1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright IBM Corporation, 2018
4 * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com>
5 * Paul Mackerras <paulus@ozlabs.org>
6 *
7 * Description: KVM functions specific to running nested KVM-HV guests
8 * on Book3S processors (specifically POWER9 and later).
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/kvm_host.h>
13 #include <linux/llist.h>
14 #include <linux/pgtable.h>
15
16 #include <asm/kvm_ppc.h>
17 #include <asm/kvm_book3s.h>
18 #include <asm/mmu.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pte-walk.h>
21 #include <asm/reg.h>
22 #include <asm/plpar_wrappers.h>
23
24 static struct patb_entry *pseries_partition_tb;
25
26 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp);
27 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free);
28
kvmhv_save_hv_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)29 void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
30 {
31 struct kvmppc_vcore *vc = vcpu->arch.vcore;
32
33 hr->pcr = vc->pcr | PCR_MASK;
34 hr->dpdes = vc->dpdes;
35 hr->hfscr = vcpu->arch.hfscr;
36 hr->tb_offset = vc->tb_offset;
37 hr->dawr0 = vcpu->arch.dawr0;
38 hr->dawrx0 = vcpu->arch.dawrx0;
39 hr->ciabr = vcpu->arch.ciabr;
40 hr->purr = vcpu->arch.purr;
41 hr->spurr = vcpu->arch.spurr;
42 hr->ic = vcpu->arch.ic;
43 hr->vtb = vc->vtb;
44 hr->srr0 = vcpu->arch.shregs.srr0;
45 hr->srr1 = vcpu->arch.shregs.srr1;
46 hr->sprg[0] = vcpu->arch.shregs.sprg0;
47 hr->sprg[1] = vcpu->arch.shregs.sprg1;
48 hr->sprg[2] = vcpu->arch.shregs.sprg2;
49 hr->sprg[3] = vcpu->arch.shregs.sprg3;
50 hr->pidr = vcpu->arch.pid;
51 hr->cfar = vcpu->arch.cfar;
52 hr->ppr = vcpu->arch.ppr;
53 hr->dawr1 = vcpu->arch.dawr1;
54 hr->dawrx1 = vcpu->arch.dawrx1;
55 }
56
57 /* Use noinline_for_stack due to https://bugs.llvm.org/show_bug.cgi?id=49610 */
byteswap_pt_regs(struct pt_regs * regs)58 static noinline_for_stack void byteswap_pt_regs(struct pt_regs *regs)
59 {
60 unsigned long *addr = (unsigned long *) regs;
61
62 for (; addr < ((unsigned long *) (regs + 1)); addr++)
63 *addr = swab64(*addr);
64 }
65
byteswap_hv_regs(struct hv_guest_state * hr)66 static void byteswap_hv_regs(struct hv_guest_state *hr)
67 {
68 hr->version = swab64(hr->version);
69 hr->lpid = swab32(hr->lpid);
70 hr->vcpu_token = swab32(hr->vcpu_token);
71 hr->lpcr = swab64(hr->lpcr);
72 hr->pcr = swab64(hr->pcr) | PCR_MASK;
73 hr->amor = swab64(hr->amor);
74 hr->dpdes = swab64(hr->dpdes);
75 hr->hfscr = swab64(hr->hfscr);
76 hr->tb_offset = swab64(hr->tb_offset);
77 hr->dawr0 = swab64(hr->dawr0);
78 hr->dawrx0 = swab64(hr->dawrx0);
79 hr->ciabr = swab64(hr->ciabr);
80 hr->hdec_expiry = swab64(hr->hdec_expiry);
81 hr->purr = swab64(hr->purr);
82 hr->spurr = swab64(hr->spurr);
83 hr->ic = swab64(hr->ic);
84 hr->vtb = swab64(hr->vtb);
85 hr->hdar = swab64(hr->hdar);
86 hr->hdsisr = swab64(hr->hdsisr);
87 hr->heir = swab64(hr->heir);
88 hr->asdr = swab64(hr->asdr);
89 hr->srr0 = swab64(hr->srr0);
90 hr->srr1 = swab64(hr->srr1);
91 hr->sprg[0] = swab64(hr->sprg[0]);
92 hr->sprg[1] = swab64(hr->sprg[1]);
93 hr->sprg[2] = swab64(hr->sprg[2]);
94 hr->sprg[3] = swab64(hr->sprg[3]);
95 hr->pidr = swab64(hr->pidr);
96 hr->cfar = swab64(hr->cfar);
97 hr->ppr = swab64(hr->ppr);
98 hr->dawr1 = swab64(hr->dawr1);
99 hr->dawrx1 = swab64(hr->dawrx1);
100 }
101
save_hv_return_state(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)102 static void save_hv_return_state(struct kvm_vcpu *vcpu,
103 struct hv_guest_state *hr)
104 {
105 struct kvmppc_vcore *vc = vcpu->arch.vcore;
106
107 hr->dpdes = vc->dpdes;
108 hr->purr = vcpu->arch.purr;
109 hr->spurr = vcpu->arch.spurr;
110 hr->ic = vcpu->arch.ic;
111 hr->vtb = vc->vtb;
112 hr->srr0 = vcpu->arch.shregs.srr0;
113 hr->srr1 = vcpu->arch.shregs.srr1;
114 hr->sprg[0] = vcpu->arch.shregs.sprg0;
115 hr->sprg[1] = vcpu->arch.shregs.sprg1;
116 hr->sprg[2] = vcpu->arch.shregs.sprg2;
117 hr->sprg[3] = vcpu->arch.shregs.sprg3;
118 hr->pidr = vcpu->arch.pid;
119 hr->cfar = vcpu->arch.cfar;
120 hr->ppr = vcpu->arch.ppr;
121 switch (vcpu->arch.trap) {
122 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
123 hr->hdar = vcpu->arch.fault_dar;
124 hr->hdsisr = vcpu->arch.fault_dsisr;
125 hr->asdr = vcpu->arch.fault_gpa;
126 break;
127 case BOOK3S_INTERRUPT_H_INST_STORAGE:
128 hr->asdr = vcpu->arch.fault_gpa;
129 break;
130 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
131 hr->hfscr = ((~HFSCR_INTR_CAUSE & hr->hfscr) |
132 (HFSCR_INTR_CAUSE & vcpu->arch.hfscr));
133 break;
134 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
135 hr->heir = vcpu->arch.emul_inst;
136 break;
137 }
138 }
139
restore_hv_regs(struct kvm_vcpu * vcpu,const struct hv_guest_state * hr)140 static void restore_hv_regs(struct kvm_vcpu *vcpu, const struct hv_guest_state *hr)
141 {
142 struct kvmppc_vcore *vc = vcpu->arch.vcore;
143
144 vc->pcr = hr->pcr | PCR_MASK;
145 vc->dpdes = hr->dpdes;
146 vcpu->arch.hfscr = hr->hfscr;
147 vcpu->arch.dawr0 = hr->dawr0;
148 vcpu->arch.dawrx0 = hr->dawrx0;
149 vcpu->arch.ciabr = hr->ciabr;
150 vcpu->arch.purr = hr->purr;
151 vcpu->arch.spurr = hr->spurr;
152 vcpu->arch.ic = hr->ic;
153 vc->vtb = hr->vtb;
154 vcpu->arch.shregs.srr0 = hr->srr0;
155 vcpu->arch.shregs.srr1 = hr->srr1;
156 vcpu->arch.shregs.sprg0 = hr->sprg[0];
157 vcpu->arch.shregs.sprg1 = hr->sprg[1];
158 vcpu->arch.shregs.sprg2 = hr->sprg[2];
159 vcpu->arch.shregs.sprg3 = hr->sprg[3];
160 vcpu->arch.pid = hr->pidr;
161 vcpu->arch.cfar = hr->cfar;
162 vcpu->arch.ppr = hr->ppr;
163 vcpu->arch.dawr1 = hr->dawr1;
164 vcpu->arch.dawrx1 = hr->dawrx1;
165 }
166
kvmhv_restore_hv_return_state(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)167 void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu,
