1 /*
2  * Copyright 2005-2006 Erik Waling
3  * Copyright 2006 Stephane Marchesin
4  * Copyright 2007-2009 Stuart Bennett
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
20  * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
21  * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "drmP.h"
26 #define NV_DEBUG_NOTRACE
27 #include "nouveau_drv.h"
28 #include "nouveau_hw.h"
29 #include "nouveau_encoder.h"
30 
31 #include <linux/io-mapping.h>
32 
33 /* these defines are made up */
34 #define NV_CIO_CRE_44_HEADA 0x0
35 #define NV_CIO_CRE_44_HEADB 0x3
36 #define FEATURE_MOBILE 0x10	/* also FEATURE_QUADRO for BMP */
37 #define LEGACY_I2C_CRT 0x80
38 #define LEGACY_I2C_PANEL 0x81
39 #define LEGACY_I2C_TV 0x82
40 
41 #define EDID1_LEN 128
42 
43 #define BIOSLOG(sip, fmt, arg...) NV_DEBUG(sip->dev, fmt, ##arg)
44 #define LOG_OLD_VALUE(x)
45 
46 struct init_exec {
47 	bool execute;
48 	bool repeat;
49 };
50 
nv_cksum(const uint8_t * data,unsigned int length)51 static bool nv_cksum(const uint8_t *data, unsigned int length)
52 {
53 	/*
54 	 * There's a few checksums in the BIOS, so here's a generic checking
55 	 * function.
56 	 */
57 	int i;
58 	uint8_t sum = 0;
59 
60 	for (i = 0; i < length; i++)
61 		sum += data[i];
62 
63 	if (sum)
64 		return true;
65 
66 	return false;
67 }
68 
69 static int
score_vbios(struct drm_device * dev,const uint8_t * data,const bool writeable)70 score_vbios(struct drm_device *dev, const uint8_t *data, const bool writeable)
71 {
72 	if (!(data[0] == 0x55 && data[1] == 0xAA)) {
73 		NV_TRACEWARN(dev, "... BIOS signature not found\n");
74 		return 0;
75 	}
76 
77 	if (nv_cksum(data, data[2] * 512)) {
78 		NV_TRACEWARN(dev, "... BIOS checksum invalid\n");
79 		/* if a ro image is somewhat bad, it's probably all rubbish */
80 		return writeable ? 2 : 1;
81 	} else
82 		NV_TRACE(dev, "... appears to be valid\n");
83 
84 	return 3;
85 }
86 
load_vbios_prom(struct drm_device * dev,uint8_t * data)87 static void load_vbios_prom(struct drm_device *dev, uint8_t *data)
88 {
89 	struct drm_nouveau_private *dev_priv = dev->dev_private;
90 	uint32_t pci_nv_20, save_pci_nv_20;
91 	int pcir_ptr;
92 	int i;
93 
94 	if (dev_priv->card_type >= NV_50)
95 		pci_nv_20 = 0x88050;
96 	else
97 		pci_nv_20 = NV_PBUS_PCI_NV_20;
98 
99 	/* enable ROM access */
100 	save_pci_nv_20 = nvReadMC(dev, pci_nv_20);
101 	nvWriteMC(dev, pci_nv_20,
102 		  save_pci_nv_20 & ~NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED);
103 
104 	/* bail if no rom signature */
105 	if (nv_rd08(dev, NV_PROM_OFFSET) != 0x55 ||
106 	    nv_rd08(dev, NV_PROM_OFFSET + 1) != 0xaa)
107 		goto out;
108 
109 	/* additional check (see note below) - read PCI record header */
110 	pcir_ptr = nv_rd08(dev, NV_PROM_OFFSET + 0x18) |
111 		   nv_rd08(dev, NV_PROM_OFFSET + 0x19) << 8;
112 	if (nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr) != 'P' ||
113 	    nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr + 1) != 'C' ||
114 	    nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr + 2) != 'I' ||
115 	    nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr + 3) != 'R')
116 		goto out;
117 
118 	/* on some 6600GT/6800LE prom reads are messed up.  nvclock alleges a
119 	 * a good read may be obtained by waiting or re-reading (cargocult: 5x)
120 	 * each byte.  we'll hope pramin has something usable instead
121 	 */
122 	for (i = 0; i < NV_PROM_SIZE; i++)
123 		data[i] = nv_rd08(dev, NV_PROM_OFFSET + i);
124 
125 out:
126 	/* disable ROM access */
127 	nvWriteMC(dev, pci_nv_20,
128 		  save_pci_nv_20 | NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED);
129 }
130 
load_vbios_pramin(struct drm_device * dev,uint8_t * data)131 static void load_vbios_pramin(struct drm_device *dev, uint8_t *data)
132 {
133 	struct drm_nouveau_private *dev_priv = dev->dev_private;
134 	uint32_t old_bar0_pramin = 0;
135 	int i;
136 
137 	if (dev_priv->card_type >= NV_50) {
138 		uint32_t vbios_vram = (nv_rd32(dev, 0x619f04) & ~0xff) << 8;
139 
140 		if (!vbios_vram)
141 			vbios_vram = (nv_rd32(dev, 0x1700) << 16) + 0xf0000;
142 
143 		old_bar0_pramin = nv_rd32(dev, 0x1700);
144 		nv_wr32(dev, 0x1700, vbios_vram >> 16);
145 	}
146 
147 	/* bail if no rom signature */
148 	if (nv_rd08(dev, NV_PRAMIN_OFFSET) != 0x55 ||
149 	    nv_rd08(dev, NV_PRAMIN_OFFSET + 1) != 0xaa)
150 		goto out;
151 
152 	for (i = 0; i < NV_PROM_SIZE; i++)
153 		data[i] = nv_rd08(dev, NV_PRAMIN_OFFSET + i);
154 
155 out:
156 	if (dev_priv->card_type >= NV_50)
157 		nv_wr32(dev, 0x1700, old_bar0_pramin);
158 }
159 
load_vbios_pci(struct drm_device * dev,uint8_t * data)160 static void load_vbios_pci(struct drm_device *dev, uint8_t *data)
161 {
162 	void __iomem *rom = NULL;
163 	size_t rom_len;
164 	int ret;
165 
166 	ret = pci_enable_rom(dev->pdev);
167 	if (ret)
168 		return;
169 
170 	rom = pci_map_rom(dev->pdev, &rom_len);
171 	if (!rom)
172 		goto out;
173 	memcpy_fromio(data, rom, rom_len);
174 	pci_unmap_rom(dev->pdev, rom);
175 
176 out:
177 	pci_disable_rom(dev->pdev);
178 }
179 
load_vbios_acpi(struct drm_device * dev,uint8_t * data)180 static void load_vbios_acpi(struct drm_device *dev, uint8_t *data)
181 {
182 	int i;
183 	int ret;
184 	int size = 64 * 1024;
185 
186 	if (!nouveau_acpi_rom_supported(dev->pdev))
187 		return;
188 
189 	for (i = 0; i < (size / ROM_BIOS_PAGE); i++) {
190 		ret = nouveau_acpi_get_bios_chunk(data,
191 						  (i * ROM_BIOS_PAGE),
192 						  ROM_BIOS_PAGE);
193 		if (ret <= 0)
194 			break;
195 	}
196 	return;
197 }
198 
199 struct methods {
200 	const char desc[8];
201 	void (*loadbios)(struct drm_device *, uint8_t *);
202 	const bool rw;
203 };
204 
205 static struct methods shadow_methods[] = {
206 	{ "PRAMIN", load_vbios_pramin, true },
207 	{ "PROM", load_vbios_prom, false },
208 	{ "PCIROM", load_vbios_pci, true },
209 	{ "ACPI", load_vbios_acpi, true },
210 };
211 #define NUM_SHADOW_METHODS ARRAY_SIZE(shadow_methods)
212 
NVShadowVBIOS(struct drm_device * dev,uint8_t * data)213 static bool NVShadowVBIOS(struct drm_device *dev, uint8_t *data)
214 {
215 	struct methods *methods = shadow_methods;
216 	int testscore = 3;
217 	int scores[NUM_SHADOW_METHODS], i;
218 
219 	if (nouveau_vbios) {
220 		for (i = 0; i < NUM_SHADOW_METHODS; i++)
221 			if (!strcasecmp(nouveau_vbios, methods[i].desc))
222 				break;
223 
224 		if (i < NUM_SHADOW_METHODS) {
225 			NV_INFO(dev, "Attempting to use BIOS image from %s\n",
226 				methods[i].desc);
227 
228 			methods[i].loadbios(dev, data);
229 			if (score_vbios(dev, data, methods[i].rw))
230 				return true;
231 		}
232 
233 		NV_ERROR(dev, "VBIOS source \'%s\' invalid\n", nouveau_vbios);
234 	}
235 
236 	for (i = 0; i < NUM_SHADOW_METHODS; i++) {
237 		NV_TRACE(dev, "Attempting to load BIOS image from %s\n",
238 			 methods[i].desc);
239 		data[0] = data[1] = 0;	/* avoid reuse of previous image */
240 		methods[i].loadbios(dev, data);
241 		scores[i] = score_vbios(dev, data, methods[i].rw);
242 		if (scores[i] == testscore)
243 			return true;
244 	}
245 
246 	while (--testscore > 0) {
247 		for (i = 0; i < NUM_SHADOW_METHODS; i++) {
248 			if (scores[i] == testscore) {
249 				NV_TRACE(dev, "Using BIOS image from %s\n",
250 					 methods[i].desc);
251 				methods[i].loadbios(dev, data);
252 				return true;
253 			}
254 		}
255 	}
256 
257 	NV_ERROR(dev, "No valid BIOS image found\n");
258 	return false;
259 }
260 
261 struct init_tbl_entry {
262 	char *name;
263 	uint8_t id;
264 	/* Return:
265 	 *  > 0: success, length of opcode
266 	 *    0: success, but abort further parsing of table (INIT_DONE etc)
267 	 *  < 0: failure, table parsing will be aborted
268 	 */
269 	int (*handler)(struct nvbios *, uint16_t, struct init_exec *);
270 };
271 
272 static int parse_init_table(struct nvbios *, uint16_t, struct init_exec *);
273 
274 #define MACRO_INDEX_SIZE	2
275 #define MACRO_SIZE		8
276 #define CONDITION_SIZE		12
277 #define IO_FLAG_CONDITION_SIZE	9
278 #define IO_CONDITION_SIZE	5
279 #define MEM_INIT_SIZE		66
280 
still_alive(void)281 static void still_alive(void)
282 {
283 #if 0
284 	sync();
285 	mdelay(2);
286 #endif
287 }
288 
289 static uint32_t
munge_reg(struct nvbios * bios,uint32_t reg)290 munge_reg(struct nvbios *bios, uint32_t reg)
291 {
292 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
293 	struct dcb_entry *dcbent = bios->display.output;
294 
295 	if (dev_priv->card_type < NV_50)
296 		return reg;
297 
298 	if (reg & 0x40000000) {
299 		BUG_ON(!dcbent);
300 
301 		reg += (ffs(dcbent->or) - 1) * 0x800;
302 		if ((reg & 0x20000000) && !(dcbent->sorconf.link & 1))
303 			reg += 0x00000080;
304 	}
305 
306 	reg &= ~0x60000000;
307 	return reg;
308 }
309 
310 static int
valid_reg(struct nvbios * bios,uint32_t reg)311 valid_reg(struct nvbios *bios, uint32_t reg)
312 {
313 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
314 	struct drm_device *dev = bios->dev;
315 
316 	/* C51 has misaligned regs on purpose. Marvellous */
317 	if (reg & 0x2 ||
318 	    (reg & 0x1 && dev_priv->vbios.chip_version != 0x51))
319 		NV_ERROR(dev, "======= misaligned reg 0x%08X =======\n", reg);
320 
321 	/* warn on C51 regs that haven't been verified accessible in tracing */
322 	if (reg & 0x1 && dev_priv->vbios.chip_version == 0x51 &&
323 	    reg != 0x130d && reg != 0x1311 && reg != 0x60081d)
324 		NV_WARN(dev, "=== C51 misaligned reg 0x%08X not verified ===\n",
325 			reg);
326 
327 	if (reg >= (8*1024*1024)) {
328 		NV_ERROR(dev, "=== reg 0x%08x out of mapped bounds ===\n", reg);
329 		return 0;
330 	}
331 
332 	return 1;
333 }
334 
335 static bool
valid_idx_port(struct nvbios * bios,uint16_t port)336 valid_idx_port(struct nvbios *bios, uint16_t port)
337 {
338 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
339 	struct drm_device *dev = bios->dev;
340 
341 	/*
342 	 * If adding more ports here, the read/write functions below will need
343 	 * updating so that the correct mmio range (PRMCIO, PRMDIO, PRMVIO) is
344 	 * used for the port in question
345 	 */
346 	if (dev_priv->card_type < NV_50) {
347 		if (port == NV_CIO_CRX__COLOR)
348 			return true;
349 		if (port == NV_VIO_SRX)
350 			return true;
351 	} else {
352 		if (port == NV_CIO_CRX__COLOR)
353 			return true;
354 	}
355 
356 	NV_ERROR(dev, "========== unknown indexed io port 0x%04X ==========\n",
357 		 port);
358 
359 	return false;
360 }
361 
362 static bool
valid_port(struct nvbios * bios,uint16_t port)363 valid_port(struct nvbios *bios, uint16_t port)
364 {
365 	struct drm_device *dev = bios->dev;
366 
367 	/*
368 	 * If adding more ports here, the read/write functions below will need
369 	 * updating so that the correct mmio range (PRMCIO, PRMDIO, PRMVIO) is
370 	 * used for the port in question
371 	 */
372 	if (port == NV_VIO_VSE2)
373 		return true;
374 
375 	NV_ERROR(dev, "========== unknown io port 0x%04X ==========\n", port);
376 
377 	return false;
378 }
379 
380 static uint32_t
bios_rd32(struct nvbios * bios,uint32_t reg)381 bios_rd32(struct nvbios *bios, uint32_t reg)
382 {
383 	uint32_t data;
384 
385 	reg = munge_reg(bios, reg);
386 	if (!valid_reg(bios, reg))
387 		return 0;
388 
389 	/*
390 	 * C51 sometimes uses regs with bit0 set in the address. For these
391 	 * cases there should exist a translation in a BIOS table to an IO
392 	 * port address which the BIOS uses for accessing the reg
393 	 *
394 	 * These only seem to appear for the power control regs to a flat panel,
395 	 * and the GPIO regs at 0x60081*.  In C51 mmio traces the normal regs
396 	 * for 0x1308 and 0x1310 are used - hence the mask below.  An S3
397 	 * suspend-resume mmio trace from a C51 will be required to see if this
398 	 * is true for the power microcode in 0x14.., or whether the direct IO
399 	 * port access method is needed
400 	 */
401 	if (reg & 0x1)
402 		reg &= ~0x1;
403 
404 	data = nv_rd32(bios->dev, reg);
405 
406 	BIOSLOG(bios, "	Read:  Reg: 0x%08X, Data: 0x%08X\n", reg, data);
407 
408 	return data;
409 }
410 
411 static void
bios_wr32(struct nvbios * bios,uint32_t reg,uint32_t data)412 bios_wr32(struct nvbios *bios, uint32_t reg, uint32_t data)
413 {
414 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
415 
416 	reg = munge_reg(bios, reg);
417 	if (!valid_reg(bios, reg))
418 		return;
419 
420 	/* see note in bios_rd32 */
421 	if (reg & 0x1)
422 		reg &= 0xfffffffe;
423 
424 	LOG_OLD_VALUE(bios_rd32(bios, reg));
425 	BIOSLOG(bios, "	Write: Reg: 0x%08X, Data: 0x%08X\n", reg, data);
426 
427 	if (dev_priv->vbios.execute) {
428 		still_alive();
429 		nv_wr32(bios->dev, reg, data);
430 	}
431 }
432 
433 static uint8_t
bios_idxprt_rd(struct nvbios * bios,uint16_t port,uint8_t index)434 bios_idxprt_rd(struct nvbios *bios, uint16_t port, uint8_t index)
435 {
436 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
437 	struct drm_device *dev = bios->dev;
438 	uint8_t data;
439 
440 	if (!valid_idx_port(bios, port))
441 		return 0;
442 
443 	if (dev_priv->card_type < NV_50) {
444 		if (port == NV_VIO_SRX)
445 			data = NVReadVgaSeq(dev, bios->state.crtchead, index);
446 		else	/* assume NV_CIO_CRX__COLOR */
447 			data = NVReadVgaCrtc(dev, bios->state.crtchead, index);
448 	} else {
449 		uint32_t data32;
450 
451 		data32 = bios_rd32(bios, NV50_PDISPLAY_VGACRTC(index & ~3));
452 		data = (data32 >> ((index & 3) << 3)) & 0xff;
453 	}
454 
455 	BIOSLOG(bios, "	Indexed IO read:  Port: 0x%04X, Index: 0x%02X, "
456 		      "Head: 0x%02X, Data: 0x%02X\n",
457 		port, index, bios->state.crtchead, data);
458 	return data;
459 }
460 
461 static void
bios_idxprt_wr(struct nvbios * bios,uint16_t port,uint8_t index,uint8_t data)462 bios_idxprt_wr(struct nvbios *bios, uint16_t port, uint8_t index, uint8_t data)
463 {
464 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
465 	struct drm_device *dev = bios->dev;
466 
467 	if (!valid_idx_port(bios, port))
468 		return;
469 
470 	/*
471 	 * The current head is maintained in the nvbios member  state.crtchead.
472 	 * We trap changes to CR44 and update the head variable and hence the
473 	 * register set written.
474 	 * As CR44 only exists on CRTC0, we update crtchead to head0 in advance
475 	 * of the write, and to head1 after the write
476 	 */
477 	if (port == NV_CIO_CRX__COLOR && index == NV_CIO_CRE_44 &&
478 	    data != NV_CIO_CRE_44_HEADB)
479 		bios->state.crtchead = 0;
480 
481 	LOG_OLD_VALUE(bios_idxprt_rd(bios, port, index));
482 	BIOSLOG(bios, "	Indexed IO write: Port: 0x%04X, Index: 0x%02X, "
483 		      "Head: 0x%02X, Data: 0x%02X\n",
484 		port, index, bios->state.crtchead, data);
485 
486 	if (bios->execute && dev_priv->card_type < NV_50) {
487 		still_alive();
488 		if (port == NV_VIO_SRX)
489 			NVWriteVgaSeq(dev, bios->state.crtchead, index, data);
490 		else	/* assume NV_CIO_CRX__COLOR */
491 			NVWriteVgaCrtc(dev, bios->state.crtchead, index, data);
492 	} else
493 	if (bios->execute) {
494 		uint32_t data32, shift = (index & 3) << 3;
495 
496 		still_alive();
497 
498 		data32  = bios_rd32(bios, NV50_PDISPLAY_VGACRTC(index & ~3));
499 		data32 &= ~(0xff << shift);
500 		data32 |= (data << shift);
501 		bios_wr32(bios, NV50_PDISPLAY_VGACRTC(index & ~3), data32);
502 	}
503 
504 	if (port == NV_CIO_CRX__COLOR &&
505 	    index == NV_CIO_CRE_44 && data == NV_CIO_CRE_44_HEADB)
506 		bios->state.crtchead = 1;
507 }
508 
509 static uint8_t
bios_port_rd(struct nvbios * bios,uint16_t port)510 bios_port_rd(struct nvbios *bios, uint16_t port)
511 {
512 	uint8_t data, head = bios->state.crtchead;
513 
514 	if (!valid_port(bios, port))
515 		return 0;
516 
517 	data = NVReadPRMVIO(bios->dev, head, NV_PRMVIO0_OFFSET + port);
518 
519 	BIOSLOG(bios, "	IO read:  Port: 0x%04X, Head: 0x%02X, Data: 0x%02X\n",
520 		port, head, data);
521 
522 	return data;
523 }
524 
525 static void
bios_port_wr(struct nvbios * bios,uint16_t port,uint8_t data)526 bios_port_wr(struct nvbios *bios, uint16_t port, uint8_t data)
527 {
528 	int head = bios->state.crtchead;
529 
530 	if (!valid_port(bios, port))
531 		return;
532 
533 	LOG_OLD_VALUE(bios_port_rd(bios, port));
534 	BIOSLOG(bios, "	IO write: Port: 0x%04X, Head: 0x%02X, Data: 0x%02X\n",
535 		port, head, data);
536 
537 	if (!bios->execute)
538 		return;
539 
540 	still_alive();
541 	NVWritePRMVIO(bios->dev, head, NV_PRMVIO0_OFFSET + port, data);
542 }
543 
544 static bool
io_flag_condition_met(struct nvbios * bios,uint16_t offset,uint8_t cond)545 io_flag_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
546 {
547 	/*
548 	 * The IO flag condition entry has 2 bytes for the CRTC port; 1 byte
549 	 * for the CRTC index; 1 byte for the mask to apply to the value
550 	 * retrieved from the CRTC; 1 byte for the shift right to apply to the
551 	 * masked CRTC value; 2 bytes for the offset to the flag array, to
552 	 * which the shifted value is added; 1 byte for the mask applied to the
553 	 * value read from the flag array; and 1 byte for the value to compare
554 	 * against the masked byte from the flag table.
555 	 */
556 
557 	uint16_t condptr = bios->io_flag_condition_tbl_ptr + cond * IO_FLAG_CONDITION_SIZE;
558 	uint16_t crtcport = ROM16(bios->data[condptr]);
559 	uint8_t crtcindex = bios->data[condptr + 2];
560 	uint8_t mask = bios->data[condptr + 3];
561 	uint8_t shift = bios->data[condptr + 4];
562 	uint16_t flagarray = ROM16(bios->data[condptr + 5]);
563 	uint8_t flagarraymask = bios->data[condptr + 7];
564 	uint8_t cmpval = bios->data[condptr + 8];
565 	uint8_t data;
566 
567 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
568 		      "Shift: 0x%02X, FlagArray: 0x%04X, FAMask: 0x%02X, "
569 		      "Cmpval: 0x%02X\n",
570 		offset, crtcport, crtcindex, mask, shift, flagarray, flagarraymask, cmpval);
571 
572 	data = bios_idxprt_rd(bios, crtcport, crtcindex);
573 
574 	data = bios->data[flagarray + ((data & mask) >> shift)];
575 	data &= flagarraymask;
576 
577 	BIOSLOG(bios, "0x%04X: Checking if 0x%02X equals 0x%02X\n",
578 		offset, data, cmpval);
579 
580 	return (data == cmpval);
581 }
582 
583 static bool
bios_condition_met(struct nvbios * bios,uint16_t offset,uint8_t cond)584 bios_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
585 {
586 	/*
587 	 * The condition table entry has 4 bytes for the address of the
588 	 * register to check, 4 bytes for a mask to apply to the register and
589 	 * 4 for a test comparison value
590 	 */
591 
592 	uint16_t condptr = bios->condition_tbl_ptr + cond * CONDITION_SIZE;
593 	uint32_t reg = ROM32(bios->data[condptr]);
594 	uint32_t mask = ROM32(bios->data[condptr + 4]);
595 	uint32_t cmpval = ROM32(bios->data[condptr + 8]);
596 	uint32_t data;
597 
598 	BIOSLOG(bios, "0x%04X: Cond: 0x%02X, Reg: 0x%08X, Mask: 0x%08X\n",
599 		offset, cond, reg, mask);
600 
601 	data = bios_rd32(bios, reg) & mask;
602 
603 	BIOSLOG(bios, "0x%04X: Checking if 0x%08X equals 0x%08X\n",
604 		offset, data, cmpval);
605 
606 	return (data == cmpval);
607 }
608 
609 static bool
io_condition_met(struct nvbios * bios,uint16_t offset,uint8_t cond)610 io_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
611 {
612 	/*
613 	 * The IO condition entry has 2 bytes for the IO port address; 1 byte
614 	 * for the index to write to io_port; 1 byte for the mask to apply to
615 	 * the byte read from io_port+1; and 1 byte for the value to compare
616 	 * against the masked byte.
617 	 */
618 
619 	uint16_t condptr = bios->io_condition_tbl_ptr + cond * IO_CONDITION_SIZE;
620 	uint16_t io_port = ROM16(bios->data[condptr]);
621 	uint8_t port_index = bios->data[condptr + 2];
622 	uint8_t mask = bios->data[condptr + 3];
623 	uint8_t cmpval = bios->data[condptr + 4];
624 
625 	uint8_t data = bios_idxprt_rd(bios, io_port, port_index) & mask;
626 
627 	BIOSLOG(bios, "0x%04X: Checking if 0x%02X equals 0x%02X\n",
628 		offset, data, cmpval);
629 
630 	return (data == cmpval);
631 }
632 
633 static int
nv50_pll_set(struct drm_device * dev,uint32_t reg,uint32_t clk)634 nv50_pll_set(struct drm_device *dev, uint32_t reg, uint32_t clk)
635 {
636 	struct drm_nouveau_private *dev_priv = dev->dev_private;
637 	uint32_t reg0 = nv_rd32(dev, reg + 0);
638 	uint32_t reg1 = nv_rd32(dev, reg + 4);
639 	struct nouveau_pll_vals pll;
640 	struct pll_lims pll_limits;
641 	int ret;
642 
643 	ret = get_pll_limits(dev, reg, &pll_limits);
644 	if (ret)
645 		return ret;
646 
647 	clk = nouveau_calc_pll_mnp(dev, &pll_limits, clk, &pll);
648 	if (!clk)
649 		return -ERANGE;
650 
651 	reg0 = (reg0 & 0xfff8ffff) | (pll.log2P << 16);
652 	reg1 = (reg1 & 0xffff0000) | (pll.N1 << 8) | pll.M1;
653 
654 	if (dev_priv->vbios.execute) {
655 		still_alive();
656 		nv_wr32(dev, reg + 4, reg1);
657 		nv_wr32(dev, reg + 0, reg0);
658 	}
659 
660 	return 0;
661 }
662 
663 static int
setPLL(struct nvbios * bios,uint32_t reg,uint32_t clk)664 setPLL(struct nvbios *bios, uint32_t reg, uint32_t clk)
665 {
666 	struct drm_device *dev = bios->dev;
667 	struct drm_nouveau_private *dev_priv = dev->dev_private;
668 	/* clk in kHz */
669 	struct pll_lims pll_lim;
670 	struct nouveau_pll_vals pllvals;
671 	int ret;
672 
673 	if (dev_priv->card_type >= NV_50)
674 		return nv50_pll_set(dev, reg, clk);
675 
676 	/* high regs (such as in the mac g5 table) are not -= 4 */
677 	ret = get_pll_limits(dev, reg > 0x405c ? reg : reg - 4, &pll_lim);
678 	if (ret)
679 		return ret;
680 
681 	clk = nouveau_calc_pll_mnp(dev, &pll_lim, clk, &pllvals);
682 	if (!clk)
683 		return -ERANGE;
684 
685 	if (bios->execute) {
686 		still_alive();
687 		nouveau_hw_setpll(dev, reg, &pllvals);
688 	}
689 
690 	return 0;
691 }
692 
dcb_entry_idx_from_crtchead(struct drm_device * dev)693 static int dcb_entry_idx_from_crtchead(struct drm_device *dev)
694 {
695 	struct drm_nouveau_private *dev_priv = dev->dev_private;
696 	struct nvbios *bios = &dev_priv->vbios;
697 
698 	/*
699 	 * For the results of this function to be correct, CR44 must have been
700 	 * set (using bios_idxprt_wr to set crtchead), CR58 set for CR57 = 0,
701 	 * and the DCB table parsed, before the script calling the function is
702 	 * run.  run_digital_op_script is example of how to do such setup
703 	 */
704 
705 	uint8_t dcb_entry = NVReadVgaCrtc5758(dev, bios->state.crtchead, 0);
706 
707 	if (dcb_entry > bios->dcb.entries) {
708 		NV_ERROR(dev, "CR58 doesn't have a valid DCB entry currently "
709 				"(%02X)\n", dcb_entry);
710 		dcb_entry = 0x7f;	/* unused / invalid marker */
711 	}
712 
713 	return dcb_entry;
714 }
715 
716 static int
read_dcb_i2c_entry(struct drm_device * dev,int dcb_version,uint8_t * i2ctable,int index,struct dcb_i2c_entry * i2c)717 read_dcb_i2c_entry(struct drm_device *dev, int dcb_version, uint8_t *i2ctable, int index, struct dcb_i2c_entry *i2c)
718 {
719 	uint8_t dcb_i2c_ver = dcb_version, headerlen = 0, entry_len = 4;
720 	int i2c_entries = DCB_MAX_NUM_I2C_ENTRIES;
721 	int recordoffset = 0, rdofs = 1, wrofs = 0;
722 	uint8_t port_type = 0;
723 
724 	if (!i2ctable)
725 		return -EINVAL;
726 
727 	if (dcb_version >= 0x30) {
728 		if (i2ctable[0] != dcb_version) /* necessary? */
729 			NV_WARN(dev,
730 				"DCB I2C table version mismatch (%02X vs %02X)\n",
731 				i2ctable[0], dcb_version);
732 		dcb_i2c_ver = i2ctable[0];
733 		headerlen = i2ctable[1];
734 		if (i2ctable[2] <= DCB_MAX_NUM_I2C_ENTRIES)
735 			i2c_entries = i2ctable[2];
736 		else
737 			NV_WARN(dev,
738 				"DCB I2C table has more entries than indexable "
739 				"(%d entries, max %d)\n", i2ctable[2],
740 				DCB_MAX_NUM_I2C_ENTRIES);
741 		entry_len = i2ctable[3];
742 		/* [4] is i2c_default_indices, read in parse_dcb_table() */
743 	}
744 	/*
745 	 * It's your own fault if you call this function on a DCB 1.1 BIOS --
746 	 * the test below is for DCB 1.2
747 	 */
748 	if (dcb_version < 0x14) {
749 		recordoffset = 2;
750 		rdofs = 0;
751 		wrofs = 1;
752 	}
753 
754 	if (index == 0xf)
755 		return 0;
756 	if (index >= i2c_entries) {
757 		NV_ERROR(dev, "DCB I2C index too big (%d >= %d)\n",
758 			 index, i2ctable[2]);
759 		return -ENOENT;
760 	}
761 	if (i2ctable[headerlen + entry_len * index + 3] == 0xff) {
762 		NV_ERROR(dev, "DCB I2C entry invalid\n");
763 		return -EINVAL;
764 	}
765 
766 	if (dcb_i2c_ver >= 0x30) {
767 		port_type = i2ctable[headerlen + recordoffset + 3 + entry_len * index];
768 
769 		/*
770 		 * Fixup for chips using same address offset for read and
771 		 * write.
772 		 */
773 		if (port_type == 4)	/* seen on C51 */
774 			rdofs = wrofs = 1;
775 		if (port_type >= 5)	/* G80+ */
776 			rdofs = wrofs = 0;
777 	}
778 
779 	if (dcb_i2c_ver >= 0x40) {
780 		if (port_type != 5 && port_type != 6)
781 			NV_WARN(dev, "DCB I2C table has port type %d\n", port_type);
782 
783 		i2c->entry = ROM32(i2ctable[headerlen + recordoffset + entry_len * index]);
784 	}
785 
786 	i2c->port_type = port_type;
787 	i2c->read = i2ctable[headerlen + recordoffset + rdofs + entry_len * index];
788 	i2c->write = i2ctable[headerlen + recordoffset + wrofs + entry_len * index];
789 
790 	return 0;
791 }
792 
793 static struct nouveau_i2c_chan *
init_i2c_device_find(struct drm_device * dev,int i2c_index)794 init_i2c_device_find(struct drm_device *dev, int i2c_index)
795 {
796 	struct drm_nouveau_private *dev_priv = dev->dev_private;
797 	struct dcb_table *dcb = &dev_priv->vbios.dcb;
798 
799 	if (i2c_index == 0xff) {
800 		/* note: dcb_entry_idx_from_crtchead needs pre-script set-up */
801 		int idx = dcb_entry_idx_from_crtchead(dev), shift = 0;
802 		int default_indices = dcb->i2c_default_indices;
803 
804 		if (idx != 0x7f && dcb->entry[idx].i2c_upper_default)
805 			shift = 4;
806 
807 		i2c_index = (default_indices >> shift) & 0xf;
808 	}
809 	if (i2c_index == 0x80)	/* g80+ */
810 		i2c_index = dcb->i2c_default_indices & 0xf;
811 	else
812 	if (i2c_index == 0x81)
813 		i2c_index = (dcb->i2c_default_indices & 0xf0) >> 4;
814 
815 	if (i2c_index >= DCB_MAX_NUM_I2C_ENTRIES) {
816 		NV_ERROR(dev, "invalid i2c_index 0x%x\n", i2c_index);
817 		return NULL;
818 	}
819 
820 	/* Make sure i2c table entry has been parsed, it may not
821 	 * have been if this is a bus not referenced by a DCB encoder
822 	 */
823 	read_dcb_i2c_entry(dev, dcb->version, dcb->i2c_table,
824 			   i2c_index, &dcb->i2c[i2c_index]);
825 
826 	return nouveau_i2c_find(dev, i2c_index);
827 }
828 
829 static uint32_t
get_tmds_index_reg(struct drm_device * dev,uint8_t mlv)830 get_tmds_index_reg(struct drm_device *dev, uint8_t mlv)
831 {
832 	/*
833 	 * For mlv < 0x80, it is an index into a table of TMDS base addresses.
834 	 * For mlv == 0x80 use the "or" value of the dcb_entry indexed by
835 	 * CR58 for CR57 = 0 to index a table of offsets to the basic
836 	 * 0x6808b0 address.
837 	 * For mlv == 0x81 use the "or" value of the dcb_entry indexed by
838 	 * CR58 for CR57 = 0 to index a table of offsets to the basic
839 	 * 0x6808b0 address, and then flip the offset by 8.
840 	 */
841 
842 	struct drm_nouveau_private *dev_priv = dev->dev_private;
843 	struct nvbios *bios = &dev_priv->vbios;
844 	const int pramdac_offset[13] = {
845 		0, 0, 0x8, 0, 0x2000, 0, 0, 0, 0x2008, 0, 0, 0, 0x2000 };
846 	const uint32_t pramdac_table[4] = {
847 		0x6808b0, 0x6808b8, 0x6828b0, 0x6828b8 };
848 
849 	if (mlv >= 0x80) {
850 		int dcb_entry, dacoffset;
851 
852 		/* note: dcb_entry_idx_from_crtchead needs pre-script set-up */
853 		dcb_entry = dcb_entry_idx_from_crtchead(dev);
854 		if (dcb_entry == 0x7f)
855 			return 0;
856 		dacoffset = pramdac_offset[bios->dcb.entry[dcb_entry].or];
857 		if (mlv == 0x81)
858 			dacoffset ^= 8;
859 		return 0x6808b0 + dacoffset;
860 	} else {
861 		if (mlv >= ARRAY_SIZE(pramdac_table)) {
862 			NV_ERROR(dev, "Magic Lookup Value too big (%02X)\n",
863 									mlv);
864 			return 0;
865 		}
866 		return pramdac_table[mlv];
867 	}
868 }
869 
870 static int
init_io_restrict_prog(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)871 init_io_restrict_prog(struct nvbios *bios, uint16_t offset,
872 		      struct init_exec *iexec)
873 {
874 	/*
875 	 * INIT_IO_RESTRICT_PROG   opcode: 0x32 ('2')
876 	 *
877 	 * offset      (8  bit): opcode
878 	 * offset + 1  (16 bit): CRTC port
879 	 * offset + 3  (8  bit): CRTC index
880 	 * offset + 4  (8  bit): mask
881 	 * offset + 5  (8  bit): shift
882 	 * offset + 6  (8  bit): count
883 	 * offset + 7  (32 bit): register
884 	 * offset + 11 (32 bit): configuration 1
885 	 * ...
886 	 *
887 	 * Starting at offset + 11 there are "count" 32 bit values.
