1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5 *
6 * Authors:
7 * Paul Mackerras <paulus@au1.ibm.com>
8 * Alexander Graf <agraf@suse.de>
9 * Kevin Wolf <mail@kevin-wolf.de>
10 *
11 * Description: KVM functions specific to running on Book 3S
12 * processors in hypervisor mode (specifically POWER7 and later).
13 *
14 * This file is derived from arch/powerpc/kvm/book3s.c,
15 * by Alexander Graf <agraf@suse.de>.
16 */
17
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45 #include <linux/irqdomain.h>
46
47 #include <asm/ftrace.h>
48 #include <asm/reg.h>
49 #include <asm/ppc-opcode.h>
50 #include <asm/asm-prototypes.h>
51 #include <asm/archrandom.h>
52 #include <asm/debug.h>
53 #include <asm/disassemble.h>
54 #include <asm/cputable.h>
55 #include <asm/cacheflush.h>
56 #include <linux/uaccess.h>
57 #include <asm/interrupt.h>
58 #include <asm/io.h>
59 #include <asm/kvm_ppc.h>
60 #include <asm/kvm_book3s.h>
61 #include <asm/mmu_context.h>
62 #include <asm/lppaca.h>
63 #include <asm/pmc.h>
64 #include <asm/processor.h>
65 #include <asm/cputhreads.h>
66 #include <asm/page.h>
67 #include <asm/hvcall.h>
68 #include <asm/switch_to.h>
69 #include <asm/smp.h>
70 #include <asm/dbell.h>
71 #include <asm/hmi.h>
72 #include <asm/pnv-pci.h>
73 #include <asm/mmu.h>
74 #include <asm/opal.h>
75 #include <asm/xics.h>
76 #include <asm/xive.h>
77 #include <asm/hw_breakpoint.h>
78 #include <asm/kvm_book3s_uvmem.h>
79 #include <asm/ultravisor.h>
80 #include <asm/dtl.h>
81 #include <asm/plpar_wrappers.h>
82
83 #include "book3s.h"
84 #include "book3s_hv.h"
85
86 #define CREATE_TRACE_POINTS
87 #include "trace_hv.h"
88
89 /* #define EXIT_DEBUG */
90 /* #define EXIT_DEBUG_SIMPLE */
91 /* #define EXIT_DEBUG_INT */
92
93 /* Used to indicate that a guest page fault needs to be handled */
94 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
95 /* Used to indicate that a guest passthrough interrupt needs to be handled */
96 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
97
98 /* Used as a "null" value for timebase values */
99 #define TB_NIL (~(u64)0)
100
101 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
102
103 static int dynamic_mt_modes = 6;
104 module_param(dynamic_mt_modes, int, 0644);
105 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
106 static int target_smt_mode;
107 module_param(target_smt_mode, int, 0644);
108 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
109
110 static bool one_vm_per_core;
111 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
113
114 #ifdef CONFIG_KVM_XICS
115 static const struct kernel_param_ops module_param_ops = {
116 .set = param_set_int,
117 .get = param_get_int,
118 };
119
120 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
121 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
122
123 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
124 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
125 #endif
126
127 /* If set, guests are allowed to create and control nested guests */
128 static bool nested = true;
129 module_param(nested, bool, S_IRUGO | S_IWUSR);
130 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
131
132 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
133
134 /*
135 * RWMR values for POWER8. These control the rate at which PURR
136 * and SPURR count and should be set according to the number of
137 * online threads in the vcore being run.
138 */
139 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL
140 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL
141 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL
142 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL
143 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL
144 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL
145 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL
146 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL
147
148 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
149 RWMR_RPA_P8_1THREAD,
150 RWMR_RPA_P8_1THREAD,
151 RWMR_RPA_P8_2THREAD,
152 RWMR_RPA_P8_3THREAD,
153 RWMR_RPA_P8_4THREAD,
154 RWMR_RPA_P8_5THREAD,
155 RWMR_RPA_P8_6THREAD,
156 RWMR_RPA_P8_7THREAD,
157 RWMR_RPA_P8_8THREAD,
158 };
159
next_runnable_thread(struct kvmppc_vcore * vc,int * ip)160 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
161 int *ip)
162 {
163 int i = *ip;
164 struct kvm_vcpu *vcpu;
165
166 while (++i < MAX_SMT_THREADS) {
167 vcpu = READ_ONCE(vc->runnable_threads[i]);
168 if (vcpu) {
169 *ip = i;
170 return vcpu;
171 }
172 }
173 return NULL;
174 }
175
176 /* Used to traverse the list of runnable threads for a given vcore */
177 #define for_each_runnable_thread(i, vcpu, vc) \
178 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
179
kvmppc_ipi_thread(int cpu)180 static bool kvmppc_ipi_thread(int cpu)
181 {
182 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
183
184 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
185 if (kvmhv_on_pseries())
186 return false;
187
188 /* On POWER9 we can use msgsnd to IPI any cpu */
189 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
190 msg |= get_hard_smp_processor_id(cpu);
191 smp_mb();
192 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
193 return true;
194 }
195
196 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
197 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
198 preempt_disable();
199 if (cpu_first_thread_sibling(cpu) ==
200 cpu_first_thread_sibling(smp_processor_id())) {
201 msg |= cpu_thread_in_core(cpu);
202 smp_mb();
203 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
204 preempt_enable();
205 return true;
206 }
207 preempt_enable();
208 }
209
210 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
211 if (cpu >= 0 && cpu < nr_cpu_ids) {
212 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
213 xics_wake_cpu(cpu);
214 return true;
215 }
216 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
217 return true;
218 }
219 #endif
220
221 return false;
222 }
223
kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu * vcpu)224 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
225 {
226 int cpu;
227 struct rcuwait *waitp;
228
229 /*
230 * rcuwait_wake_up contains smp_mb() which orders prior stores that
231 * create pending work vs below loads of cpu fields. The other side
232 * is the barrier in vcpu run that orders setting the cpu fields vs
233 * testing for pending work.
234 */
235
236 waitp = kvm_arch_vcpu_get_wait(vcpu);
237 if (rcuwait_wake_up(waitp))
238 ++vcpu->stat.generic.halt_wakeup;
239
240 cpu = READ_ONCE(vcpu->arch.thread_cpu);
241 if (cpu >= 0 && kvmppc_ipi_thread(cpu))
242 return;
243
244 /* CPU points to the first thread of the core */
245 cpu = vcpu->cpu;
246 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
247 smp_send_reschedule(cpu);
248 }
249
250 /*
251 * We use the vcpu_load/put functions to measure stolen time.
252 *
253 * Stolen time is counted as time when either the vcpu is able to
254 * run as part of a virtual core, but the task running the vcore
255 * is preempted or sleeping, or when the vcpu needs something done
256 * in the kernel by the task running the vcpu, but that task is
257 * preempted or sleeping. Those two things have to be counted
258 * separately, since one of the vcpu tasks will take on the job
259 * of running the core, and the other vcpu tasks in the vcore will
260 * sleep waiting for it to do that, but that sleep shouldn't count
261 * as stolen time.
262 *
263 * Hence we accumulate stolen time when the vcpu can run as part of
264 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
265 * needs its task to do other things in the kernel (for example,
266 * service a page fault) in busy_stolen. We don't accumulate
267 * stolen time for a vcore when it is inactive, or for a vcpu
268 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
269 * a misnomer; it means that the vcpu task is not executing in
270 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
271 * the kernel. We don't have any way of dividing up that time
272 * between time that the vcpu is genuinely stopped, time that
273 * the task is actively working on behalf of the vcpu, and time
274 * that the task is preempted, so we don't count any of it as
275 * stolen.
276 *
277 * Updates to busy_stolen are protected by arch.tbacct_lock;
278 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
279 * lock. The stolen times are measured in units of timebase ticks.
280 * (Note that the != TB_NIL checks below are purely defensive;
281 * they should never fail.)
282 *
283 * The POWER9 path is simpler, one vcpu per virtual core so the
284 * former case does not exist. If a vcpu is preempted when it is
285 * BUSY_IN_HOST and not ceded or otherwise blocked, then accumulate
286 * the stolen cycles in busy_stolen. RUNNING is not a preemptible
287 * state in the P9 path.
