1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4 */
5
6 #include <linux/cpu.h>
7 #include <linux/kvm_host.h>
8 #include <linux/preempt.h>
9 #include <linux/export.h>
10 #include <linux/sched.h>
11 #include <linux/spinlock.h>
12 #include <linux/init.h>
13 #include <linux/memblock.h>
14 #include <linux/sizes.h>
15 #include <linux/cma.h>
16 #include <linux/bitops.h>
17
18 #include <asm/cputable.h>
19 #include <asm/interrupt.h>
20 #include <asm/kvm_ppc.h>
21 #include <asm/kvm_book3s.h>
22 #include <asm/machdep.h>
23 #include <asm/xics.h>
24 #include <asm/xive.h>
25 #include <asm/dbell.h>
26 #include <asm/cputhreads.h>
27 #include <asm/io.h>
28 #include <asm/opal.h>
29 #include <asm/smp.h>
30
31 #define KVM_CMA_CHUNK_ORDER 18
32
33 #include "book3s_xics.h"
34 #include "book3s_xive.h"
35
36 /*
37 * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
38 * should be power of 2.
39 */
40 #define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */
41 /*
42 * By default we reserve 5% of memory for hash pagetable allocation.
43 */
44 static unsigned long kvm_cma_resv_ratio = 5;
45
46 static struct cma *kvm_cma;
47
early_parse_kvm_cma_resv(char * p)48 static int __init early_parse_kvm_cma_resv(char *p)
49 {
50 pr_debug("%s(%s)\n", __func__, p);
51 if (!p)
52 return -EINVAL;
53 return kstrtoul(p, 0, &kvm_cma_resv_ratio);
54 }
55 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
56
kvm_alloc_hpt_cma(unsigned long nr_pages)57 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
58 {
59 VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
60
61 return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
62 false);
63 }
64 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
65
kvm_free_hpt_cma(struct page * page,unsigned long nr_pages)66 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
67 {
68 cma_release(kvm_cma, page, nr_pages);
69 }
70 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
71
72 /**
73 * kvm_cma_reserve() - reserve area for kvm hash pagetable
74 *
75 * This function reserves memory from early allocator. It should be
76 * called by arch specific code once the memblock allocator
77 * has been activated and all other subsystems have already allocated/reserved
78 * memory.
79 */
kvm_cma_reserve(void)80 void __init kvm_cma_reserve(void)
81 {
82 unsigned long align_size;
83 phys_addr_t selected_size;
84
85 /*
86 * We need CMA reservation only when we are in HV mode
87 */
88 if (!cpu_has_feature(CPU_FTR_HVMODE))
89 return;
90
91 selected_size = PAGE_ALIGN(memblock_phys_mem_size() * kvm_cma_resv_ratio / 100);
92 if (selected_size) {
93 pr_info("%s: reserving %ld MiB for global area\n", __func__,
94 (unsigned long)selected_size / SZ_1M);
95 align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
96 cma_declare_contiguous(0, selected_size, 0, align_size,
97 KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma",
98 &kvm_cma);
99 }
100 }
101
102 /*
103 * Real-mode H_CONFER implementation.
104 * We check if we are the only vcpu out of this virtual core
105 * still running in the guest and not ceded. If so, we pop up
106 * to the virtual-mode implementation; if not, just return to
107 * the guest.
108 */
kvmppc_rm_h_confer(struct kvm_vcpu * vcpu,int target,unsigned int yield_count)109 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
110 unsigned int yield_count)
111 {
112 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
113 int ptid = local_paca->kvm_hstate.ptid;
114 int threads_running;
115 int threads_ceded;
116 int threads_conferring;
117 u64 stop = get_tb() + 10 * tb_ticks_per_usec;
118 int rv = H_SUCCESS; /* => don't yield */
119
120 set_bit(ptid, &vc->conferring_threads);
121 while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
122 threads_running = VCORE_ENTRY_MAP(vc);
123 threads_ceded = vc->napping_threads;
124 threads_conferring = vc->conferring_threads;
125 if ((threads_ceded | threads_conferring) == threads_running) {
126 rv = H_TOO_HARD; /* => do yield */
127 break;
128 }
129 }
130 clear_bit(ptid, &vc->conferring_threads);
131 return rv;
132 }
133
134 /*
135 * When running HV mode KVM we need to block certain operations while KVM VMs
136 * exist in the system. We use a counter of VMs to track this.