168 struct hv_guest_state *hr)
169 {
170 struct kvmppc_vcore *vc = vcpu->arch.vcore;
171
172 vc->dpdes = hr->dpdes;
173 vcpu->arch.hfscr = hr->hfscr;
174 vcpu->arch.purr = hr->purr;
175 vcpu->arch.spurr = hr->spurr;
176 vcpu->arch.ic = hr->ic;
177 vc->vtb = hr->vtb;
178 vcpu->arch.fault_dar = hr->hdar;
179 vcpu->arch.fault_dsisr = hr->hdsisr;
180 vcpu->arch.fault_gpa = hr->asdr;
181 vcpu->arch.emul_inst = hr->heir;
182 vcpu->arch.shregs.srr0 = hr->srr0;
183 vcpu->arch.shregs.srr1 = hr->srr1;
184 vcpu->arch.shregs.sprg0 = hr->sprg[0];
185 vcpu->arch.shregs.sprg1 = hr->sprg[1];
186 vcpu->arch.shregs.sprg2 = hr->sprg[2];
187 vcpu->arch.shregs.sprg3 = hr->sprg[3];
188 vcpu->arch.pid = hr->pidr;
189 vcpu->arch.cfar = hr->cfar;
190 vcpu->arch.ppr = hr->ppr;
191 }
192
kvmhv_nested_mmio_needed(struct kvm_vcpu * vcpu,u64 regs_ptr)193 static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr)
194 {
195 /* No need to reflect the page fault to L1, we've handled it */
196 vcpu->arch.trap = 0;
197
198 /*
199 * Since the L2 gprs have already been written back into L1 memory when
200 * we complete the mmio, store the L1 memory location of the L2 gpr
201 * being loaded into by the mmio so that the loaded value can be
202 * written there in kvmppc_complete_mmio_load()
203 */
204 if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR)
205 && (vcpu->mmio_is_write == 0)) {
206 vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr +
207 offsetof(struct pt_regs,
208 gpr[vcpu->arch.io_gpr]);
209 vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR;
210 }
211 }
212
kvmhv_read_guest_state_and_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * l2_hv,struct pt_regs * l2_regs,u64 hv_ptr,u64 regs_ptr)213 static int kvmhv_read_guest_state_and_regs(struct kvm_vcpu *vcpu,
214 struct hv_guest_state *l2_hv,
215 struct pt_regs *l2_regs,
216 u64 hv_ptr, u64 regs_ptr)
217 {
218 int size;
219
220 if (kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv->version,
221 sizeof(l2_hv->version)))
222 return -1;
223
224 if (kvmppc_need_byteswap(vcpu))
225 l2_hv->version = swab64(l2_hv->version);
226
227 size = hv_guest_state_size(l2_hv->version);
228 if (size < 0)
229 return -1;
230
231 return kvm_vcpu_read_guest(vcpu, hv_ptr, l2_hv, size) ||
232 kvm_vcpu_read_guest(vcpu, regs_ptr, l2_regs,
233 sizeof(struct pt_regs));
234 }
235
kvmhv_write_guest_state_and_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * l2_hv,struct pt_regs * l2_regs,u64 hv_ptr,u64 regs_ptr)236 static int kvmhv_write_guest_state_and_regs(struct kvm_vcpu *vcpu,
237 struct hv_guest_state *l2_hv,
238 struct pt_regs *l2_regs,
239 u64 hv_ptr, u64 regs_ptr)
240 {
241 int size;
242
243 size = hv_guest_state_size(l2_hv->version);
244 if (size < 0)
245 return -1;
246
247 return kvm_vcpu_write_guest(vcpu, hv_ptr, l2_hv, size) ||
248 kvm_vcpu_write_guest(vcpu, regs_ptr, l2_regs,
249 sizeof(struct pt_regs));
250 }
251
load_l2_hv_regs(struct kvm_vcpu * vcpu,const struct hv_guest_state * l2_hv,const struct hv_guest_state * l1_hv,u64 * lpcr)252 static void load_l2_hv_regs(struct kvm_vcpu *vcpu,
253 const struct hv_guest_state *l2_hv,
254 const struct hv_guest_state *l1_hv, u64 *lpcr)
255 {
256 struct kvmppc_vcore *vc = vcpu->arch.vcore;
257 u64 mask;
258
259 restore_hv_regs(vcpu, l2_hv);
260
261 /*
262 * Don't let L1 change LPCR bits for the L2 except these:
263 */
264 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD | LPCR_MER;
265
266 /*
267 * Additional filtering is required depending on hardware
268 * and configuration.
269 */
270 *lpcr = kvmppc_filter_lpcr_hv(vcpu->kvm,
271 (vc->lpcr & ~mask) | (*lpcr & mask));
272
273 /*
274 * Don't let L1 enable features for L2 which we don't allow for L1,
275 * but preserve the interrupt cause field.
276 */
277 vcpu->arch.hfscr = l2_hv->hfscr & (HFSCR_INTR_CAUSE | vcpu->arch.hfscr_permitted);
278
279 /* Don't let data address watchpoint match in hypervisor state */
280 vcpu->arch.dawrx0 = l2_hv->dawrx0 & ~DAWRX_HYP;
281 vcpu->arch.dawrx1 = l2_hv->dawrx1 & ~DAWRX_HYP;
282
283 /* Don't let completed instruction address breakpt match in HV state */
284 if ((l2_hv->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
285 vcpu->arch.ciabr = l2_hv->ciabr & ~CIABR_PRIV;
286 }
287
kvmhv_enter_nested_guest(struct kvm_vcpu * vcpu)288 long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu)
289 {
290 long int err, r;
291 struct kvm_nested_guest *l2;
292 struct pt_regs l2_regs, saved_l1_regs;
293 struct hv_guest_state l2_hv = {0}, saved_l1_hv;
294 struct kvmppc_vcore *vc = vcpu->arch.vcore;
295 u64 hv_ptr, regs_ptr;
296 u64 hdec_exp, lpcr;
297 s64 delta_purr, delta_spurr, delta_ic, delta_vtb;
298
299 if (vcpu->kvm->arch.l1_ptcr == 0)
300 return H_NOT_AVAILABLE;
301
302 if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
303 return H_BAD_MODE;
304
305 /* copy parameters in */
306 hv_ptr = kvmppc_get_gpr(vcpu, 4);
307 regs_ptr = kvmppc_get_gpr(vcpu, 5);
308 kvm_vcpu_srcu_read_lock(vcpu);
309 err = kvmhv_read_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
310 hv_ptr, regs_ptr);
311 kvm_vcpu_srcu_read_unlock(vcpu);
312 if (err)
313 return H_PARAMETER;
314
315 if (kvmppc_need_byteswap(vcpu))
316 byteswap_hv_regs(&l2_hv);
317 if (l2_hv.version > HV_GUEST_STATE_VERSION)
318 return H_P2;
319
320 if (kvmppc_need_byteswap(vcpu))
321 byteswap_pt_regs(&l2_regs);
322 if (l2_hv.vcpu_token >= NR_CPUS)
323 return H_PARAMETER;
324
325 /*
326 * L1 must have set up a suspended state to enter the L2 in a
327 * transactional state, and only in that case. These have to be
328 * filtered out here to prevent causing a TM Bad Thing in the
329 * host HRFID. We could synthesize a TM Bad Thing back to the L1
330 * here but there doesn't seem like much point.
