1 /*
2  * SRAM allocator for Blackfin on-chip memory
3  *
4  * Copyright 2004-2009 Analog Devices Inc.
5  *
6  * Licensed under the GPL-2 or later.
7  */
8 
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/miscdevice.h>
13 #include <linux/ioport.h>
14 #include <linux/fcntl.h>
15 #include <linux/init.h>
16 #include <linux/poll.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <linux/spinlock.h>
20 #include <linux/rtc.h>
21 #include <linux/slab.h>
22 #include <asm/blackfin.h>
23 #include <asm/mem_map.h>
24 #include "blackfin_sram.h"
25 
26 /* the data structure for L1 scratchpad and DATA SRAM */
27 struct sram_piece {
28 	void *paddr;
29 	int size;
30 	pid_t pid;
31 	struct sram_piece *next;
32 };
33 
34 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1sram_lock);
35 static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
36 static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
37 
38 #if L1_DATA_A_LENGTH != 0
39 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
40 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
41 #endif
42 
43 #if L1_DATA_B_LENGTH != 0
44 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
45 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
46 #endif
47 
48 #if L1_DATA_A_LENGTH || L1_DATA_B_LENGTH
49 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_data_sram_lock);
50 #endif
51 
52 #if L1_CODE_LENGTH != 0
53 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_inst_sram_lock);
54 static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
55 static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
56 #endif
57 
58 #if L2_LENGTH != 0
59 static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
60 static struct sram_piece free_l2_sram_head, used_l2_sram_head;
61 #endif
62 
63 static struct kmem_cache *sram_piece_cache;
64 
65 /* L1 Scratchpad SRAM initialization function */
l1sram_init(void)66 static void __init l1sram_init(void)
67 {
68 	unsigned int cpu;
69 	unsigned long reserve;
70 
71 #ifdef CONFIG_SMP
72 	reserve = 0;
73 #else
74 	reserve = sizeof(struct l1_scratch_task_info);
75 #endif
76 
77 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
78 		per_cpu(free_l1_ssram_head, cpu).next =
79 			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
80 		if (!per_cpu(free_l1_ssram_head, cpu).next) {
81 			printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
82 			return;
83 		}
84 
85 		per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu) + reserve;
86 		per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH - reserve;
87 		per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
88 		per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
89 
90 		per_cpu(used_l1_ssram_head, cpu).next = NULL;
91 
92 		/* mutex initialize */
93 		spin_lock_init(&per_cpu(l1sram_lock, cpu));
94 		printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
95 			L1_SCRATCH_LENGTH >> 10);
96 	}
97 }
98 
l1_data_sram_init(void)99 static void __init l1_data_sram_init(void)
100 {
101 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
102 	unsigned int cpu;
103 #endif
104 #if L1_DATA_A_LENGTH != 0
105 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
106 		per_cpu(free_l1_data_A_sram_head, cpu).next =
107 			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
108 		if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
109 			printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
110 			return;
111 		}
112 
113 		per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
114 			(void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
115 		per_cpu(free_l1_data_A_sram_head, cpu).next->size =
116 			L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
117 		per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
118 		per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
119 
120 		per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
121 
122 		printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
123 			L1_DATA_A_LENGTH >> 10,
124 			per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
125 	}
126 #endif
127 #if L1_DATA_B_LENGTH != 0
128 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
129 		per_cpu(free_l1_data_B_sram_head, cpu).next =
130 			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
131 		if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