888 	 * To find out which value to use read index "CRTC index" on "CRTC
889 	 * port", AND this value with "mask" and then bit shift right "shift"
890 	 * bits.  Read the appropriate value using this index and write to
891 	 * "register"
892 	 */
893 
894 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
895 	uint8_t crtcindex = bios->data[offset + 3];
896 	uint8_t mask = bios->data[offset + 4];
897 	uint8_t shift = bios->data[offset + 5];
898 	uint8_t count = bios->data[offset + 6];
899 	uint32_t reg = ROM32(bios->data[offset + 7]);
900 	uint8_t config;
901 	uint32_t configval;
902 	int len = 11 + count * 4;
903 
904 	if (!iexec->execute)
905 		return len;
906 
907 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
908 		      "Shift: 0x%02X, Count: 0x%02X, Reg: 0x%08X\n",
909 		offset, crtcport, crtcindex, mask, shift, count, reg);
910 
911 	config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
912 	if (config > count) {
913 		NV_ERROR(bios->dev,
914 			 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
915 			 offset, config, count);
916 		return len;
917 	}
918 
919 	configval = ROM32(bios->data[offset + 11 + config * 4]);
920 
921 	BIOSLOG(bios, "0x%04X: Writing config %02X\n", offset, config);
922 
923 	bios_wr32(bios, reg, configval);
924 
925 	return len;
926 }
927 
928 static int
init_repeat(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)929 init_repeat(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
930 {
931 	/*
932 	 * INIT_REPEAT   opcode: 0x33 ('3')
933 	 *
934 	 * offset      (8 bit): opcode
935 	 * offset + 1  (8 bit): count
936 	 *
937 	 * Execute script following this opcode up to INIT_REPEAT_END
938 	 * "count" times
939 	 */
940 
941 	uint8_t count = bios->data[offset + 1];
942 	uint8_t i;
943 
944 	/* no iexec->execute check by design */
945 
946 	BIOSLOG(bios, "0x%04X: Repeating following segment %d times\n",
947 		offset, count);
948 
949 	iexec->repeat = true;
950 
951 	/*
952 	 * count - 1, as the script block will execute once when we leave this
953 	 * opcode -- this is compatible with bios behaviour as:
954 	 * a) the block is always executed at least once, even if count == 0
955 	 * b) the bios interpreter skips to the op following INIT_END_REPEAT,
956 	 * while we don't
957 	 */
958 	for (i = 0; i < count - 1; i++)
959 		parse_init_table(bios, offset + 2, iexec);
960 
961 	iexec->repeat = false;
962 
963 	return 2;
964 }
965 
966 static int
init_io_restrict_pll(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)967 init_io_restrict_pll(struct nvbios *bios, uint16_t offset,
968 		     struct init_exec *iexec)
969 {
970 	/*
971 	 * INIT_IO_RESTRICT_PLL   opcode: 0x34 ('4')
972 	 *
973 	 * offset      (8  bit): opcode
974 	 * offset + 1  (16 bit): CRTC port
975 	 * offset + 3  (8  bit): CRTC index
976 	 * offset + 4  (8  bit): mask
977 	 * offset + 5  (8  bit): shift
978 	 * offset + 6  (8  bit): IO flag condition index
979 	 * offset + 7  (8  bit): count
980 	 * offset + 8  (32 bit): register
981 	 * offset + 12 (16 bit): frequency 1
982 	 * ...
983 	 *
984 	 * Starting at offset + 12 there are "count" 16 bit frequencies (10kHz).
985 	 * Set PLL register "register" to coefficients for frequency n,
986 	 * selected by reading index "CRTC index" of "CRTC port" ANDed with
987 	 * "mask" and shifted right by "shift".
988 	 *
989 	 * If "IO flag condition index" > 0, and condition met, double
990 	 * frequency before setting it.
991 	 */
992 
993 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
994 	uint8_t crtcindex = bios->data[offset + 3];
995 	uint8_t mask = bios->data[offset + 4];
996 	uint8_t shift = bios->data[offset + 5];
997 	int8_t io_flag_condition_idx = bios->data[offset + 6];
998 	uint8_t count = bios->data[offset + 7];
999 	uint32_t reg = ROM32(bios->data[offset + 8]);
1000 	uint8_t config;
1001 	uint16_t freq;
1002 	int len = 12 + count * 2;
1003 
1004 	if (!iexec->execute)
1005 		return len;
1006 
1007 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
1008 		      "Shift: 0x%02X, IO Flag Condition: 0x%02X, "
1009 		      "Count: 0x%02X, Reg: 0x%08X\n",
1010 		offset, crtcport, crtcindex, mask, shift,
1011 		io_flag_condition_idx, count, reg);
1012 
1013 	config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
1014 	if (config > count) {
1015 		NV_ERROR(bios->dev,
1016 			 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
1017 			 offset, config, count);
1018 		return len;
1019 	}
1020 
1021 	freq = ROM16(bios->data[offset + 12 + config * 2]);
1022 
1023 	if (io_flag_condition_idx > 0) {
1024 		if (io_flag_condition_met(bios, offset, io_flag_condition_idx)) {
1025 			BIOSLOG(bios, "0x%04X: Condition fulfilled -- "
1026 				      "frequency doubled\n", offset);
1027 			freq *= 2;
1028 		} else
1029 			BIOSLOG(bios, "0x%04X: Condition not fulfilled -- "
1030 				      "frequency unchanged\n", offset);
1031 	}
1032 
1033 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Config: 0x%02X, Freq: %d0kHz\n",
1034 		offset, reg, config, freq);
1035 
1036 	setPLL(bios, reg, freq * 10);
1037 
1038 	return len;
1039 }
1040 
1041 static int
init_end_repeat(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1042 init_end_repeat(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1043 {
1044 	/*
1045 	 * INIT_END_REPEAT   opcode: 0x36 ('6')
1046 	 *
1047 	 * offset      (8 bit): opcode
1048 	 *
1049 	 * Marks the end of the block for INIT_REPEAT to repeat
1050 	 */
1051 
1052 	/* no iexec->execute check by design */
1053 
1054 	/*
1055 	 * iexec->repeat flag necessary to go past INIT_END_REPEAT opcode when
1056 	 * we're not in repeat mode
1057 	 */
1058 	if (iexec->repeat)
1059 		return 0;
1060 
1061 	return 1;
1062 }
1063 
1064 static int
init_copy(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1065 init_copy(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1066 {
1067 	/*
1068 	 * INIT_COPY   opcode: 0x37 ('7')
1069 	 *
1070 	 * offset      (8  bit): opcode
1071 	 * offset + 1  (32 bit): register
1072 	 * offset + 5  (8  bit): shift
1073 	 * offset + 6  (8  bit): srcmask
1074 	 * offset + 7  (16 bit): CRTC port
1075 	 * offset + 9  (8 bit): CRTC index
1076 	 * offset + 10  (8 bit): mask
1077 	 *
1078 	 * Read index "CRTC index" on "CRTC port", AND with "mask", OR with
1079 	 * (REGVAL("register") >> "shift" & "srcmask") and write-back to CRTC
1080 	 * port
1081 	 */
1082 
1083 	uint32_t reg = ROM32(bios->data[offset + 1]);
1084 	uint8_t shift = bios->data[offset + 5];
1085 	uint8_t srcmask = bios->data[offset + 6];
1086 	uint16_t crtcport = ROM16(bios->data[offset + 7]);
1087 	uint8_t crtcindex = bios->data[offset + 9];
1088 	uint8_t mask = bios->data[offset + 10];
1089 	uint32_t data;
1090 	uint8_t crtcdata;
1091 
1092 	if (!iexec->execute)
1093 		return 11;
1094 
1095 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Shift: 0x%02X, SrcMask: 0x%02X, "
1096 		      "Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X\n",
1097 		offset, reg, shift, srcmask, crtcport, crtcindex, mask);
1098 
1099 	data = bios_rd32(bios, reg);
1100 
1101 	if (shift < 0x80)
1102 		data >>= shift;
1103 	else
1104 		data <<= (0x100 - shift);
1105 
1106 	data &= srcmask;
1107 
1108 	crtcdata  = bios_idxprt_rd(bios, crtcport, crtcindex) & mask;
1109 	crtcdata |= (uint8_t)data;
1110 	bios_idxprt_wr(bios, crtcport, crtcindex, crtcdata);
1111 
1112 	return 11;
1113 }
1114 
1115 static int
init_not(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1116 init_not(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1117 {
1118 	/*
1119 	 * INIT_NOT   opcode: 0x38 ('8')
1120 	 *
1121 	 * offset      (8  bit): opcode
1122 	 *
1123 	 * Invert the current execute / no-execute condition (i.e. "else")
1124 	 */
1125 	if (iexec->execute)
1126 		BIOSLOG(bios, "0x%04X: ------ Skipping following commands  ------\n", offset);
1127 	else
1128 		BIOSLOG(bios, "0x%04X: ------ Executing following commands ------\n", offset);
1129 
1130 	iexec->execute = !iexec->execute;
1131 	return 1;
1132 }
1133 
1134 static int
init_io_flag_condition(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1135 init_io_flag_condition(struct nvbios *bios, uint16_t offset,
1136 		       struct init_exec *iexec)
1137 {
1138 	/*
1139 	 * INIT_IO_FLAG_CONDITION   opcode: 0x39 ('9')
1140 	 *
1141 	 * offset      (8 bit): opcode
1142 	 * offset + 1  (8 bit): condition number
1143 	 *
1144 	 * Check condition "condition number" in the IO flag condition table.
1145 	 * If condition not met skip subsequent opcodes until condition is
1146 	 * inverted (INIT_NOT), or we hit INIT_RESUME
1147 	 */
1148 
1149 	uint8_t cond = bios->data[offset + 1];
1150 
1151 	if (!iexec->execute)
1152 		return 2;
1153 
1154 	if (io_flag_condition_met(bios, offset, cond))
1155 		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
1156 	else {
1157 		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
1158 		iexec->execute = false;
1159 	}
1160 
1161 	return 2;
1162 }
1163 
1164 static int
init_dp_condition(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1165 init_dp_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1166 {
1167 	/*
1168 	 * INIT_DP_CONDITION   opcode: 0x3A ('')
1169 	 *
1170 	 * offset      (8 bit): opcode
1171 	 * offset + 1  (8 bit): "sub" opcode
1172 	 * offset + 2  (8 bit): unknown
1173 	 *
1174 	 */
1175 
1176 	struct bit_displayport_encoder_table *dpe = NULL;
1177 	struct dcb_entry *dcb = bios->display.output;
1178 	struct drm_device *dev = bios->dev;
1179 	uint8_t cond = bios->data[offset + 1];
1180 	int dummy;
1181 
1182 	BIOSLOG(bios, "0x%04X: subop 0x%02X\n", offset, cond);
1183 
1184 	if (!iexec->execute)
1185 		return 3;
1186 
1187 	dpe = nouveau_bios_dp_table(dev, dcb, &dummy);
1188 	if (!dpe) {
1189 		NV_ERROR(dev, "0x%04X: INIT_3A: no encoder table!!\n", offset);
1190 		return 3;
1191 	}
1192 
1193 	switch (cond) {
1194 	case 0:
1195 	{
1196 		struct dcb_connector_table_entry *ent =
1197 			&bios->dcb.connector.entry[dcb->connector];
1198 
1199 		if (ent->type != DCB_CONNECTOR_eDP)
1200 			iexec->execute = false;
1201 	}
1202 		break;
1203 	case 1:
1204 	case 2:
1205 		if (!(dpe->unknown & cond))
1206 			iexec->execute = false;
1207 		break;
1208 	case 5:
1209 	{
1210 		struct nouveau_i2c_chan *auxch;
1211 		int ret;
1212 
1213 		auxch = nouveau_i2c_find(dev, bios->display.output->i2c_index);
1214 		if (!auxch) {
1215 			NV_ERROR(dev, "0x%04X: couldn't get auxch\n", offset);
1216 			return 3;
1217 		}
1218 
1219 		ret = nouveau_dp_auxch(auxch, 9, 0xd, &cond, 1);
1220 		if (ret) {
1221 			NV_ERROR(dev, "0x%04X: auxch rd fail: %d\n", offset, ret);
1222 			return 3;
1223 		}
1224 
1225 		if (!(cond & 1))
1226 			iexec->execute = false;
1227 	}
1228 		break;
1229 	default:
1230 		NV_WARN(dev, "0x%04X: unknown INIT_3A op: %d\n", offset, cond);
1231 		break;
1232 	}
1233 
1234 	if (iexec->execute)
1235 		BIOSLOG(bios, "0x%04X: continuing to execute\n", offset);
1236 	else
1237 		BIOSLOG(bios, "0x%04X: skipping following commands\n", offset);
1238 
1239 	return 3;
1240 }
1241 
1242 static int
init_op_3b(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1243 init_op_3b(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1244 {
1245 	/*
1246 	 * INIT_3B   opcode: 0x3B ('')
1247 	 *
1248 	 * offset      (8 bit): opcode
1249 	 * offset + 1  (8 bit): crtc index
1250 	 *
1251 	 */
1252 
1253 	uint8_t or = ffs(bios->display.output->or) - 1;
1254 	uint8_t index = bios->data[offset + 1];
1255 	uint8_t data;
1256 
1257 	if (!iexec->execute)
1258 		return 2;
1259 
1260 	data = bios_idxprt_rd(bios, 0x3d4, index);
1261 	bios_idxprt_wr(bios, 0x3d4, index, data & ~(1 << or));
1262 	return 2;
1263 }
1264 
1265 static int
init_op_3c(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1266 init_op_3c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1267 {
1268 	/*
1269 	 * INIT_3C   opcode: 0x3C ('')
1270 	 *
1271 	 * offset      (8 bit): opcode
1272 	 * offset + 1  (8 bit): crtc index
1273 	 *
1274 	 */
1275 
1276 	uint8_t or = ffs(bios->display.output->or) - 1;
1277 	uint8_t index = bios->data[offset + 1];
1278 	uint8_t data;
1279 
1280 	if (!iexec->execute)
1281 		return 2;
1282 
1283 	data = bios_idxprt_rd(bios, 0x3d4, index);
1284 	bios_idxprt_wr(bios, 0x3d4, index, data | (1 << or));
1285 	return 2;
1286 }
1287 
1288 static int
init_idx_addr_latched(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1289 init_idx_addr_latched(struct nvbios *bios, uint16_t offset,
1290 		      struct init_exec *iexec)
1291 {
1292 	/*
1293 	 * INIT_INDEX_ADDRESS_LATCHED   opcode: 0x49 ('I')
1294 	 *
1295 	 * offset      (8  bit): opcode
1296 	 * offset + 1  (32 bit): control register
1297 	 * offset + 5  (32 bit): data register
1298 	 * offset + 9  (32 bit): mask
1299 	 * offset + 13 (32 bit): data
1300 	 * offset + 17 (8  bit): count
1301 	 * offset + 18 (8  bit): address 1
1302 	 * offset + 19 (8  bit): data 1
1303 	 * ...
1304 	 *
1305 	 * For each of "count" address and data pairs, write "data n" to
1306 	 * "data register", read the current value of "control register",
1307 	 * and write it back once ANDed with "mask", ORed with "data",
1308 	 * and ORed with "address n"
1309 	 */
1310 
1311 	uint32_t controlreg = ROM32(bios->data[offset + 1]);
1312 	uint32_t datareg = ROM32(bios->data[offset + 5]);
1313 	uint32_t mask = ROM32(bios->data[offset + 9]);
1314 	uint32_t data = ROM32(bios->data[offset + 13]);
1315 	uint8_t count = bios->data[offset + 17];
1316 	int len = 18 + count * 2;
1317 	uint32_t value;
1318 	int i;
1319 
1320 	if (!iexec->execute)
1321 		return len;
1322 
1323 	BIOSLOG(bios, "0x%04X: ControlReg: 0x%08X, DataReg: 0x%08X, "
1324 		      "Mask: 0x%08X, Data: 0x%08X, Count: 0x%02X\n",
1325 		offset, controlreg, datareg, mask, data, count);
1326 
1327 	for (i = 0; i < count; i++) {
1328 		uint8_t instaddress = bios->data[offset + 18 + i * 2];
1329 		uint8_t instdata = bios->data[offset + 19 + i * 2];
1330 
1331 		BIOSLOG(bios, "0x%04X: Address: 0x%02X, Data: 0x%02X\n",
1332 			offset, instaddress, instdata);
1333 
1334 		bios_wr32(bios, datareg, instdata);
1335 		value  = bios_rd32(bios, controlreg) & mask;
1336 		value |= data;
1337 		value |= instaddress;
1338 		bios_wr32(bios, controlreg, value);
1339 	}
1340 
1341 	return len;
1342 }
1343 
1344 static int
init_io_restrict_pll2(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1345 init_io_restrict_pll2(struct nvbios *bios, uint16_t offset,
1346 		      struct init_exec *iexec)
1347 {
1348 	/*
1349 	 * INIT_IO_RESTRICT_PLL2   opcode: 0x4A ('J')
1350 	 *
1351 	 * offset      (8  bit): opcode
1352 	 * offset + 1  (16 bit): CRTC port
1353 	 * offset + 3  (8  bit): CRTC index
1354 	 * offset + 4  (8  bit): mask
1355 	 * offset + 5  (8  bit): shift
1356 	 * offset + 6  (8  bit): count
1357 	 * offset + 7  (32 bit): register
1358 	 * offset + 11 (32 bit): frequency 1
1359 	 * ...
1360 	 *
1361 	 * Starting at offset + 11 there are "count" 32 bit frequencies (kHz).
1362 	 * Set PLL register "register" to coefficients for frequency n,
1363 	 * selected by reading index "CRTC index" of "CRTC port" ANDed with
1364 	 * "mask" and shifted right by "shift".
1365 	 */
1366 
1367 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
1368 	uint8_t crtcindex = bios->data[offset + 3];
1369 	uint8_t mask = bios->data[offset + 4];
1370 	uint8_t shift = bios->data[offset + 5];
1371 	uint8_t count = bios->data[offset + 6];
1372 	uint32_t reg = ROM32(bios->data[offset + 7]);
1373 	int len = 11 + count * 4;
1374 	uint8_t config;
1375 	uint32_t freq;
1376 
1377 	if (!iexec->execute)
1378 		return len;
1379 
1380 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
1381 		      "Shift: 0x%02X, Count: 0x%02X, Reg: 0x%08X\n",
1382 		offset, crtcport, crtcindex, mask, shift, count, reg);
1383 
1384 	if (!reg)
1385 		return len;
1386 
1387 	config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
1388 	if (config > count) {
1389 		NV_ERROR(bios->dev,
1390 			 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
1391 			 offset, config, count);
1392 		return len;
1393 	}
1394 
1395 	freq = ROM32(bios->data[offset + 11 + config * 4]);
1396 
1397 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Config: 0x%02X, Freq: %dkHz\n",
1398 		offset, reg, config, freq);
1399 
1400 	setPLL(bios, reg, freq);
1401 
1402 	return len;
1403 }
1404 
1405 static int
init_pll2(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1406 init_pll2(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1407 {
1408 	/*
1409 	 * INIT_PLL2   opcode: 0x4B ('K')
1410 	 *
1411 	 * offset      (8  bit): opcode
1412 	 * offset + 1  (32 bit): register
1413 	 * offset + 5  (32 bit): freq
1414 	 *
1415 	 * Set PLL register "register" to coefficients for frequency "freq"
1416 	 */
1417 
1418 	uint32_t reg = ROM32(bios->data[offset + 1]);
1419 	uint32_t freq = ROM32(bios->data[offset + 5]);
1420 
1421 	if (!iexec->execute)
1422 		return 9;
1423 
1424 	BIOSLOG(bios, "0x%04X: Reg: 0x%04X, Freq: %dkHz\n",
1425 		offset, reg, freq);
1426 
1427 	setPLL(bios, reg, freq);
1428 	return 9;
1429 }
1430 
1431 static int
init_i2c_byte(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1432 init_i2c_byte(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1433 {
1434 	/*
1435 	 * INIT_I2C_BYTE   opcode: 0x4C ('L')
1436 	 *
1437 	 * offset      (8 bit): opcode
1438 	 * offset + 1  (8 bit): DCB I2C table entry index
1439 	 * offset + 2  (8 bit): I2C slave address
1440 	 * offset + 3  (8 bit): count
1441 	 * offset + 4  (8 bit): I2C register 1
1442 	 * offset + 5  (8 bit): mask 1
1443 	 * offset + 6  (8 bit): data 1
1444 	 * ...
1445 	 *
1446 	 * For each of "count" registers given by "I2C register n" on the device
1447 	 * addressed by "I2C slave address" on the I2C bus given by
1448 	 * "DCB I2C table entry index", read the register, AND the result with
1449 	 * "mask n" and OR it with "data n" before writing it back to the device
1450 	 */
1451 
1452 	struct drm_device *dev = bios->dev;
1453 	uint8_t i2c_index = bios->data[offset + 1];
1454 	uint8_t i2c_address = bios->data[offset + 2] >> 1;
1455 	uint8_t count = bios->data[offset + 3];
1456 	struct nouveau_i2c_chan *chan;
1457 	int len = 4 + count * 3;
1458 	int ret, i;
1459 
1460 	if (!iexec->execute)
1461 		return len;
1462 
1463 	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
1464 		      "Count: 0x%02X\n",
1465 		offset, i2c_index, i2c_address, count);
1466 
1467 	chan = init_i2c_device_find(dev, i2c_index);
1468 	if (!chan) {
1469 		NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset);
1470 		return len;
1471 	}
1472 
1473 	for (i = 0; i < count; i++) {
1474 		uint8_t reg = bios->data[offset + 4 + i * 3];
1475 		uint8_t mask = bios->data[offset + 5 + i * 3];
1476 		uint8_t data = bios->data[offset + 6 + i * 3];
1477 		union i2c_smbus_data val;
1478 
1479 		ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
1480 				     I2C_SMBUS_READ, reg,
1481 				     I2C_SMBUS_BYTE_DATA, &val);
1482 		if (ret < 0) {
1483 			NV_ERROR(dev, "0x%04X: i2c rd fail: %d\n", offset, ret);
1484 			return len;
1485 		}
1486 
1487 		BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: 0x%02X, "
1488 			      "Mask: 0x%02X, Data: 0x%02X\n",
1489 			offset, reg, val.byte, mask, data);
1490 
1491 		if (!bios->execute)
1492 			continue;
1493 
1494 		val.byte &= mask;
1495 		val.byte |= data;
1496 		ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
1497 				     I2C_SMBUS_WRITE, reg,
1498 				     I2C_SMBUS_BYTE_DATA, &val);
1499 		if (ret < 0) {
1500 			NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret);
1501 			return len;
1502 		}
1503 	}
1504 
1505 	return len;
1506 }
1507 
1508 static int
init_zm_i2c_byte(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1509 init_zm_i2c_byte(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1510 {
1511 	/*
1512 	 * INIT_ZM_I2C_BYTE   opcode: 0x4D ('M')
1513 	 *
1514 	 * offset      (8 bit): opcode
1515 	 * offset + 1  (8 bit): DCB I2C table entry index
1516 	 * offset + 2  (8 bit): I2C slave address
1517 	 * offset + 3  (8 bit): count
1518 	 * offset + 4  (8 bit): I2C register 1
1519 	 * offset + 5  (8 bit): data 1
1520 	 * ...
1521 	 *
1522 	 * For each of "count" registers given by "I2C register n" on the device
1523 	 * addressed by "I2C slave address" on the I2C bus given by
1524 	 * "DCB I2C table entry index", set the register to "data n"
1525 	 */
1526 
1527 	struct drm_device *dev = bios->dev;
1528 	uint8_t i2c_index = bios->data[offset + 1];
1529 	uint8_t i2c_address = bios->data[offset + 2] >> 1;
1530 	uint8_t count = bios->data[offset + 3];
1531 	struct nouveau_i2c_chan *chan;
1532 	int len = 4 + count * 2;
1533 	int ret, i;
1534 
1535 	if (!iexec->execute)
1536 		return len;
1537 
1538 	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
1539 		      "Count: 0x%02X\n",
1540 		offset, i2c_index, i2c_address, count);
1541 
1542 	chan = init_i2c_device_find(dev, i2c_index);
1543 	if (!chan) {
1544 		NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset);
1545 		return len;
1546 	}
1547 
1548 	for (i = 0; i < count; i++) {
1549 		uint8_t reg = bios->data[offset + 4 + i * 2];
1550 		union i2c_smbus_data val;
1551 
1552 		val.byte = bios->data[offset + 5 + i * 2];
1553 
1554 		BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Data: 0x%02X\n",
1555 			offset, reg, val.byte);
1556 
1557 		if (!bios->execute)
1558 			continue;
1559 
1560 		ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
1561 				     I2C_SMBUS_WRITE, reg,
1562 				     I2C_SMBUS_BYTE_DATA, &val);
1563 		if (ret < 0) {
1564 			NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret);
1565 			return len;
1566 		}
1567 	}
1568 
1569 	return len;
1570 }
1571 
1572 static int
init_zm_i2c(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1573 init_zm_i2c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1574 {
1575 	/*
1576 	 * INIT_ZM_I2C   opcode: 0x4E ('N')
1577 	 *
1578 	 * offset      (8 bit): opcode
1579 	 * offset + 1  (8 bit): DCB I2C table entry index
1580 	 * offset + 2  (8 bit): I2C slave address
1581 	 * offset + 3  (8 bit): count
1582 	 * offset + 4  (8 bit): data 1
1583 	 * ...
1584 	 *
1585 	 * Send "count" bytes ("data n") to the device addressed by "I2C slave
1586 	 * address" on the I2C bus given by "DCB I2C table entry index"
1587 	 */
1588 
1589 	struct drm_device *dev = bios->dev;
1590 	uint8_t i2c_index = bios->data[offset + 1];
1591 	uint8_t i2c_address = bios->data[offset + 2] >> 1;
1592 	uint8_t count = bios->data[offset + 3];
1593 	int len = 4 + count;
1594 	struct nouveau_i2c_chan *chan;
1595 	struct i2c_msg msg;
1596 	uint8_t data[256];
1597 	int ret, i;
1598 
1599 	if (!iexec->execute)
1600 		return len;
1601 
1602 	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
1603 		      "Count: 0x%02X\n",
1604 		offset, i2c_index, i2c_address, count);
1605 
1606 	chan = init_i2c_device_find(dev, i2c_index);
1607 	if (!chan) {
1608 		NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset);
1609 		return len;
1610 	}
1611 
1612 	for (i = 0; i < count; i++) {
1613 		data[i] = bios->data[offset + 4 + i];
1614 
1615 		BIOSLOG(bios, "0x%04X: Data: 0x%02X\n", offset, data[i]);
1616 	}
1617 
1618 	if (bios->execute) {
1619 		msg.addr = i2c_address;
1620 		msg.flags = 0;
1621 		msg.len = count;
1622 		msg.buf = data;
1623 		ret = i2c_transfer(&chan->adapter, &msg, 1);
1624 		if (ret != 1) {
1625 			NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret);
1626 			return len;
1627 		}
1628 	}
1629 
1630 	return len;
1631 }
1632 
1633 static int
init_tmds(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1634 init_tmds(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1635 {
1636 	/*
1637 	 * INIT_TMDS   opcode: 0x4F ('O')	(non-canon name)
1638 	 *
1639 	 * offset      (8 bit): opcode
1640 	 * offset + 1  (8 bit): magic lookup value
1641 	 * offset + 2  (8 bit): TMDS address
1642 	 * offset + 3  (8 bit): mask
1643 	 * offset + 4  (8 bit): data
1644 	 *
1645 	 * Read the data reg for TMDS address "TMDS address", AND it with mask
1646 	 * and OR it with data, then write it back
1647 	 * "magic lookup value" determines which TMDS base address register is
1648 	 * used -- see get_tmds_index_reg()
1649 	 */
1650 
1651 	struct drm_device *dev = bios->dev;
1652 	uint8_t mlv = bios->data[offset + 1];
1653 	uint32_t tmdsaddr = bios->data[offset + 2];
1654 	uint8_t mask = bios->data[offset + 3];
1655 	uint8_t data = bios->data[offset + 4];
1656 	uint32_t reg, value;
1657 
1658 	if (!iexec->execute)
1659 		return 5;
1660 
1661 	BIOSLOG(bios, "0x%04X: MagicLookupValue: 0x%02X, TMDSAddr: 0x%02X, "
1662 		      "Mask: 0x%02X, Data: 0x%02X\n",
1663 		offset, mlv, tmdsaddr, mask, data);
1664 
1665 	reg = get_tmds_index_reg(bios->dev, mlv);
1666 	if (!reg) {
1667 		NV_ERROR(dev, "0x%04X: no tmds_index_reg\n", offset);
1668 		return 5;
1669 	}
1670 
1671 	bios_wr32(bios, reg,
1672 		  tmdsaddr | NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE);
1673 	value = (bios_rd32(bios, reg + 4) & mask) | data;
1674 	bios_wr32(bios, reg + 4, value);
1675 	bios_wr32(bios, reg, tmdsaddr);
1676 
1677 	return 5;
1678 }
1679 
1680 static int
init_zm_tmds_group(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1681 init_zm_tmds_group(struct nvbios *bios, uint16_t offset,
1682 		   struct init_exec *iexec)
1683 {
1684 	/*
1685 	 * INIT_ZM_TMDS_GROUP   opcode: 0x50 ('P')	(non-canon name)
1686 	 *
1687 	 * offset      (8 bit): opcode
1688 	 * offset + 1  (8 bit): magic lookup value
1689 	 * offset + 2  (8 bit): count
1690 	 * offset + 3  (8 bit): addr 1
1691 	 * offset + 4  (8 bit): data 1
1692 	 * ...
1693 	 *
1694 	 * For each of "count" TMDS address and data pairs write "data n" to
1695 	 * "addr n".  "magic lookup value" determines which TMDS base address
1696 	 * register is used -- see get_tmds_index_reg()
1697 	 */
1698 
1699 	struct drm_device *dev = bios->dev;
1700 	uint8_t mlv = bios->data[offset + 1];
1701 	uint8_t count = bios->data[offset + 2];
1702 	int len = 3 + count * 2;
1703 	uint32_t reg;
1704 	int i;
1705 
1706 	if (!iexec->execute)
1707 		return len;
1708 
1709 	BIOSLOG(bios, "0x%04X: MagicLookupValue: 0x%02X, Count: 0x%02X\n",
1710 		offset, mlv, count);
1711 
1712 	reg = get_tmds_index_reg(bios->dev, mlv);
1713 	if (!reg) {
1714 		NV_ERROR(dev, "0x%04X: no tmds_index_reg\n", offset);
1715 		return len;
1716 	}
1717 
1718 	for (i = 0; i < count; i++) {
1719 		uint8_t tmdsaddr = bios->data[offset + 3 + i * 2];
1720 		uint8_t tmdsdata = bios->data[offset + 4 + i * 2];
1721 
1722 		bios_wr32(bios, reg + 4, tmdsdata);
1723 		bios_wr32(bios, reg, tmdsaddr);
1724 	}
1725 
1726 	return len;
1727 }
1728 
1729 static int
init_cr_idx_adr_latch(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1730 init_cr_idx_adr_latch(struct nvbios *bios, uint16_t offset,
1731 		      struct init_exec *iexec)
1732 {
1733 	/*
1734 	 * INIT_CR_INDEX_ADDRESS_LATCHED   opcode: 0x51 ('Q')
1735 	 *
1736 	 * offset      (8 bit): opcode
1737 	 * offset + 1  (8 bit): CRTC index1
1738 	 * offset + 2  (8 bit): CRTC index2
1739 	 * offset + 3  (8 bit): baseaddr
1740 	 * offset + 4  (8 bit): count
1741 	 * offset + 5  (8 bit): data 1
1742 	 * ...
1743 	 *
1744 	 * For each of "count" address and data pairs, write "baseaddr + n" to
1745 	 * "CRTC index1" and "data n" to "CRTC index2"
1746 	 * Once complete, restore initial value read from "CRTC index1"
1747 	 */
1748 	uint8_t crtcindex1 = bios->data[offset + 1];
1749 	uint8_t crtcindex2 = bios->data[offset + 2];
1750 	uint8_t baseaddr = bios->data[offset + 3];
1751 	uint8_t count = bios->data[offset + 4];
1752 	int len = 5 + count;
1753 	uint8_t oldaddr, data;
1754 	int i;
1755 
1756 	if (!iexec->execute)
1757 		return len;
1758 
1759 	BIOSLOG(bios, "0x%04X: Index1: 0x%02X, Index2: 0x%02X, "
1760 		      "BaseAddr: 0x%02X, Count: 0x%02X\n",
1761 		offset, crtcindex1, crtcindex2, baseaddr, count);
1762 
1763 	oldaddr = bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, crtcindex1);
1764 
1765 	for (i = 0; i < count; i++) {
1766 		bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex1,
1767 				     baseaddr + i);
1768 		data = bios->data[offset + 5 + i];
1769 		bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex2, data);
1770 	}
1771 
1772 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex1, oldaddr);
1773 
1774 	return len;
1775 }
1776 
1777 static int
init_cr(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1778 init_cr(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1779 {
1780 	/*
1781 	 * INIT_CR   opcode: 0x52 ('R')
1782 	 *
1783 	 * offset      (8  bit): opcode
1784 	 * offset + 1  (8  bit): CRTC index
1785 	 * offset + 2  (8  bit): mask
1786 	 * offset + 3  (8  bit): data
1787 	 *
1788 	 * Assign the value of at "CRTC index" ANDed with mask and ORed with
1789 	 * data back to "CRTC index"
1790 	 */
1791 
1792 	uint8_t crtcindex = bios->data[offset + 1];
1793 	uint8_t mask = bios->data[offset + 2];
1794 	uint8_t data = bios->data[offset + 3];
1795 	uint8_t value;
1796 
1797 	if (!iexec->execute)
1798 		return 4;
1799 
1800 	BIOSLOG(bios, "0x%04X: Index: 0x%02X, Mask: 0x%02X, Data: 0x%02X\n",
1801 		offset, crtcindex, mask, data);
1802 
1803 	value  = bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, crtcindex) & mask;
1804 	value |= data;
1805 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex, value);
1806 
1807 	return 4;
1808 }
1809 
1810 static int
init_zm_cr(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1811 init_zm_cr(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1812 {
1813 	/*
1814 	 * INIT_ZM_CR   opcode: 0x53 ('S')
1815 	 *
1816 	 * offset      (8 bit): opcode
1817 	 * offset + 1  (8 bit): CRTC index
1818 	 * offset + 2  (8 bit): value
1819 	 *
1820 	 * Assign "value" to CRTC register with index "CRTC index".
1821 	 */
1822 
1823 	uint8_t crtcindex = ROM32(bios->data[offset + 1]);
1824 	uint8_t data = bios->data[offset + 2];
1825 
1826 	if (!iexec->execute)
1827 		return 3;
1828 
1829 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex, data);
1830 
1831 	return 3;
1832 }
1833 
1834 static int
init_zm_cr_group(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1835 init_zm_cr_group(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1836 {
1837 	/*
1838 	 * INIT_ZM_CR_GROUP   opcode: 0x54 ('T')
1839 	 *
1840 	 * offset      (8 bit): opcode
1841 	 * offset + 1  (8 bit): count
1842 	 * offset + 2  (8 bit): CRTC index 1
1843 	 * offset + 3  (8 bit): value 1
1844 	 * ...
1845 	 *
1846 	 * For "count", assign "value n" to CRTC register with index
1847 	 * "CRTC index n".
1848 	 */
1849 
1850 	uint8_t count = bios->data[offset + 1];
1851 	int len = 2 + count * 2;
1852 	int i;
1853 
1854 	if (!iexec->execute)
1855 		return len;
1856 
1857 	for (i = 0; i < count; i++)
1858 		init_zm_cr(bios, offset + 2 + 2 * i - 1, iexec);
1859 
1860 	return len;
1861 }
1862 
1863 static int
init_condition_time(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1864 init_condition_time(struct nvbios *bios, uint16_t offset,
1865 		    struct init_exec *iexec)
1866 {
1867 	/*
1868 	 * INIT_CONDITION_TIME   opcode: 0x56 ('V')
1869 	 *
1870 	 * offset      (8 bit): opcode
1871 	 * offset + 1  (8 bit): condition number
1872 	 * offset + 2  (8 bit): retries / 50
1873 	 *
1874 	 * Check condition "condition number" in the condition table.