331 */
332 if (MSR_TM_SUSPENDED(vcpu->arch.shregs.msr)) {
333 if (!MSR_TM_ACTIVE(l2_regs.msr))
334 return H_BAD_MODE;
335 } else {
336 if (l2_regs.msr & MSR_TS_MASK)
337 return H_BAD_MODE;
338 if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_TS_MASK))
339 return H_BAD_MODE;
340 }
341
342 /* translate lpid */
343 l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true);
344 if (!l2)
345 return H_PARAMETER;
346 if (!l2->l1_gr_to_hr) {
347 mutex_lock(&l2->tlb_lock);
348 kvmhv_update_ptbl_cache(l2);
349 mutex_unlock(&l2->tlb_lock);
350 }
351
352 /* save l1 values of things */
353 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
354 saved_l1_regs = vcpu->arch.regs;
355 kvmhv_save_hv_regs(vcpu, &saved_l1_hv);
356
357 /* convert TB values/offsets to host (L0) values */
358 hdec_exp = l2_hv.hdec_expiry - vc->tb_offset;
359 vc->tb_offset += l2_hv.tb_offset;
360 vcpu->arch.dec_expires += l2_hv.tb_offset;
361
362 /* set L1 state to L2 state */
363 vcpu->arch.nested = l2;
364 vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token;
365 vcpu->arch.nested_hfscr = l2_hv.hfscr;
366 vcpu->arch.regs = l2_regs;
367
368 /* Guest must always run with ME enabled, HV disabled. */
369 vcpu->arch.shregs.msr = (vcpu->arch.regs.msr | MSR_ME) & ~MSR_HV;
370
371 lpcr = l2_hv.lpcr;
372 load_l2_hv_regs(vcpu, &l2_hv, &saved_l1_hv, &lpcr);
373
374 vcpu->arch.ret = RESUME_GUEST;
375 vcpu->arch.trap = 0;
376 do {
377 r = kvmhv_run_single_vcpu(vcpu, hdec_exp, lpcr);
378 } while (is_kvmppc_resume_guest(r));
379
380 /* save L2 state for return */
381 l2_regs = vcpu->arch.regs;
382 l2_regs.msr = vcpu->arch.shregs.msr;
383 delta_purr = vcpu->arch.purr - l2_hv.purr;
384 delta_spurr = vcpu->arch.spurr - l2_hv.spurr;
385 delta_ic = vcpu->arch.ic - l2_hv.ic;
386 delta_vtb = vc->vtb - l2_hv.vtb;
387 save_hv_return_state(vcpu, &l2_hv);
388
389 /* restore L1 state */
390 vcpu->arch.nested = NULL;
391 vcpu->arch.regs = saved_l1_regs;
392 vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK;
393 /* set L1 MSR TS field according to L2 transaction state */
394 if (l2_regs.msr & MSR_TS_MASK)
395 vcpu->arch.shregs.msr |= MSR_TS_S;
396 vc->tb_offset = saved_l1_hv.tb_offset;
397 /* XXX: is this always the same delta as saved_l1_hv.tb_offset? */
398 vcpu->arch.dec_expires -= l2_hv.tb_offset;
399 restore_hv_regs(vcpu, &saved_l1_hv);
400 vcpu->arch.purr += delta_purr;
401 vcpu->arch.spurr += delta_spurr;
402 vcpu->arch.ic += delta_ic;
403 vc->vtb += delta_vtb;
404
405 kvmhv_put_nested(l2);
406
407 /* copy l2_hv_state and regs back to guest */
408 if (kvmppc_need_byteswap(vcpu)) {
409 byteswap_hv_regs(&l2_hv);
410 byteswap_pt_regs(&l2_regs);
411 }
412 kvm_vcpu_srcu_read_lock(vcpu);
413 err = kvmhv_write_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
414 hv_ptr, regs_ptr);
415 kvm_vcpu_srcu_read_unlock(vcpu);
416 if (err)
417 return H_AUTHORITY;
418
419 if (r == -EINTR)
420 return H_INTERRUPT;
421
422 if (vcpu->mmio_needed) {
423 kvmhv_nested_mmio_needed(vcpu, regs_ptr);
424 return H_TOO_HARD;
425 }
426
427 return vcpu->arch.trap;
428 }
429
kvmhv_nested_init(void)430 long kvmhv_nested_init(void)
431 {
432 long int ptb_order;
433 unsigned long ptcr;
434 long rc;
435
436 if (!kvmhv_on_pseries())
437 return 0;
438 if (!radix_enabled())
439 return -ENODEV;
440
441 /* Partition table entry is 1<<4 bytes in size, hence the 4. */
442 ptb_order = KVM_MAX_NESTED_GUESTS_SHIFT + 4;
443 /* Minimum partition table size is 1<<12 bytes */
444 if (ptb_order < 12)
445 ptb_order = 12;
446 pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order,
447 GFP_KERNEL);
448 if (!pseries_partition_tb) {
449 pr_err("kvm-hv: failed to allocated nested partition table\n");
450 return -ENOMEM;
451 }
452
453 ptcr = __pa(pseries_partition_tb) | (ptb_order - 12);
454 rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr);
455 if (rc != H_SUCCESS) {
456 pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n",
457 rc);
458 kfree(pseries_partition_tb);
459 pseries_partition_tb = NULL;
460 return -ENODEV;
461 }
462
463 return 0;
464 }
465
kvmhv_nested_exit(void)466 void kvmhv_nested_exit(void)
467 {
468 /*
469 * N.B. the kvmhv_on_pseries() test is there because it enables
470 * the compiler to remove the call to plpar_hcall_norets()
471 * when CONFIG_PPC_PSERIES=n.
472 */
473 if (kvmhv_on_pseries() && pseries_partition_tb) {
474 plpar_hcall_norets(H_SET_PARTITION_TABLE, 0);
475 kfree(pseries_partition_tb);
476 pseries_partition_tb = NULL;
477 }
478 }
479
kvmhv_flush_lpid(unsigned int lpid)480 static void kvmhv_flush_lpid(unsigned int lpid)
481 {
482 long rc;
483
484 if (!kvmhv_on_pseries()) {
485 radix__flush_all_lpid(lpid);
486 return;
487 }
488
489 if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE))
490 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1),
491 lpid, TLBIEL_INVAL_SET_LPID);
492 else
493 rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU,
494 H_RPTI_TYPE_NESTED |
495 H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC |
496 H_RPTI_TYPE_PAT,
497 H_RPTI_PAGE_ALL, 0, -1UL);
498 if (rc)
499 pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc);
500 }
501
kvmhv_set_ptbl_entry(unsigned int lpid,u64 dw0,u64 dw1)502 void kvmhv_set_ptbl_entry(unsigned int lpid, u64 dw0, u64 dw1)
503 {
504 if (!kvmhv_on_pseries()) {
505 mmu_partition_table_set_entry(lpid, dw0, dw1, true);
506 return;
507 }
508
509 pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0);
510 pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1);
511 /* L0 will do the necessary barriers */
512 kvmhv_flush_lpid(lpid);
513 }
514
kvmhv_set_nested_ptbl(struct kvm_nested_guest * gp)515 static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp)
516 {
517 unsigned long dw0;
518
519 dw0 = PATB_HR | radix__get_tree_size() |
520 __pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE;
521 kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table);
522 }
523
524 /*
525 * Handle the H_SET_PARTITION_TABLE hcall.
526 * r4 = guest real address of partition table + log_2(size) - 12
527 * (formatted as for the PTCR).
528 */
kvmhv_set_partition_table(struct kvm_vcpu * vcpu)529 long kvmhv_set_partition_table(struct kvm_vcpu *vcpu)
530 {
531 struct kvm *kvm = vcpu->kvm;
532 unsigned long ptcr = kvmppc_get_gpr(vcpu, 4);
533 int srcu_idx;
534 long ret = H_SUCCESS;
535
536 srcu_idx = srcu_read_lock(&kvm->srcu);
537 /* Check partition size and base address. */
538 if ((ptcr & PRTS_MASK) + 12 - 4 > KVM_MAX_NESTED_GUESTS_SHIFT ||
539 !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT))
540 ret = H_PARAMETER;
541 srcu_read_unlock(&kvm->srcu, srcu_idx);
542 if (ret == H_SUCCESS)
543 kvm->arch.l1_ptcr = ptcr;
544
545 return ret;
546 }
547
548 /*
549 * Handle the H_COPY_TOFROM_GUEST hcall.