132 			printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
133 			return;
134 		}
135 
136 		per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
137 			(void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
138 		per_cpu(free_l1_data_B_sram_head, cpu).next->size =
139 			L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
140 		per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
141 		per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
142 
143 		per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
144 
145 		printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
146 			L1_DATA_B_LENGTH >> 10,
147 			per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
148 		/* mutex initialize */
149 	}
150 #endif
151 
152 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
153 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
154 		spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
155 #endif
156 }
157 
l1_inst_sram_init(void)158 static void __init l1_inst_sram_init(void)
159 {
160 #if L1_CODE_LENGTH != 0
161 	unsigned int cpu;
162 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
163 		per_cpu(free_l1_inst_sram_head, cpu).next =
164 			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
165 		if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
166 			printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
167 			return;
168 		}
169 
170 		per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
171 			(void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
172 		per_cpu(free_l1_inst_sram_head, cpu).next->size =
173 			L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
174 		per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
175 		per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
176 
177 		per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
178 
179 		printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
180 			L1_CODE_LENGTH >> 10,
181 			per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
182 
183 		/* mutex initialize */
184 		spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
185 	}
186 #endif
187 }
188 
l2_sram_init(void)189 static void __init l2_sram_init(void)
190 {
191 #if L2_LENGTH != 0
192 	free_l2_sram_head.next =
193 		kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
194 	if (!free_l2_sram_head.next) {
195 		printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
196 		return;
197 	}
198 
199 	free_l2_sram_head.next->paddr =
200 		(void *)L2_START + (_ebss_l2 - _stext_l2);
201 	free_l2_sram_head.next->size =
202 		L2_LENGTH - (_ebss_l2 - _stext_l2);
203 	free_l2_sram_head.next->pid = 0;
204 	free_l2_sram_head.next->next = NULL;
205 
206 	used_l2_sram_head.next = NULL;
207 
208 	printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
209 		L2_LENGTH >> 10,
210 		free_l2_sram_head.next->size >> 10);
211 
212 	/* mutex initialize */
213 	spin_lock_init(&l2_sram_lock);
214 #endif
215 }
216 
bfin_sram_init(void)217 static int __init bfin_sram_init(void)
218 {
219 	sram_piece_cache = kmem_cache_create("sram_piece_cache",
220 				sizeof(struct sram_piece),
221 				0, SLAB_PANIC, NULL);
222 
223 	l1sram_init();
224 	l1_data_sram_init();
225 	l1_inst_sram_init();
226 	l2_sram_init();
227 
228 	return 0;
229 }
230 pure_initcall(bfin_sram_init);
231 
232 /* SRAM allocate function */
_sram_alloc(size_t size,struct sram_piece * pfree_head,struct sram_piece * pused_head)233 static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
234 		struct sram_piece *pused_head)
235 {
236 	struct sram_piece *pslot, *plast, *pavail;
237 
238 	if (size <= 0 || !pfree_head || !pused_head)
239 		return NULL;
240 
241 	/* Align the size */
242 	size = (size + 3) & ~3;
243 
244 	pslot = pfree_head->next;
245 	plast = pfree_head;
246 
247 	/* search an available piece slot */
248 	while (pslot != NULL && size > pslot->size) {
249 		plast = pslot;
250 		pslot = pslot->next;
251 	}
252 
253 	if (!pslot)
254 		return NULL;
255 
256 	if (pslot->size == size) {
257 		plast->next = pslot->next;
258 		pavail = pslot;
259 	} else {
260 		/* use atomic so our L1 allocator can be used atomically */
261 		pavail = kmem_cache_alloc(sram_piece_cache, GFP_ATOMIC);
262 
263 		if (!pavail)
264 			return NULL;
265 
266 		pavail->paddr = pslot->paddr;
267 		pavail->size = size;
268 		pslot->paddr += size;
