1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Alexander Graf <agraf@suse.de>
7 * Kevin Wolf <mail@kevin-wolf.de>
8 * Paul Mackerras <paulus@samba.org>
9 *
10 * Description:
11 * Functions relating to running KVM on Book 3S processors where
12 * we don't have access to hypervisor mode, and we run the guest
13 * in problem state (user mode).
14 *
15 * This file is derived from arch/powerpc/kvm/44x.c,
16 * by Hollis Blanchard <hollisb@us.ibm.com>.
17 */
18
19 #include <linux/kvm_host.h>
20 #include <linux/export.h>
21 #include <linux/err.h>
22 #include <linux/slab.h>
23
24 #include <asm/reg.h>
25 #include <asm/cputable.h>
26 #include <asm/cacheflush.h>
27 #include <linux/uaccess.h>
28 #include <asm/interrupt.h>
29 #include <asm/io.h>
30 #include <asm/kvm_ppc.h>
31 #include <asm/kvm_book3s.h>
32 #include <asm/mmu_context.h>
33 #include <asm/switch_to.h>
34 #include <asm/firmware.h>
35 #include <asm/setup.h>
36 #include <linux/gfp.h>
37 #include <linux/sched.h>
38 #include <linux/vmalloc.h>
39 #include <linux/highmem.h>
40 #include <linux/module.h>
41 #include <linux/miscdevice.h>
42 #include <asm/asm-prototypes.h>
43 #include <asm/tm.h>
44
45 #include "book3s.h"
46
47 #define CREATE_TRACE_POINTS
48 #include "trace_pr.h"
49
50 /* #define EXIT_DEBUG */
51 /* #define DEBUG_EXT */
52
53 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
54 ulong msr);
55 #ifdef CONFIG_PPC_BOOK3S_64
56 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac);
57 #endif
58
59 /* Some compatibility defines */
60 #ifdef CONFIG_PPC_BOOK3S_32
61 #define MSR_USER32 MSR_USER
62 #define MSR_USER64 MSR_USER
63 #define HW_PAGE_SIZE PAGE_SIZE
64 #define HPTE_R_M _PAGE_COHERENT
65 #endif
66
kvmppc_is_split_real(struct kvm_vcpu * vcpu)67 static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
68 {
69 ulong msr = kvmppc_get_msr(vcpu);
70 return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
71 }
72
kvmppc_fixup_split_real(struct kvm_vcpu * vcpu)73 static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
74 {
75 ulong msr = kvmppc_get_msr(vcpu);
76 ulong pc = kvmppc_get_pc(vcpu);
77
78 /* We are in DR only split real mode */
79 if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
80 return;
81
82 /* We have not fixed up the guest already */
83 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
84 return;
85
86 /* The code is in fixupable address space */
87 if (pc & SPLIT_HACK_MASK)
88 return;
89
90 vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
91 kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
92 }
93
kvmppc_unfixup_split_real(struct kvm_vcpu * vcpu)94 static void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu)
95 {
96 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) {
97 ulong pc = kvmppc_get_pc(vcpu);
98 ulong lr = kvmppc_get_lr(vcpu);
99 if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
100 kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK);
101 if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
102 kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK);
103 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK;
104 }
105 }
106
kvmppc_inject_interrupt_pr(struct kvm_vcpu * vcpu,int vec,u64 srr1_flags)107 static void kvmppc_inject_interrupt_pr(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
108 {
109 unsigned long msr, pc, new_msr, new_pc;
110
111 kvmppc_unfixup_split_real(vcpu);
112
113 msr = kvmppc_get_msr(vcpu);
114 pc = kvmppc_get_pc(vcpu);
115 new_msr = vcpu->arch.intr_msr;
116 new_pc = to_book3s(vcpu)->hior + vec;
117
118 #ifdef CONFIG_PPC_BOOK3S_64
119 /* If transactional, change to suspend mode on IRQ delivery */
120 if (MSR_TM_TRANSACTIONAL(msr))
121 new_msr |= MSR_TS_S;
122 else
123 new_msr |= msr & MSR_TS_MASK;
124 #endif
125
126 kvmppc_set_srr0(vcpu, pc);
127 kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
128 kvmppc_set_pc(vcpu, new_pc);
129 kvmppc_set_msr(vcpu, new_msr);
130 }
131
kvmppc_core_vcpu_load_pr(struct kvm_vcpu * vcpu,int cpu)132 static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
133 {
134 #ifdef CONFIG_PPC_BOOK3S_64
135 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
136 memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
137 svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
138 svcpu->in_use = 0;
139 svcpu_put(svcpu);
140
141 /* Disable AIL if supported */
142 if (cpu_has_feature(CPU_FTR_HVMODE)) {
143 if (cpu_has_feature(CPU_FTR_ARCH_207S))
144 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
145 if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV))
146 mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) & ~FSCR_SCV);
147 }
148 #endif
149
150 vcpu->cpu = smp_processor_id();
151 #ifdef CONFIG_PPC_BOOK3S_32
152 current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
153 #endif
154
155 if (kvmppc_is_split_real(vcpu))
156 kvmppc_fixup_split_real(vcpu);
157
158 kvmppc_restore_tm_pr(vcpu);
159 }
160
kvmppc_core_vcpu_put_pr(struct kvm_vcpu * vcpu)161 static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
162 {
163 #ifdef CONFIG_PPC_BOOK3S_64
164 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
165 if (svcpu->in_use) {
166 kvmppc_copy_from_svcpu(vcpu);
167 }
168 memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
169 to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
170 svcpu_put(svcpu);
171
172 /* Enable AIL if supported */
173 if (cpu_has_feature(CPU_FTR_HVMODE)) {
174 if (cpu_has_feature(CPU_FTR_ARCH_207S))
175 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
176 if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV))
177 mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) | FSCR_SCV);
178 }
179 #endif
180
181 if (kvmppc_is_split_real(vcpu))
182 kvmppc_unfixup_split_real(vcpu);
183
184 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
185 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
186 kvmppc_save_tm_pr(vcpu);
187
188 vcpu->cpu = -1;
189 }
190
191 /* Copy data needed by real-mode code from vcpu to shadow vcpu */
kvmppc_copy_to_svcpu(struct kvm_vcpu * vcpu)192 void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
193 {
194 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
195
196 svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
197 svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
198 svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
199 svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
200 svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
201 svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
202 svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
203 svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
204 svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
205 svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
206 svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
207 svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
208 svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
209 svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
210 svcpu->cr = vcpu->arch.regs.ccr;
211 svcpu->xer = vcpu->arch.regs.xer;
212 svcpu->ctr = vcpu->arch.regs.ctr;
213 svcpu->lr = vcpu->arch.regs.link;
214 svcpu->pc = vcpu->arch.regs.nip;
215 #ifdef CONFIG_PPC_BOOK3S_64
216 svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
217 #endif
218 /*
219 * Now also save the current time base value. We use this
220 * to find the guest purr and spurr value.
221 */
222 vcpu->arch.entry_tb = get_tb();
223 vcpu->arch.entry_vtb = get_vtb();
224 if (cpu_has_feature(CPU_FTR_ARCH_207S))
225 vcpu->arch.entry_ic = mfspr(SPRN_IC);
226 svcpu->in_use = true;
227
228 svcpu_put(svcpu);
229 }
230
kvmppc_recalc_shadow_msr(struct kvm_vcpu * vcpu)231 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
232 {
233 ulong guest_msr = kvmppc_get_msr(vcpu);
234 ulong smsr = guest_msr;
235
236 /* Guest MSR values */
237 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
238 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
239 MSR_TM | MSR_TS_MASK;
240 #else
241 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
242 #endif
243 /* Process MSR values */
244 smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
245 /* External providers the guest reserved */
246 smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
247 /* 64-bit Process MSR values */
248 #ifdef CONFIG_PPC_BOOK3S_64
249 smsr |= MSR_HV;
250 #endif
251 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
252 /*
253 * in guest privileged state, we want to fail all TM transactions.
254 * So disable MSR TM bit so that all tbegin. will be able to be
255 * trapped into host.
256 */
257 if (!(guest_msr & MSR_PR))
258 smsr &= ~MSR_TM;
259 #endif
260 vcpu->arch.shadow_msr = smsr;
261 }
262
263 /* Copy data touched by real-mode code from shadow vcpu back to vcpu */
kvmppc_copy_from_svcpu(struct kvm_vcpu * vcpu)264 void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
265 {
266 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
267 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
268 ulong old_msr;
269 #endif
270
271 /*
272 * Maybe we were already preempted and synced the svcpu from
273 * our preempt notifiers. Don't bother touching this svcpu then.