1875 	 * Bios code then sleeps for 2ms if the condition is not met, and
1876 	 * repeats up to "retries" times, but on one C51 this has proved
1877 	 * insufficient.  In mmiotraces the driver sleeps for 20ms, so we do
1878 	 * this, and bail after "retries" times, or 2s, whichever is less.
1879 	 * If still not met after retries, clear execution flag for this table.
1880 	 */
1881 
1882 	uint8_t cond = bios->data[offset + 1];
1883 	uint16_t retries = bios->data[offset + 2] * 50;
1884 	unsigned cnt;
1885 
1886 	if (!iexec->execute)
1887 		return 3;
1888 
1889 	if (retries > 100)
1890 		retries = 100;
1891 
1892 	BIOSLOG(bios, "0x%04X: Condition: 0x%02X, Retries: 0x%02X\n",
1893 		offset, cond, retries);
1894 
1895 	if (!bios->execute) /* avoid 2s delays when "faking" execution */
1896 		retries = 1;
1897 
1898 	for (cnt = 0; cnt < retries; cnt++) {
1899 		if (bios_condition_met(bios, offset, cond)) {
1900 			BIOSLOG(bios, "0x%04X: Condition met, continuing\n",
1901 								offset);
1902 			break;
1903 		} else {
1904 			BIOSLOG(bios, "0x%04X: "
1905 				"Condition not met, sleeping for 20ms\n",
1906 								offset);
1907 			mdelay(20);
1908 		}
1909 	}
1910 
1911 	if (!bios_condition_met(bios, offset, cond)) {
1912 		NV_WARN(bios->dev,
1913 			"0x%04X: Condition still not met after %dms, "
1914 			"skipping following opcodes\n", offset, 20 * retries);
1915 		iexec->execute = false;
1916 	}
1917 
1918 	return 3;
1919 }
1920 
1921 static int
init_ltime(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1922 init_ltime(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1923 {
1924 	/*
1925 	 * INIT_LTIME   opcode: 0x57 ('V')
1926 	 *
1927 	 * offset      (8  bit): opcode
1928 	 * offset + 1  (16 bit): time
1929 	 *
1930 	 * Sleep for "time" milliseconds.
1931 	 */
1932 
1933 	unsigned time = ROM16(bios->data[offset + 1]);
1934 
1935 	if (!iexec->execute)
1936 		return 3;
1937 
1938 	BIOSLOG(bios, "0x%04X: Sleeping for 0x%04X milliseconds\n",
1939 		offset, time);
1940 
1941 	mdelay(time);
1942 
1943 	return 3;
1944 }
1945 
1946 static int
init_zm_reg_sequence(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1947 init_zm_reg_sequence(struct nvbios *bios, uint16_t offset,
1948 		     struct init_exec *iexec)
1949 {
1950 	/*
1951 	 * INIT_ZM_REG_SEQUENCE   opcode: 0x58 ('X')
1952 	 *
1953 	 * offset      (8  bit): opcode
1954 	 * offset + 1  (32 bit): base register
1955 	 * offset + 5  (8  bit): count
1956 	 * offset + 6  (32 bit): value 1
1957 	 * ...
1958 	 *
1959 	 * Starting at offset + 6 there are "count" 32 bit values.
1960 	 * For "count" iterations set "base register" + 4 * current_iteration
1961 	 * to "value current_iteration"
1962 	 */
1963 
1964 	uint32_t basereg = ROM32(bios->data[offset + 1]);
1965 	uint32_t count = bios->data[offset + 5];
1966 	int len = 6 + count * 4;
1967 	int i;
1968 
1969 	if (!iexec->execute)
1970 		return len;
1971 
1972 	BIOSLOG(bios, "0x%04X: BaseReg: 0x%08X, Count: 0x%02X\n",
1973 		offset, basereg, count);
1974 
1975 	for (i = 0; i < count; i++) {
1976 		uint32_t reg = basereg + i * 4;
1977 		uint32_t data = ROM32(bios->data[offset + 6 + i * 4]);
1978 
1979 		bios_wr32(bios, reg, data);
1980 	}
1981 
1982 	return len;
1983 }
1984 
1985 static int
init_sub_direct(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1986 init_sub_direct(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1987 {
1988 	/*
1989 	 * INIT_SUB_DIRECT   opcode: 0x5B ('[')
1990 	 *
1991 	 * offset      (8  bit): opcode
1992 	 * offset + 1  (16 bit): subroutine offset (in bios)
1993 	 *
1994 	 * Calls a subroutine that will execute commands until INIT_DONE
1995 	 * is found.
1996 	 */
1997 
1998 	uint16_t sub_offset = ROM16(bios->data[offset + 1]);
1999 
2000 	if (!iexec->execute)
2001 		return 3;
2002 
2003 	BIOSLOG(bios, "0x%04X: Executing subroutine at 0x%04X\n",
2004 		offset, sub_offset);
2005 
2006 	parse_init_table(bios, sub_offset, iexec);
2007 
2008 	BIOSLOG(bios, "0x%04X: End of 0x%04X subroutine\n", offset, sub_offset);
2009 
2010 	return 3;
2011 }
2012 
2013 static int
init_jump(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2014 init_jump(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2015 {
2016 	/*
2017 	 * INIT_JUMP   opcode: 0x5C ('\')
2018 	 *
2019 	 * offset      (8  bit): opcode
2020 	 * offset + 1  (16 bit): offset (in bios)
2021 	 *
2022 	 * Continue execution of init table from 'offset'
2023 	 */
2024 
2025 	uint16_t jmp_offset = ROM16(bios->data[offset + 1]);
2026 
2027 	if (!iexec->execute)
2028 		return 3;
2029 
2030 	BIOSLOG(bios, "0x%04X: Jump to 0x%04X\n", offset, jmp_offset);
2031 	return jmp_offset - offset;
2032 }
2033 
2034 static int
init_i2c_if(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2035 init_i2c_if(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2036 {
2037 	/*
2038 	 * INIT_I2C_IF   opcode: 0x5E ('^')
2039 	 *
2040 	 * offset      (8 bit): opcode
2041 	 * offset + 1  (8 bit): DCB I2C table entry index
2042 	 * offset + 2  (8 bit): I2C slave address
2043 	 * offset + 3  (8 bit): I2C register
2044 	 * offset + 4  (8 bit): mask
2045 	 * offset + 5  (8 bit): data
2046 	 *
2047 	 * Read the register given by "I2C register" on the device addressed
2048 	 * by "I2C slave address" on the I2C bus given by "DCB I2C table
2049 	 * entry index". Compare the result AND "mask" to "data".
2050 	 * If they're not equal, skip subsequent opcodes until condition is
2051 	 * inverted (INIT_NOT), or we hit INIT_RESUME
2052 	 */
2053 
2054 	uint8_t i2c_index = bios->data[offset + 1];
2055 	uint8_t i2c_address = bios->data[offset + 2] >> 1;
2056 	uint8_t reg = bios->data[offset + 3];
2057 	uint8_t mask = bios->data[offset + 4];
2058 	uint8_t data = bios->data[offset + 5];
2059 	struct nouveau_i2c_chan *chan;
2060 	union i2c_smbus_data val;
2061 	int ret;
2062 
2063 	/* no execute check by design */
2064 
2065 	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X\n",
2066 		offset, i2c_index, i2c_address);
2067 
2068 	chan = init_i2c_device_find(bios->dev, i2c_index);
2069 	if (!chan)
2070 		return -ENODEV;
2071 
2072 	ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
2073 			     I2C_SMBUS_READ, reg,
2074 			     I2C_SMBUS_BYTE_DATA, &val);
2075 	if (ret < 0) {
2076 		BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: [no device], "
2077 			      "Mask: 0x%02X, Data: 0x%02X\n",
2078 			offset, reg, mask, data);
2079 		iexec->execute = 0;
2080 		return 6;
2081 	}
2082 
2083 	BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: 0x%02X, "
2084 		      "Mask: 0x%02X, Data: 0x%02X\n",
2085 		offset, reg, val.byte, mask, data);
2086 
2087 	iexec->execute = ((val.byte & mask) == data);
2088 
2089 	return 6;
2090 }
2091 
2092 static int
init_copy_nv_reg(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2093 init_copy_nv_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2094 {
2095 	/*
2096 	 * INIT_COPY_NV_REG   opcode: 0x5F ('_')
2097 	 *
2098 	 * offset      (8  bit): opcode
2099 	 * offset + 1  (32 bit): src reg
2100 	 * offset + 5  (8  bit): shift
2101 	 * offset + 6  (32 bit): src mask
2102 	 * offset + 10 (32 bit): xor
2103 	 * offset + 14 (32 bit): dst reg
2104 	 * offset + 18 (32 bit): dst mask
2105 	 *
2106 	 * Shift REGVAL("src reg") right by (signed) "shift", AND result with
2107 	 * "src mask", then XOR with "xor". Write this OR'd with
2108 	 * (REGVAL("dst reg") AND'd with "dst mask") to "dst reg"
2109 	 */
2110 
2111 	uint32_t srcreg = *((uint32_t *)(&bios->data[offset + 1]));
2112 	uint8_t shift = bios->data[offset + 5];
2113 	uint32_t srcmask = *((uint32_t *)(&bios->data[offset + 6]));
2114 	uint32_t xor = *((uint32_t *)(&bios->data[offset + 10]));
2115 	uint32_t dstreg = *((uint32_t *)(&bios->data[offset + 14]));
2116 	uint32_t dstmask = *((uint32_t *)(&bios->data[offset + 18]));
2117 	uint32_t srcvalue, dstvalue;
2118 
2119 	if (!iexec->execute)
2120 		return 22;
2121 
2122 	BIOSLOG(bios, "0x%04X: SrcReg: 0x%08X, Shift: 0x%02X, SrcMask: 0x%08X, "
2123 		      "Xor: 0x%08X, DstReg: 0x%08X, DstMask: 0x%08X\n",
2124 		offset, srcreg, shift, srcmask, xor, dstreg, dstmask);
2125 
2126 	srcvalue = bios_rd32(bios, srcreg);
2127 
2128 	if (shift < 0x80)
2129 		srcvalue >>= shift;
2130 	else
2131 		srcvalue <<= (0x100 - shift);
2132 
2133 	srcvalue = (srcvalue & srcmask) ^ xor;
2134 
2135 	dstvalue = bios_rd32(bios, dstreg) & dstmask;
2136 
2137 	bios_wr32(bios, dstreg, dstvalue | srcvalue);
2138 
2139 	return 22;
2140 }
2141 
2142 static int
init_zm_index_io(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2143 init_zm_index_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2144 {
2145 	/*
2146 	 * INIT_ZM_INDEX_IO   opcode: 0x62 ('b')
2147 	 *
2148 	 * offset      (8  bit): opcode
2149 	 * offset + 1  (16 bit): CRTC port
2150 	 * offset + 3  (8  bit): CRTC index
2151 	 * offset + 4  (8  bit): data
2152 	 *
2153 	 * Write "data" to index "CRTC index" of "CRTC port"
2154 	 */
2155 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
2156 	uint8_t crtcindex = bios->data[offset + 3];
2157 	uint8_t data = bios->data[offset + 4];
2158 
2159 	if (!iexec->execute)
2160 		return 5;
2161 
2162 	bios_idxprt_wr(bios, crtcport, crtcindex, data);
2163 
2164 	return 5;
2165 }
2166 
2167 static inline void
bios_md32(struct nvbios * bios,uint32_t reg,uint32_t mask,uint32_t val)2168 bios_md32(struct nvbios *bios, uint32_t reg,
2169 	  uint32_t mask, uint32_t val)
2170 {
2171 	bios_wr32(bios, reg, (bios_rd32(bios, reg) & ~mask) | val);
2172 }
2173 
2174 static uint32_t
peek_fb(struct drm_device * dev,struct io_mapping * fb,uint32_t off)2175 peek_fb(struct drm_device *dev, struct io_mapping *fb,
2176 	uint32_t off)
2177 {
2178 	uint32_t val = 0;
2179 
2180 	if (off < pci_resource_len(dev->pdev, 1)) {
2181 		uint8_t __iomem *p =
2182 			io_mapping_map_atomic_wc(fb, off & PAGE_MASK);
2183 
2184 		val = ioread32(p + (off & ~PAGE_MASK));
2185 
2186 		io_mapping_unmap_atomic(p);
2187 	}
2188 
2189 	return val;
2190 }
2191 
2192 static void
poke_fb(struct drm_device * dev,struct io_mapping * fb,uint32_t off,uint32_t val)2193 poke_fb(struct drm_device *dev, struct io_mapping *fb,
2194 	uint32_t off, uint32_t val)
2195 {
2196 	if (off < pci_resource_len(dev->pdev, 1)) {
2197 		uint8_t __iomem *p =
2198 			io_mapping_map_atomic_wc(fb, off & PAGE_MASK);
2199 
2200 		iowrite32(val, p + (off & ~PAGE_MASK));
2201 		wmb();
2202 
2203 		io_mapping_unmap_atomic(p);
2204 	}
2205 }
2206 
2207 static inline bool
read_back_fb(struct drm_device * dev,struct io_mapping * fb,uint32_t off,uint32_t val)2208 read_back_fb(struct drm_device *dev, struct io_mapping *fb,
2209 	     uint32_t off, uint32_t val)
2210 {
2211 	poke_fb(dev, fb, off, val);
2212 	return val == peek_fb(dev, fb, off);
2213 }
2214 
2215 static int
nv04_init_compute_mem(struct nvbios * bios)2216 nv04_init_compute_mem(struct nvbios *bios)
2217 {
2218 	struct drm_device *dev = bios->dev;
2219 	uint32_t patt = 0xdeadbeef;
2220 	struct io_mapping *fb;
2221 	int i;
2222 
2223 	/* Map the framebuffer aperture */
2224 	fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
2225 				  pci_resource_len(dev->pdev, 1));
2226 	if (!fb)
2227 		return -ENOMEM;
2228 
2229 	/* Sequencer and refresh off */
2230 	NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) | 0x20);
2231 	bios_md32(bios, NV04_PFB_DEBUG_0, 0, NV04_PFB_DEBUG_0_REFRESH_OFF);
2232 
2233 	bios_md32(bios, NV04_PFB_BOOT_0, ~0,
2234 		  NV04_PFB_BOOT_0_RAM_AMOUNT_16MB |
2235 		  NV04_PFB_BOOT_0_RAM_WIDTH_128 |
2236 		  NV04_PFB_BOOT_0_RAM_TYPE_SGRAM_16MBIT);
2237 
2238 	for (i = 0; i < 4; i++)
2239 		poke_fb(dev, fb, 4 * i, patt);
2240 
2241 	poke_fb(dev, fb, 0x400000, patt + 1);
2242 
2243 	if (peek_fb(dev, fb, 0) == patt + 1) {
2244 		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_TYPE,
2245 			  NV04_PFB_BOOT_0_RAM_TYPE_SDRAM_16MBIT);
2246 		bios_md32(bios, NV04_PFB_DEBUG_0,
2247 			  NV04_PFB_DEBUG_0_REFRESH_OFF, 0);
2248 
2249 		for (i = 0; i < 4; i++)
2250 			poke_fb(dev, fb, 4 * i, patt);
2251 
2252 		if ((peek_fb(dev, fb, 0xc) & 0xffff) != (patt & 0xffff))
2253 			bios_md32(bios, NV04_PFB_BOOT_0,
2254 				  NV04_PFB_BOOT_0_RAM_WIDTH_128 |
2255 				  NV04_PFB_BOOT_0_RAM_AMOUNT,
2256 				  NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
2257 
2258 	} else if ((peek_fb(dev, fb, 0xc) & 0xffff0000) !=
2259 		   (patt & 0xffff0000)) {
2260 		bios_md32(bios, NV04_PFB_BOOT_0,
2261 			  NV04_PFB_BOOT_0_RAM_WIDTH_128 |
2262 			  NV04_PFB_BOOT_0_RAM_AMOUNT,
2263 			  NV04_PFB_BOOT_0_RAM_AMOUNT_4MB);
2264 
2265 	} else if (peek_fb(dev, fb, 0) != patt) {
2266 		if (read_back_fb(dev, fb, 0x800000, patt))
2267 			bios_md32(bios, NV04_PFB_BOOT_0,
2268 				  NV04_PFB_BOOT_0_RAM_AMOUNT,
2269 				  NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
2270 		else
2271 			bios_md32(bios, NV04_PFB_BOOT_0,
2272 				  NV04_PFB_BOOT_0_RAM_AMOUNT,
2273 				  NV04_PFB_BOOT_0_RAM_AMOUNT_4MB);
2274 
2275 		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_TYPE,
2276 			  NV04_PFB_BOOT_0_RAM_TYPE_SGRAM_8MBIT);
2277 
2278 	} else if (!read_back_fb(dev, fb, 0x800000, patt)) {
2279 		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
2280 			  NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
2281 
2282 	}
2283 
2284 	/* Refresh on, sequencer on */
2285 	bios_md32(bios, NV04_PFB_DEBUG_0, NV04_PFB_DEBUG_0_REFRESH_OFF, 0);
2286 	NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) & ~0x20);
2287 
2288 	io_mapping_free(fb);
2289 	return 0;
2290 }
2291 
2292 static const uint8_t *
nv05_memory_config(struct nvbios * bios)2293 nv05_memory_config(struct nvbios *bios)
2294 {
2295 	/* Defaults for BIOSes lacking a memory config table */
2296 	static const uint8_t default_config_tab[][2] = {
2297 		{ 0x24, 0x00 },
2298 		{ 0x28, 0x00 },
2299 		{ 0x24, 0x01 },
2300 		{ 0x1f, 0x00 },
2301 		{ 0x0f, 0x00 },
2302 		{ 0x17, 0x00 },
2303 		{ 0x06, 0x00 },
2304 		{ 0x00, 0x00 }
2305 	};
2306 	int i = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) &
2307 		 NV_PEXTDEV_BOOT_0_RAMCFG) >> 2;
2308 
2309 	if (bios->legacy.mem_init_tbl_ptr)
2310 		return &bios->data[bios->legacy.mem_init_tbl_ptr + 2 * i];
2311 	else
2312 		return default_config_tab[i];
2313 }
2314 
2315 static int
nv05_init_compute_mem(struct nvbios * bios)2316 nv05_init_compute_mem(struct nvbios *bios)
2317 {
2318 	struct drm_device *dev = bios->dev;
2319 	const uint8_t *ramcfg = nv05_memory_config(bios);
2320 	uint32_t patt = 0xdeadbeef;
2321 	struct io_mapping *fb;
2322 	int i, v;
2323 
2324 	/* Map the framebuffer aperture */
2325 	fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
2326 				  pci_resource_len(dev->pdev, 1));
2327 	if (!fb)
2328 		return -ENOMEM;
2329 
2330 	/* Sequencer off */
2331 	NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) | 0x20);
2332 
2333 	if (bios_rd32(bios, NV04_PFB_BOOT_0) & NV04_PFB_BOOT_0_UMA_ENABLE)
2334 		goto out;
2335 
2336 	bios_md32(bios, NV04_PFB_DEBUG_0, NV04_PFB_DEBUG_0_REFRESH_OFF, 0);
2337 
2338 	/* If present load the hardcoded scrambling table */
2339 	if (bios->legacy.mem_init_tbl_ptr) {
2340 		uint32_t *scramble_tab = (uint32_t *)&bios->data[
2341 			bios->legacy.mem_init_tbl_ptr + 0x10];
2342 
2343 		for (i = 0; i < 8; i++)
2344 			bios_wr32(bios, NV04_PFB_SCRAMBLE(i),
2345 				  ROM32(scramble_tab[i]));
2346 	}
2347 
2348 	/* Set memory type/width/length defaults depending on the straps */
2349 	bios_md32(bios, NV04_PFB_BOOT_0, 0x3f, ramcfg[0]);
2350 
2351 	if (ramcfg[1] & 0x80)
2352 		bios_md32(bios, NV04_PFB_CFG0, 0, NV04_PFB_CFG0_SCRAMBLE);
2353 
2354 	bios_md32(bios, NV04_PFB_CFG1, 0x700001, (ramcfg[1] & 1) << 20);
2355 	bios_md32(bios, NV04_PFB_CFG1, 0, 1);
2356 
2357 	/* Probe memory bus width */
2358 	for (i = 0; i < 4; i++)
2359 		poke_fb(dev, fb, 4 * i, patt);
2360 
2361 	if (peek_fb(dev, fb, 0xc) != patt)
2362 		bios_md32(bios, NV04_PFB_BOOT_0,
2363 			  NV04_PFB_BOOT_0_RAM_WIDTH_128, 0);
2364 
2365 	/* Probe memory length */
2366 	v = bios_rd32(bios, NV04_PFB_BOOT_0) & NV04_PFB_BOOT_0_RAM_AMOUNT;
2367 
2368 	if (v == NV04_PFB_BOOT_0_RAM_AMOUNT_32MB &&
2369 	    (!read_back_fb(dev, fb, 0x1000000, ++patt) ||
2370 	     !read_back_fb(dev, fb, 0, ++patt)))
2371 		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
2372 			  NV04_PFB_BOOT_0_RAM_AMOUNT_16MB);
2373 
2374 	if (v == NV04_PFB_BOOT_0_RAM_AMOUNT_16MB &&
2375 	    !read_back_fb(dev, fb, 0x800000, ++patt))
2376 		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
2377 			  NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
2378 
2379 	if (!read_back_fb(dev, fb, 0x400000, ++patt))
2380 		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
2381 			  NV04_PFB_BOOT_0_RAM_AMOUNT_4MB);
2382 
2383 out:
2384 	/* Sequencer on */
2385 	NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) & ~0x20);
2386 
2387 	io_mapping_free(fb);
2388 	return 0;
2389 }
2390 
2391 static int
nv10_init_compute_mem(struct nvbios * bios)2392 nv10_init_compute_mem(struct nvbios *bios)
2393 {
2394 	struct drm_device *dev = bios->dev;
2395 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
2396 	const int mem_width[] = { 0x10, 0x00, 0x20 };
2397 	const int mem_width_count = (dev_priv->chipset >= 0x17 ? 3 : 2);
2398 	uint32_t patt = 0xdeadbeef;
2399 	struct io_mapping *fb;
2400 	int i, j, k;
2401 
2402 	/* Map the framebuffer aperture */
2403 	fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
2404 				  pci_resource_len(dev->pdev, 1));
2405 	if (!fb)
2406 		return -ENOMEM;
2407 
2408 	bios_wr32(bios, NV10_PFB_REFCTRL, NV10_PFB_REFCTRL_VALID_1);
2409 
2410 	/* Probe memory bus width */
2411 	for (i = 0; i < mem_width_count; i++) {
2412 		bios_md32(bios, NV04_PFB_CFG0, 0x30, mem_width[i]);
2413 
2414 		for (j = 0; j < 4; j++) {
2415 			for (k = 0; k < 4; k++)
2416 				poke_fb(dev, fb, 0x1c, 0);
2417 
2418 			poke_fb(dev, fb, 0x1c, patt);
2419 			poke_fb(dev, fb, 0x3c, 0);
2420 
2421 			if (peek_fb(dev, fb, 0x1c) == patt)
2422 				goto mem_width_found;
2423 		}
2424 	}
2425 
2426 mem_width_found:
2427 	patt <<= 1;
2428 
2429 	/* Probe amount of installed memory */
2430 	for (i = 0; i < 4; i++) {
2431 		int off = bios_rd32(bios, NV04_PFB_FIFO_DATA) - 0x100000;
2432 
2433 		poke_fb(dev, fb, off, patt);
2434 		poke_fb(dev, fb, 0, 0);
2435 
2436 		peek_fb(dev, fb, 0);
2437 		peek_fb(dev, fb, 0);
2438 		peek_fb(dev, fb, 0);
2439 		peek_fb(dev, fb, 0);
2440 
2441 		if (peek_fb(dev, fb, off) == patt)
2442 			goto amount_found;
2443 	}
2444 
2445 	/* IC missing - disable the upper half memory space. */
2446 	bios_md32(bios, NV04_PFB_CFG0, 0x1000, 0);
2447 
2448 amount_found:
2449 	io_mapping_free(fb);
2450 	return 0;
2451 }
2452 
2453 static int
nv20_init_compute_mem(struct nvbios * bios)2454 nv20_init_compute_mem(struct nvbios *bios)
2455 {
2456 	struct drm_device *dev = bios->dev;
2457 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
2458 	uint32_t mask = (dev_priv->chipset >= 0x25 ? 0x300 : 0x900);
2459 	uint32_t amount, off;
2460 	struct io_mapping *fb;
2461 
2462 	/* Map the framebuffer aperture */
2463 	fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
2464 				  pci_resource_len(dev->pdev, 1));
2465 	if (!fb)
2466 		return -ENOMEM;
2467 
2468 	bios_wr32(bios, NV10_PFB_REFCTRL, NV10_PFB_REFCTRL_VALID_1);
2469 
2470 	/* Allow full addressing */
2471 	bios_md32(bios, NV04_PFB_CFG0, 0, mask);
2472 
2473 	amount = bios_rd32(bios, NV04_PFB_FIFO_DATA);
2474 	for (off = amount; off > 0x2000000; off -= 0x2000000)
2475 		poke_fb(dev, fb, off - 4, off);
2476 
2477 	amount = bios_rd32(bios, NV04_PFB_FIFO_DATA);
2478 	if (amount != peek_fb(dev, fb, amount - 4))
2479 		/* IC missing - disable the upper half memory space. */
2480 		bios_md32(bios, NV04_PFB_CFG0, mask, 0);
2481 
2482 	io_mapping_free(fb);
2483 	return 0;
2484 }
2485 
2486 static int
init_compute_mem(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2487 init_compute_mem(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2488 {
2489 	/*
2490 	 * INIT_COMPUTE_MEM   opcode: 0x63 ('c')
2491 	 *
2492 	 * offset      (8 bit): opcode
2493 	 *
2494 	 * This opcode is meant to set the PFB memory config registers
2495 	 * appropriately so that we can correctly calculate how much VRAM it
2496 	 * has (on nv10 and better chipsets the amount of installed VRAM is
2497 	 * subsequently reported in NV_PFB_CSTATUS (0x10020C)).
2498 	 *
2499 	 * The implementation of this opcode in general consists of several
2500 	 * parts:
2501 	 *
2502 	 * 1) Determination of memory type and density. Only necessary for
2503 	 *    really old chipsets, the memory type reported by the strap bits
2504 	 *    (0x101000) is assumed to be accurate on nv05 and newer.
2505 	 *
2506 	 * 2) Determination of the memory bus width. Usually done by a cunning
2507 	 *    combination of writes to offsets 0x1c and 0x3c in the fb, and
2508 	 *    seeing whether the written values are read back correctly.
2509 	 *
2510 	 *    Only necessary on nv0x-nv1x and nv34, on the other cards we can
2511 	 *    trust the straps.
2512 	 *
2513 	 * 3) Determination of how many of the card's RAM pads have ICs
2514 	 *    attached, usually done by a cunning combination of writes to an
2515 	 *    offset slightly less than the maximum memory reported by
2516 	 *    NV_PFB_CSTATUS, then seeing if the test pattern can be read back.
2517 	 *
2518 	 * This appears to be a NOP on IGPs and NV4x or newer chipsets, both io
2519 	 * logs of the VBIOS and kmmio traces of the binary driver POSTing the
2520 	 * card show nothing being done for this opcode. Why is it still listed
2521 	 * in the table?!
2522 	 */
2523 
2524 	/* no iexec->execute check by design */
2525 
2526 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
2527 	int ret;
2528 
2529 	if (dev_priv->chipset >= 0x40 ||
2530 	    dev_priv->chipset == 0x1a ||
2531 	    dev_priv->chipset == 0x1f)
2532 		ret = 0;
2533 	else if (dev_priv->chipset >= 0x20 &&
2534 		 dev_priv->chipset != 0x34)
2535 		ret = nv20_init_compute_mem(bios);
2536 	else if (dev_priv->chipset >= 0x10)
2537 		ret = nv10_init_compute_mem(bios);
2538 	else if (dev_priv->chipset >= 0x5)
2539 		ret = nv05_init_compute_mem(bios);
2540 	else
2541 		ret = nv04_init_compute_mem(bios);
2542 
2543 	if (ret)
2544 		return ret;
2545 
2546 	return 1;
2547 }
2548 
2549 static int
init_reset(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2550 init_reset(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2551 {
2552 	/*
2553 	 * INIT_RESET   opcode: 0x65 ('e')
2554 	 *
2555 	 * offset      (8  bit): opcode
2556 	 * offset + 1  (32 bit): register
2557 	 * offset + 5  (32 bit): value1
2558 	 * offset + 9  (32 bit): value2
2559 	 *
2560 	 * Assign "value1" to "register", then assign "value2" to "register"
2561 	 */
2562 
2563 	uint32_t reg = ROM32(bios->data[offset + 1]);
2564 	uint32_t value1 = ROM32(bios->data[offset + 5]);
2565 	uint32_t value2 = ROM32(bios->data[offset + 9]);
2566 	uint32_t pci_nv_19, pci_nv_20;
2567 
2568 	/* no iexec->execute check by design */
2569 
2570 	pci_nv_19 = bios_rd32(bios, NV_PBUS_PCI_NV_19);
2571 	bios_wr32(bios, NV_PBUS_PCI_NV_19, pci_nv_19 & ~0xf00);
2572 
2573 	bios_wr32(bios, reg, value1);
2574 
2575 	udelay(10);
2576 
2577 	bios_wr32(bios, reg, value2);
2578 	bios_wr32(bios, NV_PBUS_PCI_NV_19, pci_nv_19);
2579 
2580 	pci_nv_20 = bios_rd32(bios, NV_PBUS_PCI_NV_20);
2581 	pci_nv_20 &= ~NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED;	/* 0xfffffffe */
2582 	bios_wr32(bios, NV_PBUS_PCI_NV_20, pci_nv_20);
2583 
2584 	return 13;
2585 }
2586 
2587 static int
init_configure_mem(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2588 init_configure_mem(struct nvbios *bios, uint16_t offset,
2589 		   struct init_exec *iexec)
2590 {
2591 	/*
2592 	 * INIT_CONFIGURE_MEM   opcode: 0x66 ('f')
2593 	 *
2594 	 * offset      (8 bit): opcode
2595 	 *
2596 	 * Equivalent to INIT_DONE on bios version 3 or greater.
2597 	 * For early bios versions, sets up the memory registers, using values
2598 	 * taken from the memory init table
2599 	 */
2600 
2601 	/* no iexec->execute check by design */
2602 
2603 	uint16_t meminitoffs = bios->legacy.mem_init_tbl_ptr + MEM_INIT_SIZE * (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX) >> 4);
2604 	uint16_t seqtbloffs = bios->legacy.sdr_seq_tbl_ptr, meminitdata = meminitoffs + 6;
2605 	uint32_t reg, data;
2606 
2607 	if (bios->major_version > 2)
2608 		return 0;
2609 
2610 	bios_idxprt_wr(bios, NV_VIO_SRX, NV_VIO_SR_CLOCK_INDEX, bios_idxprt_rd(
2611 		       bios, NV_VIO_SRX, NV_VIO_SR_CLOCK_INDEX) | 0x20);
2612 
2613 	if (bios->data[meminitoffs] & 1)
2614 		seqtbloffs = bios->legacy.ddr_seq_tbl_ptr;
2615 
2616 	for (reg = ROM32(bios->data[seqtbloffs]);
2617 	     reg != 0xffffffff;
2618 	     reg = ROM32(bios->data[seqtbloffs += 4])) {
2619 
2620 		switch (reg) {
2621 		case NV04_PFB_PRE:
2622 			data = NV04_PFB_PRE_CMD_PRECHARGE;
2623 			break;
2624 		case NV04_PFB_PAD:
2625 			data = NV04_PFB_PAD_CKE_NORMAL;
2626 			break;
2627 		case NV04_PFB_REF:
2628 			data = NV04_PFB_REF_CMD_REFRESH;
2629 			break;
2630 		default:
2631 			data = ROM32(bios->data[meminitdata]);
2632 			meminitdata += 4;
2633 			if (data == 0xffffffff)
2634 				continue;
2635 		}
2636 
2637 		bios_wr32(bios, reg, data);
2638 	}
2639 
2640 	return 1;
2641 }
2642 
2643 static int
init_configure_clk(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2644 init_configure_clk(struct nvbios *bios, uint16_t offset,
2645 		   struct init_exec *iexec)
2646 {
2647 	/*
2648 	 * INIT_CONFIGURE_CLK   opcode: 0x67 ('g')
2649 	 *
2650 	 * offset      (8 bit): opcode
2651 	 *
2652 	 * Equivalent to INIT_DONE on bios version 3 or greater.
2653 	 * For early bios versions, sets up the NVClk and MClk PLLs, using
2654 	 * values taken from the memory init table
2655 	 */
2656 
2657 	/* no iexec->execute check by design */
2658 
2659 	uint16_t meminitoffs = bios->legacy.mem_init_tbl_ptr + MEM_INIT_SIZE * (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX) >> 4);
2660 	int clock;
2661 
2662 	if (bios->major_version > 2)
2663 		return 0;
2664 
2665 	clock = ROM16(bios->data[meminitoffs + 4]) * 10;
2666 	setPLL(bios, NV_PRAMDAC_NVPLL_COEFF, clock);
2667 
2668 	clock = ROM16(bios->data[meminitoffs + 2]) * 10;
2669 	if (bios->data[meminitoffs] & 1) /* DDR */
2670 		clock *= 2;
2671 	setPLL(bios, NV_PRAMDAC_MPLL_COEFF, clock);
2672 
2673 	return 1;
2674 }
2675 
2676 static int
init_configure_preinit(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2677 init_configure_preinit(struct nvbios *bios, uint16_t offset,
2678 		       struct init_exec *iexec)
2679 {
2680 	/*
2681 	 * INIT_CONFIGURE_PREINIT   opcode: 0x68 ('h')
2682 	 *
2683 	 * offset      (8 bit): opcode
2684 	 *
2685 	 * Equivalent to INIT_DONE on bios version 3 or greater.
2686 	 * For early bios versions, does early init, loading ram and crystal
2687 	 * configuration from straps into CR3C
2688 	 */
2689 
2690 	/* no iexec->execute check by design */
2691 
2692 	uint32_t straps = bios_rd32(bios, NV_PEXTDEV_BOOT_0);
2693 	uint8_t cr3c = ((straps << 2) & 0xf0) | (straps & 0x40) >> 6;
2694 
2695 	if (bios->major_version > 2)
2696 		return 0;
2697 
2698 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR,
2699 			     NV_CIO_CRE_SCRATCH4__INDEX, cr3c);
2700 
2701 	return 1;
2702 }
2703 
2704 static int
init_io(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2705 init_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2706 {
2707 	/*
2708 	 * INIT_IO   opcode: 0x69 ('i')
2709 	 *
2710 	 * offset      (8  bit): opcode
2711 	 * offset + 1  (16 bit): CRTC port
2712 	 * offset + 3  (8  bit): mask
2713 	 * offset + 4  (8  bit): data
2714 	 *
2715 	 * Assign ((IOVAL("crtc port") & "mask") | "data") to "crtc port"
2716 	 */
2717 
2718 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
2719 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
2720 	uint8_t mask = bios->data[offset + 3];
2721 	uint8_t data = bios->data[offset + 4];
2722 
2723 	if (!iexec->execute)
2724 		return 5;
2725 
2726 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Mask: 0x%02X, Data: 0x%02X\n",
2727 		offset, crtcport, mask, data);
2728 
2729 	/*
2730 	 * I have no idea what this does, but NVIDIA do this magic sequence
2731 	 * in the places where this INIT_IO happens..
