1 /*
2 * SRAM allocator for Blackfin on-chip memory
3 *
4 * Copyright 2004-2009 Analog Devices Inc.
5 *
6 * Licensed under the GPL-2 or later.
7 */
8
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/miscdevice.h>
13 #include <linux/ioport.h>
14 #include <linux/fcntl.h>
15 #include <linux/init.h>
16 #include <linux/poll.h>
17 #include <linux/proc_fs.h>
18 #include <linux/spinlock.h>
19 #include <linux/rtc.h>
20 #include <linux/slab.h>
21 #include <asm/blackfin.h>
22 #include <asm/mem_map.h>
23 #include "blackfin_sram.h"
24
25 /* the data structure for L1 scratchpad and DATA SRAM */
26 struct sram_piece {
27 void *paddr;
28 int size;
29 pid_t pid;
30 struct sram_piece *next;
31 };
32
33 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1sram_lock);
34 static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
35 static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
36
37 #if L1_DATA_A_LENGTH != 0
38 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
39 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
40 #endif
41
42 #if L1_DATA_B_LENGTH != 0
43 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
44 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
45 #endif
46
47 #if L1_DATA_A_LENGTH || L1_DATA_B_LENGTH
48 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_data_sram_lock);
49 #endif
50
51 #if L1_CODE_LENGTH != 0
52 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_inst_sram_lock);
53 static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
54 static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
55 #endif
56
57 #if L2_LENGTH != 0
58 static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
59 static struct sram_piece free_l2_sram_head, used_l2_sram_head;
60 #endif
61
62 static struct kmem_cache *sram_piece_cache;
63
64 /* L1 Scratchpad SRAM initialization function */
l1sram_init(void)65 static void __init l1sram_init(void)
66 {
67 unsigned int cpu;
68 unsigned long reserve;
69
70 #ifdef CONFIG_SMP
71 reserve = 0;
72 #else
73 reserve = sizeof(struct l1_scratch_task_info);
74 #endif
75
76 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
77 per_cpu(free_l1_ssram_head, cpu).next =
78 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
79 if (!per_cpu(free_l1_ssram_head, cpu).next) {
80 printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
81 return;
82 }
83
84 per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu) + reserve;
85 per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH - reserve;
86 per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
87 per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
88
89 per_cpu(used_l1_ssram_head, cpu).next = NULL;
90
91 /* mutex initialize */
92 spin_lock_init(&per_cpu(l1sram_lock, cpu));
93 printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
94 L1_SCRATCH_LENGTH >> 10);
95 }
96 }
97
l1_data_sram_init(void)98 static void __init l1_data_sram_init(void)
99 {
100 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
101 unsigned int cpu;
102 #endif
103 #if L1_DATA_A_LENGTH != 0
104 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
105 per_cpu(free_l1_data_A_sram_head, cpu).next =
106 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
107 if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
108 printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
109 return;
110 }
111
112 per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
113 (void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
114 per_cpu(free_l1_data_A_sram_head, cpu).next->size =
115 L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
116 per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
117 per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
118
119 per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
120
121 printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
122 L1_DATA_A_LENGTH >> 10,
123 per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
124 }
125 #endif
126 #if L1_DATA_B_LENGTH != 0
127 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
128 per_cpu(free_l1_data_B_sram_head, cpu).next =
129 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
130 if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