274 */
275 if (!svcpu->in_use)
276 goto out;
277
278 vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
279 vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
280 vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
281 vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
282 vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
283 vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
284 vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
285 vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
286 vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
287 vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
288 vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
289 vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
290 vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
291 vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
292 vcpu->arch.regs.ccr = svcpu->cr;
293 vcpu->arch.regs.xer = svcpu->xer;
294 vcpu->arch.regs.ctr = svcpu->ctr;
295 vcpu->arch.regs.link = svcpu->lr;
296 vcpu->arch.regs.nip = svcpu->pc;
297 vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
298 vcpu->arch.fault_dar = svcpu->fault_dar;
299 vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
300 vcpu->arch.last_inst = svcpu->last_inst;
301 #ifdef CONFIG_PPC_BOOK3S_64
302 vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
303 #endif
304 /*
305 * Update purr and spurr using time base on exit.
306 */
307 vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
308 vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
309 to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
310 if (cpu_has_feature(CPU_FTR_ARCH_207S))
311 vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
312
313 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
314 /*
315 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without
316 * notifying host:
317 * modified by unprivileged instructions like "tbegin"/"tend"/
318 * "tresume"/"tsuspend" in PR KVM guest.
319 *
320 * It is necessary to sync here to calculate a correct shadow_msr.
321 *
322 * privileged guest's tbegin will be failed at present. So we
323 * only take care of problem state guest.
324 */
325 old_msr = kvmppc_get_msr(vcpu);
326 if (unlikely((old_msr & MSR_PR) &&
327 (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
328 (old_msr & (MSR_TS_MASK)))) {
329 old_msr &= ~(MSR_TS_MASK);
330 old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
331 kvmppc_set_msr_fast(vcpu, old_msr);
332 kvmppc_recalc_shadow_msr(vcpu);
333 }
334 #endif
335
336 svcpu->in_use = false;
337
338 out:
339 svcpu_put(svcpu);
340 }
341
342 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
kvmppc_save_tm_sprs(struct kvm_vcpu * vcpu)343 void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
344 {
345 tm_enable();
346 vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
347 vcpu->arch.texasr = mfspr(SPRN_TEXASR);
348 vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
349 tm_disable();
350 }
351
kvmppc_restore_tm_sprs(struct kvm_vcpu * vcpu)352 void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
353 {
354 tm_enable();
355 mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
356 mtspr(SPRN_TEXASR, vcpu->arch.texasr);
357 mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
358 tm_disable();
359 }
360
361 /* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at
362 * hardware.
363 */
kvmppc_handle_lost_math_exts(struct kvm_vcpu * vcpu)364 static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu)
365 {
366 ulong exit_nr;
367 ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) &
368 (MSR_FP | MSR_VEC | MSR_VSX);
369
370 if (!ext_diff)
371 return;
372
373 if (ext_diff == MSR_FP)
374 exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL;
375 else if (ext_diff == MSR_VEC)
376 exit_nr = BOOK3S_INTERRUPT_ALTIVEC;
377 else
378 exit_nr = BOOK3S_INTERRUPT_VSX;
379
380 kvmppc_handle_ext(vcpu, exit_nr, ext_diff);
381 }
382
kvmppc_save_tm_pr(struct kvm_vcpu * vcpu)383 void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
384 {
385 if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
386 kvmppc_save_tm_sprs(vcpu);
387 return;
388 }
389
390 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
391 kvmppc_giveup_ext(vcpu, MSR_VSX);
392
393 preempt_disable();
394 _kvmppc_save_tm_pr(vcpu, mfmsr());
395 preempt_enable();
396 }
397
kvmppc_restore_tm_pr(struct kvm_vcpu * vcpu)398 void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
399 {
400 if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
401 kvmppc_restore_tm_sprs(vcpu);
402 if (kvmppc_get_msr(vcpu) & MSR_TM) {
403 kvmppc_handle_lost_math_exts(vcpu);
404 if (vcpu->arch.fscr & FSCR_TAR)
405 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
406 }
407 return;
408 }
409
410 preempt_disable();
411 _kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
412 preempt_enable();
413
414 if (kvmppc_get_msr(vcpu) & MSR_TM) {
415 kvmppc_handle_lost_math_exts(vcpu);
416 if (vcpu->arch.fscr & FSCR_TAR)
417 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
418 }
419 }
420 #endif
421
kvmppc_core_check_requests_pr(struct kvm_vcpu * vcpu)422 static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
423 {
424 int r = 1; /* Indicate we want to get back into the guest */
425
426 /* We misuse TLB_FLUSH to indicate that we want to clear
427 all shadow cache entries */
428 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
429 kvmppc_mmu_pte_flush(vcpu, 0, 0);
430
431 return r;
432 }
433
434 /************* MMU Notifiers *************/
do_kvm_unmap_gfn(struct kvm * kvm,struct kvm_gfn_range * range)435 static bool do_kvm_unmap_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
436 {
437 unsigned long i;
438 struct kvm_vcpu *vcpu;
439
440 kvm_for_each_vcpu(i, vcpu, kvm)
441 kvmppc_mmu_pte_pflush(vcpu, range->start << PAGE_SHIFT,
442 range->end << PAGE_SHIFT);
443
444 return false;
445 }
446
kvm_unmap_gfn_range_pr(struct kvm * kvm,struct kvm_gfn_range * range)447 static bool kvm_unmap_gfn_range_pr(struct kvm *kvm, struct kvm_gfn_range *range)
448 {
449 return do_kvm_unmap_gfn(kvm, range);
450 }
451
kvm_age_gfn_pr(struct kvm * kvm,struct kvm_gfn_range * range)452 static bool kvm_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
453 {
454 /* XXX could be more clever ;) */
455 return false;
456 }
457
kvm_test_age_gfn_pr(struct kvm * kvm,struct kvm_gfn_range * range)458 static bool kvm_test_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
459 {
460 /* XXX could be more clever ;) */
461 return false;
462 }
463
kvm_set_spte_gfn_pr(struct kvm * kvm,struct kvm_gfn_range * range)464 static bool kvm_set_spte_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
465 {
466 /* The page will get remapped properly on its next fault */
467 return do_kvm_unmap_gfn(kvm, range);
468 }
469
470 /*****************************************/
471
kvmppc_set_msr_pr(struct kvm_vcpu * vcpu,u64 msr)472 static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
473 {
474 ulong old_msr;
475
476 /* For PAPR guest, make sure MSR reflects guest mode */
477 if (vcpu->arch.papr_enabled)
478 msr = (msr & ~MSR_HV) | MSR_ME;
479
480 #ifdef EXIT_DEBUG
481 printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
482 #endif
483
484 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
485 /* We should never target guest MSR to TS=10 && PR=0,
486 * since we always fail transaction for guest privilege
487 * state.
488 */
489 if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr))
490 kvmppc_emulate_tabort(vcpu,
491 TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT);
492 #endif
493
494 old_msr = kvmppc_get_msr(vcpu);
495 msr &= to_book3s(vcpu)->msr_mask;
496 kvmppc_set_msr_fast(vcpu, msr);
497 kvmppc_recalc_shadow_msr(vcpu);
498
499 if (msr & MSR_POW) {
500 if (!vcpu->arch.pending_exceptions) {
501 kvm_vcpu_halt(vcpu);
502 vcpu->stat.generic.halt_wakeup++;
503
504 /* Unset POW bit after we woke up */
505 msr &= ~MSR_POW;
506 kvmppc_set_msr_fast(vcpu, msr);
507 }
508 }
509
510 if (kvmppc_is_split_real(vcpu))
511 kvmppc_fixup_split_real(vcpu);
512 else
513 kvmppc_unfixup_split_real(vcpu);
514
515 if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
516 (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
517 kvmppc_mmu_flush_segments(vcpu);
518 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
519
520 /* Preload magic page segment when in kernel mode */
521 if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
522 struct kvm_vcpu_arch *a = &vcpu->arch;
523
524 if (msr & MSR_DR)
525 kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
526 else
527 kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
528 }
529 }
530
531 /*
532 * When switching from 32 to 64-bit, we may have a stale 32-bit
533 * magic page around, we need to flush it. Typically 32-bit magic
534 * page will be instantiated when calling into RTAS. Note: We
535 * assume that such transition only happens while in kernel mode,
536 * ie, we never transition from user 32-bit to kernel 64-bit with
537 * a 32-bit magic page around.