2732 	 */
2733 	if (dev_priv->card_type >= NV_50 && crtcport == 0x3c3 && data == 1) {
2734 		int i;
2735 
2736 		bios_wr32(bios, 0x614100, (bios_rd32(
2737 			  bios, 0x614100) & 0x0fffffff) | 0x00800000);
2738 
2739 		bios_wr32(bios, 0x00e18c, bios_rd32(
2740 			  bios, 0x00e18c) | 0x00020000);
2741 
2742 		bios_wr32(bios, 0x614900, (bios_rd32(
2743 			  bios, 0x614900) & 0x0fffffff) | 0x00800000);
2744 
2745 		bios_wr32(bios, 0x000200, bios_rd32(
2746 			  bios, 0x000200) & ~0x40000000);
2747 
2748 		mdelay(10);
2749 
2750 		bios_wr32(bios, 0x00e18c, bios_rd32(
2751 			  bios, 0x00e18c) & ~0x00020000);
2752 
2753 		bios_wr32(bios, 0x000200, bios_rd32(
2754 			  bios, 0x000200) | 0x40000000);
2755 
2756 		bios_wr32(bios, 0x614100, 0x00800018);
2757 		bios_wr32(bios, 0x614900, 0x00800018);
2758 
2759 		mdelay(10);
2760 
2761 		bios_wr32(bios, 0x614100, 0x10000018);
2762 		bios_wr32(bios, 0x614900, 0x10000018);
2763 
2764 		for (i = 0; i < 3; i++)
2765 			bios_wr32(bios, 0x614280 + (i*0x800), bios_rd32(
2766 				  bios, 0x614280 + (i*0x800)) & 0xf0f0f0f0);
2767 
2768 		for (i = 0; i < 2; i++)
2769 			bios_wr32(bios, 0x614300 + (i*0x800), bios_rd32(
2770 				  bios, 0x614300 + (i*0x800)) & 0xfffff0f0);
2771 
2772 		for (i = 0; i < 3; i++)
2773 			bios_wr32(bios, 0x614380 + (i*0x800), bios_rd32(
2774 				  bios, 0x614380 + (i*0x800)) & 0xfffff0f0);
2775 
2776 		for (i = 0; i < 2; i++)
2777 			bios_wr32(bios, 0x614200 + (i*0x800), bios_rd32(
2778 				  bios, 0x614200 + (i*0x800)) & 0xfffffff0);
2779 
2780 		for (i = 0; i < 2; i++)
2781 			bios_wr32(bios, 0x614108 + (i*0x800), bios_rd32(
2782 				  bios, 0x614108 + (i*0x800)) & 0x0fffffff);
2783 		return 5;
2784 	}
2785 
2786 	bios_port_wr(bios, crtcport, (bios_port_rd(bios, crtcport) & mask) |
2787 									data);
2788 	return 5;
2789 }
2790 
2791 static int
init_sub(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2792 init_sub(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2793 {
2794 	/*
2795 	 * INIT_SUB   opcode: 0x6B ('k')
2796 	 *
2797 	 * offset      (8 bit): opcode
2798 	 * offset + 1  (8 bit): script number
2799 	 *
2800 	 * Execute script number "script number", as a subroutine
2801 	 */
2802 
2803 	uint8_t sub = bios->data[offset + 1];
2804 
2805 	if (!iexec->execute)
2806 		return 2;
2807 
2808 	BIOSLOG(bios, "0x%04X: Calling script %d\n", offset, sub);
2809 
2810 	parse_init_table(bios,
2811 			 ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]),
2812 			 iexec);
2813 
2814 	BIOSLOG(bios, "0x%04X: End of script %d\n", offset, sub);
2815 
2816 	return 2;
2817 }
2818 
2819 static int
init_ram_condition(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2820 init_ram_condition(struct nvbios *bios, uint16_t offset,
2821 		   struct init_exec *iexec)
2822 {
2823 	/*
2824 	 * INIT_RAM_CONDITION   opcode: 0x6D ('m')
2825 	 *
2826 	 * offset      (8 bit): opcode
2827 	 * offset + 1  (8 bit): mask
2828 	 * offset + 2  (8 bit): cmpval
2829 	 *
2830 	 * Test if (NV04_PFB_BOOT_0 & "mask") equals "cmpval".
2831 	 * If condition not met skip subsequent opcodes until condition is
2832 	 * inverted (INIT_NOT), or we hit INIT_RESUME
2833 	 */
2834 
2835 	uint8_t mask = bios->data[offset + 1];
2836 	uint8_t cmpval = bios->data[offset + 2];
2837 	uint8_t data;
2838 
2839 	if (!iexec->execute)
2840 		return 3;
2841 
2842 	data = bios_rd32(bios, NV04_PFB_BOOT_0) & mask;
2843 
2844 	BIOSLOG(bios, "0x%04X: Checking if 0x%08X equals 0x%08X\n",
2845 		offset, data, cmpval);
2846 
2847 	if (data == cmpval)
2848 		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
2849 	else {
2850 		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
2851 		iexec->execute = false;
2852 	}
2853 
2854 	return 3;
2855 }
2856 
2857 static int
init_nv_reg(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2858 init_nv_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2859 {
2860 	/*
2861 	 * INIT_NV_REG   opcode: 0x6E ('n')
2862 	 *
2863 	 * offset      (8  bit): opcode
2864 	 * offset + 1  (32 bit): register
2865 	 * offset + 5  (32 bit): mask
2866 	 * offset + 9  (32 bit): data
2867 	 *
2868 	 * Assign ((REGVAL("register") & "mask") | "data") to "register"
2869 	 */
2870 
2871 	uint32_t reg = ROM32(bios->data[offset + 1]);
2872 	uint32_t mask = ROM32(bios->data[offset + 5]);
2873 	uint32_t data = ROM32(bios->data[offset + 9]);
2874 
2875 	if (!iexec->execute)
2876 		return 13;
2877 
2878 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Mask: 0x%08X, Data: 0x%08X\n",
2879 		offset, reg, mask, data);
2880 
2881 	bios_wr32(bios, reg, (bios_rd32(bios, reg) & mask) | data);
2882 
2883 	return 13;
2884 }
2885 
2886 static int
init_macro(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2887 init_macro(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2888 {
2889 	/*
2890 	 * INIT_MACRO   opcode: 0x6F ('o')
2891 	 *
2892 	 * offset      (8 bit): opcode
2893 	 * offset + 1  (8 bit): macro number
2894 	 *
2895 	 * Look up macro index "macro number" in the macro index table.
2896 	 * The macro index table entry has 1 byte for the index in the macro
2897 	 * table, and 1 byte for the number of times to repeat the macro.
2898 	 * The macro table entry has 4 bytes for the register address and
2899 	 * 4 bytes for the value to write to that register
2900 	 */
2901 
2902 	uint8_t macro_index_tbl_idx = bios->data[offset + 1];
2903 	uint16_t tmp = bios->macro_index_tbl_ptr + (macro_index_tbl_idx * MACRO_INDEX_SIZE);
2904 	uint8_t macro_tbl_idx = bios->data[tmp];
2905 	uint8_t count = bios->data[tmp + 1];
2906 	uint32_t reg, data;
2907 	int i;
2908 
2909 	if (!iexec->execute)
2910 		return 2;
2911 
2912 	BIOSLOG(bios, "0x%04X: Macro: 0x%02X, MacroTableIndex: 0x%02X, "
2913 		      "Count: 0x%02X\n",
2914 		offset, macro_index_tbl_idx, macro_tbl_idx, count);
2915 
2916 	for (i = 0; i < count; i++) {
2917 		uint16_t macroentryptr = bios->macro_tbl_ptr + (macro_tbl_idx + i) * MACRO_SIZE;
2918 
2919 		reg = ROM32(bios->data[macroentryptr]);
2920 		data = ROM32(bios->data[macroentryptr + 4]);
2921 
2922 		bios_wr32(bios, reg, data);
2923 	}
2924 
2925 	return 2;
2926 }
2927 
2928 static int
init_done(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2929 init_done(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2930 {
2931 	/*
2932 	 * INIT_DONE   opcode: 0x71 ('q')
2933 	 *
2934 	 * offset      (8  bit): opcode
2935 	 *
2936 	 * End the current script
2937 	 */
2938 
2939 	/* mild retval abuse to stop parsing this table */
2940 	return 0;
2941 }
2942 
2943 static int
init_resume(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2944 init_resume(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2945 {
2946 	/*
2947 	 * INIT_RESUME   opcode: 0x72 ('r')
2948 	 *
2949 	 * offset      (8  bit): opcode
2950 	 *
2951 	 * End the current execute / no-execute condition
2952 	 */
2953 
2954 	if (iexec->execute)
2955 		return 1;
2956 
2957 	iexec->execute = true;
2958 	BIOSLOG(bios, "0x%04X: ---- Executing following commands ----\n", offset);
2959 
2960 	return 1;
2961 }
2962 
2963 static int
init_time(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2964 init_time(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2965 {
2966 	/*
2967 	 * INIT_TIME   opcode: 0x74 ('t')
2968 	 *
2969 	 * offset      (8  bit): opcode
2970 	 * offset + 1  (16 bit): time
2971 	 *
2972 	 * Sleep for "time" microseconds.
2973 	 */
2974 
2975 	unsigned time = ROM16(bios->data[offset + 1]);
2976 
2977 	if (!iexec->execute)
2978 		return 3;
2979 
2980 	BIOSLOG(bios, "0x%04X: Sleeping for 0x%04X microseconds\n",
2981 		offset, time);
2982 
2983 	if (time < 1000)
2984 		udelay(time);
2985 	else
2986 		mdelay((time + 900) / 1000);
2987 
2988 	return 3;
2989 }
2990 
2991 static int
init_condition(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2992 init_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2993 {
2994 	/*
2995 	 * INIT_CONDITION   opcode: 0x75 ('u')
2996 	 *
2997 	 * offset      (8 bit): opcode
2998 	 * offset + 1  (8 bit): condition number
2999 	 *
3000 	 * Check condition "condition number" in the condition table.
3001 	 * If condition not met skip subsequent opcodes until condition is
3002 	 * inverted (INIT_NOT), or we hit INIT_RESUME
3003 	 */
3004 
3005 	uint8_t cond = bios->data[offset + 1];
3006 
3007 	if (!iexec->execute)
3008 		return 2;
3009 
3010 	BIOSLOG(bios, "0x%04X: Condition: 0x%02X\n", offset, cond);
3011 
3012 	if (bios_condition_met(bios, offset, cond))
3013 		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
3014 	else {
3015 		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
3016 		iexec->execute = false;
3017 	}
3018 
3019 	return 2;
3020 }
3021 
3022 static int
init_io_condition(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3023 init_io_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3024 {
3025 	/*
3026 	 * INIT_IO_CONDITION  opcode: 0x76
3027 	 *
3028 	 * offset      (8 bit): opcode
3029 	 * offset + 1  (8 bit): condition number
3030 	 *
3031 	 * Check condition "condition number" in the io condition table.
3032 	 * If condition not met skip subsequent opcodes until condition is
3033 	 * inverted (INIT_NOT), or we hit INIT_RESUME
3034 	 */
3035 
3036 	uint8_t cond = bios->data[offset + 1];
3037 
3038 	if (!iexec->execute)
3039 		return 2;
3040 
3041 	BIOSLOG(bios, "0x%04X: IO condition: 0x%02X\n", offset, cond);
3042 
3043 	if (io_condition_met(bios, offset, cond))
3044 		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
3045 	else {
3046 		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
3047 		iexec->execute = false;
3048 	}
3049 
3050 	return 2;
3051 }
3052 
3053 static int
init_index_io(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3054 init_index_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3055 {
3056 	/*
3057 	 * INIT_INDEX_IO   opcode: 0x78 ('x')
3058 	 *
3059 	 * offset      (8  bit): opcode
3060 	 * offset + 1  (16 bit): CRTC port
3061 	 * offset + 3  (8  bit): CRTC index
3062 	 * offset + 4  (8  bit): mask
3063 	 * offset + 5  (8  bit): data
3064 	 *
3065 	 * Read value at index "CRTC index" on "CRTC port", AND with "mask",
3066 	 * OR with "data", write-back
3067 	 */
3068 
3069 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
3070 	uint8_t crtcindex = bios->data[offset + 3];
3071 	uint8_t mask = bios->data[offset + 4];
3072 	uint8_t data = bios->data[offset + 5];
3073 	uint8_t value;
3074 
3075 	if (!iexec->execute)
3076 		return 6;
3077 
3078 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
3079 		      "Data: 0x%02X\n",
3080 		offset, crtcport, crtcindex, mask, data);
3081 
3082 	value = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) | data;
3083 	bios_idxprt_wr(bios, crtcport, crtcindex, value);
3084 
3085 	return 6;
3086 }
3087 
3088 static int
init_pll(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3089 init_pll(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3090 {
3091 	/*
3092 	 * INIT_PLL   opcode: 0x79 ('y')
3093 	 *
3094 	 * offset      (8  bit): opcode
3095 	 * offset + 1  (32 bit): register
3096 	 * offset + 5  (16 bit): freq
3097 	 *
3098 	 * Set PLL register "register" to coefficients for frequency (10kHz)
3099 	 * "freq"
3100 	 */
3101 
3102 	uint32_t reg = ROM32(bios->data[offset + 1]);
3103 	uint16_t freq = ROM16(bios->data[offset + 5]);
3104 
3105 	if (!iexec->execute)
3106 		return 7;
3107 
3108 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Freq: %d0kHz\n", offset, reg, freq);
3109 
3110 	setPLL(bios, reg, freq * 10);
3111 
3112 	return 7;
3113 }
3114 
3115 static int
init_zm_reg(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3116 init_zm_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3117 {
3118 	/*
3119 	 * INIT_ZM_REG   opcode: 0x7A ('z')
3120 	 *
3121 	 * offset      (8  bit): opcode
3122 	 * offset + 1  (32 bit): register
3123 	 * offset + 5  (32 bit): value
3124 	 *
3125 	 * Assign "value" to "register"
3126 	 */
3127 
3128 	uint32_t reg = ROM32(bios->data[offset + 1]);
3129 	uint32_t value = ROM32(bios->data[offset + 5]);
3130 
3131 	if (!iexec->execute)
3132 		return 9;
3133 
3134 	if (reg == 0x000200)
3135 		value |= 1;
3136 
3137 	bios_wr32(bios, reg, value);
3138 
3139 	return 9;
3140 }
3141 
3142 static int
init_ram_restrict_pll(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3143 init_ram_restrict_pll(struct nvbios *bios, uint16_t offset,
3144 		      struct init_exec *iexec)
3145 {
3146 	/*
3147 	 * INIT_RAM_RESTRICT_PLL   opcode: 0x87 ('')
3148 	 *
3149 	 * offset      (8 bit): opcode
3150 	 * offset + 1  (8 bit): PLL type
3151 	 * offset + 2 (32 bit): frequency 0
3152 	 *
3153 	 * Uses the RAMCFG strap of PEXTDEV_BOOT as an index into the table at
3154 	 * ram_restrict_table_ptr.  The value read from there is used to select
3155 	 * a frequency from the table starting at 'frequency 0' to be
3156 	 * programmed into the PLL corresponding to 'type'.
3157 	 *
3158 	 * The PLL limits table on cards using this opcode has a mapping of
3159 	 * 'type' to the relevant registers.
3160 	 */
3161 
3162 	struct drm_device *dev = bios->dev;
3163 	uint32_t strap = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) & 0x0000003c) >> 2;
3164 	uint8_t index = bios->data[bios->ram_restrict_tbl_ptr + strap];
3165 	uint8_t type = bios->data[offset + 1];
3166 	uint32_t freq = ROM32(bios->data[offset + 2 + (index * 4)]);
3167 	uint8_t *pll_limits = &bios->data[bios->pll_limit_tbl_ptr], *entry;
3168 	int len = 2 + bios->ram_restrict_group_count * 4;
3169 	int i;
3170 
3171 	if (!iexec->execute)
3172 		return len;
3173 
3174 	if (!bios->pll_limit_tbl_ptr || (pll_limits[0] & 0xf0) != 0x30) {
3175 		NV_ERROR(dev, "PLL limits table not version 3.x\n");
3176 		return len; /* deliberate, allow default clocks to remain */
3177 	}
3178 
3179 	entry = pll_limits + pll_limits[1];
3180 	for (i = 0; i < pll_limits[3]; i++, entry += pll_limits[2]) {
3181 		if (entry[0] == type) {
3182 			uint32_t reg = ROM32(entry[3]);
3183 
3184 			BIOSLOG(bios, "0x%04X: "
3185 				      "Type %02x Reg 0x%08x Freq %dKHz\n",
3186 				offset, type, reg, freq);
3187 
3188 			setPLL(bios, reg, freq);
3189 			return len;
3190 		}
3191 	}
3192 
3193 	NV_ERROR(dev, "PLL type 0x%02x not found in PLL limits table", type);
3194 	return len;
3195 }
3196 
3197 static int
init_8c(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3198 init_8c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3199 {
3200 	/*
3201 	 * INIT_8C   opcode: 0x8C ('')
3202 	 *
3203 	 * NOP so far....
3204 	 *
3205 	 */
3206 
3207 	return 1;
3208 }
3209 
3210 static int
init_8d(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3211 init_8d(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3212 {
3213 	/*
3214 	 * INIT_8D   opcode: 0x8D ('')
3215 	 *
3216 	 * NOP so far....
3217 	 *
3218 	 */
3219 
3220 	return 1;
3221 }
3222 
3223 static int
init_gpio(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3224 init_gpio(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3225 {
3226 	/*
3227 	 * INIT_GPIO   opcode: 0x8E ('')
3228 	 *
3229 	 * offset      (8 bit): opcode
3230 	 *
3231 	 * Loop over all entries in the DCB GPIO table, and initialise
3232 	 * each GPIO according to various values listed in each entry
3233 	 */
3234 
3235 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
3236 	struct nouveau_gpio_engine *pgpio = &dev_priv->engine.gpio;
3237 	const uint32_t nv50_gpio_ctl[2] = { 0xe100, 0xe28c };
3238 	int i;
3239 
3240 	if (dev_priv->card_type < NV_50) {
3241 		NV_ERROR(bios->dev, "INIT_GPIO on unsupported chipset\n");
3242 		return 1;
3243 	}
3244 
3245 	if (!iexec->execute)
3246 		return 1;
3247 
3248 	for (i = 0; i < bios->dcb.gpio.entries; i++) {
3249 		struct dcb_gpio_entry *gpio = &bios->dcb.gpio.entry[i];
3250 		uint32_t r, s, v;
3251 
3252 		BIOSLOG(bios, "0x%04X: Entry: 0x%08X\n", offset, gpio->entry);
3253 
3254 		BIOSLOG(bios, "0x%04X: set gpio 0x%02x, state %d\n",
3255 			offset, gpio->tag, gpio->state_default);
3256 		if (bios->execute)
3257 			pgpio->set(bios->dev, gpio->tag, gpio->state_default);
3258 
3259 		/* The NVIDIA binary driver doesn't appear to actually do
3260 		 * any of this, my VBIOS does however.
3261 		 */
3262 		/* Not a clue, needs de-magicing */
3263 		r = nv50_gpio_ctl[gpio->line >> 4];
3264 		s = (gpio->line & 0x0f);
3265 		v = bios_rd32(bios, r) & ~(0x00010001 << s);
3266 		switch ((gpio->entry & 0x06000000) >> 25) {
3267 		case 1:
3268 			v |= (0x00000001 << s);
3269 			break;
3270 		case 2:
3271 			v |= (0x00010000 << s);
3272 			break;
3273 		default:
3274 			break;
3275 		}
3276 		bios_wr32(bios, r, v);
3277 	}
3278 
3279 	return 1;
3280 }
3281 
3282 static int
init_ram_restrict_zm_reg_group(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3283 init_ram_restrict_zm_reg_group(struct nvbios *bios, uint16_t offset,
3284 			       struct init_exec *iexec)
3285 {
3286 	/*
3287 	 * INIT_RAM_RESTRICT_ZM_REG_GROUP   opcode: 0x8F ('')
3288 	 *
3289 	 * offset      (8  bit): opcode
3290 	 * offset + 1  (32 bit): reg
3291 	 * offset + 5  (8  bit): regincrement
3292 	 * offset + 6  (8  bit): count
3293 	 * offset + 7  (32 bit): value 1,1
3294 	 * ...
3295 	 *
3296 	 * Use the RAMCFG strap of PEXTDEV_BOOT as an index into the table at
3297 	 * ram_restrict_table_ptr. The value read from here is 'n', and
3298 	 * "value 1,n" gets written to "reg". This repeats "count" times and on
3299 	 * each iteration 'm', "reg" increases by "regincrement" and
3300 	 * "value m,n" is used. The extent of n is limited by a number read
3301 	 * from the 'M' BIT table, herein called "blocklen"
3302 	 */
3303 
3304 	uint32_t reg = ROM32(bios->data[offset + 1]);
3305 	uint8_t regincrement = bios->data[offset + 5];
3306 	uint8_t count = bios->data[offset + 6];
3307 	uint32_t strap_ramcfg, data;
3308 	/* previously set by 'M' BIT table */
3309 	uint16_t blocklen = bios->ram_restrict_group_count * 4;
3310 	int len = 7 + count * blocklen;
3311 	uint8_t index;
3312 	int i;
3313 
3314 	/* critical! to know the length of the opcode */;
3315 	if (!blocklen) {
3316 		NV_ERROR(bios->dev,
3317 			 "0x%04X: Zero block length - has the M table "
3318 			 "been parsed?\n", offset);
3319 		return -EINVAL;
3320 	}
3321 
3322 	if (!iexec->execute)
3323 		return len;
3324 
3325 	strap_ramcfg = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 2) & 0xf;
3326 	index = bios->data[bios->ram_restrict_tbl_ptr + strap_ramcfg];
3327 
3328 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, RegIncrement: 0x%02X, "
3329 		      "Count: 0x%02X, StrapRamCfg: 0x%02X, Index: 0x%02X\n",
3330 		offset, reg, regincrement, count, strap_ramcfg, index);
3331 
3332 	for (i = 0; i < count; i++) {
3333 		data = ROM32(bios->data[offset + 7 + index * 4 + blocklen * i]);
3334 
3335 		bios_wr32(bios, reg, data);
3336 
3337 		reg += regincrement;
3338 	}
3339 
3340 	return len;
3341 }
3342 
3343 static int
init_copy_zm_reg(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3344 init_copy_zm_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3345 {
3346 	/*
3347 	 * INIT_COPY_ZM_REG   opcode: 0x90 ('')
3348 	 *
3349 	 * offset      (8  bit): opcode
3350 	 * offset + 1  (32 bit): src reg
3351 	 * offset + 5  (32 bit): dst reg
3352 	 *
3353 	 * Put contents of "src reg" into "dst reg"
3354 	 */
3355 
3356 	uint32_t srcreg = ROM32(bios->data[offset + 1]);
3357 	uint32_t dstreg = ROM32(bios->data[offset + 5]);
3358 
3359 	if (!iexec->execute)
3360 		return 9;
3361 
3362 	bios_wr32(bios, dstreg, bios_rd32(bios, srcreg));
3363 
3364 	return 9;
3365 }
3366 
3367 static int
init_zm_reg_group_addr_latched(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3368 init_zm_reg_group_addr_latched(struct nvbios *bios, uint16_t offset,
3369 			       struct init_exec *iexec)
3370 {
3371 	/*
3372 	 * INIT_ZM_REG_GROUP_ADDRESS_LATCHED   opcode: 0x91 ('')
3373 	 *
3374 	 * offset      (8  bit): opcode
3375 	 * offset + 1  (32 bit): dst reg
3376 	 * offset + 5  (8  bit): count
3377 	 * offset + 6  (32 bit): data 1
3378 	 * ...
3379 	 *
3380 	 * For each of "count" values write "data n" to "dst reg"
3381 	 */
3382 
3383 	uint32_t reg = ROM32(bios->data[offset + 1]);
3384 	uint8_t count = bios->data[offset + 5];
3385 	int len = 6 + count * 4;
3386 	int i;
3387 
3388 	if (!iexec->execute)
3389 		return len;
3390 
3391 	for (i = 0; i < count; i++) {
3392 		uint32_t data = ROM32(bios->data[offset + 6 + 4 * i]);
3393 		bios_wr32(bios, reg, data);
3394 	}
3395 
3396 	return len;
3397 }
3398 
3399 static int
init_reserved(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3400 init_reserved(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3401 {
3402 	/*
3403 	 * INIT_RESERVED   opcode: 0x92 ('')
3404 	 *
3405 	 * offset      (8 bit): opcode
3406 	 *
3407 	 * Seemingly does nothing
3408 	 */
3409 
3410 	return 1;
3411 }
3412 
3413 static int
init_96(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3414 init_96(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3415 {
3416 	/*
3417 	 * INIT_96   opcode: 0x96 ('')
3418 	 *
3419 	 * offset      (8  bit): opcode
3420 	 * offset + 1  (32 bit): sreg
3421 	 * offset + 5  (8  bit): sshift
3422 	 * offset + 6  (8  bit): smask
3423 	 * offset + 7  (8  bit): index
3424 	 * offset + 8  (32 bit): reg
3425 	 * offset + 12 (32 bit): mask
3426 	 * offset + 16 (8  bit): shift
3427 	 *
3428 	 */
3429 
3430 	uint16_t xlatptr = bios->init96_tbl_ptr + (bios->data[offset + 7] * 2);
3431 	uint32_t reg = ROM32(bios->data[offset + 8]);
3432 	uint32_t mask = ROM32(bios->data[offset + 12]);
3433 	uint32_t val;
3434 
3435 	val = bios_rd32(bios, ROM32(bios->data[offset + 1]));
3436 	if (bios->data[offset + 5] < 0x80)
3437 		val >>= bios->data[offset + 5];
3438 	else
3439 		val <<= (0x100 - bios->data[offset + 5]);
3440 	val &= bios->data[offset + 6];
3441 
3442 	val   = bios->data[ROM16(bios->data[xlatptr]) + val];
3443 	val <<= bios->data[offset + 16];
3444 
3445 	if (!iexec->execute)
3446 		return 17;
3447 
3448 	bios_wr32(bios, reg, (bios_rd32(bios, reg) & mask) | val);
3449 	return 17;
3450 }
3451 
3452 static int
init_97(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3453 init_97(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3454 {
3455 	/*
3456 	 * INIT_97   opcode: 0x97 ('')
3457 	 *
3458 	 * offset      (8  bit): opcode
3459 	 * offset + 1  (32 bit): register
3460 	 * offset + 5  (32 bit): mask
3461 	 * offset + 9  (32 bit): value
3462 	 *
3463 	 * Adds "value" to "register" preserving the fields specified
3464 	 * by "mask"
3465 	 */
3466 
3467 	uint32_t reg = ROM32(bios->data[offset + 1]);
3468 	uint32_t mask = ROM32(bios->data[offset + 5]);
3469 	uint32_t add = ROM32(bios->data[offset + 9]);
3470 	uint32_t val;
3471 
3472 	val = bios_rd32(bios, reg);
3473 	val = (val & mask) | ((val + add) & ~mask);
3474 
3475 	if (!iexec->execute)
3476 		return 13;
3477 
3478 	bios_wr32(bios, reg, val);
3479 	return 13;
3480 }
3481 
3482 static int
init_auxch(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3483 init_auxch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3484 {
3485 	/*
3486 	 * INIT_AUXCH   opcode: 0x98 ('')
3487 	 *
3488 	 * offset      (8  bit): opcode
3489 	 * offset + 1  (32 bit): address
3490 	 * offset + 5  (8  bit): count
3491 	 * offset + 6  (8  bit): mask 0
3492 	 * offset + 7  (8  bit): data 0
3493 	 *  ...
3494 	 *
3495 	 */
3496 
3497 	struct drm_device *dev = bios->dev;
3498 	struct nouveau_i2c_chan *auxch;
3499 	uint32_t addr = ROM32(bios->data[offset + 1]);
3500 	uint8_t count = bios->data[offset + 5];
3501 	int len = 6 + count * 2;
3502 	int ret, i;
3503 
3504 	if (!bios->display.output) {
3505 		NV_ERROR(dev, "INIT_AUXCH: no active output\n");
3506 		return len;
3507 	}
3508 
3509 	auxch = init_i2c_device_find(dev, bios->display.output->i2c_index);
3510 	if (!auxch) {
3511 		NV_ERROR(dev, "INIT_AUXCH: couldn't get auxch %d\n",
3512 			 bios->display.output->i2c_index);
3513 		return len;
3514 	}
3515 
3516 	if (!iexec->execute)
3517 		return len;
3518 
3519 	offset += 6;
3520 	for (i = 0; i < count; i++, offset += 2) {
3521 		uint8_t data;
3522 
3523 		ret = nouveau_dp_auxch(auxch, 9, addr, &data, 1);
3524 		if (ret) {
3525 			NV_ERROR(dev, "INIT_AUXCH: rd auxch fail %d\n", ret);
3526 			return len;
3527 		}
3528 
3529 		data &= bios->data[offset + 0];
3530 		data |= bios->data[offset + 1];
3531 
3532 		ret = nouveau_dp_auxch(auxch, 8, addr, &data, 1);
3533 		if (ret) {
3534 			NV_ERROR(dev, "INIT_AUXCH: wr auxch fail %d\n", ret);
3535 			return len;
3536 		}
3537 	}
3538 
3539 	return len;
3540 }
3541 
3542 static int
init_zm_auxch(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3543 init_zm_auxch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3544 {
3545 	/*
3546 	 * INIT_ZM_AUXCH   opcode: 0x99 ('')
3547 	 *
3548 	 * offset      (8  bit): opcode
3549 	 * offset + 1  (32 bit): address
3550 	 * offset + 5  (8  bit): count
3551 	 * offset + 6  (8  bit): data 0
3552 	 *  ...
3553 	 *
3554 	 */
3555 
3556 	struct drm_device *dev = bios->dev;
3557 	struct nouveau_i2c_chan *auxch;
3558 	uint32_t addr = ROM32(bios->data[offset + 1]);
3559 	uint8_t count = bios->data[offset + 5];
3560 	int len = 6 + count;
3561 	int ret, i;
3562 
3563 	if (!bios->display.output) {
3564 		NV_ERROR(dev, "INIT_ZM_AUXCH: no active output\n");
3565 		return len;
3566 	}
3567 
3568 	auxch = init_i2c_device_find(dev, bios->display.output->i2c_index);
3569 	if (!auxch) {
3570 		NV_ERROR(dev, "INIT_ZM_AUXCH: couldn't get auxch %d\n",
3571 			 bios->display.output->i2c_index);
3572 		return len;
3573 	}
3574 
3575 	if (!iexec->execute)
3576 		return len;
3577 
3578 	offset += 6;
3579 	for (i = 0; i < count; i++, offset++) {
3580 		ret = nouveau_dp_auxch(auxch, 8, addr, &bios->data[offset], 1);
3581 		if (ret) {
3582 			NV_ERROR(dev, "INIT_ZM_AUXCH: wr auxch fail %d\n", ret);
3583 			return len;
3584 		}
3585 	}
3586 
3587 	return len;
3588 }
3589 
3590 static int
init_i2c_long_if(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3591 init_i2c_long_if(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3592 {
3593 	/*
3594 	 * INIT_I2C_LONG_IF   opcode: 0x9A ('')
3595 	 *
3596 	 * offset      (8 bit): opcode
3597 	 * offset + 1  (8 bit): DCB I2C table entry index
3598 	 * offset + 2  (8 bit): I2C slave address
3599 	 * offset + 3  (16 bit): I2C register
3600 	 * offset + 5  (8 bit): mask
3601 	 * offset + 6  (8 bit): data
3602 	 *
3603 	 * Read the register given by "I2C register" on the device addressed
3604 	 * by "I2C slave address" on the I2C bus given by "DCB I2C table
3605 	 * entry index". Compare the result AND "mask" to "data".
3606 	 * If they're not equal, skip subsequent opcodes until condition is
3607 	 * inverted (INIT_NOT), or we hit INIT_RESUME
3608 	 */
3609 
3610 	uint8_t i2c_index = bios->data[offset + 1];
3611 	uint8_t i2c_address = bios->data[offset + 2] >> 1;
3612 	uint8_t reglo = bios->data[offset + 3];
3613 	uint8_t reghi = bios->data[offset + 4];
3614 	uint8_t mask = bios->data[offset + 5];
3615 	uint8_t data = bios->data[offset + 6];
3616 	struct nouveau_i2c_chan *chan;
3617 	uint8_t buf0[2] = { reghi, reglo };
3618 	uint8_t buf1[1];
3619 	struct i2c_msg msg[2] = {
3620 		{ i2c_address, 0, 1, buf0 },
3621 		{ i2c_address, I2C_M_RD, 1, buf1 },
3622 	};
3623 	int ret;
3624 
3625 	/* no execute check by design */
3626 
3627 	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X\n",
3628 		offset, i2c_index, i2c_address);
3629 
3630 	chan = init_i2c_device_find(bios->dev, i2c_index);
3631 	if (!chan)
3632 		return -ENODEV;
3633 
3634 
3635 	ret = i2c_transfer(&chan->adapter, msg, 2);
3636 	if (ret < 0) {
3637 		BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X:0x%02X, Value: [no device], "
3638 			      "Mask: 0x%02X, Data: 0x%02X\n",
3639 			offset, reghi, reglo, mask, data);
3640 		iexec->execute = 0;
3641 		return 7;
3642 	}
3643 
3644 	BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X:0x%02X, Value: 0x%02X, "
3645 		      "Mask: 0x%02X, Data: 0x%02X\n",
3646 		offset, reghi, reglo, buf1[0], mask, data);
3647 
3648 	iexec->execute = ((buf1[0] & mask) == data);
3649 
3650 	return 7;
3651 }
3652 
3653 static struct init_tbl_entry itbl_entry[] = {
3654 	/* command name                       , id  , length  , offset  , mult    , command handler                 */
3655 	/* INIT_PROG (0x31, 15, 10, 4) removed due to no example of use */
3656 	{ "INIT_IO_RESTRICT_PROG"             , 0x32, init_io_restrict_prog           },
3657 	{ "INIT_REPEAT"                       , 0x33, init_repeat                     },
3658 	{ "INIT_IO_RESTRICT_PLL"              , 0x34, init_io_restrict_pll            },
3659 	{ "INIT_END_REPEAT"                   , 0x36, init_end_repeat                 },
3660 	{ "INIT_COPY"                         , 0x37, init_copy                       },
3661 	{ "INIT_NOT"                          , 0x38, init_not                        },
3662 	{ "INIT_IO_FLAG_CONDITION"            , 0x39, init_io_flag_condition          },
3663 	{ "INIT_DP_CONDITION"                 , 0x3A, init_dp_condition               },
3664 	{ "INIT_OP_3B"                        , 0x3B, init_op_3b                      },
3665 	{ "INIT_OP_3C"                        , 0x3C, init_op_3c                      },
3666 	{ "INIT_INDEX_ADDRESS_LATCHED"        , 0x49, init_idx_addr_latched           },
3667 	{ "INIT_IO_RESTRICT_PLL2"             , 0x4A, init_io_restrict_pll2           },
3668 	{ "INIT_PLL2"                         , 0x4B, init_pll2                       },
3669 	{ "INIT_I2C_BYTE"                     , 0x4C, init_i2c_byte                   },
3670 	{ "INIT_ZM_I2C_BYTE"                  , 0x4D, init_zm_i2c_byte                },
3671 	{ "INIT_ZM_I2C"                       , 0x4E, init_zm_i2c                     },
3672 	{ "INIT_TMDS"                         , 0x4F, init_tmds                       },
3673 	{ "INIT_ZM_TMDS_GROUP"                , 0x50, init_zm_tmds_group              },
3674 	{ "INIT_CR_INDEX_ADDRESS_LATCHED"     , 0x51, init_cr_idx_adr_latch           },
3675 	{ "INIT_CR"                           , 0x52, init_cr                         },
3676 	{ "INIT_ZM_CR"                        , 0x53, init_zm_cr                      },
3677 	{ "INIT_ZM_CR_GROUP"                  , 0x54, init_zm_cr_group                },
3678 	{ "INIT_CONDITION_TIME"               , 0x56, init_condition_time             },
3679 	{ "INIT_LTIME"                        , 0x57, init_ltime                      },
3680 	{ "INIT_ZM_REG_SEQUENCE"              , 0x58, init_zm_reg_sequence            },
3681 	/* INIT_INDIRECT_REG (0x5A, 7, 0, 0) removed due to no example of use */
3682 	{ "INIT_SUB_DIRECT"                   , 0x5B, init_sub_direct                 },
3683 	{ "INIT_JUMP"                         , 0x5C, init_jump                       },
3684 	{ "INIT_I2C_IF"                       , 0x5E, init_i2c_if                     },
3685 	{ "INIT_COPY_NV_REG"                  , 0x5F, init_copy_nv_reg                },
3686 	{ "INIT_ZM_INDEX_IO"                  , 0x62, init_zm_index_io                },
3687 	{ "INIT_COMPUTE_MEM"                  , 0x63, init_compute_mem                },
3688 	{ "INIT_RESET"                        , 0x65, init_reset                      },
3689 	{ "INIT_CONFIGURE_MEM"                , 0x66, init_configure_mem              },
3690 	{ "INIT_CONFIGURE_CLK"                , 0x67, init_configure_clk              },
3691 	{ "INIT_CONFIGURE_PREINIT"            , 0x68, init_configure_preinit          },
3692 	{ "INIT_IO"                           , 0x69, init_io                         },
3693 	{ "INIT_SUB"                          , 0x6B, init_sub                        },
3694 	{ "INIT_RAM_CONDITION"                , 0x6D, init_ram_condition              },
3695 	{ "INIT_NV_REG"                       , 0x6E, init_nv_reg                     },
3696 	{ "INIT_MACRO"                        , 0x6F, init_macro                      },
3697 	{ "INIT_DONE"                         , 0x71, init_done                       },
3698 	{ "INIT_RESUME"                       , 0x72, init_resume                     },
3699 	/* INIT_RAM_CONDITION2 (0x73, 9, 0, 0) removed due to no example of use */
3700 	{ "INIT_TIME"                         , 0x74, init_time                       },
3701 	{ "INIT_CONDITION"                    , 0x75, init_condition                  },
3702 	{ "INIT_IO_CONDITION"                 , 0x76, init_io_condition               },
3703 	{ "INIT_INDEX_IO"                     , 0x78, init_index_io                   },
3704 	{ "INIT_PLL"                          , 0x79, init_pll                        },
3705 	{ "INIT_ZM_REG"                       , 0x7A, init_zm_reg                     },
3706 	{ "INIT_RAM_RESTRICT_PLL"             , 0x87, init_ram_restrict_pll           },
3707 	{ "INIT_8C"                           , 0x8C, init_8c                         },
3708 	{ "INIT_8D"                           , 0x8D, init_8d                         },
3709 	{ "INIT_GPIO"                         , 0x8E, init_gpio                       },
3710 	{ "INIT_RAM_RESTRICT_ZM_REG_GROUP"    , 0x8F, init_ram_restrict_zm_reg_group  },
3711 	{ "INIT_COPY_ZM_REG"                  , 0x90, init_copy_zm_reg                },
3712 	{ "INIT_ZM_REG_GROUP_ADDRESS_LATCHED" , 0x91, init_zm_reg_group_addr_latched  },
3713 	{ "INIT_RESERVED"                     , 0x92, init_reserved                   },
3714 	{ "INIT_96"                           , 0x96, init_96                         },
3715 	{ "INIT_97"                           , 0x97, init_97                         },
3716 	{ "INIT_AUXCH"                        , 0x98, init_auxch                      },
3717 	{ "INIT_ZM_AUXCH"                     , 0x99, init_zm_auxch                   },
3718 	{ "INIT_I2C_LONG_IF"                  , 0x9A, init_i2c_long_if                },
3719 	{ NULL                                , 0   , NULL                            }
3720 };
3721 
3722 #define MAX_TABLE_OPS 1000
3723 
3724 static int
parse_init_table(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3725 parse_init_table(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3726 {
3727 	/*
3728 	 * Parses all commands in an init table.
