1 /****************************************************************************/
2 /*
3  *  linux/fs/binfmt_flat.c
4  *
5  *	Copyright (C) 2000-2003 David McCullough <davidm@snapgear.com>
6  *	Copyright (C) 2002 Greg Ungerer <gerg@snapgear.com>
7  *	Copyright (C) 2002 SnapGear, by Paul Dale <pauli@snapgear.com>
8  *	Copyright (C) 2000, 2001 Lineo, by David McCullough <davidm@lineo.com>
9  *  based heavily on:
10  *
11  *  linux/fs/binfmt_aout.c:
12  *      Copyright (C) 1991, 1992, 1996  Linus Torvalds
13  *  linux/fs/binfmt_flat.c for 2.0 kernel
14  *	    Copyright (C) 1998  Kenneth Albanowski <kjahds@kjahds.com>
15  *	JAN/99 -- coded full program relocation (gerg@snapgear.com)
16  */
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/mm.h>
22 #include <linux/mman.h>
23 #include <linux/errno.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/stat.h>
29 #include <linux/fcntl.h>
30 #include <linux/ptrace.h>
31 #include <linux/user.h>
32 #include <linux/slab.h>
33 #include <linux/binfmts.h>
34 #include <linux/personality.h>
35 #include <linux/init.h>
36 #include <linux/flat.h>
37 #include <linux/syscalls.h>
38 
39 #include <asm/byteorder.h>
40 #include <asm/system.h>
41 #include <asm/uaccess.h>
42 #include <asm/unaligned.h>
43 #include <asm/cacheflush.h>
44 #include <asm/page.h>
45 
46 /****************************************************************************/
47 
48 #if 0
49 #define DEBUG 1
50 #endif
51 
52 #ifdef DEBUG
53 #define	DBG_FLT(a...)	printk(a)
54 #else
55 #define	DBG_FLT(a...)
56 #endif
57 
58 /*
59  * User data (data section and bss) needs to be aligned.
60  * We pick 0x20 here because it is the max value elf2flt has always
61  * used in producing FLAT files, and because it seems to be large
62  * enough to make all the gcc alignment related tests happy.
63  */
64 #define FLAT_DATA_ALIGN	(0x20)
65 
66 /*
67  * User data (stack) also needs to be aligned.
68  * Here we can be a bit looser than the data sections since this
69  * needs to only meet arch ABI requirements.
70  */
71 #define FLAT_STACK_ALIGN	max_t(unsigned long, sizeof(void *), ARCH_SLAB_MINALIGN)
72 
73 #define RELOC_FAILED 0xff00ff01		/* Relocation incorrect somewhere */
74 #define UNLOADED_LIB 0x7ff000ff		/* Placeholder for unused library */
75 
76 struct lib_info {
77 	struct {
78 		unsigned long start_code;		/* Start of text segment */
79 		unsigned long start_data;		/* Start of data segment */
80 		unsigned long start_brk;		/* End of data segment */
81 		unsigned long text_len;			/* Length of text segment */
82 		unsigned long entry;			/* Start address for this module */
83 		unsigned long build_date;		/* When this one was compiled */
84 		short loaded;				/* Has this library been loaded? */
85 	} lib_list[MAX_SHARED_LIBS];
86 };
87 
88 #ifdef CONFIG_BINFMT_SHARED_FLAT
89 static int load_flat_shared_library(int id, struct lib_info *p);
90 #endif
91 
92 static int load_flat_binary(struct linux_binprm *, struct pt_regs * regs);
93 static int flat_core_dump(struct coredump_params *cprm);
94 
95 static struct linux_binfmt flat_format = {
96 	.module		= THIS_MODULE,
97 	.load_binary	= load_flat_binary,
98 	.core_dump	= flat_core_dump,
99 	.min_coredump	= PAGE_SIZE
100 };
101 
102 /****************************************************************************/
103 /*
104  * Routine writes a core dump image in the current directory.
105  * Currently only a stub-function.
106  */
107 
flat_core_dump(struct coredump_params * cprm)108 static int flat_core_dump(struct coredump_params *cprm)
109 {
110 	printk("Process %s:%d received signr %d and should have core dumped\n",
111 			current->comm, current->pid, (int) cprm->signr);
112 	return(1);
113 }
114 
115 /****************************************************************************/
116 /*
117  * create_flat_tables() parses the env- and arg-strings in new user
118  * memory and creates the pointer tables from them, and puts their
119  * addresses on the "stack", returning the new stack pointer value.