550 * r4 = L1 lpid of nested guest
551 * r5 = pid
552 * r6 = eaddr to access
553 * r7 = to buffer (L1 gpa)
554 * r8 = from buffer (L1 gpa)
555 * r9 = n bytes to copy
556 */
kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu * vcpu)557 long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu)
558 {
559 struct kvm_nested_guest *gp;
560 int l1_lpid = kvmppc_get_gpr(vcpu, 4);
561 int pid = kvmppc_get_gpr(vcpu, 5);
562 gva_t eaddr = kvmppc_get_gpr(vcpu, 6);
563 gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7);
564 gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8);
565 void *buf;
566 unsigned long n = kvmppc_get_gpr(vcpu, 9);
567 bool is_load = !!gp_to;
568 long rc;
569
570 if (gp_to && gp_from) /* One must be NULL to determine the direction */
571 return H_PARAMETER;
572
573 if (eaddr & (0xFFFUL << 52))
574 return H_PARAMETER;
575
576 buf = kzalloc(n, GFP_KERNEL | __GFP_NOWARN);
577 if (!buf)
578 return H_NO_MEM;
579
580 gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false);
581 if (!gp) {
582 rc = H_PARAMETER;
583 goto out_free;
584 }
585
586 mutex_lock(&gp->tlb_lock);
587
588 if (is_load) {
589 /* Load from the nested guest into our buffer */
590 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
591 eaddr, buf, NULL, n);
592 if (rc)
593 goto not_found;
594
595 /* Write what was loaded into our buffer back to the L1 guest */
596 kvm_vcpu_srcu_read_lock(vcpu);
597 rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n);
598 kvm_vcpu_srcu_read_unlock(vcpu);
599 if (rc)
600 goto not_found;
601 } else {
602 /* Load the data to be stored from the L1 guest into our buf */
603 kvm_vcpu_srcu_read_lock(vcpu);
604 rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n);
605 kvm_vcpu_srcu_read_unlock(vcpu);
606 if (rc)
607 goto not_found;
608
609 /* Store from our buffer into the nested guest */
610 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
611 eaddr, NULL, buf, n);
612 if (rc)
613 goto not_found;
614 }
615
616 out_unlock:
617 mutex_unlock(&gp->tlb_lock);
618 kvmhv_put_nested(gp);
619 out_free:
620 kfree(buf);
621 return rc;
622 not_found:
623 rc = H_NOT_FOUND;
624 goto out_unlock;
625 }
626
627 /*
628 * Reload the partition table entry for a guest.
629 * Caller must hold gp->tlb_lock.
630 */
kvmhv_update_ptbl_cache(struct kvm_nested_guest * gp)631 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp)
632 {
633 int ret;
634 struct patb_entry ptbl_entry;
635 unsigned long ptbl_addr;
636 struct kvm *kvm = gp->l1_host;
637
638 ret = -EFAULT;
639 ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4);
640 if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4))) {
641 int srcu_idx = srcu_read_lock(&kvm->srcu);
642 ret = kvm_read_guest(kvm, ptbl_addr,
643 &ptbl_entry, sizeof(ptbl_entry));
644 srcu_read_unlock(&kvm->srcu, srcu_idx);
645 }
646 if (ret) {
647 gp->l1_gr_to_hr = 0;
648 gp->process_table = 0;
649 } else {
650 gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0);
651 gp->process_table = be64_to_cpu(ptbl_entry.patb1);
652 }
653 kvmhv_set_nested_ptbl(gp);
654 }
655
kvmhv_vm_nested_init(struct kvm * kvm)656 void kvmhv_vm_nested_init(struct kvm *kvm)
657 {
658 idr_init(&kvm->arch.kvm_nested_guest_idr);
659 }
660
__find_nested(struct kvm * kvm,int lpid)661 static struct kvm_nested_guest *__find_nested(struct kvm *kvm, int lpid)
662 {
663 return idr_find(&kvm->arch.kvm_nested_guest_idr, lpid);
664 }
665
__prealloc_nested(struct kvm * kvm,int lpid)666 static bool __prealloc_nested(struct kvm *kvm, int lpid)
667 {
668 if (idr_alloc(&kvm->arch.kvm_nested_guest_idr,
669 NULL, lpid, lpid + 1, GFP_KERNEL) != lpid)
670 return false;
671 return true;
672 }
673
__add_nested(struct kvm * kvm,int lpid,struct kvm_nested_guest * gp)674 static void __add_nested(struct kvm *kvm, int lpid, struct kvm_nested_guest *gp)
675 {
676 if (idr_replace(&kvm->arch.kvm_nested_guest_idr, gp, lpid))
677 WARN_ON(1);
678 }
679
__remove_nested(struct kvm * kvm,int lpid)680 static void __remove_nested(struct kvm *kvm, int lpid)
681 {
682 idr_remove(&kvm->arch.kvm_nested_guest_idr, lpid);
683 }
684
kvmhv_alloc_nested(struct kvm * kvm,unsigned int lpid)685 static struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid)
686 {
687 struct kvm_nested_guest *gp;
688 long shadow_lpid;
689
690 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
691 if (!gp)
692 return NULL;
693 gp->l1_host = kvm;
694 gp->l1_lpid = lpid;
695 mutex_init(&gp->tlb_lock);
696 gp->shadow_pgtable = pgd_alloc(kvm->mm);
697 if (!gp->shadow_pgtable)
698 goto out_free;
699 shadow_lpid = kvmppc_alloc_lpid();
700 if (shadow_lpid < 0)
701 goto out_free2;
702 gp->shadow_lpid = shadow_lpid;
703 gp->radix = 1;
704
705 memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu));
706
707 return gp;
708
709 out_free2:
710 pgd_free(kvm->mm, gp->shadow_pgtable);
711 out_free:
712 kfree(gp);
713 return NULL;
714 }
715
716 /*
717 * Free up any resources allocated for a nested guest.
718 */
kvmhv_release_nested(struct kvm_nested_guest * gp)719 static void kvmhv_release_nested(struct kvm_nested_guest *gp)
720 {
721 struct kvm *kvm = gp->l1_host;
722
723 if (gp->shadow_pgtable) {
724 /*
725 * No vcpu is using this struct and no call to
726 * kvmhv_get_nested can find this struct,
727 * so we don't need to hold kvm->mmu_lock.
728 */
729 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
730 gp->shadow_lpid);
731 pgd_free(kvm->mm, gp->shadow_pgtable);
732 }
733 kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0);
734 kvmppc_free_lpid(gp->shadow_lpid);
735 kfree(gp);
736 }
737
kvmhv_remove_nested(struct kvm_nested_guest * gp)738 static void kvmhv_remove_nested(struct kvm_nested_guest *gp)
739 {
740 struct kvm *kvm = gp->l1_host;
741 int lpid = gp->l1_lpid;
742 long ref;
743
744 spin_lock(&kvm->mmu_lock);
745 if (gp == __find_nested(kvm, lpid)) {
746 __remove_nested(kvm, lpid);
747 --gp->refcnt;
748 }
749 ref = gp->refcnt;
750 spin_unlock(&kvm->mmu_lock);
751 if (ref == 0)
752 kvmhv_release_nested(gp);
753 }
754
755 /*
756 * Free up all nested resources allocated for this guest.
757 * This is called with no vcpus of the guest running, when
758 * switching the guest to HPT mode or when destroying the
759 * guest.