288 */
289
kvmppc_core_start_stolen(struct kvmppc_vcore * vc,u64 tb)290 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb)
291 {
292 unsigned long flags;
293
294 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
295
296 spin_lock_irqsave(&vc->stoltb_lock, flags);
297 vc->preempt_tb = tb;
298 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
299 }
300
kvmppc_core_end_stolen(struct kvmppc_vcore * vc,u64 tb)301 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb)
302 {
303 unsigned long flags;
304
305 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
306
307 spin_lock_irqsave(&vc->stoltb_lock, flags);
308 if (vc->preempt_tb != TB_NIL) {
309 vc->stolen_tb += tb - vc->preempt_tb;
310 vc->preempt_tb = TB_NIL;
311 }
312 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
313 }
314
kvmppc_core_vcpu_load_hv(struct kvm_vcpu * vcpu,int cpu)315 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
316 {
317 struct kvmppc_vcore *vc = vcpu->arch.vcore;
318 unsigned long flags;
319 u64 now;
320
321 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
322 if (vcpu->arch.busy_preempt != TB_NIL) {
323 WARN_ON_ONCE(vcpu->arch.state != KVMPPC_VCPU_BUSY_IN_HOST);
324 vc->stolen_tb += mftb() - vcpu->arch.busy_preempt;
325 vcpu->arch.busy_preempt = TB_NIL;
326 }
327 return;
328 }
329
330 now = mftb();
331
332 /*
333 * We can test vc->runner without taking the vcore lock,
334 * because only this task ever sets vc->runner to this
335 * vcpu, and once it is set to this vcpu, only this task
336 * ever sets it to NULL.
337 */
338 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
339 kvmppc_core_end_stolen(vc, now);
340
341 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
342 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
343 vcpu->arch.busy_preempt != TB_NIL) {
344 vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt;
345 vcpu->arch.busy_preempt = TB_NIL;
346 }
347 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
348 }
349
kvmppc_core_vcpu_put_hv(struct kvm_vcpu * vcpu)350 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
351 {
352 struct kvmppc_vcore *vc = vcpu->arch.vcore;
353 unsigned long flags;
354 u64 now;
355
356 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
357 /*
358 * In the P9 path, RUNNABLE is not preemptible
359 * (nor takes host interrupts)
360 */
361 WARN_ON_ONCE(vcpu->arch.state == KVMPPC_VCPU_RUNNABLE);
362 /*
363 * Account stolen time when preempted while the vcpu task is
364 * running in the kernel (but not in qemu, which is INACTIVE).
365 */
366 if (task_is_running(current) &&
367 vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
368 vcpu->arch.busy_preempt = mftb();
369 return;
370 }
371
372 now = mftb();
373
374 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
375 kvmppc_core_start_stolen(vc, now);
376
377 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
378 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
379 vcpu->arch.busy_preempt = now;
380 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
381 }
382
kvmppc_set_pvr_hv(struct kvm_vcpu * vcpu,u32 pvr)383 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
384 {
385 vcpu->arch.pvr = pvr;
386 }
387
388 /* Dummy value used in computing PCR value below */
389 #define PCR_ARCH_31 (PCR_ARCH_300 << 1)
390
kvmppc_set_arch_compat(struct kvm_vcpu * vcpu,u32 arch_compat)391 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
392 {
393 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
394 struct kvmppc_vcore *vc = vcpu->arch.vcore;
395
396 /* We can (emulate) our own architecture version and anything older */
397 if (cpu_has_feature(CPU_FTR_ARCH_31))
398 host_pcr_bit = PCR_ARCH_31;
399 else if (cpu_has_feature(CPU_FTR_ARCH_300))
400 host_pcr_bit = PCR_ARCH_300;
401 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
402 host_pcr_bit = PCR_ARCH_207;
403 else if (cpu_has_feature(CPU_FTR_ARCH_206))
404 host_pcr_bit = PCR_ARCH_206;
405 else
406 host_pcr_bit = PCR_ARCH_205;
407
408 /* Determine lowest PCR bit needed to run guest in given PVR level */
409 guest_pcr_bit = host_pcr_bit;
410 if (arch_compat) {
411 switch (arch_compat) {
412 case PVR_ARCH_205:
413 guest_pcr_bit = PCR_ARCH_205;
414 break;
415 case PVR_ARCH_206:
416 case PVR_ARCH_206p:
417 guest_pcr_bit = PCR_ARCH_206;
418 break;
419 case PVR_ARCH_207:
420 guest_pcr_bit = PCR_ARCH_207;
421 break;
422 case PVR_ARCH_300:
423 guest_pcr_bit = PCR_ARCH_300;
424 break;
425 case PVR_ARCH_31:
426 guest_pcr_bit = PCR_ARCH_31;
427 break;
428 default:
429 return -EINVAL;
430 }
431 }
432
433 /* Check requested PCR bits don't exceed our capabilities */
434 if (guest_pcr_bit > host_pcr_bit)
435 return -EINVAL;
436
437 spin_lock(&vc->lock);
438 vc->arch_compat = arch_compat;
439 /*
440 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
441 * Also set all reserved PCR bits
442 */
443 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
444 spin_unlock(&vc->lock);
445
446 return 0;
447 }
448
kvmppc_dump_regs(struct kvm_vcpu * vcpu)449 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
450 {
451 int r;
452
453 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
454 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
455 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
456 for (r = 0; r < 16; ++r)
457 pr_err("r%2d = %.16lx r%d = %.16lx\n",
458 r, kvmppc_get_gpr(vcpu, r),
459 r+16, kvmppc_get_gpr(vcpu, r+16));
460 pr_err("ctr = %.16lx lr = %.16lx\n",
461 vcpu->arch.regs.ctr, vcpu->arch.regs.link);
462 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
463 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
464 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
465 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
466 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
467 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
468 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n",
469 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
470 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
471 pr_err("fault dar = %.16lx dsisr = %.8x\n",
472 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
473 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
474 for (r = 0; r < vcpu->arch.slb_max; ++r)
475 pr_err(" ESID = %.16llx VSID = %.16llx\n",
476 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
477 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
478 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
479 vcpu->arch.last_inst);
480 }
481
kvmppc_find_vcpu(struct kvm * kvm,int id)482 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
483 {
484 return kvm_get_vcpu_by_id(kvm, id);
485 }
486
init_vpa(struct kvm_vcpu * vcpu,struct lppaca * vpa)487 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
488 {
489 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
490 vpa->yield_count = cpu_to_be32(1);
491 }
492
set_vpa(struct kvm_vcpu * vcpu,struct kvmppc_vpa * v,unsigned long addr,unsigned long len)493 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
494 unsigned long addr, unsigned long len)
495 {
496 /* check address is cacheline aligned */
497 if (addr & (L1_CACHE_BYTES - 1))
498 return -EINVAL;
499 spin_lock(&vcpu->arch.vpa_update_lock);
500 if (v->next_gpa != addr || v->len != len) {
501 v->next_gpa = addr;
502 v->len = addr ? len : 0;
503 v->update_pending = 1;
504 }
505 spin_unlock(&vcpu->arch.vpa_update_lock);
506 return 0;
507 }
508
509 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
510 struct reg_vpa {
511 u32 dummy;
512 union {
513 __be16 hword;
514 __be32 word;
515 } length;
516 };
517
vpa_is_registered(struct kvmppc_vpa * vpap)518 static int vpa_is_registered(struct kvmppc_vpa *vpap)
519 {
520 if (vpap->update_pending)
521 return vpap->next_gpa != 0;
522 return vpap->pinned_addr != NULL;
523 }
524
do_h_register_vpa(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long vcpuid,unsigned long vpa)525 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
526 unsigned long flags,
527 unsigned long vcpuid, unsigned long vpa)
528 {
529 struct kvm *kvm = vcpu->kvm;
530 unsigned long len, nb;
531 void *va;
532 struct kvm_vcpu *tvcpu;
533 int err;
534 int subfunc;
535 struct kvmppc_vpa *vpap;
536
537 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
538 if (!tvcpu)
539 return H_PARAMETER;
540
541 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
542 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
543 subfunc == H_VPA_REG_SLB) {
544 /* Registering new area - address must be cache-line aligned */
545 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
546 return H_PARAMETER;
547
548 /* convert logical addr to kernel addr and read length */
549 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
550 if (va == NULL)
551 return H_PARAMETER;
552 if (subfunc == H_VPA_REG_VPA)
553 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
554 else
555 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
556 kvmppc_unpin_guest_page(kvm, va, vpa, false);
557
558 /* Check length */
559 if (len > nb || len < sizeof(struct reg_vpa))
560 return H_PARAMETER;
561 } else {
562 vpa = 0;
563 len = 0;
564 }
565
566 err = H_PARAMETER;
567 vpap = NULL;
568 spin_lock(&tvcpu->arch.vpa_update_lock);
569
570 switch (subfunc) {
571 case H_VPA_REG_VPA: /* register VPA */
572 /*
573 * The size of our lppaca is 1kB because of the way we align
574 * it for the guest to avoid crossing a 4kB boundary. We only
575 * use 640 bytes of the structure though, so we should accept
576 * clients that set a size of 640.