120  */
121 
create_flat_tables(unsigned long pp,struct linux_binprm * bprm)122 static unsigned long create_flat_tables(
123 	unsigned long pp,
124 	struct linux_binprm * bprm)
125 {
126 	unsigned long *argv,*envp;
127 	unsigned long * sp;
128 	char * p = (char*)pp;
129 	int argc = bprm->argc;
130 	int envc = bprm->envc;
131 	char uninitialized_var(dummy);
132 
133 	sp = (unsigned long *)p;
134 	sp -= (envc + argc + 2) + 1 + (flat_argvp_envp_on_stack() ? 2 : 0);
135 	sp = (unsigned long *) ((unsigned long)sp & -FLAT_STACK_ALIGN);
136 	argv = sp + 1 + (flat_argvp_envp_on_stack() ? 2 : 0);
137 	envp = argv + (argc + 1);
138 
139 	if (flat_argvp_envp_on_stack()) {
140 		put_user((unsigned long) envp, sp + 2);
141 		put_user((unsigned long) argv, sp + 1);
142 	}
143 
144 	put_user(argc, sp);
145 	current->mm->arg_start = (unsigned long) p;
146 	while (argc-->0) {
147 		put_user((unsigned long) p, argv++);
148 		do {
149 			get_user(dummy, p); p++;
150 		} while (dummy);
151 	}
152 	put_user((unsigned long) NULL, argv);
153 	current->mm->arg_end = current->mm->env_start = (unsigned long) p;
154 	while (envc-->0) {
155 		put_user((unsigned long)p, envp); envp++;
156 		do {
157 			get_user(dummy, p); p++;
158 		} while (dummy);
159 	}
160 	put_user((unsigned long) NULL, envp);
161 	current->mm->env_end = (unsigned long) p;
162 	return (unsigned long)sp;
163 }
164 
165 /****************************************************************************/
166 
167 #ifdef CONFIG_BINFMT_ZFLAT
168 
169 #include <linux/zlib.h>
170 
171 #define LBUFSIZE	4000
172 
173 /* gzip flag byte */
174 #define ASCII_FLAG   0x01 /* bit 0 set: file probably ASCII text */
175 #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
176 #define EXTRA_FIELD  0x04 /* bit 2 set: extra field present */
177 #define ORIG_NAME    0x08 /* bit 3 set: original file name present */
178 #define COMMENT      0x10 /* bit 4 set: file comment present */
179 #define ENCRYPTED    0x20 /* bit 5 set: file is encrypted */
180 #define RESERVED     0xC0 /* bit 6,7:   reserved */
181 
decompress_exec(struct linux_binprm * bprm,unsigned long offset,char * dst,long len,int fd)182 static int decompress_exec(
183 	struct linux_binprm *bprm,
184 	unsigned long offset,
185 	char *dst,
186 	long len,
187 	int fd)
188 {
189 	unsigned char *buf;
190 	z_stream strm;
191 	loff_t fpos;
192 	int ret, retval;
193 
194 	DBG_FLT("decompress_exec(offset=%x,buf=%x,len=%x)\n",(int)offset, (int)dst, (int)len);
195 
196 	memset(&strm, 0, sizeof(strm));
197 	strm.workspace = kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL);
198 	if (strm.workspace == NULL) {
199 		DBG_FLT("binfmt_flat: no memory for decompress workspace\n");
200 		return -ENOMEM;
201 	}
202 	buf = kmalloc(LBUFSIZE, GFP_KERNEL);
203 	if (buf == NULL) {
204 		DBG_FLT("binfmt_flat: no memory for read buffer\n");
205 		retval = -ENOMEM;
206 		goto out_free;
207 	}
208 
209 	/* Read in first chunk of data and parse gzip header. */
210 	fpos = offset;
211 	ret = bprm->file->f_op->read(bprm->file, buf, LBUFSIZE, &fpos);
212 
213 	strm.next_in = buf;
214 	strm.avail_in = ret;
215 	strm.total_in = 0;
216 
217 	retval = -ENOEXEC;
218 
219 	/* Check minimum size -- gzip header */
220 	if (ret < 10) {
221 		DBG_FLT("binfmt_flat: file too small?\n");
222 		goto out_free_buf;
223 	}
224 
225 	/* Check gzip magic number */
226 	if ((buf[0] != 037) || ((buf[1] != 0213) && (buf[1] != 0236))) {
227 		DBG_FLT("binfmt_flat: unknown compression magic?\n");
228 		goto out_free_buf;
229 	}
230 
231 	/* Check gzip method */
232 	if (buf[2] != 8) {
233 		DBG_FLT("binfmt_flat: unknown compression method?\n");
234 		goto out_free_buf;
235 	}
236 	/* Check gzip flags */
237 	if ((buf[3] & ENCRYPTED) || (buf[3] & CONTINUATION) ||
238 	    (buf[3] & RESERVED)) {
239 		DBG_FLT("binfmt_flat: unknown flags?\n");
240 		goto out_free_buf;
241 	}
242 
243 	ret = 10;
244 	if (buf[3] & EXTRA_FIELD) {
245 		ret += 2 + buf[10] + (buf[11] << 8);
246 		if (unlikely(LBUFSIZE <= ret)) {