760 */
kvmhv_release_all_nested(struct kvm * kvm)761 void kvmhv_release_all_nested(struct kvm *kvm)
762 {
763 int lpid;
764 struct kvm_nested_guest *gp;
765 struct kvm_nested_guest *freelist = NULL;
766 struct kvm_memory_slot *memslot;
767 int srcu_idx, bkt;
768
769 spin_lock(&kvm->mmu_lock);
770 idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) {
771 __remove_nested(kvm, lpid);
772 if (--gp->refcnt == 0) {
773 gp->next = freelist;
774 freelist = gp;
775 }
776 }
777 idr_destroy(&kvm->arch.kvm_nested_guest_idr);
778 /* idr is empty and may be reused at this point */
779 spin_unlock(&kvm->mmu_lock);
780 while ((gp = freelist) != NULL) {
781 freelist = gp->next;
782 kvmhv_release_nested(gp);
783 }
784
785 srcu_idx = srcu_read_lock(&kvm->srcu);
786 kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm))
787 kvmhv_free_memslot_nest_rmap(memslot);
788 srcu_read_unlock(&kvm->srcu, srcu_idx);
789 }
790
791 /* caller must hold gp->tlb_lock */
kvmhv_flush_nested(struct kvm_nested_guest * gp)792 static void kvmhv_flush_nested(struct kvm_nested_guest *gp)
793 {
794 struct kvm *kvm = gp->l1_host;
795
796 spin_lock(&kvm->mmu_lock);
797 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid);
798 spin_unlock(&kvm->mmu_lock);
799 kvmhv_flush_lpid(gp->shadow_lpid);
800 kvmhv_update_ptbl_cache(gp);
801 if (gp->l1_gr_to_hr == 0)
802 kvmhv_remove_nested(gp);
803 }
804
kvmhv_get_nested(struct kvm * kvm,int l1_lpid,bool create)805 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
806 bool create)
807 {
808 struct kvm_nested_guest *gp, *newgp;
809
810 if (l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4)))
811 return NULL;
812
813 spin_lock(&kvm->mmu_lock);
814 gp = __find_nested(kvm, l1_lpid);
815 if (gp)
816 ++gp->refcnt;
817 spin_unlock(&kvm->mmu_lock);
818
819 if (gp || !create)
820 return gp;
821
822 newgp = kvmhv_alloc_nested(kvm, l1_lpid);
823 if (!newgp)
824 return NULL;
825
826 if (!__prealloc_nested(kvm, l1_lpid)) {
827 kvmhv_release_nested(newgp);
828 return NULL;
829 }
830
831 spin_lock(&kvm->mmu_lock);
832 gp = __find_nested(kvm, l1_lpid);
833 if (!gp) {
834 __add_nested(kvm, l1_lpid, newgp);
835 ++newgp->refcnt;
836 gp = newgp;
837 newgp = NULL;
838 }
839 ++gp->refcnt;
840 spin_unlock(&kvm->mmu_lock);
841
842 if (newgp)
843 kvmhv_release_nested(newgp);
844
845 return gp;
846 }
847
kvmhv_put_nested(struct kvm_nested_guest * gp)848 void kvmhv_put_nested(struct kvm_nested_guest *gp)
849 {
850 struct kvm *kvm = gp->l1_host;
851 long ref;
852
853 spin_lock(&kvm->mmu_lock);
854 ref = --gp->refcnt;
855 spin_unlock(&kvm->mmu_lock);
856 if (ref == 0)
857 kvmhv_release_nested(gp);
858 }
859
find_kvm_nested_guest_pte(struct kvm * kvm,unsigned long lpid,unsigned long ea,unsigned * hshift)860 pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
861 unsigned long ea, unsigned *hshift)
862 {
863 struct kvm_nested_guest *gp;
864 pte_t *pte;
865
866 gp = __find_nested(kvm, lpid);
867 if (!gp)
868 return NULL;
869
870 VM_WARN(!spin_is_locked(&kvm->mmu_lock),
871 "%s called with kvm mmu_lock not held \n", __func__);
872 pte = __find_linux_pte(gp->shadow_pgtable, ea, NULL, hshift);
873
874 return pte;
875 }
876
kvmhv_n_rmap_is_equal(u64 rmap_1,u64 rmap_2)877 static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2)
878 {
879 return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK |
880 RMAP_NESTED_GPA_MASK));
881 }
882
kvmhv_insert_nest_rmap(struct kvm * kvm,unsigned long * rmapp,struct rmap_nested ** n_rmap)883 void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
884 struct rmap_nested **n_rmap)
885 {
886 struct llist_node *entry = ((struct llist_head *) rmapp)->first;
887 struct rmap_nested *cursor;
888 u64 rmap, new_rmap = (*n_rmap)->rmap;
889
890 /* Are there any existing entries? */
891 if (!(*rmapp)) {
892 /* No -> use the rmap as a single entry */
893 *rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY;
894 return;
895 }
896
897 /* Do any entries match what we're trying to insert? */
898 for_each_nest_rmap_safe(cursor, entry, &rmap) {
899 if (kvmhv_n_rmap_is_equal(rmap, new_rmap))
900 return;
901 }
902
903 /* Do we need to create a list or just add the new entry? */
904 rmap = *rmapp;
905 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
906 *rmapp = 0UL;
907 llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp);
908 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
909 (*n_rmap)->list.next = (struct llist_node *) rmap;
910
911 /* Set NULL so not freed by caller */
912 *n_rmap = NULL;
913 }
914
kvmhv_update_nest_rmap_rc(struct kvm * kvm,u64 n_rmap,unsigned long clr,unsigned long set,unsigned long hpa,unsigned long mask)915 static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap,
916 unsigned long clr, unsigned long set,
917 unsigned long hpa, unsigned long mask)
918 {
919 unsigned long gpa;
920 unsigned int shift, lpid;
921 pte_t *ptep;
922
923 gpa = n_rmap & RMAP_NESTED_GPA_MASK;
924 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
925
926 /* Find the pte */
927 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
928 /*
929 * If the pte is present and the pfn is still the same, update the pte.
930 * If the pfn has changed then this is a stale rmap entry, the nested
931 * gpa actually points somewhere else now, and there is nothing to do.
932 * XXX A future optimisation would be to remove the rmap entry here.
933 */
934 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) {
935 __radix_pte_update(ptep, clr, set);
936 kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
937 }
938 }
939
940 /*
941 * For a given list of rmap entries, update the rc bits in all ptes in shadow
942 * page tables for nested guests which are referenced by the rmap list.
943 */
kvmhv_update_nest_rmap_rc_list(struct kvm * kvm,unsigned long * rmapp,unsigned long clr,unsigned long set,unsigned long hpa,unsigned long nbytes)944 void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
945 unsigned long clr, unsigned long set,
946 unsigned long hpa, unsigned long nbytes)
947 {
948 struct llist_node *entry = ((struct llist_head *) rmapp)->first;
949 struct rmap_nested *cursor;
950 unsigned long rmap, mask;
951
952 if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED))
953 return;
954
955 mask = PTE_RPN_MASK & ~(nbytes - 1);
956 hpa &= mask;
957
958 for_each_nest_rmap_safe(cursor, entry, &rmap)
959 kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask);
960 }
961
kvmhv_remove_nest_rmap(struct kvm * kvm,u64 n_rmap,unsigned long hpa,unsigned long mask)962 static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap,
963 unsigned long hpa, unsigned long mask)
964 {
965 struct kvm_nested_guest *gp;
966 unsigned long gpa;
967 unsigned int shift, lpid;
968 pte_t *ptep;
969
970 gpa = n_rmap & RMAP_NESTED_GPA_MASK;
971 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
972 gp = __find_nested(kvm, lpid);
973 if (!gp)
974 return;
975
976 /* Find and invalidate the pte */
977 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
978 /* Don't spuriously invalidate ptes if the pfn has changed */
979 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa))
980 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
981 }
982
kvmhv_remove_nest_rmap_list(struct kvm * kvm,unsigned long * rmapp,unsigned long hpa,unsigned long mask)983 static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp,
984 unsigned long hpa, unsigned long mask)
985 {
