1 /******************************************************************************
2 
3   Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
4 
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8 
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13 
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17 
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20 
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 
25 ******************************************************************************/
26 #include <linux/compiler.h>
27 #include <linux/errno.h>
28 #include <linux/if_arp.h>
29 #include <linux/in6.h>
30 #include <linux/in.h>
31 #include <linux/ip.h>
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/netdevice.h>
35 #include <linux/proc_fs.h>
36 #include <linux/skbuff.h>
37 #include <linux/slab.h>
38 #include <linux/tcp.h>
39 #include <linux/types.h>
40 #include <linux/wireless.h>
41 #include <linux/etherdevice.h>
42 #include <asm/uaccess.h>
43 
44 #include "libipw.h"
45 
46 /*
47 
48 802.11 Data Frame
49 
50       ,-------------------------------------------------------------------.
51 Bytes |  2   |  2   |    6    |    6    |    6    |  2   | 0..2312 |   4  |
52       |------|------|---------|---------|---------|------|---------|------|
53 Desc. | ctrl | dura |  DA/RA  |   TA    |    SA   | Sequ |  Frame  |  fcs |
54       |      | tion | (BSSID) |         |         | ence |  data   |      |
55       `--------------------------------------------------|         |------'
56 Total: 28 non-data bytes                                 `----.----'
57 							      |
58        .- 'Frame data' expands, if WEP enabled, to <----------'
59        |
60        V
61       ,-----------------------.
62 Bytes |  4  |   0-2296  |  4  |
63       |-----|-----------|-----|
64 Desc. | IV  | Encrypted | ICV |
65       |     | Packet    |     |
66       `-----|           |-----'
67 	    `-----.-----'
68 		  |
69        .- 'Encrypted Packet' expands to
70        |
71        V
72       ,---------------------------------------------------.
73 Bytes |  1   |  1   |    1    |    3     |  2   |  0-2304 |
74       |------|------|---------|----------|------|---------|
75 Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP      |
76       | DSAP | SSAP |         |          |      | Packet  |
77       | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8|      |         |
78       `----------------------------------------------------
79 Total: 8 non-data bytes
80 
81 802.3 Ethernet Data Frame
82 
83       ,-----------------------------------------.
84 Bytes |   6   |   6   |  2   |  Variable |   4  |
85       |-------|-------|------|-----------|------|
86 Desc. | Dest. | Source| Type | IP Packet |  fcs |
87       |  MAC  |  MAC  |      |           |      |
88       `-----------------------------------------'
89 Total: 18 non-data bytes
90 
91 In the event that fragmentation is required, the incoming payload is split into
92 N parts of size ieee->fts.  The first fragment contains the SNAP header and the
93 remaining packets are just data.
94 
95 If encryption is enabled, each fragment payload size is reduced by enough space
96 to add the prefix and postfix (IV and ICV totalling 8 bytes in the case of WEP)
97 So if you have 1500 bytes of payload with ieee->fts set to 500 without
98 encryption it will take 3 frames.  With WEP it will take 4 frames as the
99 payload of each frame is reduced to 492 bytes.