247 			DBG_FLT("binfmt_flat: buffer overflow (EXTRA)?\n");
248 			goto out_free_buf;
249 		}
250 	}
251 	if (buf[3] & ORIG_NAME) {
252 		while (ret < LBUFSIZE && buf[ret++] != 0)
253 			;
254 		if (unlikely(LBUFSIZE == ret)) {
255 			DBG_FLT("binfmt_flat: buffer overflow (ORIG_NAME)?\n");
256 			goto out_free_buf;
257 		}
258 	}
259 	if (buf[3] & COMMENT) {
260 		while (ret < LBUFSIZE && buf[ret++] != 0)
261 			;
262 		if (unlikely(LBUFSIZE == ret)) {
263 			DBG_FLT("binfmt_flat: buffer overflow (COMMENT)?\n");
264 			goto out_free_buf;
265 		}
266 	}
267 
268 	strm.next_in += ret;
269 	strm.avail_in -= ret;
270 
271 	strm.next_out = dst;
272 	strm.avail_out = len;
273 	strm.total_out = 0;
274 
275 	if (zlib_inflateInit2(&strm, -MAX_WBITS) != Z_OK) {
276 		DBG_FLT("binfmt_flat: zlib init failed?\n");
277 		goto out_free_buf;
278 	}
279 
280 	while ((ret = zlib_inflate(&strm, Z_NO_FLUSH)) == Z_OK) {
281 		ret = bprm->file->f_op->read(bprm->file, buf, LBUFSIZE, &fpos);
282 		if (ret <= 0)
283 			break;
284 		len -= ret;
285 
286 		strm.next_in = buf;
287 		strm.avail_in = ret;
288 		strm.total_in = 0;
289 	}
290 
291 	if (ret < 0) {
292 		DBG_FLT("binfmt_flat: decompression failed (%d), %s\n",
293 			ret, strm.msg);
294 		goto out_zlib;
295 	}
296 
297 	retval = 0;
298 out_zlib:
299 	zlib_inflateEnd(&strm);
300 out_free_buf:
301 	kfree(buf);
302 out_free:
303 	kfree(strm.workspace);
304 	return retval;
305 }
306 
307 #endif /* CONFIG_BINFMT_ZFLAT */
308 
309 /****************************************************************************/
310 
311 static unsigned long
calc_reloc(unsigned long r,struct lib_info * p,int curid,int internalp)312 calc_reloc(unsigned long r, struct lib_info *p, int curid, int internalp)
313 {
314 	unsigned long addr;
315 	int id;
316 	unsigned long start_brk;
317 	unsigned long start_data;
318 	unsigned long text_len;
319 	unsigned long start_code;
320 
321 #ifdef CONFIG_BINFMT_SHARED_FLAT
322 	if (r == 0)
323 		id = curid;	/* Relocs of 0 are always self referring */
324 	else {
325 		id = (r >> 24) & 0xff;	/* Find ID for this reloc */
326 		r &= 0x00ffffff;	/* Trim ID off here */
327 	}
328 	if (id >= MAX_SHARED_LIBS) {
329 		printk("BINFMT_FLAT: reference 0x%x to shared library %d",
330 				(unsigned) r, id);
331 		goto failed;
332 	}
333 	if (curid != id) {
334 		if (internalp) {
335 			printk("BINFMT_FLAT: reloc address 0x%x not in same module "
336 					"(%d != %d)", (unsigned) r, curid, id);
337 			goto failed;
338 		} else if ( ! p->lib_list[id].loaded &&
339 				IS_ERR_VALUE(load_flat_shared_library(id, p))) {
340 			printk("BINFMT_FLAT: failed to load library %d", id);
341 			goto failed;
342 		}
343 		/* Check versioning information (i.e. time stamps) */
344 		if (p->lib_list[id].build_date && p->lib_list[curid].build_date &&
345 				p->lib_list[curid].build_date < p->lib_list[id].build_date) {
346 			printk("BINFMT_FLAT: library %d is younger than %d", id, curid);
347 			goto failed;
348 		}
349 	}
350 #else
351 	id = 0;
352 #endif
353 
354 	start_brk = p->lib_list[id].start_brk;
355 	start_data = p->lib_list[id].start_data;
356 	start_code = p->lib_list[id].start_code;
357 	text_len = p->lib_list[id].text_len;
358 
359 	if (!flat_reloc_valid(r, start_brk - start_data + text_len)) {
360 		printk("BINFMT_FLAT: reloc outside program 0x%x (0 - 0x%x/0x%x)",
361 		       (int) r,(int)(start_brk-start_data+text_len),(int)text_len);
362 		goto failed;
363 	}
364 
365 	if (r < text_len)			/* In text segment */
366 		addr = r + start_code;
367 	else					/* In data segment */
368 		addr = r - text_len + start_data;
369 
370 	/* Range checked already above so doing the range tests is redundant...*/
371 	return(addr);
372 
373 failed:
374 	printk(", killing %s!\n", current->comm);
375 	send_sig(SIGSEGV, current, 0);
376 
377 	return RELOC_FAILED;
378 }
379 
380 /****************************************************************************/
381 
old_reloc(unsigned long rl)382 void old_reloc(unsigned long rl)