577 */
578 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
579 if (len < sizeof(struct lppaca))
580 break;
581 vpap = &tvcpu->arch.vpa;
582 err = 0;
583 break;
584
585 case H_VPA_REG_DTL: /* register DTL */
586 if (len < sizeof(struct dtl_entry))
587 break;
588 len -= len % sizeof(struct dtl_entry);
589
590 /* Check that they have previously registered a VPA */
591 err = H_RESOURCE;
592 if (!vpa_is_registered(&tvcpu->arch.vpa))
593 break;
594
595 vpap = &tvcpu->arch.dtl;
596 err = 0;
597 break;
598
599 case H_VPA_REG_SLB: /* register SLB shadow buffer */
600 /* Check that they have previously registered a VPA */
601 err = H_RESOURCE;
602 if (!vpa_is_registered(&tvcpu->arch.vpa))
603 break;
604
605 vpap = &tvcpu->arch.slb_shadow;
606 err = 0;
607 break;
608
609 case H_VPA_DEREG_VPA: /* deregister VPA */
610 /* Check they don't still have a DTL or SLB buf registered */
611 err = H_RESOURCE;
612 if (vpa_is_registered(&tvcpu->arch.dtl) ||
613 vpa_is_registered(&tvcpu->arch.slb_shadow))
614 break;
615
616 vpap = &tvcpu->arch.vpa;
617 err = 0;
618 break;
619
620 case H_VPA_DEREG_DTL: /* deregister DTL */
621 vpap = &tvcpu->arch.dtl;
622 err = 0;
623 break;
624
625 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
626 vpap = &tvcpu->arch.slb_shadow;
627 err = 0;
628 break;
629 }
630
631 if (vpap) {
632 vpap->next_gpa = vpa;
633 vpap->len = len;
634 vpap->update_pending = 1;
635 }
636
637 spin_unlock(&tvcpu->arch.vpa_update_lock);
638
639 return err;
640 }
641
kvmppc_update_vpa(struct kvm_vcpu * vcpu,struct kvmppc_vpa * vpap)642 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
643 {
644 struct kvm *kvm = vcpu->kvm;
645 void *va;
646 unsigned long nb;
647 unsigned long gpa;
648
649 /*
650 * We need to pin the page pointed to by vpap->next_gpa,
651 * but we can't call kvmppc_pin_guest_page under the lock
652 * as it does get_user_pages() and down_read(). So we
653 * have to drop the lock, pin the page, then get the lock
654 * again and check that a new area didn't get registered
655 * in the meantime.
656 */
657 for (;;) {
658 gpa = vpap->next_gpa;
659 spin_unlock(&vcpu->arch.vpa_update_lock);
660 va = NULL;
661 nb = 0;
662 if (gpa)
663 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
664 spin_lock(&vcpu->arch.vpa_update_lock);
665 if (gpa == vpap->next_gpa)
666 break;
667 /* sigh... unpin that one and try again */
668 if (va)
669 kvmppc_unpin_guest_page(kvm, va, gpa, false);
670 }
671
672 vpap->update_pending = 0;
673 if (va && nb < vpap->len) {
674 /*
675 * If it's now too short, it must be that userspace
676 * has changed the mappings underlying guest memory,
677 * so unregister the region.
678 */
679 kvmppc_unpin_guest_page(kvm, va, gpa, false);
680 va = NULL;
681 }
682 if (vpap->pinned_addr)
683 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
684 vpap->dirty);
685 vpap->gpa = gpa;
686 vpap->pinned_addr = va;
687 vpap->dirty = false;
688 if (va)
689 vpap->pinned_end = va + vpap->len;
690 }
691
kvmppc_update_vpas(struct kvm_vcpu * vcpu)692 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
693 {
694 if (!(vcpu->arch.vpa.update_pending ||
695 vcpu->arch.slb_shadow.update_pending ||
696 vcpu->arch.dtl.update_pending))
697 return;
698
699 spin_lock(&vcpu->arch.vpa_update_lock);
700 if (vcpu->arch.vpa.update_pending) {
701 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
702 if (vcpu->arch.vpa.pinned_addr)
703 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
704 }
705 if (vcpu->arch.dtl.update_pending) {
706 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
707 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
708 vcpu->arch.dtl_index = 0;
709 }
710 if (vcpu->arch.slb_shadow.update_pending)
711 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
712 spin_unlock(&vcpu->arch.vpa_update_lock);
713 }
714
715 /*
716 * Return the accumulated stolen time for the vcore up until `now'.
717 * The caller should hold the vcore lock.
718 */
vcore_stolen_time(struct kvmppc_vcore * vc,u64 now)719 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
720 {
721 u64 p;
722 unsigned long flags;
723
724 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
725
726 spin_lock_irqsave(&vc->stoltb_lock, flags);
727 p = vc->stolen_tb;
728 if (vc->vcore_state != VCORE_INACTIVE &&
729 vc->preempt_tb != TB_NIL)
730 p += now - vc->preempt_tb;
731 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
732 return p;
733 }
734
__kvmppc_create_dtl_entry(struct kvm_vcpu * vcpu,struct lppaca * vpa,unsigned int pcpu,u64 now,unsigned long stolen)735 static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
736 struct lppaca *vpa,
737 unsigned int pcpu, u64 now,
738 unsigned long stolen)
739 {
740 struct dtl_entry *dt;
741
742 dt = vcpu->arch.dtl_ptr;
743
744 if (!dt)
745 return;
746
747 dt->dispatch_reason = 7;
748 dt->preempt_reason = 0;
749 dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid);
750 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
751 dt->ready_to_enqueue_time = 0;
752 dt->waiting_to_ready_time = 0;
753 dt->timebase = cpu_to_be64(now);
754 dt->fault_addr = 0;
755 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
756 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
757
758 ++dt;
759 if (dt == vcpu->arch.dtl.pinned_end)
760 dt = vcpu->arch.dtl.pinned_addr;
761 vcpu->arch.dtl_ptr = dt;
762 /* order writing *dt vs. writing vpa->dtl_idx */
763 smp_wmb();
764 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
765
766 /* vcpu->arch.dtl.dirty is set by the caller */
767 }
768
kvmppc_update_vpa_dispatch(struct kvm_vcpu * vcpu,struct kvmppc_vcore * vc)769 static void kvmppc_update_vpa_dispatch(struct kvm_vcpu *vcpu,
770 struct kvmppc_vcore *vc)
771 {
772 struct lppaca *vpa;
773 unsigned long stolen;
774 unsigned long core_stolen;
775 u64 now;
776 unsigned long flags;
777
778 vpa = vcpu->arch.vpa.pinned_addr;
779 if (!vpa)
780 return;
781
782 now = mftb();
783
784 core_stolen = vcore_stolen_time(vc, now);
785 stolen = core_stolen - vcpu->arch.stolen_logged;
786 vcpu->arch.stolen_logged = core_stolen;
787 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
788 stolen += vcpu->arch.busy_stolen;
789 vcpu->arch.busy_stolen = 0;
790 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
791
792 vpa->enqueue_dispatch_tb = cpu_to_be64(be64_to_cpu(vpa->enqueue_dispatch_tb) + stolen);
793
794 __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now + vc->tb_offset, stolen);
795
796 vcpu->arch.vpa.dirty = true;
797 }
798
kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu * vcpu,struct kvmppc_vcore * vc,u64 now)799 static void kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu *vcpu,
800 struct kvmppc_vcore *vc,
801 u64 now)
802 {
803 struct lppaca *vpa;
804 unsigned long stolen;
805 unsigned long stolen_delta;
806
807 vpa = vcpu->arch.vpa.pinned_addr;
808 if (!vpa)
809 return;
810
811 stolen = vc->stolen_tb;
812 stolen_delta = stolen - vcpu->arch.stolen_logged;
813 vcpu->arch.stolen_logged = stolen;
814
815 vpa->enqueue_dispatch_tb = cpu_to_be64(stolen);
816
817 __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now, stolen_delta);
818
819 vcpu->arch.vpa.dirty = true;
820 }
821
822 /* See if there is a doorbell interrupt pending for a vcpu */
kvmppc_doorbell_pending(struct kvm_vcpu * vcpu)823 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
824 {
825 int thr;
826 struct kvmppc_vcore *vc;
827
828 if (vcpu->arch.doorbell_request)
829 return true;
830 if (cpu_has_feature(CPU_FTR_ARCH_300))
831 return false;
832 /*
833 * Ensure that the read of vcore->dpdes comes after the read
834 * of vcpu->doorbell_request. This barrier matches the
835 * smp_wmb() in kvmppc_guest_entry_inject().
