1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5 *
6 * Authors:
7 * Paul Mackerras <paulus@au1.ibm.com>
8 * Alexander Graf <agraf@suse.de>
9 * Kevin Wolf <mail@kevin-wolf.de>
10 *
11 * Description: KVM functions specific to running on Book 3S
12 * processors in hypervisor mode (specifically POWER7 and later).
13 *
14 * This file is derived from arch/powerpc/kvm/book3s.c,
15 * by Alexander Graf <agraf@suse.de>.
16 */
17
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45 #include <linux/irqdomain.h>
46
47 #include <asm/ftrace.h>
48 #include <asm/reg.h>
49 #include <asm/ppc-opcode.h>
50 #include <asm/asm-prototypes.h>
51 #include <asm/archrandom.h>
52 #include <asm/debug.h>
53 #include <asm/disassemble.h>
54 #include <asm/cputable.h>
55 #include <asm/cacheflush.h>
56 #include <linux/uaccess.h>
57 #include <asm/interrupt.h>
58 #include <asm/io.h>
59 #include <asm/kvm_ppc.h>
60 #include <asm/kvm_book3s.h>
61 #include <asm/mmu_context.h>
62 #include <asm/lppaca.h>
63 #include <asm/pmc.h>
64 #include <asm/processor.h>
65 #include <asm/cputhreads.h>
66 #include <asm/page.h>
67 #include <asm/hvcall.h>
68 #include <asm/switch_to.h>
69 #include <asm/smp.h>
70 #include <asm/dbell.h>
71 #include <asm/hmi.h>
72 #include <asm/pnv-pci.h>
73 #include <asm/mmu.h>
74 #include <asm/opal.h>
75 #include <asm/xics.h>
76 #include <asm/xive.h>
77 #include <asm/hw_breakpoint.h>
78 #include <asm/kvm_book3s_uvmem.h>
79 #include <asm/ultravisor.h>
80 #include <asm/dtl.h>
81 #include <asm/plpar_wrappers.h>
82
83 #include "book3s.h"
84 #include "book3s_hv.h"
85
86 #define CREATE_TRACE_POINTS
87 #include "trace_hv.h"
88
89 /* #define EXIT_DEBUG */
90 /* #define EXIT_DEBUG_SIMPLE */
91 /* #define EXIT_DEBUG_INT */
92
93 /* Used to indicate that a guest page fault needs to be handled */
94 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
95 /* Used to indicate that a guest passthrough interrupt needs to be handled */
96 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
97
98 /* Used as a "null" value for timebase values */
99 #define TB_NIL (~(u64)0)
100
101 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
102
103 static int dynamic_mt_modes = 6;
104 module_param(dynamic_mt_modes, int, 0644);
105 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
106 static int target_smt_mode;
107 module_param(target_smt_mode, int, 0644);
108 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
109
110 static bool one_vm_per_core;
111 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
113
114 #ifdef CONFIG_KVM_XICS
115 static const struct kernel_param_ops module_param_ops = {
116 .set = param_set_int,
117 .get = param_get_int,
118 };
119
120 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
121 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
122
123 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
124 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
125 #endif
126
127 /* If set, guests are allowed to create and control nested guests */
128 static bool nested = true;
129 module_param(nested, bool, S_IRUGO | S_IWUSR);
130 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
131
132 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
133
134 /*
135 * RWMR values for POWER8. These control the rate at which PURR
136 * and SPURR count and should be set according to the number of
137 * online threads in the vcore being run.
138 */
139 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL
140 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL
141 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL
142 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL
143 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL
144 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL
145 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL
146 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL
147
148 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
149 RWMR_RPA_P8_1THREAD,
150 RWMR_RPA_P8_1THREAD,
151 RWMR_RPA_P8_2THREAD,
152 RWMR_RPA_P8_3THREAD,
153 RWMR_RPA_P8_4THREAD,
154 RWMR_RPA_P8_5THREAD,
155 RWMR_RPA_P8_6THREAD,
156 RWMR_RPA_P8_7THREAD,
157 RWMR_RPA_P8_8THREAD,
158 };
159
next_runnable_thread(struct kvmppc_vcore * vc,int * ip)160 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
161 int *ip)
162 {
163 int i = *ip;
164 struct kvm_vcpu *vcpu;
165
166 while (++i < MAX_SMT_THREADS) {
167 vcpu = READ_ONCE(vc->runnable_threads[i]);
168 if (vcpu) {
169 *ip = i;
170 return vcpu;
171 }
172 }
173 return NULL;
174 }
175
176 /* Used to traverse the list of runnable threads for a given vcore */
177 #define for_each_runnable_thread(i, vcpu, vc) \
178 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
179
kvmppc_ipi_thread(int cpu)180 static bool kvmppc_ipi_thread(int cpu)
181 {
182 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
183
184 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
185 if (kvmhv_on_pseries())
186 return false;
187
188 /* On POWER9 we can use msgsnd to IPI any cpu */
189 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
190 msg |= get_hard_smp_processor_id(cpu);
191 smp_mb();
192 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
193 return true;
194 }
195
196 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
197 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
198 preempt_disable();
199 if (cpu_first_thread_sibling(cpu) ==
200 cpu_first_thread_sibling(smp_processor_id())) {
201 msg |= cpu_thread_in_core(cpu);
202 smp_mb();
203 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
204 preempt_enable();
205 return true;
206 }
207 preempt_enable();
208 }
209
210 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
211 if (cpu >= 0 && cpu < nr_cpu_ids) {
212 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
213 xics_wake_cpu(cpu);
214 return true;
215 }
216 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
217 return true;
218 }
219 #endif
220
221 return false;
222 }
223
kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu * vcpu)224 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
225 {
226 int cpu;
227 struct rcuwait *waitp;
228
229 /*
230 * rcuwait_wake_up contains smp_mb() which orders prior stores that
231 * create pending work vs below loads of cpu fields. The other side
232 * is the barrier in vcpu run that orders setting the cpu fields vs
233 * testing for pending work.
234 */
235
236 waitp = kvm_arch_vcpu_get_wait(vcpu);
237 if (rcuwait_wake_up(waitp))
238 ++vcpu->stat.generic.halt_wakeup;
239
240 cpu = READ_ONCE(vcpu->arch.thread_cpu);
241 if (cpu >= 0 && kvmppc_ipi_thread(cpu))
242 return;
243
244 /* CPU points to the first thread of the core */
245 cpu = vcpu->cpu;
246 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
247 smp_send_reschedule(cpu);
248 }
249
250 /*
251 * We use the vcpu_load/put functions to measure stolen time.
252 * Stolen time is counted as time when either the vcpu is able to
253 * run as part of a virtual core, but the task running the vcore
254 * is preempted or sleeping, or when the vcpu needs something done
255 * in the kernel by the task running the vcpu, but that task is
256 * preempted or sleeping. Those two things have to be counted
257 * separately, since one of the vcpu tasks will take on the job
258 * of running the core, and the other vcpu tasks in the vcore will
259 * sleep waiting for it to do that, but that sleep shouldn't count
260 * as stolen time.
261 *
262 * Hence we accumulate stolen time when the vcpu can run as part of
263 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
264 * needs its task to do other things in the kernel (for example,
265 * service a page fault) in busy_stolen. We don't accumulate
266 * stolen time for a vcore when it is inactive, or for a vcpu
267 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
268 * a misnomer; it means that the vcpu task is not executing in
269 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
270 * the kernel. We don't have any way of dividing up that time
271 * between time that the vcpu is genuinely stopped, time that
272 * the task is actively working on behalf of the vcpu, and time
273 * that the task is preempted, so we don't count any of it as
274 * stolen.
275 *
276 * Updates to busy_stolen are protected by arch.tbacct_lock;
277 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
278 * lock. The stolen times are measured in units of timebase ticks.
279 * (Note that the != TB_NIL checks below are purely defensive;
280 * they should never fail.)
281 */
282
kvmppc_core_start_stolen(struct kvmppc_vcore * vc,u64 tb)283 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb)
284 {
285 unsigned long flags;
286
287 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
288
289 spin_lock_irqsave(&vc->stoltb_lock, flags);
290 vc->preempt_tb = tb;
291 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
292 }
293
kvmppc_core_end_stolen(struct kvmppc_vcore * vc,u64 tb)294 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb)
295 {
296 unsigned long flags;
297
298 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
299
300 spin_lock_irqsave(&vc->stoltb_lock, flags);
301 if (vc->preempt_tb != TB_NIL) {
302 vc->stolen_tb += tb - vc->preempt_tb;
303 vc->preempt_tb = TB_NIL;
304 }
305 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
306 }
307
kvmppc_core_vcpu_load_hv(struct kvm_vcpu * vcpu,int cpu)308 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
309 {
310 struct kvmppc_vcore *vc = vcpu->arch.vcore;
311 unsigned long flags;
312 u64 now;
313
314 if (cpu_has_feature(CPU_FTR_ARCH_300))
315 return;
316
317 now = mftb();
318
319 /*
320 * We can test vc->runner without taking the vcore lock,
321 * because only this task ever sets vc->runner to this
322 * vcpu, and once it is set to this vcpu, only this task
323 * ever sets it to NULL.
324 */
325 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
326 kvmppc_core_end_stolen(vc, now);
327
328 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
329 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
330 vcpu->arch.busy_preempt != TB_NIL) {
331 vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt;
332 vcpu->arch.busy_preempt = TB_NIL;
333 }
334 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
335 }
336
kvmppc_core_vcpu_put_hv(struct kvm_vcpu * vcpu)337 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
338 {
339 struct kvmppc_vcore *vc = vcpu->arch.vcore;
340 unsigned long flags;
341 u64 now;
342
343 if (cpu_has_feature(CPU_FTR_ARCH_300))
344 return;
345
346 now = mftb();
347
348 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
349 kvmppc_core_start_stolen(vc, now);
350
351 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
352 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
353 vcpu->arch.busy_preempt = now;
354 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
355 }
356
kvmppc_set_pvr_hv(struct kvm_vcpu * vcpu,u32 pvr)357 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
358 {
359 vcpu->arch.pvr = pvr;
360 }
361
362 /* Dummy value used in computing PCR value below */
363 #define PCR_ARCH_31 (PCR_ARCH_300 << 1)
364
kvmppc_set_arch_compat(struct kvm_vcpu * vcpu,u32 arch_compat)365 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
366 {
367 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
368 struct kvmppc_vcore *vc = vcpu->arch.vcore;
369
370 /* We can (emulate) our own architecture version and anything older */
371 if (cpu_has_feature(CPU_FTR_ARCH_31))
372 host_pcr_bit = PCR_ARCH_31;
373 else if (cpu_has_feature(CPU_FTR_ARCH_300))
374 host_pcr_bit = PCR_ARCH_300;
375 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
376 host_pcr_bit = PCR_ARCH_207;
377 else if (cpu_has_feature(CPU_FTR_ARCH_206))
378 host_pcr_bit = PCR_ARCH_206;
379 else
380 host_pcr_bit = PCR_ARCH_205;
381
382 /* Determine lowest PCR bit needed to run guest in given PVR level */
383 guest_pcr_bit = host_pcr_bit;
384 if (arch_compat) {
385 switch (arch_compat) {
386 case PVR_ARCH_205:
387 guest_pcr_bit = PCR_ARCH_205;
388 break;
389 case PVR_ARCH_206:
390 case PVR_ARCH_206p:
391 guest_pcr_bit = PCR_ARCH_206;
392 break;
393 case PVR_ARCH_207:
394 guest_pcr_bit = PCR_ARCH_207;
395 break;
396 case PVR_ARCH_300:
397 guest_pcr_bit = PCR_ARCH_300;
398 break;
399 case PVR_ARCH_31:
400 guest_pcr_bit = PCR_ARCH_31;
401 break;
402 default:
403 return -EINVAL;
404 }
405 }
406
407 /* Check requested PCR bits don't exceed our capabilities */
408 if (guest_pcr_bit > host_pcr_bit)
409 return -EINVAL;
410
411 spin_lock(&vc->lock);
412 vc->arch_compat = arch_compat;
413 /*
414 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
415 * Also set all reserved PCR bits
416 */
417 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
418 spin_unlock(&vc->lock);
419
420 return 0;
421 }
422
kvmppc_dump_regs(struct kvm_vcpu * vcpu)423 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
424 {
425 int r;
426
427 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
428 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
429 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
430 for (r = 0; r < 16; ++r)
431 pr_err("r%2d = %.16lx r%d = %.16lx\n",
432 r, kvmppc_get_gpr(vcpu, r),
433 r+16, kvmppc_get_gpr(vcpu, r+16));
434 pr_err("ctr = %.16lx lr = %.16lx\n",
435 vcpu->arch.regs.ctr, vcpu->arch.regs.link);
436 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
437 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
438 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
439 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
440 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
441 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
442 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n",
443 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
444 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
445 pr_err("fault dar = %.16lx dsisr = %.8x\n",
446 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
447 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
448 for (r = 0; r < vcpu->arch.slb_max; ++r)
449 pr_err(" ESID = %.16llx VSID = %.16llx\n",
450 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
451 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
452 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
453 vcpu->arch.last_inst);
454 }
455
kvmppc_find_vcpu(struct kvm * kvm,int id)456 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
457 {
458 return kvm_get_vcpu_by_id(kvm, id);
459 }
460
init_vpa(struct kvm_vcpu * vcpu,struct lppaca * vpa)461 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
462 {
463 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
464 vpa->yield_count = cpu_to_be32(1);
465 }
466
set_vpa(struct kvm_vcpu * vcpu,struct kvmppc_vpa * v,unsigned long addr,unsigned long len)467 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
468 unsigned long addr, unsigned long len)
469 {
470 /* check address is cacheline aligned */
471 if (addr & (L1_CACHE_BYTES - 1))
472 return -EINVAL;
473 spin_lock(&vcpu->arch.vpa_update_lock);
474 if (v->next_gpa != addr || v->len != len) {
475 v->next_gpa = addr;
476 v->len = addr ? len : 0;
477 v->update_pending = 1;
478 }
479 spin_unlock(&vcpu->arch.vpa_update_lock);
480 return 0;
481 }
482
483 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
484 struct reg_vpa {
485 u32 dummy;
486 union {
487 __be16 hword;
488 __be32 word;
489 } length;
490 };
491
vpa_is_registered(struct kvmppc_vpa * vpap)492 static int vpa_is_registered(struct kvmppc_vpa *vpap)
493 {
494 if (vpap->update_pending)
495 return vpap->next_gpa != 0;
496 return vpap->pinned_addr != NULL;
497 }
498
do_h_register_vpa(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long vcpuid,unsigned long vpa)499 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
500 unsigned long flags,
501 unsigned long vcpuid, unsigned long vpa)
502 {
503 struct kvm *kvm = vcpu->kvm;
504 unsigned long len, nb;
505 void *va;
506 struct kvm_vcpu *tvcpu;
507 int err;
508 int subfunc;
509 struct kvmppc_vpa *vpap;
510
511 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
512 if (!tvcpu)
513 return H_PARAMETER;
514
515 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
516 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
517 subfunc == H_VPA_REG_SLB) {
518 /* Registering new area - address must be cache-line aligned */
519 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
520 return H_PARAMETER;
521
522 /* convert logical addr to kernel addr and read length */
523 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
524 if (va == NULL)
525 return H_PARAMETER;
526 if (subfunc == H_VPA_REG_VPA)
527 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
528 else
529 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
530 kvmppc_unpin_guest_page(kvm, va, vpa, false);
531
532 /* Check length */
533 if (len > nb || len < sizeof(struct reg_vpa))
534 return H_PARAMETER;
535 } else {
536 vpa = 0;
537 len = 0;
538 }
539
540 err = H_PARAMETER;
541 vpap = NULL;
542 spin_lock(&tvcpu->arch.vpa_update_lock);
543
544 switch (subfunc) {
545 case H_VPA_REG_VPA: /* register VPA */
546 /*
547 * The size of our lppaca is 1kB because of the way we align
548 * it for the guest to avoid crossing a 4kB boundary. We only
549 * use 640 bytes of the structure though, so we should accept
550 * clients that set a size of 640.
551 */
552 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
553 if (len < sizeof(struct lppaca))
554 break;
555 vpap = &tvcpu->arch.vpa;
556 err = 0;
557 break;
558
559 case H_VPA_REG_DTL: /* register DTL */
560 if (len < sizeof(struct dtl_entry))
561 break;
562 len -= len % sizeof(struct dtl_entry);
563
564 /* Check that they have previously registered a VPA */
565 err = H_RESOURCE;
566 if (!vpa_is_registered(&tvcpu->arch.vpa))
567 break;
568
569 vpap = &tvcpu->arch.dtl;
570 err = 0;
571 break;
572
573 case H_VPA_REG_SLB: /* register SLB shadow buffer */
574 /* Check that they have previously registered a VPA */
575 err = H_RESOURCE;
576 if (!vpa_is_registered(&tvcpu->arch.vpa))
577 break;
578
579 vpap = &tvcpu->arch.slb_shadow;
580 err = 0;
581 break;
582
583 case H_VPA_DEREG_VPA: /* deregister VPA */
584 /* Check they don't still have a DTL or SLB buf registered */
585 err = H_RESOURCE;
586 if (vpa_is_registered(&tvcpu->arch.dtl) ||
587 vpa_is_registered(&tvcpu->arch.slb_shadow))
588 break;
589
590 vpap = &tvcpu->arch.vpa;
591 err = 0;
592 break;
593
594 case H_VPA_DEREG_DTL: /* deregister DTL */
595 vpap = &tvcpu->arch.dtl;
596 err = 0;
597 break;
598
599 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
600 vpap = &tvcpu->arch.slb_shadow;
601 err = 0;
602 break;
603 }
604
605 if (vpap) {
606 vpap->next_gpa = vpa;
607 vpap->len = len;
608 vpap->update_pending = 1;
609 }
610
611 spin_unlock(&tvcpu->arch.vpa_update_lock);
612
613 return err;
614 }
615
kvmppc_update_vpa(struct kvm_vcpu * vcpu,struct kvmppc_vpa * vpap)616 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
617 {
618 struct kvm *kvm = vcpu->kvm;
619 void *va;
620 unsigned long nb;
621 unsigned long gpa;
622
623 /*
624 * We need to pin the page pointed to by vpap->next_gpa,
625 * but we can't call kvmppc_pin_guest_page under the lock
626 * as it does get_user_pages() and down_read(). So we
627 * have to drop the lock, pin the page, then get the lock
628 * again and check that a new area didn't get registered
629 * in the meantime.
630 */
631 for (;;) {
632 gpa = vpap->next_gpa;
633 spin_unlock(&vcpu->arch.vpa_update_lock);
634 va = NULL;
635 nb = 0;
636 if (gpa)
637 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
638 spin_lock(&vcpu->arch.vpa_update_lock);
639 if (gpa == vpap->next_gpa)
640 break;
641 /* sigh... unpin that one and try again */
642 if (va)
643 kvmppc_unpin_guest_page(kvm, va, gpa, false);
644 }
645
646 vpap->update_pending = 0;
647 if (va && nb < vpap->len) {
648 /*
649 * If it's now too short, it must be that userspace
650 * has changed the mappings underlying guest memory,
651 * so unregister the region.
652 */
653 kvmppc_unpin_guest_page(kvm, va, gpa, false);
654 va = NULL;
655 }
656 if (vpap->pinned_addr)
657 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
658 vpap->dirty);
659 vpap->gpa = gpa;
660 vpap->pinned_addr = va;
661 vpap->dirty = false;
662 if (va)
663 vpap->pinned_end = va + vpap->len;
664 }
665
kvmppc_update_vpas(struct kvm_vcpu * vcpu)666 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
667 {
668 if (!(vcpu->arch.vpa.update_pending ||
669 vcpu->arch.slb_shadow.update_pending ||
670 vcpu->arch.dtl.update_pending))
671 return;
672
673 spin_lock(&vcpu->arch.vpa_update_lock);
674 if (vcpu->arch.vpa.update_pending) {
675 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
676 if (vcpu->arch.vpa.pinned_addr)
677 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
678 }
679 if (vcpu->arch.dtl.update_pending) {
680 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
681 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
682 vcpu->arch.dtl_index = 0;
683 }
684 if (vcpu->arch.slb_shadow.update_pending)
685 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
686 spin_unlock(&vcpu->arch.vpa_update_lock);
687 }
688
689 /*
690 * Return the accumulated stolen time for the vcore up until `now'.
691 * The caller should hold the vcore lock.
692 */
vcore_stolen_time(struct kvmppc_vcore * vc,u64 now)693 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
694 {
695 u64 p;
696 unsigned long flags;
697
698 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
699
700 spin_lock_irqsave(&vc->stoltb_lock, flags);
701 p = vc->stolen_tb;
702 if (vc->vcore_state != VCORE_INACTIVE &&
703 vc->preempt_tb != TB_NIL)
704 p += now - vc->preempt_tb;
705 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
706 return p;
707 }
708
__kvmppc_create_dtl_entry(struct kvm_vcpu * vcpu,unsigned int pcpu,u64 now,unsigned long stolen)709 static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
710 unsigned int pcpu, u64 now,
711 unsigned long stolen)
712 {
713 struct dtl_entry *dt;
714 struct lppaca *vpa;
715
716 dt = vcpu->arch.dtl_ptr;
717 vpa = vcpu->arch.vpa.pinned_addr;
718
719 if (!dt || !vpa)
720 return;
721
722 dt->dispatch_reason = 7;
723 dt->preempt_reason = 0;
724 dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid);
725 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
726 dt->ready_to_enqueue_time = 0;
727 dt->waiting_to_ready_time = 0;
728 dt->timebase = cpu_to_be64(now);
729 dt->fault_addr = 0;
730 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
731 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
732
733 ++dt;
734 if (dt == vcpu->arch.dtl.pinned_end)
735 dt = vcpu->arch.dtl.pinned_addr;
736 vcpu->arch.dtl_ptr = dt;
737 /* order writing *dt vs. writing vpa->dtl_idx */
738 smp_wmb();
739 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
740 vcpu->arch.dtl.dirty = true;
741 }
742
kvmppc_create_dtl_entry(struct kvm_vcpu * vcpu,struct kvmppc_vcore * vc)743 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
744 struct kvmppc_vcore *vc)
745 {
746 unsigned long stolen;
747 unsigned long core_stolen;
748 u64 now;
749 unsigned long flags;
750
751 now = mftb();
752
753 core_stolen = vcore_stolen_time(vc, now);
754 stolen = core_stolen - vcpu->arch.stolen_logged;
755 vcpu->arch.stolen_logged = core_stolen;
756 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
757 stolen += vcpu->arch.busy_stolen;
758 vcpu->arch.busy_stolen = 0;
759 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
760
761 __kvmppc_create_dtl_entry(vcpu, vc->pcpu, now + vc->tb_offset, stolen);
762 }
763
764 /* See if there is a doorbell interrupt pending for a vcpu */
kvmppc_doorbell_pending(struct kvm_vcpu * vcpu)765 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
766 {
767 int thr;
768 struct kvmppc_vcore *vc;
769
770 if (vcpu->arch.doorbell_request)
771 return true;
772 if (cpu_has_feature(CPU_FTR_ARCH_300))
773 return false;
774 /*
775 * Ensure that the read of vcore->dpdes comes after the read
776 * of vcpu->doorbell_request. This barrier matches the
777 * smp_wmb() in kvmppc_guest_entry_inject().
778 */
779 smp_rmb();
780 vc = vcpu->arch.vcore;
781 thr = vcpu->vcpu_id - vc->first_vcpuid;
782 return !!(vc->dpdes & (1 << thr));
783 }
784
kvmppc_power8_compatible(struct kvm_vcpu * vcpu)785 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
786 {
787 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
788 return true;
789 if ((!vcpu->arch.vcore->arch_compat) &&
790 cpu_has_feature(CPU_FTR_ARCH_207S))
791 return true;
792 return false;
793 }
794
kvmppc_h_set_mode(struct kvm_vcpu * vcpu,unsigned long mflags,unsigned long resource,unsigned long value1,unsigned long value2)795 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
796 unsigned long resource, unsigned long value1,
797 unsigned long value2)
798 {
799 switch (resource) {
800 case H_SET_MODE_RESOURCE_SET_CIABR:
801 if (!kvmppc_power8_compatible(vcpu))
802 return H_P2;
803 if (value2)
804 return H_P4;
805 if (mflags)
806 return H_UNSUPPORTED_FLAG_START;
807 /* Guests can't breakpoint the hypervisor */
808 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
809 return H_P3;
810 vcpu->arch.ciabr = value1;
811 return H_SUCCESS;
812 case H_SET_MODE_RESOURCE_SET_DAWR0:
813 if (!kvmppc_power8_compatible(vcpu))
814 return H_P2;
815 if (!ppc_breakpoint_available())
816 return H_P2;
817 if (mflags)
818 return H_UNSUPPORTED_FLAG_START;
819 if (value2 & DABRX_HYP)
820 return H_P4;
821 vcpu->arch.dawr0 = value1;
822 vcpu->arch.dawrx0 = value2;
823 return H_SUCCESS;
824 case H_SET_MODE_RESOURCE_SET_DAWR1:
825 if (!kvmppc_power8_compatible(vcpu))
826 return H_P2;
827 if (!ppc_breakpoint_available())
828 return H_P2;
829 if (!cpu_has_feature(CPU_FTR_DAWR1))
830 return H_P2;
831 if (!vcpu->kvm->arch.dawr1_enabled)
832 return H_FUNCTION;
833 if (mflags)
834 return H_UNSUPPORTED_FLAG_START;
835 if (value2 & DABRX_HYP)
836 return H_P4;
837 vcpu->arch.dawr1 = value1;
838 vcpu->arch.dawrx1 = value2;
839 return H_SUCCESS;
840 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
841 /*
842 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
843 * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
844 */
845 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
846 kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
847 return H_UNSUPPORTED_FLAG_START;
848 return H_TOO_HARD;
849 default:
850 return H_TOO_HARD;
851 }
852 }
853
854 /* Copy guest memory in place - must reside within a single memslot */
kvmppc_copy_guest(struct kvm * kvm,gpa_t to,gpa_t from,unsigned long len)855 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
856 unsigned long len)
857 {
858 struct kvm_memory_slot *to_memslot = NULL;
859 struct kvm_memory_slot *from_memslot = NULL;
860 unsigned long to_addr, from_addr;
861 int r;
862
863 /* Get HPA for from address */
864 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
865 if (!from_memslot)
866 return -EFAULT;
867 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
868 << PAGE_SHIFT))
869 return -EINVAL;
870 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
871 if (kvm_is_error_hva(from_addr))
872 return -EFAULT;
873 from_addr |= (from & (PAGE_SIZE - 1));
874
875 /* Get HPA for to address */
876 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
877 if (!to_memslot)
878 return -EFAULT;
879 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
880 << PAGE_SHIFT))
881 return -EINVAL;
882 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
883 if (kvm_is_error_hva(to_addr))
884 return -EFAULT;
885 to_addr |= (to & (PAGE_SIZE - 1));
886
887 /* Perform copy */
888 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
889 len);
890 if (r)
891 return -EFAULT;
892 mark_page_dirty(kvm, to >> PAGE_SHIFT);
893 return 0;
894 }
895
kvmppc_h_page_init(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long dest,unsigned long src)896 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
897 unsigned long dest, unsigned long src)
898 {
899 u64 pg_sz = SZ_4K; /* 4K page size */
900 u64 pg_mask = SZ_4K - 1;
901 int ret;
902
903 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
904 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
905 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
906 return H_PARAMETER;
907
908 /* dest (and src if copy_page flag set) must be page aligned */
909 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
910 return H_PARAMETER;
911
912 /* zero and/or copy the page as determined by the flags */
913 if (flags & H_COPY_PAGE) {
914 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
915 if (ret < 0)
916 return H_PARAMETER;
917 } else if (flags & H_ZERO_PAGE) {
918 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
919 if (ret < 0)
920 return H_PARAMETER;
921 }
922
923 /* We can ignore the remaining flags */
924
925 return H_SUCCESS;
926 }
927
kvm_arch_vcpu_yield_to(struct kvm_vcpu * target)928 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
929 {
930 struct kvmppc_vcore *vcore = target->arch.vcore;
931
932 /*
933 * We expect to have been called by the real mode handler
934 * (kvmppc_rm_h_confer()) which would have directly returned
935 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
936 * have useful work to do and should not confer) so we don't
937 * recheck that here.