538 */
539 if (vcpu->arch.magic_page_pa &&
540 !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
541 /* going from RTAS to normal kernel code */
542 kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
543 ~0xFFFUL);
544 }
545
546 /* Preload FPU if it's enabled */
547 if (kvmppc_get_msr(vcpu) & MSR_FP)
548 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
549
550 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
551 if (kvmppc_get_msr(vcpu) & MSR_TM)
552 kvmppc_handle_lost_math_exts(vcpu);
553 #endif
554 }
555
kvmppc_set_pvr_pr(struct kvm_vcpu * vcpu,u32 pvr)556 static void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
557 {
558 u32 host_pvr;
559
560 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
561 vcpu->arch.pvr = pvr;
562 #ifdef CONFIG_PPC_BOOK3S_64
563 if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
564 kvmppc_mmu_book3s_64_init(vcpu);
565 if (!to_book3s(vcpu)->hior_explicit)
566 to_book3s(vcpu)->hior = 0xfff00000;
567 to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
568 vcpu->arch.cpu_type = KVM_CPU_3S_64;
569 } else
570 #endif
571 {
572 kvmppc_mmu_book3s_32_init(vcpu);
573 if (!to_book3s(vcpu)->hior_explicit)
574 to_book3s(vcpu)->hior = 0;
575 to_book3s(vcpu)->msr_mask = 0xffffffffULL;
576 vcpu->arch.cpu_type = KVM_CPU_3S_32;
577 }
578
579 kvmppc_sanity_check(vcpu);
580
581 /* If we are in hypervisor level on 970, we can tell the CPU to
582 * treat DCBZ as 32 bytes store */
583 vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
584 if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
585 !strcmp(cur_cpu_spec->platform, "ppc970"))
586 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
587
588 /* Cell performs badly if MSR_FEx are set. So let's hope nobody
589 really needs them in a VM on Cell and force disable them. */
590 if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
591 to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
592
593 /*
594 * If they're asking for POWER6 or later, set the flag
595 * indicating that we can do multiple large page sizes
596 * and 1TB segments.
597 * Also set the flag that indicates that tlbie has the large
598 * page bit in the RB operand instead of the instruction.
599 */
600 switch (PVR_VER(pvr)) {
601 case PVR_POWER6:
602 case PVR_POWER7:
603 case PVR_POWER7p:
604 case PVR_POWER8:
605 case PVR_POWER8E:
606 case PVR_POWER8NVL:
607 case PVR_POWER9:
608 vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
609 BOOK3S_HFLAG_NEW_TLBIE;
610 break;
611 }
612
613 #ifdef CONFIG_PPC_BOOK3S_32
614 /* 32 bit Book3S always has 32 byte dcbz */
615 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
616 #endif
617
618 /* On some CPUs we can execute paired single operations natively */
619 asm ( "mfpvr %0" : "=r"(host_pvr));
620 switch (host_pvr) {
621 case 0x00080200: /* lonestar 2.0 */
622 case 0x00088202: /* lonestar 2.2 */
623 case 0x70000100: /* gekko 1.0 */
624 case 0x00080100: /* gekko 2.0 */
625 case 0x00083203: /* gekko 2.3a */
626 case 0x00083213: /* gekko 2.3b */
627 case 0x00083204: /* gekko 2.4 */
628 case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */
629 case 0x00087200: /* broadway */
630 vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
631 /* Enable HID2.PSE - in case we need it later */
632 mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
633 }
634 }
635
636 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
637 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
638 * emulate 32 bytes dcbz length.
639 *
640 * The Book3s_64 inventors also realized this case and implemented a special bit
641 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
642 *
643 * My approach here is to patch the dcbz instruction on executing pages.
644 */
kvmppc_patch_dcbz(struct kvm_vcpu * vcpu,struct kvmppc_pte * pte)645 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
646 {
647 struct page *hpage;
648 u64 hpage_offset;
649 u32 *page;
650 int i;
651
652 hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
653 if (is_error_page(hpage))
654 return;
655
656 hpage_offset = pte->raddr & ~PAGE_MASK;
657 hpage_offset &= ~0xFFFULL;
658 hpage_offset /= 4;
659
660 get_page(hpage);
661 page = kmap_atomic(hpage);
662
663 /* patch dcbz into reserved instruction, so we trap */
664 for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
665 if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
666 page[i] &= cpu_to_be32(0xfffffff7);
667
668 kunmap_atomic(page);
669 put_page(hpage);
670 }
671
kvmppc_visible_gpa(struct kvm_vcpu * vcpu,gpa_t gpa)672 static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
673 {
674 ulong mp_pa = vcpu->arch.magic_page_pa;
675
676 if (!(kvmppc_get_msr(vcpu) & MSR_SF))
677 mp_pa = (uint32_t)mp_pa;
678
679 gpa &= ~0xFFFULL;
680 if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
681 return true;
682 }
683
684 return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
685 }
686
kvmppc_handle_pagefault(struct kvm_vcpu * vcpu,ulong eaddr,int vec)687 static int kvmppc_handle_pagefault(struct kvm_vcpu *vcpu,
688 ulong eaddr, int vec)
689 {
690 bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
691 bool iswrite = false;
692 int r = RESUME_GUEST;
693 int relocated;
694 int page_found = 0;
695 struct kvmppc_pte pte = { 0 };
696 bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
697 bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
698 u64 vsid;
699
700 relocated = data ? dr : ir;
701 if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
702 iswrite = true;
703
704 /* Resolve real address if translation turned on */
705 if (relocated) {
706 page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
707 } else {
708 pte.may_execute = true;
709 pte.may_read = true;
710 pte.may_write = true;
711 pte.raddr = eaddr & KVM_PAM;
712 pte.eaddr = eaddr;
713 pte.vpage = eaddr >> 12;
714 pte.page_size = MMU_PAGE_64K;
715 pte.wimg = HPTE_R_M;
716 }
717
718 switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
719 case 0:
720 pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
721 break;
722 case MSR_DR:
723 if (!data &&
724 (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
725 ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
726 pte.raddr &= ~SPLIT_HACK_MASK;
727 fallthrough;
728 case MSR_IR:
729 vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
730
731 if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
732 pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
733 else
734 pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
735 pte.vpage |= vsid;
736
737 if (vsid == -1)
738 page_found = -EINVAL;
739 break;
740 }
741
742 if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
743 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
744 /*
745 * If we do the dcbz hack, we have to NX on every execution,
746 * so we can patch the executing code. This renders our guest
747 * NX-less.
748 */
749 pte.may_execute = !data;
750 }
751
752 if (page_found == -ENOENT || page_found == -EPERM) {
753 /* Page not found in guest PTE entries, or protection fault */
754 u64 flags;
755
756 if (page_found == -EPERM)
757 flags = DSISR_PROTFAULT;
758 else
759 flags = DSISR_NOHPTE;
760 if (data) {
761 flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE;
762 kvmppc_core_queue_data_storage(vcpu, eaddr, flags);
763 } else {
764 kvmppc_core_queue_inst_storage(vcpu, flags);
765 }
766 } else if (page_found == -EINVAL) {
767 /* Page not found in guest SLB */
768 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
769 kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
770 } else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
771 if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
772 /*
773 * There is already a host HPTE there, presumably
774 * a read-only one for a page the guest thinks
775 * is writable, so get rid of it first.
776 */
777 kvmppc_mmu_unmap_page(vcpu, &pte);
778 }
779 /* The guest's PTE is not mapped yet. Map on the host */
780 if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
781 /* Exit KVM if mapping failed */
782 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
783 return RESUME_HOST;
784 }
785 if (data)
786 vcpu->stat.sp_storage++;
787 else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
788 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
789 kvmppc_patch_dcbz(vcpu, &pte);
790 } else {
791 /* MMIO */
792 vcpu->stat.mmio_exits++;
793 vcpu->arch.paddr_accessed = pte.raddr;
794 vcpu->arch.vaddr_accessed = pte.eaddr;
795 r = kvmppc_emulate_mmio(vcpu);
796 if ( r == RESUME_HOST_NV )
797 r = RESUME_HOST;
798 }
799
800 return r;
801 }
802
803 /* Give up external provider (FPU, Altivec, VSX) */
kvmppc_giveup_ext(struct kvm_vcpu * vcpu,ulong msr)804 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
805 {
806 struct thread_struct *t = ¤t->thread;
807
808 /*
809 * VSX instructions can access FP and vector registers, so if
810 * we are giving up VSX, make sure we give up FP and VMX as well.
811 */
812 if (msr & MSR_VSX)
813 msr |= MSR_FP | MSR_VEC;
814
815 msr &= vcpu->arch.guest_owned_ext;
816 if (!msr)
817 return;
818
819 #ifdef DEBUG_EXT
820 printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
821 #endif
822
823 if (msr & MSR_FP) {
824 /*
825 * Note that on CPUs with VSX, giveup_fpu stores
826 * both the traditional FP registers and the added VSX
827 * registers into thread.fp_state.fpr[].