269 		pslot->size -= size;
270 	}
271 
272 	pavail->pid = current->pid;
273 
274 	pslot = pused_head->next;
275 	plast = pused_head;
276 
277 	/* insert new piece into used piece list !!! */
278 	while (pslot != NULL && pavail->paddr < pslot->paddr) {
279 		plast = pslot;
280 		pslot = pslot->next;
281 	}
282 
283 	pavail->next = pslot;
284 	plast->next = pavail;
285 
286 	return pavail->paddr;
287 }
288 
289 /* Allocate the largest available block.  */
_sram_alloc_max(struct sram_piece * pfree_head,struct sram_piece * pused_head,unsigned long * psize)290 static void *_sram_alloc_max(struct sram_piece *pfree_head,
291 				struct sram_piece *pused_head,
292 				unsigned long *psize)
293 {
294 	struct sram_piece *pslot, *pmax;
295 
296 	if (!pfree_head || !pused_head)
297 		return NULL;
298 
299 	pmax = pslot = pfree_head->next;
300 
301 	/* search an available piece slot */
302 	while (pslot != NULL) {
303 		if (pslot->size > pmax->size)
304 			pmax = pslot;
305 		pslot = pslot->next;
306 	}
307 
308 	if (!pmax)
309 		return NULL;
310 
311 	*psize = pmax->size;
312 
313 	return _sram_alloc(*psize, pfree_head, pused_head);
314 }
315 
316 /* SRAM free function */
_sram_free(const void * addr,struct sram_piece * pfree_head,struct sram_piece * pused_head)317 static int _sram_free(const void *addr,
318 			struct sram_piece *pfree_head,
319 			struct sram_piece *pused_head)
320 {
321 	struct sram_piece *pslot, *plast, *pavail;
322 
323 	if (!pfree_head || !pused_head)
324 		return -1;
325 
326 	/* search the relevant memory slot */
327 	pslot = pused_head->next;
328 	plast = pused_head;
329 
330 	/* search an available piece slot */
331 	while (pslot != NULL && pslot->paddr != addr) {
332 		plast = pslot;
333 		pslot = pslot->next;
334 	}
335 
336 	if (!pslot)
337 		return -1;
338 
339 	plast->next = pslot->next;
340 	pavail = pslot;
341 	pavail->pid = 0;
342 
343 	/* insert free pieces back to the free list */
344 	pslot = pfree_head->next;
345 	plast = pfree_head;
346 
347 	while (pslot != NULL && addr > pslot->paddr) {
348 		plast = pslot;
349 		pslot = pslot->next;
350 	}
351 
352 	if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
353 		plast->size += pavail->size;
354 		kmem_cache_free(sram_piece_cache, pavail);
355 	} else {
356 		pavail->next = plast->next;
357 		plast->next = pavail;
358 		plast = pavail;
359 	}
360 
361 	if (pslot && plast->paddr + plast->size == pslot->paddr) {
362 		plast->size += pslot->size;
363 		plast->next = pslot->next;
364 		kmem_cache_free(sram_piece_cache, pslot);
365 	}
366 
367 	return 0;
368 }
369 
sram_free(const void * addr)370 int sram_free(const void *addr)
371 {
372 
373 #if L1_CODE_LENGTH != 0
374 	if (addr >= (void *)get_l1_code_start()
375 		 && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
376 		return l1_inst_sram_free(addr);
377 	else
378 #endif
379 #if L1_DATA_A_LENGTH != 0
380 	if (addr >= (void *)get_l1_data_a_start()
381 		 && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
382 		return l1_data_A_sram_free(addr);
383 	else
384 #endif
385 #if L1_DATA_B_LENGTH != 0
386 	if (addr >= (void *)get_l1_data_b_start()
387 		 && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
388 		return l1_data_B_sram_free(addr);
389 	else
390 #endif
391 #if L2_LENGTH != 0
392 	if (addr >= (void *)L2_START
393 		 && addr < (void *)(L2_START + L2_LENGTH))
394 		return l2_sram_free(addr);
395 	else
396 #endif
397 		return -1;
398 }
399 EXPORT_SYMBOL(sram_free);
400 
l1_data_A_sram_alloc(size_t size)401 void *l1_data_A_sram_alloc(size_t size)
402 {
403 #if L1_DATA_A_LENGTH != 0
404 	unsigned long flags;
405 	void *addr;
406 	unsigned int cpu;
407 
408 	cpu = smp_processor_id();
409 	/* add mutex operation */
410 	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
411 
412 	addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
413 			&per_cpu(used_l1_data_A_sram_head, cpu));
414 
415 	/* add mutex operation */
416 	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
417 
418 	pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
419 		 (long unsigned int)addr, size);
420 
421 	return addr;
422 #else
423 	return NULL;
424 #endif
425 }
426 EXPORT_SYMBOL(l1_data_A_sram_alloc);
427 
l1_data_A_sram_free(const void * addr)428 int l1_data_A_sram_free(const void *addr)
429 {
430 #if L1_DATA_A_LENGTH != 0
431 	unsigned long flags;