131 printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
132 return;
133 }
134
135 per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
136 (void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
137 per_cpu(free_l1_data_B_sram_head, cpu).next->size =
138 L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
139 per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
140 per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
141
142 per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
143
144 printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
145 L1_DATA_B_LENGTH >> 10,
146 per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
147 /* mutex initialize */
148 }
149 #endif
150
151 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
152 for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
153 spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
154 #endif
155 }
156
l1_inst_sram_init(void)157 static void __init l1_inst_sram_init(void)
158 {
159 #if L1_CODE_LENGTH != 0
160 unsigned int cpu;
161 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
162 per_cpu(free_l1_inst_sram_head, cpu).next =
163 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
164 if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
165 printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
166 return;
167 }
168
169 per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
170 (void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
171 per_cpu(free_l1_inst_sram_head, cpu).next->size =
172 L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
173 per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
174 per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
175
176 per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
177
178 printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
179 L1_CODE_LENGTH >> 10,
180 per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
181
182 /* mutex initialize */
183 spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
184 }
185 #endif
186 }
187
l2_sram_init(void)188 static void __init l2_sram_init(void)
189 {
190 #if L2_LENGTH != 0
191 free_l2_sram_head.next =
192 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
193 if (!free_l2_sram_head.next) {
194 printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
195 return;
196 }
197
198 free_l2_sram_head.next->paddr =
199 (void *)L2_START + (_ebss_l2 - _stext_l2);
200 free_l2_sram_head.next->size =
201 L2_LENGTH - (_ebss_l2 - _stext_l2);
202 free_l2_sram_head.next->pid = 0;
203 free_l2_sram_head.next->next = NULL;
204
205 used_l2_sram_head.next = NULL;
206
207 printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
208 L2_LENGTH >> 10,
209 free_l2_sram_head.next->size >> 10);
210
211 /* mutex initialize */
212 spin_lock_init(&l2_sram_lock);
213 #endif
214 }
215
bfin_sram_init(void)216 static int __init bfin_sram_init(void)
217 {
218 sram_piece_cache = kmem_cache_create("sram_piece_cache",
219 sizeof(struct sram_piece),
220 0, SLAB_PANIC, NULL);
221
222 l1sram_init();
223 l1_data_sram_init();
224 l1_inst_sram_init();
225 l2_sram_init();
226
227 return 0;
228 }
229 pure_initcall(bfin_sram_init);
230
231 /* SRAM allocate function */
_sram_alloc(size_t size,struct sram_piece * pfree_head,struct sram_piece * pused_head)232 static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
233 struct sram_piece *pused_head)
234 {
235 struct sram_piece *pslot, *plast, *pavail;
236
237 if (size <= 0 || !pfree_head || !pused_head)
238 return NULL;
239
240 /* Align the size */
241 size = (size + 3) & ~3;
242
243 pslot = pfree_head->next;
244 plast = pfree_head;
245
246 /* search an available piece slot */
247 while (pslot != NULL && size > pslot->size) {
248 plast = pslot;
249 pslot = pslot->next;
250 }
251
252 if (!pslot)
253 return NULL;
254
255 if (pslot->size == size) {
256 plast->next = pslot->next;
257 pavail = pslot;
258 } else {
259 /* use atomic so our L1 allocator can be used atomically */
260 pavail = kmem_cache_alloc(sram_piece_cache, GFP_ATOMIC);
261
262 if (!pavail)
263 return NULL;
264
265 pavail->paddr = pslot->paddr;
266 pavail->size = size;
267 pslot->paddr += size;