137 *
138 * One of the operations we need to block is onlining of secondaries, so we
139 * protect hv_vm_count with cpus_read_lock/unlock().
140 */
141 static atomic_t hv_vm_count;
142
kvm_hv_vm_activated(void)143 void kvm_hv_vm_activated(void)
144 {
145 cpus_read_lock();
146 atomic_inc(&hv_vm_count);
147 cpus_read_unlock();
148 }
149 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
150
kvm_hv_vm_deactivated(void)151 void kvm_hv_vm_deactivated(void)
152 {
153 cpus_read_lock();
154 atomic_dec(&hv_vm_count);
155 cpus_read_unlock();
156 }
157 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
158
kvm_hv_mode_active(void)159 bool kvm_hv_mode_active(void)
160 {
161 return atomic_read(&hv_vm_count) != 0;
162 }
163
164 extern int hcall_real_table[], hcall_real_table_end[];
165
kvmppc_hcall_impl_hv_realmode(unsigned long cmd)166 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
167 {
168 cmd /= 4;
169 if (cmd < hcall_real_table_end - hcall_real_table &&
170 hcall_real_table[cmd])
171 return 1;
172
173 return 0;
174 }
175 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
176
kvmppc_hwrng_present(void)177 int kvmppc_hwrng_present(void)
178 {
179 return ppc_md.get_random_seed != NULL;
180 }
181 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
182
kvmppc_rm_h_random(struct kvm_vcpu * vcpu)183 long kvmppc_rm_h_random(struct kvm_vcpu *vcpu)
184 {
185 if (ppc_md.get_random_seed &&
186 ppc_md.get_random_seed(&vcpu->arch.regs.gpr[4]))
187 return H_SUCCESS;
188
189 return H_HARDWARE;
190 }
191
192 /*
193 * Send an interrupt or message to another CPU.
194 * The caller needs to include any barrier needed to order writes
195 * to memory vs. the IPI/message.
196 */
kvmhv_rm_send_ipi(int cpu)197 void kvmhv_rm_send_ipi(int cpu)
198 {
199 void __iomem *xics_phys;
200 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
201
202 /* On POWER9 we can use msgsnd for any destination cpu. */
203 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
204 msg |= get_hard_smp_processor_id(cpu);
205 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
206 return;
207 }
208
209 /* On POWER8 for IPIs to threads in the same core, use msgsnd. */
210 if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
211 cpu_first_thread_sibling(cpu) ==
212 cpu_first_thread_sibling(raw_smp_processor_id())) {
213 msg |= cpu_thread_in_core(cpu);
214 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
215 return;
216 }
217
218 /* We should never reach this */
219 if (WARN_ON_ONCE(xics_on_xive()))
220 return;
221
222 /* Else poke the target with an IPI */
223 xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys;
224 if (xics_phys)
225 __raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR);
226 else
227 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
228 }
229
230 /*
231 * The following functions are called from the assembly code
232 * in book3s_hv_rmhandlers.S.
233 */
kvmhv_interrupt_vcore(struct kvmppc_vcore * vc,int active)234 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
235 {
236 int cpu = vc->pcpu;
237
238 /* Order setting of exit map vs. msgsnd/IPI */
239 smp_mb();
240 for (; active; active >>= 1, ++cpu)
241 if (active & 1)
242 kvmhv_rm_send_ipi(cpu);
243 }
244
kvmhv_commence_exit(int trap)245 void kvmhv_commence_exit(int trap)
246 {
247 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
248 int ptid = local_paca->kvm_hstate.ptid;
249 struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
250 int me, ee, i;
251
252 /* Set our bit in the threads-exiting-guest map in the 0xff00
253 bits of vcore->entry_exit_map */
254 me = 0x100 << ptid;
255 do {
256 ee = vc->entry_exit_map;
257 } while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
258
259 /* Are we the first here? */
260 if ((ee >> 8) != 0)
261 return;
262
263 /*
264 * Trigger the other threads in this vcore to exit the guest.
265 * If this is a hypervisor decrementer interrupt then they
266 * will be already on their way out of the guest.
267 */
268 if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
269 kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
270
271 /*
272 * If we are doing dynamic micro-threading, interrupt the other
273 * subcores to pull them out of their guests too.