3729 	 *
3730 	 * We start out executing all commands found in the init table. Some
3731 	 * opcodes may change the status of iexec->execute to SKIP, which will
3732 	 * cause the following opcodes to perform no operation until the value
3733 	 * is changed back to EXECUTE.
3734 	 */
3735 
3736 	int count = 0, i, ret;
3737 	uint8_t id;
3738 
3739 	/*
3740 	 * Loop until INIT_DONE causes us to break out of the loop
3741 	 * (or until offset > bios length just in case... )
3742 	 * (and no more than MAX_TABLE_OPS iterations, just in case... )
3743 	 */
3744 	while ((offset < bios->length) && (count++ < MAX_TABLE_OPS)) {
3745 		id = bios->data[offset];
3746 
3747 		/* Find matching id in itbl_entry */
3748 		for (i = 0; itbl_entry[i].name && (itbl_entry[i].id != id); i++)
3749 			;
3750 
3751 		if (!itbl_entry[i].name) {
3752 			NV_ERROR(bios->dev,
3753 				 "0x%04X: Init table command not found: "
3754 				 "0x%02X\n", offset, id);
3755 			return -ENOENT;
3756 		}
3757 
3758 		BIOSLOG(bios, "0x%04X: [ (0x%02X) - %s ]\n", offset,
3759 			itbl_entry[i].id, itbl_entry[i].name);
3760 
3761 		/* execute eventual command handler */
3762 		ret = (*itbl_entry[i].handler)(bios, offset, iexec);
3763 		if (ret < 0) {
3764 			NV_ERROR(bios->dev, "0x%04X: Failed parsing init "
3765 				 "table opcode: %s %d\n", offset,
3766 				 itbl_entry[i].name, ret);
3767 		}
3768 
3769 		if (ret <= 0)
3770 			break;
3771 
3772 		/*
3773 		 * Add the offset of the current command including all data
3774 		 * of that command. The offset will then be pointing on the
3775 		 * next op code.
3776 		 */
3777 		offset += ret;
3778 	}
3779 
3780 	if (offset >= bios->length)
3781 		NV_WARN(bios->dev,
3782 			"Offset 0x%04X greater than known bios image length.  "
3783 			"Corrupt image?\n", offset);
3784 	if (count >= MAX_TABLE_OPS)
3785 		NV_WARN(bios->dev,
3786 			"More than %d opcodes to a table is unlikely, "
3787 			"is the bios image corrupt?\n", MAX_TABLE_OPS);
3788 
3789 	return 0;
3790 }
3791 
3792 static void
parse_init_tables(struct nvbios * bios)3793 parse_init_tables(struct nvbios *bios)
3794 {
3795 	/* Loops and calls parse_init_table() for each present table. */
3796 
3797 	int i = 0;
3798 	uint16_t table;
3799 	struct init_exec iexec = {true, false};
3800 
3801 	if (bios->old_style_init) {
3802 		if (bios->init_script_tbls_ptr)
3803 			parse_init_table(bios, bios->init_script_tbls_ptr, &iexec);
3804 		if (bios->extra_init_script_tbl_ptr)
3805 			parse_init_table(bios, bios->extra_init_script_tbl_ptr, &iexec);
3806 
3807 		return;
3808 	}
3809 
3810 	while ((table = ROM16(bios->data[bios->init_script_tbls_ptr + i]))) {
3811 		NV_INFO(bios->dev,
3812 			"Parsing VBIOS init table %d at offset 0x%04X\n",
3813 			i / 2, table);
3814 		BIOSLOG(bios, "0x%04X: ------ Executing following commands ------\n", table);
3815 
3816 		parse_init_table(bios, table, &iexec);
3817 		i += 2;
3818 	}
3819 }
3820 
clkcmptable(struct nvbios * bios,uint16_t clktable,int pxclk)3821 static uint16_t clkcmptable(struct nvbios *bios, uint16_t clktable, int pxclk)
3822 {
3823 	int compare_record_len, i = 0;
3824 	uint16_t compareclk, scriptptr = 0;
3825 
3826 	if (bios->major_version < 5) /* pre BIT */
3827 		compare_record_len = 3;
3828 	else
3829 		compare_record_len = 4;
3830 
3831 	do {
3832 		compareclk = ROM16(bios->data[clktable + compare_record_len * i]);
3833 		if (pxclk >= compareclk * 10) {
3834 			if (bios->major_version < 5) {
3835 				uint8_t tmdssub = bios->data[clktable + 2 + compare_record_len * i];
3836 				scriptptr = ROM16(bios->data[bios->init_script_tbls_ptr + tmdssub * 2]);
3837 			} else
3838 				scriptptr = ROM16(bios->data[clktable + 2 + compare_record_len * i]);
3839 			break;
3840 		}
3841 		i++;
3842 	} while (compareclk);
3843 
3844 	return scriptptr;
3845 }
3846 
3847 static void
run_digital_op_script(struct drm_device * dev,uint16_t scriptptr,struct dcb_entry * dcbent,int head,bool dl)3848 run_digital_op_script(struct drm_device *dev, uint16_t scriptptr,
3849 		      struct dcb_entry *dcbent, int head, bool dl)
3850 {
3851 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3852 	struct nvbios *bios = &dev_priv->vbios;
3853 	struct init_exec iexec = {true, false};
3854 
3855 	NV_TRACE(dev, "0x%04X: Parsing digital output script table\n",
3856 		 scriptptr);
3857 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_44,
3858 		       head ? NV_CIO_CRE_44_HEADB : NV_CIO_CRE_44_HEADA);
3859 	/* note: if dcb entries have been merged, index may be misleading */
3860 	NVWriteVgaCrtc5758(dev, head, 0, dcbent->index);
3861 	parse_init_table(bios, scriptptr, &iexec);
3862 
3863 	nv04_dfp_bind_head(dev, dcbent, head, dl);
3864 }
3865 
call_lvds_manufacturer_script(struct drm_device * dev,struct dcb_entry * dcbent,int head,enum LVDS_script script)3866 static int call_lvds_manufacturer_script(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script)
3867 {
3868 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3869 	struct nvbios *bios = &dev_priv->vbios;
3870 	uint8_t sub = bios->data[bios->fp.xlated_entry + script] + (bios->fp.link_c_increment && dcbent->or & OUTPUT_C ? 1 : 0);
3871 	uint16_t scriptofs = ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]);
3872 
3873 	if (!bios->fp.xlated_entry || !sub || !scriptofs)
3874 		return -EINVAL;
3875 
3876 	run_digital_op_script(dev, scriptofs, dcbent, head, bios->fp.dual_link);
3877 
3878 	if (script == LVDS_PANEL_OFF) {
3879 		/* off-on delay in ms */
3880 		mdelay(ROM16(bios->data[bios->fp.xlated_entry + 7]));
3881 	}
3882 #ifdef __powerpc__
3883 	/* Powerbook specific quirks */
3884 	if (script == LVDS_RESET &&
3885 	    (dev->pci_device == 0x0179 || dev->pci_device == 0x0189 ||
3886 	     dev->pci_device == 0x0329))
3887 		nv_write_tmds(dev, dcbent->or, 0, 0x02, 0x72);
3888 #endif
3889 
3890 	return 0;
3891 }
3892 
run_lvds_table(struct drm_device * dev,struct dcb_entry * dcbent,int head,enum LVDS_script script,int pxclk)3893 static int run_lvds_table(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script, int pxclk)
3894 {
3895 	/*
3896 	 * The BIT LVDS table's header has the information to setup the
3897 	 * necessary registers. Following the standard 4 byte header are:
3898 	 * A bitmask byte and a dual-link transition pxclk value for use in
3899 	 * selecting the init script when not using straps; 4 script pointers
3900 	 * for panel power, selected by output and on/off; and 8 table pointers
3901 	 * for panel init, the needed one determined by output, and bits in the
3902 	 * conf byte. These tables are similar to the TMDS tables, consisting
3903 	 * of a list of pxclks and script pointers.
3904 	 */
3905 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3906 	struct nvbios *bios = &dev_priv->vbios;
3907 	unsigned int outputset = (dcbent->or == 4) ? 1 : 0;
3908 	uint16_t scriptptr = 0, clktable;
3909 
3910 	/*
3911 	 * For now we assume version 3.0 table - g80 support will need some
3912 	 * changes
3913 	 */
3914 
3915 	switch (script) {
3916 	case LVDS_INIT:
3917 		return -ENOSYS;
3918 	case LVDS_BACKLIGHT_ON:
3919 	case LVDS_PANEL_ON:
3920 		scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 7 + outputset * 2]);
3921 		break;
3922 	case LVDS_BACKLIGHT_OFF:
3923 	case LVDS_PANEL_OFF:
3924 		scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 11 + outputset * 2]);
3925 		break;
3926 	case LVDS_RESET:
3927 		clktable = bios->fp.lvdsmanufacturerpointer + 15;
3928 		if (dcbent->or == 4)
3929 			clktable += 8;
3930 
3931 		if (dcbent->lvdsconf.use_straps_for_mode) {
3932 			if (bios->fp.dual_link)
3933 				clktable += 4;
3934 			if (bios->fp.if_is_24bit)
3935 				clktable += 2;
3936 		} else {
3937 			/* using EDID */
3938 			int cmpval_24bit = (dcbent->or == 4) ? 4 : 1;
3939 
3940 			if (bios->fp.dual_link) {
3941 				clktable += 4;
3942 				cmpval_24bit <<= 1;
3943 			}
3944 
3945 			if (bios->fp.strapless_is_24bit & cmpval_24bit)
3946 				clktable += 2;
3947 		}
3948 
3949 		clktable = ROM16(bios->data[clktable]);
3950 		if (!clktable) {
3951 			NV_ERROR(dev, "Pixel clock comparison table not found\n");
3952 			return -ENOENT;
3953 		}
3954 		scriptptr = clkcmptable(bios, clktable, pxclk);
3955 	}
3956 
3957 	if (!scriptptr) {
3958 		NV_ERROR(dev, "LVDS output init script not found\n");
3959 		return -ENOENT;
3960 	}
3961 	run_digital_op_script(dev, scriptptr, dcbent, head, bios->fp.dual_link);
3962 
3963 	return 0;
3964 }
3965 
call_lvds_script(struct drm_device * dev,struct dcb_entry * dcbent,int head,enum LVDS_script script,int pxclk)3966 int call_lvds_script(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script, int pxclk)
3967 {
3968 	/*
3969 	 * LVDS operations are multiplexed in an effort to present a single API
3970 	 * which works with two vastly differing underlying structures.
3971 	 * This acts as the demux
3972 	 */
3973 
3974 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3975 	struct nvbios *bios = &dev_priv->vbios;
3976 	uint8_t lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer];
3977 	uint32_t sel_clk_binding, sel_clk;
3978 	int ret;
3979 
3980 	if (bios->fp.last_script_invoc == (script << 1 | head) || !lvds_ver ||
3981 	    (lvds_ver >= 0x30 && script == LVDS_INIT))
3982 		return 0;
3983 
3984 	if (!bios->fp.lvds_init_run) {
3985 		bios->fp.lvds_init_run = true;
3986 		call_lvds_script(dev, dcbent, head, LVDS_INIT, pxclk);
3987 	}
3988 
3989 	if (script == LVDS_PANEL_ON && bios->fp.reset_after_pclk_change)
3990 		call_lvds_script(dev, dcbent, head, LVDS_RESET, pxclk);
3991 	if (script == LVDS_RESET && bios->fp.power_off_for_reset)
3992 		call_lvds_script(dev, dcbent, head, LVDS_PANEL_OFF, pxclk);
3993 
3994 	NV_TRACE(dev, "Calling LVDS script %d:\n", script);
3995 
3996 	/* don't let script change pll->head binding */
3997 	sel_clk_binding = bios_rd32(bios, NV_PRAMDAC_SEL_CLK) & 0x50000;
3998 
3999 	if (lvds_ver < 0x30)
4000 		ret = call_lvds_manufacturer_script(dev, dcbent, head, script);
4001 	else
4002 		ret = run_lvds_table(dev, dcbent, head, script, pxclk);
4003 
4004 	bios->fp.last_script_invoc = (script << 1 | head);
4005 
4006 	sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000;
4007 	NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding);
4008 	/* some scripts set a value in NV_PBUS_POWERCTRL_2 and break video overlay */
4009 	nvWriteMC(dev, NV_PBUS_POWERCTRL_2, 0);
4010 
4011 	return ret;
4012 }
4013 
4014 struct lvdstableheader {
4015 	uint8_t lvds_ver, headerlen, recordlen;
4016 };
4017 
parse_lvds_manufacturer_table_header(struct drm_device * dev,struct nvbios * bios,struct lvdstableheader * lth)4018 static int parse_lvds_manufacturer_table_header(struct drm_device *dev, struct nvbios *bios, struct lvdstableheader *lth)
4019 {
4020 	/*
4021 	 * BMP version (0xa) LVDS table has a simple header of version and
4022 	 * record length. The BIT LVDS table has the typical BIT table header:
4023 	 * version byte, header length byte, record length byte, and a byte for
4024 	 * the maximum number of records that can be held in the table.
4025 	 */
4026 
4027 	uint8_t lvds_ver, headerlen, recordlen;
4028 
4029 	memset(lth, 0, sizeof(struct lvdstableheader));
4030 
4031 	if (bios->fp.lvdsmanufacturerpointer == 0x0) {
4032 		NV_ERROR(dev, "Pointer to LVDS manufacturer table invalid\n");
4033 		return -EINVAL;
4034 	}
4035 
4036 	lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer];
4037 
4038 	switch (lvds_ver) {
4039 	case 0x0a:	/* pre NV40 */
4040 		headerlen = 2;
4041 		recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
4042 		break;
4043 	case 0x30:	/* NV4x */
4044 		headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
4045 		if (headerlen < 0x1f) {
4046 			NV_ERROR(dev, "LVDS table header not understood\n");
4047 			return -EINVAL;
4048 		}
4049 		recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2];
4050 		break;
4051 	case 0x40:	/* G80/G90 */
4052 		headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
4053 		if (headerlen < 0x7) {
4054 			NV_ERROR(dev, "LVDS table header not understood\n");
4055 			return -EINVAL;
4056 		}
4057 		recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2];
4058 		break;
4059 	default:
4060 		NV_ERROR(dev,
4061 			 "LVDS table revision %d.%d not currently supported\n",
4062 			 lvds_ver >> 4, lvds_ver & 0xf);
4063 		return -ENOSYS;
4064 	}
4065 
4066 	lth->lvds_ver = lvds_ver;
4067 	lth->headerlen = headerlen;
4068 	lth->recordlen = recordlen;
4069 
4070 	return 0;
4071 }
4072 
4073 static int
get_fp_strap(struct drm_device * dev,struct nvbios * bios)4074 get_fp_strap(struct drm_device *dev, struct nvbios *bios)
4075 {
4076 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4077 
4078 	/*
4079 	 * The fp strap is normally dictated by the "User Strap" in
4080 	 * PEXTDEV_BOOT_0[20:16], but on BMP cards when bit 2 of the
4081 	 * Internal_Flags struct at 0x48 is set, the user strap gets overriden
4082 	 * by the PCI subsystem ID during POST, but not before the previous user
4083 	 * strap has been committed to CR58 for CR57=0xf on head A, which may be
4084 	 * read and used instead
4085 	 */
4086 
4087 	if (bios->major_version < 5 && bios->data[0x48] & 0x4)
4088 		return NVReadVgaCrtc5758(dev, 0, 0xf) & 0xf;
4089 
4090 	if (dev_priv->card_type >= NV_50)
4091 		return (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 24) & 0xf;
4092 	else
4093 		return (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 16) & 0xf;
4094 }
4095 
parse_fp_mode_table(struct drm_device * dev,struct nvbios * bios)4096 static int parse_fp_mode_table(struct drm_device *dev, struct nvbios *bios)
4097 {
4098 	uint8_t *fptable;
4099 	uint8_t fptable_ver, headerlen = 0, recordlen, fpentries = 0xf, fpindex;
4100 	int ret, ofs, fpstrapping;
4101 	struct lvdstableheader lth;
4102 
4103 	if (bios->fp.fptablepointer == 0x0) {
4104 		/* Apple cards don't have the fp table; the laptops use DDC */
4105 		/* The table is also missing on some x86 IGPs */
4106 #ifndef __powerpc__
4107 		NV_ERROR(dev, "Pointer to flat panel table invalid\n");
4108 #endif
4109 		bios->digital_min_front_porch = 0x4b;
4110 		return 0;
4111 	}
4112 
4113 	fptable = &bios->data[bios->fp.fptablepointer];
4114 	fptable_ver = fptable[0];
4115 
4116 	switch (fptable_ver) {
4117 	/*
4118 	 * BMP version 0x5.0x11 BIOSen have version 1 like tables, but no
4119 	 * version field, and miss one of the spread spectrum/PWM bytes.
4120 	 * This could affect early GF2Go parts (not seen any appropriate ROMs
4121 	 * though). Here we assume that a version of 0x05 matches this case
4122 	 * (combining with a BMP version check would be better), as the
4123 	 * common case for the panel type field is 0x0005, and that is in
4124 	 * fact what we are reading the first byte of.
4125 	 */
4126 	case 0x05:	/* some NV10, 11, 15, 16 */
4127 		recordlen = 42;
4128 		ofs = -1;
4129 		break;
4130 	case 0x10:	/* some NV15/16, and NV11+ */
4131 		recordlen = 44;
4132 		ofs = 0;
4133 		break;
4134 	case 0x20:	/* NV40+ */
4135 		headerlen = fptable[1];
4136 		recordlen = fptable[2];
4137 		fpentries = fptable[3];
4138 		/*
4139 		 * fptable[4] is the minimum
4140 		 * RAMDAC_FP_HCRTC -> RAMDAC_FP_HSYNC_START gap
4141 		 */
4142 		bios->digital_min_front_porch = fptable[4];
4143 		ofs = -7;
4144 		break;
4145 	default:
4146 		NV_ERROR(dev,
4147 			 "FP table revision %d.%d not currently supported\n",
4148 			 fptable_ver >> 4, fptable_ver & 0xf);
4149 		return -ENOSYS;
4150 	}
4151 
4152 	if (!bios->is_mobile) /* !mobile only needs digital_min_front_porch */
4153 		return 0;
4154 
4155 	ret = parse_lvds_manufacturer_table_header(dev, bios, &lth);
4156 	if (ret)
4157 		return ret;
4158 
4159 	if (lth.lvds_ver == 0x30 || lth.lvds_ver == 0x40) {
4160 		bios->fp.fpxlatetableptr = bios->fp.lvdsmanufacturerpointer +
4161 							lth.headerlen + 1;
4162 		bios->fp.xlatwidth = lth.recordlen;
4163 	}
4164 	if (bios->fp.fpxlatetableptr == 0x0) {
4165 		NV_ERROR(dev, "Pointer to flat panel xlat table invalid\n");
4166 		return -EINVAL;
4167 	}
4168 
4169 	fpstrapping = get_fp_strap(dev, bios);
4170 
4171 	fpindex = bios->data[bios->fp.fpxlatetableptr +
4172 					fpstrapping * bios->fp.xlatwidth];
4173 
4174 	if (fpindex > fpentries) {
4175 		NV_ERROR(dev, "Bad flat panel table index\n");
4176 		return -ENOENT;
4177 	}
4178 
4179 	/* nv4x cards need both a strap value and fpindex of 0xf to use DDC */
4180 	if (lth.lvds_ver > 0x10)
4181 		bios->fp_no_ddc = fpstrapping != 0xf || fpindex != 0xf;
4182 
4183 	/*
4184 	 * If either the strap or xlated fpindex value are 0xf there is no
4185 	 * panel using a strap-derived bios mode present.  this condition
4186 	 * includes, but is different from, the DDC panel indicator above
4187 	 */
4188 	if (fpstrapping == 0xf || fpindex == 0xf)
4189 		return 0;
4190 
4191 	bios->fp.mode_ptr = bios->fp.fptablepointer + headerlen +
4192 			    recordlen * fpindex + ofs;
4193 
4194 	NV_TRACE(dev, "BIOS FP mode: %dx%d (%dkHz pixel clock)\n",
4195 		 ROM16(bios->data[bios->fp.mode_ptr + 11]) + 1,
4196 		 ROM16(bios->data[bios->fp.mode_ptr + 25]) + 1,
4197 		 ROM16(bios->data[bios->fp.mode_ptr + 7]) * 10);
4198 
4199 	return 0;
4200 }
4201 
nouveau_bios_fp_mode(struct drm_device * dev,struct drm_display_mode * mode)4202 bool nouveau_bios_fp_mode(struct drm_device *dev, struct drm_display_mode *mode)
4203 {
4204 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4205 	struct nvbios *bios = &dev_priv->vbios;
4206 	uint8_t *mode_entry = &bios->data[bios->fp.mode_ptr];
4207 
4208 	if (!mode)	/* just checking whether we can produce a mode */
4209 		return bios->fp.mode_ptr;
4210 
4211 	memset(mode, 0, sizeof(struct drm_display_mode));
4212 	/*
4213 	 * For version 1.0 (version in byte 0):
4214 	 * bytes 1-2 are "panel type", including bits on whether Colour/mono,
4215 	 * single/dual link, and type (TFT etc.)
4216 	 * bytes 3-6 are bits per colour in RGBX
4217 	 */
4218 	mode->clock = ROM16(mode_entry[7]) * 10;
4219 	/* bytes 9-10 is HActive */
4220 	mode->hdisplay = ROM16(mode_entry[11]) + 1;
4221 	/*
4222 	 * bytes 13-14 is HValid Start
4223 	 * bytes 15-16 is HValid End
4224 	 */
4225 	mode->hsync_start = ROM16(mode_entry[17]) + 1;
4226 	mode->hsync_end = ROM16(mode_entry[19]) + 1;
4227 	mode->htotal = ROM16(mode_entry[21]) + 1;
4228 	/* bytes 23-24, 27-30 similarly, but vertical */
4229 	mode->vdisplay = ROM16(mode_entry[25]) + 1;
4230 	mode->vsync_start = ROM16(mode_entry[31]) + 1;
4231 	mode->vsync_end = ROM16(mode_entry[33]) + 1;
4232 	mode->vtotal = ROM16(mode_entry[35]) + 1;
4233 	mode->flags |= (mode_entry[37] & 0x10) ?
4234 			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
4235 	mode->flags |= (mode_entry[37] & 0x1) ?
4236 			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
4237 	/*
4238 	 * bytes 38-39 relate to spread spectrum settings
4239 	 * bytes 40-43 are something to do with PWM
4240 	 */
4241 
4242 	mode->status = MODE_OK;
4243 	mode->type = DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED;
4244 	drm_mode_set_name(mode);
4245 	return bios->fp.mode_ptr;
4246 }
4247 
nouveau_bios_parse_lvds_table(struct drm_device * dev,int pxclk,bool * dl,bool * if_is_24bit)4248 int nouveau_bios_parse_lvds_table(struct drm_device *dev, int pxclk, bool *dl, bool *if_is_24bit)
4249 {
4250 	/*
4251 	 * The LVDS table header is (mostly) described in
4252 	 * parse_lvds_manufacturer_table_header(): the BIT header additionally
4253 	 * contains the dual-link transition pxclk (in 10s kHz), at byte 5 - if
4254 	 * straps are not being used for the panel, this specifies the frequency
4255 	 * at which modes should be set up in the dual link style.
4256 	 *
4257 	 * Following the header, the BMP (ver 0xa) table has several records,
4258 	 * indexed by a separate xlat table, indexed in turn by the fp strap in
4259 	 * EXTDEV_BOOT. Each record had a config byte, followed by 6 script
4260 	 * numbers for use by INIT_SUB which controlled panel init and power,
4261 	 * and finally a dword of ms to sleep between power off and on
4262 	 * operations.
4263 	 *
4264 	 * In the BIT versions, the table following the header serves as an
4265 	 * integrated config and xlat table: the records in the table are
4266 	 * indexed by the FP strap nibble in EXTDEV_BOOT, and each record has
4267 	 * two bytes - the first as a config byte, the second for indexing the
4268 	 * fp mode table pointed to by the BIT 'D' table
4269 	 *
4270 	 * DDC is not used until after card init, so selecting the correct table
4271 	 * entry and setting the dual link flag for EDID equipped panels,
4272 	 * requiring tests against the native-mode pixel clock, cannot be done
4273 	 * until later, when this function should be called with non-zero pxclk
4274 	 */
4275 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4276 	struct nvbios *bios = &dev_priv->vbios;
4277 	int fpstrapping = get_fp_strap(dev, bios), lvdsmanufacturerindex = 0;
4278 	struct lvdstableheader lth;
4279 	uint16_t lvdsofs;
4280 	int ret, chip_version = bios->chip_version;
4281 
4282 	ret = parse_lvds_manufacturer_table_header(dev, bios, &lth);
4283 	if (ret)
4284 		return ret;
4285 
4286 	switch (lth.lvds_ver) {
4287 	case 0x0a:	/* pre NV40 */
4288 		lvdsmanufacturerindex = bios->data[
4289 					bios->fp.fpxlatemanufacturertableptr +
4290 					fpstrapping];
4291 
4292 		/* we're done if this isn't the EDID panel case */
4293 		if (!pxclk)
4294 			break;
4295 
4296 		if (chip_version < 0x25) {
4297 			/* nv17 behaviour
4298 			 *
4299 			 * It seems the old style lvds script pointer is reused
4300 			 * to select 18/24 bit colour depth for EDID panels.
4301 			 */
4302 			lvdsmanufacturerindex =
4303 				(bios->legacy.lvds_single_a_script_ptr & 1) ?
4304 									2 : 0;
4305 			if (pxclk >= bios->fp.duallink_transition_clk)
4306 				lvdsmanufacturerindex++;
4307 		} else if (chip_version < 0x30) {
4308 			/* nv28 behaviour (off-chip encoder)
4309 			 *
4310 			 * nv28 does a complex dance of first using byte 121 of
4311 			 * the EDID to choose the lvdsmanufacturerindex, then
4312 			 * later attempting to match the EDID manufacturer and
4313 			 * product IDs in a table (signature 'pidt' (panel id
4314 			 * table?)), setting an lvdsmanufacturerindex of 0 and
4315 			 * an fp strap of the match index (or 0xf if none)
4316 			 */
4317 			lvdsmanufacturerindex = 0;
4318 		} else {
4319 			/* nv31, nv34 behaviour */
4320 			lvdsmanufacturerindex = 0;
4321 			if (pxclk >= bios->fp.duallink_transition_clk)
4322 				lvdsmanufacturerindex = 2;
4323 			if (pxclk >= 140000)
4324 				lvdsmanufacturerindex = 3;
4325 		}
4326 
4327 		/*
4328 		 * nvidia set the high nibble of (cr57=f, cr58) to
4329 		 * lvdsmanufacturerindex in this case; we don't
4330 		 */
4331 		break;
4332 	case 0x30:	/* NV4x */
4333 	case 0x40:	/* G80/G90 */
4334 		lvdsmanufacturerindex = fpstrapping;
4335 		break;
4336 	default:
4337 		NV_ERROR(dev, "LVDS table revision not currently supported\n");
4338 		return -ENOSYS;
4339 	}
4340 
4341 	lvdsofs = bios->fp.xlated_entry = bios->fp.lvdsmanufacturerpointer + lth.headerlen + lth.recordlen * lvdsmanufacturerindex;
4342 	switch (lth.lvds_ver) {
4343 	case 0x0a:
4344 		bios->fp.power_off_for_reset = bios->data[lvdsofs] & 1;
4345 		bios->fp.reset_after_pclk_change = bios->data[lvdsofs] & 2;
4346 		bios->fp.dual_link = bios->data[lvdsofs] & 4;
4347 		bios->fp.link_c_increment = bios->data[lvdsofs] & 8;
4348 		*if_is_24bit = bios->data[lvdsofs] & 16;
4349 		break;
4350 	case 0x30:
4351 	case 0x40:
4352 		/*
4353 		 * No sign of the "power off for reset" or "reset for panel
4354 		 * on" bits, but it's safer to assume we should
4355 		 */
4356 		bios->fp.power_off_for_reset = true;
4357 		bios->fp.reset_after_pclk_change = true;
4358 
4359 		/*
4360 		 * It's ok lvdsofs is wrong for nv4x edid case; dual_link is
4361 		 * over-written, and if_is_24bit isn't used
4362 		 */
4363 		bios->fp.dual_link = bios->data[lvdsofs] & 1;
4364 		bios->fp.if_is_24bit = bios->data[lvdsofs] & 2;
4365 		bios->fp.strapless_is_24bit = bios->data[bios->fp.lvdsmanufacturerpointer + 4];
4366 		bios->fp.duallink_transition_clk = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 5]) * 10;
4367 		break;
4368 	}
4369 
4370 	/* Dell Latitude D620 reports a too-high value for the dual-link
4371 	 * transition freq, causing us to program the panel incorrectly.
4372 	 *
4373 	 * It doesn't appear the VBIOS actually uses its transition freq
4374 	 * (90000kHz), instead it uses the "Number of LVDS channels" field
4375 	 * out of the panel ID structure (http://www.spwg.org/).
4376 	 *
4377 	 * For the moment, a quirk will do :)
4378 	 */
4379 	if (nv_match_device(dev, 0x01d7, 0x1028, 0x01c2))
4380 		bios->fp.duallink_transition_clk = 80000;
4381 
4382 	/* set dual_link flag for EDID case */
4383 	if (pxclk && (chip_version < 0x25 || chip_version > 0x28))
4384 		bios->fp.dual_link = (pxclk >= bios->fp.duallink_transition_clk);
4385 
4386 	*dl = bios->fp.dual_link;
4387 
4388 	return 0;
4389 }
4390 
4391 static uint8_t *
bios_output_config_match(struct drm_device * dev,struct dcb_entry * dcbent,uint16_t record,int record_len,int record_nr,bool match_link)4392 bios_output_config_match(struct drm_device *dev, struct dcb_entry *dcbent,
4393 			 uint16_t record, int record_len, int record_nr,
4394 			 bool match_link)
4395 {
4396 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4397 	struct nvbios *bios = &dev_priv->vbios;
4398 	uint32_t entry;
4399 	uint16_t table;
4400 	int i, v;
4401 
4402 	switch (dcbent->type) {
4403 	case OUTPUT_TMDS:
4404 	case OUTPUT_LVDS:
4405 	case OUTPUT_DP:
4406 		break;
4407 	default:
4408 		match_link = false;
4409 		break;
4410 	}
4411 
4412 	for (i = 0; i < record_nr; i++, record += record_len) {
4413 		table = ROM16(bios->data[record]);
4414 		if (!table)
4415 			continue;
4416 		entry = ROM32(bios->data[table]);
4417 
4418 		if (match_link) {
4419 			v = (entry & 0x00c00000) >> 22;
4420 			if (!(v & dcbent->sorconf.link))
4421 				continue;
4422 		}
4423 
4424 		v = (entry & 0x000f0000) >> 16;
4425 		if (!(v & dcbent->or))
4426 			continue;
4427 
4428 		v = (entry & 0x000000f0) >> 4;
4429 		if (v != dcbent->location)
4430 			continue;
4431 
4432 		v = (entry & 0x0000000f);
4433 		if (v != dcbent->type)
4434 			continue;
4435 
4436 		return &bios->data[table];
4437 	}
4438 
4439 	return NULL;
4440 }
4441 
4442 void *
nouveau_bios_dp_table(struct drm_device * dev,struct dcb_entry * dcbent,int * length)4443 nouveau_bios_dp_table(struct drm_device *dev, struct dcb_entry *dcbent,
4444 		      int *length)
4445 {
4446 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4447 	struct nvbios *bios = &dev_priv->vbios;
4448 	uint8_t *table;
4449 
4450 	if (!bios->display.dp_table_ptr) {
4451 		NV_ERROR(dev, "No pointer to DisplayPort table\n");
4452 		return NULL;
4453 	}
4454 	table = &bios->data[bios->display.dp_table_ptr];
4455 
4456 	if (table[0] != 0x20 && table[0] != 0x21) {
4457 		NV_ERROR(dev, "DisplayPort table version 0x%02x unknown\n",
4458 			 table[0]);
4459 		return NULL;
4460 	}
4461 
4462 	*length = table[4];
4463 	return bios_output_config_match(dev, dcbent,
4464 					bios->display.dp_table_ptr + table[1],
4465 					table[2], table[3], table[0] >= 0x21);
4466 }
4467 
4468 int
nouveau_bios_run_display_table(struct drm_device * dev,struct dcb_entry * dcbent,uint32_t sub,int pxclk)4469 nouveau_bios_run_display_table(struct drm_device *dev, struct dcb_entry *dcbent,
4470 			       uint32_t sub, int pxclk)
4471 {
4472 	/*
4473 	 * The display script table is located by the BIT 'U' table.