986 struct llist_node *entry = llist_del_all((struct llist_head *) rmapp);
987 struct rmap_nested *cursor;
988 unsigned long rmap;
989
990 for_each_nest_rmap_safe(cursor, entry, &rmap) {
991 kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask);
992 kfree(cursor);
993 }
994 }
995
996 /* called with kvm->mmu_lock held */
kvmhv_remove_nest_rmap_range(struct kvm * kvm,const struct kvm_memory_slot * memslot,unsigned long gpa,unsigned long hpa,unsigned long nbytes)997 void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
998 const struct kvm_memory_slot *memslot,
999 unsigned long gpa, unsigned long hpa,
1000 unsigned long nbytes)
1001 {
1002 unsigned long gfn, end_gfn;
1003 unsigned long addr_mask;
1004
1005 if (!memslot)
1006 return;
1007 gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn;
1008 end_gfn = gfn + (nbytes >> PAGE_SHIFT);
1009
1010 addr_mask = PTE_RPN_MASK & ~(nbytes - 1);
1011 hpa &= addr_mask;
1012
1013 for (; gfn < end_gfn; gfn++) {
1014 unsigned long *rmap = &memslot->arch.rmap[gfn];
1015 kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask);
1016 }
1017 }
1018
kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot * free)1019 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free)
1020 {
1021 unsigned long page;
1022
1023 for (page = 0; page < free->npages; page++) {
1024 unsigned long rmap, *rmapp = &free->arch.rmap[page];
1025 struct rmap_nested *cursor;
1026 struct llist_node *entry;
1027
1028 entry = llist_del_all((struct llist_head *) rmapp);
1029 for_each_nest_rmap_safe(cursor, entry, &rmap)
1030 kfree(cursor);
1031 }
1032 }
1033
kvmhv_invalidate_shadow_pte(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,long gpa,int * shift_ret)1034 static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu,
1035 struct kvm_nested_guest *gp,
1036 long gpa, int *shift_ret)
1037 {
1038 struct kvm *kvm = vcpu->kvm;
1039 bool ret = false;
1040 pte_t *ptep;
1041 int shift;
1042
1043 spin_lock(&kvm->mmu_lock);
1044 ptep = find_kvm_nested_guest_pte(kvm, gp->l1_lpid, gpa, &shift);
1045 if (!shift)
1046 shift = PAGE_SHIFT;
1047 if (ptep && pte_present(*ptep)) {
1048 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
1049 ret = true;
1050 }
1051 spin_unlock(&kvm->mmu_lock);
1052
1053 if (shift_ret)
1054 *shift_ret = shift;
1055 return ret;
1056 }
1057
get_ric(unsigned int instr)1058 static inline int get_ric(unsigned int instr)
1059 {
1060 return (instr >> 18) & 0x3;
1061 }
1062
get_prs(unsigned int instr)1063 static inline int get_prs(unsigned int instr)
1064 {
1065 return (instr >> 17) & 0x1;
1066 }
1067
get_r(unsigned int instr)1068 static inline int get_r(unsigned int instr)
1069 {
1070 return (instr >> 16) & 0x1;
1071 }
1072
get_lpid(unsigned long r_val)1073 static inline int get_lpid(unsigned long r_val)
1074 {
1075 return r_val & 0xffffffff;
1076 }
1077
get_is(unsigned long r_val)1078 static inline int get_is(unsigned long r_val)
1079 {
1080 return (r_val >> 10) & 0x3;
1081 }
1082
get_ap(unsigned long r_val)1083 static inline int get_ap(unsigned long r_val)
1084 {
1085 return (r_val >> 5) & 0x7;
1086 }
1087
get_epn(unsigned long r_val)1088 static inline long get_epn(unsigned long r_val)
1089 {
1090 return r_val >> 12;
1091 }
1092
kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu * vcpu,int lpid,int ap,long epn)1093 static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid,
1094 int ap, long epn)
1095 {
1096 struct kvm *kvm = vcpu->kvm;
1097 struct kvm_nested_guest *gp;
1098 long npages;
1099 int shift, shadow_shift;
1100 unsigned long addr;
1101
1102 shift = ap_to_shift(ap);
1103 addr = epn << 12;
1104 if (shift < 0)
1105 /* Invalid ap encoding */
1106 return -EINVAL;
1107
1108 addr &= ~((1UL << shift) - 1);
1109 npages = 1UL << (shift - PAGE_SHIFT);
1110
1111 gp = kvmhv_get_nested(kvm, lpid, false);
1112 if (!gp) /* No such guest -> nothing to do */
1113 return 0;
1114 mutex_lock(&gp->tlb_lock);
1115
1116 /* There may be more than one host page backing this single guest pte */
1117 do {
1118 kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift);
1119
1120 npages -= 1UL << (shadow_shift - PAGE_SHIFT);
1121 addr += 1UL << shadow_shift;
1122 } while (npages > 0);
1123
1124 mutex_unlock(&gp->tlb_lock);
1125 kvmhv_put_nested(gp);
1126 return 0;
1127 }
1128
kvmhv_emulate_tlbie_lpid(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,int ric)1129 static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu,
1130 struct kvm_nested_guest *gp, int ric)
1131 {
1132 struct kvm *kvm = vcpu->kvm;
1133
1134 mutex_lock(&gp->tlb_lock);
1135 switch (ric) {
1136 case 0:
1137 /* Invalidate TLB */
1138 spin_lock(&kvm->mmu_lock);
1139 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
1140 gp->shadow_lpid);
1141 kvmhv_flush_lpid(gp->shadow_lpid);
1142 spin_unlock(&kvm->mmu_lock);
1143 break;
1144 case 1:
1145 /*
1146 * Invalidate PWC
1147 * We don't cache this -> nothing to do
1148 */
1149 break;
1150 case 2:
1151 /* Invalidate TLB, PWC and caching of partition table entries */
1152 kvmhv_flush_nested(gp);
1153 break;
1154 default:
1155 break;
1156 }
1157 mutex_unlock(&gp->tlb_lock);
1158 }
1159
kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu * vcpu,int ric)1160 static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric)
1161 {
1162 struct kvm *kvm = vcpu->kvm;
1163 struct kvm_nested_guest *gp;
1164 int lpid;
1165
1166 spin_lock(&kvm->mmu_lock);
1167 idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) {
1168 spin_unlock(&kvm->mmu_lock);
1169 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1170 spin_lock(&kvm->mmu_lock);
1171 }
1172 spin_unlock(&kvm->mmu_lock);
1173 }
1174
kvmhv_emulate_priv_tlbie(struct kvm_vcpu * vcpu,unsigned int instr,unsigned long rsval,unsigned long rbval)1175 static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr,
1176 unsigned long rsval, unsigned long rbval)
1177 {
1178 struct kvm *kvm = vcpu->kvm;
1179 struct kvm_nested_guest *gp;
1180 int r, ric, prs, is, ap;
1181 int lpid;
1182 long epn;
1183 int ret = 0;
1184
1185 ric = get_ric(instr);
1186 prs = get_prs(instr);
1187 r = get_r(instr);
1188 lpid = get_lpid(rsval);
1189 is = get_is(rbval);
1190
1191 /*
1192 * These cases are invalid and are not handled:
1193 * r != 1 -> Only radix supported
1194 * prs == 1 -> Not HV privileged
1195 * ric == 3 -> No cluster bombs for radix
1196 * is == 1 -> Partition scoped translations not associated with pid
1197 * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA
1198 */
1199 if ((!r) || (prs) || (ric == 3) || (is == 1) ||
1200 ((!is) && (ric == 1 || ric == 2)))
1201 return -EINVAL;
1202
1203 switch (is) {
1204 case 0:
1205 /*
1206 * We know ric == 0
1207 * Invalidate TLB for a given target address
1208 */
1209 epn = get_epn(rbval);
1210 ap = get_ap(rbval);
1211 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn);
1212 break;
1213 case 2:
1214 /* Invalidate matching LPID */
1215 gp = kvmhv_get_nested(kvm, lpid, false);
1216 if (gp) {
1217 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1218 kvmhv_put_nested(gp);
1219 }
1220 break;
1221 case 3:
1222 /* Invalidate ALL LPIDs */
1223 kvmhv_emulate_tlbie_all_lpid(vcpu, ric);
1224 break;
1225 default:
1226 ret = -EINVAL;
1227 break;
1228 }
1229
1230 return ret;
1231 }
1232
1233 /*
1234 * This handles the H_TLB_INVALIDATE hcall.
1235 * Parameters are (r4) tlbie instruction code, (r5) rS contents,
1236 * (r6) rB contents.
