1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 *
4 * Copyright IBM Corp. 2007
5 *
6 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
7 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
8 */
9
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/vmalloc.h>
14 #include <linux/hrtimer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/file.h>
19 #include <linux/module.h>
20 #include <linux/irqbypass.h>
21 #include <linux/kvm_irqfd.h>
22 #include <linux/of.h>
23 #include <asm/cputable.h>
24 #include <linux/uaccess.h>
25 #include <asm/kvm_ppc.h>
26 #include <asm/cputhreads.h>
27 #include <asm/irqflags.h>
28 #include <asm/iommu.h>
29 #include <asm/switch_to.h>
30 #include <asm/xive.h>
31 #ifdef CONFIG_PPC_PSERIES
32 #include <asm/hvcall.h>
33 #include <asm/plpar_wrappers.h>
34 #endif
35 #include <asm/ultravisor.h>
36
37 #include "timing.h"
38 #include "irq.h"
39 #include "../mm/mmu_decl.h"
40
41 #define CREATE_TRACE_POINTS
42 #include "trace.h"
43
44 struct kvmppc_ops *kvmppc_hv_ops;
45 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
46 struct kvmppc_ops *kvmppc_pr_ops;
47 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
48
49
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)50 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
51 {
52 return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
53 }
54
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)55 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
56 {
57 return kvm_arch_vcpu_runnable(vcpu);
58 }
59
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)60 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
61 {
62 return false;
63 }
64
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)65 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
66 {
67 return 1;
68 }
69
70 /*
71 * Common checks before entering the guest world. Call with interrupts
72 * disabled.
73 *
74 * returns:
75 *
76 * == 1 if we're ready to go into guest state
77 * <= 0 if we need to go back to the host with return value
78 */
kvmppc_prepare_to_enter(struct kvm_vcpu * vcpu)79 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
80 {
81 int r;
82
83 WARN_ON(irqs_disabled());
84 hard_irq_disable();
85
86 while (true) {
87 if (need_resched()) {
88 local_irq_enable();
89 cond_resched();
90 hard_irq_disable();
91 continue;
92 }
93
94 if (signal_pending(current)) {
95 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
96 vcpu->run->exit_reason = KVM_EXIT_INTR;
97 r = -EINTR;
98 break;
99 }
100
101 vcpu->mode = IN_GUEST_MODE;
102
103 /*
104 * Reading vcpu->requests must happen after setting vcpu->mode,
105 * so we don't miss a request because the requester sees
106 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
107 * before next entering the guest (and thus doesn't IPI).
108 * This also orders the write to mode from any reads
109 * to the page tables done while the VCPU is running.
110 * Please see the comment in kvm_flush_remote_tlbs.
111 */
112 smp_mb();
113
114 if (kvm_request_pending(vcpu)) {
115 /* Make sure we process requests preemptable */
116 local_irq_enable();
117 trace_kvm_check_requests(vcpu);
118 r = kvmppc_core_check_requests(vcpu);
119 hard_irq_disable();
120 if (r > 0)
121 continue;
122 break;
123 }
124
125 if (kvmppc_core_prepare_to_enter(vcpu)) {
126 /* interrupts got enabled in between, so we
127 are back at square 1 */
128 continue;
129 }
130
131 guest_enter_irqoff();
132 return 1;
133 }
134
135 /* return to host */
136 local_irq_enable();
137 return r;
138 }
139 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
140
141 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
kvmppc_swab_shared(struct kvm_vcpu * vcpu)142 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
143 {
144 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
145 int i;
146
147 shared->sprg0 = swab64(shared->sprg0);
148 shared->sprg1 = swab64(shared->sprg1);
149 shared->sprg2 = swab64(shared->sprg2);
150 shared->sprg3 = swab64(shared->sprg3);
151 shared->srr0 = swab64(shared->srr0);
152 shared->srr1 = swab64(shared->srr1);
153 shared->dar = swab64(shared->dar);
154 shared->msr = swab64(shared->msr);
155 shared->dsisr = swab32(shared->dsisr);
156 shared->int_pending = swab32(shared->int_pending);
157 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
158 shared->sr[i] = swab32(shared->sr[i]);
159 }
160 #endif
161
kvmppc_kvm_pv(struct kvm_vcpu * vcpu)162 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
163 {
164 int nr = kvmppc_get_gpr(vcpu, 11);
165 int r;
166 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
167 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
168 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
169 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
170 unsigned long r2 = 0;
171
172 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
173 /* 32 bit mode */
174 param1 &= 0xffffffff;
175 param2 &= 0xffffffff;
176 param3 &= 0xffffffff;
177 param4 &= 0xffffffff;
178 }
179
180 switch (nr) {
181 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
182 {
183 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
184 /* Book3S can be little endian, find it out here */
185 int shared_big_endian = true;
186 if (vcpu->arch.intr_msr & MSR_LE)
187 shared_big_endian = false;
188 if (shared_big_endian != vcpu->arch.shared_big_endian)
189 kvmppc_swab_shared(vcpu);
190 vcpu->arch.shared_big_endian = shared_big_endian;
191 #endif
192
193 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
194 /*
195 * Older versions of the Linux magic page code had
196 * a bug where they would map their trampoline code
197 * NX. If that's the case, remove !PR NX capability.
198 */
199 vcpu->arch.disable_kernel_nx = true;
200 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
201 }
202
203 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
204 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
205
206 #ifdef CONFIG_PPC_64K_PAGES
207 /*
208 * Make sure our 4k magic page is in the same window of a 64k
209 * page within the guest and within the host's page.
210 */
211 if ((vcpu->arch.magic_page_pa & 0xf000) !=
212 ((ulong)vcpu->arch.shared & 0xf000)) {
213 void *old_shared = vcpu->arch.shared;
214 ulong shared = (ulong)vcpu->arch.shared;
215 void *new_shared;
216
217 shared &= PAGE_MASK;
218 shared |= vcpu->arch.magic_page_pa & 0xf000;
219 new_shared = (void*)shared;
220 memcpy(new_shared, old_shared, 0x1000);
221 vcpu->arch.shared = new_shared;
222 }
223 #endif
224
225 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
226
227 r = EV_SUCCESS;
228 break;
229 }
230 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
231 r = EV_SUCCESS;
232 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
233 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
234 #endif
235
236 /* Second return value is in r4 */
237 break;
238 case EV_HCALL_TOKEN(EV_IDLE):
239 r = EV_SUCCESS;
240 kvm_vcpu_halt(vcpu);
241 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
242 break;
243 default:
244 r = EV_UNIMPLEMENTED;
245 break;
246 }
247
248 kvmppc_set_gpr(vcpu, 4, r2);
249
250 return r;
251 }
252 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
253
kvmppc_sanity_check(struct kvm_vcpu * vcpu)254 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
255 {
256 int r = false;
257
258 /* We have to know what CPU to virtualize */
259 if (!vcpu->arch.pvr)
260 goto out;
261
262 /* PAPR only works with book3s_64 */
263 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
264 goto out;
265
266 /* HV KVM can only do PAPR mode for now */
267 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
268 goto out;
269
270 #ifdef CONFIG_KVM_BOOKE_HV
271 if (!cpu_has_feature(CPU_FTR_EMB_HV))
272 goto out;
273 #endif
274
275 r = true;
276
277 out:
278 vcpu->arch.sane = r;
279 return r ? 0 : -EINVAL;
280 }
281 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
282
kvmppc_emulate_mmio(struct kvm_vcpu * vcpu)283 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu)
284 {
285 enum emulation_result er;
286 int r;
287
288 er = kvmppc_emulate_loadstore(vcpu);
289 switch (er) {
290 case EMULATE_DONE:
291 /* Future optimization: only reload non-volatiles if they were
292 * actually modified. */
293 r = RESUME_GUEST_NV;
294 break;
295 case EMULATE_AGAIN:
296 r = RESUME_GUEST;
297 break;
298 case EMULATE_DO_MMIO:
299 vcpu->run->exit_reason = KVM_EXIT_MMIO;
300 /* We must reload nonvolatiles because "update" load/store
301 * instructions modify register state. */
302 /* Future optimization: only reload non-volatiles if they were
303 * actually modified. */
304 r = RESUME_HOST_NV;
305 break;
306 case EMULATE_FAIL:
307 {
308 u32 last_inst;
309
310 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
311 kvm_debug_ratelimited("Guest access to device memory using unsupported instruction (opcode: %#08x)\n",
312 last_inst);
313
314 /*
315 * Injecting a Data Storage here is a bit more
316 * accurate since the instruction that caused the
317 * access could still be a valid one.
318 */
319 if (!IS_ENABLED(CONFIG_BOOKE)) {
320 ulong dsisr = DSISR_BADACCESS;
321
322 if (vcpu->mmio_is_write)
323 dsisr |= DSISR_ISSTORE;
324
325 kvmppc_core_queue_data_storage(vcpu, vcpu->arch.vaddr_accessed, dsisr);
326 } else {
327 /*
328 * BookE does not send a SIGBUS on a bad
329 * fault, so use a Program interrupt instead
330 * to avoid a fault loop.