4474 	 *
4475 	 * It contains an array of pointers to various tables describing
4476 	 * a particular output type.  The first 32-bits of the output
4477 	 * tables contains similar information to a DCB entry, and is
4478 	 * used to decide whether that particular table is suitable for
4479 	 * the output you want to access.
4480 	 *
4481 	 * The "record header length" field here seems to indicate the
4482 	 * offset of the first configuration entry in the output tables.
4483 	 * This is 10 on most cards I've seen, but 12 has been witnessed
4484 	 * on DP cards, and there's another script pointer within the
4485 	 * header.
4486 	 *
4487 	 * offset + 0   ( 8 bits): version
4488 	 * offset + 1   ( 8 bits): header length
4489 	 * offset + 2   ( 8 bits): record length
4490 	 * offset + 3   ( 8 bits): number of records
4491 	 * offset + 4   ( 8 bits): record header length
4492 	 * offset + 5   (16 bits): pointer to first output script table
4493 	 */
4494 
4495 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4496 	struct nvbios *bios = &dev_priv->vbios;
4497 	uint8_t *table = &bios->data[bios->display.script_table_ptr];
4498 	uint8_t *otable = NULL;
4499 	uint16_t script;
4500 	int i = 0;
4501 
4502 	if (!bios->display.script_table_ptr) {
4503 		NV_ERROR(dev, "No pointer to output script table\n");
4504 		return 1;
4505 	}
4506 
4507 	/*
4508 	 * Nothing useful has been in any of the pre-2.0 tables I've seen,
4509 	 * so until they are, we really don't need to care.
4510 	 */
4511 	if (table[0] < 0x20)
4512 		return 1;
4513 
4514 	if (table[0] != 0x20 && table[0] != 0x21) {
4515 		NV_ERROR(dev, "Output script table version 0x%02x unknown\n",
4516 			 table[0]);
4517 		return 1;
4518 	}
4519 
4520 	/*
4521 	 * The output script tables describing a particular output type
4522 	 * look as follows:
4523 	 *
4524 	 * offset + 0   (32 bits): output this table matches (hash of DCB)
4525 	 * offset + 4   ( 8 bits): unknown
4526 	 * offset + 5   ( 8 bits): number of configurations
4527 	 * offset + 6   (16 bits): pointer to some script
4528 	 * offset + 8   (16 bits): pointer to some script
4529 	 *
4530 	 * headerlen == 10
4531 	 * offset + 10           : configuration 0
4532 	 *
4533 	 * headerlen == 12
4534 	 * offset + 10           : pointer to some script
4535 	 * offset + 12           : configuration 0
4536 	 *
4537 	 * Each config entry is as follows:
4538 	 *
4539 	 * offset + 0   (16 bits): unknown, assumed to be a match value
4540 	 * offset + 2   (16 bits): pointer to script table (clock set?)
4541 	 * offset + 4   (16 bits): pointer to script table (reset?)
4542 	 *
4543 	 * There doesn't appear to be a count value to say how many
4544 	 * entries exist in each script table, instead, a 0 value in
4545 	 * the first 16-bit word seems to indicate both the end of the
4546 	 * list and the default entry.  The second 16-bit word in the
4547 	 * script tables is a pointer to the script to execute.
4548 	 */
4549 
4550 	NV_DEBUG_KMS(dev, "Searching for output entry for %d %d %d\n",
4551 			dcbent->type, dcbent->location, dcbent->or);
4552 	otable = bios_output_config_match(dev, dcbent, table[1] +
4553 					  bios->display.script_table_ptr,
4554 					  table[2], table[3], table[0] >= 0x21);
4555 	if (!otable) {
4556 		NV_DEBUG_KMS(dev, "failed to match any output table\n");
4557 		return 1;
4558 	}
4559 
4560 	if (pxclk < -2 || pxclk > 0) {
4561 		/* Try to find matching script table entry */
4562 		for (i = 0; i < otable[5]; i++) {
4563 			if (ROM16(otable[table[4] + i*6]) == sub)
4564 				break;
4565 		}
4566 
4567 		if (i == otable[5]) {
4568 			NV_ERROR(dev, "Table 0x%04x not found for %d/%d, "
4569 				      "using first\n",
4570 				 sub, dcbent->type, dcbent->or);
4571 			i = 0;
4572 		}
4573 	}
4574 
4575 	if (pxclk == 0) {
4576 		script = ROM16(otable[6]);
4577 		if (!script) {
4578 			NV_DEBUG_KMS(dev, "output script 0 not found\n");
4579 			return 1;
4580 		}
4581 
4582 		NV_DEBUG_KMS(dev, "0x%04X: parsing output script 0\n", script);
4583 		nouveau_bios_run_init_table(dev, script, dcbent);
4584 	} else
4585 	if (pxclk == -1) {
4586 		script = ROM16(otable[8]);
4587 		if (!script) {
4588 			NV_DEBUG_KMS(dev, "output script 1 not found\n");
4589 			return 1;
4590 		}
4591 
4592 		NV_DEBUG_KMS(dev, "0x%04X: parsing output script 1\n", script);
4593 		nouveau_bios_run_init_table(dev, script, dcbent);
4594 	} else
4595 	if (pxclk == -2) {
4596 		if (table[4] >= 12)
4597 			script = ROM16(otable[10]);
4598 		else
4599 			script = 0;
4600 		if (!script) {
4601 			NV_DEBUG_KMS(dev, "output script 2 not found\n");
4602 			return 1;
4603 		}
4604 
4605 		NV_DEBUG_KMS(dev, "0x%04X: parsing output script 2\n", script);
4606 		nouveau_bios_run_init_table(dev, script, dcbent);
4607 	} else
4608 	if (pxclk > 0) {
4609 		script = ROM16(otable[table[4] + i*6 + 2]);
4610 		if (script)
4611 			script = clkcmptable(bios, script, pxclk);
4612 		if (!script) {
4613 			NV_DEBUG_KMS(dev, "clock script 0 not found\n");
4614 			return 1;
4615 		}
4616 
4617 		NV_DEBUG_KMS(dev, "0x%04X: parsing clock script 0\n", script);
4618 		nouveau_bios_run_init_table(dev, script, dcbent);
4619 	} else
4620 	if (pxclk < 0) {
4621 		script = ROM16(otable[table[4] + i*6 + 4]);
4622 		if (script)
4623 			script = clkcmptable(bios, script, -pxclk);
4624 		if (!script) {
4625 			NV_DEBUG_KMS(dev, "clock script 1 not found\n");
4626 			return 1;
4627 		}
4628 
4629 		NV_DEBUG_KMS(dev, "0x%04X: parsing clock script 1\n", script);
4630 		nouveau_bios_run_init_table(dev, script, dcbent);
4631 	}
4632 
4633 	return 0;
4634 }
4635 
4636 
run_tmds_table(struct drm_device * dev,struct dcb_entry * dcbent,int head,int pxclk)4637 int run_tmds_table(struct drm_device *dev, struct dcb_entry *dcbent, int head, int pxclk)
4638 {
4639 	/*
4640 	 * the pxclk parameter is in kHz
4641 	 *
4642 	 * This runs the TMDS regs setting code found on BIT bios cards
4643 	 *
4644 	 * For ffs(or) == 1 use the first table, for ffs(or) == 2 and
4645 	 * ffs(or) == 3, use the second.
4646 	 */
4647 
4648 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4649 	struct nvbios *bios = &dev_priv->vbios;
4650 	int cv = bios->chip_version;
4651 	uint16_t clktable = 0, scriptptr;
4652 	uint32_t sel_clk_binding, sel_clk;
4653 
4654 	/* pre-nv17 off-chip tmds uses scripts, post nv17 doesn't */
4655 	if (cv >= 0x17 && cv != 0x1a && cv != 0x20 &&
4656 	    dcbent->location != DCB_LOC_ON_CHIP)
4657 		return 0;
4658 
4659 	switch (ffs(dcbent->or)) {
4660 	case 1:
4661 		clktable = bios->tmds.output0_script_ptr;
4662 		break;
4663 	case 2:
4664 	case 3:
4665 		clktable = bios->tmds.output1_script_ptr;
4666 		break;
4667 	}
4668 
4669 	if (!clktable) {
4670 		NV_ERROR(dev, "Pixel clock comparison table not found\n");
4671 		return -EINVAL;
4672 	}
4673 
4674 	scriptptr = clkcmptable(bios, clktable, pxclk);
4675 
4676 	if (!scriptptr) {
4677 		NV_ERROR(dev, "TMDS output init script not found\n");
4678 		return -ENOENT;
4679 	}
4680 
4681 	/* don't let script change pll->head binding */
4682 	sel_clk_binding = bios_rd32(bios, NV_PRAMDAC_SEL_CLK) & 0x50000;
4683 	run_digital_op_script(dev, scriptptr, dcbent, head, pxclk >= 165000);
4684 	sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000;
4685 	NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding);
4686 
4687 	return 0;
4688 }
4689 
4690 struct pll_mapping {
4691 	u8  type;
4692 	u32 reg;
4693 };
4694 
4695 static struct pll_mapping nv04_pll_mapping[] = {
4696 	{ PLL_CORE  , NV_PRAMDAC_NVPLL_COEFF },
4697 	{ PLL_MEMORY, NV_PRAMDAC_MPLL_COEFF },
4698 	{ PLL_VPLL0 , NV_PRAMDAC_VPLL_COEFF },
4699 	{ PLL_VPLL1 , NV_RAMDAC_VPLL2 },
4700 	{}
4701 };
4702 
4703 static struct pll_mapping nv40_pll_mapping[] = {
4704 	{ PLL_CORE  , 0x004000 },
4705 	{ PLL_MEMORY, 0x004020 },
4706 	{ PLL_VPLL0 , NV_PRAMDAC_VPLL_COEFF },
4707 	{ PLL_VPLL1 , NV_RAMDAC_VPLL2 },
4708 	{}
4709 };
4710 
4711 static struct pll_mapping nv50_pll_mapping[] = {
4712 	{ PLL_CORE  , 0x004028 },
4713 	{ PLL_SHADER, 0x004020 },
4714 	{ PLL_UNK03 , 0x004000 },
4715 	{ PLL_MEMORY, 0x004008 },
4716 	{ PLL_UNK40 , 0x00e810 },
4717 	{ PLL_UNK41 , 0x00e818 },
4718 	{ PLL_UNK42 , 0x00e824 },
4719 	{ PLL_VPLL0 , 0x614100 },
4720 	{ PLL_VPLL1 , 0x614900 },
4721 	{}
4722 };
4723 
4724 static struct pll_mapping nv84_pll_mapping[] = {
4725 	{ PLL_CORE  , 0x004028 },
4726 	{ PLL_SHADER, 0x004020 },
4727 	{ PLL_MEMORY, 0x004008 },
4728 	{ PLL_UNK05 , 0x004030 },
4729 	{ PLL_UNK41 , 0x00e818 },
4730 	{ PLL_VPLL0 , 0x614100 },
4731 	{ PLL_VPLL1 , 0x614900 },
4732 	{}
4733 };
4734 
4735 u32
get_pll_register(struct drm_device * dev,enum pll_types type)4736 get_pll_register(struct drm_device *dev, enum pll_types type)
4737 {
4738 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4739 	struct nvbios *bios = &dev_priv->vbios;
4740 	struct pll_mapping *map;
4741 	int i;
4742 
4743 	if (dev_priv->card_type < NV_40)
4744 		map = nv04_pll_mapping;
4745 	else
4746 	if (dev_priv->card_type < NV_50)
4747 		map = nv40_pll_mapping;
4748 	else {
4749 		u8 *plim = &bios->data[bios->pll_limit_tbl_ptr];
4750 
4751 		if (plim[0] >= 0x30) {
4752 			u8 *entry = plim + plim[1];
4753 			for (i = 0; i < plim[3]; i++, entry += plim[2]) {
4754 				if (entry[0] == type)
4755 					return ROM32(entry[3]);
4756 			}
4757 
4758 			return 0;
4759 		}
4760 
4761 		if (dev_priv->chipset == 0x50)
4762 			map = nv50_pll_mapping;
4763 		else
4764 			map = nv84_pll_mapping;
4765 	}
4766 
4767 	while (map->reg) {
4768 		if (map->type == type)
4769 			return map->reg;
4770 		map++;
4771 	}
4772 
4773 	return 0;
4774 }
4775 
get_pll_limits(struct drm_device * dev,uint32_t limit_match,struct pll_lims * pll_lim)4776 int get_pll_limits(struct drm_device *dev, uint32_t limit_match, struct pll_lims *pll_lim)
4777 {
4778 	/*
4779 	 * PLL limits table
4780 	 *
4781 	 * Version 0x10: NV30, NV31
4782 	 * One byte header (version), one record of 24 bytes
4783 	 * Version 0x11: NV36 - Not implemented
4784 	 * Seems to have same record style as 0x10, but 3 records rather than 1
4785 	 * Version 0x20: Found on Geforce 6 cards
4786 	 * Trivial 4 byte BIT header. 31 (0x1f) byte record length
4787 	 * Version 0x21: Found on Geforce 7, 8 and some Geforce 6 cards
4788 	 * 5 byte header, fifth byte of unknown purpose. 35 (0x23) byte record
4789 	 * length in general, some (integrated) have an extra configuration byte
4790 	 * Version 0x30: Found on Geforce 8, separates the register mapping
4791 	 * from the limits tables.
4792 	 */
4793 
4794 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4795 	struct nvbios *bios = &dev_priv->vbios;
4796 	int cv = bios->chip_version, pllindex = 0;
4797 	uint8_t pll_lim_ver = 0, headerlen = 0, recordlen = 0, entries = 0;
4798 	uint32_t crystal_strap_mask, crystal_straps;
4799 
4800 	if (!bios->pll_limit_tbl_ptr) {
4801 		if (cv == 0x30 || cv == 0x31 || cv == 0x35 || cv == 0x36 ||
4802 		    cv >= 0x40) {
4803 			NV_ERROR(dev, "Pointer to PLL limits table invalid\n");
4804 			return -EINVAL;
4805 		}
4806 	} else
4807 		pll_lim_ver = bios->data[bios->pll_limit_tbl_ptr];
4808 
4809 	crystal_strap_mask = 1 << 6;
4810 	/* open coded dev->twoHeads test */
4811 	if (cv > 0x10 && cv != 0x15 && cv != 0x1a && cv != 0x20)
4812 		crystal_strap_mask |= 1 << 22;
4813 	crystal_straps = nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) &
4814 							crystal_strap_mask;
4815 
4816 	switch (pll_lim_ver) {
4817 	/*
4818 	 * We use version 0 to indicate a pre limit table bios (single stage
4819 	 * pll) and load the hard coded limits instead.
4820 	 */
4821 	case 0:
4822 		break;
4823 	case 0x10:
4824 	case 0x11:
4825 		/*
4826 		 * Strictly v0x11 has 3 entries, but the last two don't seem
4827 		 * to get used.
4828 		 */
4829 		headerlen = 1;
4830 		recordlen = 0x18;
4831 		entries = 1;
4832 		pllindex = 0;
4833 		break;
4834 	case 0x20:
4835 	case 0x21:
4836 	case 0x30:
4837 	case 0x40:
4838 		headerlen = bios->data[bios->pll_limit_tbl_ptr + 1];
4839 		recordlen = bios->data[bios->pll_limit_tbl_ptr + 2];
4840 		entries = bios->data[bios->pll_limit_tbl_ptr + 3];
4841 		break;
4842 	default:
4843 		NV_ERROR(dev, "PLL limits table revision 0x%X not currently "
4844 				"supported\n", pll_lim_ver);
4845 		return -ENOSYS;
4846 	}
4847 
4848 	/* initialize all members to zero */
4849 	memset(pll_lim, 0, sizeof(struct pll_lims));
4850 
4851 	/* if we were passed a type rather than a register, figure
4852 	 * out the register and store it
4853 	 */
4854 	if (limit_match > PLL_MAX)
4855 		pll_lim->reg = limit_match;
4856 	else {
4857 		pll_lim->reg = get_pll_register(dev, limit_match);
4858 		if (!pll_lim->reg)
4859 			return -ENOENT;
4860 	}
4861 
4862 	if (pll_lim_ver == 0x10 || pll_lim_ver == 0x11) {
4863 		uint8_t *pll_rec = &bios->data[bios->pll_limit_tbl_ptr + headerlen + recordlen * pllindex];
4864 
4865 		pll_lim->vco1.minfreq = ROM32(pll_rec[0]);
4866 		pll_lim->vco1.maxfreq = ROM32(pll_rec[4]);
4867 		pll_lim->vco2.minfreq = ROM32(pll_rec[8]);
4868 		pll_lim->vco2.maxfreq = ROM32(pll_rec[12]);
4869 		pll_lim->vco1.min_inputfreq = ROM32(pll_rec[16]);
4870 		pll_lim->vco2.min_inputfreq = ROM32(pll_rec[20]);
4871 		pll_lim->vco1.max_inputfreq = pll_lim->vco2.max_inputfreq = INT_MAX;
4872 
4873 		/* these values taken from nv30/31/36 */
4874 		pll_lim->vco1.min_n = 0x1;
4875 		if (cv == 0x36)
4876 			pll_lim->vco1.min_n = 0x5;
4877 		pll_lim->vco1.max_n = 0xff;
4878 		pll_lim->vco1.min_m = 0x1;
4879 		pll_lim->vco1.max_m = 0xd;
4880 		pll_lim->vco2.min_n = 0x4;
4881 		/*
4882 		 * On nv30, 31, 36 (i.e. all cards with two stage PLLs with this
4883 		 * table version (apart from nv35)), N2 is compared to
4884 		 * maxN2 (0x46) and 10 * maxM2 (0x4), so set maxN2 to 0x28 and
4885 		 * save a comparison
4886 		 */
4887 		pll_lim->vco2.max_n = 0x28;
4888 		if (cv == 0x30 || cv == 0x35)
4889 			/* only 5 bits available for N2 on nv30/35 */
4890 			pll_lim->vco2.max_n = 0x1f;
4891 		pll_lim->vco2.min_m = 0x1;
4892 		pll_lim->vco2.max_m = 0x4;
4893 		pll_lim->max_log2p = 0x7;
4894 		pll_lim->max_usable_log2p = 0x6;
4895 	} else if (pll_lim_ver == 0x20 || pll_lim_ver == 0x21) {
4896 		uint16_t plloffs = bios->pll_limit_tbl_ptr + headerlen;
4897 		uint8_t *pll_rec;
4898 		int i;
4899 
4900 		/*
4901 		 * First entry is default match, if nothing better. warn if
4902 		 * reg field nonzero
4903 		 */
4904 		if (ROM32(bios->data[plloffs]))
4905 			NV_WARN(dev, "Default PLL limit entry has non-zero "
4906 				       "register field\n");
4907 
4908 		for (i = 1; i < entries; i++)
4909 			if (ROM32(bios->data[plloffs + recordlen * i]) == pll_lim->reg) {
4910 				pllindex = i;
4911 				break;
4912 			}
4913 
4914 		if ((dev_priv->card_type >= NV_50) && (pllindex == 0)) {
4915 			NV_ERROR(dev, "Register 0x%08x not found in PLL "
4916 				 "limits table", pll_lim->reg);
4917 			return -ENOENT;
4918 		}
4919 
4920 		pll_rec = &bios->data[plloffs + recordlen * pllindex];
4921 
4922 		BIOSLOG(bios, "Loading PLL limits for reg 0x%08x\n",
4923 			pllindex ? pll_lim->reg : 0);
4924 
4925 		/*
4926 		 * Frequencies are stored in tables in MHz, kHz are more
4927 		 * useful, so we convert.
4928 		 */
4929 
4930 		/* What output frequencies can each VCO generate? */
4931 		pll_lim->vco1.minfreq = ROM16(pll_rec[4]) * 1000;
4932 		pll_lim->vco1.maxfreq = ROM16(pll_rec[6]) * 1000;
4933 		pll_lim->vco2.minfreq = ROM16(pll_rec[8]) * 1000;
4934 		pll_lim->vco2.maxfreq = ROM16(pll_rec[10]) * 1000;
4935 
4936 		/* What input frequencies they accept (past the m-divider)? */
4937 		pll_lim->vco1.min_inputfreq = ROM16(pll_rec[12]) * 1000;
4938 		pll_lim->vco2.min_inputfreq = ROM16(pll_rec[14]) * 1000;
4939 		pll_lim->vco1.max_inputfreq = ROM16(pll_rec[16]) * 1000;
4940 		pll_lim->vco2.max_inputfreq = ROM16(pll_rec[18]) * 1000;
4941 
4942 		/* What values are accepted as multiplier and divider? */
4943 		pll_lim->vco1.min_n = pll_rec[20];
4944 		pll_lim->vco1.max_n = pll_rec[21];
4945 		pll_lim->vco1.min_m = pll_rec[22];
4946 		pll_lim->vco1.max_m = pll_rec[23];
4947 		pll_lim->vco2.min_n = pll_rec[24];
4948 		pll_lim->vco2.max_n = pll_rec[25];
4949 		pll_lim->vco2.min_m = pll_rec[26];
4950 		pll_lim->vco2.max_m = pll_rec[27];
4951 
4952 		pll_lim->max_usable_log2p = pll_lim->max_log2p = pll_rec[29];
4953 		if (pll_lim->max_log2p > 0x7)
4954 			/* pll decoding in nv_hw.c assumes never > 7 */
4955 			NV_WARN(dev, "Max log2 P value greater than 7 (%d)\n",
4956 				pll_lim->max_log2p);
4957 		if (cv < 0x60)
4958 			pll_lim->max_usable_log2p = 0x6;
4959 		pll_lim->log2p_bias = pll_rec[30];
4960 
4961 		if (recordlen > 0x22)
4962 			pll_lim->refclk = ROM32(pll_rec[31]);
4963 
4964 		if (recordlen > 0x23 && pll_rec[35])
4965 			NV_WARN(dev,
4966 				"Bits set in PLL configuration byte (%x)\n",
4967 				pll_rec[35]);
4968 
4969 		/* C51 special not seen elsewhere */
4970 		if (cv == 0x51 && !pll_lim->refclk) {
4971 			uint32_t sel_clk = bios_rd32(bios, NV_PRAMDAC_SEL_CLK);
4972 
4973 			if ((pll_lim->reg == NV_PRAMDAC_VPLL_COEFF && sel_clk & 0x20) ||
4974 			    (pll_lim->reg == NV_RAMDAC_VPLL2 && sel_clk & 0x80)) {
4975 				if (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_CHIP_ID_INDEX) < 0xa3)
4976 					pll_lim->refclk = 200000;
4977 				else
4978 					pll_lim->refclk = 25000;
4979 			}
4980 		}
4981 	} else if (pll_lim_ver == 0x30) { /* ver 0x30 */
4982 		uint8_t *entry = &bios->data[bios->pll_limit_tbl_ptr + headerlen];
4983 		uint8_t *record = NULL;
4984 		int i;
4985 
4986 		BIOSLOG(bios, "Loading PLL limits for register 0x%08x\n",
4987 			pll_lim->reg);
4988 
4989 		for (i = 0; i < entries; i++, entry += recordlen) {
4990 			if (ROM32(entry[3]) == pll_lim->reg) {
4991 				record = &bios->data[ROM16(entry[1])];
4992 				break;
4993 			}
4994 		}
4995 
4996 		if (!record) {
4997 			NV_ERROR(dev, "Register 0x%08x not found in PLL "
4998 				 "limits table", pll_lim->reg);
4999 			return -ENOENT;
5000 		}
5001 
5002 		pll_lim->vco1.minfreq = ROM16(record[0]) * 1000;
5003 		pll_lim->vco1.maxfreq = ROM16(record[2]) * 1000;
5004 		pll_lim->vco2.minfreq = ROM16(record[4]) * 1000;
5005 		pll_lim->vco2.maxfreq = ROM16(record[6]) * 1000;
5006 		pll_lim->vco1.min_inputfreq = ROM16(record[8]) * 1000;
5007 		pll_lim->vco2.min_inputfreq = ROM16(record[10]) * 1000;
5008 		pll_lim->vco1.max_inputfreq = ROM16(record[12]) * 1000;
5009 		pll_lim->vco2.max_inputfreq = ROM16(record[14]) * 1000;
5010 		pll_lim->vco1.min_n = record[16];
5011 		pll_lim->vco1.max_n = record[17];
5012 		pll_lim->vco1.min_m = record[18];
5013 		pll_lim->vco1.max_m = record[19];
5014 		pll_lim->vco2.min_n = record[20];
5015 		pll_lim->vco2.max_n = record[21];
5016 		pll_lim->vco2.min_m = record[22];
5017 		pll_lim->vco2.max_m = record[23];
5018 		pll_lim->max_usable_log2p = pll_lim->max_log2p = record[25];
5019 		pll_lim->log2p_bias = record[27];
5020 		pll_lim->refclk = ROM32(record[28]);
5021 	} else if (pll_lim_ver) { /* ver 0x40 */
5022 		uint8_t *entry = &bios->data[bios->pll_limit_tbl_ptr + headerlen];
5023 		uint8_t *record = NULL;
5024 		int i;
5025 
5026 		BIOSLOG(bios, "Loading PLL limits for register 0x%08x\n",
5027 			pll_lim->reg);
5028 
5029 		for (i = 0; i < entries; i++, entry += recordlen) {
5030 			if (ROM32(entry[3]) == pll_lim->reg) {
5031 				record = &bios->data[ROM16(entry[1])];
5032 				break;
5033 			}
5034 		}
5035 
5036 		if (!record) {
5037 			NV_ERROR(dev, "Register 0x%08x not found in PLL "
5038 				 "limits table", pll_lim->reg);
5039 			return -ENOENT;
5040 		}
5041 
5042 		pll_lim->vco1.minfreq = ROM16(record[0]) * 1000;
5043 		pll_lim->vco1.maxfreq = ROM16(record[2]) * 1000;
5044 		pll_lim->vco1.min_inputfreq = ROM16(record[4]) * 1000;
5045 		pll_lim->vco1.max_inputfreq = ROM16(record[6]) * 1000;
5046 		pll_lim->vco1.min_m = record[8];
5047 		pll_lim->vco1.max_m = record[9];
5048 		pll_lim->vco1.min_n = record[10];
5049 		pll_lim->vco1.max_n = record[11];
5050 		pll_lim->min_p = record[12];
5051 		pll_lim->max_p = record[13];
5052 		/* where did this go to?? */
5053 		if ((entry[0] & 0xf0) == 0x80)
5054 			pll_lim->refclk = 27000;
5055 		else
5056 			pll_lim->refclk = 100000;
5057 	}
5058 
5059 	/*
5060 	 * By now any valid limit table ought to have set a max frequency for
5061 	 * vco1, so if it's zero it's either a pre limit table bios, or one
5062 	 * with an empty limit table (seen on nv18)
5063 	 */
5064 	if (!pll_lim->vco1.maxfreq) {
5065 		pll_lim->vco1.minfreq = bios->fminvco;
5066 		pll_lim->vco1.maxfreq = bios->fmaxvco;
5067 		pll_lim->vco1.min_inputfreq = 0;
5068 		pll_lim->vco1.max_inputfreq = INT_MAX;
5069 		pll_lim->vco1.min_n = 0x1;
5070 		pll_lim->vco1.max_n = 0xff;
5071 		pll_lim->vco1.min_m = 0x1;
5072 		if (crystal_straps == 0) {
5073 			/* nv05 does this, nv11 doesn't, nv10 unknown */
5074 			if (cv < 0x11)
5075 				pll_lim->vco1.min_m = 0x7;
5076 			pll_lim->vco1.max_m = 0xd;
5077 		} else {
5078 			if (cv < 0x11)
5079 				pll_lim->vco1.min_m = 0x8;
5080 			pll_lim->vco1.max_m = 0xe;
5081 		}
5082 		if (cv < 0x17 || cv == 0x1a || cv == 0x20)
5083 			pll_lim->max_log2p = 4;
5084 		else
5085 			pll_lim->max_log2p = 5;
5086 		pll_lim->max_usable_log2p = pll_lim->max_log2p;
5087 	}
5088 
5089 	if (!pll_lim->refclk)
5090 		switch (crystal_straps) {
5091 		case 0:
5092 			pll_lim->refclk = 13500;
5093 			break;
5094 		case (1 << 6):
5095 			pll_lim->refclk = 14318;
5096 			break;
5097 		case (1 << 22):
5098 			pll_lim->refclk = 27000;
5099 			break;
5100 		case (1 << 22 | 1 << 6):
5101 			pll_lim->refclk = 25000;
5102 			break;
5103 		}
5104 
5105 	NV_DEBUG(dev, "pll.vco1.minfreq: %d\n", pll_lim->vco1.minfreq);
5106 	NV_DEBUG(dev, "pll.vco1.maxfreq: %d\n", pll_lim->vco1.maxfreq);
5107 	NV_DEBUG(dev, "pll.vco1.min_inputfreq: %d\n", pll_lim->vco1.min_inputfreq);
5108 	NV_DEBUG(dev, "pll.vco1.max_inputfreq: %d\n", pll_lim->vco1.max_inputfreq);
5109 	NV_DEBUG(dev, "pll.vco1.min_n: %d\n", pll_lim->vco1.min_n);
5110 	NV_DEBUG(dev, "pll.vco1.max_n: %d\n", pll_lim->vco1.max_n);
5111 	NV_DEBUG(dev, "pll.vco1.min_m: %d\n", pll_lim->vco1.min_m);
5112 	NV_DEBUG(dev, "pll.vco1.max_m: %d\n", pll_lim->vco1.max_m);
5113 	if (pll_lim->vco2.maxfreq) {
5114 		NV_DEBUG(dev, "pll.vco2.minfreq: %d\n", pll_lim->vco2.minfreq);
5115 		NV_DEBUG(dev, "pll.vco2.maxfreq: %d\n", pll_lim->vco2.maxfreq);
5116 		NV_DEBUG(dev, "pll.vco2.min_inputfreq: %d\n", pll_lim->vco2.min_inputfreq);
5117 		NV_DEBUG(dev, "pll.vco2.max_inputfreq: %d\n", pll_lim->vco2.max_inputfreq);
5118 		NV_DEBUG(dev, "pll.vco2.min_n: %d\n", pll_lim->vco2.min_n);
5119 		NV_DEBUG(dev, "pll.vco2.max_n: %d\n", pll_lim->vco2.max_n);
5120 		NV_DEBUG(dev, "pll.vco2.min_m: %d\n", pll_lim->vco2.min_m);
5121 		NV_DEBUG(dev, "pll.vco2.max_m: %d\n", pll_lim->vco2.max_m);
5122 	}
5123 	if (!pll_lim->max_p) {
5124 		NV_DEBUG(dev, "pll.max_log2p: %d\n", pll_lim->max_log2p);
5125 		NV_DEBUG(dev, "pll.log2p_bias: %d\n", pll_lim->log2p_bias);
5126 	} else {
5127 		NV_DEBUG(dev, "pll.min_p: %d\n", pll_lim->min_p);
5128 		NV_DEBUG(dev, "pll.max_p: %d\n", pll_lim->max_p);
5129 	}
5130 	NV_DEBUG(dev, "pll.refclk: %d\n", pll_lim->refclk);
5131 
5132 	return 0;
5133 }
5134 
parse_bios_version(struct drm_device * dev,struct nvbios * bios,uint16_t offset)5135 static void parse_bios_version(struct drm_device *dev, struct nvbios *bios, uint16_t offset)
5136 {
5137 	/*
5138 	 * offset + 0  (8 bits): Micro version
5139 	 * offset + 1  (8 bits): Minor version
5140 	 * offset + 2  (8 bits): Chip version
5141 	 * offset + 3  (8 bits): Major version
5142 	 */
5143 
5144 	bios->major_version = bios->data[offset + 3];
5145 	bios->chip_version = bios->data[offset + 2];
5146 	NV_TRACE(dev, "Bios version %02x.%02x.%02x.%02x\n",
5147 		 bios->data[offset + 3], bios->data[offset + 2],
5148 		 bios->data[offset + 1], bios->data[offset]);
5149 }
5150 
parse_script_table_pointers(struct nvbios * bios,uint16_t offset)5151 static void parse_script_table_pointers(struct nvbios *bios, uint16_t offset)
5152 {
5153 	/*
5154 	 * Parses the init table segment for pointers used in script execution.
5155 	 *
5156 	 * offset + 0  (16 bits): init script tables pointer
5157 	 * offset + 2  (16 bits): macro index table pointer
5158 	 * offset + 4  (16 bits): macro table pointer
5159 	 * offset + 6  (16 bits): condition table pointer
5160 	 * offset + 8  (16 bits): io condition table pointer
5161 	 * offset + 10 (16 bits): io flag condition table pointer
5162 	 * offset + 12 (16 bits): init function table pointer
5163 	 */
5164 
5165 	bios->init_script_tbls_ptr = ROM16(bios->data[offset]);
5166 	bios->macro_index_tbl_ptr = ROM16(bios->data[offset + 2]);
5167 	bios->macro_tbl_ptr = ROM16(bios->data[offset + 4]);
5168 	bios->condition_tbl_ptr = ROM16(bios->data[offset + 6]);
5169 	bios->io_condition_tbl_ptr = ROM16(bios->data[offset + 8]);
5170 	bios->io_flag_condition_tbl_ptr = ROM16(bios->data[offset + 10]);
5171 	bios->init_function_tbl_ptr = ROM16(bios->data[offset + 12]);
5172 }
5173 
parse_bit_A_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5174 static int parse_bit_A_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5175 {
5176 	/*
5177 	 * Parses the load detect values for g80 cards.
5178 	 *
5179 	 * offset + 0 (16 bits): loadval table pointer
5180 	 */
5181 
5182 	uint16_t load_table_ptr;
5183 	uint8_t version, headerlen, entrylen, num_entries;
5184 
5185 	if (bitentry->length != 3) {
5186 		NV_ERROR(dev, "Do not understand BIT A table\n");
5187 		return -EINVAL;
5188 	}
5189 
5190 	load_table_ptr = ROM16(bios->data[bitentry->offset]);
5191 
5192 	if (load_table_ptr == 0x0) {
5193 		NV_ERROR(dev, "Pointer to BIT loadval table invalid\n");
5194 		return -EINVAL;
5195 	}
5196 
5197 	version = bios->data[load_table_ptr];
5198 
5199 	if (version != 0x10) {
5200 		NV_ERROR(dev, "BIT loadval table version %d.%d not supported\n",
5201 			 version >> 4, version & 0xF);
5202 		return -ENOSYS;
5203 	}
5204 
5205 	headerlen = bios->data[load_table_ptr + 1];
5206 	entrylen = bios->data[load_table_ptr + 2];
5207 	num_entries = bios->data[load_table_ptr + 3];
5208 
5209 	if (headerlen != 4 || entrylen != 4 || num_entries != 2) {
5210 		NV_ERROR(dev, "Do not understand BIT loadval table\n");
5211 		return -EINVAL;
5212 	}
5213 
5214 	/* First entry is normal dac, 2nd tv-out perhaps? */
5215 	bios->dactestval = ROM32(bios->data[load_table_ptr + headerlen]) & 0x3ff;
5216 
5217 	return 0;
5218 }
5219 
parse_bit_C_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5220 static int parse_bit_C_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5221 {
5222 	/*
5223 	 * offset + 8  (16 bits): PLL limits table pointer
5224 	 *
5225 	 * There's more in here, but that's unknown.
5226 	 */
5227 
5228 	if (bitentry->length < 10) {
5229 		NV_ERROR(dev, "Do not understand BIT C table\n");
5230 		return -EINVAL;
5231 	}
5232 
5233 	bios->pll_limit_tbl_ptr = ROM16(bios->data[bitentry->offset + 8]);
5234 
5235 	return 0;
5236 }
5237 
parse_bit_display_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5238 static int parse_bit_display_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5239 {
5240 	/*
5241 	 * Parses the flat panel table segment that the bit entry points to.