274 */
275 if (!sip)
276 return;
277
278 for (i = 0; i < MAX_SUBCORES; ++i) {
279 vc = sip->vc[i];
280 if (!vc)
281 break;
282 do {
283 ee = vc->entry_exit_map;
284 /* Already asked to exit? */
285 if ((ee >> 8) != 0)
286 break;
287 } while (cmpxchg(&vc->entry_exit_map, ee,
288 ee | VCORE_EXIT_REQ) != ee);
289 if ((ee >> 8) == 0)
290 kvmhv_interrupt_vcore(vc, ee);
291 }
292 }
293
294 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
295 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
296
297 #ifdef CONFIG_KVM_XICS
get_irqmap(struct kvmppc_passthru_irqmap * pimap,u32 xisr)298 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
299 u32 xisr)
300 {
301 int i;
302
303 /*
304 * We access the mapped array here without a lock. That
305 * is safe because we never reduce the number of entries
306 * in the array and we never change the v_hwirq field of
307 * an entry once it is set.
308 *
309 * We have also carefully ordered the stores in the writer
310 * and the loads here in the reader, so that if we find a matching
311 * hwirq here, the associated GSI and irq_desc fields are valid.
312 */
313 for (i = 0; i < pimap->n_mapped; i++) {
314 if (xisr == pimap->mapped[i].r_hwirq) {
315 /*
316 * Order subsequent reads in the caller to serialize
317 * with the writer.
318 */
319 smp_rmb();
320 return &pimap->mapped[i];
321 }
322 }
323 return NULL;
324 }
325
326 /*
327 * If we have an interrupt that's not an IPI, check if we have a
328 * passthrough adapter and if so, check if this external interrupt
329 * is for the adapter.
330 * We will attempt to deliver the IRQ directly to the target VCPU's
331 * ICP, the virtual ICP (based on affinity - the xive value in ICS).
332 *
333 * If the delivery fails or if this is not for a passthrough adapter,
334 * return to the host to handle this interrupt. We earlier
335 * saved a copy of the XIRR in the PACA, it will be picked up by
336 * the host ICP driver.
337 */
kvmppc_check_passthru(u32 xisr,__be32 xirr,bool * again)338 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
339 {
340 struct kvmppc_passthru_irqmap *pimap;
341 struct kvmppc_irq_map *irq_map;
342 struct kvm_vcpu *vcpu;
343
344 vcpu = local_paca->kvm_hstate.kvm_vcpu;
345 if (!vcpu)
346 return 1;
347 pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
348 if (!pimap)
349 return 1;
350 irq_map = get_irqmap(pimap, xisr);
351 if (!irq_map)
352 return 1;
353
354 /* We're handling this interrupt, generic code doesn't need to */
355 local_paca->kvm_hstate.saved_xirr = 0;
356
357 return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
358 }
359
360 #else
kvmppc_check_passthru(u32 xisr,__be32 xirr,bool * again)361 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
362 {
363 return 1;
364 }
365 #endif
366
367 /*
368 * Determine what sort of external interrupt is pending (if any).
369 * Returns:
370 * 0 if no interrupt is pending
371 * 1 if an interrupt is pending that needs to be handled by the host
372 * 2 Passthrough that needs completion in the host
373 * -1 if there was a guest wakeup IPI (which has now been cleared)
374 * -2 if there is PCI passthrough external interrupt that was handled
375 */
376 static long kvmppc_read_one_intr(bool *again);
377
kvmppc_read_intr(void)378 long kvmppc_read_intr(void)
379 {
380 long ret = 0;
381 long rc;
382 bool again;
383
384 if (xive_enabled())
385 return 1;
386
387 do {
388 again = false;
389 rc = kvmppc_read_one_intr(&again);
390 if (rc && (ret == 0 || rc > ret))
391 ret = rc;
392 } while (again);
393 return ret;
394 }
395
kvmppc_read_one_intr(bool * again)396 static long kvmppc_read_one_intr(bool *again)
397 {
398 void __iomem *xics_phys;
399 u32 h_xirr;
400 __be32 xirr;
401 u32 xisr;
402 u8 host_ipi;
403 int64_t rc;
404
405 if (xive_enabled())
406 return 1;
407
408 /* see if a host IPI is pending */
409 host_ipi = local_paca->kvm_hstate.host_ipi;
410 if (host_ipi)
411 return 1;
412
413 /* Now read the interrupt from the ICP */
414 xics_phys = local_paca->kvm_hstate.xics_phys;
415 rc = 0;
416 if (!xics_phys)
417 rc = opal_int_get_xirr(&xirr, false);
418 else
419 xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
420 if (rc < 0)
421 return 1;
422
423 /*
424 * Save XIRR for later. Since we get control in reverse endian
425 * on LE systems, save it byte reversed and fetch it back in
426 * host endian. Note that xirr is the value read from the
427 * XIRR register, while h_xirr is the host endian version.