938 *
939 * In the case of the P9 single vcpu per vcore case, the real
940 * mode handler is not called but no other threads are in the
941 * source vcore.
942 */
943 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
944 spin_lock(&vcore->lock);
945 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
946 vcore->vcore_state != VCORE_INACTIVE &&
947 vcore->runner)
948 target = vcore->runner;
949 spin_unlock(&vcore->lock);
950 }
951
952 return kvm_vcpu_yield_to(target);
953 }
954
kvmppc_get_yield_count(struct kvm_vcpu * vcpu)955 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
956 {
957 int yield_count = 0;
958 struct lppaca *lppaca;
959
960 spin_lock(&vcpu->arch.vpa_update_lock);
961 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
962 if (lppaca)
963 yield_count = be32_to_cpu(lppaca->yield_count);
964 spin_unlock(&vcpu->arch.vpa_update_lock);
965 return yield_count;
966 }
967
968 /*
969 * H_RPT_INVALIDATE hcall handler for nested guests.
970 *
971 * Handles only nested process-scoped invalidation requests in L0.
972 */
kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu * vcpu)973 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
974 {
975 unsigned long type = kvmppc_get_gpr(vcpu, 6);
976 unsigned long pid, pg_sizes, start, end;
977
978 /*
979 * The partition-scoped invalidations aren't handled here in L0.
980 */
981 if (type & H_RPTI_TYPE_NESTED)
982 return RESUME_HOST;
983
984 pid = kvmppc_get_gpr(vcpu, 4);
985 pg_sizes = kvmppc_get_gpr(vcpu, 7);
986 start = kvmppc_get_gpr(vcpu, 8);
987 end = kvmppc_get_gpr(vcpu, 9);
988
989 do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
990 type, pg_sizes, start, end);
991
992 kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
993 return RESUME_GUEST;
994 }
995
kvmppc_h_rpt_invalidate(struct kvm_vcpu * vcpu,unsigned long id,unsigned long target,unsigned long type,unsigned long pg_sizes,unsigned long start,unsigned long end)996 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
997 unsigned long id, unsigned long target,
998 unsigned long type, unsigned long pg_sizes,
999 unsigned long start, unsigned long end)
1000 {
1001 if (!kvm_is_radix(vcpu->kvm))
1002 return H_UNSUPPORTED;
1003
1004 if (end < start)
1005 return H_P5;
1006
1007 /*
1008 * Partition-scoped invalidation for nested guests.
1009 */
1010 if (type & H_RPTI_TYPE_NESTED) {
1011 if (!nesting_enabled(vcpu->kvm))
1012 return H_FUNCTION;
1013
1014 /* Support only cores as target */
1015 if (target != H_RPTI_TARGET_CMMU)
1016 return H_P2;
1017
1018 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
1019 start, end);
1020 }
1021
1022 /*
1023 * Process-scoped invalidation for L1 guests.
1024 */
1025 do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
1026 type, pg_sizes, start, end);
1027 return H_SUCCESS;
1028 }
1029
kvmppc_pseries_do_hcall(struct kvm_vcpu * vcpu)1030 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
1031 {
1032 struct kvm *kvm = vcpu->kvm;
1033 unsigned long req = kvmppc_get_gpr(vcpu, 3);
1034 unsigned long target, ret = H_SUCCESS;
1035 int yield_count;
1036 struct kvm_vcpu *tvcpu;
1037 int idx, rc;
1038
1039 if (req <= MAX_HCALL_OPCODE &&
1040 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
1041 return RESUME_HOST;
1042
1043 switch (req) {
1044 case H_REMOVE:
1045 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
1046 kvmppc_get_gpr(vcpu, 5),
1047 kvmppc_get_gpr(vcpu, 6));
1048 if (ret == H_TOO_HARD)
1049 return RESUME_HOST;
1050 break;
1051 case H_ENTER:
1052 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
1053 kvmppc_get_gpr(vcpu, 5),
1054 kvmppc_get_gpr(vcpu, 6),
1055 kvmppc_get_gpr(vcpu, 7));
1056 if (ret == H_TOO_HARD)
1057 return RESUME_HOST;
1058 break;
1059 case H_READ:
1060 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
1061 kvmppc_get_gpr(vcpu, 5));
1062 if (ret == H_TOO_HARD)
1063 return RESUME_HOST;
1064 break;
1065 case H_CLEAR_MOD:
1066 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
1067 kvmppc_get_gpr(vcpu, 5));
1068 if (ret == H_TOO_HARD)
1069 return RESUME_HOST;
1070 break;
1071 case H_CLEAR_REF:
1072 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
1073 kvmppc_get_gpr(vcpu, 5));
1074 if (ret == H_TOO_HARD)
1075 return RESUME_HOST;
1076 break;
1077 case H_PROTECT:
1078 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
1079 kvmppc_get_gpr(vcpu, 5),
1080 kvmppc_get_gpr(vcpu, 6));
1081 if (ret == H_TOO_HARD)
1082 return RESUME_HOST;
1083 break;
1084 case H_BULK_REMOVE:
1085 ret = kvmppc_h_bulk_remove(vcpu);
1086 if (ret == H_TOO_HARD)
1087 return RESUME_HOST;
1088 break;
1089
1090 case H_CEDE:
1091 break;
1092 case H_PROD:
1093 target = kvmppc_get_gpr(vcpu, 4);
1094 tvcpu = kvmppc_find_vcpu(kvm, target);
1095 if (!tvcpu) {
1096 ret = H_PARAMETER;
1097 break;
1098 }
1099 tvcpu->arch.prodded = 1;
1100 smp_mb(); /* This orders prodded store vs ceded load */
1101 if (tvcpu->arch.ceded)
1102 kvmppc_fast_vcpu_kick_hv(tvcpu);
1103 break;
1104 case H_CONFER:
1105 target = kvmppc_get_gpr(vcpu, 4);
1106 if (target == -1)
1107 break;
1108 tvcpu = kvmppc_find_vcpu(kvm, target);
1109 if (!tvcpu) {
1110 ret = H_PARAMETER;
1111 break;
1112 }
1113 yield_count = kvmppc_get_gpr(vcpu, 5);
1114 if (kvmppc_get_yield_count(tvcpu) != yield_count)
1115 break;
1116 kvm_arch_vcpu_yield_to(tvcpu);
1117 break;
1118 case H_REGISTER_VPA:
1119 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
1120 kvmppc_get_gpr(vcpu, 5),
1121 kvmppc_get_gpr(vcpu, 6));
1122 break;
1123 case H_RTAS:
1124 if (list_empty(&kvm->arch.rtas_tokens))
1125 return RESUME_HOST;
1126
1127 idx = srcu_read_lock(&kvm->srcu);
1128 rc = kvmppc_rtas_hcall(vcpu);
1129 srcu_read_unlock(&kvm->srcu, idx);
1130
1131 if (rc == -ENOENT)
1132 return RESUME_HOST;
1133 else if (rc == 0)
1134 break;
1135
1136 /* Send the error out to userspace via KVM_RUN */
1137 return rc;
1138 case H_LOGICAL_CI_LOAD:
1139 ret = kvmppc_h_logical_ci_load(vcpu);
1140 if (ret == H_TOO_HARD)
1141 return RESUME_HOST;
1142 break;
1143 case H_LOGICAL_CI_STORE:
1144 ret = kvmppc_h_logical_ci_store(vcpu);
1145 if (ret == H_TOO_HARD)
1146 return RESUME_HOST;
1147 break;
1148 case H_SET_MODE:
1149 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1150 kvmppc_get_gpr(vcpu, 5),
1151 kvmppc_get_gpr(vcpu, 6),
1152 kvmppc_get_gpr(vcpu, 7));
1153 if (ret == H_TOO_HARD)
1154 return RESUME_HOST;
1155 break;
1156 case H_XIRR:
1157 case H_CPPR:
1158 case H_EOI:
1159 case H_IPI:
1160 case H_IPOLL:
1161 case H_XIRR_X:
1162 if (kvmppc_xics_enabled(vcpu)) {
1163 if (xics_on_xive()) {
1164 ret = H_NOT_AVAILABLE;
1165 return RESUME_GUEST;
1166 }
1167 ret = kvmppc_xics_hcall(vcpu, req);
1168 break;
1169 }
1170 return RESUME_HOST;
1171 case H_SET_DABR:
1172 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1173 break;
1174 case H_SET_XDABR:
1175 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1176 kvmppc_get_gpr(vcpu, 5));
1177 break;
1178 #ifdef CONFIG_SPAPR_TCE_IOMMU
1179 case H_GET_TCE:
1180 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1181 kvmppc_get_gpr(vcpu, 5));
1182 if (ret == H_TOO_HARD)
1183 return RESUME_HOST;
1184 break;
1185 case H_PUT_TCE:
1186 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1187 kvmppc_get_gpr(vcpu, 5),
1188 kvmppc_get_gpr(vcpu, 6));
1189 if (ret == H_TOO_HARD)
1190 return RESUME_HOST;
1191 break;
1192 case H_PUT_TCE_INDIRECT:
1193 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1194 kvmppc_get_gpr(vcpu, 5),
1195 kvmppc_get_gpr(vcpu, 6),
1196 kvmppc_get_gpr(vcpu, 7));
1197 if (ret == H_TOO_HARD)
1198 return RESUME_HOST;
1199 break;
1200 case H_STUFF_TCE:
1201 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1202 kvmppc_get_gpr(vcpu, 5),
1203 kvmppc_get_gpr(vcpu, 6),
1204 kvmppc_get_gpr(vcpu, 7));
1205 if (ret == H_TOO_HARD)
1206 return RESUME_HOST;
1207 break;
1208 #endif
1209 case H_RANDOM:
1210 if (!arch_get_random_seed_long(&vcpu->arch.regs.gpr[4]))
1211 ret = H_HARDWARE;
1212 break;
1213 case H_RPT_INVALIDATE:
1214 ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
1215 kvmppc_get_gpr(vcpu, 5),
1216 kvmppc_get_gpr(vcpu, 6),
1217 kvmppc_get_gpr(vcpu, 7),
1218 kvmppc_get_gpr(vcpu, 8),
1219 kvmppc_get_gpr(vcpu, 9));
1220 break;
1221
1222 case H_SET_PARTITION_TABLE:
1223 ret = H_FUNCTION;
1224 if (nesting_enabled(kvm))
1225 ret = kvmhv_set_partition_table(vcpu);
1226 break;
1227 case H_ENTER_NESTED:
1228 ret = H_FUNCTION;
1229 if (!nesting_enabled(kvm))
1230 break;
1231 ret = kvmhv_enter_nested_guest(vcpu);
1232 if (ret == H_INTERRUPT) {
1233 kvmppc_set_gpr(vcpu, 3, 0);
1234 vcpu->arch.hcall_needed = 0;
1235 return -EINTR;
1236 } else if (ret == H_TOO_HARD) {
1237 kvmppc_set_gpr(vcpu, 3, 0);
1238 vcpu->arch.hcall_needed = 0;
1239 return RESUME_HOST;
1240 }
1241 break;
1242 case H_TLB_INVALIDATE:
1243 ret = H_FUNCTION;
1244 if (nesting_enabled(kvm))
1245 ret = kvmhv_do_nested_tlbie(vcpu);
1246 break;
1247 case H_COPY_TOFROM_GUEST:
1248 ret = H_FUNCTION;
1249 if (nesting_enabled(kvm))
1250 ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1251 break;
1252 case H_PAGE_INIT:
1253 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1254 kvmppc_get_gpr(vcpu, 5),
1255 kvmppc_get_gpr(vcpu, 6));
1256 break;
1257 case H_SVM_PAGE_IN:
1258 ret = H_UNSUPPORTED;
1259 if (kvmppc_get_srr1(vcpu) & MSR_S)
1260 ret = kvmppc_h_svm_page_in(kvm,
1261 kvmppc_get_gpr(vcpu, 4),
1262 kvmppc_get_gpr(vcpu, 5),
1263 kvmppc_get_gpr(vcpu, 6));
1264 break;
1265 case H_SVM_PAGE_OUT:
1266 ret = H_UNSUPPORTED;
1267 if (kvmppc_get_srr1(vcpu) & MSR_S)
1268 ret = kvmppc_h_svm_page_out(kvm,
1269 kvmppc_get_gpr(vcpu, 4),
1270 kvmppc_get_gpr(vcpu, 5),
1271 kvmppc_get_gpr(vcpu, 6));
1272 break;
1273 case H_SVM_INIT_START:
1274 ret = H_UNSUPPORTED;
1275 if (kvmppc_get_srr1(vcpu) & MSR_S)
1276 ret = kvmppc_h_svm_init_start(kvm);
1277 break;
1278 case H_SVM_INIT_DONE:
1279 ret = H_UNSUPPORTED;
1280 if (kvmppc_get_srr1(vcpu) & MSR_S)
1281 ret = kvmppc_h_svm_init_done(kvm);
1282 break;
1283 case H_SVM_INIT_ABORT:
1284 /*
1285 * Even if that call is made by the Ultravisor, the SSR1 value
1286 * is the guest context one, with the secure bit clear as it has
1287 * not yet been secured. So we can't check it here.
1288 * Instead the kvm->arch.secure_guest flag is checked inside
1289 * kvmppc_h_svm_init_abort().
1290 */
1291 ret = kvmppc_h_svm_init_abort(kvm);
1292 break;
1293
1294 default:
1295 return RESUME_HOST;
1296 }
1297 WARN_ON_ONCE(ret == H_TOO_HARD);
1298 kvmppc_set_gpr(vcpu, 3, ret);
1299 vcpu->arch.hcall_needed = 0;
1300 return RESUME_GUEST;
1301 }
1302
1303 /*
1304 * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1305 * handlers in book3s_hv_rmhandlers.S.
1306 *
1307 * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1308 * that the cede logic in kvmppc_run_single_vcpu() works properly.
1309 */
kvmppc_cede(struct kvm_vcpu * vcpu)1310 static void kvmppc_cede(struct kvm_vcpu *vcpu)
1311 {
1312 vcpu->arch.shregs.msr |= MSR_EE;
1313 vcpu->arch.ceded = 1;
1314 smp_mb();
1315 if (vcpu->arch.prodded) {
1316 vcpu->arch.prodded = 0;
1317 smp_mb();
1318 vcpu->arch.ceded = 0;
1319 }
1320 }
1321
kvmppc_hcall_impl_hv(unsigned long cmd)1322 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1323 {
1324 switch (cmd) {
1325 case H_CEDE:
1326 case H_PROD:
1327 case H_CONFER:
1328 case H_REGISTER_VPA:
1329 case H_SET_MODE:
1330 #ifdef CONFIG_SPAPR_TCE_IOMMU
1331 case H_GET_TCE:
1332 case H_PUT_TCE:
1333 case H_PUT_TCE_INDIRECT:
1334 case H_STUFF_TCE:
1335 #endif
1336 case H_LOGICAL_CI_LOAD:
1337 case H_LOGICAL_CI_STORE:
1338 #ifdef CONFIG_KVM_XICS
1339 case H_XIRR:
1340 case H_CPPR:
1341 case H_EOI:
1342 case H_IPI:
1343 case H_IPOLL:
1344 case H_XIRR_X:
1345 #endif
1346 case H_PAGE_INIT:
1347 case H_RPT_INVALIDATE:
1348 return 1;
1349 }
1350
1351 /* See if it's in the real-mode table */
1352 return kvmppc_hcall_impl_hv_realmode(cmd);
1353 }
1354
kvmppc_emulate_debug_inst(struct kvm_vcpu * vcpu)1355 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1356 {
1357 u32 last_inst;
1358
1359 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1360 EMULATE_DONE) {
1361 /*
1362 * Fetch failed, so return to guest and
1363 * try executing it again.
1364 */
1365 return RESUME_GUEST;
1366 }
1367
1368 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1369 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1370 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1371 return RESUME_HOST;
1372 } else {
1373 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1374 return RESUME_GUEST;
1375 }
1376 }
1377
do_nothing(void * x)1378 static void do_nothing(void *x)
1379 {
1380 }
1381
kvmppc_read_dpdes(struct kvm_vcpu * vcpu)1382 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1383 {
1384 int thr, cpu, pcpu, nthreads;
1385 struct kvm_vcpu *v;
1386 unsigned long dpdes;
1387
1388 nthreads = vcpu->kvm->arch.emul_smt_mode;
1389 dpdes = 0;
1390 cpu = vcpu->vcpu_id & ~(nthreads - 1);
1391 for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1392 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1393 if (!v)
1394 continue;
1395 /*
1396 * If the vcpu is currently running on a physical cpu thread,
1397 * interrupt it in order to pull it out of the guest briefly,
1398 * which will update its vcore->dpdes value.
1399 */
1400 pcpu = READ_ONCE(v->cpu);
1401 if (pcpu >= 0)
1402 smp_call_function_single(pcpu, do_nothing, NULL, 1);
1403 if (kvmppc_doorbell_pending(v))
1404 dpdes |= 1 << thr;
1405 }
1406 return dpdes;
1407 }
1408
1409 /*
1410 * On POWER9, emulate doorbell-related instructions in order to
1411 * give the guest the illusion of running on a multi-threaded core.
1412 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1413 * and mfspr DPDES.
1414 */
kvmppc_emulate_doorbell_instr(struct kvm_vcpu * vcpu)1415 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1416 {
1417 u32 inst, rb, thr;
1418 unsigned long arg;
1419 struct kvm *kvm = vcpu->kvm;
1420 struct kvm_vcpu *tvcpu;
1421
1422 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1423 return RESUME_GUEST;
1424 if (get_op(inst) != 31)
1425 return EMULATE_FAIL;
1426 rb = get_rb(inst);
1427 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1428 switch (get_xop(inst)) {
1429 case OP_31_XOP_MSGSNDP:
1430 arg = kvmppc_get_gpr(vcpu, rb);
1431 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1432 break;
1433 arg &= 0x7f;
1434 if (arg >= kvm->arch.emul_smt_mode)
1435 break;
1436 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1437 if (!tvcpu)
1438 break;
1439 if (!tvcpu->arch.doorbell_request) {
1440 tvcpu->arch.doorbell_request = 1;
1441 kvmppc_fast_vcpu_kick_hv(tvcpu);
1442 }
1443 break;
1444 case OP_31_XOP_MSGCLRP:
1445 arg = kvmppc_get_gpr(vcpu, rb);
1446 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1447 break;
1448 vcpu->arch.vcore->dpdes = 0;
1449 vcpu->arch.doorbell_request = 0;
1450 break;
1451 case OP_31_XOP_MFSPR:
1452 switch (get_sprn(inst)) {
1453 case SPRN_TIR:
1454 arg = thr;
1455 break;
1456 case SPRN_DPDES:
1457 arg = kvmppc_read_dpdes(vcpu);
1458 break;
1459 default:
1460 return EMULATE_FAIL;
1461 }
1462 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1463 break;
1464 default:
1465 return EMULATE_FAIL;
1466 }
1467 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1468 return RESUME_GUEST;
1469 }
1470
1471 /*
1472 * If the lppaca had pmcregs_in_use clear when we exited the guest, then
1473 * HFSCR_PM is cleared for next entry. If the guest then tries to access
1474 * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM
1475 * back in the guest HFSCR will cause the next entry to load the PMU SPRs and
1476 * allow the guest access to continue.
1477 */
kvmppc_pmu_unavailable(struct kvm_vcpu * vcpu)1478 static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu)
1479 {
1480 if (!(vcpu->arch.hfscr_permitted & HFSCR_PM))
1481 return EMULATE_FAIL;
1482
1483 vcpu->arch.hfscr |= HFSCR_PM;
1484
1485 return RESUME_GUEST;
1486 }
1487
kvmppc_ebb_unavailable(struct kvm_vcpu * vcpu)1488 static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu)
1489 {
1490 if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB))
1491 return EMULATE_FAIL;
1492
1493 vcpu->arch.hfscr |= HFSCR_EBB;
1494
1495 return RESUME_GUEST;
1496 }
1497
kvmppc_tm_unavailable(struct kvm_vcpu * vcpu)1498 static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu)
1499 {
1500 if (!(vcpu->arch.hfscr_permitted & HFSCR_TM))
1501 return EMULATE_FAIL;
1502
1503 vcpu->arch.hfscr |= HFSCR_TM;
1504
1505 return RESUME_GUEST;
1506 }
1507
kvmppc_handle_exit_hv(struct kvm_vcpu * vcpu,struct task_struct * tsk)1508 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1509 struct task_struct *tsk)
1510 {
1511 struct kvm_run *run = vcpu->run;
1512 int r = RESUME_HOST;
1513
1514 vcpu->stat.sum_exits++;
1515
1516 /*
1517 * This can happen if an interrupt occurs in the last stages
1518 * of guest entry or the first stages of guest exit (i.e. after
1519 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1520 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1521 * That can happen due to a bug, or due to a machine check
1522 * occurring at just the wrong time.
1523 */
1524 if (vcpu->arch.shregs.msr & MSR_HV) {
1525 printk(KERN_EMERG "KVM trap in HV mode!\n");
1526 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1527 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1528 vcpu->arch.shregs.msr);
1529 kvmppc_dump_regs(vcpu);
1530 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1531 run->hw.hardware_exit_reason = vcpu->arch.trap;
1532 return RESUME_HOST;
1533 }
1534 run->exit_reason = KVM_EXIT_UNKNOWN;
1535 run->ready_for_interrupt_injection = 1;
1536 switch (vcpu->arch.trap) {
1537 /* We're good on these - the host merely wanted to get our attention */
1538 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1539 WARN_ON_ONCE(1); /* Should never happen */
1540 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1541 fallthrough;
1542 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1543 vcpu->stat.dec_exits++;
1544 r = RESUME_GUEST;
1545 break;
1546 case BOOK3S_INTERRUPT_EXTERNAL:
1547 case BOOK3S_INTERRUPT_H_DOORBELL:
1548 case BOOK3S_INTERRUPT_H_VIRT:
1549 vcpu->stat.ext_intr_exits++;
1550 r = RESUME_GUEST;
1551 break;
1552 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1553 case BOOK3S_INTERRUPT_HMI:
1554 case BOOK3S_INTERRUPT_PERFMON:
1555 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1556 r = RESUME_GUEST;
1557 break;
1558 case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1559 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1560 DEFAULT_RATELIMIT_BURST);
1561 /*
1562 * Print the MCE event to host console. Ratelimit so the guest
1563 * can't flood the host log.
1564 */
1565 if (__ratelimit(&rs))
1566 machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1567
1568 /*
1569 * If the guest can do FWNMI, exit to userspace so it can
1570 * deliver a FWNMI to the guest.
1571 * Otherwise we synthesize a machine check for the guest
1572 * so that it knows that the machine check occurred.
1573 */
1574 if (!vcpu->kvm->arch.fwnmi_enabled) {
1575 ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1576 kvmppc_core_queue_machine_check(vcpu, flags);
1577 r = RESUME_GUEST;
1578 break;
1579 }
1580
1581 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1582 run->exit_reason = KVM_EXIT_NMI;
1583 run->hw.hardware_exit_reason = vcpu->arch.trap;
1584 /* Clear out the old NMI status from run->flags */
1585 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1586 /* Now set the NMI status */
1587 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1588 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1589 else
1590 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1591
1592 r = RESUME_HOST;
1593 break;
1594 }
1595 case BOOK3S_INTERRUPT_PROGRAM:
1596 {
1597 ulong flags;
1598 /*
1599 * Normally program interrupts are delivered directly
1600 * to the guest by the hardware, but we can get here
1601 * as a result of a hypervisor emulation interrupt
1602 * (e40) getting turned into a 700 by BML RTAS.
1603 */
1604 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1605 kvmppc_core_queue_program(vcpu, flags);
1606 r = RESUME_GUEST;
1607 break;
1608 }
1609 case BOOK3S_INTERRUPT_SYSCALL:
1610 {
1611 int i;
1612
1613 if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) {
1614 /*
1615 * Guest userspace executed sc 1. This can only be
1616 * reached by the P9 path because the old path
1617 * handles this case in realmode hcall handlers.