432 	int ret;
433 	unsigned int cpu;
434 
435 	cpu = smp_processor_id();
436 	/* add mutex operation */
437 	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
438 
439 	ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
440 			&per_cpu(used_l1_data_A_sram_head, cpu));
441 
442 	/* add mutex operation */
443 	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
444 
445 	return ret;
446 #else
447 	return -1;
448 #endif
449 }
450 EXPORT_SYMBOL(l1_data_A_sram_free);
451 
l1_data_B_sram_alloc(size_t size)452 void *l1_data_B_sram_alloc(size_t size)
453 {
454 #if L1_DATA_B_LENGTH != 0
455 	unsigned long flags;
456 	void *addr;
457 	unsigned int cpu;
458 
459 	cpu = smp_processor_id();
460 	/* add mutex operation */
461 	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
462 
463 	addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
464 			&per_cpu(used_l1_data_B_sram_head, cpu));
465 
466 	/* add mutex operation */
467 	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
468 
469 	pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
470 		 (long unsigned int)addr, size);
471 
472 	return addr;
473 #else
474 	return NULL;
475 #endif
476 }
477 EXPORT_SYMBOL(l1_data_B_sram_alloc);
478 
l1_data_B_sram_free(const void * addr)479 int l1_data_B_sram_free(const void *addr)
480 {
481 #if L1_DATA_B_LENGTH != 0
482 	unsigned long flags;
483 	int ret;
484 	unsigned int cpu;
485 
486 	cpu = smp_processor_id();
487 	/* add mutex operation */
488 	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
489 
490 	ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
491 			&per_cpu(used_l1_data_B_sram_head, cpu));
492 
493 	/* add mutex operation */
494 	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
495 
496 	return ret;
497 #else
498 	return -1;
499 #endif
500 }
501 EXPORT_SYMBOL(l1_data_B_sram_free);
502 
l1_data_sram_alloc(size_t size)503 void *l1_data_sram_alloc(size_t size)
504 {
505 	void *addr = l1_data_A_sram_alloc(size);
506 
507 	if (!addr)
508 		addr = l1_data_B_sram_alloc(size);
509 
510 	return addr;
511 }
512 EXPORT_SYMBOL(l1_data_sram_alloc);
513 
l1_data_sram_zalloc(size_t size)514 void *l1_data_sram_zalloc(size_t size)
515 {
516 	void *addr = l1_data_sram_alloc(size);
517 
518 	if (addr)
519 		memset(addr, 0x00, size);
520 
521 	return addr;
522 }
523 EXPORT_SYMBOL(l1_data_sram_zalloc);
524 
l1_data_sram_free(const void * addr)525 int l1_data_sram_free(const void *addr)
526 {
527 	int ret;
528 	ret = l1_data_A_sram_free(addr);
529 	if (ret == -1)
530 		ret = l1_data_B_sram_free(addr);
531 	return ret;
532 }
533 EXPORT_SYMBOL(l1_data_sram_free);
534 
l1_inst_sram_alloc(size_t size)535 void *l1_inst_sram_alloc(size_t size)
536 {
537 #if L1_CODE_LENGTH != 0
538 	unsigned long flags;
539 	void *addr;
540 	unsigned int cpu;
541 
542 	cpu = smp_processor_id();
543 	/* add mutex operation */
544 	spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
545 
546 	addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
547 			&per_cpu(used_l1_inst_sram_head, cpu));
548 
549 	/* add mutex operation */
550 	spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
551 
552 	pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
553 		 (long unsigned int)addr, size);
554 
555 	return addr;
556 #else
557 	return NULL;
558 #endif
559 }
560 EXPORT_SYMBOL(l1_inst_sram_alloc);
561 
l1_inst_sram_free(const void * addr)562 int l1_inst_sram_free(const void *addr)
563 {
564 #if L1_CODE_LENGTH != 0
565 	unsigned long flags;
566 	int ret;
567 	unsigned int cpu;
568 
569 	cpu = smp_processor_id();
570 	/* add mutex operation */
571 	spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
572 
573 	ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
574 			&per_cpu(used_l1_inst_sram_head, cpu));
575 
576 	/* add mutex operation */
577 	spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
578 
579 	return ret;
580 #else
581 	return -1;
582 #endif
583 }
584 EXPORT_SYMBOL(l1_inst_sram_free);
585 
586 /* L1 Scratchpad memory allocate function */
l1sram_alloc(size_t size)587 void *l1sram_alloc(size_t size)
588 {
589 	unsigned long flags;
590 	void *addr;
591 	unsigned int cpu;
592 
593 	cpu = smp_processor_id();
594 	/* add mutex operation */
595 	spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
596 
597 	addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