828 */
829 if (t->regs->msr & MSR_FP)
830 giveup_fpu(current);
831 t->fp_save_area = NULL;
832 }
833
834 #ifdef CONFIG_ALTIVEC
835 if (msr & MSR_VEC) {
836 if (current->thread.regs->msr & MSR_VEC)
837 giveup_altivec(current);
838 t->vr_save_area = NULL;
839 }
840 #endif
841
842 vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
843 kvmppc_recalc_shadow_msr(vcpu);
844 }
845
846 /* Give up facility (TAR / EBB / DSCR) */
kvmppc_giveup_fac(struct kvm_vcpu * vcpu,ulong fac)847 void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
848 {
849 #ifdef CONFIG_PPC_BOOK3S_64
850 if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
851 /* Facility not available to the guest, ignore giveup request*/
852 return;
853 }
854
855 switch (fac) {
856 case FSCR_TAR_LG:
857 vcpu->arch.tar = mfspr(SPRN_TAR);
858 mtspr(SPRN_TAR, current->thread.tar);
859 vcpu->arch.shadow_fscr &= ~FSCR_TAR;
860 break;
861 }
862 #endif
863 }
864
865 /* Handle external providers (FPU, Altivec, VSX) */
kvmppc_handle_ext(struct kvm_vcpu * vcpu,unsigned int exit_nr,ulong msr)866 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
867 ulong msr)
868 {
869 struct thread_struct *t = ¤t->thread;
870
871 /* When we have paired singles, we emulate in software */
872 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
873 return RESUME_GUEST;
874
875 if (!(kvmppc_get_msr(vcpu) & msr)) {
876 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
877 return RESUME_GUEST;
878 }
879
880 if (msr == MSR_VSX) {
881 /* No VSX? Give an illegal instruction interrupt */
882 #ifdef CONFIG_VSX
883 if (!cpu_has_feature(CPU_FTR_VSX))
884 #endif
885 {
886 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
887 return RESUME_GUEST;
888 }
889
890 /*
891 * We have to load up all the FP and VMX registers before
892 * we can let the guest use VSX instructions.
893 */
894 msr = MSR_FP | MSR_VEC | MSR_VSX;
895 }
896
897 /* See if we already own all the ext(s) needed */
898 msr &= ~vcpu->arch.guest_owned_ext;
899 if (!msr)
900 return RESUME_GUEST;
901
902 #ifdef DEBUG_EXT
903 printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
904 #endif
905
906 if (msr & MSR_FP) {
907 preempt_disable();
908 enable_kernel_fp();
909 load_fp_state(&vcpu->arch.fp);
910 disable_kernel_fp();
911 t->fp_save_area = &vcpu->arch.fp;
912 preempt_enable();
913 }
914
915 if (msr & MSR_VEC) {
916 #ifdef CONFIG_ALTIVEC
917 preempt_disable();
918 enable_kernel_altivec();
919 load_vr_state(&vcpu->arch.vr);
920 disable_kernel_altivec();
921 t->vr_save_area = &vcpu->arch.vr;
922 preempt_enable();
923 #endif
924 }
925
926 t->regs->msr |= msr;
927 vcpu->arch.guest_owned_ext |= msr;
928 kvmppc_recalc_shadow_msr(vcpu);
929
930 return RESUME_GUEST;
931 }
932
933 /*
934 * Kernel code using FP or VMX could have flushed guest state to
935 * the thread_struct; if so, get it back now.
936 */
kvmppc_handle_lost_ext(struct kvm_vcpu * vcpu)937 static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
938 {
939 unsigned long lost_ext;
940
941 lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
942 if (!lost_ext)
943 return;
944
945 if (lost_ext & MSR_FP) {
946 preempt_disable();
947 enable_kernel_fp();
948 load_fp_state(&vcpu->arch.fp);
949 disable_kernel_fp();
950 preempt_enable();
951 }
952 #ifdef CONFIG_ALTIVEC
953 if (lost_ext & MSR_VEC) {
954 preempt_disable();
955 enable_kernel_altivec();
956 load_vr_state(&vcpu->arch.vr);
957 disable_kernel_altivec();
958 preempt_enable();
959 }
960 #endif
961 current->thread.regs->msr |= lost_ext;
962 }
963
964 #ifdef CONFIG_PPC_BOOK3S_64
965
kvmppc_trigger_fac_interrupt(struct kvm_vcpu * vcpu,ulong fac)966 void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
967 {
968 /* Inject the Interrupt Cause field and trigger a guest interrupt */
969 vcpu->arch.fscr &= ~(0xffULL << 56);
970 vcpu->arch.fscr |= (fac << 56);
971 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
972 }
973
kvmppc_emulate_fac(struct kvm_vcpu * vcpu,ulong fac)974 static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
975 {
976 enum emulation_result er = EMULATE_FAIL;
977
978 if (!(kvmppc_get_msr(vcpu) & MSR_PR))
979 er = kvmppc_emulate_instruction(vcpu);
980
981 if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
982 /* Couldn't emulate, trigger interrupt in guest */
983 kvmppc_trigger_fac_interrupt(vcpu, fac);
984 }
985 }
986
987 /* Enable facilities (TAR, EBB, DSCR) for the guest */
kvmppc_handle_fac(struct kvm_vcpu * vcpu,ulong fac)988 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
989 {
990 bool guest_fac_enabled;
991 BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
992
993 /*
994 * Not every facility is enabled by FSCR bits, check whether the
995 * guest has this facility enabled at all.
996 */
997 switch (fac) {
998 case FSCR_TAR_LG:
999 case FSCR_EBB_LG:
1000 guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
1001 break;
1002 case FSCR_TM_LG:
1003 guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
1004 break;
1005 default:
1006 guest_fac_enabled = false;
1007 break;
1008 }
1009
1010 if (!guest_fac_enabled) {
1011 /* Facility not enabled by the guest */
1012 kvmppc_trigger_fac_interrupt(vcpu, fac);
1013 return RESUME_GUEST;
1014 }
1015
1016 switch (fac) {
1017 case FSCR_TAR_LG:
1018 /* TAR switching isn't lazy in Linux yet */
1019 current->thread.tar = mfspr(SPRN_TAR);
1020 mtspr(SPRN_TAR, vcpu->arch.tar);
1021 vcpu->arch.shadow_fscr |= FSCR_TAR;
1022 break;
1023 default:
1024 kvmppc_emulate_fac(vcpu, fac);
1025 break;
1026 }
1027
1028 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1029 /* Since we disabled MSR_TM at privilege state, the mfspr instruction
1030 * for TM spr can trigger TM fac unavailable. In this case, the
1031 * emulation is handled by kvmppc_emulate_fac(), which invokes
1032 * kvmppc_emulate_mfspr() finally. But note the mfspr can include
1033 * RT for NV registers. So it need to restore those NV reg to reflect
1034 * the update.
1035 */
1036 if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR))
1037 return RESUME_GUEST_NV;
1038 #endif
1039
1040 return RESUME_GUEST;
1041 }
1042
kvmppc_set_fscr(struct kvm_vcpu * vcpu,u64 fscr)1043 void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
1044 {
1045 if (fscr & FSCR_SCV)
1046 fscr &= ~FSCR_SCV; /* SCV must not be enabled */
1047 if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
1048 /* TAR got dropped, drop it in shadow too */
1049 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1050 } else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) {
1051 vcpu->arch.fscr = fscr;
1052 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
1053 return;
1054 }
1055
1056 vcpu->arch.fscr = fscr;
1057 }
1058 #endif
1059
kvmppc_setup_debug(struct kvm_vcpu * vcpu)1060 static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
1061 {
1062 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1063 u64 msr = kvmppc_get_msr(vcpu);
1064
1065 kvmppc_set_msr(vcpu, msr | MSR_SE);
1066 }
1067 }
1068
kvmppc_clear_debug(struct kvm_vcpu * vcpu)1069 static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
1070 {
1071 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1072 u64 msr = kvmppc_get_msr(vcpu);
1073
1074 kvmppc_set_msr(vcpu, msr & ~MSR_SE);
1075 }
1076 }
1077
kvmppc_exit_pr_progint(struct kvm_vcpu * vcpu,unsigned int exit_nr)1078 static int kvmppc_exit_pr_progint(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1079 {
1080 enum emulation_result er;
1081 ulong flags;
1082 u32 last_inst;
1083 int emul, r;
1084
1085 /*
1086 * shadow_srr1 only contains valid flags if we came here via a program
1087 * exception. The other exceptions (emulation assist, FP unavailable,
1088 * etc.) do not provide flags in SRR1, so use an illegal-instruction
1089 * exception when injecting a program interrupt into the guest.