331 */
332 kvmppc_core_queue_program(vcpu, 0);
333 }
334
335 r = RESUME_GUEST;
336 break;
337 }
338 default:
339 WARN_ON(1);
340 r = RESUME_GUEST;
341 }
342
343 return r;
344 }
345 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
346
kvmppc_st(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)347 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
348 bool data)
349 {
350 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
351 struct kvmppc_pte pte;
352 int r = -EINVAL;
353
354 vcpu->stat.st++;
355
356 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
357 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
358 size);
359
360 if ((!r) || (r == -EAGAIN))
361 return r;
362
363 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
364 XLATE_WRITE, &pte);
365 if (r < 0)
366 return r;
367
368 *eaddr = pte.raddr;
369
370 if (!pte.may_write)
371 return -EPERM;
372
373 /* Magic page override */
374 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
375 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
376 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
377 void *magic = vcpu->arch.shared;
378 magic += pte.eaddr & 0xfff;
379 memcpy(magic, ptr, size);
380 return EMULATE_DONE;
381 }
382
383 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
384 return EMULATE_DO_MMIO;
385
386 return EMULATE_DONE;
387 }
388 EXPORT_SYMBOL_GPL(kvmppc_st);
389
kvmppc_ld(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)390 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
391 bool data)
392 {
393 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
394 struct kvmppc_pte pte;
395 int rc = -EINVAL;
396
397 vcpu->stat.ld++;
398
399 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
400 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
401 size);
402
403 if ((!rc) || (rc == -EAGAIN))
404 return rc;
405
406 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
407 XLATE_READ, &pte);
408 if (rc)
409 return rc;
410
411 *eaddr = pte.raddr;
412
413 if (!pte.may_read)
414 return -EPERM;
415
416 if (!data && !pte.may_execute)
417 return -ENOEXEC;
418
419 /* Magic page override */
420 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
421 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
422 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
423 void *magic = vcpu->arch.shared;
424 magic += pte.eaddr & 0xfff;
425 memcpy(ptr, magic, size);
426 return EMULATE_DONE;
427 }
428
429 kvm_vcpu_srcu_read_lock(vcpu);
430 rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size);
431 kvm_vcpu_srcu_read_unlock(vcpu);
432 if (rc)
433 return EMULATE_DO_MMIO;
434
435 return EMULATE_DONE;
436 }
437 EXPORT_SYMBOL_GPL(kvmppc_ld);
438
kvm_arch_hardware_enable(void)439 int kvm_arch_hardware_enable(void)
440 {
441 return 0;
442 }
443
kvm_arch_hardware_setup(void * opaque)444 int kvm_arch_hardware_setup(void *opaque)
445 {
446 return 0;
447 }
448
kvm_arch_check_processor_compat(void * opaque)449 int kvm_arch_check_processor_compat(void *opaque)
450 {
451 return kvmppc_core_check_processor_compat();
452 }
453
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)454 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
455 {
456 struct kvmppc_ops *kvm_ops = NULL;
457 int r;
458
459 /*
460 * if we have both HV and PR enabled, default is HV
461 */
462 if (type == 0) {
463 if (kvmppc_hv_ops)
464 kvm_ops = kvmppc_hv_ops;
465 else
466 kvm_ops = kvmppc_pr_ops;
467 if (!kvm_ops)
468 goto err_out;
469 } else if (type == KVM_VM_PPC_HV) {
470 if (!kvmppc_hv_ops)
471 goto err_out;
472 kvm_ops = kvmppc_hv_ops;
473 } else if (type == KVM_VM_PPC_PR) {
474 if (!kvmppc_pr_ops)
475 goto err_out;
476 kvm_ops = kvmppc_pr_ops;
477 } else
478 goto err_out;
479
480 if (!try_module_get(kvm_ops->owner))
481 return -ENOENT;
482
483 kvm->arch.kvm_ops = kvm_ops;
484 r = kvmppc_core_init_vm(kvm);
485 if (r)
486 module_put(kvm_ops->owner);
487 return r;
488 err_out:
489 return -EINVAL;
490 }
491
kvm_arch_destroy_vm(struct kvm * kvm)492 void kvm_arch_destroy_vm(struct kvm *kvm)
493 {
494 #ifdef CONFIG_KVM_XICS
495 /*
496 * We call kick_all_cpus_sync() to ensure that all
497 * CPUs have executed any pending IPIs before we
498 * continue and free VCPUs structures below.
499 */
500 if (is_kvmppc_hv_enabled(kvm))
501 kick_all_cpus_sync();
502 #endif
503
504 kvm_destroy_vcpus(kvm);
505
506 mutex_lock(&kvm->lock);
507
508 kvmppc_core_destroy_vm(kvm);
509
510 mutex_unlock(&kvm->lock);
511
512 /* drop the module reference */
513 module_put(kvm->arch.kvm_ops->owner);
514 }
515
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)516 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
517 {
518 int r;
519 /* Assume we're using HV mode when the HV module is loaded */
520 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
521
522 if (kvm) {
523 /*
524 * Hooray - we know which VM type we're running on. Depend on
525 * that rather than the guess above.
526 */
527 hv_enabled = is_kvmppc_hv_enabled(kvm);
528 }
529
530 switch (ext) {
531 #ifdef CONFIG_BOOKE
532 case KVM_CAP_PPC_BOOKE_SREGS:
533 case KVM_CAP_PPC_BOOKE_WATCHDOG:
534 case KVM_CAP_PPC_EPR:
535 #else
536 case KVM_CAP_PPC_SEGSTATE:
537 case KVM_CAP_PPC_HIOR:
538 case KVM_CAP_PPC_PAPR:
539 #endif
540 case KVM_CAP_PPC_UNSET_IRQ:
541 case KVM_CAP_PPC_IRQ_LEVEL:
542 case KVM_CAP_ENABLE_CAP:
543 case KVM_CAP_ONE_REG:
544 case KVM_CAP_IOEVENTFD:
545 case KVM_CAP_DEVICE_CTRL:
546 case KVM_CAP_IMMEDIATE_EXIT:
547 case KVM_CAP_SET_GUEST_DEBUG:
548 r = 1;
549 break;
550 case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
551 case KVM_CAP_PPC_PAIRED_SINGLES:
552 case KVM_CAP_PPC_OSI:
553 case KVM_CAP_PPC_GET_PVINFO:
554 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
555 case KVM_CAP_SW_TLB:
556 #endif
557 /* We support this only for PR */
558 r = !hv_enabled;
559 break;
560 #ifdef CONFIG_KVM_MPIC
561 case KVM_CAP_IRQ_MPIC:
562 r = 1;
563 break;
564 #endif
565
566 #ifdef CONFIG_PPC_BOOK3S_64
567 case KVM_CAP_SPAPR_TCE:
568 case KVM_CAP_SPAPR_TCE_64:
569 r = 1;
570 break;
571 case KVM_CAP_SPAPR_TCE_VFIO:
572 r = !!cpu_has_feature(CPU_FTR_HVMODE);
573 break;
574 case KVM_CAP_PPC_RTAS:
575 case KVM_CAP_PPC_FIXUP_HCALL:
576 case KVM_CAP_PPC_ENABLE_HCALL:
577 #ifdef CONFIG_KVM_XICS
578 case KVM_CAP_IRQ_XICS:
579 #endif
580 case KVM_CAP_PPC_GET_CPU_CHAR:
581 r = 1;
582 break;
583 #ifdef CONFIG_KVM_XIVE
584 case KVM_CAP_PPC_IRQ_XIVE:
585 /*
586 * We need XIVE to be enabled on the platform (implies
587 * a POWER9 processor) and the PowerNV platform, as
588 * nested is not yet supported.
589 */
590 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
591 kvmppc_xive_native_supported();
592 break;
593 #endif
594
595 case KVM_CAP_PPC_ALLOC_HTAB:
596 r = hv_enabled;
597 break;
598 #endif /* CONFIG_PPC_BOOK3S_64 */
599 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
600 case KVM_CAP_PPC_SMT:
601 r = 0;
602 if (kvm) {
603 if (kvm->arch.emul_smt_mode > 1)
604 r = kvm->arch.emul_smt_mode;
605 else
606 r = kvm->arch.smt_mode;
607 } else if (hv_enabled) {
608 if (cpu_has_feature(CPU_FTR_ARCH_300))
609 r = 1;
610 else
611 r = threads_per_subcore;
612 }
613 break;
614 case KVM_CAP_PPC_SMT_POSSIBLE:
615 r = 1;
616 if (hv_enabled) {
617 if (!cpu_has_feature(CPU_FTR_ARCH_300))
618 r = ((threads_per_subcore << 1) - 1);
619 else
620 /* P9 can emulate dbells, so allow any mode */
621 r = 8 | 4 | 2 | 1;
622 }
623 break;
624 case KVM_CAP_PPC_RMA:
625 r = 0;
626 break;
627 case KVM_CAP_PPC_HWRNG:
628 r = kvmppc_hwrng_present();
629 break;
630 case KVM_CAP_PPC_MMU_RADIX:
631 r = !!(hv_enabled && radix_enabled());
632 break;
633 case KVM_CAP_PPC_MMU_HASH_V3:
634 r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible &&
635 kvmppc_hv_ops->hash_v3_possible());
636 break;
637 case KVM_CAP_PPC_NESTED_HV:
638 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
639 !kvmppc_hv_ops->enable_nested(NULL));
640 break;
641 #endif
642 case KVM_CAP_SYNC_MMU:
643 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
644 r = hv_enabled;
645 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
646 r = 1;
647 #else
648 r = 0;
649 #endif
650 break;
651 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
652 case KVM_CAP_PPC_HTAB_FD:
653 r = hv_enabled;
654 break;
655 #endif
656 case KVM_CAP_NR_VCPUS:
657 /*
658 * Recommending a number of CPUs is somewhat arbitrary; we
659 * return the number of present CPUs for -HV (since a host
660 * will have secondary threads "offline"), and for other KVM
661 * implementations just count online CPUs.