836 */
837 smp_rmb();
838 vc = vcpu->arch.vcore;
839 thr = vcpu->vcpu_id - vc->first_vcpuid;
840 return !!(vc->dpdes & (1 << thr));
841 }
842
kvmppc_power8_compatible(struct kvm_vcpu * vcpu)843 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
844 {
845 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
846 return true;
847 if ((!vcpu->arch.vcore->arch_compat) &&
848 cpu_has_feature(CPU_FTR_ARCH_207S))
849 return true;
850 return false;
851 }
852
kvmppc_h_set_mode(struct kvm_vcpu * vcpu,unsigned long mflags,unsigned long resource,unsigned long value1,unsigned long value2)853 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
854 unsigned long resource, unsigned long value1,
855 unsigned long value2)
856 {
857 switch (resource) {
858 case H_SET_MODE_RESOURCE_SET_CIABR:
859 if (!kvmppc_power8_compatible(vcpu))
860 return H_P2;
861 if (value2)
862 return H_P4;
863 if (mflags)
864 return H_UNSUPPORTED_FLAG_START;
865 /* Guests can't breakpoint the hypervisor */
866 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
867 return H_P3;
868 vcpu->arch.ciabr = value1;
869 return H_SUCCESS;
870 case H_SET_MODE_RESOURCE_SET_DAWR0:
871 if (!kvmppc_power8_compatible(vcpu))
872 return H_P2;
873 if (!ppc_breakpoint_available())
874 return H_P2;
875 if (mflags)
876 return H_UNSUPPORTED_FLAG_START;
877 if (value2 & DABRX_HYP)
878 return H_P4;
879 vcpu->arch.dawr0 = value1;
880 vcpu->arch.dawrx0 = value2;
881 return H_SUCCESS;
882 case H_SET_MODE_RESOURCE_SET_DAWR1:
883 if (!kvmppc_power8_compatible(vcpu))
884 return H_P2;
885 if (!ppc_breakpoint_available())
886 return H_P2;
887 if (!cpu_has_feature(CPU_FTR_DAWR1))
888 return H_P2;
889 if (!vcpu->kvm->arch.dawr1_enabled)
890 return H_FUNCTION;
891 if (mflags)
892 return H_UNSUPPORTED_FLAG_START;
893 if (value2 & DABRX_HYP)
894 return H_P4;
895 vcpu->arch.dawr1 = value1;
896 vcpu->arch.dawrx1 = value2;
897 return H_SUCCESS;
898 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
899 /*
900 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
901 * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
902 */
903 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
904 kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
905 return H_UNSUPPORTED_FLAG_START;
906 return H_TOO_HARD;
907 default:
908 return H_TOO_HARD;
909 }
910 }
911
912 /* Copy guest memory in place - must reside within a single memslot */
kvmppc_copy_guest(struct kvm * kvm,gpa_t to,gpa_t from,unsigned long len)913 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
914 unsigned long len)
915 {
916 struct kvm_memory_slot *to_memslot = NULL;
917 struct kvm_memory_slot *from_memslot = NULL;
918 unsigned long to_addr, from_addr;
919 int r;
920
921 /* Get HPA for from address */
922 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
923 if (!from_memslot)
924 return -EFAULT;
925 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
926 << PAGE_SHIFT))
927 return -EINVAL;
928 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
929 if (kvm_is_error_hva(from_addr))
930 return -EFAULT;
931 from_addr |= (from & (PAGE_SIZE - 1));
932
933 /* Get HPA for to address */
934 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
935 if (!to_memslot)
936 return -EFAULT;
937 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
938 << PAGE_SHIFT))
939 return -EINVAL;
940 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
941 if (kvm_is_error_hva(to_addr))
942 return -EFAULT;
943 to_addr |= (to & (PAGE_SIZE - 1));
944
945 /* Perform copy */
946 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
947 len);
948 if (r)
949 return -EFAULT;
950 mark_page_dirty(kvm, to >> PAGE_SHIFT);
951 return 0;
952 }
953
kvmppc_h_page_init(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long dest,unsigned long src)954 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
955 unsigned long dest, unsigned long src)
956 {
957 u64 pg_sz = SZ_4K; /* 4K page size */
958 u64 pg_mask = SZ_4K - 1;
959 int ret;
960
961 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
962 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
963 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
964 return H_PARAMETER;
965
966 /* dest (and src if copy_page flag set) must be page aligned */
967 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
968 return H_PARAMETER;
969
970 /* zero and/or copy the page as determined by the flags */
971 if (flags & H_COPY_PAGE) {
972 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
973 if (ret < 0)
974 return H_PARAMETER;
975 } else if (flags & H_ZERO_PAGE) {
976 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
977 if (ret < 0)
978 return H_PARAMETER;
979 }
980
981 /* We can ignore the remaining flags */
982
983 return H_SUCCESS;
984 }
985
kvm_arch_vcpu_yield_to(struct kvm_vcpu * target)986 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
987 {
988 struct kvmppc_vcore *vcore = target->arch.vcore;
989
990 /*
991 * We expect to have been called by the real mode handler
992 * (kvmppc_rm_h_confer()) which would have directly returned
993 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
994 * have useful work to do and should not confer) so we don't
995 * recheck that here.
996 *
997 * In the case of the P9 single vcpu per vcore case, the real
998 * mode handler is not called but no other threads are in the
999 * source vcore.
1000 */
1001 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1002 spin_lock(&vcore->lock);
1003 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
1004 vcore->vcore_state != VCORE_INACTIVE &&
1005 vcore->runner)
1006 target = vcore->runner;
1007 spin_unlock(&vcore->lock);
1008 }
1009
1010 return kvm_vcpu_yield_to(target);
1011 }
1012
kvmppc_get_yield_count(struct kvm_vcpu * vcpu)1013 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
1014 {
1015 int yield_count = 0;
1016 struct lppaca *lppaca;
1017
1018 spin_lock(&vcpu->arch.vpa_update_lock);
1019 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
1020 if (lppaca)
1021 yield_count = be32_to_cpu(lppaca->yield_count);
1022 spin_unlock(&vcpu->arch.vpa_update_lock);
1023 return yield_count;
1024 }
1025
1026 /*
1027 * H_RPT_INVALIDATE hcall handler for nested guests.
1028 *
1029 * Handles only nested process-scoped invalidation requests in L0.
1030 */
kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu * vcpu)1031 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
1032 {
1033 unsigned long type = kvmppc_get_gpr(vcpu, 6);
1034 unsigned long pid, pg_sizes, start, end;
1035
1036 /*
1037 * The partition-scoped invalidations aren't handled here in L0.
1038 */
1039 if (type & H_RPTI_TYPE_NESTED)
1040 return RESUME_HOST;
1041
1042 pid = kvmppc_get_gpr(vcpu, 4);
1043 pg_sizes = kvmppc_get_gpr(vcpu, 7);
1044 start = kvmppc_get_gpr(vcpu, 8);
1045 end = kvmppc_get_gpr(vcpu, 9);
1046
1047 do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
1048 type, pg_sizes, start, end);
1049
1050 kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
1051 return RESUME_GUEST;
1052 }
1053
kvmppc_h_rpt_invalidate(struct kvm_vcpu * vcpu,unsigned long id,unsigned long target,unsigned long type,unsigned long pg_sizes,unsigned long start,unsigned long end)1054 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
1055 unsigned long id, unsigned long target,
1056 unsigned long type, unsigned long pg_sizes,
1057 unsigned long start, unsigned long end)
1058 {
1059 if (!kvm_is_radix(vcpu->kvm))
1060 return H_UNSUPPORTED;
1061
1062 if (end < start)
1063 return H_P5;
1064
1065 /*
1066 * Partition-scoped invalidation for nested guests.
1067 */
1068 if (type & H_RPTI_TYPE_NESTED) {
1069 if (!nesting_enabled(vcpu->kvm))
1070 return H_FUNCTION;
1071
1072 /* Support only cores as target */
1073 if (target != H_RPTI_TARGET_CMMU)
1074 return H_P2;
1075
1076 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
1077 start, end);
1078 }
1079
1080 /*
1081 * Process-scoped invalidation for L1 guests.