5242 	 * Starting at bitentry->offset:
5243 	 *
5244 	 * offset + 0  (16 bits): ??? table pointer - seems to have 18 byte
5245 	 * records beginning with a freq.
5246 	 * offset + 2  (16 bits): mode table pointer
5247 	 */
5248 
5249 	if (bitentry->length != 4) {
5250 		NV_ERROR(dev, "Do not understand BIT display table\n");
5251 		return -EINVAL;
5252 	}
5253 
5254 	bios->fp.fptablepointer = ROM16(bios->data[bitentry->offset + 2]);
5255 
5256 	return 0;
5257 }
5258 
parse_bit_init_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5259 static int parse_bit_init_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5260 {
5261 	/*
5262 	 * Parses the init table segment that the bit entry points to.
5263 	 *
5264 	 * See parse_script_table_pointers for layout
5265 	 */
5266 
5267 	if (bitentry->length < 14) {
5268 		NV_ERROR(dev, "Do not understand init table\n");
5269 		return -EINVAL;
5270 	}
5271 
5272 	parse_script_table_pointers(bios, bitentry->offset);
5273 
5274 	if (bitentry->length >= 16)
5275 		bios->some_script_ptr = ROM16(bios->data[bitentry->offset + 14]);
5276 	if (bitentry->length >= 18)
5277 		bios->init96_tbl_ptr = ROM16(bios->data[bitentry->offset + 16]);
5278 
5279 	return 0;
5280 }
5281 
parse_bit_i_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5282 static int parse_bit_i_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5283 {
5284 	/*
5285 	 * BIT 'i' (info?) table
5286 	 *
5287 	 * offset + 0  (32 bits): BIOS version dword (as in B table)
5288 	 * offset + 5  (8  bits): BIOS feature byte (same as for BMP?)
5289 	 * offset + 13 (16 bits): pointer to table containing DAC load
5290 	 * detection comparison values
5291 	 *
5292 	 * There's other things in the table, purpose unknown
5293 	 */
5294 
5295 	uint16_t daccmpoffset;
5296 	uint8_t dacver, dacheaderlen;
5297 
5298 	if (bitentry->length < 6) {
5299 		NV_ERROR(dev, "BIT i table too short for needed information\n");
5300 		return -EINVAL;
5301 	}
5302 
5303 	parse_bios_version(dev, bios, bitentry->offset);
5304 
5305 	/*
5306 	 * bit 4 seems to indicate a mobile bios (doesn't suffer from BMP's
5307 	 * Quadro identity crisis), other bits possibly as for BMP feature byte
5308 	 */
5309 	bios->feature_byte = bios->data[bitentry->offset + 5];
5310 	bios->is_mobile = bios->feature_byte & FEATURE_MOBILE;
5311 
5312 	if (bitentry->length < 15) {
5313 		NV_WARN(dev, "BIT i table not long enough for DAC load "
5314 			       "detection comparison table\n");
5315 		return -EINVAL;
5316 	}
5317 
5318 	daccmpoffset = ROM16(bios->data[bitentry->offset + 13]);
5319 
5320 	/* doesn't exist on g80 */
5321 	if (!daccmpoffset)
5322 		return 0;
5323 
5324 	/*
5325 	 * The first value in the table, following the header, is the
5326 	 * comparison value, the second entry is a comparison value for
5327 	 * TV load detection.
5328 	 */
5329 
5330 	dacver = bios->data[daccmpoffset];
5331 	dacheaderlen = bios->data[daccmpoffset + 1];
5332 
5333 	if (dacver != 0x00 && dacver != 0x10) {
5334 		NV_WARN(dev, "DAC load detection comparison table version "
5335 			       "%d.%d not known\n", dacver >> 4, dacver & 0xf);
5336 		return -ENOSYS;
5337 	}
5338 
5339 	bios->dactestval = ROM32(bios->data[daccmpoffset + dacheaderlen]);
5340 	bios->tvdactestval = ROM32(bios->data[daccmpoffset + dacheaderlen + 4]);
5341 
5342 	return 0;
5343 }
5344 
parse_bit_lvds_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5345 static int parse_bit_lvds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5346 {
5347 	/*
5348 	 * Parses the LVDS table segment that the bit entry points to.
5349 	 * Starting at bitentry->offset:
5350 	 *
5351 	 * offset + 0  (16 bits): LVDS strap xlate table pointer
5352 	 */
5353 
5354 	if (bitentry->length != 2) {
5355 		NV_ERROR(dev, "Do not understand BIT LVDS table\n");
5356 		return -EINVAL;
5357 	}
5358 
5359 	/*
5360 	 * No idea if it's still called the LVDS manufacturer table, but
5361 	 * the concept's close enough.
5362 	 */
5363 	bios->fp.lvdsmanufacturerpointer = ROM16(bios->data[bitentry->offset]);
5364 
5365 	return 0;
5366 }
5367 
5368 static int
parse_bit_M_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5369 parse_bit_M_tbl_entry(struct drm_device *dev, struct nvbios *bios,
5370 		      struct bit_entry *bitentry)
5371 {
5372 	/*
5373 	 * offset + 2  (8  bits): number of options in an
5374 	 * 	INIT_RAM_RESTRICT_ZM_REG_GROUP opcode option set
5375 	 * offset + 3  (16 bits): pointer to strap xlate table for RAM
5376 	 * 	restrict option selection
5377 	 *
5378 	 * There's a bunch of bits in this table other than the RAM restrict
5379 	 * stuff that we don't use - their use currently unknown
5380 	 */
5381 
5382 	/*
5383 	 * Older bios versions don't have a sufficiently long table for
5384 	 * what we want
5385 	 */
5386 	if (bitentry->length < 0x5)
5387 		return 0;
5388 
5389 	if (bitentry->version < 2) {
5390 		bios->ram_restrict_group_count = bios->data[bitentry->offset + 2];
5391 		bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 3]);
5392 	} else {
5393 		bios->ram_restrict_group_count = bios->data[bitentry->offset + 0];
5394 		bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 1]);
5395 	}
5396 
5397 	return 0;
5398 }
5399 
parse_bit_tmds_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5400 static int parse_bit_tmds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5401 {
5402 	/*
5403 	 * Parses the pointer to the TMDS table
5404 	 *
5405 	 * Starting at bitentry->offset:
5406 	 *
5407 	 * offset + 0  (16 bits): TMDS table pointer
5408 	 *
5409 	 * The TMDS table is typically found just before the DCB table, with a
5410 	 * characteristic signature of 0x11,0x13 (1.1 being version, 0x13 being
5411 	 * length?)
5412 	 *
5413 	 * At offset +7 is a pointer to a script, which I don't know how to
5414 	 * run yet.
5415 	 * At offset +9 is a pointer to another script, likewise
5416 	 * Offset +11 has a pointer to a table where the first word is a pxclk
5417 	 * frequency and the second word a pointer to a script, which should be
5418 	 * run if the comparison pxclk frequency is less than the pxclk desired.
5419 	 * This repeats for decreasing comparison frequencies
5420 	 * Offset +13 has a pointer to a similar table
5421 	 * The selection of table (and possibly +7/+9 script) is dictated by
5422 	 * "or" from the DCB.
5423 	 */
5424 
5425 	uint16_t tmdstableptr, script1, script2;
5426 
5427 	if (bitentry->length != 2) {
5428 		NV_ERROR(dev, "Do not understand BIT TMDS table\n");
5429 		return -EINVAL;
5430 	}
5431 
5432 	tmdstableptr = ROM16(bios->data[bitentry->offset]);
5433 	if (!tmdstableptr) {
5434 		NV_ERROR(dev, "Pointer to TMDS table invalid\n");
5435 		return -EINVAL;
5436 	}
5437 
5438 	NV_INFO(dev, "TMDS table version %d.%d\n",
5439 		bios->data[tmdstableptr] >> 4, bios->data[tmdstableptr] & 0xf);
5440 
5441 	/* nv50+ has v2.0, but we don't parse it atm */
5442 	if (bios->data[tmdstableptr] != 0x11)
5443 		return -ENOSYS;
5444 
5445 	/*
5446 	 * These two scripts are odd: they don't seem to get run even when
5447 	 * they are not stubbed.
5448 	 */
5449 	script1 = ROM16(bios->data[tmdstableptr + 7]);
5450 	script2 = ROM16(bios->data[tmdstableptr + 9]);
5451 	if (bios->data[script1] != 'q' || bios->data[script2] != 'q')
5452 		NV_WARN(dev, "TMDS table script pointers not stubbed\n");
5453 
5454 	bios->tmds.output0_script_ptr = ROM16(bios->data[tmdstableptr + 11]);
5455 	bios->tmds.output1_script_ptr = ROM16(bios->data[tmdstableptr + 13]);
5456 
5457 	return 0;
5458 }
5459 
5460 static int
parse_bit_U_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5461 parse_bit_U_tbl_entry(struct drm_device *dev, struct nvbios *bios,
5462 		      struct bit_entry *bitentry)
5463 {
5464 	/*
5465 	 * Parses the pointer to the G80 output script tables
5466 	 *
5467 	 * Starting at bitentry->offset:
5468 	 *
5469 	 * offset + 0  (16 bits): output script table pointer
5470 	 */
5471 
5472 	uint16_t outputscripttableptr;
5473 
5474 	if (bitentry->length != 3) {
5475 		NV_ERROR(dev, "Do not understand BIT U table\n");
5476 		return -EINVAL;
5477 	}
5478 
5479 	outputscripttableptr = ROM16(bios->data[bitentry->offset]);
5480 	bios->display.script_table_ptr = outputscripttableptr;
5481 	return 0;
5482 }
5483 
5484 static int
parse_bit_displayport_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5485 parse_bit_displayport_tbl_entry(struct drm_device *dev, struct nvbios *bios,
5486 				struct bit_entry *bitentry)
5487 {
5488 	bios->display.dp_table_ptr = ROM16(bios->data[bitentry->offset]);
5489 	return 0;
5490 }
5491 
5492 struct bit_table {
5493 	const char id;
5494 	int (* const parse_fn)(struct drm_device *, struct nvbios *, struct bit_entry *);
5495 };
5496 
5497 #define BIT_TABLE(id, funcid) ((struct bit_table){ id, parse_bit_##funcid##_tbl_entry })
5498 
5499 int
bit_table(struct drm_device * dev,u8 id,struct bit_entry * bit)5500 bit_table(struct drm_device *dev, u8 id, struct bit_entry *bit)
5501 {
5502 	struct drm_nouveau_private *dev_priv = dev->dev_private;
5503 	struct nvbios *bios = &dev_priv->vbios;
5504 	u8 entries, *entry;
5505 
5506 	entries = bios->data[bios->offset + 10];
5507 	entry   = &bios->data[bios->offset + 12];
5508 	while (entries--) {
5509 		if (entry[0] == id) {
5510 			bit->id = entry[0];
5511 			bit->version = entry[1];
5512 			bit->length = ROM16(entry[2]);
5513 			bit->offset = ROM16(entry[4]);
5514 			bit->data = ROMPTR(bios, entry[4]);
5515 			return 0;
5516 		}
5517 
5518 		entry += bios->data[bios->offset + 9];
5519 	}
5520 
5521 	return -ENOENT;
5522 }
5523 
5524 static int
parse_bit_table(struct nvbios * bios,const uint16_t bitoffset,struct bit_table * table)5525 parse_bit_table(struct nvbios *bios, const uint16_t bitoffset,
5526 		struct bit_table *table)
5527 {
5528 	struct drm_device *dev = bios->dev;
5529 	struct bit_entry bitentry;
5530 
5531 	if (bit_table(dev, table->id, &bitentry) == 0)
5532 		return table->parse_fn(dev, bios, &bitentry);
5533 
5534 	NV_INFO(dev, "BIT table '%c' not found\n", table->id);
5535 	return -ENOSYS;
5536 }
5537 
5538 static int
parse_bit_structure(struct nvbios * bios,const uint16_t bitoffset)5539 parse_bit_structure(struct nvbios *bios, const uint16_t bitoffset)
5540 {
5541 	int ret;
5542 
5543 	/*
5544 	 * The only restriction on parsing order currently is having 'i' first
5545 	 * for use of bios->*_version or bios->feature_byte while parsing;
5546 	 * functions shouldn't be actually *doing* anything apart from pulling
5547 	 * data from the image into the bios struct, thus no interdependencies
5548 	 */
5549 	ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('i', i));
5550 	if (ret) /* info? */
5551 		return ret;
5552 	if (bios->major_version >= 0x60) /* g80+ */
5553 		parse_bit_table(bios, bitoffset, &BIT_TABLE('A', A));
5554 	ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('C', C));
5555 	if (ret)
5556 		return ret;
5557 	parse_bit_table(bios, bitoffset, &BIT_TABLE('D', display));
5558 	ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('I', init));
5559 	if (ret)
5560 		return ret;
5561 	parse_bit_table(bios, bitoffset, &BIT_TABLE('M', M)); /* memory? */
5562 	parse_bit_table(bios, bitoffset, &BIT_TABLE('L', lvds));
5563 	parse_bit_table(bios, bitoffset, &BIT_TABLE('T', tmds));
5564 	parse_bit_table(bios, bitoffset, &BIT_TABLE('U', U));
5565 	parse_bit_table(bios, bitoffset, &BIT_TABLE('d', displayport));
5566 
5567 	return 0;
5568 }
5569 
parse_bmp_structure(struct drm_device * dev,struct nvbios * bios,unsigned int offset)5570 static int parse_bmp_structure(struct drm_device *dev, struct nvbios *bios, unsigned int offset)
5571 {
5572 	/*
5573 	 * Parses the BMP structure for useful things, but does not act on them
5574 	 *
5575 	 * offset +   5: BMP major version
5576 	 * offset +   6: BMP minor version
5577 	 * offset +   9: BMP feature byte
5578 	 * offset +  10: BCD encoded BIOS version
5579 	 *
5580 	 * offset +  18: init script table pointer (for bios versions < 5.10h)
5581 	 * offset +  20: extra init script table pointer (for bios
5582 	 * versions < 5.10h)
5583 	 *
5584 	 * offset +  24: memory init table pointer (used on early bios versions)
5585 	 * offset +  26: SDR memory sequencing setup data table
5586 	 * offset +  28: DDR memory sequencing setup data table
5587 	 *
5588 	 * offset +  54: index of I2C CRTC pair to use for CRT output
5589 	 * offset +  55: index of I2C CRTC pair to use for TV output
5590 	 * offset +  56: index of I2C CRTC pair to use for flat panel output
5591 	 * offset +  58: write CRTC index for I2C pair 0
5592 	 * offset +  59: read CRTC index for I2C pair 0
5593 	 * offset +  60: write CRTC index for I2C pair 1
5594 	 * offset +  61: read CRTC index for I2C pair 1
5595 	 *
5596 	 * offset +  67: maximum internal PLL frequency (single stage PLL)
5597 	 * offset +  71: minimum internal PLL frequency (single stage PLL)
5598 	 *
5599 	 * offset +  75: script table pointers, as described in
5600 	 * parse_script_table_pointers
5601 	 *
5602 	 * offset +  89: TMDS single link output A table pointer
5603 	 * offset +  91: TMDS single link output B table pointer
5604 	 * offset +  95: LVDS single link output A table pointer
5605 	 * offset + 105: flat panel timings table pointer
5606 	 * offset + 107: flat panel strapping translation table pointer
5607 	 * offset + 117: LVDS manufacturer panel config table pointer
5608 	 * offset + 119: LVDS manufacturer strapping translation table pointer
5609 	 *
5610 	 * offset + 142: PLL limits table pointer
5611 	 *
5612 	 * offset + 156: minimum pixel clock for LVDS dual link
5613 	 */
5614 
5615 	uint8_t *bmp = &bios->data[offset], bmp_version_major, bmp_version_minor;
5616 	uint16_t bmplength;
5617 	uint16_t legacy_scripts_offset, legacy_i2c_offset;
5618 
5619 	/* load needed defaults in case we can't parse this info */
5620 	bios->dcb.i2c[0].write = NV_CIO_CRE_DDC_WR__INDEX;
5621 	bios->dcb.i2c[0].read = NV_CIO_CRE_DDC_STATUS__INDEX;
5622 	bios->dcb.i2c[1].write = NV_CIO_CRE_DDC0_WR__INDEX;
5623 	bios->dcb.i2c[1].read = NV_CIO_CRE_DDC0_STATUS__INDEX;
5624 	bios->digital_min_front_porch = 0x4b;
5625 	bios->fmaxvco = 256000;
5626 	bios->fminvco = 128000;
5627 	bios->fp.duallink_transition_clk = 90000;
5628 
5629 	bmp_version_major = bmp[5];
5630 	bmp_version_minor = bmp[6];
5631 
5632 	NV_TRACE(dev, "BMP version %d.%d\n",
5633 		 bmp_version_major, bmp_version_minor);
5634 
5635 	/*
5636 	 * Make sure that 0x36 is blank and can't be mistaken for a DCB
5637 	 * pointer on early versions
5638 	 */
5639 	if (bmp_version_major < 5)
5640 		*(uint16_t *)&bios->data[0x36] = 0;
5641 
5642 	/*
5643 	 * Seems that the minor version was 1 for all major versions prior
5644 	 * to 5. Version 6 could theoretically exist, but I suspect BIT
5645 	 * happened instead.
5646 	 */
5647 	if ((bmp_version_major < 5 && bmp_version_minor != 1) || bmp_version_major > 5) {
5648 		NV_ERROR(dev, "You have an unsupported BMP version. "
5649 				"Please send in your bios\n");
5650 		return -ENOSYS;
5651 	}
5652 
5653 	if (bmp_version_major == 0)
5654 		/* nothing that's currently useful in this version */
5655 		return 0;
5656 	else if (bmp_version_major == 1)
5657 		bmplength = 44; /* exact for 1.01 */
5658 	else if (bmp_version_major == 2)
5659 		bmplength = 48; /* exact for 2.01 */
5660 	else if (bmp_version_major == 3)
5661 		bmplength = 54;
5662 		/* guessed - mem init tables added in this version */
5663 	else if (bmp_version_major == 4 || bmp_version_minor < 0x1)
5664 		/* don't know if 5.0 exists... */
5665 		bmplength = 62;
5666 		/* guessed - BMP I2C indices added in version 4*/
5667 	else if (bmp_version_minor < 0x6)
5668 		bmplength = 67; /* exact for 5.01 */
5669 	else if (bmp_version_minor < 0x10)
5670 		bmplength = 75; /* exact for 5.06 */
5671 	else if (bmp_version_minor == 0x10)
5672 		bmplength = 89; /* exact for 5.10h */
5673 	else if (bmp_version_minor < 0x14)
5674 		bmplength = 118; /* exact for 5.11h */
5675 	else if (bmp_version_minor < 0x24)
5676 		/*
5677 		 * Not sure of version where pll limits came in;
5678 		 * certainly exist by 0x24 though.
5679 		 */
5680 		/* length not exact: this is long enough to get lvds members */
5681 		bmplength = 123;
5682 	else if (bmp_version_minor < 0x27)
5683 		/*
5684 		 * Length not exact: this is long enough to get pll limit
5685 		 * member
5686 		 */
5687 		bmplength = 144;
5688 	else
5689 		/*
5690 		 * Length not exact: this is long enough to get dual link
5691 		 * transition clock.
5692 		 */
5693 		bmplength = 158;
5694 
5695 	/* checksum */
5696 	if (nv_cksum(bmp, 8)) {
5697 		NV_ERROR(dev, "Bad BMP checksum\n");
5698 		return -EINVAL;
5699 	}
5700 
5701 	/*
5702 	 * Bit 4 seems to indicate either a mobile bios or a quadro card --
5703 	 * mobile behaviour consistent (nv11+), quadro only seen nv18gl-nv36gl
5704 	 * (not nv10gl), bit 5 that the flat panel tables are present, and
5705 	 * bit 6 a tv bios.
5706 	 */
5707 	bios->feature_byte = bmp[9];
5708 
5709 	parse_bios_version(dev, bios, offset + 10);
5710 
5711 	if (bmp_version_major < 5 || bmp_version_minor < 0x10)
5712 		bios->old_style_init = true;
5713 	legacy_scripts_offset = 18;
5714 	if (bmp_version_major < 2)
5715 		legacy_scripts_offset -= 4;
5716 	bios->init_script_tbls_ptr = ROM16(bmp[legacy_scripts_offset]);
5717 	bios->extra_init_script_tbl_ptr = ROM16(bmp[legacy_scripts_offset + 2]);
5718 
5719 	if (bmp_version_major > 2) {	/* appears in BMP 3 */
5720 		bios->legacy.mem_init_tbl_ptr = ROM16(bmp[24]);
5721 		bios->legacy.sdr_seq_tbl_ptr = ROM16(bmp[26]);
5722 		bios->legacy.ddr_seq_tbl_ptr = ROM16(bmp[28]);
5723 	}
5724 
5725 	legacy_i2c_offset = 0x48;	/* BMP version 2 & 3 */
5726 	if (bmplength > 61)
5727 		legacy_i2c_offset = offset + 54;
5728 	bios->legacy.i2c_indices.crt = bios->data[legacy_i2c_offset];
5729 	bios->legacy.i2c_indices.tv = bios->data[legacy_i2c_offset + 1];
5730 	bios->legacy.i2c_indices.panel = bios->data[legacy_i2c_offset + 2];
5731 	if (bios->data[legacy_i2c_offset + 4])
5732 		bios->dcb.i2c[0].write = bios->data[legacy_i2c_offset + 4];
5733 	if (bios->data[legacy_i2c_offset + 5])
5734 		bios->dcb.i2c[0].read = bios->data[legacy_i2c_offset + 5];
5735 	if (bios->data[legacy_i2c_offset + 6])
5736 		bios->dcb.i2c[1].write = bios->data[legacy_i2c_offset + 6];
5737 	if (bios->data[legacy_i2c_offset + 7])
5738 		bios->dcb.i2c[1].read = bios->data[legacy_i2c_offset + 7];
5739 
5740 	if (bmplength > 74) {
5741 		bios->fmaxvco = ROM32(bmp[67]);
5742 		bios->fminvco = ROM32(bmp[71]);
5743 	}
5744 	if (bmplength > 88)
5745 		parse_script_table_pointers(bios, offset + 75);
5746 	if (bmplength > 94) {
5747 		bios->tmds.output0_script_ptr = ROM16(bmp[89]);
5748 		bios->tmds.output1_script_ptr = ROM16(bmp[91]);
5749 		/*
5750 		 * Never observed in use with lvds scripts, but is reused for
5751 		 * 18/24 bit panel interface default for EDID equipped panels
5752 		 * (if_is_24bit not set directly to avoid any oscillation).
5753 		 */
5754 		bios->legacy.lvds_single_a_script_ptr = ROM16(bmp[95]);
5755 	}
5756 	if (bmplength > 108) {
5757 		bios->fp.fptablepointer = ROM16(bmp[105]);
5758 		bios->fp.fpxlatetableptr = ROM16(bmp[107]);
5759 		bios->fp.xlatwidth = 1;
5760 	}
5761 	if (bmplength > 120) {
5762 		bios->fp.lvdsmanufacturerpointer = ROM16(bmp[117]);
5763 		bios->fp.fpxlatemanufacturertableptr = ROM16(bmp[119]);
5764 	}
5765 	if (bmplength > 143)
5766 		bios->pll_limit_tbl_ptr = ROM16(bmp[142]);
5767 
5768 	if (bmplength > 157)
5769 		bios->fp.duallink_transition_clk = ROM16(bmp[156]) * 10;
5770 
5771 	return 0;
5772 }
5773 
findstr(uint8_t * data,int n,const uint8_t * str,int len)5774 static uint16_t findstr(uint8_t *data, int n, const uint8_t *str, int len)
5775 {
5776 	int i, j;
5777 
5778 	for (i = 0; i <= (n - len); i++) {
5779 		for (j = 0; j < len; j++)
5780 			if (data[i + j] != str[j])
5781 				break;
5782 		if (j == len)
5783 			return i;
5784 	}
5785 
5786 	return 0;
5787 }
5788 
5789 static struct dcb_gpio_entry *
new_gpio_entry(struct nvbios * bios)5790 new_gpio_entry(struct nvbios *bios)
5791 {
5792 	struct drm_device *dev = bios->dev;
5793 	struct dcb_gpio_table *gpio = &bios->dcb.gpio;
5794 
5795 	if (gpio->entries >= DCB_MAX_NUM_GPIO_ENTRIES) {
5796 		NV_ERROR(dev, "exceeded maximum number of gpio entries!!\n");
5797 		return NULL;
5798 	}
5799 
5800 	return &gpio->entry[gpio->entries++];
5801 }
5802 
5803 struct dcb_gpio_entry *
nouveau_bios_gpio_entry(struct drm_device * dev,enum dcb_gpio_tag tag)5804 nouveau_bios_gpio_entry(struct drm_device *dev, enum dcb_gpio_tag tag)
5805 {
5806 	struct drm_nouveau_private *dev_priv = dev->dev_private;
5807 	struct nvbios *bios = &dev_priv->vbios;
5808 	int i;
5809 
5810 	for (i = 0; i < bios->dcb.gpio.entries; i++) {
5811 		if (bios->dcb.gpio.entry[i].tag != tag)
5812 			continue;
5813 
5814 		return &bios->dcb.gpio.entry[i];
5815 	}
5816 
5817 	return NULL;
5818 }
5819 
5820 static void
parse_dcb_gpio_table(struct nvbios * bios)5821 parse_dcb_gpio_table(struct nvbios *bios)
5822 {
5823 	struct drm_device *dev = bios->dev;
5824 	struct dcb_gpio_entry *e;
5825 	u8 headerlen, entries, recordlen;
5826 	u8 *dcb, *gpio = NULL, *entry;
5827 	int i;
5828 
5829 	dcb = ROMPTR(bios, bios->data[0x36]);
5830 	if (dcb[0] >= 0x30) {
5831 		gpio = ROMPTR(bios, dcb[10]);
5832 		if (!gpio)
5833 			goto no_table;
5834 
5835 		headerlen = gpio[1];
5836 		entries   = gpio[2];
5837 		recordlen = gpio[3];
5838 	} else
5839 	if (dcb[0] >= 0x22 && dcb[-1] >= 0x13) {
5840 		gpio = ROMPTR(bios, dcb[-15]);
5841 		if (!gpio)
5842 			goto no_table;
5843 
5844 		headerlen = 3;
5845 		entries   = gpio[2];
5846 		recordlen = gpio[1];
5847 	} else
5848 	if (dcb[0] >= 0x22) {
5849 		/* No GPIO table present, parse the TVDAC GPIO data. */
5850 		uint8_t *tvdac_gpio = &dcb[-5];
5851 
5852 		if (tvdac_gpio[0] & 1) {
5853 			e = new_gpio_entry(bios);
5854 			e->tag = DCB_GPIO_TVDAC0;
5855 			e->line = tvdac_gpio[1] >> 4;
5856 			e->invert = tvdac_gpio[0] & 2;
5857 		}
5858 
5859 		goto no_table;
5860 	} else {
5861 		NV_DEBUG(dev, "no/unknown gpio table on DCB 0x%02x\n", dcb[0]);
5862 		goto no_table;
5863 	}
5864 
5865 	entry = gpio + headerlen;
5866 	for (i = 0; i < entries; i++, entry += recordlen) {
5867 		e = new_gpio_entry(bios);
5868 		if (!e)
5869 			break;
5870 
5871 		if (gpio[0] < 0x40) {
5872 			e->entry = ROM16(entry[0]);
5873 			e->tag = (e->entry & 0x07e0) >> 5;
5874 			if (e->tag == 0x3f) {
5875 				bios->dcb.gpio.entries--;
5876 				continue;
5877 			}
5878 
5879 			e->line = (e->entry & 0x001f);
5880 			e->invert = ((e->entry & 0xf800) >> 11) != 4;
5881 		} else {
5882 			e->entry = ROM32(entry[0]);
5883 			e->tag = (e->entry & 0x0000ff00) >> 8;
5884 			if (e->tag == 0xff) {
5885 				bios->dcb.gpio.entries--;
5886 				continue;
5887 			}
5888 
5889 			e->line = (e->entry & 0x0000001f) >> 0;
5890 			e->state_default = (e->entry & 0x01000000) >> 24;
5891 			e->state[0] = (e->entry & 0x18000000) >> 27;
5892 			e->state[1] = (e->entry & 0x60000000) >> 29;
5893 		}
5894 	}
5895 
5896 no_table:
5897 	/* Apple iMac G4 NV18 */
5898 	if (nv_match_device(dev, 0x0189, 0x10de, 0x0010)) {
5899 		e = new_gpio_entry(bios);
5900 		if (e) {
5901 			e->tag = DCB_GPIO_TVDAC0;
5902 			e->line = 4;
5903 		}
5904 	}
5905 }
5906 
5907 struct dcb_connector_table_entry *
nouveau_bios_connector_entry(struct drm_device * dev,int index)5908 nouveau_bios_connector_entry(struct drm_device *dev, int index)
5909 {
5910 	struct drm_nouveau_private *dev_priv = dev->dev_private;
5911 	struct nvbios *bios = &dev_priv->vbios;
5912 	struct dcb_connector_table_entry *cte;
5913 
5914 	if (index >= bios->dcb.connector.entries)
5915 		return NULL;
5916 
5917 	cte = &bios->dcb.connector.entry[index];
5918 	if (cte->type == 0xff)
5919 		return NULL;
5920 
5921 	return cte;
5922 }
5923 
5924 static enum dcb_connector_type
divine_connector_type(struct nvbios * bios,int index)5925 divine_connector_type(struct nvbios *bios, int index)
5926 {
5927 	struct dcb_table *dcb = &bios->dcb;
5928 	unsigned encoders = 0, type = DCB_CONNECTOR_NONE;
5929 	int i;
5930 
5931 	for (i = 0; i < dcb->entries; i++) {
5932 		if (dcb->entry[i].connector == index)
5933 			encoders |= (1 << dcb->entry[i].type);
5934 	}
5935 
5936 	if (encoders & (1 << OUTPUT_DP)) {
5937 		if (encoders & (1 << OUTPUT_TMDS))
5938 			type = DCB_CONNECTOR_DP;
5939 		else
5940 			type = DCB_CONNECTOR_eDP;
5941 	} else
5942 	if (encoders & (1 << OUTPUT_TMDS)) {
5943 		if (encoders & (1 << OUTPUT_ANALOG))
5944 			type = DCB_CONNECTOR_DVI_I;
5945 		else
5946 			type = DCB_CONNECTOR_DVI_D;
5947 	} else
5948 	if (encoders & (1 << OUTPUT_ANALOG)) {
5949 		type = DCB_CONNECTOR_VGA;
5950 	} else
5951 	if (encoders & (1 << OUTPUT_LVDS)) {
5952 		type = DCB_CONNECTOR_LVDS;
5953 	} else
5954 	if (encoders & (1 << OUTPUT_TV)) {
5955 		type = DCB_CONNECTOR_TV_0;
5956 	}
5957 
5958 	return type;
5959 }
5960 
5961 static void
apply_dcb_connector_quirks(struct nvbios * bios,int idx)5962 apply_dcb_connector_quirks(struct nvbios *bios, int idx)
5963 {
5964 	struct dcb_connector_table_entry *cte = &bios->dcb.connector.entry[idx];
5965 	struct drm_device *dev = bios->dev;
5966 
5967 	/* Gigabyte NX85T */
5968 	if (nv_match_device(dev, 0x0421, 0x1458, 0x344c)) {
5969 		if (cte->type == DCB_CONNECTOR_HDMI_1)
5970 			cte->type = DCB_CONNECTOR_DVI_I;
5971 	}
5972 }
5973 
5974 static const u8 hpd_gpio[16] = {
5975 	0xff, 0x07, 0x08, 0xff, 0xff, 0x51, 0x52, 0xff,
5976 	0xff, 0xff, 0xff, 0xff, 0xff, 0x5e, 0x5f, 0x60,
5977 };
5978 
5979 static void
parse_dcb_connector_table(struct nvbios * bios)5980 parse_dcb_connector_table(struct nvbios *bios)
5981 {
5982 	struct drm_device *dev = bios->dev;
5983 	struct dcb_connector_table *ct = &bios->dcb.connector;
5984 	struct dcb_connector_table_entry *cte;
5985 	uint8_t *conntab = &bios->data[bios->dcb.connector_table_ptr];
5986 	uint8_t *entry;
5987 	int i;
5988 
5989 	if (!bios->dcb.connector_table_ptr) {
5990 		NV_DEBUG_KMS(dev, "No DCB connector table present\n");
5991 		return;
5992 	}
5993 
5994 	NV_INFO(dev, "DCB connector table: VHER 0x%02x %d %d %d\n",
5995 		conntab[0], conntab[1], conntab[2], conntab[3]);
5996 	if ((conntab[0] != 0x30 && conntab[0] != 0x40) ||
5997 	    (conntab[3] != 2 && conntab[3] != 4)) {
5998 		NV_ERROR(dev, "  Unknown!  Please report.\n");
5999 		return;
6000 	}
6001 
6002 	ct->entries = conntab[2];
6003 
6004 	entry = conntab + conntab[1];
6005 	cte = &ct->entry[0];
6006 	for (i = 0; i < conntab[2]; i++, entry += conntab[3], cte++) {
6007 		cte->index = i;
6008 		if (conntab[3] == 2)
6009 			cte->entry = ROM16(entry[0]);
6010 		else
6011 			cte->entry = ROM32(entry[0]);
6012 
6013 		cte->type  = (cte->entry & 0x000000ff) >> 0;
6014 		cte->index2 = (cte->entry & 0x00000f00) >> 8;
6015 
6016 		cte->gpio_tag = ffs((cte->entry & 0x07033000) >> 12);
6017 		cte->gpio_tag = hpd_gpio[cte->gpio_tag];
6018 
6019 		if (cte->type == 0xff)
6020 			continue;
6021 
6022 		apply_dcb_connector_quirks(bios, i);
6023 
6024 		NV_INFO(dev, "  %d: 0x%08x: type 0x%02x idx %d tag 0x%02x\n",
6025 			i, cte->entry, cte->type, cte->index, cte->gpio_tag);
6026 
6027 		/* check for known types, fallback to guessing the type
6028 		 * from attached encoders if we hit an unknown.
6029 		 */
6030 		switch (cte->type) {
6031 		case DCB_CONNECTOR_VGA:
6032 		case DCB_CONNECTOR_TV_0:
6033 		case DCB_CONNECTOR_TV_1:
6034 		case DCB_CONNECTOR_TV_3:
6035 		case DCB_CONNECTOR_DVI_I:
6036 		case DCB_CONNECTOR_DVI_D:
6037 		case DCB_CONNECTOR_LVDS:
6038 		case DCB_CONNECTOR_DP:
6039 		case DCB_CONNECTOR_eDP:
6040 		case DCB_CONNECTOR_HDMI_0:
6041 		case DCB_CONNECTOR_HDMI_1:
6042 			break;
6043 		default:
6044 			cte->type = divine_connector_type(bios, cte->index);
6045 			NV_WARN(dev, "unknown type, using 0x%02x\n", cte->type);
6046 			break;
6047 		}
6048 
6049 		if (nouveau_override_conntype) {
6050 			int type = divine_connector_type(bios, cte->index);
6051 			if (type != cte->type)
6052 				NV_WARN(dev, " -> type 0x%02x\n", cte->type);
6053 		}
6054 
6055 	}
6056 }
6057 
new_dcb_entry(struct dcb_table * dcb)6058 static struct dcb_entry *new_dcb_entry(struct dcb_table *dcb)
6059 {
6060 	struct dcb_entry *entry = &dcb->entry[dcb->entries];
6061 
6062 	memset(entry, 0, sizeof(struct dcb_entry));
6063 	entry->index = dcb->entries++;
6064 
6065 	return entry;
6066 }
6067 
fabricate_dcb_output(struct dcb_table * dcb,int type,int i2c,int heads,int or)6068 static void fabricate_dcb_output(struct dcb_table *dcb, int type, int i2c,
6069 				 int heads, int or)
6070 {
6071 	struct dcb_entry *entry = new_dcb_entry(dcb);
6072 
6073 	entry->type = type;
6074 	entry->i2c_index = i2c;
6075 	entry->heads = heads;
6076 	if (type != OUTPUT_ANALOG)
6077 		entry->location = !DCB_LOC_ON_CHIP; /* ie OFF CHIP */
6078 	entry->or = or;
6079 }
6080 
6081 static bool
parse_dcb20_entry(struct drm_device * dev,struct dcb_table * dcb,uint32_t conn,uint32_t conf,struct dcb_entry * entry)6082 parse_dcb20_entry(struct drm_device *dev, struct dcb_table *dcb,
6083 		  uint32_t conn, uint32_t conf, struct dcb_entry *entry)
6084 {
6085 	entry->type = conn & 0xf;
6086 	entry->i2c_index = (conn >> 4) & 0xf;
6087 	entry->heads = (conn >> 8) & 0xf;
6088 	if (dcb->version >= 0x40)
6089 		entry->connector = (conn >> 12) & 0xf;
6090 	entry->bus = (conn >> 16) & 0xf;
6091 	entry->location = (conn >> 20) & 0x3;
6092 	entry->or = (conn >> 24) & 0xf;
6093 
6094 	switch (entry->type) {
6095 	case OUTPUT_ANALOG:
6096 		/*
6097 		 * Although the rest of a CRT conf dword is usually
6098 		 * zeros, mac biosen have stuff there so we must mask
6099 		 */
6100 		entry->crtconf.maxfreq = (dcb->version < 0x30) ?