268 pslot->size -= size;
269 }
270
271 pavail->pid = current->pid;
272
273 pslot = pused_head->next;
274 plast = pused_head;
275
276 /* insert new piece into used piece list !!! */
277 while (pslot != NULL && pavail->paddr < pslot->paddr) {
278 plast = pslot;
279 pslot = pslot->next;
280 }
281
282 pavail->next = pslot;
283 plast->next = pavail;
284
285 return pavail->paddr;
286 }
287
288 /* Allocate the largest available block. */
_sram_alloc_max(struct sram_piece * pfree_head,struct sram_piece * pused_head,unsigned long * psize)289 static void *_sram_alloc_max(struct sram_piece *pfree_head,
290 struct sram_piece *pused_head,
291 unsigned long *psize)
292 {
293 struct sram_piece *pslot, *pmax;
294
295 if (!pfree_head || !pused_head)
296 return NULL;
297
298 pmax = pslot = pfree_head->next;
299
300 /* search an available piece slot */
301 while (pslot != NULL) {
302 if (pslot->size > pmax->size)
303 pmax = pslot;
304 pslot = pslot->next;
305 }
306
307 if (!pmax)
308 return NULL;
309
310 *psize = pmax->size;
311
312 return _sram_alloc(*psize, pfree_head, pused_head);
313 }
314
315 /* SRAM free function */
_sram_free(const void * addr,struct sram_piece * pfree_head,struct sram_piece * pused_head)316 static int _sram_free(const void *addr,
317 struct sram_piece *pfree_head,
318 struct sram_piece *pused_head)
319 {
320 struct sram_piece *pslot, *plast, *pavail;
321
322 if (!pfree_head || !pused_head)
323 return -1;
324
325 /* search the relevant memory slot */
326 pslot = pused_head->next;
327 plast = pused_head;
328
329 /* search an available piece slot */
330 while (pslot != NULL && pslot->paddr != addr) {
331 plast = pslot;
332 pslot = pslot->next;
333 }
334
335 if (!pslot)
336 return -1;
337
338 plast->next = pslot->next;
339 pavail = pslot;
340 pavail->pid = 0;
341
342 /* insert free pieces back to the free list */
343 pslot = pfree_head->next;
344 plast = pfree_head;
345
346 while (pslot != NULL && addr > pslot->paddr) {
347 plast = pslot;
348 pslot = pslot->next;
349 }
350
351 if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
352 plast->size += pavail->size;
353 kmem_cache_free(sram_piece_cache, pavail);
354 } else {
355 pavail->next = plast->next;
356 plast->next = pavail;
357 plast = pavail;
358 }
359
360 if (pslot && plast->paddr + plast->size == pslot->paddr) {
361 plast->size += pslot->size;
362 plast->next = pslot->next;
363 kmem_cache_free(sram_piece_cache, pslot);
364 }
365
366 return 0;
367 }
368
sram_free(const void * addr)369 int sram_free(const void *addr)
370 {
371
372 #if L1_CODE_LENGTH != 0
373 if (addr >= (void *)get_l1_code_start()
374 && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
375 return l1_inst_sram_free(addr);
376 else
377 #endif
378 #if L1_DATA_A_LENGTH != 0
379 if (addr >= (void *)get_l1_data_a_start()
380 && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
381 return l1_data_A_sram_free(addr);
382 else
383 #endif
384 #if L1_DATA_B_LENGTH != 0
385 if (addr >= (void *)get_l1_data_b_start()
386 && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
387 return l1_data_B_sram_free(addr);
388 else
389 #endif
390 #if L2_LENGTH != 0
391 if (addr >= (void *)L2_START
392 && addr < (void *)(L2_START + L2_LENGTH))
393 return l2_sram_free(addr);
394 else
395 #endif
396 return -1;
397 }
398 EXPORT_SYMBOL(sram_free);
399
l1_data_A_sram_alloc(size_t size)400 void *l1_data_A_sram_alloc(size_t size)
401 {
402 #if L1_DATA_A_LENGTH != 0
403 unsigned long flags;
404 void *addr;
405 unsigned int cpu;
406
407 cpu = smp_processor_id();
408 /* add mutex operation */
409 spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
410
411 addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
412 &per_cpu(used_l1_data_A_sram_head, cpu));
413
414 /* add mutex operation */
415 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
416
417 pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
418 (long unsigned int)addr, size);
419
420 return addr;
421 #else
422 return NULL;
423 #endif
424 }
425 EXPORT_SYMBOL(l1_data_A_sram_alloc);
426
l1_data_A_sram_free(const void * addr)427 int l1_data_A_sram_free(const void *addr)
428 {
429 #if L1_DATA_A_LENGTH != 0
430 unsigned long flags;
431 int ret;