1082 */
1083 do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
1084 type, pg_sizes, start, end);
1085 return H_SUCCESS;
1086 }
1087
kvmppc_pseries_do_hcall(struct kvm_vcpu * vcpu)1088 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
1089 {
1090 struct kvm *kvm = vcpu->kvm;
1091 unsigned long req = kvmppc_get_gpr(vcpu, 3);
1092 unsigned long target, ret = H_SUCCESS;
1093 int yield_count;
1094 struct kvm_vcpu *tvcpu;
1095 int idx, rc;
1096
1097 if (req <= MAX_HCALL_OPCODE &&
1098 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
1099 return RESUME_HOST;
1100
1101 switch (req) {
1102 case H_REMOVE:
1103 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
1104 kvmppc_get_gpr(vcpu, 5),
1105 kvmppc_get_gpr(vcpu, 6));
1106 if (ret == H_TOO_HARD)
1107 return RESUME_HOST;
1108 break;
1109 case H_ENTER:
1110 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
1111 kvmppc_get_gpr(vcpu, 5),
1112 kvmppc_get_gpr(vcpu, 6),
1113 kvmppc_get_gpr(vcpu, 7));
1114 if (ret == H_TOO_HARD)
1115 return RESUME_HOST;
1116 break;
1117 case H_READ:
1118 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
1119 kvmppc_get_gpr(vcpu, 5));
1120 if (ret == H_TOO_HARD)
1121 return RESUME_HOST;
1122 break;
1123 case H_CLEAR_MOD:
1124 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
1125 kvmppc_get_gpr(vcpu, 5));
1126 if (ret == H_TOO_HARD)
1127 return RESUME_HOST;
1128 break;
1129 case H_CLEAR_REF:
1130 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
1131 kvmppc_get_gpr(vcpu, 5));
1132 if (ret == H_TOO_HARD)
1133 return RESUME_HOST;
1134 break;
1135 case H_PROTECT:
1136 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
1137 kvmppc_get_gpr(vcpu, 5),
1138 kvmppc_get_gpr(vcpu, 6));
1139 if (ret == H_TOO_HARD)
1140 return RESUME_HOST;
1141 break;
1142 case H_BULK_REMOVE:
1143 ret = kvmppc_h_bulk_remove(vcpu);
1144 if (ret == H_TOO_HARD)
1145 return RESUME_HOST;
1146 break;
1147
1148 case H_CEDE:
1149 break;
1150 case H_PROD:
1151 target = kvmppc_get_gpr(vcpu, 4);
1152 tvcpu = kvmppc_find_vcpu(kvm, target);
1153 if (!tvcpu) {
1154 ret = H_PARAMETER;
1155 break;
1156 }
1157 tvcpu->arch.prodded = 1;
1158 smp_mb(); /* This orders prodded store vs ceded load */
1159 if (tvcpu->arch.ceded)
1160 kvmppc_fast_vcpu_kick_hv(tvcpu);
1161 break;
1162 case H_CONFER:
1163 target = kvmppc_get_gpr(vcpu, 4);
1164 if (target == -1)
1165 break;
1166 tvcpu = kvmppc_find_vcpu(kvm, target);
1167 if (!tvcpu) {
1168 ret = H_PARAMETER;
1169 break;
1170 }
1171 yield_count = kvmppc_get_gpr(vcpu, 5);
1172 if (kvmppc_get_yield_count(tvcpu) != yield_count)
1173 break;
1174 kvm_arch_vcpu_yield_to(tvcpu);
1175 break;
1176 case H_REGISTER_VPA:
1177 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
1178 kvmppc_get_gpr(vcpu, 5),
1179 kvmppc_get_gpr(vcpu, 6));
1180 break;
1181 case H_RTAS:
1182 if (list_empty(&kvm->arch.rtas_tokens))
1183 return RESUME_HOST;
1184
1185 idx = srcu_read_lock(&kvm->srcu);
1186 rc = kvmppc_rtas_hcall(vcpu);
1187 srcu_read_unlock(&kvm->srcu, idx);
1188
1189 if (rc == -ENOENT)
1190 return RESUME_HOST;
1191 else if (rc == 0)
1192 break;
1193
1194 /* Send the error out to userspace via KVM_RUN */
1195 return rc;
1196 case H_LOGICAL_CI_LOAD:
1197 ret = kvmppc_h_logical_ci_load(vcpu);
1198 if (ret == H_TOO_HARD)
1199 return RESUME_HOST;
1200 break;
1201 case H_LOGICAL_CI_STORE:
1202 ret = kvmppc_h_logical_ci_store(vcpu);
1203 if (ret == H_TOO_HARD)
1204 return RESUME_HOST;
1205 break;
1206 case H_SET_MODE:
1207 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1208 kvmppc_get_gpr(vcpu, 5),
1209 kvmppc_get_gpr(vcpu, 6),
1210 kvmppc_get_gpr(vcpu, 7));
1211 if (ret == H_TOO_HARD)
1212 return RESUME_HOST;
1213 break;
1214 case H_XIRR:
1215 case H_CPPR:
1216 case H_EOI:
1217 case H_IPI:
1218 case H_IPOLL:
1219 case H_XIRR_X:
1220 if (kvmppc_xics_enabled(vcpu)) {
1221 if (xics_on_xive()) {
1222 ret = H_NOT_AVAILABLE;
1223 return RESUME_GUEST;
1224 }
1225 ret = kvmppc_xics_hcall(vcpu, req);
1226 break;
1227 }
1228 return RESUME_HOST;
1229 case H_SET_DABR:
1230 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1231 break;
1232 case H_SET_XDABR:
1233 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1234 kvmppc_get_gpr(vcpu, 5));
1235 break;
1236 #ifdef CONFIG_SPAPR_TCE_IOMMU
1237 case H_GET_TCE:
1238 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1239 kvmppc_get_gpr(vcpu, 5));
1240 if (ret == H_TOO_HARD)
1241 return RESUME_HOST;
1242 break;
1243 case H_PUT_TCE:
1244 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1245 kvmppc_get_gpr(vcpu, 5),
1246 kvmppc_get_gpr(vcpu, 6));
1247 if (ret == H_TOO_HARD)
1248 return RESUME_HOST;
1249 break;
1250 case H_PUT_TCE_INDIRECT:
1251 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1252 kvmppc_get_gpr(vcpu, 5),
1253 kvmppc_get_gpr(vcpu, 6),
1254 kvmppc_get_gpr(vcpu, 7));
1255 if (ret == H_TOO_HARD)
1256 return RESUME_HOST;
1257 break;
1258 case H_STUFF_TCE:
1259 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1260 kvmppc_get_gpr(vcpu, 5),
1261 kvmppc_get_gpr(vcpu, 6),
1262 kvmppc_get_gpr(vcpu, 7));
1263 if (ret == H_TOO_HARD)
1264 return RESUME_HOST;
1265 break;
1266 #endif
1267 case H_RANDOM:
1268 if (!arch_get_random_seed_longs(&vcpu->arch.regs.gpr[4], 1))
1269 ret = H_HARDWARE;
1270 break;
1271 case H_RPT_INVALIDATE:
1272 ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
1273 kvmppc_get_gpr(vcpu, 5),
1274 kvmppc_get_gpr(vcpu, 6),
1275 kvmppc_get_gpr(vcpu, 7),
1276 kvmppc_get_gpr(vcpu, 8),
1277 kvmppc_get_gpr(vcpu, 9));
1278 break;
1279
1280 case H_SET_PARTITION_TABLE:
1281 ret = H_FUNCTION;
1282 if (nesting_enabled(kvm))
1283 ret = kvmhv_set_partition_table(vcpu);
1284 break;
1285 case H_ENTER_NESTED:
1286 ret = H_FUNCTION;
1287 if (!nesting_enabled(kvm))
1288 break;
1289 ret = kvmhv_enter_nested_guest(vcpu);
1290 if (ret == H_INTERRUPT) {
1291 kvmppc_set_gpr(vcpu, 3, 0);
1292 vcpu->arch.hcall_needed = 0;
1293 return -EINTR;
1294 } else if (ret == H_TOO_HARD) {
1295 kvmppc_set_gpr(vcpu, 3, 0);
1296 vcpu->arch.hcall_needed = 0;
1297 return RESUME_HOST;
1298 }
1299 break;
1300 case H_TLB_INVALIDATE:
1301 ret = H_FUNCTION;
1302 if (nesting_enabled(kvm))
1303 ret = kvmhv_do_nested_tlbie(vcpu);
1304 break;
1305 case H_COPY_TOFROM_GUEST:
1306 ret = H_FUNCTION;
1307 if (nesting_enabled(kvm))
1308 ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1309 break;
1310 case H_PAGE_INIT:
1311 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1312 kvmppc_get_gpr(vcpu, 5),
1313 kvmppc_get_gpr(vcpu, 6));
1314 break;
1315 case H_SVM_PAGE_IN:
1316 ret = H_UNSUPPORTED;
1317 if (kvmppc_get_srr1(vcpu) & MSR_S)
1318 ret = kvmppc_h_svm_page_in(kvm,
1319 kvmppc_get_gpr(vcpu, 4),
1320 kvmppc_get_gpr(vcpu, 5),
1321 kvmppc_get_gpr(vcpu, 6));
1322 break;
1323 case H_SVM_PAGE_OUT:
1324 ret = H_UNSUPPORTED;
1325 if (kvmppc_get_srr1(vcpu) & MSR_S)
1326 ret = kvmppc_h_svm_page_out(kvm,
1327 kvmppc_get_gpr(vcpu, 4),
1328 kvmppc_get_gpr(vcpu, 5),
1329 kvmppc_get_gpr(vcpu, 6));
1330 break;
1331 case H_SVM_INIT_START:
1332 ret = H_UNSUPPORTED;
1333 if (kvmppc_get_srr1(vcpu) & MSR_S)
1334 ret = kvmppc_h_svm_init_start(kvm);
1335 break;
1336 case H_SVM_INIT_DONE:
1337 ret = H_UNSUPPORTED;
1338 if (kvmppc_get_srr1(vcpu) & MSR_S)
1339 ret = kvmppc_h_svm_init_done(kvm);
1340 break;
1341 case H_SVM_INIT_ABORT:
1342 /*
1343 * Even if that call is made by the Ultravisor, the SSR1 value
1344 * is the guest context one, with the secure bit clear as it has
1345 * not yet been secured. So we can't check it here.
1346 * Instead the kvm->arch.secure_guest flag is checked inside
1347 * kvmppc_h_svm_init_abort().