1090 */
1091 if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
1092 flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
1093 else
1094 flags = SRR1_PROGILL;
1095
1096 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1097 if (emul != EMULATE_DONE)
1098 return RESUME_GUEST;
1099
1100 if (kvmppc_get_msr(vcpu) & MSR_PR) {
1101 #ifdef EXIT_DEBUG
1102 pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
1103 kvmppc_get_pc(vcpu), last_inst);
1104 #endif
1105 if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
1106 kvmppc_core_queue_program(vcpu, flags);
1107 return RESUME_GUEST;
1108 }
1109 }
1110
1111 vcpu->stat.emulated_inst_exits++;
1112 er = kvmppc_emulate_instruction(vcpu);
1113 switch (er) {
1114 case EMULATE_DONE:
1115 r = RESUME_GUEST_NV;
1116 break;
1117 case EMULATE_AGAIN:
1118 r = RESUME_GUEST;
1119 break;
1120 case EMULATE_FAIL:
1121 pr_crit("%s: emulation at %lx failed (%08x)\n",
1122 __func__, kvmppc_get_pc(vcpu), last_inst);
1123 kvmppc_core_queue_program(vcpu, flags);
1124 r = RESUME_GUEST;
1125 break;
1126 case EMULATE_DO_MMIO:
1127 vcpu->run->exit_reason = KVM_EXIT_MMIO;
1128 r = RESUME_HOST_NV;
1129 break;
1130 case EMULATE_EXIT_USER:
1131 r = RESUME_HOST_NV;
1132 break;
1133 default:
1134 BUG();
1135 }
1136
1137 return r;
1138 }
1139
kvmppc_handle_exit_pr(struct kvm_vcpu * vcpu,unsigned int exit_nr)1140 int kvmppc_handle_exit_pr(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1141 {
1142 struct kvm_run *run = vcpu->run;
1143 int r = RESUME_HOST;
1144 int s;
1145
1146 vcpu->stat.sum_exits++;
1147
1148 run->exit_reason = KVM_EXIT_UNKNOWN;
1149 run->ready_for_interrupt_injection = 1;
1150
1151 /* We get here with MSR.EE=1 */
1152
1153 trace_kvm_exit(exit_nr, vcpu);
1154 guest_exit();
1155
1156 switch (exit_nr) {
1157 case BOOK3S_INTERRUPT_INST_STORAGE:
1158 {
1159 ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1160 vcpu->stat.pf_instruc++;
1161
1162 if (kvmppc_is_split_real(vcpu))
1163 kvmppc_fixup_split_real(vcpu);
1164
1165 #ifdef CONFIG_PPC_BOOK3S_32
1166 /* We set segments as unused segments when invalidating them. So
1167 * treat the respective fault as segment fault. */
1168 {
1169 struct kvmppc_book3s_shadow_vcpu *svcpu;
1170 u32 sr;
1171
1172 svcpu = svcpu_get(vcpu);
1173 sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
1174 svcpu_put(svcpu);
1175 if (sr == SR_INVALID) {
1176 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
1177 r = RESUME_GUEST;
1178 break;
1179 }
1180 }
1181 #endif
1182
1183 /* only care about PTEG not found errors, but leave NX alone */
1184 if (shadow_srr1 & 0x40000000) {
1185 int idx = srcu_read_lock(&vcpu->kvm->srcu);
1186 r = kvmppc_handle_pagefault(vcpu, kvmppc_get_pc(vcpu), exit_nr);
1187 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1188 vcpu->stat.sp_instruc++;
1189 } else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
1190 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
1191 /*
1192 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
1193 * so we can't use the NX bit inside the guest. Let's cross our fingers,
1194 * that no guest that needs the dcbz hack does NX.
1195 */
1196 kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
1197 r = RESUME_GUEST;
1198 } else {
1199 kvmppc_core_queue_inst_storage(vcpu,
1200 shadow_srr1 & 0x58000000);
1201 r = RESUME_GUEST;
1202 }
1203 break;
1204 }
1205 case BOOK3S_INTERRUPT_DATA_STORAGE:
1206 {
1207 ulong dar = kvmppc_get_fault_dar(vcpu);
1208 u32 fault_dsisr = vcpu->arch.fault_dsisr;
1209 vcpu->stat.pf_storage++;
1210
1211 #ifdef CONFIG_PPC_BOOK3S_32
1212 /* We set segments as unused segments when invalidating them. So
1213 * treat the respective fault as segment fault. */
1214 {
1215 struct kvmppc_book3s_shadow_vcpu *svcpu;
1216 u32 sr;
1217
1218 svcpu = svcpu_get(vcpu);
1219 sr = svcpu->sr[dar >> SID_SHIFT];
1220 svcpu_put(svcpu);
1221 if (sr == SR_INVALID) {
1222 kvmppc_mmu_map_segment(vcpu, dar);
1223 r = RESUME_GUEST;
1224 break;
1225 }
1226 }
1227 #endif
1228
1229 /*
1230 * We need to handle missing shadow PTEs, and
1231 * protection faults due to us mapping a page read-only
1232 * when the guest thinks it is writable.
1233 */
1234 if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
1235 int idx = srcu_read_lock(&vcpu->kvm->srcu);
1236 r = kvmppc_handle_pagefault(vcpu, dar, exit_nr);
1237 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1238 } else {
1239 kvmppc_core_queue_data_storage(vcpu, dar, fault_dsisr);
1240 r = RESUME_GUEST;
1241 }
1242 break;
1243 }
1244 case BOOK3S_INTERRUPT_DATA_SEGMENT:
1245 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1246 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1247 kvmppc_book3s_queue_irqprio(vcpu,
1248 BOOK3S_INTERRUPT_DATA_SEGMENT);
1249 }
1250 r = RESUME_GUEST;
1251 break;
1252 case BOOK3S_INTERRUPT_INST_SEGMENT:
1253 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
1254 kvmppc_book3s_queue_irqprio(vcpu,
1255 BOOK3S_INTERRUPT_INST_SEGMENT);
1256 }
1257 r = RESUME_GUEST;
1258 break;
1259 /* We're good on these - the host merely wanted to get our attention */
1260 case BOOK3S_INTERRUPT_DECREMENTER:
1261 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1262 case BOOK3S_INTERRUPT_DOORBELL:
1263 case BOOK3S_INTERRUPT_H_DOORBELL:
1264 vcpu->stat.dec_exits++;
1265 r = RESUME_GUEST;
1266 break;
1267 case BOOK3S_INTERRUPT_EXTERNAL:
1268 case BOOK3S_INTERRUPT_EXTERNAL_HV:
1269 case BOOK3S_INTERRUPT_H_VIRT:
1270 vcpu->stat.ext_intr_exits++;
1271 r = RESUME_GUEST;
1272 break;
1273 case BOOK3S_INTERRUPT_HMI:
1274 case BOOK3S_INTERRUPT_PERFMON:
1275 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1276 r = RESUME_GUEST;
1277 break;
1278 case BOOK3S_INTERRUPT_PROGRAM:
1279 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1280 r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1281 break;
1282 case BOOK3S_INTERRUPT_SYSCALL:
1283 {
1284 u32 last_sc;
1285 int emul;
1286
1287 /* Get last sc for papr */
1288 if (vcpu->arch.papr_enabled) {
1289 /* The sc instruction points SRR0 to the next inst */
1290 emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
1291 if (emul != EMULATE_DONE) {
1292 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
1293 r = RESUME_GUEST;
1294 break;
1295 }
1296 }
1297
1298 if (vcpu->arch.papr_enabled &&
1299 (last_sc == 0x44000022) &&
1300 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1301 /* SC 1 papr hypercalls */
1302 ulong cmd = kvmppc_get_gpr(vcpu, 3);
1303 int i;
1304
1305 #ifdef CONFIG_PPC_BOOK3S_64
1306 if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
1307 r = RESUME_GUEST;
1308 break;
1309 }
1310 #endif
1311
1312 run->papr_hcall.nr = cmd;
1313 for (i = 0; i < 9; ++i) {
1314 ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
1315 run->papr_hcall.args[i] = gpr;
1316 }
1317 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1318 vcpu->arch.hcall_needed = 1;
1319 r = RESUME_HOST;
1320 } else if (vcpu->arch.osi_enabled &&
1321 (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
1322 (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
1323 /* MOL hypercalls */
1324 u64 *gprs = run->osi.gprs;
1325 int i;
1326
1327 run->exit_reason = KVM_EXIT_OSI;
1328 for (i = 0; i < 32; i++)
1329 gprs[i] = kvmppc_get_gpr(vcpu, i);
1330 vcpu->arch.osi_needed = 1;
1331 r = RESUME_HOST_NV;
1332 } else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1333 (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
1334 /* KVM PV hypercalls */
1335 kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
1336 r = RESUME_GUEST;
1337 } else {
1338 /* Guest syscalls */
1339 vcpu->stat.syscall_exits++;