6101 					 (conf & 0xffff) * 10 :
6102 					 (conf & 0xff) * 10000;
6103 		break;
6104 	case OUTPUT_LVDS:
6105 		{
6106 		uint32_t mask;
6107 		if (conf & 0x1)
6108 			entry->lvdsconf.use_straps_for_mode = true;
6109 		if (dcb->version < 0x22) {
6110 			mask = ~0xd;
6111 			/*
6112 			 * The laptop in bug 14567 lies and claims to not use
6113 			 * straps when it does, so assume all DCB 2.0 laptops
6114 			 * use straps, until a broken EDID using one is produced
6115 			 */
6116 			entry->lvdsconf.use_straps_for_mode = true;
6117 			/*
6118 			 * Both 0x4 and 0x8 show up in v2.0 tables; assume they
6119 			 * mean the same thing (probably wrong, but might work)
6120 			 */
6121 			if (conf & 0x4 || conf & 0x8)
6122 				entry->lvdsconf.use_power_scripts = true;
6123 		} else {
6124 			mask = ~0x7;
6125 			if (conf & 0x2)
6126 				entry->lvdsconf.use_acpi_for_edid = true;
6127 			if (conf & 0x4)
6128 				entry->lvdsconf.use_power_scripts = true;
6129 			entry->lvdsconf.sor.link = (conf & 0x00000030) >> 4;
6130 		}
6131 		if (conf & mask) {
6132 			/*
6133 			 * Until we even try to use these on G8x, it's
6134 			 * useless reporting unknown bits.  They all are.
6135 			 */
6136 			if (dcb->version >= 0x40)
6137 				break;
6138 
6139 			NV_ERROR(dev, "Unknown LVDS configuration bits, "
6140 				      "please report\n");
6141 		}
6142 		break;
6143 		}
6144 	case OUTPUT_TV:
6145 	{
6146 		if (dcb->version >= 0x30)
6147 			entry->tvconf.has_component_output = conf & (0x8 << 4);
6148 		else
6149 			entry->tvconf.has_component_output = false;
6150 
6151 		break;
6152 	}
6153 	case OUTPUT_DP:
6154 		entry->dpconf.sor.link = (conf & 0x00000030) >> 4;
6155 		entry->dpconf.link_bw = (conf & 0x00e00000) >> 21;
6156 		switch ((conf & 0x0f000000) >> 24) {
6157 		case 0xf:
6158 			entry->dpconf.link_nr = 4;
6159 			break;
6160 		case 0x3:
6161 			entry->dpconf.link_nr = 2;
6162 			break;
6163 		default:
6164 			entry->dpconf.link_nr = 1;
6165 			break;
6166 		}
6167 		break;
6168 	case OUTPUT_TMDS:
6169 		if (dcb->version >= 0x40)
6170 			entry->tmdsconf.sor.link = (conf & 0x00000030) >> 4;
6171 		else if (dcb->version >= 0x30)
6172 			entry->tmdsconf.slave_addr = (conf & 0x00000700) >> 8;
6173 		else if (dcb->version >= 0x22)
6174 			entry->tmdsconf.slave_addr = (conf & 0x00000070) >> 4;
6175 
6176 		break;
6177 	case OUTPUT_EOL:
6178 		/* weird g80 mobile type that "nv" treats as a terminator */
6179 		dcb->entries--;
6180 		return false;
6181 	default:
6182 		break;
6183 	}
6184 
6185 	if (dcb->version < 0x40) {
6186 		/* Normal entries consist of a single bit, but dual link has
6187 		 * the next most significant bit set too
6188 		 */
6189 		entry->duallink_possible =
6190 			((1 << (ffs(entry->or) - 1)) * 3 == entry->or);
6191 	} else {
6192 		entry->duallink_possible = (entry->sorconf.link == 3);
6193 	}
6194 
6195 	/* unsure what DCB version introduces this, 3.0? */
6196 	if (conf & 0x100000)
6197 		entry->i2c_upper_default = true;
6198 
6199 	return true;
6200 }
6201 
6202 static bool
parse_dcb15_entry(struct drm_device * dev,struct dcb_table * dcb,uint32_t conn,uint32_t conf,struct dcb_entry * entry)6203 parse_dcb15_entry(struct drm_device *dev, struct dcb_table *dcb,
6204 		  uint32_t conn, uint32_t conf, struct dcb_entry *entry)
6205 {
6206 	switch (conn & 0x0000000f) {
6207 	case 0:
6208 		entry->type = OUTPUT_ANALOG;
6209 		break;
6210 	case 1:
6211 		entry->type = OUTPUT_TV;
6212 		break;
6213 	case 2:
6214 	case 4:
6215 		if (conn & 0x10)
6216 			entry->type = OUTPUT_LVDS;
6217 		else
6218 			entry->type = OUTPUT_TMDS;
6219 		break;
6220 	case 3:
6221 		entry->type = OUTPUT_LVDS;
6222 		break;
6223 	default:
6224 		NV_ERROR(dev, "Unknown DCB type %d\n", conn & 0x0000000f);
6225 		return false;
6226 	}
6227 
6228 	entry->i2c_index = (conn & 0x0003c000) >> 14;
6229 	entry->heads = ((conn & 0x001c0000) >> 18) + 1;
6230 	entry->or = entry->heads; /* same as heads, hopefully safe enough */
6231 	entry->location = (conn & 0x01e00000) >> 21;
6232 	entry->bus = (conn & 0x0e000000) >> 25;
6233 	entry->duallink_possible = false;
6234 
6235 	switch (entry->type) {
6236 	case OUTPUT_ANALOG:
6237 		entry->crtconf.maxfreq = (conf & 0xffff) * 10;
6238 		break;
6239 	case OUTPUT_TV:
6240 		entry->tvconf.has_component_output = false;
6241 		break;
6242 	case OUTPUT_LVDS:
6243 		if ((conn & 0x00003f00) >> 8 != 0x10)
6244 			entry->lvdsconf.use_straps_for_mode = true;
6245 		entry->lvdsconf.use_power_scripts = true;
6246 		break;
6247 	default:
6248 		break;
6249 	}
6250 
6251 	return true;
6252 }
6253 
parse_dcb_entry(struct drm_device * dev,struct dcb_table * dcb,uint32_t conn,uint32_t conf)6254 static bool parse_dcb_entry(struct drm_device *dev, struct dcb_table *dcb,
6255 			    uint32_t conn, uint32_t conf)
6256 {
6257 	struct dcb_entry *entry = new_dcb_entry(dcb);
6258 	bool ret;
6259 
6260 	if (dcb->version >= 0x20)
6261 		ret = parse_dcb20_entry(dev, dcb, conn, conf, entry);
6262 	else
6263 		ret = parse_dcb15_entry(dev, dcb, conn, conf, entry);
6264 	if (!ret)
6265 		return ret;
6266 
6267 	read_dcb_i2c_entry(dev, dcb->version, dcb->i2c_table,
6268 			   entry->i2c_index, &dcb->i2c[entry->i2c_index]);
6269 
6270 	return true;
6271 }
6272 
6273 static
merge_like_dcb_entries(struct drm_device * dev,struct dcb_table * dcb)6274 void merge_like_dcb_entries(struct drm_device *dev, struct dcb_table *dcb)
6275 {
6276 	/*
6277 	 * DCB v2.0 lists each output combination separately.
6278 	 * Here we merge compatible entries to have fewer outputs, with
6279 	 * more options
6280 	 */
6281 
6282 	int i, newentries = 0;
6283 
6284 	for (i = 0; i < dcb->entries; i++) {
6285 		struct dcb_entry *ient = &dcb->entry[i];
6286 		int j;
6287 
6288 		for (j = i + 1; j < dcb->entries; j++) {
6289 			struct dcb_entry *jent = &dcb->entry[j];
6290 
6291 			if (jent->type == 100) /* already merged entry */
6292 				continue;
6293 
6294 			/* merge heads field when all other fields the same */
6295 			if (jent->i2c_index == ient->i2c_index &&
6296 			    jent->type == ient->type &&
6297 			    jent->location == ient->location &&
6298 			    jent->or == ient->or) {
6299 				NV_TRACE(dev, "Merging DCB entries %d and %d\n",
6300 					 i, j);
6301 				ient->heads |= jent->heads;
6302 				jent->type = 100; /* dummy value */
6303 			}
6304 		}
6305 	}
6306 
6307 	/* Compact entries merged into others out of dcb */
6308 	for (i = 0; i < dcb->entries; i++) {
6309 		if (dcb->entry[i].type == 100)
6310 			continue;
6311 
6312 		if (newentries != i) {
6313 			dcb->entry[newentries] = dcb->entry[i];
6314 			dcb->entry[newentries].index = newentries;
6315 		}
6316 		newentries++;
6317 	}
6318 
6319 	dcb->entries = newentries;
6320 }
6321 
6322 static bool
apply_dcb_encoder_quirks(struct drm_device * dev,int idx,u32 * conn,u32 * conf)6323 apply_dcb_encoder_quirks(struct drm_device *dev, int idx, u32 *conn, u32 *conf)
6324 {
6325 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6326 	struct dcb_table *dcb = &dev_priv->vbios.dcb;
6327 
6328 	/* Dell Precision M6300
6329 	 *   DCB entry 2: 02025312 00000010
6330 	 *   DCB entry 3: 02026312 00000020
6331 	 *
6332 	 * Identical, except apparently a different connector on a
6333 	 * different SOR link.  Not a clue how we're supposed to know
6334 	 * which one is in use if it even shares an i2c line...
6335 	 *
6336 	 * Ignore the connector on the second SOR link to prevent
6337 	 * nasty problems until this is sorted (assuming it's not a
6338 	 * VBIOS bug).
6339 	 */
6340 	if (nv_match_device(dev, 0x040d, 0x1028, 0x019b)) {
6341 		if (*conn == 0x02026312 && *conf == 0x00000020)
6342 			return false;
6343 	}
6344 
6345 	/* GeForce3 Ti 200
6346 	 *
6347 	 * DCB reports an LVDS output that should be TMDS:
6348 	 *   DCB entry 1: f2005014 ffffffff
6349 	 */
6350 	if (nv_match_device(dev, 0x0201, 0x1462, 0x8851)) {
6351 		if (*conn == 0xf2005014 && *conf == 0xffffffff) {
6352 			fabricate_dcb_output(dcb, OUTPUT_TMDS, 1, 1, 1);
6353 			return false;
6354 		}
6355 	}
6356 
6357 	/* XFX GT-240X-YA
6358 	 *
6359 	 * So many things wrong here, replace the entire encoder table..
6360 	 */
6361 	if (nv_match_device(dev, 0x0ca3, 0x1682, 0x3003)) {
6362 		if (idx == 0) {
6363 			*conn = 0x02001300; /* VGA, connector 1 */
6364 			*conf = 0x00000028;
6365 		} else
6366 		if (idx == 1) {
6367 			*conn = 0x01010312; /* DVI, connector 0 */
6368 			*conf = 0x00020030;
6369 		} else
6370 		if (idx == 2) {
6371 			*conn = 0x01010310; /* VGA, connector 0 */
6372 			*conf = 0x00000028;
6373 		} else
6374 		if (idx == 3) {
6375 			*conn = 0x02022362; /* HDMI, connector 2 */
6376 			*conf = 0x00020010;
6377 		} else {
6378 			*conn = 0x0000000e; /* EOL */
6379 			*conf = 0x00000000;
6380 		}
6381 	}
6382 
6383 	return true;
6384 }
6385 
6386 static void
fabricate_dcb_encoder_table(struct drm_device * dev,struct nvbios * bios)6387 fabricate_dcb_encoder_table(struct drm_device *dev, struct nvbios *bios)
6388 {
6389 	struct dcb_table *dcb = &bios->dcb;
6390 	int all_heads = (nv_two_heads(dev) ? 3 : 1);
6391 
6392 #ifdef __powerpc__
6393 	/* Apple iMac G4 NV17 */
6394 	if (of_machine_is_compatible("PowerMac4,5")) {
6395 		fabricate_dcb_output(dcb, OUTPUT_TMDS, 0, all_heads, 1);
6396 		fabricate_dcb_output(dcb, OUTPUT_ANALOG, 1, all_heads, 2);
6397 		return;
6398 	}
6399 #endif
6400 
6401 	/* Make up some sane defaults */
6402 	fabricate_dcb_output(dcb, OUTPUT_ANALOG, LEGACY_I2C_CRT, 1, 1);
6403 
6404 	if (nv04_tv_identify(dev, bios->legacy.i2c_indices.tv) >= 0)
6405 		fabricate_dcb_output(dcb, OUTPUT_TV, LEGACY_I2C_TV,
6406 				     all_heads, 0);
6407 
6408 	else if (bios->tmds.output0_script_ptr ||
6409 		 bios->tmds.output1_script_ptr)
6410 		fabricate_dcb_output(dcb, OUTPUT_TMDS, LEGACY_I2C_PANEL,
6411 				     all_heads, 1);
6412 }
6413 
6414 static int
parse_dcb_table(struct drm_device * dev,struct nvbios * bios)6415 parse_dcb_table(struct drm_device *dev, struct nvbios *bios)
6416 {
6417 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6418 	struct dcb_table *dcb = &bios->dcb;
6419 	uint16_t dcbptr = 0, i2ctabptr = 0;
6420 	uint8_t *dcbtable;
6421 	uint8_t headerlen = 0x4, entries = DCB_MAX_NUM_ENTRIES;
6422 	bool configblock = true;
6423 	int recordlength = 8, confofs = 4;
6424 	int i;
6425 
6426 	/* get the offset from 0x36 */
6427 	if (dev_priv->card_type > NV_04) {
6428 		dcbptr = ROM16(bios->data[0x36]);
6429 		if (dcbptr == 0x0000)
6430 			NV_WARN(dev, "No output data (DCB) found in BIOS\n");
6431 	}
6432 
6433 	/* this situation likely means a really old card, pre DCB */
6434 	if (dcbptr == 0x0) {
6435 		fabricate_dcb_encoder_table(dev, bios);
6436 		return 0;
6437 	}
6438 
6439 	dcbtable = &bios->data[dcbptr];
6440 
6441 	/* get DCB version */
6442 	dcb->version = dcbtable[0];
6443 	NV_TRACE(dev, "Found Display Configuration Block version %d.%d\n",
6444 		 dcb->version >> 4, dcb->version & 0xf);
6445 
6446 	if (dcb->version >= 0x20) { /* NV17+ */
6447 		uint32_t sig;
6448 
6449 		if (dcb->version >= 0x30) { /* NV40+ */
6450 			headerlen = dcbtable[1];
6451 			entries = dcbtable[2];
6452 			recordlength = dcbtable[3];
6453 			i2ctabptr = ROM16(dcbtable[4]);
6454 			sig = ROM32(dcbtable[6]);
6455 			dcb->gpio_table_ptr = ROM16(dcbtable[10]);
6456 			dcb->connector_table_ptr = ROM16(dcbtable[20]);
6457 		} else {
6458 			i2ctabptr = ROM16(dcbtable[2]);
6459 			sig = ROM32(dcbtable[4]);
6460 			headerlen = 8;
6461 		}
6462 
6463 		if (sig != 0x4edcbdcb) {
6464 			NV_ERROR(dev, "Bad Display Configuration Block "
6465 					"signature (%08X)\n", sig);
6466 			return -EINVAL;
6467 		}
6468 	} else if (dcb->version >= 0x15) { /* some NV11 and NV20 */
6469 		char sig[8] = { 0 };
6470 
6471 		strncpy(sig, (char *)&dcbtable[-7], 7);
6472 		i2ctabptr = ROM16(dcbtable[2]);
6473 		recordlength = 10;
6474 		confofs = 6;
6475 
6476 		if (strcmp(sig, "DEV_REC")) {
6477 			NV_ERROR(dev, "Bad Display Configuration Block "
6478 					"signature (%s)\n", sig);
6479 			return -EINVAL;
6480 		}
6481 	} else {
6482 		/*
6483 		 * v1.4 (some NV15/16, NV11+) seems the same as v1.5, but always
6484 		 * has the same single (crt) entry, even when tv-out present, so
6485 		 * the conclusion is this version cannot really be used.
6486 		 * v1.2 tables (some NV6/10, and NV15+) normally have the same
6487 		 * 5 entries, which are not specific to the card and so no use.
6488 		 * v1.2 does have an I2C table that read_dcb_i2c_table can
6489 		 * handle, but cards exist (nv11 in #14821) with a bad i2c table
6490 		 * pointer, so use the indices parsed in parse_bmp_structure.
6491 		 * v1.1 (NV5+, maybe some NV4) is entirely unhelpful
6492 		 */
6493 		NV_TRACEWARN(dev, "No useful information in BIOS output table; "
6494 				  "adding all possible outputs\n");
6495 		fabricate_dcb_encoder_table(dev, bios);
6496 		return 0;
6497 	}
6498 
6499 	if (!i2ctabptr)
6500 		NV_WARN(dev, "No pointer to DCB I2C port table\n");
6501 	else {
6502 		dcb->i2c_table = &bios->data[i2ctabptr];
6503 		if (dcb->version >= 0x30)
6504 			dcb->i2c_default_indices = dcb->i2c_table[4];
6505 
6506 		/*
6507 		 * Parse the "management" I2C bus, used for hardware
6508 		 * monitoring and some external TMDS transmitters.
6509 		 */
6510 		if (dcb->version >= 0x22) {
6511 			int idx = (dcb->version >= 0x40 ?
6512 				   dcb->i2c_default_indices & 0xf :
6513 				   2);
6514 
6515 			read_dcb_i2c_entry(dev, dcb->version, dcb->i2c_table,
6516 					   idx, &dcb->i2c[idx]);
6517 		}
6518 	}
6519 
6520 	if (entries > DCB_MAX_NUM_ENTRIES)
6521 		entries = DCB_MAX_NUM_ENTRIES;
6522 
6523 	for (i = 0; i < entries; i++) {
6524 		uint32_t connection, config = 0;
6525 
6526 		connection = ROM32(dcbtable[headerlen + recordlength * i]);
6527 		if (configblock)
6528 			config = ROM32(dcbtable[headerlen + confofs + recordlength * i]);
6529 
6530 		/* seen on an NV11 with DCB v1.5 */
6531 		if (connection == 0x00000000)
6532 			break;
6533 
6534 		/* seen on an NV17 with DCB v2.0 */
6535 		if (connection == 0xffffffff)
6536 			break;
6537 
6538 		if ((connection & 0x0000000f) == 0x0000000f)
6539 			continue;
6540 
6541 		if (!apply_dcb_encoder_quirks(dev, i, &connection, &config))
6542 			continue;
6543 
6544 		NV_TRACEWARN(dev, "Raw DCB entry %d: %08x %08x\n",
6545 			     dcb->entries, connection, config);
6546 
6547 		if (!parse_dcb_entry(dev, dcb, connection, config))
6548 			break;
6549 	}
6550 
6551 	/*
6552 	 * apart for v2.1+ not being known for requiring merging, this
6553 	 * guarantees dcbent->index is the index of the entry in the rom image
6554 	 */
6555 	if (dcb->version < 0x21)
6556 		merge_like_dcb_entries(dev, dcb);
6557 
6558 	if (!dcb->entries)
6559 		return -ENXIO;
6560 
6561 	parse_dcb_gpio_table(bios);
6562 	parse_dcb_connector_table(bios);
6563 	return 0;
6564 }
6565 
6566 static void
fixup_legacy_connector(struct nvbios * bios)6567 fixup_legacy_connector(struct nvbios *bios)
6568 {
6569 	struct dcb_table *dcb = &bios->dcb;
6570 	int i, i2c, i2c_conn[DCB_MAX_NUM_I2C_ENTRIES] = { };
6571 
6572 	/*
6573 	 * DCB 3.0 also has the table in most cases, but there are some cards
6574 	 * where the table is filled with stub entries, and the DCB entriy
6575 	 * indices are all 0.  We don't need the connector indices on pre-G80
6576 	 * chips (yet?) so limit the use to DCB 4.0 and above.
6577 	 */
6578 	if (dcb->version >= 0x40)
6579 		return;
6580 
6581 	dcb->connector.entries = 0;
6582 
6583 	/*
6584 	 * No known connector info before v3.0, so make it up.  the rule here
6585 	 * is: anything on the same i2c bus is considered to be on the same
6586 	 * connector.  any output without an associated i2c bus is assigned
6587 	 * its own unique connector index.
6588 	 */
6589 	for (i = 0; i < dcb->entries; i++) {
6590 		/*
6591 		 * Ignore the I2C index for on-chip TV-out, as there
6592 		 * are cards with bogus values (nv31m in bug 23212),
6593 		 * and it's otherwise useless.
6594 		 */
6595 		if (dcb->entry[i].type == OUTPUT_TV &&
6596 		    dcb->entry[i].location == DCB_LOC_ON_CHIP)
6597 			dcb->entry[i].i2c_index = 0xf;
6598 		i2c = dcb->entry[i].i2c_index;
6599 
6600 		if (i2c_conn[i2c]) {
6601 			dcb->entry[i].connector = i2c_conn[i2c] - 1;
6602 			continue;
6603 		}
6604 
6605 		dcb->entry[i].connector = dcb->connector.entries++;
6606 		if (i2c != 0xf)
6607 			i2c_conn[i2c] = dcb->connector.entries;
6608 	}
6609 
6610 	/* Fake the connector table as well as just connector indices */
6611 	for (i = 0; i < dcb->connector.entries; i++) {
6612 		dcb->connector.entry[i].index = i;
6613 		dcb->connector.entry[i].type = divine_connector_type(bios, i);
6614 		dcb->connector.entry[i].gpio_tag = 0xff;
6615 	}
6616 }
6617 
6618 static void
fixup_legacy_i2c(struct nvbios * bios)6619 fixup_legacy_i2c(struct nvbios *bios)
6620 {
6621 	struct dcb_table *dcb = &bios->dcb;
6622 	int i;
6623 
6624 	for (i = 0; i < dcb->entries; i++) {
6625 		if (dcb->entry[i].i2c_index == LEGACY_I2C_CRT)
6626 			dcb->entry[i].i2c_index = bios->legacy.i2c_indices.crt;
6627 		if (dcb->entry[i].i2c_index == LEGACY_I2C_PANEL)
6628 			dcb->entry[i].i2c_index = bios->legacy.i2c_indices.panel;
6629 		if (dcb->entry[i].i2c_index == LEGACY_I2C_TV)
6630 			dcb->entry[i].i2c_index = bios->legacy.i2c_indices.tv;
6631 	}
6632 }
6633 
load_nv17_hwsq_ucode_entry(struct drm_device * dev,struct nvbios * bios,uint16_t hwsq_offset,int entry)6634 static int load_nv17_hwsq_ucode_entry(struct drm_device *dev, struct nvbios *bios, uint16_t hwsq_offset, int entry)
6635 {
6636 	/*
6637 	 * The header following the "HWSQ" signature has the number of entries,
6638 	 * and the entry size
6639 	 *
6640 	 * An entry consists of a dword to write to the sequencer control reg
6641 	 * (0x00001304), followed by the ucode bytes, written sequentially,
6642 	 * starting at reg 0x00001400
6643 	 */
6644 
6645 	uint8_t bytes_to_write;
6646 	uint16_t hwsq_entry_offset;
6647 	int i;
6648 
6649 	if (bios->data[hwsq_offset] <= entry) {
6650 		NV_ERROR(dev, "Too few entries in HW sequencer table for "
6651 				"requested entry\n");
6652 		return -ENOENT;
6653 	}
6654 
6655 	bytes_to_write = bios->data[hwsq_offset + 1];
6656 
6657 	if (bytes_to_write != 36) {
6658 		NV_ERROR(dev, "Unknown HW sequencer entry size\n");
6659 		return -EINVAL;
6660 	}
6661 
6662 	NV_TRACE(dev, "Loading NV17 power sequencing microcode\n");
6663 
6664 	hwsq_entry_offset = hwsq_offset + 2 + entry * bytes_to_write;
6665 
6666 	/* set sequencer control */
6667 	bios_wr32(bios, 0x00001304, ROM32(bios->data[hwsq_entry_offset]));
6668 	bytes_to_write -= 4;
6669 
6670 	/* write ucode */
6671 	for (i = 0; i < bytes_to_write; i += 4)
6672 		bios_wr32(bios, 0x00001400 + i, ROM32(bios->data[hwsq_entry_offset + i + 4]));
6673 
6674 	/* twiddle NV_PBUS_DEBUG_4 */
6675 	bios_wr32(bios, NV_PBUS_DEBUG_4, bios_rd32(bios, NV_PBUS_DEBUG_4) | 0x18);
6676 
6677 	return 0;
6678 }
6679 
load_nv17_hw_sequencer_ucode(struct drm_device * dev,struct nvbios * bios)6680 static int load_nv17_hw_sequencer_ucode(struct drm_device *dev,
6681 					struct nvbios *bios)
6682 {
6683 	/*
6684 	 * BMP based cards, from NV17, need a microcode loading to correctly
6685 	 * control the GPIO etc for LVDS panels
6686 	 *
6687 	 * BIT based cards seem to do this directly in the init scripts
6688 	 *
6689 	 * The microcode entries are found by the "HWSQ" signature.
6690 	 */
6691 
6692 	const uint8_t hwsq_signature[] = { 'H', 'W', 'S', 'Q' };
6693 	const int sz = sizeof(hwsq_signature);
6694 	int hwsq_offset;
6695 
6696 	hwsq_offset = findstr(bios->data, bios->length, hwsq_signature, sz);
6697 	if (!hwsq_offset)
6698 		return 0;
6699 
6700 	/* always use entry 0? */
6701 	return load_nv17_hwsq_ucode_entry(dev, bios, hwsq_offset + sz, 0);
6702 }
6703 
nouveau_bios_embedded_edid(struct drm_device * dev)6704 uint8_t *nouveau_bios_embedded_edid(struct drm_device *dev)
6705 {
6706 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6707 	struct nvbios *bios = &dev_priv->vbios;
6708 	const uint8_t edid_sig[] = {
6709 			0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 };
6710 	uint16_t offset = 0;
6711 	uint16_t newoffset;
6712 	int searchlen = NV_PROM_SIZE;
6713 
6714 	if (bios->fp.edid)
6715 		return bios->fp.edid;
6716 
6717 	while (searchlen) {
6718 		newoffset = findstr(&bios->data[offset], searchlen,
6719 								edid_sig, 8);
6720 		if (!newoffset)
6721 			return NULL;
6722 		offset += newoffset;
6723 		if (!nv_cksum(&bios->data[offset], EDID1_LEN))
6724 			break;
6725 
6726 		searchlen -= offset;
6727 		offset++;
6728 	}
6729 
6730 	NV_TRACE(dev, "Found EDID in BIOS\n");
6731 
6732 	return bios->fp.edid = &bios->data[offset];
6733 }
6734 
6735 void
nouveau_bios_run_init_table(struct drm_device * dev,uint16_t table,struct dcb_entry * dcbent)6736 nouveau_bios_run_init_table(struct drm_device *dev, uint16_t table,
6737 			    struct dcb_entry *dcbent)
6738 {
6739 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6740 	struct nvbios *bios = &dev_priv->vbios;
6741 	struct init_exec iexec = { true, false };
6742 
6743 	spin_lock_bh(&bios->lock);
6744 	bios->display.output = dcbent;
6745 	parse_init_table(bios, table, &iexec);
6746 	bios->display.output = NULL;
6747 	spin_unlock_bh(&bios->lock);
6748 }
6749 
NVInitVBIOS(struct drm_device * dev)6750 static bool NVInitVBIOS(struct drm_device *dev)
6751 {
6752 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6753 	struct nvbios *bios = &dev_priv->vbios;
6754 
6755 	memset(bios, 0, sizeof(struct nvbios));
6756 	spin_lock_init(&bios->lock);
6757 	bios->dev = dev;
6758 
6759 	if (!NVShadowVBIOS(dev, bios->data))
6760 		return false;
6761 
6762 	bios->length = NV_PROM_SIZE;
6763 	return true;
6764 }
6765 
nouveau_parse_vbios_struct(struct drm_device * dev)6766 static int nouveau_parse_vbios_struct(struct drm_device *dev)
6767 {
6768 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6769 	struct nvbios *bios = &dev_priv->vbios;
6770 	const uint8_t bit_signature[] = { 0xff, 0xb8, 'B', 'I', 'T' };
6771 	const uint8_t bmp_signature[] = { 0xff, 0x7f, 'N', 'V', 0x0 };
6772 	int offset;
6773 
6774 	offset = findstr(bios->data, bios->length,
6775 					bit_signature, sizeof(bit_signature));
6776 	if (offset) {
6777 		NV_TRACE(dev, "BIT BIOS found\n");
6778 		bios->type = NVBIOS_BIT;
6779 		bios->offset = offset;
6780 		return parse_bit_structure(bios, offset + 6);
6781 	}
6782 
6783 	offset = findstr(bios->data, bios->length,
6784 					bmp_signature, sizeof(bmp_signature));
6785 	if (offset) {
6786 		NV_TRACE(dev, "BMP BIOS found\n");
6787 		bios->type = NVBIOS_BMP;
6788 		bios->offset = offset;
6789 		return parse_bmp_structure(dev, bios, offset);
6790 	}
6791 
6792 	NV_ERROR(dev, "No known BIOS signature found\n");
6793 	return -ENODEV;
6794 }
6795 
6796 int
nouveau_run_vbios_init(struct drm_device * dev)6797 nouveau_run_vbios_init(struct drm_device *dev)
6798 {
6799 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6800 	struct nvbios *bios = &dev_priv->vbios;
6801 	int i, ret = 0;
6802 
6803 	/* Reset the BIOS head to 0. */
6804 	bios->state.crtchead = 0;
6805 
6806 	if (bios->major_version < 5)	/* BMP only */
6807 		load_nv17_hw_sequencer_ucode(dev, bios);
6808 
6809 	if (bios->execute) {
6810 		bios->fp.last_script_invoc = 0;
6811 		bios->fp.lvds_init_run = false;
6812 	}
6813 
6814 	parse_init_tables(bios);
6815 
6816 	/*
6817 	 * Runs some additional script seen on G8x VBIOSen.  The VBIOS'
6818 	 * parser will run this right after the init tables, the binary
6819 	 * driver appears to run it at some point later.
6820 	 */
6821 	if (bios->some_script_ptr) {
6822 		struct init_exec iexec = {true, false};
6823 
6824 		NV_INFO(dev, "Parsing VBIOS init table at offset 0x%04X\n",
6825 			bios->some_script_ptr);
6826 		parse_init_table(bios, bios->some_script_ptr, &iexec);
6827 	}
6828 
6829 	if (dev_priv->card_type >= NV_50) {
6830 		for (i = 0; i < bios->dcb.entries; i++) {
6831 			nouveau_bios_run_display_table(dev,
6832 						       &bios->dcb.entry[i],
6833 						       0, 0);
6834 		}
6835 	}
6836 
6837 	return ret;
6838 }
6839 
6840 static void
nouveau_bios_i2c_devices_takedown(struct drm_device * dev)6841 nouveau_bios_i2c_devices_takedown(struct drm_device *dev)
6842 {
6843 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6844 	struct nvbios *bios = &dev_priv->vbios;
6845 	struct dcb_i2c_entry *entry;
6846 	int i;
6847 
6848 	entry = &bios->dcb.i2c[0];
6849 	for (i = 0; i < DCB_MAX_NUM_I2C_ENTRIES; i++, entry++)
6850 		nouveau_i2c_fini(dev, entry);
6851 }
6852 
6853 static bool
nouveau_bios_posted(struct drm_device * dev)6854 nouveau_bios_posted(struct drm_device *dev)
6855 {
6856 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6857 	unsigned htotal;
6858 
6859 	if (dev_priv->card_type >= NV_50) {
6860 		if (NVReadVgaCrtc(dev, 0, 0x00) == 0 &&
6861 		    NVReadVgaCrtc(dev, 0, 0x1a) == 0)
6862 			return false;
6863 		return true;
6864 	}
6865 
6866 	htotal  = NVReadVgaCrtc(dev, 0, 0x06);
6867 	htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x01) << 8;
6868 	htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x20) << 4;
6869 	htotal |= (NVReadVgaCrtc(dev, 0, 0x25) & 0x01) << 10;
6870 	htotal |= (NVReadVgaCrtc(dev, 0, 0x41) & 0x01) << 11;
6871 
6872 	return (htotal != 0);
6873 }
6874 
6875 int
nouveau_bios_init(struct drm_device * dev)6876 nouveau_bios_init(struct drm_device *dev)
6877 {
6878 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6879 	struct nvbios *bios = &dev_priv->vbios;
6880 	int ret;
6881 
6882 	if (!NVInitVBIOS(dev))
6883 		return -ENODEV;
6884 
6885 	ret = nouveau_parse_vbios_struct(dev);
6886 	if (ret)
6887 		return ret;
6888 
6889 	ret = parse_dcb_table(dev, bios);
6890 	if (ret)
6891 		return ret;
6892 
6893 	fixup_legacy_i2c(bios);
6894 	fixup_legacy_connector(bios);
6895 
6896 	if (!bios->major_version)	/* we don't run version 0 bios */
6897 		return 0;
6898 
6899 	/* init script execution disabled */
6900 	bios->execute = false;
6901 
6902 	/* ... unless card isn't POSTed already */
6903 	if (!nouveau_bios_posted(dev)) {
6904 		NV_INFO(dev, "Adaptor not initialised, "
6905 			"running VBIOS init tables.\n");
6906 		bios->execute = true;
6907 	}
6908 	if (nouveau_force_post)
6909 		bios->execute = true;
6910 
6911 	ret = nouveau_run_vbios_init(dev);
6912 	if (ret)
6913 		return ret;
6914 
6915 	/* feature_byte on BMP is poor, but init always sets CR4B */
6916 	if (bios->major_version < 5)
6917 		bios->is_mobile = NVReadVgaCrtc(dev, 0, NV_CIO_CRE_4B) & 0x40;
6918 
6919 	/* all BIT systems need p_f_m_t for digital_min_front_porch */
6920 	if (bios->is_mobile || bios->major_version >= 5)
6921 		ret = parse_fp_mode_table(dev, bios);
6922 
6923 	/* allow subsequent scripts to execute */
6924 	bios->execute = true;
6925 
6926 	return 0;
6927 }
6928 
6929 void
nouveau_bios_takedown(struct drm_device * dev)6930 nouveau_bios_takedown(struct drm_device *dev)
6931 {
6932 	nouveau_bios_i2c_devices_takedown(dev);
6933 }
6934