662 */
663 if (hv_enabled)
664 r = min_t(unsigned int, num_present_cpus(), KVM_MAX_VCPUS);
665 else
666 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
667 break;
668 case KVM_CAP_MAX_VCPUS:
669 r = KVM_MAX_VCPUS;
670 break;
671 case KVM_CAP_MAX_VCPU_ID:
672 r = KVM_MAX_VCPU_IDS;
673 break;
674 #ifdef CONFIG_PPC_BOOK3S_64
675 case KVM_CAP_PPC_GET_SMMU_INFO:
676 r = 1;
677 break;
678 case KVM_CAP_SPAPR_MULTITCE:
679 r = 1;
680 break;
681 case KVM_CAP_SPAPR_RESIZE_HPT:
682 r = !!hv_enabled;
683 break;
684 #endif
685 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
686 case KVM_CAP_PPC_FWNMI:
687 r = hv_enabled;
688 break;
689 #endif
690 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
691 case KVM_CAP_PPC_HTM:
692 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
693 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
694 break;
695 #endif
696 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
697 case KVM_CAP_PPC_SECURE_GUEST:
698 r = hv_enabled && kvmppc_hv_ops->enable_svm &&
699 !kvmppc_hv_ops->enable_svm(NULL);
700 break;
701 case KVM_CAP_PPC_DAWR1:
702 r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 &&
703 !kvmppc_hv_ops->enable_dawr1(NULL));
704 break;
705 case KVM_CAP_PPC_RPT_INVALIDATE:
706 r = 1;
707 break;
708 #endif
709 case KVM_CAP_PPC_AIL_MODE_3:
710 r = 0;
711 /*
712 * KVM PR, POWER7, and some POWER9s don't support AIL=3 mode.
713 * The POWER9s can support it if the guest runs in hash mode,
714 * but QEMU doesn't necessarily query the capability in time.
715 */
716 if (hv_enabled) {
717 if (kvmhv_on_pseries()) {
718 if (pseries_reloc_on_exception())
719 r = 1;
720 } else if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
721 !cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
722 r = 1;
723 }
724 }
725 break;
726 default:
727 r = 0;
728 break;
729 }
730 return r;
731
732 }
733
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)734 long kvm_arch_dev_ioctl(struct file *filp,
735 unsigned int ioctl, unsigned long arg)
736 {
737 return -EINVAL;
738 }
739
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)740 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
741 {
742 kvmppc_core_free_memslot(kvm, slot);
743 }
744
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)745 int kvm_arch_prepare_memory_region(struct kvm *kvm,
746 const struct kvm_memory_slot *old,
747 struct kvm_memory_slot *new,
748 enum kvm_mr_change change)
749 {
750 return kvmppc_core_prepare_memory_region(kvm, old, new, change);
751 }
752
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)753 void kvm_arch_commit_memory_region(struct kvm *kvm,
754 struct kvm_memory_slot *old,
755 const struct kvm_memory_slot *new,
756 enum kvm_mr_change change)
757 {
758 kvmppc_core_commit_memory_region(kvm, old, new, change);
759 }
760
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)761 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
762 struct kvm_memory_slot *slot)
763 {
764 kvmppc_core_flush_memslot(kvm, slot);
765 }
766
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)767 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
768 {
769 return 0;
770 }
771
kvmppc_decrementer_wakeup(struct hrtimer * timer)772 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
773 {
774 struct kvm_vcpu *vcpu;
775
776 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
777 kvmppc_decrementer_func(vcpu);
778
779 return HRTIMER_NORESTART;
780 }
781
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)782 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
783 {
784 int err;
785
786 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
787 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
788 vcpu->arch.dec_expires = get_tb();
789
790 #ifdef CONFIG_KVM_EXIT_TIMING
791 mutex_init(&vcpu->arch.exit_timing_lock);
792 #endif
793 err = kvmppc_subarch_vcpu_init(vcpu);
794 if (err)
795 return err;
796
797 err = kvmppc_core_vcpu_create(vcpu);
798 if (err)
799 goto out_vcpu_uninit;
800
801 rcuwait_init(&vcpu->arch.wait);
802 vcpu->arch.waitp = &vcpu->arch.wait;
803 return 0;
804
805 out_vcpu_uninit:
806 kvmppc_subarch_vcpu_uninit(vcpu);
807 return err;
808 }
809
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)810 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
811 {
812 }
813
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)814 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
815 {
816 /* Make sure we're not using the vcpu anymore */
817 hrtimer_cancel(&vcpu->arch.dec_timer);
818
819 switch (vcpu->arch.irq_type) {
820 case KVMPPC_IRQ_MPIC:
821 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
822 break;
823 case KVMPPC_IRQ_XICS:
824 if (xics_on_xive())
825 kvmppc_xive_cleanup_vcpu(vcpu);
826 else
827 kvmppc_xics_free_icp(vcpu);
828 break;
829 case KVMPPC_IRQ_XIVE:
830 kvmppc_xive_native_cleanup_vcpu(vcpu);
831 break;
832 }
833
834 kvmppc_core_vcpu_free(vcpu);
835
836 kvmppc_subarch_vcpu_uninit(vcpu);
837 }
838
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)839 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
840 {
841 return kvmppc_core_pending_dec(vcpu);
842 }
843
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)844 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
845 {
846 #ifdef CONFIG_BOOKE
847 /*
848 * vrsave (formerly usprg0) isn't used by Linux, but may
849 * be used by the guest.
850 *
851 * On non-booke this is associated with Altivec and
852 * is handled by code in book3s.c.
853 */
854 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
855 #endif
856 kvmppc_core_vcpu_load(vcpu, cpu);
857 }
858
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)859 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
860 {
861 kvmppc_core_vcpu_put(vcpu);
862 #ifdef CONFIG_BOOKE
863 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
864 #endif
865 }
866
867 /*
868 * irq_bypass_add_producer and irq_bypass_del_producer are only
869 * useful if the architecture supports PCI passthrough.
870 * irq_bypass_stop and irq_bypass_start are not needed and so
871 * kvm_ops are not defined for them.
872 */
kvm_arch_has_irq_bypass(void)873 bool kvm_arch_has_irq_bypass(void)
874 {
875 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
876 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
877 }
878
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)879 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
880 struct irq_bypass_producer *prod)
881 {
882 struct kvm_kernel_irqfd *irqfd =
883 container_of(cons, struct kvm_kernel_irqfd, consumer);
884 struct kvm *kvm = irqfd->kvm;
885
886 if (kvm->arch.kvm_ops->irq_bypass_add_producer)
887 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
888
889 return 0;
890 }
891
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)892 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
893 struct irq_bypass_producer *prod)
894 {
895 struct kvm_kernel_irqfd *irqfd =
896 container_of(cons, struct kvm_kernel_irqfd, consumer);
897 struct kvm *kvm = irqfd->kvm;
898
899 if (kvm->arch.kvm_ops->irq_bypass_del_producer)
900 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
901 }
902
903 #ifdef CONFIG_VSX
kvmppc_get_vsr_dword_offset(int index)904 static inline int kvmppc_get_vsr_dword_offset(int index)
905 {
906 int offset;
907
908 if ((index != 0) && (index != 1))
909 return -1;
910
911 #ifdef __BIG_ENDIAN
912 offset = index;
913 #else
914 offset = 1 - index;
915 #endif
916
917 return offset;
918 }
919
kvmppc_get_vsr_word_offset(int index)920 static inline int kvmppc_get_vsr_word_offset(int index)
921 {
922 int offset;
923
924 if ((index > 3) || (index < 0))
925 return -1;
926
927 #ifdef __BIG_ENDIAN
928 offset = index;
929 #else
930 offset = 3 - index;
931 #endif
932 return offset;
933 }
934
kvmppc_set_vsr_dword(struct kvm_vcpu * vcpu,u64 gpr)935 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
936 u64 gpr)
937 {
938 union kvmppc_one_reg val;
939 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
940 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
941
942 if (offset == -1)
943 return;
944
945 if (index >= 32) {
946 val.vval = VCPU_VSX_VR(vcpu, index - 32);
947 val.vsxval[offset] = gpr;
948 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
949 } else {
950 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
951 }
952 }
953
kvmppc_set_vsr_dword_dump(struct kvm_vcpu * vcpu,u64 gpr)954 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
955 u64 gpr)
956 {
957 union kvmppc_one_reg val;
958 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
959
960 if (index >= 32) {
961 val.vval = VCPU_VSX_VR(vcpu, index - 32);
962 val.vsxval[0] = gpr;
963 val.vsxval[1] = gpr;
964 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
965 } else {
966 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
