 
6376 	memset(bios, 0, sizeof(struct nvbios));
6377 	spin_lock_init(&bios->lock);
6378 	bios->dev = dev;
6379 
6380 	return bios_shadow(dev);
6381 }
6382 
nouveau_parse_vbios_struct(struct drm_device * dev)6383 static int nouveau_parse_vbios_struct(struct drm_device *dev)
6384 {
6385 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6386 	struct nvbios *bios = &dev_priv->vbios;
6387 	const uint8_t bit_signature[] = { 0xff, 0xb8, 'B', 'I', 'T' };
6388 	const uint8_t bmp_signature[] = { 0xff, 0x7f, 'N', 'V', 0x0 };
6389 	int offset;
6390 
6391 	offset = findstr(bios->data, bios->length,
6392 					bit_signature, sizeof(bit_signature));
6393 	if (offset) {
6394 		NV_TRACE(dev, "BIT BIOS found\n");
6395 		bios->type = NVBIOS_BIT;
6396 		bios->offset = offset;
6397 		return parse_bit_structure(bios, offset + 6);
6398 	}
6399 
6400 	offset = findstr(bios->data, bios->length,
6401 					bmp_signature, sizeof(bmp_signature));
6402 	if (offset) {
6403 		NV_TRACE(dev, "BMP BIOS found\n");
6404 		bios->type = NVBIOS_BMP;
6405 		bios->offset = offset;
6406 		return parse_bmp_structure(dev, bios, offset);
6407 	}
6408 
6409 	NV_ERROR(dev, "No known BIOS signature found\n");
6410 	return -ENODEV;
6411 }
6412 
6413 int
nouveau_run_vbios_init(struct drm_device * dev)6414 nouveau_run_vbios_init(struct drm_device *dev)
6415 {
6416 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6417 	struct nvbios *bios = &dev_priv->vbios;
6418 	int i, ret = 0;
6419 
6420 	/* Reset the BIOS head to 0. */
6421 	bios->state.crtchead = 0;
6422 
6423 	if (bios->major_version < 5)	/* BMP only */
6424 		load_nv17_hw_sequencer_ucode(dev, bios);
6425 
6426 	if (bios->execute) {
6427 		bios->fp.last_script_invoc = 0;
6428 		bios->fp.lvds_init_run = false;
6429 	}
6430 
6431 	parse_init_tables(bios);
6432 
6433 	/*
6434 	 * Runs some additional script seen on G8x VBIOSen.  The VBIOS'
6435 	 * parser will run this right after the init tables, the binary
6436 	 * driver appears to run it at some point later.
6437 	 */
6438 	if (bios->some_script_ptr) {
6439 		struct init_exec iexec = {true, false};
6440 
6441 		NV_INFO(dev, "Parsing VBIOS init table at offset 0x%04X\n",
6442 			bios->some_script_ptr);
6443 		parse_init_table(bios, bios->some_script_ptr, &iexec);
6444 	}
6445 
6446 	if (dev_priv->card_type >= NV_50) {
6447 		for (i = 0; i < bios->dcb.entries; i++) {
6448 			nouveau_bios_run_display_table(dev, 0, 0,
6449 						       &bios->dcb.entry[i], -1);
6450 		}
6451 	}
6452 
6453 	return ret;
6454 }
6455 
6456 static bool
nouveau_bios_posted(struct drm_device * dev)6457 nouveau_bios_posted(struct drm_device *dev)
6458 {
6459 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6460 	unsigned htotal;
6461 
6462 	if (dev_priv->card_type >= NV_50) {
6463 		if (NVReadVgaCrtc(dev, 0, 0x00) == 0 &&
6464 		    NVReadVgaCrtc(dev, 0, 0x1a) == 0)
6465 			return false;
6466 		return true;
6467 	}
6468 
6469 	htotal  = NVReadVgaCrtc(dev, 0, 0x06);
6470 	htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x01) << 8;
6471 	htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x20) << 4;
6472 	htotal |= (NVReadVgaCrtc(dev, 0, 0x25) & 0x01) << 10;
6473 	htotal |= (NVReadVgaCrtc(dev, 0, 0x41) & 0x01) << 11;
6474 
6475 	return (htotal != 0);
6476 }
6477 
6478 int
nouveau_bios_init(struct drm_device * dev)6479 nouveau_bios_init(struct drm_device *dev)
6480 {
6481 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6482 	struct nvbios *bios = &dev_priv->vbios;
6483 	int ret;
6484 
6485 	if (!NVInitVBIOS(dev))
6486 		return -ENODEV;
6487 
6488 	ret = nouveau_parse_vbios_struct(dev);
6489 	if (ret)
6490 		return ret;
6491 
6492 	ret = nouveau_i2c_init(dev);
6493 	if (ret)
6494 		return ret;
6495 
6496 	ret = nouveau_mxm_init(dev);
6497 	if (ret)
6498 		return ret;
6499 
6500 	ret = parse_dcb_table(dev, bios);
6501 	if (ret)
6502 		return ret;
6503 
6504 	if (!bios->major_version)	/* we don't run version 0 bios */
6505 		return 0;
6506 
6507 	/* init script execution disabled */
6508 	bios->execute = false;
6509 
6510 	/* ... unless card isn't POSTed already */
6511 	if (!nouveau_bios_posted(dev)) {
6512 		NV_INFO(dev, "Adaptor not initialised, "
6513 			"running VBIOS init tables.\n");
6514 		bios->execute = true;
6515 	}
6516 	if (nouveau_force_post)
6517 		bios->execute = true;
6518 
6519 	ret = nouveau_run_vbios_init(dev);
6520 	if (ret)
6521 		return ret;
6522 
6523 	/* feature_byte on BMP is poor, but init always sets CR4B */
6524 	if (bios->major_version < 5)
6525 		bios->is_mobile = NVReadVgaCrtc(dev, 0, NV_CIO_CRE_4B) & 0x40;
6526 
6527 	/* all BIT systems need p_f_m_t for digital_min_front_porch */
6528 	if (bios->is_mobile || bios->major_version >= 5)
6529 		ret = parse_fp_mode_table(dev, bios);
6530 
6531 	/* allow subsequent scripts to execute */
6532 	bios->execute = true;
6533 
6534 	return 0;
6535 }
6536 
6537 void
nouveau_bios_takedown(struct drm_device * dev)6538 nouveau_bios_takedown(struct drm_device *dev)
6539 {
6540 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6541 
6542 	nouveau_mxm_fini(dev);
6543 	nouveau_i2c_fini(dev);
6544 
6545 	kfree(dev_priv->vbios.data);
6546 }
6547