1 /*
2  * IBM Accurate Mathematical Library
3  * written by International Business Machines Corp.
4  * Copyright (C) 2001-2022 Free Software Foundation, Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU Lesser General Public License as published by
8  * the Free Software Foundation; either version 2.1 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public License
17  * along with this program; if not, see <https://www.gnu.org/licenses/>.
18  */
19 /**************************************************************************/
20 /*  MODULE_NAME urem.c                                                    */
21 /*                                                                        */
22 /*  FUNCTION: uremainder                                                  */
23 /*                                                                        */
24 /* An ultimate remainder routine. Given two IEEE double machine numbers x */
25 /* ,y   it computes the correctly rounded (to nearest) value of remainder */
26 /* of dividing x by y.                                                    */
27 /* Assumption: Machine arithmetic operations are performed in             */
28 /* round to nearest mode of IEEE 754 standard.                            */
29 /*                                                                        */
30 /* ************************************************************************/
31 
32 #include "endian.h"
33 #include "mydefs.h"
34 #include "urem.h"
35 #include <math.h>
36 #include <math_private.h>
37 #include <fenv_private.h>
38 #include <libm-alias-finite.h>
39 
40 /**************************************************************************/
41 /* An ultimate remainder routine. Given two IEEE double machine numbers x */
42 /* ,y   it computes the correctly rounded (to nearest) value of remainder */
43 /**************************************************************************/
44 double
__ieee754_remainder(double x,double y)45 __ieee754_remainder (double x, double y)
46 {
47   double z, d, xx;
48   int4 kx, ky, n, nn, n1, m1, l;
49   mynumber u, t, w = { { 0, 0 } }, v = { { 0, 0 } }, ww = { { 0, 0 } }, r;
50   u.x = x;
51   t.x = y;
52   kx = u.i[HIGH_HALF] & 0x7fffffff; /* no sign  for x*/
53   t.i[HIGH_HALF] &= 0x7fffffff;   /*no sign for y */
54   ky = t.i[HIGH_HALF];
55   /*------ |x| < 2^1023  and   2^-970 < |y| < 2^1024 ------------------*/
56   if (kx < 0x7fe00000 && ky < 0x7ff00000 && ky >= 0x03500000)
57     {
58       SET_RESTORE_ROUND_NOEX (FE_TONEAREST);
59       if (kx + 0x00100000 < ky)
60 	return x;
61       if ((kx - 0x01500000) < ky)
62 	{
63 	  z = x / t.x;
64 	  v.i[HIGH_HALF] = t.i[HIGH_HALF];
65 	  d = (z + big.x) - big.x;
66 	  xx = (x - d * v.x) - d * (t.x - v.x);
67 	  if (d - z != 0.5 && d - z != -0.5)
68 	    return (xx != 0) ? xx : ((x > 0) ? ZERO.x : nZERO.x);
69 	  else
70 	    {
71 	      if (fabs (xx) > 0.5 * t.x)
72 		return (z > d) ? xx - t.x : xx + t.x;
73 	      else
74 		return xx;
75 	    }
76 	} /*    (kx<(ky+0x01500000))         */
77       else
78 	{
79 	  r.x = 1.0 / t.x;
80 	  n = t.i[HIGH_HALF];
81 	  nn = (n & 0x7ff00000) + 0x01400000;
82 	  w.i[HIGH_HALF] = n;
83 	  ww.x = t.x - w.x;
84 	  l = (kx - nn) & 0xfff00000;
85 	  n1 = ww.i[HIGH_HALF];
86 	  m1 = r.i[HIGH_HALF];
87 	  while (l > 0)
88 	    {
89 	      r.i[HIGH_HALF] = m1 - l;
90 	      z = u.x * r.x;
91 	      w.i[HIGH_HALF] = n + l;
92 	      ww.i[HIGH_HALF] = (n1) ? n1 + l : n1;
93 	      d = (z + big.x) - big.x;
94 	      u.x = (u.x - d * w.x) - d * ww.x;
95 	      l = (u.i[HIGH_HALF] & 0x7ff00000) - nn;
96 	    }
97 	  r.i[HIGH_HALF] = m1;
98 	  w.i[HIGH_HALF] = n;
99 	  ww.i[HIGH_HALF] = n1;
100 	  z = u.x * r.x;
101 	  d = (z + big.x) - big.x;
102 	  u.x = (u.x - d * w.x) - d * ww.x;
103 	  if (fabs (u.x) < 0.5 * t.x)
104 	    return (u.x != 0) ? u.x : ((x > 0) ? ZERO.x : nZERO.x);
105 	  else
106 	  if (fabs (u.x) > 0.5 * t.x)
107 	    return (d > z) ? u.x + t.x : u.x - t.x;
108 	  else
109 	    {
110 	      z = u.x / t.x; d = (z + big.x) - big.x;
111               return ((u.x - d * w.x) - d * ww.x);
112 	    }
113 	}
114     } /*   (kx<0x7fe00000&&ky<0x7ff00000&&ky>=0x03500000)     */
115   else
116     {
117       if (kx < 0x7fe00000 && ky < 0x7ff00000 && (ky > 0 || t.i[LOW_HALF] != 0))
118 	{
119 	  y = fabs (y) * t128.x;
120 	  z = __ieee754_remainder (x, y) * t128.x;
121 	  z = __ieee754_remainder (z, y) * tm128.x;
122 	  return z;
123 	}
124       else
125 	{
126 	  if ((kx & 0x7ff00000) == 0x7fe00000 && ky < 0x7ff00000 &&
127               (ky > 0 || t.i[LOW_HALF] != 0))
128 	    {
129 	      y = fabs (y);
130 	      z = 2.0 * __ieee754_remainder (0.5 * x, y);
131 	      d = fabs (z);
132 	      if (d <= fabs (d - y))
133 		return z;
134 	      else if (d == y)
135 		return 0.0 * x;
136 	      else
137 		return (z > 0) ? z - y : z + y;
138 	    }
139 	  else /* if x is too big */
140 	    {
141 	      if (ky == 0 && t.i[LOW_HALF] == 0) /* y = 0 */
142 		return (x * y) / (x * y);
143 	      else if (kx >= 0x7ff00000         /* x not finite */
144 		       || (ky > 0x7ff00000      /* y is NaN */
145 			   || (ky == 0x7ff00000 && t.i[LOW_HALF] != 0)))
146 		return (x * y) / (x * y);
147 	      else
148 		return x;
149 	    }
150 	}
151     }
152 }
153 libm_alias_finite (__ieee754_remainder, __remainder)
154