967 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
968 }
969 }
970
kvmppc_set_vsr_word_dump(struct kvm_vcpu * vcpu,u32 gpr)971 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
972 u32 gpr)
973 {
974 union kvmppc_one_reg val;
975 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
976
977 if (index >= 32) {
978 val.vsx32val[0] = gpr;
979 val.vsx32val[1] = gpr;
980 val.vsx32val[2] = gpr;
981 val.vsx32val[3] = gpr;
982 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
983 } else {
984 val.vsx32val[0] = gpr;
985 val.vsx32val[1] = gpr;
986 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
987 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
988 }
989 }
990
kvmppc_set_vsr_word(struct kvm_vcpu * vcpu,u32 gpr32)991 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
992 u32 gpr32)
993 {
994 union kvmppc_one_reg val;
995 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
996 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
997 int dword_offset, word_offset;
998
999 if (offset == -1)
1000 return;
1001
1002 if (index >= 32) {
1003 val.vval = VCPU_VSX_VR(vcpu, index - 32);
1004 val.vsx32val[offset] = gpr32;
1005 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
1006 } else {
1007 dword_offset = offset / 2;
1008 word_offset = offset % 2;
1009 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
1010 val.vsx32val[word_offset] = gpr32;
1011 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
1012 }
1013 }
1014 #endif /* CONFIG_VSX */
1015
1016 #ifdef CONFIG_ALTIVEC
kvmppc_get_vmx_offset_generic(struct kvm_vcpu * vcpu,int index,int element_size)1017 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
1018 int index, int element_size)
1019 {
1020 int offset;
1021 int elts = sizeof(vector128)/element_size;
1022
1023 if ((index < 0) || (index >= elts))
1024 return -1;
1025
1026 if (kvmppc_need_byteswap(vcpu))
1027 offset = elts - index - 1;
1028 else
1029 offset = index;
1030
1031 return offset;
1032 }
1033
kvmppc_get_vmx_dword_offset(struct kvm_vcpu * vcpu,int index)1034 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
1035 int index)
1036 {
1037 return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
1038 }
1039
kvmppc_get_vmx_word_offset(struct kvm_vcpu * vcpu,int index)1040 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
1041 int index)
1042 {
1043 return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1044 }
1045
kvmppc_get_vmx_hword_offset(struct kvm_vcpu * vcpu,int index)1046 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1047 int index)
1048 {
1049 return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1050 }
1051
kvmppc_get_vmx_byte_offset(struct kvm_vcpu * vcpu,int index)1052 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1053 int index)
1054 {
1055 return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1056 }
1057
1058
kvmppc_set_vmx_dword(struct kvm_vcpu * vcpu,u64 gpr)1059 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1060 u64 gpr)
1061 {
1062 union kvmppc_one_reg val;
1063 int offset = kvmppc_get_vmx_dword_offset(vcpu,
1064 vcpu->arch.mmio_vmx_offset);
1065 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1066
1067 if (offset == -1)
1068 return;
1069
1070 val.vval = VCPU_VSX_VR(vcpu, index);
1071 val.vsxval[offset] = gpr;
1072 VCPU_VSX_VR(vcpu, index) = val.vval;
1073 }
1074
kvmppc_set_vmx_word(struct kvm_vcpu * vcpu,u32 gpr32)1075 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1076 u32 gpr32)
1077 {
1078 union kvmppc_one_reg val;
1079 int offset = kvmppc_get_vmx_word_offset(vcpu,
1080 vcpu->arch.mmio_vmx_offset);
1081 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1082
1083 if (offset == -1)
1084 return;
1085
1086 val.vval = VCPU_VSX_VR(vcpu, index);
1087 val.vsx32val[offset] = gpr32;
1088 VCPU_VSX_VR(vcpu, index) = val.vval;
1089 }
1090
kvmppc_set_vmx_hword(struct kvm_vcpu * vcpu,u16 gpr16)1091 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1092 u16 gpr16)
1093 {
1094 union kvmppc_one_reg val;
1095 int offset = kvmppc_get_vmx_hword_offset(vcpu,
1096 vcpu->arch.mmio_vmx_offset);
1097 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1098
1099 if (offset == -1)
1100 return;
1101
1102 val.vval = VCPU_VSX_VR(vcpu, index);
1103 val.vsx16val[offset] = gpr16;
1104 VCPU_VSX_VR(vcpu, index) = val.vval;
1105 }
1106
kvmppc_set_vmx_byte(struct kvm_vcpu * vcpu,u8 gpr8)1107 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1108 u8 gpr8)
1109 {
1110 union kvmppc_one_reg val;
1111 int offset = kvmppc_get_vmx_byte_offset(vcpu,
1112 vcpu->arch.mmio_vmx_offset);
1113 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1114
1115 if (offset == -1)
1116 return;
1117
1118 val.vval = VCPU_VSX_VR(vcpu, index);
1119 val.vsx8val[offset] = gpr8;
1120 VCPU_VSX_VR(vcpu, index) = val.vval;
1121 }
1122 #endif /* CONFIG_ALTIVEC */
1123
1124 #ifdef CONFIG_PPC_FPU
sp_to_dp(u32 fprs)1125 static inline u64 sp_to_dp(u32 fprs)
1126 {
1127 u64 fprd;
1128
1129 preempt_disable();
1130 enable_kernel_fp();
1131 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m<>" (fprd) : "m<>" (fprs)
1132 : "fr0");
1133 preempt_enable();
1134 return fprd;
1135 }
1136
dp_to_sp(u64 fprd)1137 static inline u32 dp_to_sp(u64 fprd)
1138 {
1139 u32 fprs;
1140
1141 preempt_disable();
1142 enable_kernel_fp();
1143 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m<>" (fprs) : "m<>" (fprd)
1144 : "fr0");
1145 preempt_enable();
1146 return fprs;
1147 }
1148
1149 #else
1150 #define sp_to_dp(x) (x)
1151 #define dp_to_sp(x) (x)
1152 #endif /* CONFIG_PPC_FPU */
1153
kvmppc_complete_mmio_load(struct kvm_vcpu * vcpu)1154 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu)
1155 {
1156 struct kvm_run *run = vcpu->run;
1157 u64 gpr;
1158
1159 if (run->mmio.len > sizeof(gpr))
1160 return;
1161
1162 if (!vcpu->arch.mmio_host_swabbed) {
1163 switch (run->mmio.len) {
1164 case 8: gpr = *(u64 *)run->mmio.data; break;
1165 case 4: gpr = *(u32 *)run->mmio.data; break;
1166 case 2: gpr = *(u16 *)run->mmio.data; break;
1167 case 1: gpr = *(u8 *)run->mmio.data; break;
1168 }
1169 } else {
1170 switch (run->mmio.len) {
1171 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1172 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1173 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1174 case 1: gpr = *(u8 *)run->mmio.data; break;
1175 }
1176 }
1177
1178 /* conversion between single and double precision */
1179 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1180 gpr = sp_to_dp(gpr);
1181
1182 if (vcpu->arch.mmio_sign_extend) {
1183 switch (run->mmio.len) {
1184 #ifdef CONFIG_PPC64
1185 case 4:
1186 gpr = (s64)(s32)gpr;
1187 break;
1188 #endif
1189 case 2:
1190 gpr = (s64)(s16)gpr;
1191 break;
1192 case 1:
1193 gpr = (s64)(s8)gpr;
1194 break;
1195 }
1196 }
1197
1198 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1199 case KVM_MMIO_REG_GPR:
1200 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1201 break;
1202 case KVM_MMIO_REG_FPR:
1203 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1204 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1205
1206 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1207 break;
1208 #ifdef CONFIG_PPC_BOOK3S
1209 case KVM_MMIO_REG_QPR:
1210 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1211 break;
1212 case KVM_MMIO_REG_FQPR:
1213 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1214 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1215 break;
1216 #endif
1217 #ifdef CONFIG_VSX
1218 case KVM_MMIO_REG_VSX:
1219 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1220 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1221
1222 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1223 kvmppc_set_vsr_dword(vcpu, gpr);
1224 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1225 kvmppc_set_vsr_word(vcpu, gpr);
1226 else if (vcpu->arch.mmio_copy_type ==
1227 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1228 kvmppc_set_vsr_dword_dump(vcpu, gpr);
1229 else if (vcpu->arch.mmio_copy_type ==
1230 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1231 kvmppc_set_vsr_word_dump(vcpu, gpr);
1232 break;
1233 #endif
1234 #ifdef CONFIG_ALTIVEC
1235 case KVM_MMIO_REG_VMX:
1236 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1237 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1238
1239 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1240 kvmppc_set_vmx_dword(vcpu, gpr);
1241 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1242 kvmppc_set_vmx_word(vcpu, gpr);
1243 else if (vcpu->arch.mmio_copy_type ==
1244 KVMPPC_VMX_COPY_HWORD)
1245 kvmppc_set_vmx_hword(vcpu, gpr);
1246 else if (vcpu->arch.mmio_copy_type ==
1247 KVMPPC_VMX_COPY_BYTE)
1248 kvmppc_set_vmx_byte(vcpu, gpr);
1249 break;
1250 #endif
1251 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1252 case KVM_MMIO_REG_NESTED_GPR:
1253 if (kvmppc_need_byteswap(vcpu))
1254 gpr = swab64(gpr);
1255 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1256 sizeof(gpr));
1257 break;
1258 #endif
1259 default:
1260 BUG();
1261 }
1262 }
1263
__kvmppc_handle_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian,int sign_extend)1264 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu,
1265 unsigned int rt, unsigned int bytes,
1266 int is_default_endian, int sign_extend)
1267 {
1268 struct kvm_run *run = vcpu->run;
1269 int idx, ret;
1270 bool host_swabbed;
1271
1272 /* Pity C doesn't have a logical XOR operator */
1273 if (kvmppc_need_byteswap(vcpu)) {
1274 host_swabbed = is_default_endian;
1275 } else {
1276 host_swabbed = !is_default_endian;
1277 }
1278
1279 if (bytes > sizeof(run->mmio.data))
1280 return EMULATE_FAIL;
1281
1282 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1283 run->mmio.len = bytes;
1284 run->mmio.is_write = 0;
1285
1286 vcpu->arch.io_gpr = rt;
1287 vcpu->arch.mmio_host_swabbed = host_swabbed;
1288 vcpu->mmio_needed = 1;
1289 vcpu->mmio_is_write = 0;
1290 vcpu->arch.mmio_sign_extend = sign_extend;
1291
1292 idx = srcu_read_lock(&vcpu->kvm->srcu);
1293
1294 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1295 bytes, &run->mmio.data);
1296
1297 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1298
1299 if (!ret) {
1300 kvmppc_complete_mmio_load(vcpu);
1301 vcpu->mmio_needed = 0;
1302 return EMULATE_DONE;
1303 }
1304
1305 return EMULATE_DO_MMIO;
1306 }
1307
kvmppc_handle_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1308 int kvmppc_handle_load(struct kvm_vcpu *vcpu,
1309 unsigned int rt, unsigned int bytes,
1310 int is_default_endian)
1311 {
1312 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0);
1313 }
1314 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1315
1316 /* Same as above, but sign extends */
kvmppc_handle_loads(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1317 int kvmppc_handle_loads(struct kvm_vcpu *vcpu,
1318 unsigned int rt, unsigned int bytes,
1319 int is_default_endian)
1320 {
1321 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1);
1322 }
1323
1324 #ifdef CONFIG_VSX
kvmppc_handle_vsx_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian,int mmio_sign_extend)1325 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu,
1326 unsigned int rt, unsigned int bytes,
1327 int is_default_endian, int mmio_sign_extend)
1328 {
1329 enum emulation_result emulated = EMULATE_DONE;
1330
1331 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1332 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1333 return EMULATE_FAIL;
1334
1335 while (vcpu->arch.mmio_vsx_copy_nums) {
1336 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1337 is_default_endian, mmio_sign_extend);
1338
1339 if (emulated != EMULATE_DONE)
1340 break;
1341
1342 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1343
1344 vcpu->arch.mmio_vsx_copy_nums--;
1345 vcpu->arch.mmio_vsx_offset++;
1346 }
1347 return emulated;
1348 }
1349 #endif /* CONFIG_VSX */
1350
kvmppc_handle_store(struct kvm_vcpu * vcpu,u64 val,unsigned int bytes,int is_default_endian)1351 int kvmppc_handle_store(struct kvm_vcpu *vcpu,
1352 u64 val, unsigned int bytes, int is_default_endian)
1353 {
1354 struct kvm_run *run = vcpu->run;
1355 void *data = run->mmio.data;
1356 int idx, ret;
1357 bool host_swabbed;
1358
1359 /* Pity C doesn't have a logical XOR operator */
1360 if (kvmppc_need_byteswap(vcpu)) {
1361 host_swabbed = is_default_endian;
1362 } else {
1363 host_swabbed = !is_default_endian;
1364 }
1365
1366 if (bytes > sizeof(run->mmio.data))
1367 return EMULATE_FAIL;
1368
1369 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1370 run->mmio.len = bytes;
1371 run->mmio.is_write = 1;
1372 vcpu->mmio_needed = 1;
1373 vcpu->mmio_is_write = 1;
1374
1375 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1376 val = dp_to_sp(val);
1377
1378 /* Store the value at the lowest bytes in 'data'. */
1379 if (!host_swabbed) {
1380 switch (bytes) {
1381 case 8: *(u64 *)data = val; break;
1382 case 4: *(u32 *)data = val; break;
1383 case 2: *(u16 *)data = val; break;
1384 case 1: *(u8 *)data = val; break;
1385 }
1386 } else {
1387 switch (bytes) {
1388 case 8: *(u64 *)data = swab64(val); break;
1389 case 4: *(u32 *)data = swab32(val); break;
1390 case 2: *(u16 *)data = swab16(val); break;
1391 case 1: *(u8 *)data = val; break;
1392 }
1393 }
1394
1395 idx = srcu_read_lock(&vcpu->kvm->srcu);
1396
1397 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1398 bytes, &run->mmio.data);
1399
1400 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1401
1402 if (!ret) {
1403 vcpu->mmio_needed = 0;
1404 return EMULATE_DONE;
1405 }
1406
1407 return EMULATE_DO_MMIO;
1408 }
1409 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1410
1411 #ifdef CONFIG_VSX
kvmppc_get_vsr_data(struct kvm_vcpu * vcpu,int rs,u64 * val)1412 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1413 {
1414 u32 dword_offset, word_offset;
1415 union kvmppc_one_reg reg;
1416 int vsx_offset = 0;
1417 int copy_type = vcpu->arch.mmio_copy_type;
1418 int result = 0;
1419
1420 switch (copy_type) {
1421 case KVMPPC_VSX_COPY_DWORD:
1422 vsx_offset =
1423 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1424
1425 if (vsx_offset == -1) {
1426 result = -1;
1427 break;
1428 }
1429
1430 if (rs < 32) {
1431 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1432 } else {
1433 reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1434 *val = reg.vsxval[vsx_offset];
1435 }
1436 break;
1437
1438 case KVMPPC_VSX_COPY_WORD:
1439 vsx_offset =
1440 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1441
1442 if (vsx_offset == -1) {
1443 result = -1;
1444 break;
1445 }
1446
1447 if (rs < 32) {
1448 dword_offset = vsx_offset / 2;
1449 word_offset = vsx_offset % 2;
1450 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1451 *val = reg.vsx32val[word_offset];
1452 } else {
1453 reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1454 *val = reg.vsx32val[vsx_offset];
1455 }
1456 break;
1457
1458 default:
1459 result = -1;
1460 break;
1461 }
1462
1463 return result;
1464 }
1465
kvmppc_handle_vsx_store(struct kvm_vcpu * vcpu,int rs,unsigned int bytes,int is_default_endian)1466 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu,
1467 int rs, unsigned int bytes, int is_default_endian)
1468 {
1469 u64 val;
1470 enum emulation_result emulated = EMULATE_DONE;
1471
1472 vcpu->arch.io_gpr = rs;
1473
1474 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1475 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1476 return EMULATE_FAIL;
1477
1478 while (vcpu->arch.mmio_vsx_copy_nums) {
1479 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1480 return EMULATE_FAIL;
1481
1482 emulated = kvmppc_handle_store(vcpu,
1483 val, bytes, is_default_endian);
1484
1485 if (emulated != EMULATE_DONE)
1486 break;
1487
1488 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1489
1490 vcpu->arch.mmio_vsx_copy_nums--;
1491 vcpu->arch.mmio_vsx_offset++;
1492 }
1493
1494 return emulated;
1495 }
1496
kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu * vcpu)1497 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu)
1498 {
1499 struct kvm_run *run = vcpu->run;
1500 enum emulation_result emulated = EMULATE_FAIL;
1501 int r;
1502
1503 vcpu->arch.paddr_accessed += run->mmio.len;
1504
1505 if (!vcpu->mmio_is_write) {
1506 emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr,
1507 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1508 } else {
1509 emulated = kvmppc_handle_vsx_store(vcpu,
1510 vcpu->arch.io_gpr, run->mmio.len, 1);
1511 }
1512
1513 switch (emulated) {
1514 case EMULATE_DO_MMIO:
1515 run->exit_reason = KVM_EXIT_MMIO;
1516 r = RESUME_HOST;
1517 break;
1518 case EMULATE_FAIL:
1519 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1520 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1521 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1522 r = RESUME_HOST;
1523 break;
1524 default:
1525 r = RESUME_GUEST;
1526 break;
1527 }
1528 return r;
1529 }
1530 #endif /* CONFIG_VSX */
1531
1532 #ifdef CONFIG_ALTIVEC
kvmppc_handle_vmx_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1533 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu,
1534 unsigned int rt, unsigned int bytes, int is_default_endian)
1535 {
1536 enum emulation_result emulated = EMULATE_DONE;
1537
1538 if (vcpu->arch.mmio_vmx_copy_nums > 2)
1539 return EMULATE_FAIL;
1540
1541 while (vcpu->arch.mmio_vmx_copy_nums) {
1542 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1543 is_default_endian, 0);
1544
1545 if (emulated != EMULATE_DONE)
1546 break;
1547
1548 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1549 vcpu->arch.mmio_vmx_copy_nums--;