428 */
429 h_xirr = be32_to_cpu(xirr);
430 local_paca->kvm_hstate.saved_xirr = h_xirr;
431 xisr = h_xirr & 0xffffff;
432 /*
433 * Ensure that the store/load complete to guarantee all side
434 * effects of loading from XIRR has completed
435 */
436 smp_mb();
437
438 /* if nothing pending in the ICP */
439 if (!xisr)
440 return 0;
441
442 /* We found something in the ICP...
443 *
444 * If it is an IPI, clear the MFRR and EOI it.
445 */
446 if (xisr == XICS_IPI) {
447 rc = 0;
448 if (xics_phys) {
449 __raw_rm_writeb(0xff, xics_phys + XICS_MFRR);
450 __raw_rm_writel(xirr, xics_phys + XICS_XIRR);
451 } else {
452 opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
453 rc = opal_int_eoi(h_xirr);
454 }
455 /* If rc > 0, there is another interrupt pending */
456 *again = rc > 0;
457
458 /*
459 * Need to ensure side effects of above stores
460 * complete before proceeding.
461 */
462 smp_mb();
463
464 /*
465 * We need to re-check host IPI now in case it got set in the
466 * meantime. If it's clear, we bounce the interrupt to the
467 * guest
468 */
469 host_ipi = local_paca->kvm_hstate.host_ipi;
470 if (unlikely(host_ipi != 0)) {
471 /* We raced with the host,
472 * we need to resend that IPI, bummer
473 */
474 if (xics_phys)
475 __raw_rm_writeb(IPI_PRIORITY,
476 xics_phys + XICS_MFRR);
477 else
478 opal_int_set_mfrr(hard_smp_processor_id(),
479 IPI_PRIORITY);
480 /* Let side effects complete */
481 smp_mb();
482 return 1;
483 }
484
485 /* OK, it's an IPI for us */
486 local_paca->kvm_hstate.saved_xirr = 0;
487 return -1;
488 }
489
490 return kvmppc_check_passthru(xisr, xirr, again);
491 }
492
kvmppc_bad_interrupt(struct pt_regs * regs)493 void kvmppc_bad_interrupt(struct pt_regs *regs)
494 {
495 /*
496 * 100 could happen at any time, 200 can happen due to invalid real
497 * address access for example (or any time due to a hardware problem).
498 */
499 if (TRAP(regs) == 0x100) {
500 get_paca()->in_nmi++;
501 system_reset_exception(regs);
502 get_paca()->in_nmi--;
503 } else if (TRAP(regs) == 0x200) {
504 machine_check_exception(regs);
505 } else {
506 die("Bad interrupt in KVM entry/exit code", regs, SIGABRT);
507 }
508 panic("Bad KVM trap");
509 }
510
kvmppc_end_cede(struct kvm_vcpu * vcpu)511 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
512 {
513 vcpu->arch.ceded = 0;
514 if (vcpu->arch.timer_running) {
515 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
516 vcpu->arch.timer_running = 0;
517 }
518 }
519
kvmppc_set_msr_hv(struct kvm_vcpu * vcpu,u64 msr)520 void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
521 {
522 /* Guest must always run with ME enabled, HV disabled. */
523 msr = (msr | MSR_ME) & ~MSR_HV;
524
525 /*
526 * Check for illegal transactional state bit combination
527 * and if we find it, force the TS field to a safe state.
528 */
529 if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
530 msr &= ~MSR_TS_MASK;
531 vcpu->arch.shregs.msr = msr;
532 kvmppc_end_cede(vcpu);
533 }
534 EXPORT_SYMBOL_GPL(kvmppc_set_msr_hv);
535
inject_interrupt(struct kvm_vcpu * vcpu,int vec,u64 srr1_flags)536 static void inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
537 {
538 unsigned long msr, pc, new_msr, new_pc;
539
540 msr = kvmppc_get_msr(vcpu);
541 pc = kvmppc_get_pc(vcpu);
542 new_msr = vcpu->arch.intr_msr;
543 new_pc = vec;
544
545 /* If transactional, change to suspend mode on IRQ delivery */
546 if (MSR_TM_TRANSACTIONAL(msr))
547 new_msr |= MSR_TS_S;
548 else
549 new_msr |= msr & MSR_TS_MASK;
550
551 /*
552 * Perform MSR and PC adjustment for LPCR[AIL]=3 if it is set and
553 * applicable. AIL=2 is not supported.