1618 */
1619 if (!kvmhv_vcpu_is_radix(vcpu)) {
1620 /*
1621 * A guest could be running PR KVM, so this
1622 * may be a PR KVM hcall. It must be reflected
1623 * to the guest kernel as a sc interrupt.
1624 */
1625 kvmppc_core_queue_syscall(vcpu);
1626 } else {
1627 /*
1628 * Radix guests can not run PR KVM or nested HV
1629 * hash guests which might run PR KVM, so this
1630 * is always a privilege fault. Send a program
1631 * check to guest kernel.
1632 */
1633 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1634 }
1635 r = RESUME_GUEST;
1636 break;
1637 }
1638
1639 /*
1640 * hcall - gather args and set exit_reason. This will next be
1641 * handled by kvmppc_pseries_do_hcall which may be able to deal
1642 * with it and resume guest, or may punt to userspace.
1643 */
1644 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1645 for (i = 0; i < 9; ++i)
1646 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1647 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1648 vcpu->arch.hcall_needed = 1;
1649 r = RESUME_HOST;
1650 break;
1651 }
1652 /*
1653 * We get these next two if the guest accesses a page which it thinks
1654 * it has mapped but which is not actually present, either because
1655 * it is for an emulated I/O device or because the corresonding
1656 * host page has been paged out.
1657 *
1658 * Any other HDSI/HISI interrupts have been handled already for P7/8
1659 * guests. For POWER9 hash guests not using rmhandlers, basic hash
1660 * fault handling is done here.
1661 */
1662 case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1663 unsigned long vsid;
1664 long err;
1665
1666 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
1667 unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) {
1668 r = RESUME_GUEST; /* Just retry if it's the canary */
1669 break;
1670 }
1671
1672 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1673 /*
1674 * Radix doesn't require anything, and pre-ISAv3.0 hash
1675 * already attempted to handle this in rmhandlers. The
1676 * hash fault handling below is v3 only (it uses ASDR
1677 * via fault_gpa).
1678 */
1679 r = RESUME_PAGE_FAULT;
1680 break;
1681 }
1682
1683 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1684 kvmppc_core_queue_data_storage(vcpu,
1685 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1686 r = RESUME_GUEST;
1687 break;
1688 }
1689
1690 if (!(vcpu->arch.shregs.msr & MSR_DR))
1691 vsid = vcpu->kvm->arch.vrma_slb_v;
1692 else
1693 vsid = vcpu->arch.fault_gpa;
1694
1695 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1696 vsid, vcpu->arch.fault_dsisr, true);
1697 if (err == 0) {
1698 r = RESUME_GUEST;
1699 } else if (err == -1 || err == -2) {
1700 r = RESUME_PAGE_FAULT;
1701 } else {
1702 kvmppc_core_queue_data_storage(vcpu,
1703 vcpu->arch.fault_dar, err);
1704 r = RESUME_GUEST;
1705 }
1706 break;
1707 }
1708 case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1709 unsigned long vsid;
1710 long err;
1711
1712 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1713 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1714 DSISR_SRR1_MATCH_64S;
1715 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1716 /*
1717 * Radix doesn't require anything, and pre-ISAv3.0 hash
1718 * already attempted to handle this in rmhandlers. The
1719 * hash fault handling below is v3 only (it uses ASDR
1720 * via fault_gpa).
1721 */
1722 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1723 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1724 r = RESUME_PAGE_FAULT;
1725 break;
1726 }
1727
1728 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1729 kvmppc_core_queue_inst_storage(vcpu,
1730 vcpu->arch.fault_dsisr);
1731 r = RESUME_GUEST;
1732 break;
1733 }
1734
1735 if (!(vcpu->arch.shregs.msr & MSR_IR))
1736 vsid = vcpu->kvm->arch.vrma_slb_v;
1737 else
1738 vsid = vcpu->arch.fault_gpa;
1739
1740 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1741 vsid, vcpu->arch.fault_dsisr, false);
1742 if (err == 0) {
1743 r = RESUME_GUEST;
1744 } else if (err == -1) {
1745 r = RESUME_PAGE_FAULT;
1746 } else {
1747 kvmppc_core_queue_inst_storage(vcpu, err);
1748 r = RESUME_GUEST;
1749 }
1750 break;
1751 }
1752
1753 /*
1754 * This occurs if the guest executes an illegal instruction.
1755 * If the guest debug is disabled, generate a program interrupt
1756 * to the guest. If guest debug is enabled, we need to check
1757 * whether the instruction is a software breakpoint instruction.
1758 * Accordingly return to Guest or Host.
1759 */
1760 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1761 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1762 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1763 swab32(vcpu->arch.emul_inst) :
1764 vcpu->arch.emul_inst;
1765 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1766 r = kvmppc_emulate_debug_inst(vcpu);
1767 } else {
1768 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1769 r = RESUME_GUEST;
1770 }
1771 break;
1772
1773 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1774 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1775 /*
1776 * This occurs for various TM-related instructions that
1777 * we need to emulate on POWER9 DD2.2. We have already
1778 * handled the cases where the guest was in real-suspend
1779 * mode and was transitioning to transactional state.
1780 */
1781 r = kvmhv_p9_tm_emulation(vcpu);
1782 if (r != -1)
1783 break;
1784 fallthrough; /* go to facility unavailable handler */
1785 #endif
1786
1787 /*
1788 * This occurs if the guest (kernel or userspace), does something that
1789 * is prohibited by HFSCR.
1790 * On POWER9, this could be a doorbell instruction that we need
1791 * to emulate.
1792 * Otherwise, we just generate a program interrupt to the guest.
1793 */
1794 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1795 u64 cause = vcpu->arch.hfscr >> 56;
1796
1797 r = EMULATE_FAIL;
1798 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1799 if (cause == FSCR_MSGP_LG)
1800 r = kvmppc_emulate_doorbell_instr(vcpu);
1801 if (cause == FSCR_PM_LG)
1802 r = kvmppc_pmu_unavailable(vcpu);
1803 if (cause == FSCR_EBB_LG)
1804 r = kvmppc_ebb_unavailable(vcpu);
1805 if (cause == FSCR_TM_LG)
1806 r = kvmppc_tm_unavailable(vcpu);
1807 }
1808 if (r == EMULATE_FAIL) {
1809 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1810 r = RESUME_GUEST;
1811 }
1812 break;
1813 }
1814
1815 case BOOK3S_INTERRUPT_HV_RM_HARD:
1816 r = RESUME_PASSTHROUGH;
1817 break;
1818 default:
1819 kvmppc_dump_regs(vcpu);
1820 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1821 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1822 vcpu->arch.shregs.msr);
1823 run->hw.hardware_exit_reason = vcpu->arch.trap;
1824 r = RESUME_HOST;
1825 break;
1826 }
1827
1828 return r;
1829 }
1830
kvmppc_handle_nested_exit(struct kvm_vcpu * vcpu)1831 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1832 {
1833 int r;
1834 int srcu_idx;
1835
1836 vcpu->stat.sum_exits++;
1837
1838 /*
1839 * This can happen if an interrupt occurs in the last stages
1840 * of guest entry or the first stages of guest exit (i.e. after
1841 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1842 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1843 * That can happen due to a bug, or due to a machine check
1844 * occurring at just the wrong time.
1845 */
1846 if (vcpu->arch.shregs.msr & MSR_HV) {
1847 pr_emerg("KVM trap in HV mode while nested!\n");
1848 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1849 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1850 vcpu->arch.shregs.msr);
1851 kvmppc_dump_regs(vcpu);
1852 return RESUME_HOST;
1853 }
1854 switch (vcpu->arch.trap) {
1855 /* We're good on these - the host merely wanted to get our attention */
1856 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1857 vcpu->stat.dec_exits++;
1858 r = RESUME_GUEST;
1859 break;
1860 case BOOK3S_INTERRUPT_EXTERNAL:
1861 vcpu->stat.ext_intr_exits++;
1862 r = RESUME_HOST;
1863 break;
1864 case BOOK3S_INTERRUPT_H_DOORBELL:
1865 case BOOK3S_INTERRUPT_H_VIRT:
1866 vcpu->stat.ext_intr_exits++;
1867 r = RESUME_GUEST;
1868 break;
1869 /* These need to go to the nested HV */
1870 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1871 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1872 vcpu->stat.dec_exits++;
1873 r = RESUME_HOST;
1874 break;
1875 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1876 case BOOK3S_INTERRUPT_HMI:
1877 case BOOK3S_INTERRUPT_PERFMON:
1878 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1879 r = RESUME_GUEST;
1880 break;
1881 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1882 {
1883 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1884 DEFAULT_RATELIMIT_BURST);
1885 /* Pass the machine check to the L1 guest */
1886 r = RESUME_HOST;
1887 /* Print the MCE event to host console. */
1888 if (__ratelimit(&rs))
1889 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1890 break;
1891 }
1892 /*
1893 * We get these next two if the guest accesses a page which it thinks
1894 * it has mapped but which is not actually present, either because
1895 * it is for an emulated I/O device or because the corresonding
1896 * host page has been paged out.
1897 */
1898 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1899 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1900 r = kvmhv_nested_page_fault(vcpu);
1901 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1902 break;
1903 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1904 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1905 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1906 DSISR_SRR1_MATCH_64S;
1907 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1908 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1909 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1910 r = kvmhv_nested_page_fault(vcpu);
1911 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1912 break;
1913
1914 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1915 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1916 /*
1917 * This occurs for various TM-related instructions that
1918 * we need to emulate on POWER9 DD2.2. We have already
1919 * handled the cases where the guest was in real-suspend
1920 * mode and was transitioning to transactional state.
1921 */
1922 r = kvmhv_p9_tm_emulation(vcpu);
1923 if (r != -1)
1924 break;
1925 fallthrough; /* go to facility unavailable handler */
1926 #endif
1927
1928 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1929 u64 cause = vcpu->arch.hfscr >> 56;
1930
1931 /*
1932 * Only pass HFU interrupts to the L1 if the facility is
1933 * permitted but disabled by the L1's HFSCR, otherwise
1934 * the interrupt does not make sense to the L1 so turn
1935 * it into a HEAI.
1936 */
1937 if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) ||
1938 (vcpu->arch.nested_hfscr & (1UL << cause))) {
1939 vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST;
1940
1941 /*
1942 * If the fetch failed, return to guest and
1943 * try executing it again.
1944 */
1945 r = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1946 &vcpu->arch.emul_inst);
1947 if (r != EMULATE_DONE)
1948 r = RESUME_GUEST;
1949 else
1950 r = RESUME_HOST;
1951 } else {
1952 r = RESUME_HOST;
1953 }
1954
1955 break;
1956 }
1957
1958 case BOOK3S_INTERRUPT_HV_RM_HARD:
1959 vcpu->arch.trap = 0;
1960 r = RESUME_GUEST;
1961 if (!xics_on_xive())
1962 kvmppc_xics_rm_complete(vcpu, 0);
1963 break;
1964 case BOOK3S_INTERRUPT_SYSCALL:
1965 {
1966 unsigned long req = kvmppc_get_gpr(vcpu, 3);
1967
1968 /*
1969 * The H_RPT_INVALIDATE hcalls issued by nested
1970 * guests for process-scoped invalidations when
1971 * GTSE=0, are handled here in L0.
1972 */
1973 if (req == H_RPT_INVALIDATE) {
1974 r = kvmppc_nested_h_rpt_invalidate(vcpu);
1975 break;
1976 }
1977
1978 r = RESUME_HOST;
1979 break;
1980 }
1981 default:
1982 r = RESUME_HOST;
1983 break;
1984 }
1985
1986 return r;
1987 }
1988
kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1989 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1990 struct kvm_sregs *sregs)
1991 {
1992 int i;
1993
1994 memset(sregs, 0, sizeof(struct kvm_sregs));
1995 sregs->pvr = vcpu->arch.pvr;
1996 for (i = 0; i < vcpu->arch.slb_max; i++) {
1997 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1998 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1999 }
2000
2001 return 0;
2002 }
2003
kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)2004 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
2005 struct kvm_sregs *sregs)
2006 {
2007 int i, j;
2008
2009 /* Only accept the same PVR as the host's, since we can't spoof it */
2010 if (sregs->pvr != vcpu->arch.pvr)
2011 return -EINVAL;
2012
2013 j = 0;
2014 for (i = 0; i < vcpu->arch.slb_nr; i++) {
2015 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
2016 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
2017 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
2018 ++j;
2019 }
2020 }
2021 vcpu->arch.slb_max = j;
2022
2023 return 0;
2024 }
2025
2026 /*
2027 * Enforce limits on guest LPCR values based on hardware availability,
2028 * guest configuration, and possibly hypervisor support and security
2029 * concerns.
2030 */
kvmppc_filter_lpcr_hv(struct kvm * kvm,unsigned long lpcr)2031 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
2032 {
2033 /* LPCR_TC only applies to HPT guests */
2034 if (kvm_is_radix(kvm))
2035 lpcr &= ~LPCR_TC;
2036
2037 /* On POWER8 and above, userspace can modify AIL */
2038 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2039 lpcr &= ~LPCR_AIL;
2040 if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
2041 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
2042 /*
2043 * On some POWER9s we force AIL off for radix guests to prevent
2044 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
2045 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
2046 * be cached, which the host TLB management does not expect.
2047 */
2048 if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
2049 lpcr &= ~LPCR_AIL;
2050
2051 /*
2052 * On POWER9, allow userspace to enable large decrementer for the
2053 * guest, whether or not the host has it enabled.
2054 */
2055 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2056 lpcr &= ~LPCR_LD;
2057
2058 return lpcr;
2059 }
2060
verify_lpcr(struct kvm * kvm,unsigned long lpcr)2061 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
2062 {
2063 if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
2064 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
2065 lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
2066 }
2067 }
2068
kvmppc_set_lpcr(struct kvm_vcpu * vcpu,u64 new_lpcr,bool preserve_top32)2069 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
2070 bool preserve_top32)
2071 {
2072 struct kvm *kvm = vcpu->kvm;
2073 struct kvmppc_vcore *vc = vcpu->arch.vcore;
2074 u64 mask;
2075
2076 spin_lock(&vc->lock);
2077
2078 /*
2079 * Userspace can only modify
2080 * DPFD (default prefetch depth), ILE (interrupt little-endian),
2081 * TC (translation control), AIL (alternate interrupt location),
2082 * LD (large decrementer).
2083 * These are subject to restrictions from kvmppc_filter_lcpr_hv().
2084 */
2085 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
2086
2087 /* Broken 32-bit version of LPCR must not clear top bits */
2088 if (preserve_top32)
2089 mask &= 0xFFFFFFFF;
2090
2091 new_lpcr = kvmppc_filter_lpcr_hv(kvm,
2092 (vc->lpcr & ~mask) | (new_lpcr & mask));
2093
2094 /*
2095 * If ILE (interrupt little-endian) has changed, update the
2096 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
2097 */
2098 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
2099 struct kvm_vcpu *vcpu;
2100 unsigned long i;
2101
2102 kvm_for_each_vcpu(i, vcpu, kvm) {
2103 if (vcpu->arch.vcore != vc)
2104 continue;
2105 if (new_lpcr & LPCR_ILE)
2106 vcpu->arch.intr_msr |= MSR_LE;
2107 else
2108 vcpu->arch.intr_msr &= ~MSR_LE;
2109 }
2110 }
2111
2112 vc->lpcr = new_lpcr;
2113
2114 spin_unlock(&vc->lock);
2115 }
2116
kvmppc_get_one_reg_hv(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)2117 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2118 union kvmppc_one_reg *val)
2119 {
2120 int r = 0;
2121 long int i;
2122
2123 switch (id) {
2124 case KVM_REG_PPC_DEBUG_INST:
2125 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
2126 break;
2127 case KVM_REG_PPC_HIOR:
2128 *val = get_reg_val(id, 0);
2129 break;
2130 case KVM_REG_PPC_DABR:
2131 *val = get_reg_val(id, vcpu->arch.dabr);
2132 break;
2133 case KVM_REG_PPC_DABRX:
2134 *val = get_reg_val(id, vcpu->arch.dabrx);
2135 break;
2136 case KVM_REG_PPC_DSCR:
2137 *val = get_reg_val(id, vcpu->arch.dscr);
2138 break;
2139 case KVM_REG_PPC_PURR:
2140 *val = get_reg_val(id, vcpu->arch.purr);
2141 break;
2142 case KVM_REG_PPC_SPURR:
2143 *val = get_reg_val(id, vcpu->arch.spurr);
2144 break;
2145 case KVM_REG_PPC_AMR:
2146 *val = get_reg_val(id, vcpu->arch.amr);
2147 break;
2148 case KVM_REG_PPC_UAMOR:
2149 *val = get_reg_val(id, vcpu->arch.uamor);
2150 break;
2151 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2152 i = id - KVM_REG_PPC_MMCR0;
2153 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
2154 break;
2155 case KVM_REG_PPC_MMCR2:
2156 *val = get_reg_val(id, vcpu->arch.mmcr[2]);
2157 break;
2158 case KVM_REG_PPC_MMCRA:
2159 *val = get_reg_val(id, vcpu->arch.mmcra);
2160 break;
2161 case KVM_REG_PPC_MMCRS:
2162 *val = get_reg_val(id, vcpu->arch.mmcrs);
2163 break;
2164 case KVM_REG_PPC_MMCR3:
2165 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2166 break;
2167 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2168 i = id - KVM_REG_PPC_PMC1;
2169 *val = get_reg_val(id, vcpu->arch.pmc[i]);
2170 break;
2171 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2172 i = id - KVM_REG_PPC_SPMC1;
2173 *val = get_reg_val(id, vcpu->arch.spmc[i]);
2174 break;
2175 case KVM_REG_PPC_SIAR:
2176 *val = get_reg_val(id, vcpu->arch.siar);
2177 break;
2178 case KVM_REG_PPC_SDAR:
2179 *val = get_reg_val(id, vcpu->arch.sdar);
2180 break;
2181 case KVM_REG_PPC_SIER:
2182 *val = get_reg_val(id, vcpu->arch.sier[0]);
2183 break;
2184 case KVM_REG_PPC_SIER2:
2185 *val = get_reg_val(id, vcpu->arch.sier[1]);
2186 break;
2187 case KVM_REG_PPC_SIER3:
2188 *val = get_reg_val(id, vcpu->arch.sier[2]);
2189 break;
2190 case KVM_REG_PPC_IAMR:
2191 *val = get_reg_val(id, vcpu->arch.iamr);
2192 break;
2193 case KVM_REG_PPC_PSPB:
2194 *val = get_reg_val(id, vcpu->arch.pspb);
2195 break;
2196 case KVM_REG_PPC_DPDES:
2197 /*
2198 * On POWER9, where we are emulating msgsndp etc.,
2199 * we return 1 bit for each vcpu, which can come from
2200 * either vcore->dpdes or doorbell_request.
2201 * On POWER8, doorbell_request is 0.