1550 vcpu->arch.mmio_vmx_offset++;
1551 }
1552
1553 return emulated;
1554 }
1555
kvmppc_get_vmx_dword(struct kvm_vcpu * vcpu,int index,u64 * val)1556 static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1557 {
1558 union kvmppc_one_reg reg;
1559 int vmx_offset = 0;
1560 int result = 0;
1561
1562 vmx_offset =
1563 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1564
1565 if (vmx_offset == -1)
1566 return -1;
1567
1568 reg.vval = VCPU_VSX_VR(vcpu, index);
1569 *val = reg.vsxval[vmx_offset];
1570
1571 return result;
1572 }
1573
kvmppc_get_vmx_word(struct kvm_vcpu * vcpu,int index,u64 * val)1574 static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1575 {
1576 union kvmppc_one_reg reg;
1577 int vmx_offset = 0;
1578 int result = 0;
1579
1580 vmx_offset =
1581 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1582
1583 if (vmx_offset == -1)
1584 return -1;
1585
1586 reg.vval = VCPU_VSX_VR(vcpu, index);
1587 *val = reg.vsx32val[vmx_offset];
1588
1589 return result;
1590 }
1591
kvmppc_get_vmx_hword(struct kvm_vcpu * vcpu,int index,u64 * val)1592 static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1593 {
1594 union kvmppc_one_reg reg;
1595 int vmx_offset = 0;
1596 int result = 0;
1597
1598 vmx_offset =
1599 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1600
1601 if (vmx_offset == -1)
1602 return -1;
1603
1604 reg.vval = VCPU_VSX_VR(vcpu, index);
1605 *val = reg.vsx16val[vmx_offset];
1606
1607 return result;
1608 }
1609
kvmppc_get_vmx_byte(struct kvm_vcpu * vcpu,int index,u64 * val)1610 static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1611 {
1612 union kvmppc_one_reg reg;
1613 int vmx_offset = 0;
1614 int result = 0;
1615
1616 vmx_offset =
1617 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1618
1619 if (vmx_offset == -1)
1620 return -1;
1621
1622 reg.vval = VCPU_VSX_VR(vcpu, index);
1623 *val = reg.vsx8val[vmx_offset];
1624
1625 return result;
1626 }
1627
kvmppc_handle_vmx_store(struct kvm_vcpu * vcpu,unsigned int rs,unsigned int bytes,int is_default_endian)1628 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu,
1629 unsigned int rs, unsigned int bytes, int is_default_endian)
1630 {
1631 u64 val = 0;
1632 unsigned int index = rs & KVM_MMIO_REG_MASK;
1633 enum emulation_result emulated = EMULATE_DONE;
1634
1635 if (vcpu->arch.mmio_vmx_copy_nums > 2)
1636 return EMULATE_FAIL;
1637
1638 vcpu->arch.io_gpr = rs;
1639
1640 while (vcpu->arch.mmio_vmx_copy_nums) {
1641 switch (vcpu->arch.mmio_copy_type) {
1642 case KVMPPC_VMX_COPY_DWORD:
1643 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1644 return EMULATE_FAIL;
1645
1646 break;
1647 case KVMPPC_VMX_COPY_WORD:
1648 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1649 return EMULATE_FAIL;
1650 break;
1651 case KVMPPC_VMX_COPY_HWORD:
1652 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1653 return EMULATE_FAIL;
1654 break;
1655 case KVMPPC_VMX_COPY_BYTE:
1656 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1657 return EMULATE_FAIL;
1658 break;
1659 default:
1660 return EMULATE_FAIL;
1661 }
1662
1663 emulated = kvmppc_handle_store(vcpu, val, bytes,
1664 is_default_endian);
1665 if (emulated != EMULATE_DONE)
1666 break;
1667
1668 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1669 vcpu->arch.mmio_vmx_copy_nums--;
1670 vcpu->arch.mmio_vmx_offset++;
1671 }
1672
1673 return emulated;
1674 }
1675
kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu * vcpu)1676 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu)
1677 {
1678 struct kvm_run *run = vcpu->run;
1679 enum emulation_result emulated = EMULATE_FAIL;
1680 int r;
1681
1682 vcpu->arch.paddr_accessed += run->mmio.len;
1683
1684 if (!vcpu->mmio_is_write) {
1685 emulated = kvmppc_handle_vmx_load(vcpu,
1686 vcpu->arch.io_gpr, run->mmio.len, 1);
1687 } else {
1688 emulated = kvmppc_handle_vmx_store(vcpu,
1689 vcpu->arch.io_gpr, run->mmio.len, 1);
1690 }
1691
1692 switch (emulated) {
1693 case EMULATE_DO_MMIO:
1694 run->exit_reason = KVM_EXIT_MMIO;
1695 r = RESUME_HOST;
1696 break;
1697 case EMULATE_FAIL:
1698 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1699 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1700 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1701 r = RESUME_HOST;
1702 break;
1703 default:
1704 r = RESUME_GUEST;
1705 break;
1706 }
1707 return r;
1708 }
1709 #endif /* CONFIG_ALTIVEC */
1710
kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)1711 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1712 {
1713 int r = 0;
1714 union kvmppc_one_reg val;
1715 int size;
1716
1717 size = one_reg_size(reg->id);
1718 if (size > sizeof(val))
1719 return -EINVAL;
1720
1721 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1722 if (r == -EINVAL) {
1723 r = 0;
1724 switch (reg->id) {
1725 #ifdef CONFIG_ALTIVEC
1726 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1727 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1728 r = -ENXIO;
1729 break;
1730 }
1731 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1732 break;
1733 case KVM_REG_PPC_VSCR:
1734 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1735 r = -ENXIO;
1736 break;
1737 }
1738 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1739 break;
1740 case KVM_REG_PPC_VRSAVE:
1741 val = get_reg_val(reg->id, vcpu->arch.vrsave);
1742 break;
1743 #endif /* CONFIG_ALTIVEC */
1744 default:
1745 r = -EINVAL;
1746 break;
1747 }
1748 }
1749
1750 if (r)
1751 return r;
1752
1753 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1754 r = -EFAULT;
1755
1756 return r;
1757 }
1758
kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)1759 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1760 {
1761 int r;
1762 union kvmppc_one_reg val;
1763 int size;
1764
1765 size = one_reg_size(reg->id);
1766 if (size > sizeof(val))
1767 return -EINVAL;
1768
1769 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1770 return -EFAULT;
1771
1772 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1773 if (r == -EINVAL) {
1774 r = 0;
1775 switch (reg->id) {
1776 #ifdef CONFIG_ALTIVEC
1777 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1778 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1779 r = -ENXIO;
1780 break;
1781 }
1782 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1783 break;
1784 case KVM_REG_PPC_VSCR:
1785 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1786 r = -ENXIO;
1787 break;
1788 }
1789 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1790 break;
1791 case KVM_REG_PPC_VRSAVE:
1792 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1793 r = -ENXIO;
1794 break;
1795 }
1796 vcpu->arch.vrsave = set_reg_val(reg->id, val);
1797 break;
1798 #endif /* CONFIG_ALTIVEC */
1799 default:
1800 r = -EINVAL;
1801 break;
1802 }
1803 }
1804
1805 return r;
1806 }
1807
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)1808 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1809 {
1810 struct kvm_run *run = vcpu->run;
1811 int r;
1812
1813 vcpu_load(vcpu);
1814
1815 if (vcpu->mmio_needed) {
1816 vcpu->mmio_needed = 0;
1817 if (!vcpu->mmio_is_write)
1818 kvmppc_complete_mmio_load(vcpu);
1819 #ifdef CONFIG_VSX
1820 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1821 vcpu->arch.mmio_vsx_copy_nums--;
1822 vcpu->arch.mmio_vsx_offset++;
1823 }
1824
1825 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1826 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu);
1827 if (r == RESUME_HOST) {
1828 vcpu->mmio_needed = 1;
1829 goto out;
1830 }
1831 }
1832 #endif
1833 #ifdef CONFIG_ALTIVEC
1834 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1835 vcpu->arch.mmio_vmx_copy_nums--;
1836 vcpu->arch.mmio_vmx_offset++;
1837 }
1838
1839 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1840 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu);
1841 if (r == RESUME_HOST) {
1842 vcpu->mmio_needed = 1;
1843 goto out;
1844 }
1845 }
1846 #endif
1847 } else if (vcpu->arch.osi_needed) {
1848 u64 *gprs = run->osi.gprs;
1849 int i;
1850
1851 for (i = 0; i < 32; i++)
1852 kvmppc_set_gpr(vcpu, i, gprs[i]);
1853 vcpu->arch.osi_needed = 0;
1854 } else if (vcpu->arch.hcall_needed) {
1855 int i;
1856
1857 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1858 for (i = 0; i < 9; ++i)
1859 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1860 vcpu->arch.hcall_needed = 0;
1861 #ifdef CONFIG_BOOKE
1862 } else if (vcpu->arch.epr_needed) {
1863 kvmppc_set_epr(vcpu, run->epr.epr);
1864 vcpu->arch.epr_needed = 0;
1865 #endif
1866 }
1867
1868 kvm_sigset_activate(vcpu);
1869
1870 if (run->immediate_exit)
1871 r = -EINTR;
1872 else
1873 r = kvmppc_vcpu_run(vcpu);
1874
1875 kvm_sigset_deactivate(vcpu);
1876
1877 #ifdef CONFIG_ALTIVEC
1878 out:
1879 #endif
1880
1881 /*
1882 * We're already returning to userspace, don't pass the
1883 * RESUME_HOST flags along.