383 {
384 #ifdef DEBUG
385 	char *segment[] = { "TEXT", "DATA", "BSS", "*UNKNOWN*" };
386 #endif
387 	flat_v2_reloc_t	r;
388 	unsigned long *ptr;
389 
390 	r.value = rl;
391 #if defined(CONFIG_COLDFIRE)
392 	ptr = (unsigned long *) (current->mm->start_code + r.reloc.offset);
393 #else
394 	ptr = (unsigned long *) (current->mm->start_data + r.reloc.offset);
395 #endif
396 
397 #ifdef DEBUG
398 	printk("Relocation of variable at DATASEG+%x "
399 		"(address %p, currently %x) into segment %s\n",
400 		r.reloc.offset, ptr, (int)*ptr, segment[r.reloc.type]);
401 #endif
402 
403 	switch (r.reloc.type) {
404 	case OLD_FLAT_RELOC_TYPE_TEXT:
405 		*ptr += current->mm->start_code;
406 		break;
407 	case OLD_FLAT_RELOC_TYPE_DATA:
408 		*ptr += current->mm->start_data;
409 		break;
410 	case OLD_FLAT_RELOC_TYPE_BSS:
411 		*ptr += current->mm->end_data;
412 		break;
413 	default:
414 		printk("BINFMT_FLAT: Unknown relocation type=%x\n", r.reloc.type);
415 		break;
416 	}
417 
418 #ifdef DEBUG
419 	printk("Relocation became %x\n", (int)*ptr);
420 #endif
421 }
422 
423 /****************************************************************************/
424 
load_flat_file(struct linux_binprm * bprm,struct lib_info * libinfo,int id,unsigned long * extra_stack)425 static int load_flat_file(struct linux_binprm * bprm,
426 		struct lib_info *libinfo, int id, unsigned long *extra_stack)
427 {
428 	struct flat_hdr * hdr;
429 	unsigned long textpos = 0, datapos = 0, result;
430 	unsigned long realdatastart = 0;
431 	unsigned long text_len, data_len, bss_len, stack_len, flags;
432 	unsigned long len, memp = 0;
433 	unsigned long memp_size, extra, rlim;
434 	unsigned long *reloc = 0, *rp;
435 	struct inode *inode;
436 	int i, rev, relocs = 0;
437 	loff_t fpos;
438 	unsigned long start_code, end_code;
439 	int ret;
440 
441 	hdr = ((struct flat_hdr *) bprm->buf);		/* exec-header */
442 	inode = bprm->file->f_path.dentry->d_inode;
443 
444 	text_len  = ntohl(hdr->data_start);
445 	data_len  = ntohl(hdr->data_end) - ntohl(hdr->data_start);
446 	bss_len   = ntohl(hdr->bss_end) - ntohl(hdr->data_end);
447 	stack_len = ntohl(hdr->stack_size);
448 	if (extra_stack) {
449 		stack_len += *extra_stack;
450 		*extra_stack = stack_len;
451 	}
452 	relocs    = ntohl(hdr->reloc_count);
453 	flags     = ntohl(hdr->flags);
454 	rev       = ntohl(hdr->rev);
455 
456 	if (strncmp(hdr->magic, "bFLT", 4)) {
457 		/*
458 		 * Previously, here was a printk to tell people
459 		 *   "BINFMT_FLAT: bad header magic".
460 		 * But for the kernel which also use ELF FD-PIC format, this
461 		 * error message is confusing.
462 		 * because a lot of people do not manage to produce good
463 		 */
464 		ret = -ENOEXEC;
465 		goto err;
466 	}
467 
468 	if (flags & FLAT_FLAG_KTRACE)
469 		printk("BINFMT_FLAT: Loading file: %s\n", bprm->filename);
470 
471 	if (rev != FLAT_VERSION && rev != OLD_FLAT_VERSION) {
472 		printk("BINFMT_FLAT: bad flat file version 0x%x (supported "
473 			"0x%lx and 0x%lx)\n",
474 			rev, FLAT_VERSION, OLD_FLAT_VERSION);
475 		ret = -ENOEXEC;
476 		goto err;
477 	}
478 
479 	/* Don't allow old format executables to use shared libraries */
480 	if (rev == OLD_FLAT_VERSION && id != 0) {
481 		printk("BINFMT_FLAT: shared libraries are not available before rev 0x%x\n",
482 				(int) FLAT_VERSION);
483 		ret = -ENOEXEC;
484 		goto err;
485 	}
486 
487 	/*
488 	 * fix up the flags for the older format,  there were all kinds
489 	 * of endian hacks,  this only works for the simple cases
490 	 */
491 	if (rev == OLD_FLAT_VERSION && flat_old_ram_flag(flags))
492 		flags = FLAT_FLAG_RAM;
493 
494 #ifndef CONFIG_BINFMT_ZFLAT
495 	if (flags & (FLAT_FLAG_GZIP|FLAT_FLAG_GZDATA)) {
496 		printk("Support for ZFLAT executables is not enabled.\n");
497 		ret = -ENOEXEC;
498 		goto err;
499 	}
500 #endif
501 
502 	/*
503 	 * Check initial limits. This avoids letting people circumvent
504 	 * size limits imposed on them by creating programs with large
505 	 * arrays in the data or bss.