1340 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1341 r = RESUME_GUEST;
1342 }
1343 break;
1344 }
1345 case BOOK3S_INTERRUPT_FP_UNAVAIL:
1346 case BOOK3S_INTERRUPT_ALTIVEC:
1347 case BOOK3S_INTERRUPT_VSX:
1348 {
1349 int ext_msr = 0;
1350 int emul;
1351 u32 last_inst;
1352
1353 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
1354 /* Do paired single instruction emulation */
1355 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1356 &last_inst);
1357 if (emul == EMULATE_DONE)
1358 r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1359 else
1360 r = RESUME_GUEST;
1361
1362 break;
1363 }
1364
1365 /* Enable external provider */
1366 switch (exit_nr) {
1367 case BOOK3S_INTERRUPT_FP_UNAVAIL:
1368 ext_msr = MSR_FP;
1369 break;
1370
1371 case BOOK3S_INTERRUPT_ALTIVEC:
1372 ext_msr = MSR_VEC;
1373 break;
1374
1375 case BOOK3S_INTERRUPT_VSX:
1376 ext_msr = MSR_VSX;
1377 break;
1378 }
1379
1380 r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1381 break;
1382 }
1383 case BOOK3S_INTERRUPT_ALIGNMENT:
1384 {
1385 u32 last_inst;
1386 int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1387
1388 if (emul == EMULATE_DONE) {
1389 u32 dsisr;
1390 u64 dar;
1391
1392 dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
1393 dar = kvmppc_alignment_dar(vcpu, last_inst);
1394
1395 kvmppc_set_dsisr(vcpu, dsisr);
1396 kvmppc_set_dar(vcpu, dar);
1397
1398 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1399 }
1400 r = RESUME_GUEST;
1401 break;
1402 }
1403 #ifdef CONFIG_PPC_BOOK3S_64
1404 case BOOK3S_INTERRUPT_FAC_UNAVAIL:
1405 r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
1406 break;
1407 #endif
1408 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1409 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1410 r = RESUME_GUEST;
1411 break;
1412 case BOOK3S_INTERRUPT_TRACE:
1413 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1414 run->exit_reason = KVM_EXIT_DEBUG;
1415 r = RESUME_HOST;
1416 } else {
1417 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1418 r = RESUME_GUEST;
1419 }
1420 break;
1421 default:
1422 {
1423 ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1424 /* Ugh - bork here! What did we get? */
1425 printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1426 exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1427 r = RESUME_HOST;
1428 BUG();
1429 break;
1430 }
1431 }
1432
1433 if (!(r & RESUME_HOST)) {
1434 /* To avoid clobbering exit_reason, only check for signals if
1435 * we aren't already exiting to userspace for some other
1436 * reason. */
1437
1438 /*
1439 * Interrupts could be timers for the guest which we have to
1440 * inject again, so let's postpone them until we're in the guest
1441 * and if we really did time things so badly, then we just exit
1442 * again due to a host external interrupt.
1443 */
1444 s = kvmppc_prepare_to_enter(vcpu);
1445 if (s <= 0)
1446 r = s;
1447 else {
1448 /* interrupts now hard-disabled */
1449 kvmppc_fix_ee_before_entry();
1450 }
1451
1452 kvmppc_handle_lost_ext(vcpu);
1453 }
1454
1455 trace_kvm_book3s_reenter(r, vcpu);
1456
1457 return r;
1458 }
1459
kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1460 static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
1461 struct kvm_sregs *sregs)
1462 {
1463 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1464 int i;
1465
1466 sregs->pvr = vcpu->arch.pvr;
1467
1468 sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
1469 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1470 for (i = 0; i < 64; i++) {
1471 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
1472 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1473 }
1474 } else {
1475 for (i = 0; i < 16; i++)
1476 sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1477
1478 for (i = 0; i < 8; i++) {
1479 sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
1480 sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
1481 }
1482 }
1483
1484 return 0;
1485 }
1486
kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1487 static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
1488 struct kvm_sregs *sregs)
1489 {
1490 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1491 int i;
1492
1493 kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1494
1495 vcpu3s->sdr1 = sregs->u.s.sdr1;
1496 #ifdef CONFIG_PPC_BOOK3S_64
1497 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1498 /* Flush all SLB entries */
1499 vcpu->arch.mmu.slbmte(vcpu, 0, 0);
1500 vcpu->arch.mmu.slbia(vcpu);
1501
1502 for (i = 0; i < 64; i++) {
1503 u64 rb = sregs->u.s.ppc64.slb[i].slbe;
1504 u64 rs = sregs->u.s.ppc64.slb[i].slbv;
1505
1506 if (rb & SLB_ESID_V)
1507 vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1508 }
1509 } else
1510 #endif
1511 {
1512 for (i = 0; i < 16; i++) {
1513 vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
1514 }
1515 for (i = 0; i < 8; i++) {
1516 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
1517 (u32)sregs->u.s.ppc32.ibat[i]);
1518 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
1519 (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
1520 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
1521 (u32)sregs->u.s.ppc32.dbat[i]);
1522 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
1523 (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
1524 }
1525 }
1526
1527 /* Flush the MMU after messing with the segments */
1528 kvmppc_mmu_pte_flush(vcpu, 0, 0);
1529
1530 return 0;
1531 }
1532
kvmppc_get_one_reg_pr(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1533 static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1534 union kvmppc_one_reg *val)
1535 {
1536 int r = 0;
1537
1538 switch (id) {
1539 case KVM_REG_PPC_DEBUG_INST:
1540 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1541 break;
1542 case KVM_REG_PPC_HIOR:
1543 *val = get_reg_val(id, to_book3s(vcpu)->hior);
1544 break;
1545 case KVM_REG_PPC_VTB:
1546 *val = get_reg_val(id, to_book3s(vcpu)->vtb);
1547 break;
1548 case KVM_REG_PPC_LPCR:
1549 case KVM_REG_PPC_LPCR_64:
1550 /*
1551 * We are only interested in the LPCR_ILE bit
1552 */
1553 if (vcpu->arch.intr_msr & MSR_LE)
1554 *val = get_reg_val(id, LPCR_ILE);
1555 else
1556 *val = get_reg_val(id, 0);
1557 break;
1558 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1559 case KVM_REG_PPC_TFHAR:
1560 *val = get_reg_val(id, vcpu->arch.tfhar);
1561 break;
1562 case KVM_REG_PPC_TFIAR:
1563 *val = get_reg_val(id, vcpu->arch.tfiar);
1564 break;
1565 case KVM_REG_PPC_TEXASR:
1566 *val = get_reg_val(id, vcpu->arch.texasr);
1567 break;
1568 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1569 *val = get_reg_val(id,
1570 vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]);
1571 break;
1572 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1573 {
1574 int i, j;
1575
1576 i = id - KVM_REG_PPC_TM_VSR0;
1577 if (i < 32)
1578 for (j = 0; j < TS_FPRWIDTH; j++)
1579 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1580 else {
1581 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1582 val->vval = vcpu->arch.vr_tm.vr[i-32];
1583 else
1584 r = -ENXIO;
1585 }
1586 break;
1587 }
1588 case KVM_REG_PPC_TM_CR:
1589 *val = get_reg_val(id, vcpu->arch.cr_tm);
1590 break;
1591 case KVM_REG_PPC_TM_XER:
1592 *val = get_reg_val(id, vcpu->arch.xer_tm);
1593 break;
1594 case KVM_REG_PPC_TM_LR:
1595 *val = get_reg_val(id, vcpu->arch.lr_tm);
1596 break;
1597 case KVM_REG_PPC_TM_CTR:
1598 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1599 break;
1600 case KVM_REG_PPC_TM_FPSCR:
1601 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1602 break;
1603 case KVM_REG_PPC_TM_AMR:
1604 *val = get_reg_val(id, vcpu->arch.amr_tm);
1605 break;