1348 */
1349 ret = kvmppc_h_svm_init_abort(kvm);
1350 break;
1351
1352 default:
1353 return RESUME_HOST;
1354 }
1355 WARN_ON_ONCE(ret == H_TOO_HARD);
1356 kvmppc_set_gpr(vcpu, 3, ret);
1357 vcpu->arch.hcall_needed = 0;
1358 return RESUME_GUEST;
1359 }
1360
1361 /*
1362 * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1363 * handlers in book3s_hv_rmhandlers.S.
1364 *
1365 * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1366 * that the cede logic in kvmppc_run_single_vcpu() works properly.
1367 */
kvmppc_cede(struct kvm_vcpu * vcpu)1368 static void kvmppc_cede(struct kvm_vcpu *vcpu)
1369 {
1370 vcpu->arch.shregs.msr |= MSR_EE;
1371 vcpu->arch.ceded = 1;
1372 smp_mb();
1373 if (vcpu->arch.prodded) {
1374 vcpu->arch.prodded = 0;
1375 smp_mb();
1376 vcpu->arch.ceded = 0;
1377 }
1378 }
1379
kvmppc_hcall_impl_hv(unsigned long cmd)1380 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1381 {
1382 switch (cmd) {
1383 case H_CEDE:
1384 case H_PROD:
1385 case H_CONFER:
1386 case H_REGISTER_VPA:
1387 case H_SET_MODE:
1388 #ifdef CONFIG_SPAPR_TCE_IOMMU
1389 case H_GET_TCE:
1390 case H_PUT_TCE:
1391 case H_PUT_TCE_INDIRECT:
1392 case H_STUFF_TCE:
1393 #endif
1394 case H_LOGICAL_CI_LOAD:
1395 case H_LOGICAL_CI_STORE:
1396 #ifdef CONFIG_KVM_XICS
1397 case H_XIRR:
1398 case H_CPPR:
1399 case H_EOI:
1400 case H_IPI:
1401 case H_IPOLL:
1402 case H_XIRR_X:
1403 #endif
1404 case H_PAGE_INIT:
1405 case H_RPT_INVALIDATE:
1406 return 1;
1407 }
1408
1409 /* See if it's in the real-mode table */
1410 return kvmppc_hcall_impl_hv_realmode(cmd);
1411 }
1412
kvmppc_emulate_debug_inst(struct kvm_vcpu * vcpu)1413 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1414 {
1415 u32 last_inst;
1416
1417 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1418 EMULATE_DONE) {
1419 /*
1420 * Fetch failed, so return to guest and
1421 * try executing it again.
1422 */
1423 return RESUME_GUEST;
1424 }
1425
1426 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1427 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1428 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1429 return RESUME_HOST;
1430 } else {
1431 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1432 return RESUME_GUEST;
1433 }
1434 }
1435
do_nothing(void * x)1436 static void do_nothing(void *x)
1437 {
1438 }
1439
kvmppc_read_dpdes(struct kvm_vcpu * vcpu)1440 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1441 {
1442 int thr, cpu, pcpu, nthreads;
1443 struct kvm_vcpu *v;
1444 unsigned long dpdes;
1445
1446 nthreads = vcpu->kvm->arch.emul_smt_mode;
1447 dpdes = 0;
1448 cpu = vcpu->vcpu_id & ~(nthreads - 1);
1449 for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1450 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1451 if (!v)
1452 continue;
1453 /*
1454 * If the vcpu is currently running on a physical cpu thread,
1455 * interrupt it in order to pull it out of the guest briefly,
1456 * which will update its vcore->dpdes value.
1457 */
1458 pcpu = READ_ONCE(v->cpu);
1459 if (pcpu >= 0)
1460 smp_call_function_single(pcpu, do_nothing, NULL, 1);
1461 if (kvmppc_doorbell_pending(v))
1462 dpdes |= 1 << thr;
1463 }
1464 return dpdes;
1465 }
1466
1467 /*
1468 * On POWER9, emulate doorbell-related instructions in order to
1469 * give the guest the illusion of running on a multi-threaded core.
1470 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1471 * and mfspr DPDES.
1472 */
kvmppc_emulate_doorbell_instr(struct kvm_vcpu * vcpu)1473 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1474 {
1475 u32 inst, rb, thr;
1476 unsigned long arg;
1477 struct kvm *kvm = vcpu->kvm;
1478 struct kvm_vcpu *tvcpu;
1479
1480 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1481 return RESUME_GUEST;
1482 if (get_op(inst) != 31)
1483 return EMULATE_FAIL;
1484 rb = get_rb(inst);
1485 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1486 switch (get_xop(inst)) {
1487 case OP_31_XOP_MSGSNDP:
1488 arg = kvmppc_get_gpr(vcpu, rb);
1489 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1490 break;
1491 arg &= 0x7f;
1492 if (arg >= kvm->arch.emul_smt_mode)
1493 break;
1494 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1495 if (!tvcpu)
1496 break;
1497 if (!tvcpu->arch.doorbell_request) {
1498 tvcpu->arch.doorbell_request = 1;
1499 kvmppc_fast_vcpu_kick_hv(tvcpu);
1500 }
1501 break;
1502 case OP_31_XOP_MSGCLRP:
1503 arg = kvmppc_get_gpr(vcpu, rb);
1504 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1505 break;
1506 vcpu->arch.vcore->dpdes = 0;
1507 vcpu->arch.doorbell_request = 0;
1508 break;
1509 case OP_31_XOP_MFSPR:
1510 switch (get_sprn(inst)) {
1511 case SPRN_TIR:
1512 arg = thr;
1513 break;
1514 case SPRN_DPDES:
1515 arg = kvmppc_read_dpdes(vcpu);
1516 break;
1517 default:
1518 return EMULATE_FAIL;
1519 }
1520 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1521 break;
1522 default:
1523 return EMULATE_FAIL;
1524 }
1525 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1526 return RESUME_GUEST;
1527 }
1528
1529 /*
1530 * If the lppaca had pmcregs_in_use clear when we exited the guest, then
1531 * HFSCR_PM is cleared for next entry. If the guest then tries to access
1532 * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM
1533 * back in the guest HFSCR will cause the next entry to load the PMU SPRs and
1534 * allow the guest access to continue.
1535 */
kvmppc_pmu_unavailable(struct kvm_vcpu * vcpu)1536 static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu)
1537 {
1538 if (!(vcpu->arch.hfscr_permitted & HFSCR_PM))
1539 return EMULATE_FAIL;
1540
1541 vcpu->arch.hfscr |= HFSCR_PM;
1542
1543 return RESUME_GUEST;
1544 }
1545
kvmppc_ebb_unavailable(struct kvm_vcpu * vcpu)1546 static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu)
1547 {
1548 if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB))
1549 return EMULATE_FAIL;
1550
1551 vcpu->arch.hfscr |= HFSCR_EBB;
1552
1553 return RESUME_GUEST;
1554 }
1555
kvmppc_tm_unavailable(struct kvm_vcpu * vcpu)1556 static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu)
1557 {
1558 if (!(vcpu->arch.hfscr_permitted & HFSCR_TM))
1559 return EMULATE_FAIL;
1560
1561 vcpu->arch.hfscr |= HFSCR_TM;
1562
1563 return RESUME_GUEST;
1564 }
1565
kvmppc_handle_exit_hv(struct kvm_vcpu * vcpu,struct task_struct * tsk)1566 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1567 struct task_struct *tsk)
1568 {
1569 struct kvm_run *run = vcpu->run;
1570 int r = RESUME_HOST;
1571
1572 vcpu->stat.sum_exits++;
1573
1574 /*
1575 * This can happen if an interrupt occurs in the last stages
1576 * of guest entry or the first stages of guest exit (i.e. after
1577 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1578 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1579 * That can happen due to a bug, or due to a machine check
1580 * occurring at just the wrong time.
1581 */
1582 if (vcpu->arch.shregs.msr & MSR_HV) {
1583 printk(KERN_EMERG "KVM trap in HV mode!\n");
1584 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1585 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1586 vcpu->arch.shregs.msr);
1587 kvmppc_dump_regs(vcpu);
1588 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1589 run->hw.hardware_exit_reason = vcpu->arch.trap;
1590 return RESUME_HOST;
1591 }
1592 run->exit_reason = KVM_EXIT_UNKNOWN;
1593 run->ready_for_interrupt_injection = 1;
1594 switch (vcpu->arch.trap) {
1595 /* We're good on these - the host merely wanted to get our attention */
1596 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1597 WARN_ON_ONCE(1); /* Should never happen */
1598 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1599 fallthrough;
1600 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1601 vcpu->stat.dec_exits++;
1602 r = RESUME_GUEST;
1603 break;
1604 case BOOK3S_INTERRUPT_EXTERNAL:
1605 case BOOK3S_INTERRUPT_H_DOORBELL:
1606 case BOOK3S_INTERRUPT_H_VIRT:
1607 vcpu->stat.ext_intr_exits++;
1608 r = RESUME_GUEST;
1609 break;
1610 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1611 case BOOK3S_INTERRUPT_HMI:
1612 case BOOK3S_INTERRUPT_PERFMON:
1613 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1614 r = RESUME_GUEST;
1615 break;
1616 case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1617 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1618 DEFAULT_RATELIMIT_BURST);
1619 /*
1620 * Print the MCE event to host console. Ratelimit so the guest
1621 * can't flood the host log.