506 	 */
507 	rlim = rlimit(RLIMIT_DATA);
508 	if (rlim >= RLIM_INFINITY)
509 		rlim = ~0;
510 	if (data_len + bss_len > rlim) {
511 		ret = -ENOMEM;
512 		goto err;
513 	}
514 
515 	/* Flush all traces of the currently running executable */
516 	if (id == 0) {
517 		result = flush_old_exec(bprm);
518 		if (result) {
519 			ret = result;
520 			goto err;
521 		}
522 
523 		/* OK, This is the point of no return */
524 		set_personality(PER_LINUX_32BIT);
525 		setup_new_exec(bprm);
526 	}
527 
528 	/*
529 	 * calculate the extra space we need to map in
530 	 */
531 	extra = max_t(unsigned long, bss_len + stack_len,
532 			relocs * sizeof(unsigned long));
533 
534 	/*
535 	 * there are a couple of cases here,  the separate code/data
536 	 * case,  and then the fully copied to RAM case which lumps
537 	 * it all together.
538 	 */
539 	if ((flags & (FLAT_FLAG_RAM|FLAT_FLAG_GZIP)) == 0) {
540 		/*
541 		 * this should give us a ROM ptr,  but if it doesn't we don't
542 		 * really care
543 		 */
544 		DBG_FLT("BINFMT_FLAT: ROM mapping of file (we hope)\n");
545 
546 		down_write(&current->mm->mmap_sem);
547 		textpos = do_mmap(bprm->file, 0, text_len, PROT_READ|PROT_EXEC,
548 				  MAP_PRIVATE|MAP_EXECUTABLE, 0);
549 		up_write(&current->mm->mmap_sem);
550 		if (!textpos || IS_ERR_VALUE(textpos)) {
551 			if (!textpos)
552 				textpos = (unsigned long) -ENOMEM;
553 			printk("Unable to mmap process text, errno %d\n", (int)-textpos);
554 			ret = textpos;
555 			goto err;
556 		}
557 
558 		len = data_len + extra + MAX_SHARED_LIBS * sizeof(unsigned long);
559 		len = PAGE_ALIGN(len);
560 		down_write(&current->mm->mmap_sem);
561 		realdatastart = do_mmap(0, 0, len,
562 			PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, 0);
563 		up_write(&current->mm->mmap_sem);
564 
565 		if (realdatastart == 0 || IS_ERR_VALUE(realdatastart)) {
566 			if (!realdatastart)
567 				realdatastart = (unsigned long) -ENOMEM;
568 			printk("Unable to allocate RAM for process data, errno %d\n",
569 					(int)-realdatastart);
570 			do_munmap(current->mm, textpos, text_len);
571 			ret = realdatastart;
572 			goto err;
573 		}
574 		datapos = ALIGN(realdatastart +
575 				MAX_SHARED_LIBS * sizeof(unsigned long),
576 				FLAT_DATA_ALIGN);
577 
578 		DBG_FLT("BINFMT_FLAT: Allocated data+bss+stack (%d bytes): %x\n",
579 				(int)(data_len + bss_len + stack_len), (int)datapos);
580 
581 		fpos = ntohl(hdr->data_start);
582 #ifdef CONFIG_BINFMT_ZFLAT
583 		if (flags & FLAT_FLAG_GZDATA) {
584 			result = decompress_exec(bprm, fpos, (char *) datapos,
585 						 data_len + (relocs * sizeof(unsigned long)), 0);
586 		} else
587 #endif
588 		{
589 			result = bprm->file->f_op->read(bprm->file, (char *) datapos,
590 					data_len + (relocs * sizeof(unsigned long)), &fpos);
591 		}
592 		if (IS_ERR_VALUE(result)) {
593 			printk("Unable to read data+bss, errno %d\n", (int)-result);
594 			do_munmap(current->mm, textpos, text_len);
595 			do_munmap(current->mm, realdatastart, len);
596 			ret = result;
597 			goto err;
598 		}
599 
600 		reloc = (unsigned long *) (datapos+(ntohl(hdr->reloc_start)-text_len));
601 		memp = realdatastart;
602 		memp_size = len;
603 	} else {
604 
605 		len = text_len + data_len + extra + MAX_SHARED_LIBS * sizeof(unsigned long);
606 		len = PAGE_ALIGN(len);
607 		down_write(&current->mm->mmap_sem);
608 		textpos = do_mmap(0, 0, len,
609 			PROT_READ | PROT_EXEC | PROT_WRITE, MAP_PRIVATE, 0);
610 		up_write(&current->mm->mmap_sem);
611 
612 		if (!textpos || IS_ERR_VALUE(textpos)) {
613 			if (!textpos)
614 				textpos = (unsigned long) -ENOMEM;
615 			printk("Unable to allocate RAM for process text/data, errno %d\n",
616 					(int)-textpos);
617 			ret = textpos;
618 			goto err;
619 		}
620 
621 		realdatastart = textpos + ntohl(hdr->data_start);
622 		datapos = ALIGN(realdatastart +