1237 */
kvmhv_do_nested_tlbie(struct kvm_vcpu * vcpu)1238 long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu)
1239 {
1240 int ret;
1241
1242 ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4),
1243 kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6));
1244 if (ret)
1245 return H_PARAMETER;
1246 return H_SUCCESS;
1247 }
1248
do_tlb_invalidate_nested_all(struct kvm_vcpu * vcpu,unsigned long lpid,unsigned long ric)1249 static long do_tlb_invalidate_nested_all(struct kvm_vcpu *vcpu,
1250 unsigned long lpid, unsigned long ric)
1251 {
1252 struct kvm *kvm = vcpu->kvm;
1253 struct kvm_nested_guest *gp;
1254
1255 gp = kvmhv_get_nested(kvm, lpid, false);
1256 if (gp) {
1257 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1258 kvmhv_put_nested(gp);
1259 }
1260 return H_SUCCESS;
1261 }
1262
1263 /*
1264 * Number of pages above which we invalidate the entire LPID rather than
1265 * flush individual pages.
1266 */
1267 static unsigned long tlb_range_flush_page_ceiling __read_mostly = 33;
1268
do_tlb_invalidate_nested_tlb(struct kvm_vcpu * vcpu,unsigned long lpid,unsigned long pg_sizes,unsigned long start,unsigned long end)1269 static long do_tlb_invalidate_nested_tlb(struct kvm_vcpu *vcpu,
1270 unsigned long lpid,
1271 unsigned long pg_sizes,
1272 unsigned long start,
1273 unsigned long end)
1274 {
1275 int ret = H_P4;
1276 unsigned long addr, nr_pages;
1277 struct mmu_psize_def *def;
1278 unsigned long psize, ap, page_size;
1279 bool flush_lpid;
1280
1281 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1282 def = &mmu_psize_defs[psize];
1283 if (!(pg_sizes & def->h_rpt_pgsize))
1284 continue;
1285
1286 nr_pages = (end - start) >> def->shift;
1287 flush_lpid = nr_pages > tlb_range_flush_page_ceiling;
1288 if (flush_lpid)
1289 return do_tlb_invalidate_nested_all(vcpu, lpid,
1290 RIC_FLUSH_TLB);
1291 addr = start;
1292 ap = mmu_get_ap(psize);
1293 page_size = 1UL << def->shift;
1294 do {
1295 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap,
1296 get_epn(addr));
1297 if (ret)
1298 return H_P4;
1299 addr += page_size;
1300 } while (addr < end);
1301 }
1302 return ret;
1303 }
1304
1305 /*
1306 * Performs partition-scoped invalidations for nested guests
1307 * as part of H_RPT_INVALIDATE hcall.
1308 */
do_h_rpt_invalidate_pat(struct kvm_vcpu * vcpu,unsigned long lpid,unsigned long type,unsigned long pg_sizes,unsigned long start,unsigned long end)1309 long do_h_rpt_invalidate_pat(struct kvm_vcpu *vcpu, unsigned long lpid,
1310 unsigned long type, unsigned long pg_sizes,
1311 unsigned long start, unsigned long end)
1312 {
1313 /*
1314 * If L2 lpid isn't valid, we need to return H_PARAMETER.
1315 *
1316 * However, nested KVM issues a L2 lpid flush call when creating
1317 * partition table entries for L2. This happens even before the
1318 * corresponding shadow lpid is created in HV which happens in
1319 * H_ENTER_NESTED call. Since we can't differentiate this case from
1320 * the invalid case, we ignore such flush requests and return success.
1321 */
1322 if (!__find_nested(vcpu->kvm, lpid))
1323 return H_SUCCESS;
1324
1325 /*
1326 * A flush all request can be handled by a full lpid flush only.
1327 */
1328 if ((type & H_RPTI_TYPE_NESTED_ALL) == H_RPTI_TYPE_NESTED_ALL)
1329 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_ALL);
1330
1331 /*
1332 * We don't need to handle a PWC flush like process table here,
1333 * because intermediate partition scoped table in nested guest doesn't
1334 * really have PWC. Only level we have PWC is in L0 and for nested
1335 * invalidate at L0 we always do kvm_flush_lpid() which does
1336 * radix__flush_all_lpid(). For range invalidate at any level, we
1337 * are not removing the higher level page tables and hence there is
1338 * no PWC invalidate needed.
1339 *
1340 * if (type & H_RPTI_TYPE_PWC) {
1341 * ret = do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_PWC);
1342 * if (ret)
1343 * return H_P4;
1344 * }
1345 */
1346
1347 if (start == 0 && end == -1)
1348 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_TLB);
1349
1350 if (type & H_RPTI_TYPE_TLB)
1351 return do_tlb_invalidate_nested_tlb(vcpu, lpid, pg_sizes,
1352 start, end);
1353 return H_SUCCESS;
1354 }
1355
1356 /* Used to convert a nested guest real address to a L1 guest real address */
kvmhv_translate_addr_nested(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,unsigned long n_gpa,unsigned long dsisr,struct kvmppc_pte * gpte_p)1357 static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu,
1358 struct kvm_nested_guest *gp,
1359 unsigned long n_gpa, unsigned long dsisr,
1360 struct kvmppc_pte *gpte_p)
1361 {
1362 u64 fault_addr, flags = dsisr & DSISR_ISSTORE;
1363 int ret;
1364
1365 ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr,
1366 &fault_addr);
1367
1368 if (ret) {
1369 /* We didn't find a pte */
1370 if (ret == -EINVAL) {
1371 /* Unsupported mmu config */
1372 flags |= DSISR_UNSUPP_MMU;
1373 } else if (ret == -ENOENT) {
1374 /* No translation found */
1375 flags |= DSISR_NOHPTE;
1376 } else if (ret == -EFAULT) {
1377 /* Couldn't access L1 real address */
1378 flags |= DSISR_PRTABLE_FAULT;
1379 vcpu->arch.fault_gpa = fault_addr;
1380 } else {
1381 /* Unknown error */
1382 return ret;
1383 }
1384 goto forward_to_l1;
1385 } else {
1386 /* We found a pte -> check permissions */
1387 if (dsisr & DSISR_ISSTORE) {
1388 /* Can we write? */
1389 if (!gpte_p->may_write) {
1390 flags |= DSISR_PROTFAULT;
1391 goto forward_to_l1;
1392 }
1393 } else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1394 /* Can we execute? */
1395 if (!gpte_p->may_execute) {
1396 flags |= SRR1_ISI_N_G_OR_CIP;
1397 goto forward_to_l1;
1398 }
1399 } else {
1400 /* Can we read? */
1401 if (!gpte_p->may_read && !gpte_p->may_write) {
1402 flags |= DSISR_PROTFAULT;
1403 goto forward_to_l1;
1404 }
1405 }
1406 }
1407
1408 return 0;
1409
1410 forward_to_l1:
1411 vcpu->arch.fault_dsisr = flags;
1412 if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1413 vcpu->arch.shregs.msr &= SRR1_MSR_BITS;
1414 vcpu->arch.shregs.msr |= flags;
1415 }
1416 return RESUME_HOST;
1417 }
1418
kvmhv_handle_nested_set_rc(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,unsigned long n_gpa,struct kvmppc_pte gpte,unsigned long dsisr)1419 static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu,
1420 struct kvm_nested_guest *gp,
1421 unsigned long n_gpa,
1422 struct kvmppc_pte gpte,
1423 unsigned long dsisr)
1424 {
1425 struct kvm *kvm = vcpu->kvm;
1426 bool writing = !!(dsisr & DSISR_ISSTORE);
1427 u64 pgflags;
1428 long ret;
1429
1430 /* Are the rc bits set in the L1 partition scoped pte? */
1431 pgflags = _PAGE_ACCESSED;
1432 if (writing)
1433 pgflags |= _PAGE_DIRTY;
1434 if (pgflags & ~gpte.rc)
1435 return RESUME_HOST;
1436
1437 spin_lock(&kvm->mmu_lock);
1438 /* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */
1439 ret = kvmppc_hv_handle_set_rc(kvm, false, writing,
1440 gpte.raddr, kvm->arch.lpid);
1441 if (!ret) {
1442 ret = -EINVAL;
1443 goto out_unlock;
1444 }
1445
1446 /* Set the rc bit in the pte of the shadow_pgtable for the nest guest */
1447 ret = kvmppc_hv_handle_set_rc(kvm, true, writing,
1448 n_gpa, gp->l1_lpid);