432 unsigned int cpu;
433
434 cpu = smp_processor_id();
435 /* add mutex operation */
436 spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
437
438 ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
439 &per_cpu(used_l1_data_A_sram_head, cpu));
440
441 /* add mutex operation */
442 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
443
444 return ret;
445 #else
446 return -1;
447 #endif
448 }
449 EXPORT_SYMBOL(l1_data_A_sram_free);
450
l1_data_B_sram_alloc(size_t size)451 void *l1_data_B_sram_alloc(size_t size)
452 {
453 #if L1_DATA_B_LENGTH != 0
454 unsigned long flags;
455 void *addr;
456 unsigned int cpu;
457
458 cpu = smp_processor_id();
459 /* add mutex operation */
460 spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
461
462 addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
463 &per_cpu(used_l1_data_B_sram_head, cpu));
464
465 /* add mutex operation */
466 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
467
468 pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
469 (long unsigned int)addr, size);
470
471 return addr;
472 #else
473 return NULL;
474 #endif
475 }
476 EXPORT_SYMBOL(l1_data_B_sram_alloc);
477
l1_data_B_sram_free(const void * addr)478 int l1_data_B_sram_free(const void *addr)
479 {
480 #if L1_DATA_B_LENGTH != 0
481 unsigned long flags;
482 int ret;
483 unsigned int cpu;
484
485 cpu = smp_processor_id();
486 /* add mutex operation */
487 spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
488
489 ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
490 &per_cpu(used_l1_data_B_sram_head, cpu));
491
492 /* add mutex operation */
493 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
494
495 return ret;
496 #else
497 return -1;
498 #endif
499 }
500 EXPORT_SYMBOL(l1_data_B_sram_free);
501
l1_data_sram_alloc(size_t size)502 void *l1_data_sram_alloc(size_t size)
503 {
504 void *addr = l1_data_A_sram_alloc(size);
505
506 if (!addr)
507 addr = l1_data_B_sram_alloc(size);
508
509 return addr;
510 }
511 EXPORT_SYMBOL(l1_data_sram_alloc);
512
l1_data_sram_zalloc(size_t size)513 void *l1_data_sram_zalloc(size_t size)
514 {
515 void *addr = l1_data_sram_alloc(size);
516
517 if (addr)
518 memset(addr, 0x00, size);
519
520 return addr;
521 }
522 EXPORT_SYMBOL(l1_data_sram_zalloc);
523
l1_data_sram_free(const void * addr)524 int l1_data_sram_free(const void *addr)
525 {
526 int ret;
527 ret = l1_data_A_sram_free(addr);
528 if (ret == -1)
529 ret = l1_data_B_sram_free(addr);
530 return ret;
531 }
532 EXPORT_SYMBOL(l1_data_sram_free);
533
l1_inst_sram_alloc(size_t size)534 void *l1_inst_sram_alloc(size_t size)
535 {
536 #if L1_CODE_LENGTH != 0
537 unsigned long flags;
538 void *addr;
539 unsigned int cpu;
540
541 cpu = smp_processor_id();
542 /* add mutex operation */
543 spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
544
545 addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
546 &per_cpu(used_l1_inst_sram_head, cpu));
547
548 /* add mutex operation */
549 spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
550
551 pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
552 (long unsigned int)addr, size);
553
554 return addr;
555 #else
556 return NULL;
557 #endif
558 }
559 EXPORT_SYMBOL(l1_inst_sram_alloc);
560
l1_inst_sram_free(const void * addr)561 int l1_inst_sram_free(const void *addr)
562 {
563 #if L1_CODE_LENGTH != 0
564 unsigned long flags;
565 int ret;
566 unsigned int cpu;
567
568 cpu = smp_processor_id();
569 /* add mutex operation */
570 spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
571
572 ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
573 &per_cpu(used_l1_inst_sram_head, cpu));
574
575 /* add mutex operation */
576 spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
577
578 return ret;
579 #else
580 return -1;
581 #endif
582 }
583 EXPORT_SYMBOL(l1_inst_sram_free);
584
585 /* L1 Scratchpad memory allocate function */
l1sram_alloc(size_t size)586 void *l1sram_alloc(size_t size)
587 {
588 unsigned long flags;
589 void *addr;
590 unsigned int cpu;
591
592 cpu = smp_processor_id();
593 /* add mutex operation */
594 spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
595
596 addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
