1 /*P:200 This contains all the /dev/lguest code, whereby the userspace launcher
2  * controls and communicates with the Guest.  For example, the first write will
3  * tell us the Guest's memory layout and entry point.  A read will run the
4  * Guest until something happens, such as a signal or the Guest doing a NOTIFY
5  * out to the Launcher.
6 :*/
7 #include <linux/uaccess.h>
8 #include <linux/miscdevice.h>
9 #include <linux/fs.h>
10 #include <linux/sched.h>
11 #include <linux/eventfd.h>
12 #include <linux/file.h>
13 #include <linux/slab.h>
14 #include "lg.h"
15 
16 /*L:056
17  * Before we move on, let's jump ahead and look at what the kernel does when
18  * it needs to look up the eventfds.  That will complete our picture of how we
19  * use RCU.
20  *
21  * The notification value is in cpu->pending_notify: we return true if it went
22  * to an eventfd.
23  */
send_notify_to_eventfd(struct lg_cpu * cpu)24 bool send_notify_to_eventfd(struct lg_cpu *cpu)
25 {
26 	unsigned int i;
27 	struct lg_eventfd_map *map;
28 
29 	/*
30 	 * This "rcu_read_lock()" helps track when someone is still looking at
31 	 * the (RCU-using) eventfds array.  It's not actually a lock at all;
32 	 * indeed it's a noop in many configurations.  (You didn't expect me to
33 	 * explain all the RCU secrets here, did you?)
34 	 */
35 	rcu_read_lock();
36 	/*
37 	 * rcu_dereference is the counter-side of rcu_assign_pointer(); it
38 	 * makes sure we don't access the memory pointed to by
39 	 * cpu->lg->eventfds before cpu->lg->eventfds is set.  Sounds crazy,
40 	 * but Alpha allows this!  Paul McKenney points out that a really
41 	 * aggressive compiler could have the same effect:
42 	 *   http://lists.ozlabs.org/pipermail/lguest/2009-July/001560.html
43 	 *
44 	 * So play safe, use rcu_dereference to get the rcu-protected pointer:
45 	 */
46 	map = rcu_dereference(cpu->lg->eventfds);
47 	/*
48 	 * Simple array search: even if they add an eventfd while we do this,
49 	 * we'll continue to use the old array and just won't see the new one.
50 	 */
51 	for (i = 0; i < map->num; i++) {
52 		if (map->map[i].addr == cpu->pending_notify) {
53 			eventfd_signal(map->map[i].event, 1);
54 			cpu->pending_notify = 0;
55 			break;
56 		}
57 	}
58 	/* We're done with the rcu-protected variable cpu->lg->eventfds. */
59 	rcu_read_unlock();
60 
61 	/* If we cleared the notification, it's because we found a match. */
62 	return cpu->pending_notify == 0;
63 }
64 
65 /*L:055
66  * One of the more tricksy tricks in the Linux Kernel is a technique called
67  * Read Copy Update.  Since one point of lguest is to teach lguest journeyers
68  * about kernel coding, I use it here.  (In case you're curious, other purposes
69  * include learning about virtualization and instilling a deep appreciation for
70  * simplicity and puppies).
71  *
72  * We keep a simple array which maps LHCALL_NOTIFY values to eventfds, but we
73  * add new eventfds without ever blocking readers from accessing the array.
74  * The current Launcher only does this during boot, so that never happens.  But
75  * Read Copy Update is cool, and adding a lock risks damaging even more puppies
76  * than this code does.
77  *
78  * We allocate a brand new one-larger array, copy the old one and add our new
79  * element.  Then we make the lg eventfd pointer point to the new array.
80  * That's the easy part: now we need to free the old one, but we need to make
81  * sure no slow CPU somewhere is still looking at it.  That's what
82  * synchronize_rcu does for us: waits until every CPU has indicated that it has
83  * moved on to know it's no longer using the old one.
84  *
85  * If that's unclear, see http://en.wikipedia.org/wiki/Read-copy-update.