2202 */
2203 if (cpu_has_feature(CPU_FTR_ARCH_300))
2204 *val = get_reg_val(id, vcpu->arch.doorbell_request);
2205 else
2206 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
2207 break;
2208 case KVM_REG_PPC_VTB:
2209 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
2210 break;
2211 case KVM_REG_PPC_DAWR:
2212 *val = get_reg_val(id, vcpu->arch.dawr0);
2213 break;
2214 case KVM_REG_PPC_DAWRX:
2215 *val = get_reg_val(id, vcpu->arch.dawrx0);
2216 break;
2217 case KVM_REG_PPC_DAWR1:
2218 *val = get_reg_val(id, vcpu->arch.dawr1);
2219 break;
2220 case KVM_REG_PPC_DAWRX1:
2221 *val = get_reg_val(id, vcpu->arch.dawrx1);
2222 break;
2223 case KVM_REG_PPC_CIABR:
2224 *val = get_reg_val(id, vcpu->arch.ciabr);
2225 break;
2226 case KVM_REG_PPC_CSIGR:
2227 *val = get_reg_val(id, vcpu->arch.csigr);
2228 break;
2229 case KVM_REG_PPC_TACR:
2230 *val = get_reg_val(id, vcpu->arch.tacr);
2231 break;
2232 case KVM_REG_PPC_TCSCR:
2233 *val = get_reg_val(id, vcpu->arch.tcscr);
2234 break;
2235 case KVM_REG_PPC_PID:
2236 *val = get_reg_val(id, vcpu->arch.pid);
2237 break;
2238 case KVM_REG_PPC_ACOP:
2239 *val = get_reg_val(id, vcpu->arch.acop);
2240 break;
2241 case KVM_REG_PPC_WORT:
2242 *val = get_reg_val(id, vcpu->arch.wort);
2243 break;
2244 case KVM_REG_PPC_TIDR:
2245 *val = get_reg_val(id, vcpu->arch.tid);
2246 break;
2247 case KVM_REG_PPC_PSSCR:
2248 *val = get_reg_val(id, vcpu->arch.psscr);
2249 break;
2250 case KVM_REG_PPC_VPA_ADDR:
2251 spin_lock(&vcpu->arch.vpa_update_lock);
2252 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2253 spin_unlock(&vcpu->arch.vpa_update_lock);
2254 break;
2255 case KVM_REG_PPC_VPA_SLB:
2256 spin_lock(&vcpu->arch.vpa_update_lock);
2257 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2258 val->vpaval.length = vcpu->arch.slb_shadow.len;
2259 spin_unlock(&vcpu->arch.vpa_update_lock);
2260 break;
2261 case KVM_REG_PPC_VPA_DTL:
2262 spin_lock(&vcpu->arch.vpa_update_lock);
2263 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2264 val->vpaval.length = vcpu->arch.dtl.len;
2265 spin_unlock(&vcpu->arch.vpa_update_lock);
2266 break;
2267 case KVM_REG_PPC_TB_OFFSET:
2268 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
2269 break;
2270 case KVM_REG_PPC_LPCR:
2271 case KVM_REG_PPC_LPCR_64:
2272 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
2273 break;
2274 case KVM_REG_PPC_PPR:
2275 *val = get_reg_val(id, vcpu->arch.ppr);
2276 break;
2277 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2278 case KVM_REG_PPC_TFHAR:
2279 *val = get_reg_val(id, vcpu->arch.tfhar);
2280 break;
2281 case KVM_REG_PPC_TFIAR:
2282 *val = get_reg_val(id, vcpu->arch.tfiar);
2283 break;
2284 case KVM_REG_PPC_TEXASR:
2285 *val = get_reg_val(id, vcpu->arch.texasr);
2286 break;
2287 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2288 i = id - KVM_REG_PPC_TM_GPR0;
2289 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2290 break;
2291 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2292 {
2293 int j;
2294 i = id - KVM_REG_PPC_TM_VSR0;
2295 if (i < 32)
2296 for (j = 0; j < TS_FPRWIDTH; j++)
2297 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2298 else {
2299 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2300 val->vval = vcpu->arch.vr_tm.vr[i-32];
2301 else
2302 r = -ENXIO;
2303 }
2304 break;
2305 }
2306 case KVM_REG_PPC_TM_CR:
2307 *val = get_reg_val(id, vcpu->arch.cr_tm);
2308 break;
2309 case KVM_REG_PPC_TM_XER:
2310 *val = get_reg_val(id, vcpu->arch.xer_tm);
2311 break;
2312 case KVM_REG_PPC_TM_LR:
2313 *val = get_reg_val(id, vcpu->arch.lr_tm);
2314 break;
2315 case KVM_REG_PPC_TM_CTR:
2316 *val = get_reg_val(id, vcpu->arch.ctr_tm);
2317 break;
2318 case KVM_REG_PPC_TM_FPSCR:
2319 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2320 break;
2321 case KVM_REG_PPC_TM_AMR:
2322 *val = get_reg_val(id, vcpu->arch.amr_tm);
2323 break;
2324 case KVM_REG_PPC_TM_PPR:
2325 *val = get_reg_val(id, vcpu->arch.ppr_tm);
2326 break;
2327 case KVM_REG_PPC_TM_VRSAVE:
2328 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
2329 break;
2330 case KVM_REG_PPC_TM_VSCR:
2331 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2332 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2333 else
2334 r = -ENXIO;
2335 break;
2336 case KVM_REG_PPC_TM_DSCR:
2337 *val = get_reg_val(id, vcpu->arch.dscr_tm);
2338 break;
2339 case KVM_REG_PPC_TM_TAR:
2340 *val = get_reg_val(id, vcpu->arch.tar_tm);
2341 break;
2342 #endif
2343 case KVM_REG_PPC_ARCH_COMPAT:
2344 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
2345 break;
2346 case KVM_REG_PPC_DEC_EXPIRY:
2347 *val = get_reg_val(id, vcpu->arch.dec_expires);
2348 break;
2349 case KVM_REG_PPC_ONLINE:
2350 *val = get_reg_val(id, vcpu->arch.online);
2351 break;
2352 case KVM_REG_PPC_PTCR:
2353 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2354 break;
2355 default:
2356 r = -EINVAL;
2357 break;
2358 }
2359
2360 return r;
2361 }
2362
kvmppc_set_one_reg_hv(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)2363 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2364 union kvmppc_one_reg *val)
2365 {
2366 int r = 0;
2367 long int i;
2368 unsigned long addr, len;
2369
2370 switch (id) {
2371 case KVM_REG_PPC_HIOR:
2372 /* Only allow this to be set to zero */
2373 if (set_reg_val(id, *val))
2374 r = -EINVAL;
2375 break;
2376 case KVM_REG_PPC_DABR:
2377 vcpu->arch.dabr = set_reg_val(id, *val);
2378 break;
2379 case KVM_REG_PPC_DABRX:
2380 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2381 break;
2382 case KVM_REG_PPC_DSCR:
2383 vcpu->arch.dscr = set_reg_val(id, *val);
2384 break;
2385 case KVM_REG_PPC_PURR:
2386 vcpu->arch.purr = set_reg_val(id, *val);
2387 break;
2388 case KVM_REG_PPC_SPURR:
2389 vcpu->arch.spurr = set_reg_val(id, *val);
2390 break;
2391 case KVM_REG_PPC_AMR:
2392 vcpu->arch.amr = set_reg_val(id, *val);
2393 break;
2394 case KVM_REG_PPC_UAMOR:
2395 vcpu->arch.uamor = set_reg_val(id, *val);
2396 break;
2397 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2398 i = id - KVM_REG_PPC_MMCR0;
2399 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
2400 break;
2401 case KVM_REG_PPC_MMCR2:
2402 vcpu->arch.mmcr[2] = set_reg_val(id, *val);
2403 break;
2404 case KVM_REG_PPC_MMCRA:
2405 vcpu->arch.mmcra = set_reg_val(id, *val);
2406 break;
2407 case KVM_REG_PPC_MMCRS:
2408 vcpu->arch.mmcrs = set_reg_val(id, *val);
2409 break;
2410 case KVM_REG_PPC_MMCR3:
2411 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2412 break;
2413 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2414 i = id - KVM_REG_PPC_PMC1;
2415 vcpu->arch.pmc[i] = set_reg_val(id, *val);
2416 break;
2417 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2418 i = id - KVM_REG_PPC_SPMC1;
2419 vcpu->arch.spmc[i] = set_reg_val(id, *val);
2420 break;
2421 case KVM_REG_PPC_SIAR:
2422 vcpu->arch.siar = set_reg_val(id, *val);
2423 break;
2424 case KVM_REG_PPC_SDAR:
2425 vcpu->arch.sdar = set_reg_val(id, *val);
2426 break;
2427 case KVM_REG_PPC_SIER:
2428 vcpu->arch.sier[0] = set_reg_val(id, *val);
2429 break;
2430 case KVM_REG_PPC_SIER2:
2431 vcpu->arch.sier[1] = set_reg_val(id, *val);
2432 break;
2433 case KVM_REG_PPC_SIER3:
2434 vcpu->arch.sier[2] = set_reg_val(id, *val);
2435 break;
2436 case KVM_REG_PPC_IAMR:
2437 vcpu->arch.iamr = set_reg_val(id, *val);
2438 break;
2439 case KVM_REG_PPC_PSPB:
2440 vcpu->arch.pspb = set_reg_val(id, *val);
2441 break;
2442 case KVM_REG_PPC_DPDES:
2443 if (cpu_has_feature(CPU_FTR_ARCH_300))
2444 vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1;
2445 else
2446 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2447 break;
2448 case KVM_REG_PPC_VTB:
2449 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
2450 break;
2451 case KVM_REG_PPC_DAWR:
2452 vcpu->arch.dawr0 = set_reg_val(id, *val);
2453 break;
2454 case KVM_REG_PPC_DAWRX:
2455 vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP;
2456 break;
2457 case KVM_REG_PPC_DAWR1:
2458 vcpu->arch.dawr1 = set_reg_val(id, *val);
2459 break;
2460 case KVM_REG_PPC_DAWRX1:
2461 vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP;
2462 break;
2463 case KVM_REG_PPC_CIABR:
2464 vcpu->arch.ciabr = set_reg_val(id, *val);
2465 /* Don't allow setting breakpoints in hypervisor code */
2466 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
2467 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
2468 break;
2469 case KVM_REG_PPC_CSIGR:
2470 vcpu->arch.csigr = set_reg_val(id, *val);
2471 break;
2472 case KVM_REG_PPC_TACR:
2473 vcpu->arch.tacr = set_reg_val(id, *val);
2474 break;
2475 case KVM_REG_PPC_TCSCR:
2476 vcpu->arch.tcscr = set_reg_val(id, *val);
2477 break;
2478 case KVM_REG_PPC_PID:
2479 vcpu->arch.pid = set_reg_val(id, *val);
2480 break;
2481 case KVM_REG_PPC_ACOP:
2482 vcpu->arch.acop = set_reg_val(id, *val);
2483 break;
2484 case KVM_REG_PPC_WORT:
2485 vcpu->arch.wort = set_reg_val(id, *val);
2486 break;
2487 case KVM_REG_PPC_TIDR:
2488 vcpu->arch.tid = set_reg_val(id, *val);
2489 break;
2490 case KVM_REG_PPC_PSSCR:
2491 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2492 break;
2493 case KVM_REG_PPC_VPA_ADDR:
2494 addr = set_reg_val(id, *val);
2495 r = -EINVAL;
2496 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2497 vcpu->arch.dtl.next_gpa))
2498 break;
2499 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2500 break;
2501 case KVM_REG_PPC_VPA_SLB:
2502 addr = val->vpaval.addr;
2503 len = val->vpaval.length;
2504 r = -EINVAL;
2505 if (addr && !vcpu->arch.vpa.next_gpa)
2506 break;
2507 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2508 break;
2509 case KVM_REG_PPC_VPA_DTL:
2510 addr = val->vpaval.addr;
2511 len = val->vpaval.length;
2512 r = -EINVAL;
2513 if (addr && (len < sizeof(struct dtl_entry) ||
2514 !vcpu->arch.vpa.next_gpa))
2515 break;
2516 len -= len % sizeof(struct dtl_entry);
2517 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2518 break;
2519 case KVM_REG_PPC_TB_OFFSET:
2520 /* round up to multiple of 2^24 */
2521 vcpu->arch.vcore->tb_offset =
2522 ALIGN(set_reg_val(id, *val), 1UL << 24);
2523 break;
2524 case KVM_REG_PPC_LPCR:
2525 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2526 break;
2527 case KVM_REG_PPC_LPCR_64:
2528 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2529 break;
2530 case KVM_REG_PPC_PPR:
2531 vcpu->arch.ppr = set_reg_val(id, *val);
2532 break;
2533 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2534 case KVM_REG_PPC_TFHAR:
2535 vcpu->arch.tfhar = set_reg_val(id, *val);
2536 break;
2537 case KVM_REG_PPC_TFIAR:
2538 vcpu->arch.tfiar = set_reg_val(id, *val);
2539 break;
2540 case KVM_REG_PPC_TEXASR:
2541 vcpu->arch.texasr = set_reg_val(id, *val);
2542 break;
2543 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2544 i = id - KVM_REG_PPC_TM_GPR0;
2545 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2546 break;
2547 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2548 {
2549 int j;
2550 i = id - KVM_REG_PPC_TM_VSR0;
2551 if (i < 32)
2552 for (j = 0; j < TS_FPRWIDTH; j++)
2553 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2554 else
2555 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2556 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2557 else
2558 r = -ENXIO;
2559 break;
2560 }
2561 case KVM_REG_PPC_TM_CR:
2562 vcpu->arch.cr_tm = set_reg_val(id, *val);
2563 break;
2564 case KVM_REG_PPC_TM_XER:
2565 vcpu->arch.xer_tm = set_reg_val(id, *val);
2566 break;
2567 case KVM_REG_PPC_TM_LR:
2568 vcpu->arch.lr_tm = set_reg_val(id, *val);
2569 break;
2570 case KVM_REG_PPC_TM_CTR:
2571 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2572 break;
2573 case KVM_REG_PPC_TM_FPSCR:
2574 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2575 break;
2576 case KVM_REG_PPC_TM_AMR:
2577 vcpu->arch.amr_tm = set_reg_val(id, *val);
2578 break;
2579 case KVM_REG_PPC_TM_PPR:
2580 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2581 break;
2582 case KVM_REG_PPC_TM_VRSAVE:
2583 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2584 break;
2585 case KVM_REG_PPC_TM_VSCR:
2586 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2587 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2588 else
2589 r = - ENXIO;
2590 break;
2591 case KVM_REG_PPC_TM_DSCR:
2592 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2593 break;
2594 case KVM_REG_PPC_TM_TAR:
2595 vcpu->arch.tar_tm = set_reg_val(id, *val);
2596 break;
2597 #endif
2598 case KVM_REG_PPC_ARCH_COMPAT:
2599 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2600 break;
2601 case KVM_REG_PPC_DEC_EXPIRY:
2602 vcpu->arch.dec_expires = set_reg_val(id, *val);
2603 break;
2604 case KVM_REG_PPC_ONLINE:
2605 i = set_reg_val(id, *val);
2606 if (i && !vcpu->arch.online)
2607 atomic_inc(&vcpu->arch.vcore->online_count);
2608 else if (!i && vcpu->arch.online)
2609 atomic_dec(&vcpu->arch.vcore->online_count);
2610 vcpu->arch.online = i;
2611 break;
2612 case KVM_REG_PPC_PTCR:
2613 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2614 break;
2615 default:
2616 r = -EINVAL;
2617 break;
2618 }
2619
2620 return r;
2621 }
2622
2623 /*
2624 * On POWER9, threads are independent and can be in different partitions.
2625 * Therefore we consider each thread to be a subcore.
2626 * There is a restriction that all threads have to be in the same
2627 * MMU mode (radix or HPT), unfortunately, but since we only support
2628 * HPT guests on a HPT host so far, that isn't an impediment yet.
2629 */
threads_per_vcore(struct kvm * kvm)2630 static int threads_per_vcore(struct kvm *kvm)
2631 {
2632 if (cpu_has_feature(CPU_FTR_ARCH_300))
2633 return 1;
2634 return threads_per_subcore;
2635 }
2636
kvmppc_vcore_create(struct kvm * kvm,int id)2637 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2638 {
2639 struct kvmppc_vcore *vcore;
2640
2641 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2642
2643 if (vcore == NULL)
2644 return NULL;
2645
2646 spin_lock_init(&vcore->lock);
2647 spin_lock_init(&vcore->stoltb_lock);
2648 rcuwait_init(&vcore->wait);
2649 vcore->preempt_tb = TB_NIL;
2650 vcore->lpcr = kvm->arch.lpcr;
2651 vcore->first_vcpuid = id;
2652 vcore->kvm = kvm;
2653 INIT_LIST_HEAD(&vcore->preempt_list);
2654
2655 return vcore;
2656 }
2657
2658 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2659 static struct debugfs_timings_element {
2660 const char *name;
2661 size_t offset;
2662 } timings[] = {
2663 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
2664 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
2665 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
2666 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
2667 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
2668 };
2669
2670 #define N_TIMINGS (ARRAY_SIZE(timings))
2671
2672 struct debugfs_timings_state {
2673 struct kvm_vcpu *vcpu;
2674 unsigned int buflen;
2675 char buf[N_TIMINGS * 100];
2676 };
2677
debugfs_timings_open(struct inode * inode,struct file * file)2678 static int debugfs_timings_open(struct inode *inode, struct file *file)
2679 {
2680 struct kvm_vcpu *vcpu = inode->i_private;
2681 struct debugfs_timings_state *p;
2682
2683 p = kzalloc(sizeof(*p), GFP_KERNEL);
2684 if (!p)
2685 return -ENOMEM;
2686
2687 kvm_get_kvm(vcpu->kvm);
2688 p->vcpu = vcpu;
2689 file->private_data = p;
2690
2691 return nonseekable_open(inode, file);
2692 }
2693
debugfs_timings_release(struct inode * inode,struct file * file)2694 static int debugfs_timings_release(struct inode *inode, struct file *file)
2695 {
2696 struct debugfs_timings_state *p = file->private_data;
2697
2698 kvm_put_kvm(p->vcpu->kvm);
2699 kfree(p);
2700 return 0;
2701 }
2702
debugfs_timings_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)2703 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2704 size_t len, loff_t *ppos)
2705 {
2706 struct debugfs_timings_state *p = file->private_data;
2707 struct kvm_vcpu *vcpu = p->vcpu;
2708 char *s, *buf_end;
2709 struct kvmhv_tb_accumulator tb;
2710 u64 count;
2711 loff_t pos;
2712 ssize_t n;
2713 int i, loops;
2714 bool ok;
2715
2716 if (!p->buflen) {
2717 s = p->buf;
2718 buf_end = s + sizeof(p->buf);
2719 for (i = 0; i < N_TIMINGS; ++i) {
2720 struct kvmhv_tb_accumulator *acc;
2721
2722 acc = (struct kvmhv_tb_accumulator *)
2723 ((unsigned long)vcpu + timings[i].offset);
2724 ok = false;
2725 for (loops = 0; loops < 1000; ++loops) {
2726 count = acc->seqcount;
2727 if (!(count & 1)) {
2728 smp_rmb();
2729 tb = *acc;
2730 smp_rmb();
2731 if (count == acc->seqcount) {
2732 ok = true;
2733 break;
2734 }
2735 }
2736 udelay(1);
2737 }
2738 if (!ok)
2739 snprintf(s, buf_end - s, "%s: stuck\n",
2740 timings[i].name);
2741 else
2742 snprintf(s, buf_end - s,
2743 "%s: %llu %llu %llu %llu\n",
2744 timings[i].name, count / 2,
2745 tb_to_ns(tb.tb_total),
2746 tb_to_ns(tb.tb_min),
2747 tb_to_ns(tb.tb_max));
2748 s += strlen(s);
2749 }
2750 p->buflen = s - p->buf;
2751 }
2752
2753 pos = *ppos;
2754 if (pos >= p->buflen)
2755 return 0;
2756 if (len > p->buflen - pos)
2757 len = p->buflen - pos;
2758 n = copy_to_user(buf, p->buf + pos, len);
2759 if (n) {
2760 if (n == len)
2761 return -EFAULT;
2762 len -= n;
2763 }
2764 *ppos = pos + len;
2765 return len;
2766 }
2767
debugfs_timings_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)2768 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2769 size_t len, loff_t *ppos)
2770 {
2771 return -EACCES;
2772 }
2773
2774 static const struct file_operations debugfs_timings_ops = {
2775 .owner = THIS_MODULE,
2776 .open = debugfs_timings_open,
2777 .release = debugfs_timings_release,
2778 .read = debugfs_timings_read,
2779 .write = debugfs_timings_write,
2780 .llseek = generic_file_llseek,
2781 };
2782
2783 /* Create a debugfs directory for the vcpu */
kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu * vcpu,struct dentry * debugfs_dentry)2784 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2785 {
2786 debugfs_create_file("timings", 0444, debugfs_dentry, vcpu,
2787 &debugfs_timings_ops);
2788 return 0;
2789 }
2790
2791 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu * vcpu,struct dentry * debugfs_dentry)2792 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2793 {
2794 return 0;
2795 }
2796 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2797
kvmppc_core_vcpu_create_hv(struct kvm_vcpu * vcpu)2798 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2799 {
2800 int err;
2801 int core;
2802 struct kvmppc_vcore *vcore;
2803 struct kvm *kvm;
2804 unsigned int id;
2805
2806 kvm = vcpu->kvm;
2807 id = vcpu->vcpu_id;
2808
2809 vcpu->arch.shared = &vcpu->arch.shregs;
2810 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2811 /*
2812 * The shared struct is never shared on HV,
2813 * so we can always use host endianness
2814 */
2815 #ifdef __BIG_ENDIAN__
2816 vcpu->arch.shared_big_endian = true;
2817 #else
2818 vcpu->arch.shared_big_endian = false;
2819 #endif
2820 #endif
2821 vcpu->arch.mmcr[0] = MMCR0_FC;
2822 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
2823 vcpu->arch.mmcr[0] |= MMCR0_PMCCEXT;
2824 vcpu->arch.mmcra = MMCRA_BHRB_DISABLE;
2825 }
2826
2827 vcpu->arch.ctrl = CTRL_RUNLATCH;
2828 /* default to host PVR, since we can't spoof it */
2829 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2830 spin_lock_init(&vcpu->arch.vpa_update_lock);
2831 spin_lock_init(&vcpu->arch.tbacct_lock);
2832 vcpu->arch.busy_preempt = TB_NIL;
2833 vcpu->arch.shregs.msr = MSR_ME;
2834 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2835
2836 /*
2837 * Set the default HFSCR for the guest from the host value.
2838 * This value is only used on POWER9.
2839 * On POWER9, we want to virtualize the doorbell facility, so we
2840 * don't set the HFSCR_MSGP bit, and that causes those instructions
2841 * to trap and then we emulate them.
2842 */
2843 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2844 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2845 if (cpu_has_feature(CPU_FTR_HVMODE)) {
2846 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2847 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2848 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2849 vcpu->arch.hfscr |= HFSCR_TM;
2850 #endif
2851 }
2852 if (cpu_has_feature(CPU_FTR_TM_COMP))
2853 vcpu->arch.hfscr |= HFSCR_TM;
2854
2855 vcpu->arch.hfscr_permitted = vcpu->arch.hfscr;
2856
2857 /*
2858 * PM, EBB, TM are demand-faulted so start with it clear.
2859 */
2860 vcpu->arch.hfscr &= ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM);
2861
2862 kvmppc_mmu_book3s_hv_init(vcpu);
2863
2864 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2865
2866 init_waitqueue_head(&vcpu->arch.cpu_run);
2867
2868 mutex_lock(&kvm->lock);
2869 vcore = NULL;
2870 err = -EINVAL;
2871 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2872 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2873 pr_devel("KVM: VCPU ID too high\n");
2874 core = KVM_MAX_VCORES;
2875 } else {
2876 BUG_ON(kvm->arch.smt_mode != 1);
2877 core = kvmppc_pack_vcpu_id(kvm, id);
2878 }
2879 } else {
2880 core = id / kvm->arch.smt_mode;
2881 }
2882 if (core < KVM_MAX_VCORES) {
2883 vcore = kvm->arch.vcores[core];
2884 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2885 pr_devel("KVM: collision on id %u", id);
2886 vcore = NULL;
2887 } else if (!vcore) {
2888 /*
2889 * Take mmu_setup_lock for mutual exclusion
2890 * with kvmppc_update_lpcr().
2891 */
2892 err = -ENOMEM;
2893 vcore = kvmppc_vcore_create(kvm,
2894 id & ~(kvm->arch.smt_mode - 1));
2895 mutex_lock(&kvm->arch.mmu_setup_lock);
2896 kvm->arch.vcores[core] = vcore;
2897 kvm->arch.online_vcores++;
2898 mutex_unlock(&kvm->arch.mmu_setup_lock);
2899 }
2900 }
2901 mutex_unlock(&kvm->lock);
2902
2903 if (!vcore)
2904 return err;
2905
2906 spin_lock(&vcore->lock);
2907 ++vcore->num_threads;
2908 spin_unlock(&vcore->lock);
2909 vcpu->arch.vcore = vcore;
2910 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2911 vcpu->arch.thread_cpu = -1;
2912 vcpu->arch.prev_cpu = -1;
2913
2914 vcpu->arch.cpu_type = KVM_CPU_3S_64;
2915 kvmppc_sanity_check(vcpu);
2916
2917 return 0;
2918 }
2919
kvmhv_set_smt_mode(struct kvm * kvm,unsigned long smt_mode,unsigned long flags)2920 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2921 unsigned long flags)
2922 {
2923 int err;
2924 int esmt = 0;
2925
2926 if (flags)
2927 return -EINVAL;
2928 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2929 return -EINVAL;
2930 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2931 /*
2932 * On POWER8 (or POWER7), the threading mode is "strict",
2933 * so we pack smt_mode vcpus per vcore.
2934 */
2935 if (smt_mode > threads_per_subcore)
2936 return -EINVAL;
2937 } else {
2938 /*
2939 * On POWER9, the threading mode is "loose",
2940 * so each vcpu gets its own vcore.
2941 */
2942 esmt = smt_mode;
2943 smt_mode = 1;
2944 }
2945 mutex_lock(&kvm->lock);
2946 err = -EBUSY;
2947 if (!kvm->arch.online_vcores) {
2948 kvm->arch.smt_mode = smt_mode;
2949 kvm->arch.emul_smt_mode = esmt;
2950 err = 0;
2951 }
2952 mutex_unlock(&kvm->lock);
2953
2954 return err;
2955 }
2956
unpin_vpa(struct kvm * kvm,struct kvmppc_vpa * vpa)2957 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2958 {
2959 if (vpa->pinned_addr)
2960 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2961 vpa->dirty);
2962 }
2963
kvmppc_core_vcpu_free_hv(struct kvm_vcpu * vcpu)2964 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2965 {
2966 spin_lock(&vcpu->arch.vpa_update_lock);
2967 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2968 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2969 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2970 spin_unlock(&vcpu->arch.vpa_update_lock);
2971 }
2972
kvmppc_core_check_requests_hv(struct kvm_vcpu * vcpu)2973 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2974 {
2975 /* Indicate we want to get back into the guest */
2976 return 1;
2977 }
2978
kvmppc_set_timer(struct kvm_vcpu * vcpu)2979 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2980 {
2981 unsigned long dec_nsec, now;
2982
2983 now = get_tb();
2984 if (now > kvmppc_dec_expires_host_tb(vcpu)) {
2985 /* decrementer has already gone negative */
2986 kvmppc_core_queue_dec(vcpu);
2987 kvmppc_core_prepare_to_enter(vcpu);
2988 return;
2989 }
2990 dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now);
2991 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2992 vcpu->arch.timer_running = 1;
2993 }
2994
2995 extern int __kvmppc_vcore_entry(void);
2996
kvmppc_remove_runnable(struct kvmppc_vcore * vc,struct kvm_vcpu * vcpu,u64 tb)2997 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2998 struct kvm_vcpu *vcpu, u64 tb)
2999 {
3000 u64 now;
3001
3002 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3003 return;
3004 spin_lock_irq(&vcpu->arch.tbacct_lock);
3005 now = tb;
3006 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
3007 vcpu->arch.stolen_logged;
3008 vcpu->arch.busy_preempt = now;
3009 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3010 spin_unlock_irq(&vcpu->arch.tbacct_lock);
3011 --vc->n_runnable;
3012 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
3013 }
3014
kvmppc_grab_hwthread(int cpu)3015 static int kvmppc_grab_hwthread(int cpu)
3016 {
3017 struct paca_struct *tpaca;
3018 long timeout = 10000;
3019
3020 tpaca = paca_ptrs[cpu];
3021
3022 /* Ensure the thread won't go into the kernel if it wakes */
3023 tpaca->kvm_hstate.kvm_vcpu = NULL;
3024 tpaca->kvm_hstate.kvm_vcore = NULL;
3025 tpaca->kvm_hstate.napping = 0;
3026 smp_wmb();
3027 tpaca->kvm_hstate.hwthread_req = 1;
3028
3029 /*
3030 * If the thread is already executing in the kernel (e.g. handling
3031 * a stray interrupt), wait for it to get back to nap mode.
3032 * The smp_mb() is to ensure that our setting of hwthread_req
3033 * is visible before we look at hwthread_state, so if this
3034 * races with the code at system_reset_pSeries and the thread
3035 * misses our setting of hwthread_req, we are sure to see its
3036 * setting of hwthread_state, and vice versa.
3037 */
3038 smp_mb();
3039 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
3040 if (--timeout <= 0) {
3041 pr_err("KVM: couldn't grab cpu %d\n", cpu);
3042 return -EBUSY;
3043 }
3044 udelay(1);
3045 }
3046 return 0;
3047 }
3048
kvmppc_release_hwthread(int cpu)3049 static void kvmppc_release_hwthread(int cpu)
3050 {
3051 struct paca_struct *tpaca;
3052
3053 tpaca = paca_ptrs[cpu];
3054 tpaca->kvm_hstate.hwthread_req = 0;
3055 tpaca->kvm_hstate.kvm_vcpu = NULL;
3056 tpaca->kvm_hstate.kvm_vcore = NULL;
3057 tpaca->kvm_hstate.kvm_split_mode = NULL;
3058 }
3059
3060 static DEFINE_PER_CPU(struct kvm *, cpu_in_guest);
3061
radix_flush_cpu(struct kvm * kvm,int cpu,struct kvm_vcpu * vcpu)3062 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
3063 {
3064 struct kvm_nested_guest *nested = vcpu->arch.nested;
3065 cpumask_t *need_tlb_flush;
3066 int i;
3067
3068 if (nested)
3069 need_tlb_flush = &nested->need_tlb_flush;
3070 else
3071 need_tlb_flush = &kvm->arch.need_tlb_flush;
3072
3073 cpu = cpu_first_tlb_thread_sibling(cpu);
3074 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3075 i += cpu_tlb_thread_sibling_step())
3076 cpumask_set_cpu(i, need_tlb_flush);
3077
3078 /*
3079 * Make sure setting of bit in need_tlb_flush precedes testing of
3080 * cpu_in_guest. The matching barrier on the other side is hwsync
3081 * when switching to guest MMU mode, which happens between
3082 * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit
3083 * being tested.
3084 */
3085 smp_mb();
3086
3087 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3088 i += cpu_tlb_thread_sibling_step()) {
3089 struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i);
3090
3091 if (running == kvm)
3092 smp_call_function_single(i, do_nothing, NULL, 1);
3093 }
3094 }
3095
do_migrate_away_vcpu(void * arg)3096 static void do_migrate_away_vcpu(void *arg)
3097 {
3098 struct kvm_vcpu *vcpu = arg;
3099 struct kvm *kvm = vcpu->kvm;
3100
3101 /*
3102 * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync;
3103 * ptesync sequence on the old CPU before migrating to a new one, in
3104 * case we interrupted the guest between a tlbie ; eieio ;
3105 * tlbsync; ptesync sequence.
3106 *
3107 * Otherwise, ptesync is sufficient for ordering tlbiel sequences.
3108 */
3109 if (kvm->arch.lpcr & LPCR_GTSE)
3110 asm volatile("eieio; tlbsync; ptesync");
3111 else
3112 asm volatile("ptesync");
3113 }
3114
kvmppc_prepare_radix_vcpu(struct kvm_vcpu * vcpu,int pcpu)3115 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
3116 {
3117 struct kvm_nested_guest *nested = vcpu->arch.nested;
3118 struct kvm *kvm = vcpu->kvm;
3119 int prev_cpu;
3120
3121 if (!cpu_has_feature(CPU_FTR_HVMODE))
3122 return;
3123
3124 if (nested)
3125 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
3126 else
3127 prev_cpu = vcpu->arch.prev_cpu;
3128
3129 /*
3130 * With radix, the guest can do TLB invalidations itself,
3131 * and it could choose to use the local form (tlbiel) if
3132 * it is invalidating a translation that has only ever been
3133 * used on one vcpu. However, that doesn't mean it has
3134 * only ever been used on one physical cpu, since vcpus
3135 * can move around between pcpus. To cope with this, when
3136 * a vcpu moves from one pcpu to another, we need to tell
3137 * any vcpus running on the same core as this vcpu previously
3138 * ran to flush the TLB.