598 			&per_cpu(used_l1_ssram_head, cpu));
599 
600 	/* add mutex operation */
601 	spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
602 
603 	return addr;
604 }
605 
606 /* L1 Scratchpad memory allocate function */
l1sram_alloc_max(size_t * psize)607 void *l1sram_alloc_max(size_t *psize)
608 {
609 	unsigned long flags;
610 	void *addr;
611 	unsigned int cpu;
612 
613 	cpu = smp_processor_id();
614 	/* add mutex operation */
615 	spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
616 
617 	addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
618 			&per_cpu(used_l1_ssram_head, cpu), psize);
619 
620 	/* add mutex operation */
621 	spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
622 
623 	return addr;
624 }
625 
626 /* L1 Scratchpad memory free function */
l1sram_free(const void * addr)627 int l1sram_free(const void *addr)
628 {
629 	unsigned long flags;
630 	int ret;
631 	unsigned int cpu;
632 
633 	cpu = smp_processor_id();
634 	/* add mutex operation */
635 	spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
636 
637 	ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
638 			&per_cpu(used_l1_ssram_head, cpu));
639 
640 	/* add mutex operation */
641 	spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
642 
643 	return ret;
644 }
645 
l2_sram_alloc(size_t size)646 void *l2_sram_alloc(size_t size)
647 {
648 #if L2_LENGTH != 0
649 	unsigned long flags;
650 	void *addr;
651 
652 	/* add mutex operation */
653 	spin_lock_irqsave(&l2_sram_lock, flags);
654 
655 	addr = _sram_alloc(size, &free_l2_sram_head,
656 			&used_l2_sram_head);
657 
658 	/* add mutex operation */
659 	spin_unlock_irqrestore(&l2_sram_lock, flags);
660 
661 	pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
662 		 (long unsigned int)addr, size);
663 
664 	return addr;
665 #else
666 	return NULL;
667 #endif
668 }
669 EXPORT_SYMBOL(l2_sram_alloc);
670 
l2_sram_zalloc(size_t size)671 void *l2_sram_zalloc(size_t size)
672 {
673 	void *addr = l2_sram_alloc(size);
674 
675 	if (addr)
676 		memset(addr, 0x00, size);
677 
678 	return addr;
679 }
680 EXPORT_SYMBOL(l2_sram_zalloc);
681 
l2_sram_free(const void * addr)682 int l2_sram_free(const void *addr)
683 {
684 #if L2_LENGTH != 0
685 	unsigned long flags;
686 	int ret;
687 
688 	/* add mutex operation */
689 	spin_lock_irqsave(&l2_sram_lock, flags);
690 
691 	ret = _sram_free(addr, &free_l2_sram_head,
692 			&used_l2_sram_head);
693 
694 	/* add mutex operation */
695 	spin_unlock_irqrestore(&l2_sram_lock, flags);
696 
697 	return ret;
698 #else
699 	return -1;
700 #endif
701 }
702 EXPORT_SYMBOL(l2_sram_free);
703 
sram_free_with_lsl(const void * addr)704 int sram_free_with_lsl(const void *addr)
705 {
706 	struct sram_list_struct *lsl, **tmp;
707 	struct mm_struct *mm = current->mm;
708 	int ret = -1;
709 
710 	for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
711 		if ((*tmp)->addr == addr) {
712 			lsl = *tmp;
713 			ret = sram_free(addr);
714 			*tmp = lsl->next;
715 			kfree(lsl);
716 			break;
717 		}
718 
719 	return ret;
720 }
721 EXPORT_SYMBOL(sram_free_with_lsl);
722 
723 /* Allocate memory and keep in L1 SRAM List (lsl) so that the resources are
724  * tracked.  These are designed for userspace so that when a process exits,
725  * we can safely reap their resources.
726  */
sram_alloc_with_lsl(size_t size,unsigned long flags)727 void *sram_alloc_with_lsl(size_t size, unsigned long flags)
728 {
729 	void *addr = NULL;
730 	struct sram_list_struct *lsl = NULL;
731 	struct mm_struct *mm = current->mm;
732 
733 	lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
734 	if (!lsl)
735 		return NULL;
736 
737 	if (flags & L1_INST_SRAM)
738 		addr = l1_inst_sram_alloc(size);
739 
740 	if (addr == NULL && (flags & L1_DATA_A_SRAM))
741 		addr = l1_data_A_sram_alloc(size);
742 
743 	if (addr == NULL && (flags & L1_DATA_B_SRAM))
744 		addr = l1_data_B_sram_alloc(size);
745 
746 	if (addr == NULL && (flags & L2_SRAM))
747 		addr = l2_sram_alloc(size);
748 
749 	if (addr == NULL) {
750 		kfree(lsl);
751 		return NULL;
752 	}
753 	lsl->addr = addr;
754 	lsl->length = size;
755 	lsl->next = mm->context.sram_list;
756 	mm->context.sram_list = lsl;
757 	return addr;
758 }
759 EXPORT_SYMBOL(sram_alloc_with_lsl);
760 
761 #ifdef CONFIG_PROC_FS
762 /* Once we get a real allocator, we'll throw all of this away.