86  */
add_eventfd(struct lguest * lg,unsigned long addr,int fd)87 static int add_eventfd(struct lguest *lg, unsigned long addr, int fd)
88 {
89 	struct lg_eventfd_map *new, *old = lg->eventfds;
90 
91 	/*
92 	 * We don't allow notifications on value 0 anyway (pending_notify of
93 	 * 0 means "nothing pending").
94 	 */
95 	if (!addr)
96 		return -EINVAL;
97 
98 	/*
99 	 * Replace the old array with the new one, carefully: others can
100 	 * be accessing it at the same time.
101 	 */
102 	new = kmalloc(sizeof(*new) + sizeof(new->map[0]) * (old->num + 1),
103 		      GFP_KERNEL);
104 	if (!new)
105 		return -ENOMEM;
106 
107 	/* First make identical copy. */
108 	memcpy(new->map, old->map, sizeof(old->map[0]) * old->num);
109 	new->num = old->num;
110 
111 	/* Now append new entry. */
112 	new->map[new->num].addr = addr;
113 	new->map[new->num].event = eventfd_ctx_fdget(fd);
114 	if (IS_ERR(new->map[new->num].event)) {
115 		int err =  PTR_ERR(new->map[new->num].event);
116 		kfree(new);
117 		return err;
118 	}
119 	new->num++;
120 
121 	/*
122 	 * Now put new one in place: rcu_assign_pointer() is a fancy way of
123 	 * doing "lg->eventfds = new", but it uses memory barriers to make
124 	 * absolutely sure that the contents of "new" written above is nailed
125 	 * down before we actually do the assignment.
126 	 *
127 	 * We have to think about these kinds of things when we're operating on
128 	 * live data without locks.
129 	 */
130 	rcu_assign_pointer(lg->eventfds, new);
131 
132 	/*
133 	 * We're not in a big hurry.  Wait until no one's looking at old
134 	 * version, then free it.
135 	 */
136 	synchronize_rcu();
137 	kfree(old);
138 
139 	return 0;
140 }
141 
142 /*L:052
143  * Receiving notifications from the Guest is usually done by attaching a
144  * particular LHCALL_NOTIFY value to an event filedescriptor.  The eventfd will
145  * become readable when the Guest does an LHCALL_NOTIFY with that value.
146  *
147  * This is really convenient for processing each virtqueue in a separate
148  * thread.
149  */
attach_eventfd(struct lguest * lg,const unsigned long __user * input)150 static int attach_eventfd(struct lguest *lg, const unsigned long __user *input)
151 {
152 	unsigned long addr, fd;
153 	int err;
154 
155 	if (get_user(addr, input) != 0)
156 		return -EFAULT;
157 	input++;
158 	if (get_user(fd, input) != 0)
159 		return -EFAULT;
160 
161 	/*
162 	 * Just make sure two callers don't add eventfds at once.  We really
163 	 * only need to lock against callers adding to the same Guest, so using
164 	 * the Big Lguest Lock is overkill.  But this is setup, not a fast path.
165 	 */
166 	mutex_lock(&lguest_lock);
167 	err = add_eventfd(lg, addr, fd);
168 	mutex_unlock(&lguest_lock);
169 
170 	return err;
171 }
172 
173 /*L:050
174  * Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
175  * number to /dev/lguest.
176  */
user_send_irq(struct lg_cpu * cpu,const unsigned long __user * input)177 static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
178 {
179 	unsigned long irq;
180 
181 	if (get_user(irq, input) != 0)
182 		return -EFAULT;
183 	if (irq >= LGUEST_IRQS)
184 		return -EINVAL;
185 
186 	/*
187 	 * Next time the Guest runs, the core code will see if it can deliver
188 	 * this interrupt.
189 	 */
190 	set_interrupt(cpu, irq);
191 	return 0;
192 }
193 
194 /*L:040
195  * Once our Guest is initialized, the Launcher makes it run by reading
196  * from /dev/lguest.