1884 */
1885 if (r > 0)
1886 r = 0;
1887
1888 vcpu_put(vcpu);
1889 return r;
1890 }
1891
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)1892 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1893 {
1894 if (irq->irq == KVM_INTERRUPT_UNSET) {
1895 kvmppc_core_dequeue_external(vcpu);
1896 return 0;
1897 }
1898
1899 kvmppc_core_queue_external(vcpu, irq);
1900
1901 kvm_vcpu_kick(vcpu);
1902
1903 return 0;
1904 }
1905
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)1906 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1907 struct kvm_enable_cap *cap)
1908 {
1909 int r;
1910
1911 if (cap->flags)
1912 return -EINVAL;
1913
1914 switch (cap->cap) {
1915 case KVM_CAP_PPC_OSI:
1916 r = 0;
1917 vcpu->arch.osi_enabled = true;
1918 break;
1919 case KVM_CAP_PPC_PAPR:
1920 r = 0;
1921 vcpu->arch.papr_enabled = true;
1922 break;
1923 case KVM_CAP_PPC_EPR:
1924 r = 0;
1925 if (cap->args[0])
1926 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1927 else
1928 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1929 break;
1930 #ifdef CONFIG_BOOKE
1931 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1932 r = 0;
1933 vcpu->arch.watchdog_enabled = true;
1934 break;
1935 #endif
1936 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1937 case KVM_CAP_SW_TLB: {
1938 struct kvm_config_tlb cfg;
1939 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1940
1941 r = -EFAULT;
1942 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1943 break;
1944
1945 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1946 break;
1947 }
1948 #endif
1949 #ifdef CONFIG_KVM_MPIC
1950 case KVM_CAP_IRQ_MPIC: {
1951 struct fd f;
1952 struct kvm_device *dev;
1953
1954 r = -EBADF;
1955 f = fdget(cap->args[0]);
1956 if (!f.file)
1957 break;
1958
1959 r = -EPERM;
1960 dev = kvm_device_from_filp(f.file);
1961 if (dev)
1962 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1963
1964 fdput(f);
1965 break;
1966 }
1967 #endif
1968 #ifdef CONFIG_KVM_XICS
1969 case KVM_CAP_IRQ_XICS: {
1970 struct fd f;
1971 struct kvm_device *dev;
1972
1973 r = -EBADF;
1974 f = fdget(cap->args[0]);
1975 if (!f.file)
1976 break;
1977
1978 r = -EPERM;
1979 dev = kvm_device_from_filp(f.file);
1980 if (dev) {
1981 if (xics_on_xive())
1982 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1983 else
1984 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1985 }
1986
1987 fdput(f);
1988 break;
1989 }
1990 #endif /* CONFIG_KVM_XICS */
1991 #ifdef CONFIG_KVM_XIVE
1992 case KVM_CAP_PPC_IRQ_XIVE: {
1993 struct fd f;
1994 struct kvm_device *dev;
1995
1996 r = -EBADF;
1997 f = fdget(cap->args[0]);
1998 if (!f.file)
1999 break;
2000
2001 r = -ENXIO;
2002 if (!xive_enabled())
2003 break;
2004
2005 r = -EPERM;
2006 dev = kvm_device_from_filp(f.file);
2007 if (dev)
2008 r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
2009 cap->args[1]);
2010
2011 fdput(f);
2012 break;
2013 }
2014 #endif /* CONFIG_KVM_XIVE */
2015 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
2016 case KVM_CAP_PPC_FWNMI:
2017 r = -EINVAL;
2018 if (!is_kvmppc_hv_enabled(vcpu->kvm))
2019 break;
2020 r = 0;
2021 vcpu->kvm->arch.fwnmi_enabled = true;
2022 break;
2023 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
2024 default:
2025 r = -EINVAL;
2026 break;
2027 }
2028
2029 if (!r)
2030 r = kvmppc_sanity_check(vcpu);
2031
2032 return r;
2033 }
2034
kvm_arch_intc_initialized(struct kvm * kvm)2035 bool kvm_arch_intc_initialized(struct kvm *kvm)
2036 {
2037 #ifdef CONFIG_KVM_MPIC
2038 if (kvm->arch.mpic)
2039 return true;
2040 #endif
2041 #ifdef CONFIG_KVM_XICS
2042 if (kvm->arch.xics || kvm->arch.xive)
2043 return true;
2044 #endif
2045 return false;
2046 }
2047
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)2048 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2049 struct kvm_mp_state *mp_state)
2050 {
2051 return -EINVAL;
2052 }
2053
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)2054 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2055 struct kvm_mp_state *mp_state)
2056 {
2057 return -EINVAL;
2058 }
2059
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2060 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2061 unsigned int ioctl, unsigned long arg)
2062 {
2063 struct kvm_vcpu *vcpu = filp->private_data;
2064 void __user *argp = (void __user *)arg;
2065
2066 if (ioctl == KVM_INTERRUPT) {
2067 struct kvm_interrupt irq;
2068 if (copy_from_user(&irq, argp, sizeof(irq)))
2069 return -EFAULT;
2070 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2071 }
2072 return -ENOIOCTLCMD;
2073 }
2074
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2075 long kvm_arch_vcpu_ioctl(struct file *filp,
2076 unsigned int ioctl, unsigned long arg)
2077 {
2078 struct kvm_vcpu *vcpu = filp->private_data;
2079 void __user *argp = (void __user *)arg;
2080 long r;
2081
2082 switch (ioctl) {
2083 case KVM_ENABLE_CAP:
2084 {
2085 struct kvm_enable_cap cap;
2086 r = -EFAULT;
2087 if (copy_from_user(&cap, argp, sizeof(cap)))
2088 goto out;
2089 vcpu_load(vcpu);
2090 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2091 vcpu_put(vcpu);
2092 break;
2093 }
2094
2095 case KVM_SET_ONE_REG:
2096 case KVM_GET_ONE_REG:
2097 {
2098 struct kvm_one_reg reg;
2099 r = -EFAULT;
2100 if (copy_from_user(®, argp, sizeof(reg)))
2101 goto out;
2102 if (ioctl == KVM_SET_ONE_REG)
2103 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®);
2104 else
2105 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®);
2106 break;
2107 }
2108
2109 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2110 case KVM_DIRTY_TLB: {
2111 struct kvm_dirty_tlb dirty;
2112 r = -EFAULT;
2113 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2114 goto out;
2115 vcpu_load(vcpu);
2116 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2117 vcpu_put(vcpu);
2118 break;
2119 }
2120 #endif
2121 default:
2122 r = -EINVAL;
2123 }
2124
2125 out:
2126 return r;
2127 }
2128
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)2129 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2130 {
2131 return VM_FAULT_SIGBUS;
2132 }
2133
kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo * pvinfo)2134 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2135 {
2136 u32 inst_nop = 0x60000000;
2137 #ifdef CONFIG_KVM_BOOKE_HV
2138 u32 inst_sc1 = 0x44000022;
2139 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2140 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2141 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2142 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2143 #else
2144 u32 inst_lis = 0x3c000000;
2145 u32 inst_ori = 0x60000000;
2146 u32 inst_sc = 0x44000002;
2147 u32 inst_imm_mask = 0xffff;
2148
2149 /*
2150 * The hypercall to get into KVM from within guest context is as
2151 * follows:
2152 *
2153 * lis r0, r0, KVM_SC_MAGIC_R0@h
2154 * ori r0, KVM_SC_MAGIC_R0@l
2155 * sc
2156 * nop
2157 */
2158 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2159 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2160 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2161 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2162 #endif
2163
2164 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2165
2166 return 0;
2167 }
2168
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)2169 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2170 bool line_status)
2171 {
2172 if (!irqchip_in_kernel(kvm))
2173 return -ENXIO;
2174
2175 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2176 irq_event->irq, irq_event->level,
2177 line_status);
2178 return 0;
2179 }
2180
2181
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)2182 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2183 struct kvm_enable_cap *cap)
2184 {
2185 int r;
2186
2187 if (cap->flags)
2188 return -EINVAL;
2189
2190 switch (cap->cap) {
2191 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2192 case KVM_CAP_PPC_ENABLE_HCALL: {
2193 unsigned long hcall = cap->args[0];
2194
2195 r = -EINVAL;
2196 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2197 cap->args[1] > 1)
2198 break;
2199 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2200 break;
2201 if (cap->args[1])
2202 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2203 else
2204 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2205 r = 0;
2206 break;
2207 }
2208 case KVM_CAP_PPC_SMT: {
2209 unsigned long mode = cap->args[0];
2210 unsigned long flags = cap->args[1];
2211
2212 r = -EINVAL;
2213 if (kvm->arch.kvm_ops->set_smt_mode)
2214 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2215 break;
2216 }
2217
2218 case KVM_CAP_PPC_NESTED_HV:
2219 r = -EINVAL;
2220 if (!is_kvmppc_hv_enabled(kvm) ||
2221 !kvm->arch.kvm_ops->enable_nested)
2222 break;
2223 r = kvm->arch.kvm_ops->enable_nested(kvm);
2224 break;
2225 #endif
2226 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
2227 case KVM_CAP_PPC_SECURE_GUEST:
2228 r = -EINVAL;
2229 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm)
2230 break;
2231 r = kvm->arch.kvm_ops->enable_svm(kvm);
2232 break;
2233 case KVM_CAP_PPC_DAWR1:
2234 r = -EINVAL;
2235 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1)
2236 break;
2237 r = kvm->arch.kvm_ops->enable_dawr1(kvm);
2238 break;
2239 #endif
2240 default:
2241 r = -EINVAL;
2242 break;
2243 }
2244
2245 return r;
2246 }
2247
2248 #ifdef CONFIG_PPC_BOOK3S_64
2249 /*
2250 * These functions check whether the underlying hardware is safe
2251 * against attacks based on observing the effects of speculatively
2252 * executed instructions, and whether it supplies instructions for
2253 * use in workarounds. The information comes from firmware, either
2254 * via the device tree on powernv platforms or from an hcall on
2255 * pseries platforms.