554 *
555 * AIL does not apply to SRESET, MCE, or HMI (which is never
556 * delivered to the guest), and does not apply if IR=0 or DR=0.
557 */
558 if (vec != BOOK3S_INTERRUPT_SYSTEM_RESET &&
559 vec != BOOK3S_INTERRUPT_MACHINE_CHECK &&
560 (vcpu->arch.vcore->lpcr & LPCR_AIL) == LPCR_AIL_3 &&
561 (msr & (MSR_IR|MSR_DR)) == (MSR_IR|MSR_DR) ) {
562 new_msr |= MSR_IR | MSR_DR;
563 new_pc += 0xC000000000004000ULL;
564 }
565
566 kvmppc_set_srr0(vcpu, pc);
567 kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
568 kvmppc_set_pc(vcpu, new_pc);
569 vcpu->arch.shregs.msr = new_msr;
570 }
571
kvmppc_inject_interrupt_hv(struct kvm_vcpu * vcpu,int vec,u64 srr1_flags)572 void kvmppc_inject_interrupt_hv(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
573 {
574 inject_interrupt(vcpu, vec, srr1_flags);
575 kvmppc_end_cede(vcpu);
576 }
577 EXPORT_SYMBOL_GPL(kvmppc_inject_interrupt_hv);
578
579 /*
580 * Is there a PRIV_DOORBELL pending for the guest (on POWER9)?
581 * Can we inject a Decrementer or a External interrupt?
582 */
kvmppc_guest_entry_inject_int(struct kvm_vcpu * vcpu)583 void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu)
584 {
585 int ext;
586 unsigned long lpcr;
587
588 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
589
590 /* Insert EXTERNAL bit into LPCR at the MER bit position */
591 ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1;
592 lpcr = mfspr(SPRN_LPCR);
593 lpcr |= ext << LPCR_MER_SH;
594 mtspr(SPRN_LPCR, lpcr);
595 isync();
596
597 if (vcpu->arch.shregs.msr & MSR_EE) {
598 if (ext) {
599 inject_interrupt(vcpu, BOOK3S_INTERRUPT_EXTERNAL, 0);
600 } else {
601 long int dec = mfspr(SPRN_DEC);
602 if (!(lpcr & LPCR_LD))
603 dec = (int) dec;
604 if (dec < 0)
605 inject_interrupt(vcpu,
606 BOOK3S_INTERRUPT_DECREMENTER, 0);
607 }
608 }
609
610 if (vcpu->arch.doorbell_request) {
611 mtspr(SPRN_DPDES, 1);
612 vcpu->arch.vcore->dpdes = 1;
613 smp_wmb();
614 vcpu->arch.doorbell_request = 0;
615 }
616 }
617
flush_guest_tlb(struct kvm * kvm)618 static void flush_guest_tlb(struct kvm *kvm)
619 {
620 unsigned long rb, set;
621
622 rb = PPC_BIT(52); /* IS = 2 */
623 for (set = 0; set < kvm->arch.tlb_sets; ++set) {
624 /* R=0 PRS=0 RIC=0 */
625 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
626 : : "r" (rb), "i" (0), "i" (0), "i" (0),
627 "r" (0) : "memory");
628 rb += PPC_BIT(51); /* increment set number */
629 }
630 asm volatile("ptesync": : :"memory");
631 }
632
kvmppc_check_need_tlb_flush(struct kvm * kvm,int pcpu)633 void kvmppc_check_need_tlb_flush(struct kvm *kvm, int pcpu)
634 {
635 if (cpumask_test_cpu(pcpu, &kvm->arch.need_tlb_flush)) {
636 flush_guest_tlb(kvm);
637
638 /* Clear the bit after the TLB flush */
639 cpumask_clear_cpu(pcpu, &kvm->arch.need_tlb_flush);
640 }
641 }
642 EXPORT_SYMBOL_GPL(kvmppc_check_need_tlb_flush);
643