197  */
read(struct file * file,char __user * user,size_t size,loff_t * o)198 static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
199 {
200 	struct lguest *lg = file->private_data;
201 	struct lg_cpu *cpu;
202 	unsigned int cpu_id = *o;
203 
204 	/* You must write LHREQ_INITIALIZE first! */
205 	if (!lg)
206 		return -EINVAL;
207 
208 	/* Watch out for arbitrary vcpu indexes! */
209 	if (cpu_id >= lg->nr_cpus)
210 		return -EINVAL;
211 
212 	cpu = &lg->cpus[cpu_id];
213 
214 	/* If you're not the task which owns the Guest, go away. */
215 	if (current != cpu->tsk)
216 		return -EPERM;
217 
218 	/* If the Guest is already dead, we indicate why */
219 	if (lg->dead) {
220 		size_t len;
221 
222 		/* lg->dead either contains an error code, or a string. */
223 		if (IS_ERR(lg->dead))
224 			return PTR_ERR(lg->dead);
225 
226 		/* We can only return as much as the buffer they read with. */
227 		len = min(size, strlen(lg->dead)+1);
228 		if (copy_to_user(user, lg->dead, len) != 0)
229 			return -EFAULT;
230 		return len;
231 	}
232 
233 	/*
234 	 * If we returned from read() last time because the Guest sent I/O,
235 	 * clear the flag.
236 	 */
237 	if (cpu->pending_notify)
238 		cpu->pending_notify = 0;
239 
240 	/* Run the Guest until something interesting happens. */
241 	return run_guest(cpu, (unsigned long __user *)user);
242 }
243 
244 /*L:025
245  * This actually initializes a CPU.  For the moment, a Guest is only
246  * uniprocessor, so "id" is always 0.
247  */
lg_cpu_start(struct lg_cpu * cpu,unsigned id,unsigned long start_ip)248 static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
249 {
250 	/* We have a limited number the number of CPUs in the lguest struct. */
251 	if (id >= ARRAY_SIZE(cpu->lg->cpus))
252 		return -EINVAL;
253 
254 	/* Set up this CPU's id, and pointer back to the lguest struct. */
255 	cpu->id = id;
256 	cpu->lg = container_of((cpu - id), struct lguest, cpus[0]);
257 	cpu->lg->nr_cpus++;
258 
259 	/* Each CPU has a timer it can set. */
260 	init_clockdev(cpu);
261 
262 	/*
263 	 * We need a complete page for the Guest registers: they are accessible
264 	 * to the Guest and we can only grant it access to whole pages.
265 	 */
266 	cpu->regs_page = get_zeroed_page(GFP_KERNEL);
267 	if (!cpu->regs_page)
268 		return -ENOMEM;
269 
270 	/* We actually put the registers at the bottom of the page. */
271 	cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
272 
273 	/*
274 	 * Now we initialize the Guest's registers, handing it the start
275 	 * address.
276 	 */
277 	lguest_arch_setup_regs(cpu, start_ip);
278 
279 	/*
280 	 * We keep a pointer to the Launcher task (ie. current task) for when
281 	 * other Guests want to wake this one (eg. console input).
282 	 */
283 	cpu->tsk = current;
284 
285 	/*
286 	 * We need to keep a pointer to the Launcher's memory map, because if
287 	 * the Launcher dies we need to clean it up.  If we don't keep a
288 	 * reference, it is destroyed before close() is called.
289 	 */
290 	cpu->mm = get_task_mm(cpu->tsk);
291 
292 	/*
293 	 * We remember which CPU's pages this Guest used last, for optimization
294 	 * when the same Guest runs on the same CPU twice.
295 	 */
296 	cpu->last_pages = NULL;
297 
298 	/* No error == success. */
299 	return 0;
300 }
301 
302 /*L:020
303  * The initialization write supplies 3 pointer sized (32 or 64 bit) values (in
304  * addition to the LHREQ_INITIALIZE value).  These are:
305  *
306  * base: The start of the Guest-physical memory inside the Launcher memory.
307  *
308  * pfnlimit: The highest (Guest-physical) page number the Guest should be
309  * allowed to access.  The Guest memory lives inside the Launcher, so it sets
310  * this to ensure the Guest can only reach its own memory.
311  *
312  * start: The first instruction to execute ("eip" in x86-speak).