623 				MAX_SHARED_LIBS * sizeof(unsigned long),
624 				FLAT_DATA_ALIGN);
625 
626 		reloc = (unsigned long *)
627 			(datapos + (ntohl(hdr->reloc_start) - text_len));
628 		memp = textpos;
629 		memp_size = len;
630 #ifdef CONFIG_BINFMT_ZFLAT
631 		/*
632 		 * load it all in and treat it like a RAM load from now on
633 		 */
634 		if (flags & FLAT_FLAG_GZIP) {
635 			result = decompress_exec(bprm, sizeof (struct flat_hdr),
636 					 (((char *) textpos) + sizeof (struct flat_hdr)),
637 					 (text_len + data_len + (relocs * sizeof(unsigned long))
638 						  - sizeof (struct flat_hdr)),
639 					 0);
640 			memmove((void *) datapos, (void *) realdatastart,
641 					data_len + (relocs * sizeof(unsigned long)));
642 		} else if (flags & FLAT_FLAG_GZDATA) {
643 			fpos = 0;
644 			result = bprm->file->f_op->read(bprm->file,
645 					(char *) textpos, text_len, &fpos);
646 			if (!IS_ERR_VALUE(result))
647 				result = decompress_exec(bprm, text_len, (char *) datapos,
648 						 data_len + (relocs * sizeof(unsigned long)), 0);
649 		}
650 		else
651 #endif
652 		{
653 			fpos = 0;
654 			result = bprm->file->f_op->read(bprm->file,
655 					(char *) textpos, text_len, &fpos);
656 			if (!IS_ERR_VALUE(result)) {
657 				fpos = ntohl(hdr->data_start);
658 				result = bprm->file->f_op->read(bprm->file, (char *) datapos,
659 					data_len + (relocs * sizeof(unsigned long)), &fpos);
660 			}
661 		}
662 		if (IS_ERR_VALUE(result)) {
663 			printk("Unable to read code+data+bss, errno %d\n",(int)-result);
664 			do_munmap(current->mm, textpos, text_len + data_len + extra +
665 				MAX_SHARED_LIBS * sizeof(unsigned long));
666 			ret = result;
667 			goto err;
668 		}
669 	}
670 
671 	if (flags & FLAT_FLAG_KTRACE)
672 		printk("Mapping is %x, Entry point is %x, data_start is %x\n",
673 			(int)textpos, 0x00ffffff&ntohl(hdr->entry), ntohl(hdr->data_start));
674 
675 	/* The main program needs a little extra setup in the task structure */
676 	start_code = textpos + sizeof (struct flat_hdr);
677 	end_code = textpos + text_len;
678 	if (id == 0) {
679 		current->mm->start_code = start_code;
680 		current->mm->end_code = end_code;
681 		current->mm->start_data = datapos;
682 		current->mm->end_data = datapos + data_len;
683 		/*
684 		 * set up the brk stuff, uses any slack left in data/bss/stack
685 		 * allocation.  We put the brk after the bss (between the bss
686 		 * and stack) like other platforms.
687 		 * Userspace code relies on the stack pointer starting out at
688 		 * an address right at the end of a page.
689 		 */
690 		current->mm->start_brk = datapos + data_len + bss_len;
691 		current->mm->brk = (current->mm->start_brk + 3) & ~3;
692 		current->mm->context.end_brk = memp + memp_size - stack_len;
693 	}
694 
695 	if (flags & FLAT_FLAG_KTRACE)
696 		printk("%s %s: TEXT=%x-%x DATA=%x-%x BSS=%x-%x\n",
697 			id ? "Lib" : "Load", bprm->filename,
698 			(int) start_code, (int) end_code,
699 			(int) datapos,
700 			(int) (datapos + data_len),
701 			(int) (datapos + data_len),
702 			(int) (((datapos + data_len + bss_len) + 3) & ~3));
703 
704 	text_len -= sizeof(struct flat_hdr); /* the real code len */
705 
706 	/* Store the current module values into the global library structure */
707 	libinfo->lib_list[id].start_code = start_code;
708 	libinfo->lib_list[id].start_data = datapos;
709 	libinfo->lib_list[id].start_brk = datapos + data_len + bss_len;
710 	libinfo->lib_list[id].text_len = text_len;
711 	libinfo->lib_list[id].loaded = 1;
712 	libinfo->lib_list[id].entry = (0x00ffffff & ntohl(hdr->entry)) + textpos;
713 	libinfo->lib_list[id].build_date = ntohl(hdr->build_date);
714 
715 	/*
716 	 * We just load the allocations into some temporary memory to
717 	 * help simplify all this mumbo jumbo
718 	 *
719 	 * We've got two different sections of relocation entries.