763  * Until then, we need some sort of visibility into the L1 alloc.
764  */
765 /* Need to keep line of output the same.  Currently, that is 44 bytes
766  * (including newline).
767  */
_sram_proc_show(struct seq_file * m,const char * desc,struct sram_piece * pfree_head,struct sram_piece * pused_head)768 static int _sram_proc_show(struct seq_file *m, const char *desc,
769 		struct sram_piece *pfree_head,
770 		struct sram_piece *pused_head)
771 {
772 	struct sram_piece *pslot;
773 
774 	if (!pfree_head || !pused_head)
775 		return -1;
776 
777 	seq_printf(m, "--- SRAM %-14s Size   PID State     \n", desc);
778 
779 	/* search the relevant memory slot */
780 	pslot = pused_head->next;
781 
782 	while (pslot != NULL) {
783 		seq_printf(m, "%p-%p %10i %5i %-10s\n",
784 			pslot->paddr, pslot->paddr + pslot->size,
785 			pslot->size, pslot->pid, "ALLOCATED");
786 
787 		pslot = pslot->next;
788 	}
789 
790 	pslot = pfree_head->next;
791 
792 	while (pslot != NULL) {
793 		seq_printf(m, "%p-%p %10i %5i %-10s\n",
794 			pslot->paddr, pslot->paddr + pslot->size,
795 			pslot->size, pslot->pid, "FREE");
796 
797 		pslot = pslot->next;
798 	}
799 
800 	return 0;
801 }
sram_proc_show(struct seq_file * m,void * v)802 static int sram_proc_show(struct seq_file *m, void *v)
803 {
804 	unsigned int cpu;
805 
806 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
807 		if (_sram_proc_show(m, "Scratchpad",
808 			&per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
809 			goto not_done;
810 #if L1_DATA_A_LENGTH != 0
811 		if (_sram_proc_show(m, "L1 Data A",
812 			&per_cpu(free_l1_data_A_sram_head, cpu),
813 			&per_cpu(used_l1_data_A_sram_head, cpu)))
814 			goto not_done;
815 #endif
816 #if L1_DATA_B_LENGTH != 0
817 		if (_sram_proc_show(m, "L1 Data B",
818 			&per_cpu(free_l1_data_B_sram_head, cpu),
819 			&per_cpu(used_l1_data_B_sram_head, cpu)))
820 			goto not_done;
821 #endif
822 #if L1_CODE_LENGTH != 0
823 		if (_sram_proc_show(m, "L1 Instruction",
824 			&per_cpu(free_l1_inst_sram_head, cpu),
825 			&per_cpu(used_l1_inst_sram_head, cpu)))
826 			goto not_done;
827 #endif
828 	}
829 #if L2_LENGTH != 0
830 	if (_sram_proc_show(m, "L2", &free_l2_sram_head, &used_l2_sram_head))
831 		goto not_done;
832 #endif
833  not_done:
834 	return 0;
835 }
836 
sram_proc_open(struct inode * inode,struct file * file)837 static int sram_proc_open(struct inode *inode, struct file *file)
838 {
839 	return single_open(file, sram_proc_show, NULL);
840 }
841 
842 static const struct file_operations sram_proc_ops = {
843 	.open		= sram_proc_open,
844 	.read		= seq_read,
845 	.llseek		= seq_lseek,
846 	.release	= single_release,
847 };
848 
sram_proc_init(void)849 static int __init sram_proc_init(void)
850 {
851 	struct proc_dir_entry *ptr;
852 
853 	ptr = proc_create("sram", S_IRUGO, NULL, &sram_proc_ops);
854 	if (!ptr) {
855 		printk(KERN_WARNING "unable to create /proc/sram\n");
856 		return -1;
857 	}
858 	return 0;
859 }
860 late_initcall(sram_proc_init);
861 #endif
862