1622 */
1623 if (__ratelimit(&rs))
1624 machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1625
1626 /*
1627 * If the guest can do FWNMI, exit to userspace so it can
1628 * deliver a FWNMI to the guest.
1629 * Otherwise we synthesize a machine check for the guest
1630 * so that it knows that the machine check occurred.
1631 */
1632 if (!vcpu->kvm->arch.fwnmi_enabled) {
1633 ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1634 kvmppc_core_queue_machine_check(vcpu, flags);
1635 r = RESUME_GUEST;
1636 break;
1637 }
1638
1639 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1640 run->exit_reason = KVM_EXIT_NMI;
1641 run->hw.hardware_exit_reason = vcpu->arch.trap;
1642 /* Clear out the old NMI status from run->flags */
1643 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1644 /* Now set the NMI status */
1645 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1646 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1647 else
1648 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1649
1650 r = RESUME_HOST;
1651 break;
1652 }
1653 case BOOK3S_INTERRUPT_PROGRAM:
1654 {
1655 ulong flags;
1656 /*
1657 * Normally program interrupts are delivered directly
1658 * to the guest by the hardware, but we can get here
1659 * as a result of a hypervisor emulation interrupt
1660 * (e40) getting turned into a 700 by BML RTAS.
1661 */
1662 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1663 kvmppc_core_queue_program(vcpu, flags);
1664 r = RESUME_GUEST;
1665 break;
1666 }
1667 case BOOK3S_INTERRUPT_SYSCALL:
1668 {
1669 int i;
1670
1671 if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) {
1672 /*
1673 * Guest userspace executed sc 1. This can only be
1674 * reached by the P9 path because the old path
1675 * handles this case in realmode hcall handlers.
1676 */
1677 if (!kvmhv_vcpu_is_radix(vcpu)) {
1678 /*
1679 * A guest could be running PR KVM, so this
1680 * may be a PR KVM hcall. It must be reflected
1681 * to the guest kernel as a sc interrupt.
1682 */
1683 kvmppc_core_queue_syscall(vcpu);
1684 } else {
1685 /*
1686 * Radix guests can not run PR KVM or nested HV
1687 * hash guests which might run PR KVM, so this
1688 * is always a privilege fault. Send a program
1689 * check to guest kernel.
1690 */
1691 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1692 }
1693 r = RESUME_GUEST;
1694 break;
1695 }
1696
1697 /*
1698 * hcall - gather args and set exit_reason. This will next be
1699 * handled by kvmppc_pseries_do_hcall which may be able to deal
1700 * with it and resume guest, or may punt to userspace.
1701 */
1702 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1703 for (i = 0; i < 9; ++i)
1704 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1705 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1706 vcpu->arch.hcall_needed = 1;
1707 r = RESUME_HOST;
1708 break;
1709 }
1710 /*
1711 * We get these next two if the guest accesses a page which it thinks
1712 * it has mapped but which is not actually present, either because
1713 * it is for an emulated I/O device or because the corresonding
1714 * host page has been paged out.
1715 *
1716 * Any other HDSI/HISI interrupts have been handled already for P7/8
1717 * guests. For POWER9 hash guests not using rmhandlers, basic hash
1718 * fault handling is done here.
1719 */
1720 case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1721 unsigned long vsid;
1722 long err;
1723
1724 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
1725 unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) {
1726 r = RESUME_GUEST; /* Just retry if it's the canary */
1727 break;
1728 }
1729
1730 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1731 /*
1732 * Radix doesn't require anything, and pre-ISAv3.0 hash
1733 * already attempted to handle this in rmhandlers. The
1734 * hash fault handling below is v3 only (it uses ASDR
1735 * via fault_gpa).
1736 */
1737 r = RESUME_PAGE_FAULT;
1738 break;
1739 }
1740
1741 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1742 kvmppc_core_queue_data_storage(vcpu,
1743 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1744 r = RESUME_GUEST;
1745 break;
1746 }
1747
1748 if (!(vcpu->arch.shregs.msr & MSR_DR))
1749 vsid = vcpu->kvm->arch.vrma_slb_v;
1750 else
1751 vsid = vcpu->arch.fault_gpa;
1752
1753 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1754 vsid, vcpu->arch.fault_dsisr, true);
1755 if (err == 0) {
1756 r = RESUME_GUEST;
1757 } else if (err == -1 || err == -2) {
1758 r = RESUME_PAGE_FAULT;
1759 } else {
1760 kvmppc_core_queue_data_storage(vcpu,
1761 vcpu->arch.fault_dar, err);
1762 r = RESUME_GUEST;
1763 }
1764 break;
1765 }
1766 case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1767 unsigned long vsid;
1768 long err;
1769
1770 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1771 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1772 DSISR_SRR1_MATCH_64S;
1773 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1774 /*
1775 * Radix doesn't require anything, and pre-ISAv3.0 hash
1776 * already attempted to handle this in rmhandlers. The
1777 * hash fault handling below is v3 only (it uses ASDR
1778 * via fault_gpa).
1779 */
1780 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1781 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1782 r = RESUME_PAGE_FAULT;
1783 break;
1784 }
1785
1786 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1787 kvmppc_core_queue_inst_storage(vcpu,
1788 vcpu->arch.fault_dsisr);
1789 r = RESUME_GUEST;
1790 break;
1791 }
1792
1793 if (!(vcpu->arch.shregs.msr & MSR_IR))
1794 vsid = vcpu->kvm->arch.vrma_slb_v;
1795 else
1796 vsid = vcpu->arch.fault_gpa;
1797
1798 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1799 vsid, vcpu->arch.fault_dsisr, false);
1800 if (err == 0) {
1801 r = RESUME_GUEST;
1802 } else if (err == -1) {
1803 r = RESUME_PAGE_FAULT;
1804 } else {
1805 kvmppc_core_queue_inst_storage(vcpu, err);
1806 r = RESUME_GUEST;
1807 }
1808 break;
1809 }
1810
1811 /*
1812 * This occurs if the guest executes an illegal instruction.
1813 * If the guest debug is disabled, generate a program interrupt
1814 * to the guest. If guest debug is enabled, we need to check
1815 * whether the instruction is a software breakpoint instruction.
1816 * Accordingly return to Guest or Host.
1817 */
1818 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1819 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1820 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1821 swab32(vcpu->arch.emul_inst) :
1822 vcpu->arch.emul_inst;
1823 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1824 r = kvmppc_emulate_debug_inst(vcpu);
1825 } else {
1826 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1827 r = RESUME_GUEST;
1828 }
1829 break;
1830
1831 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1832 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1833 /*
1834 * This occurs for various TM-related instructions that
1835 * we need to emulate on POWER9 DD2.2. We have already
1836 * handled the cases where the guest was in real-suspend
1837 * mode and was transitioning to transactional state.
1838 */
1839 r = kvmhv_p9_tm_emulation(vcpu);
1840 if (r != -1)
1841 break;
1842 fallthrough; /* go to facility unavailable handler */
1843 #endif
1844
1845 /*
1846 * This occurs if the guest (kernel or userspace), does something that
1847 * is prohibited by HFSCR.
1848 * On POWER9, this could be a doorbell instruction that we need
1849 * to emulate.
1850 * Otherwise, we just generate a program interrupt to the guest.
1851 */
1852 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1853 u64 cause = vcpu->arch.hfscr >> 56;
1854
1855 r = EMULATE_FAIL;
1856 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1857 if (cause == FSCR_MSGP_LG)
1858 r = kvmppc_emulate_doorbell_instr(vcpu);
1859 if (cause == FSCR_PM_LG)
1860 r = kvmppc_pmu_unavailable(vcpu);
1861 if (cause == FSCR_EBB_LG)
1862 r = kvmppc_ebb_unavailable(vcpu);
1863 if (cause == FSCR_TM_LG)
1864 r = kvmppc_tm_unavailable(vcpu);
1865 }
1866 if (r == EMULATE_FAIL) {
1867 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1868 r = RESUME_GUEST;
1869 }
1870 break;
1871 }
1872
1873 case BOOK3S_INTERRUPT_HV_RM_HARD:
1874 r = RESUME_PASSTHROUGH;
1875 break;
1876 default:
1877 kvmppc_dump_regs(vcpu);
1878 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1879 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1880 vcpu->arch.shregs.msr);
1881 run->hw.hardware_exit_reason = vcpu->arch.trap;
1882 r = RESUME_HOST;
1883 break;
1884 }
1885
1886 return r;
1887 }
1888
kvmppc_handle_nested_exit(struct kvm_vcpu * vcpu)1889 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1890 {
1891 int r;
1892 int srcu_idx;
1893
1894 vcpu->stat.sum_exits++;
1895
1896 /*
1897 * This can happen if an interrupt occurs in the last stages
1898 * of guest entry or the first stages of guest exit (i.e. after
1899 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1900 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1901 * That can happen due to a bug, or due to a machine check
1902 * occurring at just the wrong time.