597 &per_cpu(used_l1_ssram_head, cpu));
598
599 /* add mutex operation */
600 spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
601
602 return addr;
603 }
604
605 /* L1 Scratchpad memory allocate function */
l1sram_alloc_max(size_t * psize)606 void *l1sram_alloc_max(size_t *psize)
607 {
608 unsigned long flags;
609 void *addr;
610 unsigned int cpu;
611
612 cpu = smp_processor_id();
613 /* add mutex operation */
614 spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
615
616 addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
617 &per_cpu(used_l1_ssram_head, cpu), psize);
618
619 /* add mutex operation */
620 spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
621
622 return addr;
623 }
624
625 /* L1 Scratchpad memory free function */
l1sram_free(const void * addr)626 int l1sram_free(const void *addr)
627 {
628 unsigned long flags;
629 int ret;
630 unsigned int cpu;
631
632 cpu = smp_processor_id();
633 /* add mutex operation */
634 spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
635
636 ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
637 &per_cpu(used_l1_ssram_head, cpu));
638
639 /* add mutex operation */
640 spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
641
642 return ret;
643 }
644
l2_sram_alloc(size_t size)645 void *l2_sram_alloc(size_t size)
646 {
647 #if L2_LENGTH != 0
648 unsigned long flags;
649 void *addr;
650
651 /* add mutex operation */
652 spin_lock_irqsave(&l2_sram_lock, flags);
653
654 addr = _sram_alloc(size, &free_l2_sram_head,
655 &used_l2_sram_head);
656
657 /* add mutex operation */
658 spin_unlock_irqrestore(&l2_sram_lock, flags);
659
660 pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
661 (long unsigned int)addr, size);
662
663 return addr;
664 #else
665 return NULL;
666 #endif
667 }
668 EXPORT_SYMBOL(l2_sram_alloc);
669
l2_sram_zalloc(size_t size)670 void *l2_sram_zalloc(size_t size)
671 {
672 void *addr = l2_sram_alloc(size);
673
674 if (addr)
675 memset(addr, 0x00, size);
676
677 return addr;
678 }
679 EXPORT_SYMBOL(l2_sram_zalloc);
680
l2_sram_free(const void * addr)681 int l2_sram_free(const void *addr)
682 {
683 #if L2_LENGTH != 0
684 unsigned long flags;
685 int ret;
686
687 /* add mutex operation */
688 spin_lock_irqsave(&l2_sram_lock, flags);
689
690 ret = _sram_free(addr, &free_l2_sram_head,
691 &used_l2_sram_head);
692
693 /* add mutex operation */
694 spin_unlock_irqrestore(&l2_sram_lock, flags);
695
696 return ret;
697 #else
698 return -1;
699 #endif
700 }
701 EXPORT_SYMBOL(l2_sram_free);
702
sram_free_with_lsl(const void * addr)703 int sram_free_with_lsl(const void *addr)
704 {
705 struct sram_list_struct *lsl, **tmp;
706 struct mm_struct *mm = current->mm;
707 int ret = -1;
708
709 for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
710 if ((*tmp)->addr == addr) {
711 lsl = *tmp;
712 ret = sram_free(addr);
713 *tmp = lsl->next;
714 kfree(lsl);
715 break;
716 }
717
718 return ret;
719 }
720 EXPORT_SYMBOL(sram_free_with_lsl);
721
722 /* Allocate memory and keep in L1 SRAM List (lsl) so that the resources are
723 * tracked. These are designed for userspace so that when a process exits,
724 * we can safely reap their resources.
725 */
sram_alloc_with_lsl(size_t size,unsigned long flags)726 void *sram_alloc_with_lsl(size_t size, unsigned long flags)
727 {
728 void *addr = NULL;
729 struct sram_list_struct *lsl = NULL;
730 struct mm_struct *mm = current->mm;
731
732 lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
733 if (!lsl)
734 return NULL;
735
736 if (flags & L1_INST_SRAM)
737 addr = l1_inst_sram_alloc(size);
738
739 if (addr == NULL && (flags & L1_DATA_A_SRAM))
740 addr = l1_data_A_sram_alloc(size);
741
742 if (addr == NULL && (flags & L1_DATA_B_SRAM))
743 addr = l1_data_B_sram_alloc(size);
744
745 if (addr == NULL && (flags & L2_SRAM))
746 addr = l2_sram_alloc(size);
747
748 if (addr == NULL) {
749 kfree(lsl);
750 return NULL;
751 }
752 lsl->addr = addr;
753 lsl->length = size;
754 lsl->next = mm->context.sram_list;
755 mm->context.sram_list = lsl;
756 return addr;
757 }
758 EXPORT_SYMBOL(sram_alloc_with_lsl);
759
760 #ifdef CONFIG_PROC_FS
761 /* Once we get a real allocator, we'll throw all of this away.