1606 case KVM_REG_PPC_TM_PPR:
1607 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1608 break;
1609 case KVM_REG_PPC_TM_VRSAVE:
1610 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1611 break;
1612 case KVM_REG_PPC_TM_VSCR:
1613 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1614 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1615 else
1616 r = -ENXIO;
1617 break;
1618 case KVM_REG_PPC_TM_DSCR:
1619 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1620 break;
1621 case KVM_REG_PPC_TM_TAR:
1622 *val = get_reg_val(id, vcpu->arch.tar_tm);
1623 break;
1624 #endif
1625 default:
1626 r = -EINVAL;
1627 break;
1628 }
1629
1630 return r;
1631 }
1632
kvmppc_set_lpcr_pr(struct kvm_vcpu * vcpu,u64 new_lpcr)1633 static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
1634 {
1635 if (new_lpcr & LPCR_ILE)
1636 vcpu->arch.intr_msr |= MSR_LE;
1637 else
1638 vcpu->arch.intr_msr &= ~MSR_LE;
1639 }
1640
kvmppc_set_one_reg_pr(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1641 static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1642 union kvmppc_one_reg *val)
1643 {
1644 int r = 0;
1645
1646 switch (id) {
1647 case KVM_REG_PPC_HIOR:
1648 to_book3s(vcpu)->hior = set_reg_val(id, *val);
1649 to_book3s(vcpu)->hior_explicit = true;
1650 break;
1651 case KVM_REG_PPC_VTB:
1652 to_book3s(vcpu)->vtb = set_reg_val(id, *val);
1653 break;
1654 case KVM_REG_PPC_LPCR:
1655 case KVM_REG_PPC_LPCR_64:
1656 kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
1657 break;
1658 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1659 case KVM_REG_PPC_TFHAR:
1660 vcpu->arch.tfhar = set_reg_val(id, *val);
1661 break;
1662 case KVM_REG_PPC_TFIAR:
1663 vcpu->arch.tfiar = set_reg_val(id, *val);
1664 break;
1665 case KVM_REG_PPC_TEXASR:
1666 vcpu->arch.texasr = set_reg_val(id, *val);
1667 break;
1668 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1669 vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] =
1670 set_reg_val(id, *val);
1671 break;
1672 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1673 {
1674 int i, j;
1675
1676 i = id - KVM_REG_PPC_TM_VSR0;
1677 if (i < 32)
1678 for (j = 0; j < TS_FPRWIDTH; j++)
1679 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1680 else
1681 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1682 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1683 else
1684 r = -ENXIO;
1685 break;
1686 }
1687 case KVM_REG_PPC_TM_CR:
1688 vcpu->arch.cr_tm = set_reg_val(id, *val);
1689 break;
1690 case KVM_REG_PPC_TM_XER:
1691 vcpu->arch.xer_tm = set_reg_val(id, *val);
1692 break;
1693 case KVM_REG_PPC_TM_LR:
1694 vcpu->arch.lr_tm = set_reg_val(id, *val);
1695 break;
1696 case KVM_REG_PPC_TM_CTR:
1697 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1698 break;
1699 case KVM_REG_PPC_TM_FPSCR:
1700 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1701 break;
1702 case KVM_REG_PPC_TM_AMR:
1703 vcpu->arch.amr_tm = set_reg_val(id, *val);
1704 break;
1705 case KVM_REG_PPC_TM_PPR:
1706 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1707 break;
1708 case KVM_REG_PPC_TM_VRSAVE:
1709 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1710 break;
1711 case KVM_REG_PPC_TM_VSCR:
1712 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1713 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1714 else
1715 r = -ENXIO;
1716 break;
1717 case KVM_REG_PPC_TM_DSCR:
1718 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1719 break;
1720 case KVM_REG_PPC_TM_TAR:
1721 vcpu->arch.tar_tm = set_reg_val(id, *val);
1722 break;
1723 #endif
1724 default:
1725 r = -EINVAL;
1726 break;
1727 }
1728
1729 return r;
1730 }
1731
kvmppc_core_vcpu_create_pr(struct kvm_vcpu * vcpu)1732 static int kvmppc_core_vcpu_create_pr(struct kvm_vcpu *vcpu)
1733 {
1734 struct kvmppc_vcpu_book3s *vcpu_book3s;
1735 unsigned long p;
1736 int err;
1737
1738 err = -ENOMEM;
1739
1740 vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
1741 if (!vcpu_book3s)
1742 goto out;
1743 vcpu->arch.book3s = vcpu_book3s;
1744
1745 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1746 vcpu->arch.shadow_vcpu =
1747 kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
1748 if (!vcpu->arch.shadow_vcpu)
1749 goto free_vcpu3s;
1750 #endif
1751
1752 p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
1753 if (!p)
1754 goto free_shadow_vcpu;
1755 vcpu->arch.shared = (void *)p;
1756 #ifdef CONFIG_PPC_BOOK3S_64
1757 /* Always start the shared struct in native endian mode */
1758 #ifdef __BIG_ENDIAN__
1759 vcpu->arch.shared_big_endian = true;
1760 #else
1761 vcpu->arch.shared_big_endian = false;
1762 #endif
1763
1764 /*
1765 * Default to the same as the host if we're on sufficiently
1766 * recent machine that we have 1TB segments;
1767 * otherwise default to PPC970FX.
1768 */
1769 vcpu->arch.pvr = 0x3C0301;
1770 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1771 vcpu->arch.pvr = mfspr(SPRN_PVR);
1772 vcpu->arch.intr_msr = MSR_SF;
1773 #else
1774 /* default to book3s_32 (750) */
1775 vcpu->arch.pvr = 0x84202;
1776 vcpu->arch.intr_msr = 0;
1777 #endif
1778 kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1779 vcpu->arch.slb_nr = 64;
1780
1781 vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1782
1783 err = kvmppc_mmu_init_pr(vcpu);
1784 if (err < 0)
1785 goto free_shared_page;
1786
1787 return 0;
1788
1789 free_shared_page:
1790 free_page((unsigned long)vcpu->arch.shared);
1791 free_shadow_vcpu:
1792 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1793 kfree(vcpu->arch.shadow_vcpu);
1794 free_vcpu3s:
1795 #endif
1796 vfree(vcpu_book3s);
1797 out:
1798 return err;
1799 }
1800
kvmppc_core_vcpu_free_pr(struct kvm_vcpu * vcpu)1801 static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1802 {
1803 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
1804
1805 kvmppc_mmu_destroy_pr(vcpu);
1806 free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1807 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1808 kfree(vcpu->arch.shadow_vcpu);
1809 #endif
1810 vfree(vcpu_book3s);
1811 }
1812
kvmppc_vcpu_run_pr(struct kvm_vcpu * vcpu)1813 static int kvmppc_vcpu_run_pr(struct kvm_vcpu *vcpu)
1814 {
1815 int ret;
1816
1817 /* Check if we can run the vcpu at all */
1818 if (!vcpu->arch.sane) {
1819 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1820 ret = -EINVAL;
1821 goto out;
1822 }
1823
1824 kvmppc_setup_debug(vcpu);
1825
1826 /*
1827 * Interrupts could be timers for the guest which we have to inject
1828 * again, so let's postpone them until we're in the guest and if we
1829 * really did time things so badly, then we just exit again due to
1830 * a host external interrupt.
1831 */
1832 ret = kvmppc_prepare_to_enter(vcpu);
1833 if (ret <= 0)
1834 goto out;
1835 /* interrupts now hard-disabled */
1836
1837 /* Save FPU, Altivec and VSX state */
1838 giveup_all(current);
1839
1840 /* Preload FPU if it's enabled */
1841 if (kvmppc_get_msr(vcpu) & MSR_FP)
1842 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
1843
1844 kvmppc_fix_ee_before_entry();
1845
1846 ret = __kvmppc_vcpu_run(vcpu);
1847
1848 kvmppc_clear_debug(vcpu);
1849
1850 /* No need for guest_exit. It's done in handle_exit.
1851 We also get here with interrupts enabled. */
1852
1853 /* Make sure we save the guest FPU/Altivec/VSX state */
1854 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
1855
1856 /* Make sure we save the guest TAR/EBB/DSCR state */
1857 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1858
1859 srr_regs_clobbered();
1860 out:
1861 vcpu->mode = OUTSIDE_GUEST_MODE;
1862 return ret;
1863 }
1864
1865 /*
1866 * Get (and clear) the dirty memory log for a memory slot.