2256 */
2257 #ifdef CONFIG_PPC_PSERIES
pseries_get_cpu_char(struct kvm_ppc_cpu_char * cp)2258 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2259 {
2260 struct h_cpu_char_result c;
2261 unsigned long rc;
2262
2263 if (!machine_is(pseries))
2264 return -ENOTTY;
2265
2266 rc = plpar_get_cpu_characteristics(&c);
2267 if (rc == H_SUCCESS) {
2268 cp->character = c.character;
2269 cp->behaviour = c.behaviour;
2270 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2271 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2272 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2273 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2274 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2275 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2276 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2277 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2278 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2279 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2280 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2281 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2282 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2283 }
2284 return 0;
2285 }
2286 #else
pseries_get_cpu_char(struct kvm_ppc_cpu_char * cp)2287 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2288 {
2289 return -ENOTTY;
2290 }
2291 #endif
2292
have_fw_feat(struct device_node * fw_features,const char * state,const char * name)2293 static inline bool have_fw_feat(struct device_node *fw_features,
2294 const char *state, const char *name)
2295 {
2296 struct device_node *np;
2297 bool r = false;
2298
2299 np = of_get_child_by_name(fw_features, name);
2300 if (np) {
2301 r = of_property_read_bool(np, state);
2302 of_node_put(np);
2303 }
2304 return r;
2305 }
2306
kvmppc_get_cpu_char(struct kvm_ppc_cpu_char * cp)2307 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2308 {
2309 struct device_node *np, *fw_features;
2310 int r;
2311
2312 memset(cp, 0, sizeof(*cp));
2313 r = pseries_get_cpu_char(cp);
2314 if (r != -ENOTTY)
2315 return r;
2316
2317 np = of_find_node_by_name(NULL, "ibm,opal");
2318 if (np) {
2319 fw_features = of_get_child_by_name(np, "fw-features");
2320 of_node_put(np);
2321 if (!fw_features)
2322 return 0;
2323 if (have_fw_feat(fw_features, "enabled",
2324 "inst-spec-barrier-ori31,31,0"))
2325 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2326 if (have_fw_feat(fw_features, "enabled",
2327 "fw-bcctrl-serialized"))
2328 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2329 if (have_fw_feat(fw_features, "enabled",
2330 "inst-l1d-flush-ori30,30,0"))
2331 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2332 if (have_fw_feat(fw_features, "enabled",
2333 "inst-l1d-flush-trig2"))
2334 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2335 if (have_fw_feat(fw_features, "enabled",
2336 "fw-l1d-thread-split"))
2337 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2338 if (have_fw_feat(fw_features, "enabled",
2339 "fw-count-cache-disabled"))
2340 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2341 if (have_fw_feat(fw_features, "enabled",
2342 "fw-count-cache-flush-bcctr2,0,0"))
2343 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2344 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2345 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2346 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2347 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2348 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2349 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2350 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2351
2352 if (have_fw_feat(fw_features, "enabled",
2353 "speculation-policy-favor-security"))
2354 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2355 if (!have_fw_feat(fw_features, "disabled",
2356 "needs-l1d-flush-msr-pr-0-to-1"))
2357 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2358 if (!have_fw_feat(fw_features, "disabled",
2359 "needs-spec-barrier-for-bound-checks"))
2360 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2361 if (have_fw_feat(fw_features, "enabled",
2362 "needs-count-cache-flush-on-context-switch"))
2363 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2364 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2365 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2366 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2367 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2368
2369 of_node_put(fw_features);
2370 }
2371
2372 return 0;
2373 }
2374 #endif
2375
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2376 long kvm_arch_vm_ioctl(struct file *filp,
2377 unsigned int ioctl, unsigned long arg)
2378 {
2379 struct kvm *kvm __maybe_unused = filp->private_data;
2380 void __user *argp = (void __user *)arg;
2381 long r;
2382
2383 switch (ioctl) {
2384 case KVM_PPC_GET_PVINFO: {
2385 struct kvm_ppc_pvinfo pvinfo;
2386 memset(&pvinfo, 0, sizeof(pvinfo));
2387 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2388 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2389 r = -EFAULT;
2390 goto out;
2391 }
2392
2393 break;
2394 }
2395 #ifdef CONFIG_SPAPR_TCE_IOMMU
2396 case KVM_CREATE_SPAPR_TCE_64: {
2397 struct kvm_create_spapr_tce_64 create_tce_64;
2398
2399 r = -EFAULT;
2400 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2401 goto out;
2402 if (create_tce_64.flags) {
2403 r = -EINVAL;
2404 goto out;
2405 }
2406 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2407 goto out;
2408 }
2409 case KVM_CREATE_SPAPR_TCE: {
2410 struct kvm_create_spapr_tce create_tce;
2411 struct kvm_create_spapr_tce_64 create_tce_64;
2412
2413 r = -EFAULT;
2414 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2415 goto out;
2416
2417 create_tce_64.liobn = create_tce.liobn;
2418 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2419 create_tce_64.offset = 0;
2420 create_tce_64.size = create_tce.window_size >>
2421 IOMMU_PAGE_SHIFT_4K;
2422 create_tce_64.flags = 0;
2423 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2424 goto out;
2425 }
2426 #endif
2427 #ifdef CONFIG_PPC_BOOK3S_64
2428 case KVM_PPC_GET_SMMU_INFO: {
2429 struct kvm_ppc_smmu_info info;
2430 struct kvm *kvm = filp->private_data;
2431
2432 memset(&info, 0, sizeof(info));
2433 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2434 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2435 r = -EFAULT;
2436 break;
2437 }
2438 case KVM_PPC_RTAS_DEFINE_TOKEN: {
2439 struct kvm *kvm = filp->private_data;
2440
2441 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2442 break;
2443 }
2444 case KVM_PPC_CONFIGURE_V3_MMU: {
2445 struct kvm *kvm = filp->private_data;
2446 struct kvm_ppc_mmuv3_cfg cfg;
2447
2448 r = -EINVAL;
2449 if (!kvm->arch.kvm_ops->configure_mmu)
2450 goto out;
2451 r = -EFAULT;
2452 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2453 goto out;
2454 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2455 break;
2456 }
2457 case KVM_PPC_GET_RMMU_INFO: {
2458 struct kvm *kvm = filp->private_data;
2459 struct kvm_ppc_rmmu_info info;
2460
2461 r = -EINVAL;
2462 if (!kvm->arch.kvm_ops->get_rmmu_info)
2463 goto out;
2464 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2465 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2466 r = -EFAULT;
2467 break;
2468 }
2469 case KVM_PPC_GET_CPU_CHAR: {
2470 struct kvm_ppc_cpu_char cpuchar;
2471
2472 r = kvmppc_get_cpu_char(&cpuchar);
2473 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2474 r = -EFAULT;
2475 break;
2476 }
2477 case KVM_PPC_SVM_OFF: {
2478 struct kvm *kvm = filp->private_data;
2479
2480 r = 0;
2481 if (!kvm->arch.kvm_ops->svm_off)
2482 goto out;
2483
2484 r = kvm->arch.kvm_ops->svm_off(kvm);
2485 break;
2486 }
2487 default: {
2488 struct kvm *kvm = filp->private_data;
2489 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2490 }
2491 #else /* CONFIG_PPC_BOOK3S_64 */
2492 default:
2493 r = -ENOTTY;
2494 #endif
2495 }
2496 out:
2497 return r;
2498 }
2499
2500 static DEFINE_IDA(lpid_inuse);
2501 static unsigned long nr_lpids;
2502
kvmppc_alloc_lpid(void)2503 long kvmppc_alloc_lpid(void)
2504 {
2505 int lpid;
2506
2507 /* The host LPID must always be 0 (allocation starts at 1) */
2508 lpid = ida_alloc_range(&lpid_inuse, 1, nr_lpids - 1, GFP_KERNEL);
2509 if (lpid < 0) {
2510 if (lpid == -ENOMEM)
2511 pr_err("%s: Out of memory\n", __func__);
2512 else
2513 pr_err("%s: No LPIDs free\n", __func__);
2514 return -ENOMEM;
2515 }
2516
2517 return lpid;
2518 }
2519 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2520
kvmppc_free_lpid(long lpid)2521 void kvmppc_free_lpid(long lpid)
2522 {
2523 ida_free(&lpid_inuse, lpid);
2524 }
2525 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2526
2527 /* nr_lpids_param includes the host LPID */
kvmppc_init_lpid(unsigned long nr_lpids_param)2528 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2529 {
2530 nr_lpids = nr_lpids_param;
2531 }
2532 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2533
kvm_arch_init(void * opaque)2534 int kvm_arch_init(void *opaque)
2535 {
2536 return 0;
2537 }
2538
2539 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2540
kvm_arch_create_vcpu_debugfs(struct kvm_vcpu * vcpu,struct dentry * debugfs_dentry)2541 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2542 {
2543 if (vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs)
2544 vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs(vcpu, debugfs_dentry);
2545 }
2546
kvm_arch_create_vm_debugfs(struct kvm * kvm)2547 int kvm_arch_create_vm_debugfs(struct kvm *kvm)
2548 {
2549 if (kvm->arch.kvm_ops->create_vm_debugfs)
2550 kvm->arch.kvm_ops->create_vm_debugfs(kvm);
2551 return 0;
2552 }
2553