1449 if (!ret)
1450 ret = -EINVAL;
1451 else
1452 ret = 0;
1453
1454 out_unlock:
1455 spin_unlock(&kvm->mmu_lock);
1456 return ret;
1457 }
1458
kvmppc_radix_level_to_shift(int level)1459 static inline int kvmppc_radix_level_to_shift(int level)
1460 {
1461 switch (level) {
1462 case 2:
1463 return PUD_SHIFT;
1464 case 1:
1465 return PMD_SHIFT;
1466 default:
1467 return PAGE_SHIFT;
1468 }
1469 }
1470
kvmppc_radix_shift_to_level(int shift)1471 static inline int kvmppc_radix_shift_to_level(int shift)
1472 {
1473 if (shift == PUD_SHIFT)
1474 return 2;
1475 if (shift == PMD_SHIFT)
1476 return 1;
1477 if (shift == PAGE_SHIFT)
1478 return 0;
1479 WARN_ON_ONCE(1);
1480 return 0;
1481 }
1482
1483 /* called with gp->tlb_lock held */
__kvmhv_nested_page_fault(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp)1484 static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu,
1485 struct kvm_nested_guest *gp)
1486 {
1487 struct kvm *kvm = vcpu->kvm;
1488 struct kvm_memory_slot *memslot;
1489 struct rmap_nested *n_rmap;
1490 struct kvmppc_pte gpte;
1491 pte_t pte, *pte_p;
1492 unsigned long mmu_seq;
1493 unsigned long dsisr = vcpu->arch.fault_dsisr;
1494 unsigned long ea = vcpu->arch.fault_dar;
1495 unsigned long *rmapp;
1496 unsigned long n_gpa, gpa, gfn, perm = 0UL;
1497 unsigned int shift, l1_shift, level;
1498 bool writing = !!(dsisr & DSISR_ISSTORE);
1499 bool kvm_ro = false;
1500 long int ret;
1501
1502 if (!gp->l1_gr_to_hr) {
1503 kvmhv_update_ptbl_cache(gp);
1504 if (!gp->l1_gr_to_hr)
1505 return RESUME_HOST;
1506 }
1507
1508 /* Convert the nested guest real address into a L1 guest real address */
1509
1510 n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL;
1511 if (!(dsisr & DSISR_PRTABLE_FAULT))
1512 n_gpa |= ea & 0xFFF;
1513 ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte);
1514
1515 /*
1516 * If the hardware found a translation but we don't now have a usable
1517 * translation in the l1 partition-scoped tree, remove the shadow pte
1518 * and let the guest retry.
1519 */
1520 if (ret == RESUME_HOST &&
1521 (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G |
1522 DSISR_BAD_COPYPASTE)))
1523 goto inval;
1524 if (ret)
1525 return ret;
1526
1527 /* Failed to set the reference/change bits */
1528 if (dsisr & DSISR_SET_RC) {
1529 ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr);
1530 if (ret == RESUME_HOST)
1531 return ret;
1532 if (ret)
1533 goto inval;
1534 dsisr &= ~DSISR_SET_RC;
1535 if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
1536 DSISR_PROTFAULT)))
1537 return RESUME_GUEST;
1538 }
1539
1540 /*
1541 * We took an HISI or HDSI while we were running a nested guest which
1542 * means we have no partition scoped translation for that. This means
1543 * we need to insert a pte for the mapping into our shadow_pgtable.
1544 */
1545
1546 l1_shift = gpte.page_shift;
1547 if (l1_shift < PAGE_SHIFT) {
1548 /* We don't support l1 using a page size smaller than our own */
1549 pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n",
1550 l1_shift, PAGE_SHIFT);
1551 return -EINVAL;
1552 }
1553 gpa = gpte.raddr;
1554 gfn = gpa >> PAGE_SHIFT;
1555
1556 /* 1. Get the corresponding host memslot */
1557
1558 memslot = gfn_to_memslot(kvm, gfn);
1559 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
1560 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) {
1561 /* unusual error -> reflect to the guest as a DSI */
1562 kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
1563 return RESUME_GUEST;
1564 }
1565
1566 /* passthrough of emulated MMIO case */
1567 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing);
1568 }
1569 if (memslot->flags & KVM_MEM_READONLY) {
1570 if (writing) {
1571 /* Give the guest a DSI */
1572 kvmppc_core_queue_data_storage(vcpu, ea,
1573 DSISR_ISSTORE | DSISR_PROTFAULT);
1574 return RESUME_GUEST;
1575 }
1576 kvm_ro = true;
1577 }
1578
1579 /* 2. Find the host pte for this L1 guest real address */
1580
1581 /* Used to check for invalidations in progress */
1582 mmu_seq = kvm->mmu_notifier_seq;
1583 smp_rmb();
1584
1585 /* See if can find translation in our partition scoped tables for L1 */
1586 pte = __pte(0);
1587 spin_lock(&kvm->mmu_lock);
1588 pte_p = find_kvm_secondary_pte(kvm, gpa, &shift);
1589 if (!shift)
1590 shift = PAGE_SHIFT;
1591 if (pte_p)
1592 pte = *pte_p;
1593 spin_unlock(&kvm->mmu_lock);
1594
1595 if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) {
1596 /* No suitable pte found -> try to insert a mapping */
1597 ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot,
1598 writing, kvm_ro, &pte, &level);
1599 if (ret == -EAGAIN)
1600 return RESUME_GUEST;
1601 else if (ret)
1602 return ret;
1603 shift = kvmppc_radix_level_to_shift(level);
1604 }
1605 /* Align gfn to the start of the page */
1606 gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT;
1607
1608 /* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */
1609
1610 /* The permissions is the combination of the host and l1 guest ptes */
1611 perm |= gpte.may_read ? 0UL : _PAGE_READ;
1612 perm |= gpte.may_write ? 0UL : _PAGE_WRITE;
1613 perm |= gpte.may_execute ? 0UL : _PAGE_EXEC;
1614 /* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */
1615 perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED;
1616 perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY;
1617 pte = __pte(pte_val(pte) & ~perm);
1618
1619 /* What size pte can we insert? */
1620 if (shift > l1_shift) {
1621 u64 mask;
1622 unsigned int actual_shift = PAGE_SHIFT;
1623 if (PMD_SHIFT < l1_shift)
1624 actual_shift = PMD_SHIFT;
1625 mask = (1UL << shift) - (1UL << actual_shift);
1626 pte = __pte(pte_val(pte) | (gpa & mask));
1627 shift = actual_shift;
1628 }
1629 level = kvmppc_radix_shift_to_level(shift);
1630 n_gpa &= ~((1UL << shift) - 1);
1631
1632 /* 4. Insert the pte into our shadow_pgtable */
1633
1634 n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL);
1635 if (!n_rmap)
1636 return RESUME_GUEST; /* Let the guest try again */
1637 n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) |
1638 (((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT);
1639 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1640 ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level,
1641 mmu_seq, gp->shadow_lpid, rmapp, &n_rmap);
1642 kfree(n_rmap);
1643 if (ret == -EAGAIN)
1644 ret = RESUME_GUEST; /* Let the guest try again */
1645
1646 return ret;
1647
1648 inval:
1649 kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL);
1650 return RESUME_GUEST;
1651 }
1652
kvmhv_nested_page_fault(struct kvm_vcpu * vcpu)1653 long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu)
1654 {
1655 struct kvm_nested_guest *gp = vcpu->arch.nested;
1656 long int ret;
1657
1658 mutex_lock(&gp->tlb_lock);
1659 ret = __kvmhv_nested_page_fault(vcpu, gp);
1660 mutex_unlock(&gp->tlb_lock);
1661 return ret;
1662 }
1663
kvmhv_nested_next_lpid(struct kvm * kvm,int lpid)1664 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid)
1665 {
1666 int ret = lpid + 1;
1667
1668 spin_lock(&kvm->mmu_lock);
1669 if (!idr_get_next(&kvm->arch.kvm_nested_guest_idr, &ret))
1670 ret = -1;
1671 spin_unlock(&kvm->mmu_lock);
1672
1673 return ret;
1674 }
1675