720 	 * The first is the GOT which resides at the beginning of the data segment
721 	 * and is terminated with a -1.  This one can be relocated in place.
722 	 * The second is the extra relocation entries tacked after the image's
723 	 * data segment. These require a little more processing as the entry is
724 	 * really an offset into the image which contains an offset into the
725 	 * image.
726 	 */
727 	if (flags & FLAT_FLAG_GOTPIC) {
728 		for (rp = (unsigned long *)datapos; *rp != 0xffffffff; rp++) {
729 			unsigned long addr;
730 			if (*rp) {
731 				addr = calc_reloc(*rp, libinfo, id, 0);
732 				if (addr == RELOC_FAILED) {
733 					ret = -ENOEXEC;
734 					goto err;
735 				}
736 				*rp = addr;
737 			}
738 		}
739 	}
740 
741 	/*
742 	 * Now run through the relocation entries.
743 	 * We've got to be careful here as C++ produces relocatable zero
744 	 * entries in the constructor and destructor tables which are then
745 	 * tested for being not zero (which will always occur unless we're
746 	 * based from address zero).  This causes an endless loop as __start
747 	 * is at zero.  The solution used is to not relocate zero addresses.
748 	 * This has the negative side effect of not allowing a global data
749 	 * reference to be statically initialised to _stext (I've moved
750 	 * __start to address 4 so that is okay).
751 	 */
752 	if (rev > OLD_FLAT_VERSION) {
753 		unsigned long persistent = 0;
754 		for (i=0; i < relocs; i++) {
755 			unsigned long addr, relval;
756 
757 			/* Get the address of the pointer to be
758 			   relocated (of course, the address has to be
759 			   relocated first).  */
760 			relval = ntohl(reloc[i]);
761 			if (flat_set_persistent (relval, &persistent))
762 				continue;
763 			addr = flat_get_relocate_addr(relval);
764 			rp = (unsigned long *) calc_reloc(addr, libinfo, id, 1);
765 			if (rp == (unsigned long *)RELOC_FAILED) {
766 				ret = -ENOEXEC;
767 				goto err;
768 			}
769 
770 			/* Get the pointer's value.  */
771 			addr = flat_get_addr_from_rp(rp, relval, flags,
772 							&persistent);
773 			if (addr != 0) {
774 				/*
775 				 * Do the relocation.  PIC relocs in the data section are
776 				 * already in target order
777 				 */
778 				if ((flags & FLAT_FLAG_GOTPIC) == 0)
779 					addr = ntohl(addr);
780 				addr = calc_reloc(addr, libinfo, id, 0);
781 				if (addr == RELOC_FAILED) {
782 					ret = -ENOEXEC;
783 					goto err;
784 				}
785 
786 				/* Write back the relocated pointer.  */
787 				flat_put_addr_at_rp(rp, addr, relval);
788 			}
789 		}
790 	} else {
791 		for (i=0; i < relocs; i++)
792 			old_reloc(ntohl(reloc[i]));
793 	}
794 
795 	flush_icache_range(start_code, end_code);
796 
797 	/* zero the BSS,  BRK and stack areas */
798 	memset((void*)(datapos + data_len), 0, bss_len +
799 			(memp + memp_size - stack_len -		/* end brk */
800 			libinfo->lib_list[id].start_brk) +	/* start brk */
801 			stack_len);
802 
803 	return 0;
804 err:
805 	return ret;
806 }
807 
808 
809 /****************************************************************************/
810 #ifdef CONFIG_BINFMT_SHARED_FLAT
811 
812 /*
813  * Load a shared library into memory.  The library gets its own data
814  * segment (including bss) but not argv/argc/environ.