762 * Until then, we need some sort of visibility into the L1 alloc.
763 */
764 /* Need to keep line of output the same. Currently, that is 44 bytes
765 * (including newline).
766 */
_sram_proc_read(char * buf,int * len,int count,const char * desc,struct sram_piece * pfree_head,struct sram_piece * pused_head)767 static int _sram_proc_read(char *buf, int *len, int count, const char *desc,
768 struct sram_piece *pfree_head,
769 struct sram_piece *pused_head)
770 {
771 struct sram_piece *pslot;
772
773 if (!pfree_head || !pused_head)
774 return -1;
775
776 *len += sprintf(&buf[*len], "--- SRAM %-14s Size PID State \n", desc);
777
778 /* search the relevant memory slot */
779 pslot = pused_head->next;
780
781 while (pslot != NULL) {
782 *len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
783 pslot->paddr, pslot->paddr + pslot->size,
784 pslot->size, pslot->pid, "ALLOCATED");
785
786 pslot = pslot->next;
787 }
788
789 pslot = pfree_head->next;
790
791 while (pslot != NULL) {
792 *len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
793 pslot->paddr, pslot->paddr + pslot->size,
794 pslot->size, pslot->pid, "FREE");
795
796 pslot = pslot->next;
797 }
798
799 return 0;
800 }
sram_proc_read(char * buf,char ** start,off_t offset,int count,int * eof,void * data)801 static int sram_proc_read(char *buf, char **start, off_t offset, int count,
802 int *eof, void *data)
803 {
804 int len = 0;
805 unsigned int cpu;
806
807 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
808 if (_sram_proc_read(buf, &len, count, "Scratchpad",
809 &per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
810 goto not_done;
811 #if L1_DATA_A_LENGTH != 0
812 if (_sram_proc_read(buf, &len, count, "L1 Data A",
813 &per_cpu(free_l1_data_A_sram_head, cpu),
814 &per_cpu(used_l1_data_A_sram_head, cpu)))
815 goto not_done;
816 #endif
817 #if L1_DATA_B_LENGTH != 0
818 if (_sram_proc_read(buf, &len, count, "L1 Data B",
819 &per_cpu(free_l1_data_B_sram_head, cpu),
820 &per_cpu(used_l1_data_B_sram_head, cpu)))
821 goto not_done;
822 #endif
823 #if L1_CODE_LENGTH != 0
824 if (_sram_proc_read(buf, &len, count, "L1 Instruction",
825 &per_cpu(free_l1_inst_sram_head, cpu),
826 &per_cpu(used_l1_inst_sram_head, cpu)))
827 goto not_done;
828 #endif
829 }
830 #if L2_LENGTH != 0
831 if (_sram_proc_read(buf, &len, count, "L2", &free_l2_sram_head,
832 &used_l2_sram_head))
833 goto not_done;
834 #endif
835 *eof = 1;
836 not_done:
837 return len;
838 }
839
sram_proc_init(void)840 static int __init sram_proc_init(void)
841 {
842 struct proc_dir_entry *ptr;
843 ptr = create_proc_entry("sram", S_IFREG | S_IRUGO, NULL);
844 if (!ptr) {
845 printk(KERN_WARNING "unable to create /proc/sram\n");
846 return -1;
847 }
848 ptr->read_proc = sram_proc_read;
849 return 0;
850 }
851 late_initcall(sram_proc_init);
852 #endif
853