3139 */
3140 if (prev_cpu != pcpu) {
3141 if (prev_cpu >= 0) {
3142 if (cpu_first_tlb_thread_sibling(prev_cpu) !=
3143 cpu_first_tlb_thread_sibling(pcpu))
3144 radix_flush_cpu(kvm, prev_cpu, vcpu);
3145
3146 smp_call_function_single(prev_cpu,
3147 do_migrate_away_vcpu, vcpu, 1);
3148 }
3149 if (nested)
3150 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
3151 else
3152 vcpu->arch.prev_cpu = pcpu;
3153 }
3154 }
3155
kvmppc_start_thread(struct kvm_vcpu * vcpu,struct kvmppc_vcore * vc)3156 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
3157 {
3158 int cpu;
3159 struct paca_struct *tpaca;
3160
3161 cpu = vc->pcpu;
3162 if (vcpu) {
3163 if (vcpu->arch.timer_running) {
3164 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
3165 vcpu->arch.timer_running = 0;
3166 }
3167 cpu += vcpu->arch.ptid;
3168 vcpu->cpu = vc->pcpu;
3169 vcpu->arch.thread_cpu = cpu;
3170 }
3171 tpaca = paca_ptrs[cpu];
3172 tpaca->kvm_hstate.kvm_vcpu = vcpu;
3173 tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
3174 tpaca->kvm_hstate.fake_suspend = 0;
3175 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
3176 smp_wmb();
3177 tpaca->kvm_hstate.kvm_vcore = vc;
3178 if (cpu != smp_processor_id())
3179 kvmppc_ipi_thread(cpu);
3180 }
3181
kvmppc_wait_for_nap(int n_threads)3182 static void kvmppc_wait_for_nap(int n_threads)
3183 {
3184 int cpu = smp_processor_id();
3185 int i, loops;
3186
3187 if (n_threads <= 1)
3188 return;
3189 for (loops = 0; loops < 1000000; ++loops) {
3190 /*
3191 * Check if all threads are finished.
3192 * We set the vcore pointer when starting a thread
3193 * and the thread clears it when finished, so we look
3194 * for any threads that still have a non-NULL vcore ptr.
3195 */
3196 for (i = 1; i < n_threads; ++i)
3197 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3198 break;
3199 if (i == n_threads) {
3200 HMT_medium();
3201 return;
3202 }
3203 HMT_low();
3204 }
3205 HMT_medium();
3206 for (i = 1; i < n_threads; ++i)
3207 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3208 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
3209 }
3210
3211 /*
3212 * Check that we are on thread 0 and that any other threads in
3213 * this core are off-line. Then grab the threads so they can't
3214 * enter the kernel.
3215 */
on_primary_thread(void)3216 static int on_primary_thread(void)
3217 {
3218 int cpu = smp_processor_id();
3219 int thr;
3220
3221 /* Are we on a primary subcore? */
3222 if (cpu_thread_in_subcore(cpu))
3223 return 0;
3224
3225 thr = 0;
3226 while (++thr < threads_per_subcore)
3227 if (cpu_online(cpu + thr))
3228 return 0;
3229
3230 /* Grab all hw threads so they can't go into the kernel */
3231 for (thr = 1; thr < threads_per_subcore; ++thr) {
3232 if (kvmppc_grab_hwthread(cpu + thr)) {
3233 /* Couldn't grab one; let the others go */
3234 do {
3235 kvmppc_release_hwthread(cpu + thr);
3236 } while (--thr > 0);
3237 return 0;
3238 }
3239 }
3240 return 1;
3241 }
3242
3243 /*
3244 * A list of virtual cores for each physical CPU.
3245 * These are vcores that could run but their runner VCPU tasks are
3246 * (or may be) preempted.
3247 */
3248 struct preempted_vcore_list {
3249 struct list_head list;
3250 spinlock_t lock;
3251 };
3252
3253 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
3254
init_vcore_lists(void)3255 static void init_vcore_lists(void)
3256 {
3257 int cpu;
3258
3259 for_each_possible_cpu(cpu) {
3260 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
3261 spin_lock_init(&lp->lock);
3262 INIT_LIST_HEAD(&lp->list);
3263 }
3264 }
3265
kvmppc_vcore_preempt(struct kvmppc_vcore * vc)3266 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
3267 {
3268 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3269
3270 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3271
3272 vc->vcore_state = VCORE_PREEMPT;
3273 vc->pcpu = smp_processor_id();
3274 if (vc->num_threads < threads_per_vcore(vc->kvm)) {
3275 spin_lock(&lp->lock);
3276 list_add_tail(&vc->preempt_list, &lp->list);
3277 spin_unlock(&lp->lock);
3278 }
3279
3280 /* Start accumulating stolen time */
3281 kvmppc_core_start_stolen(vc, mftb());
3282 }
3283
kvmppc_vcore_end_preempt(struct kvmppc_vcore * vc)3284 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3285 {
3286 struct preempted_vcore_list *lp;
3287
3288 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3289
3290 kvmppc_core_end_stolen(vc, mftb());
3291 if (!list_empty(&vc->preempt_list)) {
3292 lp = &per_cpu(preempted_vcores, vc->pcpu);
3293 spin_lock(&lp->lock);
3294 list_del_init(&vc->preempt_list);
3295 spin_unlock(&lp->lock);
3296 }
3297 vc->vcore_state = VCORE_INACTIVE;
3298 }
3299
3300 /*
3301 * This stores information about the virtual cores currently
3302 * assigned to a physical core.
3303 */
3304 struct core_info {
3305 int n_subcores;
3306 int max_subcore_threads;
3307 int total_threads;
3308 int subcore_threads[MAX_SUBCORES];
3309 struct kvmppc_vcore *vc[MAX_SUBCORES];
3310 };
3311
3312 /*
3313 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
3314 * respectively in 2-way micro-threading (split-core) mode on POWER8.
3315 */
3316 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3317
init_core_info(struct core_info * cip,struct kvmppc_vcore * vc)3318 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3319 {
3320 memset(cip, 0, sizeof(*cip));
3321 cip->n_subcores = 1;
3322 cip->max_subcore_threads = vc->num_threads;
3323 cip->total_threads = vc->num_threads;
3324 cip->subcore_threads[0] = vc->num_threads;
3325 cip->vc[0] = vc;
3326 }
3327
subcore_config_ok(int n_subcores,int n_threads)3328 static bool subcore_config_ok(int n_subcores, int n_threads)
3329 {
3330 /*
3331 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3332 * split-core mode, with one thread per subcore.
3333 */
3334 if (cpu_has_feature(CPU_FTR_ARCH_300))
3335 return n_subcores <= 4 && n_threads == 1;
3336
3337 /* On POWER8, can only dynamically split if unsplit to begin with */
3338 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3339 return false;
3340 if (n_subcores > MAX_SUBCORES)
3341 return false;
3342 if (n_subcores > 1) {
3343 if (!(dynamic_mt_modes & 2))
3344 n_subcores = 4;
3345 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3346 return false;
3347 }
3348
3349 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
3350 }
3351
init_vcore_to_run(struct kvmppc_vcore * vc)3352 static void init_vcore_to_run(struct kvmppc_vcore *vc)
3353 {
3354 vc->entry_exit_map = 0;
3355 vc->in_guest = 0;
3356 vc->napping_threads = 0;
3357 vc->conferring_threads = 0;
3358 vc->tb_offset_applied = 0;
3359 }
3360
can_dynamic_split(struct kvmppc_vcore * vc,struct core_info * cip)3361 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3362 {
3363 int n_threads = vc->num_threads;
3364 int sub;
3365
3366 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3367 return false;
3368
3369 /* In one_vm_per_core mode, require all vcores to be from the same vm */
3370 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3371 return false;
3372
3373 if (n_threads < cip->max_subcore_threads)
3374 n_threads = cip->max_subcore_threads;
3375 if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
3376 return false;
3377 cip->max_subcore_threads = n_threads;
3378
3379 sub = cip->n_subcores;
3380 ++cip->n_subcores;
3381 cip->total_threads += vc->num_threads;
3382 cip->subcore_threads[sub] = vc->num_threads;
3383 cip->vc[sub] = vc;
3384 init_vcore_to_run(vc);
3385 list_del_init(&vc->preempt_list);
3386
3387 return true;
3388 }
3389
3390 /*
3391 * Work out whether it is possible to piggyback the execution of
3392 * vcore *pvc onto the execution of the other vcores described in *cip.
3393 */
can_piggyback(struct kvmppc_vcore * pvc,struct core_info * cip,int target_threads)3394 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3395 int target_threads)
3396 {
3397 if (cip->total_threads + pvc->num_threads > target_threads)
3398 return false;
3399
3400 return can_dynamic_split(pvc, cip);
3401 }
3402
prepare_threads(struct kvmppc_vcore * vc)3403 static void prepare_threads(struct kvmppc_vcore *vc)
3404 {
3405 int i;
3406 struct kvm_vcpu *vcpu;
3407
3408 for_each_runnable_thread(i, vcpu, vc) {
3409 if (signal_pending(vcpu->arch.run_task))
3410 vcpu->arch.ret = -EINTR;
3411 else if (vcpu->arch.vpa.update_pending ||
3412 vcpu->arch.slb_shadow.update_pending ||
3413 vcpu->arch.dtl.update_pending)
3414 vcpu->arch.ret = RESUME_GUEST;
3415 else
3416 continue;
3417 kvmppc_remove_runnable(vc, vcpu, mftb());
3418 wake_up(&vcpu->arch.cpu_run);
3419 }
3420 }
3421
collect_piggybacks(struct core_info * cip,int target_threads)3422 static void collect_piggybacks(struct core_info *cip, int target_threads)
3423 {
3424 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3425 struct kvmppc_vcore *pvc, *vcnext;
3426
3427 spin_lock(&lp->lock);
3428 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3429 if (!spin_trylock(&pvc->lock))
3430 continue;
3431 prepare_threads(pvc);
3432 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
3433 list_del_init(&pvc->preempt_list);
3434 if (pvc->runner == NULL) {
3435 pvc->vcore_state = VCORE_INACTIVE;
3436 kvmppc_core_end_stolen(pvc, mftb());
3437 }
3438 spin_unlock(&pvc->lock);
3439 continue;
3440 }
3441 if (!can_piggyback(pvc, cip, target_threads)) {
3442 spin_unlock(&pvc->lock);
3443 continue;
3444 }
3445 kvmppc_core_end_stolen(pvc, mftb());
3446 pvc->vcore_state = VCORE_PIGGYBACK;
3447 if (cip->total_threads >= target_threads)
3448 break;
3449 }
3450 spin_unlock(&lp->lock);
3451 }
3452
recheck_signals_and_mmu(struct core_info * cip)3453 static bool recheck_signals_and_mmu(struct core_info *cip)
3454 {
3455 int sub, i;
3456 struct kvm_vcpu *vcpu;
3457 struct kvmppc_vcore *vc;
3458
3459 for (sub = 0; sub < cip->n_subcores; ++sub) {
3460 vc = cip->vc[sub];
3461 if (!vc->kvm->arch.mmu_ready)
3462 return true;
3463 for_each_runnable_thread(i, vcpu, vc)
3464 if (signal_pending(vcpu->arch.run_task))
3465 return true;
3466 }
3467 return false;
3468 }
3469
post_guest_process(struct kvmppc_vcore * vc,bool is_master)3470 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3471 {
3472 int still_running = 0, i;
3473 u64 now;
3474 long ret;
3475 struct kvm_vcpu *vcpu;
3476
3477 spin_lock(&vc->lock);
3478 now = get_tb();
3479 for_each_runnable_thread(i, vcpu, vc) {
3480 /*
3481 * It's safe to unlock the vcore in the loop here, because
3482 * for_each_runnable_thread() is safe against removal of
3483 * the vcpu, and the vcore state is VCORE_EXITING here,
3484 * so any vcpus becoming runnable will have their arch.trap
3485 * set to zero and can't actually run in the guest.
3486 */
3487 spin_unlock(&vc->lock);
3488 /* cancel pending dec exception if dec is positive */
3489 if (now < kvmppc_dec_expires_host_tb(vcpu) &&
3490 kvmppc_core_pending_dec(vcpu))
3491 kvmppc_core_dequeue_dec(vcpu);
3492
3493 trace_kvm_guest_exit(vcpu);
3494
3495 ret = RESUME_GUEST;
3496 if (vcpu->arch.trap)
3497 ret = kvmppc_handle_exit_hv(vcpu,
3498 vcpu->arch.run_task);
3499
3500 vcpu->arch.ret = ret;
3501 vcpu->arch.trap = 0;
3502
3503 spin_lock(&vc->lock);
3504 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3505 if (vcpu->arch.pending_exceptions)
3506 kvmppc_core_prepare_to_enter(vcpu);
3507 if (vcpu->arch.ceded)
3508 kvmppc_set_timer(vcpu);
3509 else
3510 ++still_running;
3511 } else {
3512 kvmppc_remove_runnable(vc, vcpu, mftb());
3513 wake_up(&vcpu->arch.cpu_run);
3514 }
3515 }
3516 if (!is_master) {
3517 if (still_running > 0) {
3518 kvmppc_vcore_preempt(vc);
3519 } else if (vc->runner) {
3520 vc->vcore_state = VCORE_PREEMPT;
3521 kvmppc_core_start_stolen(vc, mftb());
3522 } else {
3523 vc->vcore_state = VCORE_INACTIVE;
3524 }
3525 if (vc->n_runnable > 0 && vc->runner == NULL) {
3526 /* make sure there's a candidate runner awake */
3527 i = -1;
3528 vcpu = next_runnable_thread(vc, &i);
3529 wake_up(&vcpu->arch.cpu_run);
3530 }
3531 }
3532 spin_unlock(&vc->lock);
3533 }
3534
3535 /*
3536 * Clear core from the list of active host cores as we are about to
3537 * enter the guest. Only do this if it is the primary thread of the
3538 * core (not if a subcore) that is entering the guest.
3539 */
kvmppc_clear_host_core(unsigned int cpu)3540 static inline int kvmppc_clear_host_core(unsigned int cpu)
3541 {
3542 int core;
3543
3544 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3545 return 0;
3546 /*
3547 * Memory barrier can be omitted here as we will do a smp_wmb()
3548 * later in kvmppc_start_thread and we need ensure that state is
3549 * visible to other CPUs only after we enter guest.
3550 */
3551 core = cpu >> threads_shift;
3552 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3553 return 0;
3554 }
3555
3556 /*
3557 * Advertise this core as an active host core since we exited the guest
3558 * Only need to do this if it is the primary thread of the core that is
3559 * exiting.
3560 */
kvmppc_set_host_core(unsigned int cpu)3561 static inline int kvmppc_set_host_core(unsigned int cpu)
3562 {
3563 int core;
3564
3565 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3566 return 0;
3567
3568 /*
3569 * Memory barrier can be omitted here because we do a spin_unlock
3570 * immediately after this which provides the memory barrier.
3571 */
3572 core = cpu >> threads_shift;
3573 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3574 return 0;
3575 }
3576
set_irq_happened(int trap)3577 static void set_irq_happened(int trap)
3578 {
3579 switch (trap) {
3580 case BOOK3S_INTERRUPT_EXTERNAL:
3581 local_paca->irq_happened |= PACA_IRQ_EE;
3582 break;
3583 case BOOK3S_INTERRUPT_H_DOORBELL:
3584 local_paca->irq_happened |= PACA_IRQ_DBELL;
3585 break;
3586 case BOOK3S_INTERRUPT_HMI:
3587 local_paca->irq_happened |= PACA_IRQ_HMI;
3588 break;
3589 case BOOK3S_INTERRUPT_SYSTEM_RESET:
3590 replay_system_reset();
3591 break;
3592 }
3593 }
3594
3595 /*
3596 * Run a set of guest threads on a physical core.
3597 * Called with vc->lock held.
3598 */
kvmppc_run_core(struct kvmppc_vcore * vc)3599 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3600 {
3601 struct kvm_vcpu *vcpu;
3602 int i;
3603 int srcu_idx;
3604 struct core_info core_info;
3605 struct kvmppc_vcore *pvc;
3606 struct kvm_split_mode split_info, *sip;
3607 int split, subcore_size, active;
3608 int sub;
3609 bool thr0_done;
3610 unsigned long cmd_bit, stat_bit;
3611 int pcpu, thr;
3612 int target_threads;
3613 int controlled_threads;
3614 int trap;
3615 bool is_power8;
3616
3617 if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3618 return;
3619
3620 /*
3621 * Remove from the list any threads that have a signal pending
3622 * or need a VPA update done
3623 */
3624 prepare_threads(vc);
3625
3626 /* if the runner is no longer runnable, let the caller pick a new one */
3627 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3628 return;
3629
3630 /*
3631 * Initialize *vc.
3632 */
3633 init_vcore_to_run(vc);
3634 vc->preempt_tb = TB_NIL;
3635
3636 /*
3637 * Number of threads that we will be controlling: the same as
3638 * the number of threads per subcore, except on POWER9,
3639 * where it's 1 because the threads are (mostly) independent.
3640 */
3641 controlled_threads = threads_per_vcore(vc->kvm);
3642
3643 /*
3644 * Make sure we are running on primary threads, and that secondary
3645 * threads are offline. Also check if the number of threads in this
3646 * guest are greater than the current system threads per guest.
3647 */
3648 if ((controlled_threads > 1) &&
3649 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3650 for_each_runnable_thread(i, vcpu, vc) {
3651 vcpu->arch.ret = -EBUSY;
3652 kvmppc_remove_runnable(vc, vcpu, mftb());
3653 wake_up(&vcpu->arch.cpu_run);
3654 }
3655 goto out;
3656 }
3657
3658 /*
3659 * See if we could run any other vcores on the physical core
3660 * along with this one.
3661 */
3662 init_core_info(&core_info, vc);
3663 pcpu = smp_processor_id();
3664 target_threads = controlled_threads;
3665 if (target_smt_mode && target_smt_mode < target_threads)
3666 target_threads = target_smt_mode;
3667 if (vc->num_threads < target_threads)
3668 collect_piggybacks(&core_info, target_threads);
3669
3670 /*
3671 * Hard-disable interrupts, and check resched flag and signals.
3672 * If we need to reschedule or deliver a signal, clean up
3673 * and return without going into the guest(s).
3674 * If the mmu_ready flag has been cleared, don't go into the
3675 * guest because that means a HPT resize operation is in progress.
3676 */
3677 local_irq_disable();
3678 hard_irq_disable();
3679 if (lazy_irq_pending() || need_resched() ||
3680 recheck_signals_and_mmu(&core_info)) {
3681 local_irq_enable();
3682 vc->vcore_state = VCORE_INACTIVE;
3683 /* Unlock all except the primary vcore */
3684 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3685 pvc = core_info.vc[sub];
3686 /* Put back on to the preempted vcores list */
3687 kvmppc_vcore_preempt(pvc);
3688 spin_unlock(&pvc->lock);
3689 }
3690 for (i = 0; i < controlled_threads; ++i)
3691 kvmppc_release_hwthread(pcpu + i);
3692 return;
3693 }
3694
3695 kvmppc_clear_host_core(pcpu);
3696
3697 /* Decide on micro-threading (split-core) mode */
3698 subcore_size = threads_per_subcore;
3699 cmd_bit = stat_bit = 0;
3700 split = core_info.n_subcores;
3701 sip = NULL;
3702 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
3703
3704 if (split > 1) {
3705 sip = &split_info;
3706 memset(&split_info, 0, sizeof(split_info));
3707 for (sub = 0; sub < core_info.n_subcores; ++sub)
3708 split_info.vc[sub] = core_info.vc[sub];
3709
3710 if (is_power8) {
3711 if (split == 2 && (dynamic_mt_modes & 2)) {
3712 cmd_bit = HID0_POWER8_1TO2LPAR;
3713 stat_bit = HID0_POWER8_2LPARMODE;
3714 } else {
3715 split = 4;
3716 cmd_bit = HID0_POWER8_1TO4LPAR;
3717 stat_bit = HID0_POWER8_4LPARMODE;
3718 }
3719 subcore_size = MAX_SMT_THREADS / split;
3720 split_info.rpr = mfspr(SPRN_RPR);
3721 split_info.pmmar = mfspr(SPRN_PMMAR);
3722 split_info.ldbar = mfspr(SPRN_LDBAR);
3723 split_info.subcore_size = subcore_size;
3724 } else {
3725 split_info.subcore_size = 1;
3726 }
3727
3728 /* order writes to split_info before kvm_split_mode pointer */
3729 smp_wmb();
3730 }
3731
3732 for (thr = 0; thr < controlled_threads; ++thr) {
3733 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3734
3735 paca->kvm_hstate.napping = 0;
3736 paca->kvm_hstate.kvm_split_mode = sip;
3737 }
3738
3739 /* Initiate micro-threading (split-core) on POWER8 if required */
3740 if (cmd_bit) {
3741 unsigned long hid0 = mfspr(SPRN_HID0);
3742
3743 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3744 mb();
3745 mtspr(SPRN_HID0, hid0);
3746 isync();
3747 for (;;) {
3748 hid0 = mfspr(SPRN_HID0);
3749 if (hid0 & stat_bit)
3750 break;
3751 cpu_relax();
3752 }
3753 }
3754
3755 /*
3756 * On POWER8, set RWMR register.
3757 * Since it only affects PURR and SPURR, it doesn't affect
3758 * the host, so we don't save/restore the host value.
3759 */
3760 if (is_power8) {
3761 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3762 int n_online = atomic_read(&vc->online_count);
3763
3764 /*
3765 * Use the 8-thread value if we're doing split-core
3766 * or if the vcore's online count looks bogus.
3767 */
3768 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3769 n_online >= 1 && n_online <= MAX_SMT_THREADS)
3770 rwmr_val = p8_rwmr_values[n_online];
3771 mtspr(SPRN_RWMR, rwmr_val);
3772 }
3773
3774 /* Start all the threads */
3775 active = 0;
3776 for (sub = 0; sub < core_info.n_subcores; ++sub) {
3777 thr = is_power8 ? subcore_thread_map[sub] : sub;
3778 thr0_done = false;
3779 active |= 1 << thr;
3780 pvc = core_info.vc[sub];
3781 pvc->pcpu = pcpu + thr;
3782 for_each_runnable_thread(i, vcpu, pvc) {
3783 /*
3784 * XXX: is kvmppc_start_thread called too late here?
3785 * It updates vcpu->cpu and vcpu->arch.thread_cpu
3786 * which are used by kvmppc_fast_vcpu_kick_hv(), but
3787 * kick is called after new exceptions become available
3788 * and exceptions are checked earlier than here, by
3789 * kvmppc_core_prepare_to_enter.
3790 */
3791 kvmppc_start_thread(vcpu, pvc);
3792 kvmppc_create_dtl_entry(vcpu, pvc);
3793 trace_kvm_guest_enter(vcpu);
3794 if (!vcpu->arch.ptid)
3795 thr0_done = true;
3796 active |= 1 << (thr + vcpu->arch.ptid);
3797 }
3798 /*
3799 * We need to start the first thread of each subcore
3800 * even if it doesn't have a vcpu.
3801 */
3802 if (!thr0_done)
3803 kvmppc_start_thread(NULL, pvc);
3804 }
3805
3806 /*
3807 * Ensure that split_info.do_nap is set after setting
3808 * the vcore pointer in the PACA of the secondaries.
3809 */
3810 smp_mb();
3811
3812 /*
3813 * When doing micro-threading, poke the inactive threads as well.
3814 * This gets them to the nap instruction after kvm_do_nap,
3815 * which reduces the time taken to unsplit later.
3816 */
3817 if (cmd_bit) {
3818 split_info.do_nap = 1; /* ask secondaries to nap when done */
3819 for (thr = 1; thr < threads_per_subcore; ++thr)
3820 if (!(active & (1 << thr)))
3821 kvmppc_ipi_thread(pcpu + thr);
3822 }
3823
3824 vc->vcore_state = VCORE_RUNNING;
3825 preempt_disable();
3826
3827 trace_kvmppc_run_core(vc, 0);
3828
3829 for (sub = 0; sub < core_info.n_subcores; ++sub)
3830 spin_unlock(&core_info.vc[sub]->lock);
3831
3832 guest_enter_irqoff();
3833
3834 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3835
3836 this_cpu_disable_ftrace();
3837
3838 /*
3839 * Interrupts will be enabled once we get into the guest,
3840 * so tell lockdep that we're about to enable interrupts.
3841 */
3842 trace_hardirqs_on();
3843
3844 trap = __kvmppc_vcore_entry();
3845
3846 trace_hardirqs_off();
3847
3848 this_cpu_enable_ftrace();
3849
3850 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3851
3852 set_irq_happened(trap);
3853
3854 spin_lock(&vc->lock);
3855 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3856 vc->vcore_state = VCORE_EXITING;
3857
3858 /* wait for secondary threads to finish writing their state to memory */
3859 kvmppc_wait_for_nap(controlled_threads);
3860
3861 /* Return to whole-core mode if we split the core earlier */
3862 if (cmd_bit) {
3863 unsigned long hid0 = mfspr(SPRN_HID0);
3864 unsigned long loops = 0;
3865
3866 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3867 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3868 mb();
3869 mtspr(SPRN_HID0, hid0);
3870 isync();
3871 for (;;) {
3872 hid0 = mfspr(SPRN_HID0);
3873 if (!(hid0 & stat_bit))
3874 break;
3875 cpu_relax();
3876 ++loops;
3877 }
3878 split_info.do_nap = 0;
3879 }
3880
3881 kvmppc_set_host_core(pcpu);
3882
3883 context_tracking_guest_exit();
3884 if (!vtime_accounting_enabled_this_cpu()) {
3885 local_irq_enable();
3886 /*
3887 * Service IRQs here before vtime_account_guest_exit() so any
3888 * ticks that occurred while running the guest are accounted to
3889 * the guest. If vtime accounting is enabled, accounting uses
3890 * TB rather than ticks, so it can be done without enabling
3891 * interrupts here, which has the problem that it accounts
3892 * interrupt processing overhead to the host.