815  */
816 
load_flat_shared_library(int id,struct lib_info * libs)817 static int load_flat_shared_library(int id, struct lib_info *libs)
818 {
819 	struct linux_binprm bprm;
820 	int res;
821 	char buf[16];
822 
823 	/* Create the file name */
824 	sprintf(buf, "/lib/lib%d.so", id);
825 
826 	/* Open the file up */
827 	bprm.filename = buf;
828 	bprm.file = open_exec(bprm.filename);
829 	res = PTR_ERR(bprm.file);
830 	if (IS_ERR(bprm.file))
831 		return res;
832 
833 	bprm.cred = prepare_exec_creds();
834 	res = -ENOMEM;
835 	if (!bprm.cred)
836 		goto out;
837 
838 	res = prepare_binprm(&bprm);
839 
840 	if (!IS_ERR_VALUE(res))
841 		res = load_flat_file(&bprm, libs, id, NULL);
842 
843 	abort_creds(bprm.cred);
844 
845 out:
846 	allow_write_access(bprm.file);
847 	fput(bprm.file);
848 
849 	return(res);
850 }
851 
852 #endif /* CONFIG_BINFMT_SHARED_FLAT */
853 /****************************************************************************/
854 
855 /*
856  * These are the functions used to load flat style executables and shared
857  * libraries.  There is no binary dependent code anywhere else.
858  */
859 
load_flat_binary(struct linux_binprm * bprm,struct pt_regs * regs)860 static int load_flat_binary(struct linux_binprm * bprm, struct pt_regs * regs)
861 {
862 	struct lib_info libinfo;
863 	unsigned long p = bprm->p;
864 	unsigned long stack_len;
865 	unsigned long start_addr;
866 	unsigned long *sp;
867 	int res;
868 	int i, j;
869 
870 	memset(&libinfo, 0, sizeof(libinfo));
871 	/*
872 	 * We have to add the size of our arguments to our stack size
873 	 * otherwise it's too easy for users to create stack overflows
874 	 * by passing in a huge argument list.  And yes,  we have to be
875 	 * pedantic and include space for the argv/envp array as it may have
876 	 * a lot of entries.
877 	 */
878 #define TOP_OF_ARGS (PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *))
879 	stack_len = TOP_OF_ARGS - bprm->p;             /* the strings */
880 	stack_len += (bprm->argc + 1) * sizeof(char *); /* the argv array */
881 	stack_len += (bprm->envc + 1) * sizeof(char *); /* the envp array */
882 	stack_len += FLAT_STACK_ALIGN - 1;  /* reserve for upcoming alignment */
883 
884 	res = load_flat_file(bprm, &libinfo, 0, &stack_len);
885 	if (IS_ERR_VALUE(res))
886 		return res;
887 
888 	/* Update data segment pointers for all libraries */
889 	for (i=0; i<MAX_SHARED_LIBS; i++)
890 		if (libinfo.lib_list[i].loaded)
891 			for (j=0; j<MAX_SHARED_LIBS; j++)
892 				(-(j+1))[(unsigned long *)(libinfo.lib_list[i].start_data)] =
893 					(libinfo.lib_list[j].loaded)?
894 						libinfo.lib_list[j].start_data:UNLOADED_LIB;
895 
896 	install_exec_creds(bprm);
897  	current->flags &= ~PF_FORKNOEXEC;
898 
899 	set_binfmt(&flat_format);
900 
901 	p = ((current->mm->context.end_brk + stack_len + 3) & ~3) - 4;
902 	DBG_FLT("p=%x\n", (int)p);
903 
904 	/* copy the arg pages onto the stack, this could be more efficient :-) */
905 	for (i = TOP_OF_ARGS - 1; i >= bprm->p; i--)
906 		* (char *) --p =
907 			((char *) page_address(bprm->page[i/PAGE_SIZE]))[i % PAGE_SIZE];
908 
909 	sp = (unsigned long *) create_flat_tables(p, bprm);
910 
911 	/* Fake some return addresses to ensure the call chain will
912 	 * initialise library in order for us.  We are required to call
913 	 * lib 1 first, then 2, ... and finally the main program (id 0).
914 	 */
915 	start_addr = libinfo.lib_list[0].entry;
916 
917 #ifdef CONFIG_BINFMT_SHARED_FLAT
918 	for (i = MAX_SHARED_LIBS-1; i>0; i--) {
919 		if (libinfo.lib_list[i].loaded) {
920 			/* Push previos first to call address */
921 			--sp;	put_user(start_addr, sp);
922 			start_addr = libinfo.lib_list[i].entry;
923 		}
924 	}
925 #endif
926 
927 	/* Stash our initial stack pointer into the mm structure */
928 	current->mm->start_stack = (unsigned long )sp;
929 
930 #ifdef FLAT_PLAT_INIT
931 	FLAT_PLAT_INIT(regs);
932 #endif
933 	DBG_FLT("start_thread(regs=0x%x, entry=0x%x, start_stack=0x%x)\n",
934 		(int)regs, (int)start_addr, (int)current->mm->start_stack);
935 
936 	start_thread(regs, start_addr, current->mm->start_stack);
937 
938 	return 0;
939 }
940 
941 /****************************************************************************/
942 
init_flat_binfmt(void)943 static int __init init_flat_binfmt(void)
944 {
945 	return register_binfmt(&flat_format);
946 }
947 
948 /****************************************************************************/
949 
950 core_initcall(init_flat_binfmt);
951 
952 /****************************************************************************/
953