313  */
initialize(struct file * file,const unsigned long __user * input)314 static int initialize(struct file *file, const unsigned long __user *input)
315 {
316 	/* "struct lguest" contains all we (the Host) know about a Guest. */
317 	struct lguest *lg;
318 	int err;
319 	unsigned long args[3];
320 
321 	/*
322 	 * We grab the Big Lguest lock, which protects against multiple
323 	 * simultaneous initializations.
324 	 */
325 	mutex_lock(&lguest_lock);
326 	/* You can't initialize twice!  Close the device and start again... */
327 	if (file->private_data) {
328 		err = -EBUSY;
329 		goto unlock;
330 	}
331 
332 	if (copy_from_user(args, input, sizeof(args)) != 0) {
333 		err = -EFAULT;
334 		goto unlock;
335 	}
336 
337 	lg = kzalloc(sizeof(*lg), GFP_KERNEL);
338 	if (!lg) {
339 		err = -ENOMEM;
340 		goto unlock;
341 	}
342 
343 	lg->eventfds = kmalloc(sizeof(*lg->eventfds), GFP_KERNEL);
344 	if (!lg->eventfds) {
345 		err = -ENOMEM;
346 		goto free_lg;
347 	}
348 	lg->eventfds->num = 0;
349 
350 	/* Populate the easy fields of our "struct lguest" */
351 	lg->mem_base = (void __user *)args[0];
352 	lg->pfn_limit = args[1];
353 
354 	/* This is the first cpu (cpu 0) and it will start booting at args[2] */
355 	err = lg_cpu_start(&lg->cpus[0], 0, args[2]);
356 	if (err)
357 		goto free_eventfds;
358 
359 	/*
360 	 * Initialize the Guest's shadow page tables, using the toplevel
361 	 * address the Launcher gave us.  This allocates memory, so can fail.
362 	 */
363 	err = init_guest_pagetable(lg);
364 	if (err)
365 		goto free_regs;
366 
367 	/* We keep our "struct lguest" in the file's private_data. */
368 	file->private_data = lg;
369 
370 	mutex_unlock(&lguest_lock);
371 
372 	/* And because this is a write() call, we return the length used. */
373 	return sizeof(args);
374 
375 free_regs:
376 	/* FIXME: This should be in free_vcpu */
377 	free_page(lg->cpus[0].regs_page);
378 free_eventfds:
379 	kfree(lg->eventfds);
380 free_lg:
381 	kfree(lg);
382 unlock:
383 	mutex_unlock(&lguest_lock);
384 	return err;
385 }
386 
387 /*L:010
388  * The first operation the Launcher does must be a write.  All writes
389  * start with an unsigned long number: for the first write this must be
390  * LHREQ_INITIALIZE to set up the Guest.  After that the Launcher can use
391  * writes of other values to send interrupts or set up receipt of notifications.
392  *
393  * Note that we overload the "offset" in the /dev/lguest file to indicate what
394  * CPU number we're dealing with.  Currently this is always 0 since we only
395  * support uniprocessor Guests, but you can see the beginnings of SMP support
396  * here.
397  */
write(struct file * file,const char __user * in,size_t size,loff_t * off)398 static ssize_t write(struct file *file, const char __user *in,
399 		     size_t size, loff_t *off)
400 {
401 	/*
402 	 * Once the Guest is initialized, we hold the "struct lguest" in the
403 	 * file private data.
404 	 */
405 	struct lguest *lg = file->private_data;
406 	const unsigned long __user *input = (const unsigned long __user *)in;
407 	unsigned long req;
408 	struct lg_cpu *uninitialized_var(cpu);
409 	unsigned int cpu_id = *off;
410 
411 	/* The first value tells us what this request is. */
412 	if (get_user(req, input) != 0)
413 		return -EFAULT;
414 	input++;
415 
416 	/* If you haven't initialized, you must do that first. */
417 	if (req != LHREQ_INITIALIZE) {
418 		if (!lg || (cpu_id >= lg->nr_cpus))
419 			return -EINVAL;
420 		cpu = &lg->cpus[cpu_id];
421 
422 		/* Once the Guest is dead, you can only read() why it died. */
423 		if (lg->dead)
424 			return -ENOENT;
425 	}
426 
427 	switch (req) {
428 	case LHREQ_INITIALIZE:
429 		return initialize(file, input);
430 	case LHREQ_IRQ:
431 		return user_send_irq(cpu, input);
432 	case LHREQ_EVENTFD:
433 		return attach_eventfd(lg, input);
434 	default:
435 		return -EINVAL;
436 	}
437 }
438 
439 /*L:060
440  * The final piece of interface code is the close() routine.  It reverses
441  * everything done in initialize().  This is usually called because the
442  * Launcher exited.