100 
101 * SKB visualization
102 *
103 *  ,- skb->data
104 * |
105 * |    ETHERNET HEADER        ,-<-- PAYLOAD
106 * |                           |     14 bytes from skb->data
107 * |  2 bytes for Type --> ,T. |     (sizeof ethhdr)
108 * |                       | | |
109 * |,-Dest.--. ,--Src.---. | | |
110 * |  6 bytes| | 6 bytes | | | |
111 * v         | |         | | | |
112 * 0         | v       1 | v | v           2
113 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
114 *     ^     | ^         | ^ |
115 *     |     | |         | | |
116 *     |     | |         | `T' <---- 2 bytes for Type
117 *     |     | |         |
118 *     |     | '---SNAP--' <-------- 6 bytes for SNAP
119 *     |     |
120 *     `-IV--' <-------------------- 4 bytes for IV (WEP)
121 *
122 *      SNAP HEADER
123 *
124 */
125 
126 static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 };
127 static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 };
128 
libipw_copy_snap(u8 * data,__be16 h_proto)129 static int libipw_copy_snap(u8 * data, __be16 h_proto)
130 {
131 	struct libipw_snap_hdr *snap;
132 	u8 *oui;
133 
134 	snap = (struct libipw_snap_hdr *)data;
135 	snap->dsap = 0xaa;
136 	snap->ssap = 0xaa;
137 	snap->ctrl = 0x03;
138 
139 	if (h_proto == htons(ETH_P_AARP) || h_proto == htons(ETH_P_IPX))
140 		oui = P802_1H_OUI;
141 	else
142 		oui = RFC1042_OUI;
143 	snap->oui[0] = oui[0];
144 	snap->oui[1] = oui[1];
145 	snap->oui[2] = oui[2];
146 
147 	memcpy(data + SNAP_SIZE, &h_proto, sizeof(u16));
148 
149 	return SNAP_SIZE + sizeof(u16);
150 }
151 
libipw_encrypt_fragment(struct libipw_device * ieee,struct sk_buff * frag,int hdr_len)152 static int libipw_encrypt_fragment(struct libipw_device *ieee,
153 					     struct sk_buff *frag, int hdr_len)
154 {
155 	struct lib80211_crypt_data *crypt =
156 		ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx];
157 	int res;
158 
159 	if (crypt == NULL)
160 		return -1;
161 
162 	/* To encrypt, frame format is:
163 	 * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes) */
164 	atomic_inc(&crypt->refcnt);
165 	res = 0;
166 	if (crypt->ops && crypt->ops->encrypt_mpdu)
167 		res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv);
168 
169 	atomic_dec(&crypt->refcnt);
170 	if (res < 0) {
171 		printk(KERN_INFO "%s: Encryption failed: len=%d.\n",
172 		       ieee->dev->name, frag->len);
173 		ieee->ieee_stats.tx_discards++;
174 		return -1;
175 	}
176 
177 	return 0;
178 }
179 
libipw_txb_free(struct libipw_txb * txb)180 void libipw_txb_free(struct libipw_txb *txb)
181 {
182 	int i;
183 	if (unlikely(!txb))
184 		return;
185 	for (i = 0; i < txb->nr_frags; i++)
186 		if (txb->fragments[i])
187 			dev_kfree_skb_any(txb->fragments[i]);
188 	kfree(txb);
189 }
190 
libipw_alloc_txb(int nr_frags,int txb_size,int headroom,gfp_t gfp_mask)191 static struct libipw_txb *libipw_alloc_txb(int nr_frags, int txb_size,
192 						 int headroom, gfp_t gfp_mask)
193 {
194 	struct libipw_txb *txb;
195 	int i;
196 	txb = kmalloc(sizeof(struct libipw_txb) + (sizeof(u8 *) * nr_frags),
197 		      gfp_mask);
198 	if (!txb)
199 		return NULL;
200 
201 	memset(txb, 0, sizeof(struct libipw_txb));
202 	txb->nr_frags = nr_frags;
203 	txb->frag_size = txb_size;
204 
205 	for (i = 0; i < nr_frags; i++) {
206 		txb->fragments[i] = __dev_alloc_skb(txb_size + headroom,
207 						    gfp_mask);
208 		if (unlikely(!txb->fragments[i])) {
209 			i--;
210 			break;
211 		}
212 		skb_reserve(txb->fragments[i], headroom);
213 	}
214 	if (unlikely(i != nr_frags)) {
215 		while (i >= 0)
216 			dev_kfree_skb_any(txb->fragments[i--]);
217 		kfree(txb);
218 		return NULL;
219 	}
220 	return txb;
221 }
222 
libipw_classify(struct sk_buff * skb)223 static int libipw_classify(struct sk_buff *skb)