3893 */
3894 local_irq_disable();
3895 }
3896 vtime_account_guest_exit();
3897
3898 local_irq_enable();
3899
3900 /* Let secondaries go back to the offline loop */
3901 for (i = 0; i < controlled_threads; ++i) {
3902 kvmppc_release_hwthread(pcpu + i);
3903 if (sip && sip->napped[i])
3904 kvmppc_ipi_thread(pcpu + i);
3905 }
3906
3907 spin_unlock(&vc->lock);
3908
3909 /* make sure updates to secondary vcpu structs are visible now */
3910 smp_mb();
3911
3912 preempt_enable();
3913
3914 for (sub = 0; sub < core_info.n_subcores; ++sub) {
3915 pvc = core_info.vc[sub];
3916 post_guest_process(pvc, pvc == vc);
3917 }
3918
3919 spin_lock(&vc->lock);
3920
3921 out:
3922 vc->vcore_state = VCORE_INACTIVE;
3923 trace_kvmppc_run_core(vc, 1);
3924 }
3925
hcall_is_xics(unsigned long req)3926 static inline bool hcall_is_xics(unsigned long req)
3927 {
3928 return req == H_EOI || req == H_CPPR || req == H_IPI ||
3929 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
3930 }
3931
vcpu_vpa_increment_dispatch(struct kvm_vcpu * vcpu)3932 static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu)
3933 {
3934 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3935 if (lp) {
3936 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3937 lp->yield_count = cpu_to_be32(yield_count);
3938 vcpu->arch.vpa.dirty = 1;
3939 }
3940 }
3941
3942 /* call our hypervisor to load up HV regs and go */
kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu * vcpu,u64 time_limit,unsigned long lpcr,u64 * tb)3943 static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb)
3944 {
3945 struct kvmppc_vcore *vc = vcpu->arch.vcore;
3946 unsigned long host_psscr;
3947 unsigned long msr;
3948 struct hv_guest_state hvregs;
3949 struct p9_host_os_sprs host_os_sprs;
3950 s64 dec;
3951 int trap;
3952
3953 msr = mfmsr();
3954
3955 save_p9_host_os_sprs(&host_os_sprs);
3956
3957 /*
3958 * We need to save and restore the guest visible part of the
3959 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3960 * doesn't do this for us. Note only required if pseries since
3961 * this is done in kvmhv_vcpu_entry_p9() below otherwise.
3962 */
3963 host_psscr = mfspr(SPRN_PSSCR_PR);
3964
3965 kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
3966 if (lazy_irq_pending())
3967 return 0;
3968
3969 if (unlikely(load_vcpu_state(vcpu, &host_os_sprs)))
3970 msr = mfmsr(); /* TM restore can update msr */
3971
3972 if (vcpu->arch.psscr != host_psscr)
3973 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3974
3975 kvmhv_save_hv_regs(vcpu, &hvregs);
3976 hvregs.lpcr = lpcr;
3977 hvregs.amor = ~0;
3978 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3979 hvregs.version = HV_GUEST_STATE_VERSION;
3980 if (vcpu->arch.nested) {
3981 hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3982 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3983 } else {
3984 hvregs.lpid = vcpu->kvm->arch.lpid;
3985 hvregs.vcpu_token = vcpu->vcpu_id;
3986 }
3987 hvregs.hdec_expiry = time_limit;
3988
3989 /*
3990 * When setting DEC, we must always deal with irq_work_raise
3991 * via NMI vs setting DEC. The problem occurs right as we
3992 * switch into guest mode if a NMI hits and sets pending work
3993 * and sets DEC, then that will apply to the guest and not
3994 * bring us back to the host.
3995 *
3996 * irq_work_raise could check a flag (or possibly LPCR[HDICE]
3997 * for example) and set HDEC to 1? That wouldn't solve the
3998 * nested hv case which needs to abort the hcall or zero the
3999 * time limit.
4000 *
4001 * XXX: Another day's problem.
4002 */
4003 mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb);
4004
4005 mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
4006 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
4007 switch_pmu_to_guest(vcpu, &host_os_sprs);
4008 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
4009 __pa(&vcpu->arch.regs));
4010 kvmhv_restore_hv_return_state(vcpu, &hvregs);
4011 switch_pmu_to_host(vcpu, &host_os_sprs);
4012 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
4013 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
4014 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
4015 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
4016
4017 store_vcpu_state(vcpu);
4018
4019 dec = mfspr(SPRN_DEC);
4020 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
4021 dec = (s32) dec;
4022 *tb = mftb();
4023 vcpu->arch.dec_expires = dec + (*tb + vc->tb_offset);
4024
4025 timer_rearm_host_dec(*tb);
4026
4027 restore_p9_host_os_sprs(vcpu, &host_os_sprs);
4028 if (vcpu->arch.psscr != host_psscr)
4029 mtspr(SPRN_PSSCR_PR, host_psscr);
4030
4031 return trap;
4032 }
4033
4034 /*
4035 * Guest entry for POWER9 and later CPUs.
4036 */
kvmhv_p9_guest_entry(struct kvm_vcpu * vcpu,u64 time_limit,unsigned long lpcr,u64 * tb)4037 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
4038 unsigned long lpcr, u64 *tb)
4039 {
4040 struct kvm *kvm = vcpu->kvm;
4041 struct kvm_nested_guest *nested = vcpu->arch.nested;
4042 u64 next_timer;
4043 int trap;
4044
4045 next_timer = timer_get_next_tb();
4046 if (*tb >= next_timer)
4047 return BOOK3S_INTERRUPT_HV_DECREMENTER;
4048 if (next_timer < time_limit)
4049 time_limit = next_timer;
4050 else if (*tb >= time_limit) /* nested time limit */
4051 return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER;
4052
4053 vcpu->arch.ceded = 0;
4054
4055 vcpu_vpa_increment_dispatch(vcpu);
4056
4057 if (kvmhv_on_pseries()) {
4058 trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb);
4059
4060 /* H_CEDE has to be handled now, not later */
4061 if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested &&
4062 kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
4063 kvmppc_cede(vcpu);
4064 kvmppc_set_gpr(vcpu, 3, 0);
4065 trap = 0;
4066 }
4067
4068 } else if (nested) {
4069 __this_cpu_write(cpu_in_guest, kvm);
4070 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4071 __this_cpu_write(cpu_in_guest, NULL);
4072
4073 } else {
4074 kvmppc_xive_push_vcpu(vcpu);
4075
4076 __this_cpu_write(cpu_in_guest, kvm);
4077 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4078 __this_cpu_write(cpu_in_guest, NULL);
4079
4080 if (trap == BOOK3S_INTERRUPT_SYSCALL &&
4081 !(vcpu->arch.shregs.msr & MSR_PR)) {
4082 unsigned long req = kvmppc_get_gpr(vcpu, 3);
4083
4084 /*
4085 * XIVE rearm and XICS hcalls must be handled
4086 * before xive context is pulled (is this
4087 * true?)
4088 */
4089 if (req == H_CEDE) {
4090 /* H_CEDE has to be handled now */
4091 kvmppc_cede(vcpu);
4092 if (!kvmppc_xive_rearm_escalation(vcpu)) {
4093 /*
4094 * Pending escalation so abort
4095 * the cede.
4096 */
4097 vcpu->arch.ceded = 0;
4098 }
4099 kvmppc_set_gpr(vcpu, 3, 0);
4100 trap = 0;
4101
4102 } else if (req == H_ENTER_NESTED) {
4103 /*
4104 * L2 should not run with the L1
4105 * context so rearm and pull it.
4106 */
4107 if (!kvmppc_xive_rearm_escalation(vcpu)) {
4108 /*
4109 * Pending escalation so abort
4110 * H_ENTER_NESTED.
4111 */
4112 kvmppc_set_gpr(vcpu, 3, 0);
4113 trap = 0;
4114 }
4115
4116 } else if (hcall_is_xics(req)) {
4117 int ret;
4118
4119 ret = kvmppc_xive_xics_hcall(vcpu, req);
4120 if (ret != H_TOO_HARD) {
4121 kvmppc_set_gpr(vcpu, 3, ret);
4122 trap = 0;
4123 }
4124 }
4125 }
4126 kvmppc_xive_pull_vcpu(vcpu);
4127
4128 if (kvm_is_radix(kvm))
4129 vcpu->arch.slb_max = 0;
4130 }
4131
4132 vcpu_vpa_increment_dispatch(vcpu);
4133
4134 return trap;
4135 }
4136
4137 /*
4138 * Wait for some other vcpu thread to execute us, and
4139 * wake us up when we need to handle something in the host.
4140 */
kvmppc_wait_for_exec(struct kvmppc_vcore * vc,struct kvm_vcpu * vcpu,int wait_state)4141 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
4142 struct kvm_vcpu *vcpu, int wait_state)
4143 {
4144 DEFINE_WAIT(wait);
4145
4146 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
4147 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4148 spin_unlock(&vc->lock);
4149 schedule();
4150 spin_lock(&vc->lock);
4151 }
4152 finish_wait(&vcpu->arch.cpu_run, &wait);
4153 }
4154
grow_halt_poll_ns(struct kvmppc_vcore * vc)4155 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
4156 {
4157 if (!halt_poll_ns_grow)
4158 return;
4159
4160 vc->halt_poll_ns *= halt_poll_ns_grow;
4161 if (vc->halt_poll_ns < halt_poll_ns_grow_start)
4162 vc->halt_poll_ns = halt_poll_ns_grow_start;
4163 }
4164
shrink_halt_poll_ns(struct kvmppc_vcore * vc)4165 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
4166 {
4167 if (halt_poll_ns_shrink == 0)
4168 vc->halt_poll_ns = 0;
4169 else
4170 vc->halt_poll_ns /= halt_poll_ns_shrink;
4171 }
4172
4173 #ifdef CONFIG_KVM_XICS
xive_interrupt_pending(struct kvm_vcpu * vcpu)4174 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4175 {
4176 if (!xics_on_xive())
4177 return false;
4178 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
4179 vcpu->arch.xive_saved_state.cppr;
4180 }
4181 #else
xive_interrupt_pending(struct kvm_vcpu * vcpu)4182 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4183 {
4184 return false;
4185 }
4186 #endif /* CONFIG_KVM_XICS */
4187
kvmppc_vcpu_woken(struct kvm_vcpu * vcpu)4188 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
4189 {
4190 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
4191 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
4192 return true;
4193
4194 return false;
4195 }
4196
kvmppc_vcpu_check_block(struct kvm_vcpu * vcpu)4197 static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu)
4198 {
4199 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
4200 return true;
4201 return false;
4202 }
4203
4204 /*
4205 * Check to see if any of the runnable vcpus on the vcore have pending
4206 * exceptions or are no longer ceded
4207 */
kvmppc_vcore_check_block(struct kvmppc_vcore * vc)4208 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
4209 {
4210 struct kvm_vcpu *vcpu;
4211 int i;
4212
4213 for_each_runnable_thread(i, vcpu, vc) {
4214 if (kvmppc_vcpu_check_block(vcpu))
4215 return 1;
4216 }
4217
4218 return 0;
4219 }
4220
4221 /*
4222 * All the vcpus in this vcore are idle, so wait for a decrementer
4223 * or external interrupt to one of the vcpus. vc->lock is held.
4224 */
kvmppc_vcore_blocked(struct kvmppc_vcore * vc)4225 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
4226 {
4227 ktime_t cur, start_poll, start_wait;
4228 int do_sleep = 1;
4229 u64 block_ns;
4230
4231 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
4232
4233 /* Poll for pending exceptions and ceded state */
4234 cur = start_poll = ktime_get();
4235 if (vc->halt_poll_ns) {
4236 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
4237 ++vc->runner->stat.generic.halt_attempted_poll;
4238
4239 vc->vcore_state = VCORE_POLLING;
4240 spin_unlock(&vc->lock);
4241
4242 do {
4243 if (kvmppc_vcore_check_block(vc)) {
4244 do_sleep = 0;
4245 break;
4246 }
4247 cur = ktime_get();
4248 } while (kvm_vcpu_can_poll(cur, stop));
4249
4250 spin_lock(&vc->lock);
4251 vc->vcore_state = VCORE_INACTIVE;
4252
4253 if (!do_sleep) {
4254 ++vc->runner->stat.generic.halt_successful_poll;
4255 goto out;
4256 }
4257 }
4258
4259 prepare_to_rcuwait(&vc->wait);
4260 set_current_state(TASK_INTERRUPTIBLE);
4261 if (kvmppc_vcore_check_block(vc)) {
4262 finish_rcuwait(&vc->wait);
4263 do_sleep = 0;
4264 /* If we polled, count this as a successful poll */
4265 if (vc->halt_poll_ns)
4266 ++vc->runner->stat.generic.halt_successful_poll;
4267 goto out;
4268 }
4269
4270 start_wait = ktime_get();
4271
4272 vc->vcore_state = VCORE_SLEEPING;
4273 trace_kvmppc_vcore_blocked(vc->runner, 0);
4274 spin_unlock(&vc->lock);
4275 schedule();
4276 finish_rcuwait(&vc->wait);
4277 spin_lock(&vc->lock);
4278 vc->vcore_state = VCORE_INACTIVE;
4279 trace_kvmppc_vcore_blocked(vc->runner, 1);
4280 ++vc->runner->stat.halt_successful_wait;
4281
4282 cur = ktime_get();
4283
4284 out:
4285 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
4286
4287 /* Attribute wait time */
4288 if (do_sleep) {
4289 vc->runner->stat.generic.halt_wait_ns +=
4290 ktime_to_ns(cur) - ktime_to_ns(start_wait);
4291 KVM_STATS_LOG_HIST_UPDATE(
4292 vc->runner->stat.generic.halt_wait_hist,
4293 ktime_to_ns(cur) - ktime_to_ns(start_wait));
4294 /* Attribute failed poll time */
4295 if (vc->halt_poll_ns) {
4296 vc->runner->stat.generic.halt_poll_fail_ns +=
4297 ktime_to_ns(start_wait) -
4298 ktime_to_ns(start_poll);
4299 KVM_STATS_LOG_HIST_UPDATE(
4300 vc->runner->stat.generic.halt_poll_fail_hist,
4301 ktime_to_ns(start_wait) -
4302 ktime_to_ns(start_poll));
4303 }
4304 } else {
4305 /* Attribute successful poll time */
4306 if (vc->halt_poll_ns) {
4307 vc->runner->stat.generic.halt_poll_success_ns +=
4308 ktime_to_ns(cur) -
4309 ktime_to_ns(start_poll);
4310 KVM_STATS_LOG_HIST_UPDATE(
4311 vc->runner->stat.generic.halt_poll_success_hist,
4312 ktime_to_ns(cur) - ktime_to_ns(start_poll));
4313 }
4314 }
4315
4316 /* Adjust poll time */
4317 if (halt_poll_ns) {
4318 if (block_ns <= vc->halt_poll_ns)
4319 ;
4320 /* We slept and blocked for longer than the max halt time */
4321 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4322 shrink_halt_poll_ns(vc);
4323 /* We slept and our poll time is too small */
4324 else if (vc->halt_poll_ns < halt_poll_ns &&
4325 block_ns < halt_poll_ns)
4326 grow_halt_poll_ns(vc);
4327 if (vc->halt_poll_ns > halt_poll_ns)
4328 vc->halt_poll_ns = halt_poll_ns;
4329 } else
4330 vc->halt_poll_ns = 0;
4331
4332 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
4333 }
4334
4335 /*
4336 * This never fails for a radix guest, as none of the operations it does
4337 * for a radix guest can fail or have a way to report failure.
4338 */
kvmhv_setup_mmu(struct kvm_vcpu * vcpu)4339 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4340 {
4341 int r = 0;
4342 struct kvm *kvm = vcpu->kvm;
4343
4344 mutex_lock(&kvm->arch.mmu_setup_lock);
4345 if (!kvm->arch.mmu_ready) {
4346 if (!kvm_is_radix(kvm))
4347 r = kvmppc_hv_setup_htab_rma(vcpu);
4348 if (!r) {
4349 if (cpu_has_feature(CPU_FTR_ARCH_300))
4350 kvmppc_setup_partition_table(kvm);
4351 kvm->arch.mmu_ready = 1;
4352 }
4353 }
4354 mutex_unlock(&kvm->arch.mmu_setup_lock);
4355 return r;
4356 }
4357
kvmppc_run_vcpu(struct kvm_vcpu * vcpu)4358 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4359 {
4360 struct kvm_run *run = vcpu->run;
4361 int n_ceded, i, r;
4362 struct kvmppc_vcore *vc;
4363 struct kvm_vcpu *v;
4364
4365 trace_kvmppc_run_vcpu_enter(vcpu);
4366
4367 run->exit_reason = 0;
4368 vcpu->arch.ret = RESUME_GUEST;
4369 vcpu->arch.trap = 0;
4370 kvmppc_update_vpas(vcpu);
4371
4372 /*
4373 * Synchronize with other threads in this virtual core
4374 */
4375 vc = vcpu->arch.vcore;
4376 spin_lock(&vc->lock);
4377 vcpu->arch.ceded = 0;
4378 vcpu->arch.run_task = current;
4379 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4380 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4381 vcpu->arch.busy_preempt = TB_NIL;
4382 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4383 ++vc->n_runnable;
4384
4385 /*
4386 * This happens the first time this is called for a vcpu.
4387 * If the vcore is already running, we may be able to start
4388 * this thread straight away and have it join in.
4389 */
4390 if (!signal_pending(current)) {
4391 if ((vc->vcore_state == VCORE_PIGGYBACK ||
4392 vc->vcore_state == VCORE_RUNNING) &&
4393 !VCORE_IS_EXITING(vc)) {
4394 kvmppc_create_dtl_entry(vcpu, vc);
4395 kvmppc_start_thread(vcpu, vc);
4396 trace_kvm_guest_enter(vcpu);
4397 } else if (vc->vcore_state == VCORE_SLEEPING) {
4398 rcuwait_wake_up(&vc->wait);
4399 }
4400
4401 }
4402
4403 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4404 !signal_pending(current)) {
4405 /* See if the MMU is ready to go */
4406 if (!vcpu->kvm->arch.mmu_ready) {
4407 spin_unlock(&vc->lock);
4408 r = kvmhv_setup_mmu(vcpu);
4409 spin_lock(&vc->lock);
4410 if (r) {
4411 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4412 run->fail_entry.
4413 hardware_entry_failure_reason = 0;
4414 vcpu->arch.ret = r;
4415 break;
4416 }
4417 }
4418
4419 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4420 kvmppc_vcore_end_preempt(vc);
4421
4422 if (vc->vcore_state != VCORE_INACTIVE) {
4423 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4424 continue;
4425 }
4426 for_each_runnable_thread(i, v, vc) {
4427 kvmppc_core_prepare_to_enter(v);
4428 if (signal_pending(v->arch.run_task)) {
4429 kvmppc_remove_runnable(vc, v, mftb());
4430 v->stat.signal_exits++;
4431 v->run->exit_reason = KVM_EXIT_INTR;
4432 v->arch.ret = -EINTR;
4433 wake_up(&v->arch.cpu_run);
4434 }
4435 }
4436 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4437 break;
4438 n_ceded = 0;
4439 for_each_runnable_thread(i, v, vc) {
4440 if (!kvmppc_vcpu_woken(v))
4441 n_ceded += v->arch.ceded;
4442 else
4443 v->arch.ceded = 0;
4444 }
4445 vc->runner = vcpu;
4446 if (n_ceded == vc->n_runnable) {
4447 kvmppc_vcore_blocked(vc);
4448 } else if (need_resched()) {
4449 kvmppc_vcore_preempt(vc);
4450 /* Let something else run */
4451 cond_resched_lock(&vc->lock);
4452 if (vc->vcore_state == VCORE_PREEMPT)
4453 kvmppc_vcore_end_preempt(vc);
4454 } else {
4455 kvmppc_run_core(vc);
4456 }
4457 vc->runner = NULL;
4458 }
4459
4460 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4461 (vc->vcore_state == VCORE_RUNNING ||
4462 vc->vcore_state == VCORE_EXITING ||
4463 vc->vcore_state == VCORE_PIGGYBACK))
4464 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4465
4466 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4467 kvmppc_vcore_end_preempt(vc);
4468
4469 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4470 kvmppc_remove_runnable(vc, vcpu, mftb());
4471 vcpu->stat.signal_exits++;
4472 run->exit_reason = KVM_EXIT_INTR;
4473 vcpu->arch.ret = -EINTR;
4474 }
4475
4476 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4477 /* Wake up some vcpu to run the core */
4478 i = -1;
4479 v = next_runnable_thread(vc, &i);
4480 wake_up(&v->arch.cpu_run);
4481 }
4482
4483 trace_kvmppc_run_vcpu_exit(vcpu);
4484 spin_unlock(&vc->lock);
4485 return vcpu->arch.ret;
4486 }
4487
kvmhv_run_single_vcpu(struct kvm_vcpu * vcpu,u64 time_limit,unsigned long lpcr)4488 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4489 unsigned long lpcr)
4490 {
4491 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
4492 struct kvm_run *run = vcpu->run;
4493 int trap, r, pcpu;
4494 int srcu_idx;
4495 struct kvmppc_vcore *vc;
4496 struct kvm *kvm = vcpu->kvm;
4497 struct kvm_nested_guest *nested = vcpu->arch.nested;
4498 unsigned long flags;
4499 u64 tb;
4500
4501 trace_kvmppc_run_vcpu_enter(vcpu);
4502
4503 run->exit_reason = 0;
4504 vcpu->arch.ret = RESUME_GUEST;
4505 vcpu->arch.trap = 0;
4506
4507 vc = vcpu->arch.vcore;
4508 vcpu->arch.ceded = 0;
4509 vcpu->arch.run_task = current;
4510 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4511 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4512
4513 /* See if the MMU is ready to go */
4514 if (unlikely(!kvm->arch.mmu_ready)) {
4515 r = kvmhv_setup_mmu(vcpu);
4516 if (r) {
4517 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4518 run->fail_entry.hardware_entry_failure_reason = 0;
4519 vcpu->arch.ret = r;
4520 return r;
4521 }
4522 }
4523
4524 if (need_resched())
4525 cond_resched();
4526
4527 kvmppc_update_vpas(vcpu);
4528
4529 preempt_disable();
4530 pcpu = smp_processor_id();
4531 if (kvm_is_radix(kvm))
4532 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4533
4534 /* flags save not required, but irq_pmu has no disable/enable API */
4535 powerpc_local_irq_pmu_save(flags);
4536
4537 if (signal_pending(current))
4538 goto sigpend;
4539 if (need_resched() || !kvm->arch.mmu_ready)
4540 goto out;
4541
4542 vcpu->cpu = pcpu;
4543 vcpu->arch.thread_cpu = pcpu;
4544 vc->pcpu = pcpu;
4545 local_paca->kvm_hstate.kvm_vcpu = vcpu;
4546 local_paca->kvm_hstate.ptid = 0;
4547 local_paca->kvm_hstate.fake_suspend = 0;
4548
4549 /*
4550 * Orders set cpu/thread_cpu vs testing for pending interrupts and
4551 * doorbells below. The other side is when these fields are set vs
4552 * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to
4553 * kick a vCPU to notice the pending interrupt.
4554 */
4555 smp_mb();
4556
4557 if (!nested) {
4558 kvmppc_core_prepare_to_enter(vcpu);
4559 if (vcpu->arch.shregs.msr & MSR_EE) {
4560 if (xive_interrupt_pending(vcpu))
4561 kvmppc_inject_interrupt_hv(vcpu,
4562 BOOK3S_INTERRUPT_EXTERNAL, 0);
4563 } else if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4564 &vcpu->arch.pending_exceptions)) {
4565 lpcr |= LPCR_MER;
4566 }
4567 } else if (vcpu->arch.pending_exceptions ||
4568 vcpu->arch.doorbell_request ||
4569 xive_interrupt_pending(vcpu)) {
4570 vcpu->arch.ret = RESUME_HOST;
4571 goto out;
4572 }
4573
4574 if (vcpu->arch.timer_running) {
4575 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
4576 vcpu->arch.timer_running = 0;
4577 }
4578
4579 tb = mftb();
4580
4581 __kvmppc_create_dtl_entry(vcpu, pcpu, tb + vc->tb_offset, 0);
4582
4583 trace_kvm_guest_enter(vcpu);
4584
4585 guest_enter_irqoff();
4586
4587 srcu_idx = srcu_read_lock(&kvm->srcu);
4588
4589 this_cpu_disable_ftrace();
4590
4591 /* Tell lockdep that we're about to enable interrupts */
4592 trace_hardirqs_on();
4593
4594 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb);
4595 vcpu->arch.trap = trap;
4596
4597 trace_hardirqs_off();
4598
4599 this_cpu_enable_ftrace();
4600
4601 srcu_read_unlock(&kvm->srcu, srcu_idx);
4602
4603 set_irq_happened(trap);
4604
4605 context_tracking_guest_exit();
4606 if (!vtime_accounting_enabled_this_cpu()) {
4607 local_irq_enable();
4608 /*
4609 * Service IRQs here before vtime_account_guest_exit() so any
4610 * ticks that occurred while running the guest are accounted to
4611 * the guest. If vtime accounting is enabled, accounting uses
4612 * TB rather than ticks, so it can be done without enabling
4613 * interrupts here, which has the problem that it accounts
4614 * interrupt processing overhead to the host.