1867 */
kvm_vm_ioctl_get_dirty_log_pr(struct kvm * kvm,struct kvm_dirty_log * log)1868 static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
1869 struct kvm_dirty_log *log)
1870 {
1871 struct kvm_memory_slot *memslot;
1872 struct kvm_vcpu *vcpu;
1873 ulong ga, ga_end;
1874 int is_dirty = 0;
1875 int r;
1876 unsigned long n;
1877
1878 mutex_lock(&kvm->slots_lock);
1879
1880 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
1881 if (r)
1882 goto out;
1883
1884 /* If nothing is dirty, don't bother messing with page tables. */
1885 if (is_dirty) {
1886 ga = memslot->base_gfn << PAGE_SHIFT;
1887 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1888
1889 kvm_for_each_vcpu(n, vcpu, kvm)
1890 kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
1891
1892 n = kvm_dirty_bitmap_bytes(memslot);
1893 memset(memslot->dirty_bitmap, 0, n);
1894 }
1895
1896 r = 0;
1897 out:
1898 mutex_unlock(&kvm->slots_lock);
1899 return r;
1900 }
1901
kvmppc_core_flush_memslot_pr(struct kvm * kvm,struct kvm_memory_slot * memslot)1902 static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
1903 struct kvm_memory_slot *memslot)
1904 {
1905 return;
1906 }
1907
kvmppc_core_prepare_memory_region_pr(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1908 static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
1909 const struct kvm_memory_slot *old,
1910 struct kvm_memory_slot *new,
1911 enum kvm_mr_change change)
1912 {
1913 return 0;
1914 }
1915
kvmppc_core_commit_memory_region_pr(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1916 static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1917 struct kvm_memory_slot *old,
1918 const struct kvm_memory_slot *new,
1919 enum kvm_mr_change change)
1920 {
1921 return;
1922 }
1923
kvmppc_core_free_memslot_pr(struct kvm_memory_slot * slot)1924 static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *slot)
1925 {
1926 return;
1927 }
1928
1929 #ifdef CONFIG_PPC64
kvm_vm_ioctl_get_smmu_info_pr(struct kvm * kvm,struct kvm_ppc_smmu_info * info)1930 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1931 struct kvm_ppc_smmu_info *info)
1932 {
1933 long int i;
1934 struct kvm_vcpu *vcpu;
1935
1936 info->flags = 0;
1937
1938 /* SLB is always 64 entries */
1939 info->slb_size = 64;
1940
1941 /* Standard 4k base page size segment */
1942 info->sps[0].page_shift = 12;
1943 info->sps[0].slb_enc = 0;
1944 info->sps[0].enc[0].page_shift = 12;
1945 info->sps[0].enc[0].pte_enc = 0;
1946
1947 /*
1948 * 64k large page size.
1949 * We only want to put this in if the CPUs we're emulating
1950 * support it, but unfortunately we don't have a vcpu easily
1951 * to hand here to test. Just pick the first vcpu, and if
1952 * that doesn't exist yet, report the minimum capability,
1953 * i.e., no 64k pages.
1954 * 1T segment support goes along with 64k pages.
1955 */
1956 i = 1;
1957 vcpu = kvm_get_vcpu(kvm, 0);
1958 if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
1959 info->flags = KVM_PPC_1T_SEGMENTS;
1960 info->sps[i].page_shift = 16;
1961 info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
1962 info->sps[i].enc[0].page_shift = 16;
1963 info->sps[i].enc[0].pte_enc = 1;
1964 ++i;
1965 }
1966
1967 /* Standard 16M large page size segment */
1968 info->sps[i].page_shift = 24;
1969 info->sps[i].slb_enc = SLB_VSID_L;
1970 info->sps[i].enc[0].page_shift = 24;
1971 info->sps[i].enc[0].pte_enc = 0;
1972
1973 return 0;
1974 }
1975
kvm_configure_mmu_pr(struct kvm * kvm,struct kvm_ppc_mmuv3_cfg * cfg)1976 static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
1977 {
1978 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1979 return -ENODEV;
1980 /* Require flags and process table base and size to all be zero. */
1981 if (cfg->flags || cfg->process_table)
1982 return -EINVAL;
1983 return 0;
1984 }
1985
1986 #else
kvm_vm_ioctl_get_smmu_info_pr(struct kvm * kvm,struct kvm_ppc_smmu_info * info)1987 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1988 struct kvm_ppc_smmu_info *info)
1989 {
1990 /* We should not get called */
1991 BUG();
1992 return 0;
1993 }
1994 #endif /* CONFIG_PPC64 */
1995
1996 static unsigned int kvm_global_user_count = 0;
1997 static DEFINE_SPINLOCK(kvm_global_user_count_lock);
1998
kvmppc_core_init_vm_pr(struct kvm * kvm)1999 static int kvmppc_core_init_vm_pr(struct kvm *kvm)
2000 {
2001 mutex_init(&kvm->arch.hpt_mutex);
2002
2003 #ifdef CONFIG_PPC_BOOK3S_64
2004 /* Start out with the default set of hcalls enabled */
2005 kvmppc_pr_init_default_hcalls(kvm);
2006 #endif
2007
2008 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2009 spin_lock(&kvm_global_user_count_lock);
2010 if (++kvm_global_user_count == 1)
2011 pseries_disable_reloc_on_exc();
2012 spin_unlock(&kvm_global_user_count_lock);
2013 }
2014 return 0;
2015 }
2016
kvmppc_core_destroy_vm_pr(struct kvm * kvm)2017 static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
2018 {
2019 #ifdef CONFIG_PPC64
2020 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
2021 #endif
2022
2023 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2024 spin_lock(&kvm_global_user_count_lock);
2025 BUG_ON(kvm_global_user_count == 0);
2026 if (--kvm_global_user_count == 0)
2027 pseries_enable_reloc_on_exc();
2028 spin_unlock(&kvm_global_user_count_lock);
2029 }
2030 }
2031
kvmppc_core_check_processor_compat_pr(void)2032 static int kvmppc_core_check_processor_compat_pr(void)
2033 {
2034 /*
2035 * PR KVM can work on POWER9 inside a guest partition
2036 * running in HPT mode. It can't work if we are using
2037 * radix translation (because radix provides no way for
2038 * a process to have unique translations in quadrant 3).
2039 */
2040 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
2041 return -EIO;
2042 return 0;
2043 }
2044
kvm_arch_vm_ioctl_pr(struct file * filp,unsigned int ioctl,unsigned long arg)2045 static long kvm_arch_vm_ioctl_pr(struct file *filp,
2046 unsigned int ioctl, unsigned long arg)
2047 {
2048 return -ENOTTY;
2049 }
2050
2051 static struct kvmppc_ops kvm_ops_pr = {
2052 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
2053 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
2054 .get_one_reg = kvmppc_get_one_reg_pr,
2055 .set_one_reg = kvmppc_set_one_reg_pr,
2056 .vcpu_load = kvmppc_core_vcpu_load_pr,
2057 .vcpu_put = kvmppc_core_vcpu_put_pr,
2058 .inject_interrupt = kvmppc_inject_interrupt_pr,
2059 .set_msr = kvmppc_set_msr_pr,
2060 .vcpu_run = kvmppc_vcpu_run_pr,
2061 .vcpu_create = kvmppc_core_vcpu_create_pr,
2062 .vcpu_free = kvmppc_core_vcpu_free_pr,
2063 .check_requests = kvmppc_core_check_requests_pr,
2064 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
2065 .flush_memslot = kvmppc_core_flush_memslot_pr,
2066 .prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
2067 .commit_memory_region = kvmppc_core_commit_memory_region_pr,
2068 .unmap_gfn_range = kvm_unmap_gfn_range_pr,
2069 .age_gfn = kvm_age_gfn_pr,
2070 .test_age_gfn = kvm_test_age_gfn_pr,
2071 .set_spte_gfn = kvm_set_spte_gfn_pr,
2072 .free_memslot = kvmppc_core_free_memslot_pr,
2073 .init_vm = kvmppc_core_init_vm_pr,
2074 .destroy_vm = kvmppc_core_destroy_vm_pr,
2075 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
2076 .emulate_op = kvmppc_core_emulate_op_pr,
2077 .emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
2078 .emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
2079 .fast_vcpu_kick = kvm_vcpu_kick,
2080 .arch_vm_ioctl = kvm_arch_vm_ioctl_pr,
2081 #ifdef CONFIG_PPC_BOOK3S_64
2082 .hcall_implemented = kvmppc_hcall_impl_pr,
2083 .configure_mmu = kvm_configure_mmu_pr,
2084 #endif
2085 .giveup_ext = kvmppc_giveup_ext,
2086 };
2087
2088
kvmppc_book3s_init_pr(void)2089 int kvmppc_book3s_init_pr(void)
2090 {
2091 int r;
2092
2093 r = kvmppc_core_check_processor_compat_pr();
2094 if (r < 0)
2095 return r;
2096
2097 kvm_ops_pr.owner = THIS_MODULE;
2098 kvmppc_pr_ops = &kvm_ops_pr;
2099
2100 r = kvmppc_mmu_hpte_sysinit();
2101 return r;
2102 }
2103
kvmppc_book3s_exit_pr(void)2104 void kvmppc_book3s_exit_pr(void)
2105 {
2106 kvmppc_pr_ops = NULL;
2107 kvmppc_mmu_hpte_sysexit();
2108 }
2109
2110 /*
2111 * We only support separate modules for book3s 64
2112 */
2113 #ifdef CONFIG_PPC_BOOK3S_64
2114
2115 module_init(kvmppc_book3s_init_pr);
2116 module_exit(kvmppc_book3s_exit_pr);
2117
2118 MODULE_LICENSE("GPL");
2119 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2120 MODULE_ALIAS("devname:kvm");
2121 #endif
2122