224 {
225 	struct ethhdr *eth;
226 	struct iphdr *ip;
227 
228 	eth = (struct ethhdr *)skb->data;
229 	if (eth->h_proto != htons(ETH_P_IP))
230 		return 0;
231 
232 	ip = ip_hdr(skb);
233 	switch (ip->tos & 0xfc) {
234 	case 0x20:
235 		return 2;
236 	case 0x40:
237 		return 1;
238 	case 0x60:
239 		return 3;
240 	case 0x80:
241 		return 4;
242 	case 0xa0:
243 		return 5;
244 	case 0xc0:
245 		return 6;
246 	case 0xe0:
247 		return 7;
248 	default:
249 		return 0;
250 	}
251 }
252 
253 /* Incoming skb is converted to a txb which consists of
254  * a block of 802.11 fragment packets (stored as skbs) */
libipw_xmit(struct sk_buff * skb,struct net_device * dev)255 netdev_tx_t libipw_xmit(struct sk_buff *skb, struct net_device *dev)
256 {
257 	struct libipw_device *ieee = netdev_priv(dev);
258 	struct libipw_txb *txb = NULL;
259 	struct libipw_hdr_3addrqos *frag_hdr;
260 	int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size,
261 	    rts_required;
262 	unsigned long flags;
263 	int encrypt, host_encrypt, host_encrypt_msdu;
264 	__be16 ether_type;
265 	int bytes, fc, hdr_len;
266 	struct sk_buff *skb_frag;
267 	struct libipw_hdr_3addrqos header = {/* Ensure zero initialized */
268 		.duration_id = 0,
269 		.seq_ctl = 0,
270 		.qos_ctl = 0
271 	};
272 	u8 dest[ETH_ALEN], src[ETH_ALEN];
273 	struct lib80211_crypt_data *crypt;
274 	int priority = skb->priority;
275 	int snapped = 0;
276 
277 	if (ieee->is_queue_full && (*ieee->is_queue_full) (dev, priority))
278 		return NETDEV_TX_BUSY;
279 
280 	spin_lock_irqsave(&ieee->lock, flags);
281 
282 	/* If there is no driver handler to take the TXB, dont' bother
283 	 * creating it... */
284 	if (!ieee->hard_start_xmit) {
285 		printk(KERN_WARNING "%s: No xmit handler.\n", ieee->dev->name);
286 		goto success;
287 	}
288 
289 	if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) {
290 		printk(KERN_WARNING "%s: skb too small (%d).\n",
291 		       ieee->dev->name, skb->len);
292 		goto success;
293 	}
294 
295 	ether_type = ((struct ethhdr *)skb->data)->h_proto;
296 
297 	crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx];
298 
299 	encrypt = !(ether_type == htons(ETH_P_PAE) && ieee->ieee802_1x) &&
300 	    ieee->sec.encrypt;
301 
302 	host_encrypt = ieee->host_encrypt && encrypt && crypt;
303 	host_encrypt_msdu = ieee->host_encrypt_msdu && encrypt && crypt;
304 
305 	if (!encrypt && ieee->ieee802_1x &&
306 	    ieee->drop_unencrypted && ether_type != htons(ETH_P_PAE)) {
307 		dev->stats.tx_dropped++;
308 		goto success;
309 	}
310 
311 	/* Save source and destination addresses */
312 	skb_copy_from_linear_data(skb, dest, ETH_ALEN);
313 	skb_copy_from_linear_data_offset(skb, ETH_ALEN, src, ETH_ALEN);
314 
315 	if (host_encrypt)
316 		fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA |
317 		    IEEE80211_FCTL_PROTECTED;
318 	else
319 		fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA;
320 
321 	if (ieee->iw_mode == IW_MODE_INFRA) {
322 		fc |= IEEE80211_FCTL_TODS;
323 		/* To DS: Addr1 = BSSID, Addr2 = SA, Addr3 = DA */
324 		memcpy(header.addr1, ieee->bssid, ETH_ALEN);
325 		memcpy(header.addr2, src, ETH_ALEN);
326 		memcpy(header.addr3, dest, ETH_ALEN);
327 	} else if (ieee->iw_mode == IW_MODE_ADHOC) {
328 		/* not From/To DS: Addr1 = DA, Addr2 = SA, Addr3 = BSSID */
329 		memcpy(header.addr1, dest, ETH_ALEN);
330 		memcpy(header.addr2, src, ETH_ALEN);
331 		memcpy(header.addr3, ieee->bssid, ETH_ALEN);
332 	}
333 	hdr_len = LIBIPW_3ADDR_LEN;
334 
335 	if (ieee->is_qos_active && ieee->is_qos_active(dev, skb)) {
336 		fc |= IEEE80211_STYPE_QOS_DATA;
337 		hdr_len += 2;
338 
339 		skb->priority = libipw_classify(skb);
340 		header.qos_ctl |= cpu_to_le16(skb->priority & LIBIPW_QCTL_TID);