4615 */
4616 local_irq_disable();
4617 }
4618 vtime_account_guest_exit();
4619
4620 vcpu->cpu = -1;
4621 vcpu->arch.thread_cpu = -1;
4622
4623 powerpc_local_irq_pmu_restore(flags);
4624
4625 preempt_enable();
4626
4627 /*
4628 * cancel pending decrementer exception if DEC is now positive, or if
4629 * entering a nested guest in which case the decrementer is now owned
4630 * by L2 and the L1 decrementer is provided in hdec_expires
4631 */
4632 if (kvmppc_core_pending_dec(vcpu) &&
4633 ((tb < kvmppc_dec_expires_host_tb(vcpu)) ||
4634 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4635 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4636 kvmppc_core_dequeue_dec(vcpu);
4637
4638 trace_kvm_guest_exit(vcpu);
4639 r = RESUME_GUEST;
4640 if (trap) {
4641 if (!nested)
4642 r = kvmppc_handle_exit_hv(vcpu, current);
4643 else
4644 r = kvmppc_handle_nested_exit(vcpu);
4645 }
4646 vcpu->arch.ret = r;
4647
4648 if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) {
4649 kvmppc_set_timer(vcpu);
4650
4651 prepare_to_rcuwait(wait);
4652 for (;;) {
4653 set_current_state(TASK_INTERRUPTIBLE);
4654 if (signal_pending(current)) {
4655 vcpu->stat.signal_exits++;
4656 run->exit_reason = KVM_EXIT_INTR;
4657 vcpu->arch.ret = -EINTR;
4658 break;
4659 }
4660
4661 if (kvmppc_vcpu_check_block(vcpu))
4662 break;
4663
4664 trace_kvmppc_vcore_blocked(vcpu, 0);
4665 schedule();
4666 trace_kvmppc_vcore_blocked(vcpu, 1);
4667 }
4668 finish_rcuwait(wait);
4669 }
4670 vcpu->arch.ceded = 0;
4671
4672 done:
4673 trace_kvmppc_run_vcpu_exit(vcpu);
4674
4675 return vcpu->arch.ret;
4676
4677 sigpend:
4678 vcpu->stat.signal_exits++;
4679 run->exit_reason = KVM_EXIT_INTR;
4680 vcpu->arch.ret = -EINTR;
4681 out:
4682 vcpu->cpu = -1;
4683 vcpu->arch.thread_cpu = -1;
4684 powerpc_local_irq_pmu_restore(flags);
4685 preempt_enable();
4686 goto done;
4687 }
4688
kvmppc_vcpu_run_hv(struct kvm_vcpu * vcpu)4689 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4690 {
4691 struct kvm_run *run = vcpu->run;
4692 int r;
4693 int srcu_idx;
4694 struct kvm *kvm;
4695 unsigned long msr;
4696
4697 if (!vcpu->arch.sane) {
4698 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4699 return -EINVAL;
4700 }
4701
4702 /* No need to go into the guest when all we'll do is come back out */
4703 if (signal_pending(current)) {
4704 run->exit_reason = KVM_EXIT_INTR;
4705 return -EINTR;
4706 }
4707
4708 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4709 /*
4710 * Don't allow entry with a suspended transaction, because
4711 * the guest entry/exit code will lose it.
4712 */
4713 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4714 (current->thread.regs->msr & MSR_TM)) {
4715 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4716 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4717 run->fail_entry.hardware_entry_failure_reason = 0;
4718 return -EINVAL;
4719 }
4720 }
4721 #endif
4722
4723 /*
4724 * Force online to 1 for the sake of old userspace which doesn't
4725 * set it.
4726 */
4727 if (!vcpu->arch.online) {
4728 atomic_inc(&vcpu->arch.vcore->online_count);
4729 vcpu->arch.online = 1;
4730 }
4731
4732 kvmppc_core_prepare_to_enter(vcpu);
4733
4734 kvm = vcpu->kvm;
4735 atomic_inc(&kvm->arch.vcpus_running);
4736 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4737 smp_mb();
4738
4739 msr = 0;
4740 if (IS_ENABLED(CONFIG_PPC_FPU))
4741 msr |= MSR_FP;
4742 if (cpu_has_feature(CPU_FTR_ALTIVEC))
4743 msr |= MSR_VEC;
4744 if (cpu_has_feature(CPU_FTR_VSX))
4745 msr |= MSR_VSX;
4746 if ((cpu_has_feature(CPU_FTR_TM) ||
4747 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) &&
4748 (vcpu->arch.hfscr & HFSCR_TM))
4749 msr |= MSR_TM;
4750 msr = msr_check_and_set(msr);
4751
4752 kvmppc_save_user_regs();
4753
4754 kvmppc_save_current_sprs();
4755
4756 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4757 vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4758 vcpu->arch.pgdir = kvm->mm->pgd;
4759 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4760
4761 do {
4762 if (cpu_has_feature(CPU_FTR_ARCH_300))
4763 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4764 vcpu->arch.vcore->lpcr);
4765 else
4766 r = kvmppc_run_vcpu(vcpu);
4767
4768 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
4769 if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) {
4770 /*
4771 * These should have been caught reflected
4772 * into the guest by now. Final sanity check:
4773 * don't allow userspace to execute hcalls in
4774 * the hypervisor.
4775 */
4776 r = RESUME_GUEST;
4777 continue;
4778 }
4779 trace_kvm_hcall_enter(vcpu);
4780 r = kvmppc_pseries_do_hcall(vcpu);
4781 trace_kvm_hcall_exit(vcpu, r);
4782 kvmppc_core_prepare_to_enter(vcpu);
4783 } else if (r == RESUME_PAGE_FAULT) {
4784 srcu_idx = srcu_read_lock(&kvm->srcu);
4785 r = kvmppc_book3s_hv_page_fault(vcpu,
4786 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4787 srcu_read_unlock(&kvm->srcu, srcu_idx);
4788 } else if (r == RESUME_PASSTHROUGH) {
4789 if (WARN_ON(xics_on_xive()))
4790 r = H_SUCCESS;
4791 else
4792 r = kvmppc_xics_rm_complete(vcpu, 0);
4793 }
4794 } while (is_kvmppc_resume_guest(r));
4795
4796 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4797 atomic_dec(&kvm->arch.vcpus_running);
4798
4799 srr_regs_clobbered();
4800
4801 return r;
4802 }
4803
kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size ** sps,int shift,int sllp)4804 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4805 int shift, int sllp)
4806 {
4807 (*sps)->page_shift = shift;
4808 (*sps)->slb_enc = sllp;
4809 (*sps)->enc[0].page_shift = shift;
4810 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4811 /*
4812 * Add 16MB MPSS support (may get filtered out by userspace)
4813 */
4814 if (shift != 24) {
4815 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4816 if (penc != -1) {
4817 (*sps)->enc[1].page_shift = 24;
4818 (*sps)->enc[1].pte_enc = penc;
4819 }
4820 }
4821 (*sps)++;
4822 }
4823
kvm_vm_ioctl_get_smmu_info_hv(struct kvm * kvm,struct kvm_ppc_smmu_info * info)4824 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4825 struct kvm_ppc_smmu_info *info)
4826 {
4827 struct kvm_ppc_one_seg_page_size *sps;
4828
4829 /*
4830 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4831 * POWER7 doesn't support keys for instruction accesses,
4832 * POWER8 and POWER9 do.
4833 */
4834 info->data_keys = 32;
4835 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4836
4837 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4838 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4839 info->slb_size = 32;
4840
4841 /* We only support these sizes for now, and no muti-size segments */
4842 sps = &info->sps[0];
4843 kvmppc_add_seg_page_size(&sps, 12, 0);
4844 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4845 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4846
4847 /* If running as a nested hypervisor, we don't support HPT guests */
4848 if (kvmhv_on_pseries())
4849 info->flags |= KVM_PPC_NO_HASH;
4850
4851 return 0;
4852 }
4853
4854 /*
4855 * Get (and clear) the dirty memory log for a memory slot.
4856 */
kvm_vm_ioctl_get_dirty_log_hv(struct kvm * kvm,struct kvm_dirty_log * log)4857 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4858 struct kvm_dirty_log *log)
4859 {
4860 struct kvm_memslots *slots;
4861 struct kvm_memory_slot *memslot;
4862 int r;
4863 unsigned long n, i;
4864 unsigned long *buf, *p;
4865 struct kvm_vcpu *vcpu;
4866
4867 mutex_lock(&kvm->slots_lock);
4868
4869 r = -EINVAL;
4870 if (log->slot >= KVM_USER_MEM_SLOTS)
4871 goto out;
4872
4873 slots = kvm_memslots(kvm);
4874 memslot = id_to_memslot(slots, log->slot);
4875 r = -ENOENT;
4876 if (!memslot || !memslot->dirty_bitmap)
4877 goto out;
4878
4879 /*
4880 * Use second half of bitmap area because both HPT and radix
4881 * accumulate bits in the first half.
4882 */
4883 n = kvm_dirty_bitmap_bytes(memslot);
4884 buf = memslot->dirty_bitmap + n / sizeof(long);
4885 memset(buf, 0, n);
4886
4887 if (kvm_is_radix(kvm))
4888 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4889 else
4890 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4891 if (r)
4892 goto out;
4893
4894 /*
4895 * We accumulate dirty bits in the first half of the
4896 * memslot's dirty_bitmap area, for when pages are paged
4897 * out or modified by the host directly. Pick up these
4898 * bits and add them to the map.
4899 */
4900 p = memslot->dirty_bitmap;
4901 for (i = 0; i < n / sizeof(long); ++i)
4902 buf[i] |= xchg(&p[i], 0);
4903
4904 /* Harvest dirty bits from VPA and DTL updates */
4905 /* Note: we never modify the SLB shadow buffer areas */
4906 kvm_for_each_vcpu(i, vcpu, kvm) {
4907 spin_lock(&vcpu->arch.vpa_update_lock);
4908 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4909 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4910 spin_unlock(&vcpu->arch.vpa_update_lock);
4911 }
4912
4913 r = -EFAULT;
4914 if (copy_to_user(log->dirty_bitmap, buf, n))
4915 goto out;
4916
4917 r = 0;
4918 out:
4919 mutex_unlock(&kvm->slots_lock);
4920 return r;
4921 }
4922
kvmppc_core_free_memslot_hv(struct kvm_memory_slot * slot)4923 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
4924 {
4925 vfree(slot->arch.rmap);
4926 slot->arch.rmap = NULL;
4927 }
4928
kvmppc_core_prepare_memory_region_hv(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)4929 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4930 const struct kvm_memory_slot *old,
4931 struct kvm_memory_slot *new,
4932 enum kvm_mr_change change)
4933 {
4934 if (change == KVM_MR_CREATE) {
4935 unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap));
4936
4937 if ((size >> PAGE_SHIFT) > totalram_pages())
4938 return -ENOMEM;
4939
4940 new->arch.rmap = vzalloc(size);
4941 if (!new->arch.rmap)
4942 return -ENOMEM;
4943 } else if (change != KVM_MR_DELETE) {
4944 new->arch.rmap = old->arch.rmap;
4945 }
4946
4947 return 0;
4948 }
4949
kvmppc_core_commit_memory_region_hv(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)4950 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4951 struct kvm_memory_slot *old,
4952 const struct kvm_memory_slot *new,
4953 enum kvm_mr_change change)
4954 {
4955 /*
4956 * If we are creating or modifying a memslot, it might make
4957 * some address that was previously cached as emulated
4958 * MMIO be no longer emulated MMIO, so invalidate
4959 * all the caches of emulated MMIO translations.
4960 */
4961 if (change != KVM_MR_DELETE)
4962 atomic64_inc(&kvm->arch.mmio_update);
4963
4964 /*
4965 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4966 * have already called kvm_arch_flush_shadow_memslot() to
4967 * flush shadow mappings. For KVM_MR_CREATE we have no
4968 * previous mappings. So the only case to handle is
4969 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4970 * has been changed.
4971 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4972 * to get rid of any THP PTEs in the partition-scoped page tables
4973 * so we can track dirtiness at the page level; we flush when
4974 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4975 * using THP PTEs.
4976 */
4977 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4978 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4979 kvmppc_radix_flush_memslot(kvm, old);
4980 /*
4981 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4982 */
4983 if (!kvm->arch.secure_guest)
4984 return;
4985
4986 switch (change) {
4987 case KVM_MR_CREATE:
4988 /*
4989 * @TODO kvmppc_uvmem_memslot_create() can fail and
4990 * return error. Fix this.
4991 */
4992 kvmppc_uvmem_memslot_create(kvm, new);
4993 break;
4994 case KVM_MR_DELETE:
4995 kvmppc_uvmem_memslot_delete(kvm, old);
4996 break;
4997 default:
4998 /* TODO: Handle KVM_MR_MOVE */
4999 break;
5000 }
5001 }
5002
5003 /*
5004 * Update LPCR values in kvm->arch and in vcores.
5005 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
5006 * of kvm->arch.lpcr update).
5007 */
kvmppc_update_lpcr(struct kvm * kvm,unsigned long lpcr,unsigned long mask)5008 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
5009 {
5010 long int i;
5011 u32 cores_done = 0;
5012
5013 if ((kvm->arch.lpcr & mask) == lpcr)
5014 return;
5015
5016 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
5017
5018 for (i = 0; i < KVM_MAX_VCORES; ++i) {
5019 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
5020 if (!vc)
5021 continue;
5022
5023 spin_lock(&vc->lock);
5024 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
5025 verify_lpcr(kvm, vc->lpcr);
5026 spin_unlock(&vc->lock);
5027 if (++cores_done >= kvm->arch.online_vcores)
5028 break;
5029 }
5030 }
5031
kvmppc_setup_partition_table(struct kvm * kvm)5032 void kvmppc_setup_partition_table(struct kvm *kvm)
5033 {
5034 unsigned long dw0, dw1;
5035
5036 if (!kvm_is_radix(kvm)) {
5037 /* PS field - page size for VRMA */
5038 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
5039 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
5040 /* HTABSIZE and HTABORG fields */
5041 dw0 |= kvm->arch.sdr1;
5042
5043 /* Second dword as set by userspace */
5044 dw1 = kvm->arch.process_table;
5045 } else {
5046 dw0 = PATB_HR | radix__get_tree_size() |
5047 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
5048 dw1 = PATB_GR | kvm->arch.process_table;
5049 }
5050 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
5051 }
5052
5053 /*
5054 * Set up HPT (hashed page table) and RMA (real-mode area).
5055 * Must be called with kvm->arch.mmu_setup_lock held.
5056 */
kvmppc_hv_setup_htab_rma(struct kvm_vcpu * vcpu)5057 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
5058 {
5059 int err = 0;
5060 struct kvm *kvm = vcpu->kvm;
5061 unsigned long hva;
5062 struct kvm_memory_slot *memslot;
5063 struct vm_area_struct *vma;
5064 unsigned long lpcr = 0, senc;
5065 unsigned long psize, porder;
5066 int srcu_idx;
5067
5068 /* Allocate hashed page table (if not done already) and reset it */
5069 if (!kvm->arch.hpt.virt) {
5070 int order = KVM_DEFAULT_HPT_ORDER;
5071 struct kvm_hpt_info info;
5072
5073 err = kvmppc_allocate_hpt(&info, order);
5074 /* If we get here, it means userspace didn't specify a
5075 * size explicitly. So, try successively smaller
5076 * sizes if the default failed. */
5077 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
5078 err = kvmppc_allocate_hpt(&info, order);
5079
5080 if (err < 0) {
5081 pr_err("KVM: Couldn't alloc HPT\n");
5082 goto out;
5083 }
5084
5085 kvmppc_set_hpt(kvm, &info);
5086 }
5087
5088 /* Look up the memslot for guest physical address 0 */
5089 srcu_idx = srcu_read_lock(&kvm->srcu);
5090 memslot = gfn_to_memslot(kvm, 0);
5091
5092 /* We must have some memory at 0 by now */
5093 err = -EINVAL;
5094 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
5095 goto out_srcu;
5096
5097 /* Look up the VMA for the start of this memory slot */
5098 hva = memslot->userspace_addr;
5099 mmap_read_lock(kvm->mm);
5100 vma = vma_lookup(kvm->mm, hva);
5101 if (!vma || (vma->vm_flags & VM_IO))
5102 goto up_out;
5103
5104 psize = vma_kernel_pagesize(vma);
5105
5106 mmap_read_unlock(kvm->mm);
5107
5108 /* We can handle 4k, 64k or 16M pages in the VRMA */
5109 if (psize >= 0x1000000)
5110 psize = 0x1000000;
5111 else if (psize >= 0x10000)
5112 psize = 0x10000;
5113 else
5114 psize = 0x1000;
5115 porder = __ilog2(psize);
5116
5117 senc = slb_pgsize_encoding(psize);
5118 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
5119 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5120 /* Create HPTEs in the hash page table for the VRMA */
5121 kvmppc_map_vrma(vcpu, memslot, porder);
5122
5123 /* Update VRMASD field in the LPCR */
5124 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
5125 /* the -4 is to account for senc values starting at 0x10 */
5126 lpcr = senc << (LPCR_VRMASD_SH - 4);
5127 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
5128 }
5129
5130 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
5131 smp_wmb();
5132 err = 0;
5133 out_srcu:
5134 srcu_read_unlock(&kvm->srcu, srcu_idx);
5135 out:
5136 return err;
5137
5138 up_out:
5139 mmap_read_unlock(kvm->mm);
5140 goto out_srcu;
5141 }
5142
5143 /*
5144 * Must be called with kvm->arch.mmu_setup_lock held and
5145 * mmu_ready = 0 and no vcpus running.
5146 */
kvmppc_switch_mmu_to_hpt(struct kvm * kvm)5147 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
5148 {
5149 unsigned long lpcr, lpcr_mask;
5150
5151 if (nesting_enabled(kvm))
5152 kvmhv_release_all_nested(kvm);
5153 kvmppc_rmap_reset(kvm);
5154 kvm->arch.process_table = 0;
5155 /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5156 spin_lock(&kvm->mmu_lock);
5157 kvm->arch.radix = 0;
5158 spin_unlock(&kvm->mmu_lock);
5159 kvmppc_free_radix(kvm);
5160
5161 lpcr = LPCR_VPM1;
5162 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5163 if (cpu_has_feature(CPU_FTR_ARCH_31))
5164 lpcr_mask |= LPCR_HAIL;
5165 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5166
5167 return 0;
5168 }
5169
5170 /*
5171 * Must be called with kvm->arch.mmu_setup_lock held and
5172 * mmu_ready = 0 and no vcpus running.
5173 */
kvmppc_switch_mmu_to_radix(struct kvm * kvm)5174 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
5175 {
5176 unsigned long lpcr, lpcr_mask;
5177 int err;
5178
5179 err = kvmppc_init_vm_radix(kvm);
5180 if (err)
5181 return err;
5182 kvmppc_rmap_reset(kvm);
5183 /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5184 spin_lock(&kvm->mmu_lock);
5185 kvm->arch.radix = 1;
5186 spin_unlock(&kvm->mmu_lock);
5187 kvmppc_free_hpt(&kvm->arch.hpt);
5188
5189 lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5190 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5191 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5192 lpcr_mask |= LPCR_HAIL;
5193 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5194 (kvm->arch.host_lpcr & LPCR_HAIL))
5195 lpcr |= LPCR_HAIL;
5196 }
5197 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5198
5199 return 0;
5200 }
5201
5202 #ifdef CONFIG_KVM_XICS
5203 /*
5204 * Allocate a per-core structure for managing state about which cores are
5205 * running in the host versus the guest and for exchanging data between
5206 * real mode KVM and CPU running in the host.
5207 * This is only done for the first VM.
5208 * The allocated structure stays even if all VMs have stopped.
5209 * It is only freed when the kvm-hv module is unloaded.
5210 * It's OK for this routine to fail, we just don't support host
5211 * core operations like redirecting H_IPI wakeups.
5212 */
kvmppc_alloc_host_rm_ops(void)5213 void kvmppc_alloc_host_rm_ops(void)
5214 {
5215 struct kvmppc_host_rm_ops *ops;
5216 unsigned long l_ops;
5217 int cpu, core;
5218 int size;
5219
5220 if (cpu_has_feature(CPU_FTR_ARCH_300))
5221 return;
5222
5223 /* Not the first time here ? */
5224 if (kvmppc_host_rm_ops_hv != NULL)
5225 return;
5226
5227 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
5228 if (!ops)
5229 return;
5230
5231 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
5232 ops->rm_core = kzalloc(size, GFP_KERNEL);
5233
5234 if (!ops->rm_core) {
5235 kfree(ops);
5236 return;
5237 }
5238
5239 cpus_read_lock();
5240
5241 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
5242 if (!cpu_online(cpu))
5243 continue;
5244
5245 core = cpu >> threads_shift;
5246 ops->rm_core[core].rm_state.in_host = 1;
5247 }
5248
5249 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
5250
5251 /*
5252 * Make the contents of the kvmppc_host_rm_ops structure visible
5253 * to other CPUs before we assign it to the global variable.
5254 * Do an atomic assignment (no locks used here), but if someone
5255 * beats us to it, just free our copy and return.
5256 */
5257 smp_wmb();
5258 l_ops = (unsigned long) ops;
5259
5260 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
5261 cpus_read_unlock();
5262 kfree(ops->rm_core);
5263 kfree(ops);
5264 return;
5265 }
5266
5267 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
5268 "ppc/kvm_book3s:prepare",
5269 kvmppc_set_host_core,
5270 kvmppc_clear_host_core);
5271 cpus_read_unlock();
5272 }
5273
kvmppc_free_host_rm_ops(void)5274 void kvmppc_free_host_rm_ops(void)
5275 {
5276 if (kvmppc_host_rm_ops_hv) {
5277 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
5278 kfree(kvmppc_host_rm_ops_hv->rm_core);
5279 kfree(kvmppc_host_rm_ops_hv);
5280 kvmppc_host_rm_ops_hv = NULL;
5281 }
5282 }
5283 #endif
5284
kvmppc_core_init_vm_hv(struct kvm * kvm)5285 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
5286 {
5287 unsigned long lpcr, lpid;
5288 int ret;
5289
5290 mutex_init(&kvm->arch.uvmem_lock);
5291 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
5292 mutex_init(&kvm->arch.mmu_setup_lock);
5293
5294 /* Allocate the guest's logical partition ID */
5295
5296 lpid = kvmppc_alloc_lpid();
5297 if ((long)lpid < 0)
5298 return -ENOMEM;
5299 kvm->arch.lpid = lpid;
5300
5301 kvmppc_alloc_host_rm_ops();
5302
5303 kvmhv_vm_nested_init(kvm);
5304
5305 /*
5306 * Since we don't flush the TLB when tearing down a VM,
5307 * and this lpid might have previously been used,
5308 * make sure we flush on each core before running the new VM.
5309 * On POWER9, the tlbie in mmu_partition_table_set_entry()
5310 * does this flush for us.
5311 */
5312 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5313 cpumask_setall(&kvm->arch.need_tlb_flush);
5314
5315 /* Start out with the default set of hcalls enabled */
5316 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5317 sizeof(kvm->arch.enabled_hcalls));
5318
5319 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5320 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
5321
5322 /* Init LPCR for virtual RMA mode */
5323 if (cpu_has_feature(CPU_FTR_HVMODE)) {
5324 kvm->arch.host_lpid = mfspr(SPRN_LPID);
5325 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5326 lpcr &= LPCR_PECE | LPCR_LPES;
5327 } else {
5328 /*
5329 * The L2 LPES mode will be set by the L0 according to whether
5330 * or not it needs to take external interrupts in HV mode.
5331 */
5332 lpcr = 0;
5333 }
5334 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5335 LPCR_VPM0 | LPCR_VPM1;
5336 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5337 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5338 /* On POWER8 turn on online bit to enable PURR/SPURR */
5339 if (cpu_has_feature(CPU_FTR_ARCH_207S))
5340 lpcr |= LPCR_ONL;
5341 /*
5342 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5343 * Set HVICE bit to enable hypervisor virtualization interrupts.
5344 * Set HEIC to prevent OS interrupts to go to hypervisor (should
5345 * be unnecessary but better safe than sorry in case we re-enable
5346 * EE in HV mode with this LPCR still set)
5347 */
5348 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5349 lpcr &= ~LPCR_VPM0;
5350 lpcr |= LPCR_HVICE | LPCR_HEIC;
5351
5352 /*
5353 * If xive is enabled, we route 0x500 interrupts directly
5354 * to the guest.
5355 */
5356 if (xics_on_xive())
5357 lpcr |= LPCR_LPES;
5358 }
5359
5360 /*
5361 * If the host uses radix, the guest starts out as radix.
5362 */
5363 if (radix_enabled()) {
5364 kvm->arch.radix = 1;
5365 kvm->arch.mmu_ready = 1;
5366 lpcr &= ~LPCR_VPM1;
5367 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5368 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5369 cpu_has_feature(CPU_FTR_ARCH_31) &&
5370 (kvm->arch.host_lpcr & LPCR_HAIL))
5371 lpcr |= LPCR_HAIL;
5372 ret = kvmppc_init_vm_radix(kvm);
5373 if (ret) {
5374 kvmppc_free_lpid(kvm->arch.lpid);
5375 return ret;
5376 }
5377 kvmppc_setup_partition_table(kvm);
5378 }
5379
5380 verify_lpcr(kvm, lpcr);
5381 kvm->arch.lpcr = lpcr;
5382
5383 /* Initialization for future HPT resizes */
5384 kvm->arch.resize_hpt = NULL;
5385
5386 /*
5387 * Work out how many sets the TLB has, for the use of
5388 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5389 */
5390 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5391 /*
5392 * P10 will flush all the congruence class with a single tlbiel
5393 */
5394 kvm->arch.tlb_sets = 1;
5395 } else if (radix_enabled())
5396 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
5397 else if (cpu_has_feature(CPU_FTR_ARCH_300))
5398 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
5399 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5400 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
5401 else
5402 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
5403
5404 /*
5405 * Track that we now have a HV mode VM active. This blocks secondary
5406 * CPU threads from coming online.
5407 */
5408 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5409 kvm_hv_vm_activated();
5410
5411 /*
5412 * Initialize smt_mode depending on processor.
5413 * POWER8 and earlier have to use "strict" threading, where
5414 * all vCPUs in a vcore have to run on the same (sub)core,
5415 * whereas on POWER9 the threads can each run a different
5416 * guest.