443  *
444  * Note that the close routine returns 0 or a negative error number: it can't
445  * really fail, but it can whine.  I blame Sun for this wart, and K&R C for
446  * letting them do it.
447 :*/
close(struct inode * inode,struct file * file)448 static int close(struct inode *inode, struct file *file)
449 {
450 	struct lguest *lg = file->private_data;
451 	unsigned int i;
452 
453 	/* If we never successfully initialized, there's nothing to clean up */
454 	if (!lg)
455 		return 0;
456 
457 	/*
458 	 * We need the big lock, to protect from inter-guest I/O and other
459 	 * Launchers initializing guests.
460 	 */
461 	mutex_lock(&lguest_lock);
462 
463 	/* Free up the shadow page tables for the Guest. */
464 	free_guest_pagetable(lg);
465 
466 	for (i = 0; i < lg->nr_cpus; i++) {
467 		/* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
468 		hrtimer_cancel(&lg->cpus[i].hrt);
469 		/* We can free up the register page we allocated. */
470 		free_page(lg->cpus[i].regs_page);
471 		/*
472 		 * Now all the memory cleanups are done, it's safe to release
473 		 * the Launcher's memory management structure.
474 		 */
475 		mmput(lg->cpus[i].mm);
476 	}
477 
478 	/* Release any eventfds they registered. */
479 	for (i = 0; i < lg->eventfds->num; i++)
480 		eventfd_ctx_put(lg->eventfds->map[i].event);
481 	kfree(lg->eventfds);
482 
483 	/*
484 	 * If lg->dead doesn't contain an error code it will be NULL or a
485 	 * kmalloc()ed string, either of which is ok to hand to kfree().
486 	 */
487 	if (!IS_ERR(lg->dead))
488 		kfree(lg->dead);
489 	/* Free the memory allocated to the lguest_struct */
490 	kfree(lg);
491 	/* Release lock and exit. */
492 	mutex_unlock(&lguest_lock);
493 
494 	return 0;
495 }
496 
497 /*L:000
498  * Welcome to our journey through the Launcher!
499  *
500  * The Launcher is the Host userspace program which sets up, runs and services
501  * the Guest.  In fact, many comments in the Drivers which refer to "the Host"
502  * doing things are inaccurate: the Launcher does all the device handling for
503  * the Guest, but the Guest can't know that.
504  *
505  * Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
506  * shall see more of that later.
507  *
508  * We begin our understanding with the Host kernel interface which the Launcher
509  * uses: reading and writing a character device called /dev/lguest.  All the
510  * work happens in the read(), write() and close() routines:
511  */
512 static const struct file_operations lguest_fops = {
513 	.owner	 = THIS_MODULE,
514 	.release = close,
515 	.write	 = write,
516 	.read	 = read,
517 	.llseek  = default_llseek,
518 };
519 
520 /*
521  * This is a textbook example of a "misc" character device.  Populate a "struct
522  * miscdevice" and register it with misc_register().
523  */
524 static struct miscdevice lguest_dev = {
525 	.minor	= MISC_DYNAMIC_MINOR,
526 	.name	= "lguest",
527 	.fops	= &lguest_fops,
528 };
529 
lguest_device_init(void)530 int __init lguest_device_init(void)
531 {
532 	return misc_register(&lguest_dev);
533 }
534 
lguest_device_remove(void)535 void __exit lguest_device_remove(void)
536 {
537 	misc_deregister(&lguest_dev);
538 }
539