341 	}
342 	header.frame_ctl = cpu_to_le16(fc);
343 
344 	/* Advance the SKB to the start of the payload */
345 	skb_pull(skb, sizeof(struct ethhdr));
346 
347 	/* Determine total amount of storage required for TXB packets */
348 	bytes = skb->len + SNAP_SIZE + sizeof(u16);
349 
350 	/* Encrypt msdu first on the whole data packet. */
351 	if ((host_encrypt || host_encrypt_msdu) &&
352 	    crypt && crypt->ops && crypt->ops->encrypt_msdu) {
353 		int res = 0;
354 		int len = bytes + hdr_len + crypt->ops->extra_msdu_prefix_len +
355 		    crypt->ops->extra_msdu_postfix_len;
356 		struct sk_buff *skb_new = dev_alloc_skb(len);
357 
358 		if (unlikely(!skb_new))
359 			goto failed;
360 
361 		skb_reserve(skb_new, crypt->ops->extra_msdu_prefix_len);
362 		memcpy(skb_put(skb_new, hdr_len), &header, hdr_len);
363 		snapped = 1;
364 		libipw_copy_snap(skb_put(skb_new, SNAP_SIZE + sizeof(u16)),
365 				    ether_type);
366 		skb_copy_from_linear_data(skb, skb_put(skb_new, skb->len), skb->len);
367 		res = crypt->ops->encrypt_msdu(skb_new, hdr_len, crypt->priv);
368 		if (res < 0) {
369 			LIBIPW_ERROR("msdu encryption failed\n");
370 			dev_kfree_skb_any(skb_new);
371 			goto failed;
372 		}
373 		dev_kfree_skb_any(skb);
374 		skb = skb_new;
375 		bytes += crypt->ops->extra_msdu_prefix_len +
376 		    crypt->ops->extra_msdu_postfix_len;
377 		skb_pull(skb, hdr_len);
378 	}
379 
380 	if (host_encrypt || ieee->host_open_frag) {
381 		/* Determine fragmentation size based on destination (multicast
382 		 * and broadcast are not fragmented) */
383 		if (is_multicast_ether_addr(dest) ||
384 		    is_broadcast_ether_addr(dest))
385 			frag_size = MAX_FRAG_THRESHOLD;
386 		else
387 			frag_size = ieee->fts;
388 
389 		/* Determine amount of payload per fragment.  Regardless of if
390 		 * this stack is providing the full 802.11 header, one will
391 		 * eventually be affixed to this fragment -- so we must account
392 		 * for it when determining the amount of payload space. */
393 		bytes_per_frag = frag_size - hdr_len;
394 		if (ieee->config &
395 		    (CFG_LIBIPW_COMPUTE_FCS | CFG_LIBIPW_RESERVE_FCS))
396 			bytes_per_frag -= LIBIPW_FCS_LEN;
397 
398 		/* Each fragment may need to have room for encryption
399 		 * pre/postfix */
400 		if (host_encrypt)
401 			bytes_per_frag -= crypt->ops->extra_mpdu_prefix_len +
402 			    crypt->ops->extra_mpdu_postfix_len;
403 
404 		/* Number of fragments is the total
405 		 * bytes_per_frag / payload_per_fragment */
406 		nr_frags = bytes / bytes_per_frag;
407 		bytes_last_frag = bytes % bytes_per_frag;
408 		if (bytes_last_frag)
409 			nr_frags++;
410 		else
411 			bytes_last_frag = bytes_per_frag;
412 	} else {
413 		nr_frags = 1;
414 		bytes_per_frag = bytes_last_frag = bytes;
415 		frag_size = bytes + hdr_len;
416 	}
417 
418 	rts_required = (frag_size > ieee->rts
419 			&& ieee->config & CFG_LIBIPW_RTS);
420 	if (rts_required)
421 		nr_frags++;
422 
423 	/* When we allocate the TXB we allocate enough space for the reserve
424 	 * and full fragment bytes (bytes_per_frag doesn't include prefix,
425 	 * postfix, header, FCS, etc.) */
426 	txb = libipw_alloc_txb(nr_frags, frag_size,
427 				  ieee->tx_headroom, GFP_ATOMIC);
428 	if (unlikely(!txb)) {
429 		printk(KERN_WARNING "%s: Could not allocate TXB\n",
430 		       ieee->dev->name);
431 		goto failed;
432 	}
433 	txb->encrypted = encrypt;
434 	if (host_encrypt)
435 		txb->payload_size = frag_size * (nr_frags - 1) +
436 		    bytes_last_frag;
437 	else
438 		txb->payload_size = bytes;
439 
440 	if (rts_required) {
441 		skb_frag = txb->fragments[0];
442 		frag_hdr =
443 		    (struct libipw_hdr_3addrqos *)skb_put(skb_frag, hdr_len);
444 
445 		/*
446 		 * Set header frame_ctl to the RTS.