5417 */
5418 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5419 kvm->arch.smt_mode = threads_per_subcore;
5420 else
5421 kvm->arch.smt_mode = 1;
5422 kvm->arch.emul_smt_mode = 1;
5423
5424 return 0;
5425 }
5426
kvmppc_arch_create_vm_debugfs_hv(struct kvm * kvm)5427 static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm)
5428 {
5429 kvmppc_mmu_debugfs_init(kvm);
5430 if (radix_enabled())
5431 kvmhv_radix_debugfs_init(kvm);
5432 return 0;
5433 }
5434
kvmppc_free_vcores(struct kvm * kvm)5435 static void kvmppc_free_vcores(struct kvm *kvm)
5436 {
5437 long int i;
5438
5439 for (i = 0; i < KVM_MAX_VCORES; ++i)
5440 kfree(kvm->arch.vcores[i]);
5441 kvm->arch.online_vcores = 0;
5442 }
5443
kvmppc_core_destroy_vm_hv(struct kvm * kvm)5444 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5445 {
5446 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5447 kvm_hv_vm_deactivated();
5448
5449 kvmppc_free_vcores(kvm);
5450
5451
5452 if (kvm_is_radix(kvm))
5453 kvmppc_free_radix(kvm);
5454 else
5455 kvmppc_free_hpt(&kvm->arch.hpt);
5456
5457 /* Perform global invalidation and return lpid to the pool */
5458 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5459 if (nesting_enabled(kvm))
5460 kvmhv_release_all_nested(kvm);
5461 kvm->arch.process_table = 0;
5462 if (kvm->arch.secure_guest)
5463 uv_svm_terminate(kvm->arch.lpid);
5464 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5465 }
5466
5467 kvmppc_free_lpid(kvm->arch.lpid);
5468
5469 kvmppc_free_pimap(kvm);
5470 }
5471
5472 /* We don't need to emulate any privileged instructions or dcbz */
kvmppc_core_emulate_op_hv(struct kvm_vcpu * vcpu,unsigned int inst,int * advance)5473 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5474 unsigned int inst, int *advance)
5475 {
5476 return EMULATE_FAIL;
5477 }
5478
kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu * vcpu,int sprn,ulong spr_val)5479 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5480 ulong spr_val)
5481 {
5482 return EMULATE_FAIL;
5483 }
5484
kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu * vcpu,int sprn,ulong * spr_val)5485 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5486 ulong *spr_val)
5487 {
5488 return EMULATE_FAIL;
5489 }
5490
kvmppc_core_check_processor_compat_hv(void)5491 static int kvmppc_core_check_processor_compat_hv(void)
5492 {
5493 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5494 cpu_has_feature(CPU_FTR_ARCH_206))
5495 return 0;
5496
5497 /* POWER9 in radix mode is capable of being a nested hypervisor. */
5498 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5499 return 0;
5500
5501 return -EIO;
5502 }
5503
5504 #ifdef CONFIG_KVM_XICS
5505
kvmppc_free_pimap(struct kvm * kvm)5506 void kvmppc_free_pimap(struct kvm *kvm)
5507 {
5508 kfree(kvm->arch.pimap);
5509 }
5510
kvmppc_alloc_pimap(void)5511 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5512 {
5513 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5514 }
5515
kvmppc_set_passthru_irq(struct kvm * kvm,int host_irq,int guest_gsi)5516 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5517 {
5518 struct irq_desc *desc;
5519 struct kvmppc_irq_map *irq_map;
5520 struct kvmppc_passthru_irqmap *pimap;
5521 struct irq_chip *chip;
5522 int i, rc = 0;
5523 struct irq_data *host_data;
5524
5525 if (!kvm_irq_bypass)
5526 return 1;
5527
5528 desc = irq_to_desc(host_irq);
5529 if (!desc)
5530 return -EIO;
5531
5532 mutex_lock(&kvm->lock);
5533
5534 pimap = kvm->arch.pimap;
5535 if (pimap == NULL) {
5536 /* First call, allocate structure to hold IRQ map */
5537 pimap = kvmppc_alloc_pimap();
5538 if (pimap == NULL) {
5539 mutex_unlock(&kvm->lock);
5540 return -ENOMEM;
5541 }
5542 kvm->arch.pimap = pimap;
5543 }
5544
5545 /*
5546 * For now, we only support interrupts for which the EOI operation
5547 * is an OPAL call followed by a write to XIRR, since that's
5548 * what our real-mode EOI code does, or a XIVE interrupt
5549 */
5550 chip = irq_data_get_irq_chip(&desc->irq_data);
5551 if (!chip || !is_pnv_opal_msi(chip)) {
5552 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5553 host_irq, guest_gsi);
5554 mutex_unlock(&kvm->lock);
5555 return -ENOENT;
5556 }
5557
5558 /*
5559 * See if we already have an entry for this guest IRQ number.
5560 * If it's mapped to a hardware IRQ number, that's an error,
5561 * otherwise re-use this entry.
5562 */
5563 for (i = 0; i < pimap->n_mapped; i++) {
5564 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5565 if (pimap->mapped[i].r_hwirq) {
5566 mutex_unlock(&kvm->lock);
5567 return -EINVAL;
5568 }
5569 break;
5570 }
5571 }
5572
5573 if (i == KVMPPC_PIRQ_MAPPED) {
5574 mutex_unlock(&kvm->lock);
5575 return -EAGAIN; /* table is full */
5576 }
5577
5578 irq_map = &pimap->mapped[i];
5579
5580 irq_map->v_hwirq = guest_gsi;
5581 irq_map->desc = desc;
5582
5583 /*
5584 * Order the above two stores before the next to serialize with
5585 * the KVM real mode handler.
5586 */
5587 smp_wmb();
5588
5589 /*
5590 * The 'host_irq' number is mapped in the PCI-MSI domain but
5591 * the underlying calls, which will EOI the interrupt in real
5592 * mode, need an HW IRQ number mapped in the XICS IRQ domain.
5593 */
5594 host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq);
5595 irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data);
5596
5597 if (i == pimap->n_mapped)
5598 pimap->n_mapped++;
5599
5600 if (xics_on_xive())
5601 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq);
5602 else
5603 kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq);
5604 if (rc)
5605 irq_map->r_hwirq = 0;
5606
5607 mutex_unlock(&kvm->lock);
5608
5609 return 0;
5610 }
5611
kvmppc_clr_passthru_irq(struct kvm * kvm,int host_irq,int guest_gsi)5612 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5613 {
5614 struct irq_desc *desc;
5615 struct kvmppc_passthru_irqmap *pimap;
5616 int i, rc = 0;
5617
5618 if (!kvm_irq_bypass)
5619 return 0;
5620
5621 desc = irq_to_desc(host_irq);
5622 if (!desc)
5623 return -EIO;
5624
5625 mutex_lock(&kvm->lock);
5626 if (!kvm->arch.pimap)
5627 goto unlock;
5628
5629 pimap = kvm->arch.pimap;
5630
5631 for (i = 0; i < pimap->n_mapped; i++) {
5632 if (guest_gsi == pimap->mapped[i].v_hwirq)
5633 break;
5634 }
5635
5636 if (i == pimap->n_mapped) {
5637 mutex_unlock(&kvm->lock);
5638 return -ENODEV;
5639 }
5640
5641 if (xics_on_xive())
5642 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq);
5643 else
5644 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5645
5646 /* invalidate the entry (what do do on error from the above ?) */
5647 pimap->mapped[i].r_hwirq = 0;
5648
5649 /*
5650 * We don't free this structure even when the count goes to
5651 * zero. The structure is freed when we destroy the VM.
5652 */
5653 unlock:
5654 mutex_unlock(&kvm->lock);
5655 return rc;
5656 }
5657
kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)5658 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5659 struct irq_bypass_producer *prod)
5660 {
5661 int ret = 0;
5662 struct kvm_kernel_irqfd *irqfd =
5663 container_of(cons, struct kvm_kernel_irqfd, consumer);
5664
5665 irqfd->producer = prod;
5666
5667 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5668 if (ret)
5669 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5670 prod->irq, irqfd->gsi, ret);
5671
5672 return ret;
5673 }
5674
kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)5675 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5676 struct irq_bypass_producer *prod)
5677 {
5678 int ret;
5679 struct kvm_kernel_irqfd *irqfd =
5680 container_of(cons, struct kvm_kernel_irqfd, consumer);
5681
5682 irqfd->producer = NULL;
5683
5684 /*
5685 * When producer of consumer is unregistered, we change back to
5686 * default external interrupt handling mode - KVM real mode
5687 * will switch back to host.
5688 */
5689 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5690 if (ret)
5691 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5692 prod->irq, irqfd->gsi, ret);
5693 }
5694 #endif
5695
kvm_arch_vm_ioctl_hv(struct file * filp,unsigned int ioctl,unsigned long arg)5696 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5697 unsigned int ioctl, unsigned long arg)
5698 {
5699 struct kvm *kvm __maybe_unused = filp->private_data;
5700 void __user *argp = (void __user *)arg;
5701 long r;
5702
5703 switch (ioctl) {
5704
5705 case KVM_PPC_ALLOCATE_HTAB: {
5706 u32 htab_order;
5707
5708 /* If we're a nested hypervisor, we currently only support radix */
5709 if (kvmhv_on_pseries()) {
5710 r = -EOPNOTSUPP;
5711 break;
5712 }
5713
5714 r = -EFAULT;
5715 if (get_user(htab_order, (u32 __user *)argp))
5716 break;
5717 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5718 if (r)
5719 break;
5720 r = 0;
5721 break;
5722 }
5723
5724 case KVM_PPC_GET_HTAB_FD: {
5725 struct kvm_get_htab_fd ghf;
5726
5727 r = -EFAULT;
5728 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5729 break;
5730 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5731 break;
5732 }
5733
5734 case KVM_PPC_RESIZE_HPT_PREPARE: {
5735 struct kvm_ppc_resize_hpt rhpt;
5736
5737 r = -EFAULT;
5738 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5739 break;
5740
5741 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5742 break;
5743 }
5744
5745 case KVM_PPC_RESIZE_HPT_COMMIT: {
5746 struct kvm_ppc_resize_hpt rhpt;
5747
5748 r = -EFAULT;
5749 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5750 break;
5751
5752 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5753 break;
5754 }
5755
5756 default:
5757 r = -ENOTTY;
5758 }
5759
5760 return r;
5761 }
5762
5763 /*
5764 * List of hcall numbers to enable by default.
5765 * For compatibility with old userspace, we enable by default
5766 * all hcalls that were implemented before the hcall-enabling
5767 * facility was added. Note this list should not include H_RTAS.
5768 */
5769 static unsigned int default_hcall_list[] = {
5770 H_REMOVE,
5771 H_ENTER,
5772 H_READ,
5773 H_PROTECT,
5774 H_BULK_REMOVE,
5775 #ifdef CONFIG_SPAPR_TCE_IOMMU
5776 H_GET_TCE,
5777 H_PUT_TCE,
5778 #endif
5779 H_SET_DABR,
5780 H_SET_XDABR,
5781 H_CEDE,
5782 H_PROD,
5783 H_CONFER,
5784 H_REGISTER_VPA,
5785 #ifdef CONFIG_KVM_XICS
5786 H_EOI,
5787 H_CPPR,
5788 H_IPI,
5789 H_IPOLL,
5790 H_XIRR,
5791 H_XIRR_X,
5792 #endif
5793 0
5794 };
5795
init_default_hcalls(void)5796 static void init_default_hcalls(void)
5797 {
5798 int i;
5799 unsigned int hcall;
5800
5801 for (i = 0; default_hcall_list[i]; ++i) {
5802 hcall = default_hcall_list[i];
5803 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5804 __set_bit(hcall / 4, default_enabled_hcalls);
5805 }
5806 }
5807
kvmhv_configure_mmu(struct kvm * kvm,struct kvm_ppc_mmuv3_cfg * cfg)5808 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5809 {
5810 unsigned long lpcr;
5811 int radix;
5812 int err;
5813
5814 /* If not on a POWER9, reject it */
5815 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5816 return -ENODEV;
5817
5818 /* If any unknown flags set, reject it */
5819 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5820 return -EINVAL;
5821
5822 /* GR (guest radix) bit in process_table field must match */
5823 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5824 if (!!(cfg->process_table & PATB_GR) != radix)
5825 return -EINVAL;
5826
5827 /* Process table size field must be reasonable, i.e. <= 24 */
5828 if ((cfg->process_table & PRTS_MASK) > 24)
5829 return -EINVAL;
5830
5831 /* We can change a guest to/from radix now, if the host is radix */
5832 if (radix && !radix_enabled())
5833 return -EINVAL;
5834
5835 /* If we're a nested hypervisor, we currently only support radix */
5836 if (kvmhv_on_pseries() && !radix)
5837 return -EINVAL;
5838
5839 mutex_lock(&kvm->arch.mmu_setup_lock);
5840 if (radix != kvm_is_radix(kvm)) {
5841 if (kvm->arch.mmu_ready) {
5842 kvm->arch.mmu_ready = 0;
5843 /* order mmu_ready vs. vcpus_running */
5844 smp_mb();
5845 if (atomic_read(&kvm->arch.vcpus_running)) {
5846 kvm->arch.mmu_ready = 1;
5847 err = -EBUSY;
5848 goto out_unlock;
5849 }
5850 }
5851 if (radix)
5852 err = kvmppc_switch_mmu_to_radix(kvm);
5853 else
5854 err = kvmppc_switch_mmu_to_hpt(kvm);
5855 if (err)
5856 goto out_unlock;
5857 }
5858
5859 kvm->arch.process_table = cfg->process_table;
5860 kvmppc_setup_partition_table(kvm);
5861
5862 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5863 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5864 err = 0;
5865
5866 out_unlock:
5867 mutex_unlock(&kvm->arch.mmu_setup_lock);
5868 return err;
5869 }
5870
kvmhv_enable_nested(struct kvm * kvm)5871 static int kvmhv_enable_nested(struct kvm *kvm)
5872 {
5873 if (!nested)
5874 return -EPERM;
5875 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5876 return -ENODEV;
5877 if (!radix_enabled())
5878 return -ENODEV;
5879
5880 /* kvm == NULL means the caller is testing if the capability exists */
5881 if (kvm)
5882 kvm->arch.nested_enable = true;
5883 return 0;
5884 }
5885
kvmhv_load_from_eaddr(struct kvm_vcpu * vcpu,ulong * eaddr,void * ptr,int size)5886 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5887 int size)
5888 {
5889 int rc = -EINVAL;
5890
5891 if (kvmhv_vcpu_is_radix(vcpu)) {
5892 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5893
5894 if (rc > 0)
5895 rc = -EINVAL;
5896 }
5897
5898 /* For now quadrants are the only way to access nested guest memory */
5899 if (rc && vcpu->arch.nested)
5900 rc = -EAGAIN;
5901
5902 return rc;
5903 }
5904
kvmhv_store_to_eaddr(struct kvm_vcpu * vcpu,ulong * eaddr,void * ptr,int size)5905 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5906 int size)
5907 {
5908 int rc = -EINVAL;
5909
5910 if (kvmhv_vcpu_is_radix(vcpu)) {
5911 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5912
5913 if (rc > 0)
5914 rc = -EINVAL;
5915 }
5916
5917 /* For now quadrants are the only way to access nested guest memory */
5918 if (rc && vcpu->arch.nested)
5919 rc = -EAGAIN;
5920
5921 return rc;
5922 }
5923
unpin_vpa_reset(struct kvm * kvm,struct kvmppc_vpa * vpa)5924 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5925 {
5926 unpin_vpa(kvm, vpa);
5927 vpa->gpa = 0;
5928 vpa->pinned_addr = NULL;
5929 vpa->dirty = false;
5930 vpa->update_pending = 0;
5931 }
5932
5933 /*
5934 * Enable a guest to become a secure VM, or test whether
5935 * that could be enabled.
5936 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5937 * tested (kvm == NULL) or enabled (kvm != NULL).
5938 */
kvmhv_enable_svm(struct kvm * kvm)5939 static int kvmhv_enable_svm(struct kvm *kvm)
5940 {
5941 if (!kvmppc_uvmem_available())
5942 return -EINVAL;
5943 if (kvm)
5944 kvm->arch.svm_enabled = 1;
5945 return 0;
5946 }
5947
5948 /*
5949 * IOCTL handler to turn off secure mode of guest
5950 *
5951 * - Release all device pages
5952 * - Issue ucall to terminate the guest on the UV side
5953 * - Unpin the VPA pages.
5954 * - Reinit the partition scoped page tables
5955 */
kvmhv_svm_off(struct kvm * kvm)5956 static int kvmhv_svm_off(struct kvm *kvm)
5957 {
5958 struct kvm_vcpu *vcpu;
5959 int mmu_was_ready;
5960 int srcu_idx;
5961 int ret = 0;
5962 unsigned long i;
5963
5964 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5965 return ret;
5966
5967 mutex_lock(&kvm->arch.mmu_setup_lock);
5968 mmu_was_ready = kvm->arch.mmu_ready;
5969 if (kvm->arch.mmu_ready) {
5970 kvm->arch.mmu_ready = 0;
5971 /* order mmu_ready vs. vcpus_running */
5972 smp_mb();
5973 if (atomic_read(&kvm->arch.vcpus_running)) {
5974 kvm->arch.mmu_ready = 1;
5975 ret = -EBUSY;
5976 goto out;
5977 }
5978 }
5979
5980 srcu_idx = srcu_read_lock(&kvm->srcu);
5981 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5982 struct kvm_memory_slot *memslot;
5983 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5984 int bkt;
5985
5986 if (!slots)
5987 continue;
5988
5989 kvm_for_each_memslot(memslot, bkt, slots) {
5990 kvmppc_uvmem_drop_pages(memslot, kvm, true);
5991 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5992 }
5993 }
5994 srcu_read_unlock(&kvm->srcu, srcu_idx);
5995
5996 ret = uv_svm_terminate(kvm->arch.lpid);
5997 if (ret != U_SUCCESS) {
5998 ret = -EINVAL;
5999 goto out;
6000 }
6001
6002 /*
6003 * When secure guest is reset, all the guest pages are sent
6004 * to UV via UV_PAGE_IN before the non-boot vcpus get a
6005 * chance to run and unpin their VPA pages. Unpinning of all
6006 * VPA pages is done here explicitly so that VPA pages
6007 * can be migrated to the secure side.
6008 *
6009 * This is required to for the secure SMP guest to reboot
6010 * correctly.
6011 */
6012 kvm_for_each_vcpu(i, vcpu, kvm) {
6013 spin_lock(&vcpu->arch.vpa_update_lock);
6014 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
6015 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
6016 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
6017 spin_unlock(&vcpu->arch.vpa_update_lock);
6018 }
6019
6020 kvmppc_setup_partition_table(kvm);
6021 kvm->arch.secure_guest = 0;
6022 kvm->arch.mmu_ready = mmu_was_ready;
6023 out:
6024 mutex_unlock(&kvm->arch.mmu_setup_lock);
6025 return ret;
6026 }
6027
kvmhv_enable_dawr1(struct kvm * kvm)6028 static int kvmhv_enable_dawr1(struct kvm *kvm)
6029 {
6030 if (!cpu_has_feature(CPU_FTR_DAWR1))
6031 return -ENODEV;
6032
6033 /* kvm == NULL means the caller is testing if the capability exists */
6034 if (kvm)
6035 kvm->arch.dawr1_enabled = true;
6036 return 0;
6037 }
6038
kvmppc_hash_v3_possible(void)6039 static bool kvmppc_hash_v3_possible(void)
6040 {
6041 if (!cpu_has_feature(CPU_FTR_ARCH_300))
6042 return false;
6043
6044 if (!cpu_has_feature(CPU_FTR_HVMODE))
6045 return false;
6046
6047 /*
6048 * POWER9 chips before version 2.02 can't have some threads in
6049 * HPT mode and some in radix mode on the same core.
6050 */
6051 if (radix_enabled()) {
6052 unsigned int pvr = mfspr(SPRN_PVR);
6053 if ((pvr >> 16) == PVR_POWER9 &&
6054 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
6055 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
6056 return false;
6057 }
6058
6059 return true;
6060 }
6061
6062 static struct kvmppc_ops kvm_ops_hv = {
6063 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
6064 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
6065 .get_one_reg = kvmppc_get_one_reg_hv,
6066 .set_one_reg = kvmppc_set_one_reg_hv,
6067 .vcpu_load = kvmppc_core_vcpu_load_hv,
6068 .vcpu_put = kvmppc_core_vcpu_put_hv,
6069 .inject_interrupt = kvmppc_inject_interrupt_hv,
6070 .set_msr = kvmppc_set_msr_hv,
6071 .vcpu_run = kvmppc_vcpu_run_hv,
6072 .vcpu_create = kvmppc_core_vcpu_create_hv,
6073 .vcpu_free = kvmppc_core_vcpu_free_hv,
6074 .check_requests = kvmppc_core_check_requests_hv,
6075 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
6076 .flush_memslot = kvmppc_core_flush_memslot_hv,
6077 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
6078 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
6079 .unmap_gfn_range = kvm_unmap_gfn_range_hv,
6080 .age_gfn = kvm_age_gfn_hv,
6081 .test_age_gfn = kvm_test_age_gfn_hv,
6082 .set_spte_gfn = kvm_set_spte_gfn_hv,
6083 .free_memslot = kvmppc_core_free_memslot_hv,
6084 .init_vm = kvmppc_core_init_vm_hv,
6085 .destroy_vm = kvmppc_core_destroy_vm_hv,
6086 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
6087 .emulate_op = kvmppc_core_emulate_op_hv,
6088 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
6089 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
6090 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
6091 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
6092 .hcall_implemented = kvmppc_hcall_impl_hv,
6093 #ifdef CONFIG_KVM_XICS
6094 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
6095 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
6096 #endif
6097 .configure_mmu = kvmhv_configure_mmu,
6098 .get_rmmu_info = kvmhv_get_rmmu_info,
6099 .set_smt_mode = kvmhv_set_smt_mode,
6100 .enable_nested = kvmhv_enable_nested,
6101 .load_from_eaddr = kvmhv_load_from_eaddr,
6102 .store_to_eaddr = kvmhv_store_to_eaddr,
6103 .enable_svm = kvmhv_enable_svm,
6104 .svm_off = kvmhv_svm_off,
6105 .enable_dawr1 = kvmhv_enable_dawr1,
6106 .hash_v3_possible = kvmppc_hash_v3_possible,
6107 .create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv,
6108 .create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv,
6109 };
6110
kvm_init_subcore_bitmap(void)6111 static int kvm_init_subcore_bitmap(void)
6112 {
6113 int i, j;
6114 int nr_cores = cpu_nr_cores();
6115 struct sibling_subcore_state *sibling_subcore_state;
6116
6117 for (i = 0; i < nr_cores; i++) {
6118 int first_cpu = i * threads_per_core;
6119 int node = cpu_to_node(first_cpu);
6120
6121 /* Ignore if it is already allocated. */
6122 if (paca_ptrs[first_cpu]->sibling_subcore_state)
6123 continue;
6124
6125 sibling_subcore_state =
6126 kzalloc_node(sizeof(struct sibling_subcore_state),
6127 GFP_KERNEL, node);
6128 if (!sibling_subcore_state)
6129 return -ENOMEM;
6130
6131
6132 for (j = 0; j < threads_per_core; j++) {
6133 int cpu = first_cpu + j;
6134
6135 paca_ptrs[cpu]->sibling_subcore_state =
6136 sibling_subcore_state;
6137 }
6138 }
6139 return 0;
6140 }
6141
kvmppc_radix_possible(void)6142 static int kvmppc_radix_possible(void)
6143 {
6144 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
6145 }
6146
kvmppc_book3s_init_hv(void)6147 static int kvmppc_book3s_init_hv(void)
6148 {
6149 int r;
6150
6151 if (!tlbie_capable) {
6152 pr_err("KVM-HV: Host does not support TLBIE\n");
6153 return -ENODEV;
6154 }
6155
6156 /*
6157 * FIXME!! Do we need to check on all cpus ?
6158 */
6159 r = kvmppc_core_check_processor_compat_hv();
6160 if (r < 0)
6161 return -ENODEV;
6162
6163 r = kvmhv_nested_init();
6164 if (r)
6165 return r;
6166
6167 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
6168 r = kvm_init_subcore_bitmap();
6169 if (r)
6170 goto err;
6171 }
6172
6173 /*
6174 * We need a way of accessing the XICS interrupt controller,
6175 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
6176 * indirectly, via OPAL.
6177 */
6178 #ifdef CONFIG_SMP
6179 if (!xics_on_xive() && !kvmhv_on_pseries() &&
6180 !local_paca->kvm_hstate.xics_phys) {
6181 struct device_node *np;
6182
6183 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
6184 if (!np) {
6185 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
6186 r = -ENODEV;
6187 goto err;
6188 }
6189 /* presence of intc confirmed - node can be dropped again */
6190 of_node_put(np);
6191 }
6192 #endif
6193
6194 init_default_hcalls();
6195
6196 init_vcore_lists();
6197
6198 r = kvmppc_mmu_hv_init();
6199 if (r)
6200 goto err;
6201
6202 if (kvmppc_radix_possible()) {
6203 r = kvmppc_radix_init();
6204 if (r)
6205 goto err;
6206 }
6207
6208 r = kvmppc_uvmem_init();
6209 if (r < 0) {
6210 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
6211 return r;
6212 }
6213
6214 kvm_ops_hv.owner = THIS_MODULE;
6215 kvmppc_hv_ops = &kvm_ops_hv;
6216
6217 return 0;
6218
6219 err:
6220 kvmhv_nested_exit();
6221 kvmppc_radix_exit();
6222
6223 return r;
6224 }
6225
kvmppc_book3s_exit_hv(void)6226 static void kvmppc_book3s_exit_hv(void)
6227 {
6228 kvmppc_uvmem_free();
6229 kvmppc_free_host_rm_ops();
6230 if (kvmppc_radix_possible())
6231 kvmppc_radix_exit();
6232 kvmppc_hv_ops = NULL;
6233 kvmhv_nested_exit();
6234 }
6235
6236 module_init(kvmppc_book3s_init_hv);
6237 module_exit(kvmppc_book3s_exit_hv);
6238 MODULE_LICENSE("GPL");
6239 MODULE_ALIAS_MISCDEV(KVM_MINOR);
6240 MODULE_ALIAS("devname:kvm");
6241