447 		 */
448 		header.frame_ctl =
449 		    cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
450 		memcpy(frag_hdr, &header, hdr_len);
451 
452 		/*
453 		 * Restore header frame_ctl to the original data setting.
454 		 */
455 		header.frame_ctl = cpu_to_le16(fc);
456 
457 		if (ieee->config &
458 		    (CFG_LIBIPW_COMPUTE_FCS | CFG_LIBIPW_RESERVE_FCS))
459 			skb_put(skb_frag, 4);
460 
461 		txb->rts_included = 1;
462 		i = 1;
463 	} else
464 		i = 0;
465 
466 	for (; i < nr_frags; i++) {
467 		skb_frag = txb->fragments[i];
468 
469 		if (host_encrypt)
470 			skb_reserve(skb_frag,
471 				    crypt->ops->extra_mpdu_prefix_len);
472 
473 		frag_hdr =
474 		    (struct libipw_hdr_3addrqos *)skb_put(skb_frag, hdr_len);
475 		memcpy(frag_hdr, &header, hdr_len);
476 
477 		/* If this is not the last fragment, then add the MOREFRAGS
478 		 * bit to the frame control */
479 		if (i != nr_frags - 1) {
480 			frag_hdr->frame_ctl =
481 			    cpu_to_le16(fc | IEEE80211_FCTL_MOREFRAGS);
482 			bytes = bytes_per_frag;
483 		} else {
484 			/* The last fragment takes the remaining length */
485 			bytes = bytes_last_frag;
486 		}
487 
488 		if (i == 0 && !snapped) {
489 			libipw_copy_snap(skb_put
490 					    (skb_frag, SNAP_SIZE + sizeof(u16)),
491 					    ether_type);
492 			bytes -= SNAP_SIZE + sizeof(u16);
493 		}
494 
495 		skb_copy_from_linear_data(skb, skb_put(skb_frag, bytes), bytes);
496 
497 		/* Advance the SKB... */
498 		skb_pull(skb, bytes);
499 
500 		/* Encryption routine will move the header forward in order
501 		 * to insert the IV between the header and the payload */
502 		if (host_encrypt)
503 			libipw_encrypt_fragment(ieee, skb_frag, hdr_len);
504 
505 		if (ieee->config &
506 		    (CFG_LIBIPW_COMPUTE_FCS | CFG_LIBIPW_RESERVE_FCS))
507 			skb_put(skb_frag, 4);
508 	}
509 
510       success:
511 	spin_unlock_irqrestore(&ieee->lock, flags);
512 
513 	dev_kfree_skb_any(skb);
514 
515 	if (txb) {
516 		netdev_tx_t ret = (*ieee->hard_start_xmit)(txb, dev, priority);
517 		if (ret == NETDEV_TX_OK) {
518 			dev->stats.tx_packets++;
519 			dev->stats.tx_bytes += txb->payload_size;
520 			return NETDEV_TX_OK;
521 		}
522 
523 		libipw_txb_free(txb);
524 	}
525 
526 	return NETDEV_TX_OK;
527 
528       failed:
529 	spin_unlock_irqrestore(&ieee->lock, flags);
530 	netif_stop_queue(dev);
531 	dev->stats.tx_errors++;
532 	return NETDEV_TX_BUSY;
533 }
534 EXPORT_SYMBOL(libipw_xmit);
535 
536 EXPORT_SYMBOL(libipw_txb_free);
537