1903 */
1904 if (vcpu->arch.shregs.msr & MSR_HV) {
1905 pr_emerg("KVM trap in HV mode while nested!\n");
1906 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1907 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1908 vcpu->arch.shregs.msr);
1909 kvmppc_dump_regs(vcpu);
1910 return RESUME_HOST;
1911 }
1912 switch (vcpu->arch.trap) {
1913 /* We're good on these - the host merely wanted to get our attention */
1914 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1915 vcpu->stat.dec_exits++;
1916 r = RESUME_GUEST;
1917 break;
1918 case BOOK3S_INTERRUPT_EXTERNAL:
1919 vcpu->stat.ext_intr_exits++;
1920 r = RESUME_HOST;
1921 break;
1922 case BOOK3S_INTERRUPT_H_DOORBELL:
1923 case BOOK3S_INTERRUPT_H_VIRT:
1924 vcpu->stat.ext_intr_exits++;
1925 r = RESUME_GUEST;
1926 break;
1927 /* These need to go to the nested HV */
1928 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1929 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1930 vcpu->stat.dec_exits++;
1931 r = RESUME_HOST;
1932 break;
1933 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1934 case BOOK3S_INTERRUPT_HMI:
1935 case BOOK3S_INTERRUPT_PERFMON:
1936 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1937 r = RESUME_GUEST;
1938 break;
1939 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1940 {
1941 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1942 DEFAULT_RATELIMIT_BURST);
1943 /* Pass the machine check to the L1 guest */
1944 r = RESUME_HOST;
1945 /* Print the MCE event to host console. */
1946 if (__ratelimit(&rs))
1947 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1948 break;
1949 }
1950 /*
1951 * We get these next two if the guest accesses a page which it thinks
1952 * it has mapped but which is not actually present, either because
1953 * it is for an emulated I/O device or because the corresonding
1954 * host page has been paged out.
1955 */
1956 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1957 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1958 r = kvmhv_nested_page_fault(vcpu);
1959 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1960 break;
1961 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1962 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1963 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1964 DSISR_SRR1_MATCH_64S;
1965 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1966 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1967 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1968 r = kvmhv_nested_page_fault(vcpu);
1969 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1970 break;
1971
1972 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1973 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1974 /*
1975 * This occurs for various TM-related instructions that
1976 * we need to emulate on POWER9 DD2.2. We have already
1977 * handled the cases where the guest was in real-suspend
1978 * mode and was transitioning to transactional state.
1979 */
1980 r = kvmhv_p9_tm_emulation(vcpu);
1981 if (r != -1)
1982 break;
1983 fallthrough; /* go to facility unavailable handler */
1984 #endif
1985
1986 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1987 u64 cause = vcpu->arch.hfscr >> 56;
1988
1989 /*
1990 * Only pass HFU interrupts to the L1 if the facility is
1991 * permitted but disabled by the L1's HFSCR, otherwise
1992 * the interrupt does not make sense to the L1 so turn
1993 * it into a HEAI.
1994 */
1995 if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) ||
1996 (vcpu->arch.nested_hfscr & (1UL << cause))) {
1997 vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST;
1998
1999 /*
2000 * If the fetch failed, return to guest and
2001 * try executing it again.
2002 */
2003 r = kvmppc_get_last_inst(vcpu, INST_GENERIC,
2004 &vcpu->arch.emul_inst);
2005 if (r != EMULATE_DONE)
2006 r = RESUME_GUEST;
2007 else
2008 r = RESUME_HOST;
2009 } else {
2010 r = RESUME_HOST;
2011 }
2012
2013 break;
2014 }
2015
2016 case BOOK3S_INTERRUPT_HV_RM_HARD:
2017 vcpu->arch.trap = 0;
2018 r = RESUME_GUEST;
2019 if (!xics_on_xive())
2020 kvmppc_xics_rm_complete(vcpu, 0);
2021 break;
2022 case BOOK3S_INTERRUPT_SYSCALL:
2023 {
2024 unsigned long req = kvmppc_get_gpr(vcpu, 3);
2025
2026 /*
2027 * The H_RPT_INVALIDATE hcalls issued by nested
2028 * guests for process-scoped invalidations when
2029 * GTSE=0, are handled here in L0.
2030 */
2031 if (req == H_RPT_INVALIDATE) {
2032 r = kvmppc_nested_h_rpt_invalidate(vcpu);
2033 break;
2034 }
2035
2036 r = RESUME_HOST;
2037 break;
2038 }
2039 default:
2040 r = RESUME_HOST;
2041 break;
2042 }
2043
2044 return r;
2045 }
2046
kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)2047 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
2048 struct kvm_sregs *sregs)
2049 {
2050 int i;
2051
2052 memset(sregs, 0, sizeof(struct kvm_sregs));
2053 sregs->pvr = vcpu->arch.pvr;
2054 for (i = 0; i < vcpu->arch.slb_max; i++) {
2055 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
2056 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
2057 }
2058
2059 return 0;
2060 }
2061
kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)2062 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
2063 struct kvm_sregs *sregs)
2064 {
2065 int i, j;
2066
2067 /* Only accept the same PVR as the host's, since we can't spoof it */
2068 if (sregs->pvr != vcpu->arch.pvr)
2069 return -EINVAL;
2070
2071 j = 0;
2072 for (i = 0; i < vcpu->arch.slb_nr; i++) {
2073 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
2074 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
2075 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
2076 ++j;
2077 }
2078 }
2079 vcpu->arch.slb_max = j;
2080
2081 return 0;
2082 }
2083
2084 /*
2085 * Enforce limits on guest LPCR values based on hardware availability,
2086 * guest configuration, and possibly hypervisor support and security
2087 * concerns.
2088 */
kvmppc_filter_lpcr_hv(struct kvm * kvm,unsigned long lpcr)2089 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
2090 {
2091 /* LPCR_TC only applies to HPT guests */
2092 if (kvm_is_radix(kvm))
2093 lpcr &= ~LPCR_TC;
2094
2095 /* On POWER8 and above, userspace can modify AIL */
2096 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2097 lpcr &= ~LPCR_AIL;
2098 if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
2099 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
2100 /*
2101 * On some POWER9s we force AIL off for radix guests to prevent
2102 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
2103 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
2104 * be cached, which the host TLB management does not expect.
2105 */
2106 if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
2107 lpcr &= ~LPCR_AIL;
2108
2109 /*
2110 * On POWER9, allow userspace to enable large decrementer for the
2111 * guest, whether or not the host has it enabled.
2112 */
2113 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2114 lpcr &= ~LPCR_LD;
2115
2116 return lpcr;
2117 }
2118
verify_lpcr(struct kvm * kvm,unsigned long lpcr)2119 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
2120 {
2121 if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
2122 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
2123 lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
2124 }
2125 }
2126
kvmppc_set_lpcr(struct kvm_vcpu * vcpu,u64 new_lpcr,bool preserve_top32)2127 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
2128 bool preserve_top32)
2129 {
2130 struct kvm *kvm = vcpu->kvm;
2131 struct kvmppc_vcore *vc = vcpu->arch.vcore;
2132 u64 mask;
2133
2134 spin_lock(&vc->lock);
2135
2136 /*
2137 * Userspace can only modify
2138 * DPFD (default prefetch depth), ILE (interrupt little-endian),
2139 * TC (translation control), AIL (alternate interrupt location),
2140 * LD (large decrementer).
2141 * These are subject to restrictions from kvmppc_filter_lcpr_hv().
2142 */
2143 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
2144
2145 /* Broken 32-bit version of LPCR must not clear top bits */
2146 if (preserve_top32)
2147 mask &= 0xFFFFFFFF;
2148
2149 new_lpcr = kvmppc_filter_lpcr_hv(kvm,
2150 (vc->lpcr & ~mask) | (new_lpcr & mask));
2151
2152 /*
2153 * If ILE (interrupt little-endian) has changed, update the
2154 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
2155 */
2156 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
2157 struct kvm_vcpu *vcpu;
2158 unsigned long i;
2159
2160 kvm_for_each_vcpu(i, vcpu, kvm) {
2161 if (vcpu->arch.vcore != vc)
2162 continue;
2163 if (new_lpcr & LPCR_ILE)
2164 vcpu->arch.intr_msr |= MSR_LE;
2165 else
2166 vcpu->arch.intr_msr &= ~MSR_LE;
2167 }
2168 }
2169
2170 vc->lpcr = new_lpcr;
2171
2172 spin_unlock(&vc->lock);
2173 }
2174
kvmppc_get_one_reg_hv(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)2175 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2176 union kvmppc_one_reg *val)
2177 {
2178 int r = 0;
2179 long int i;
2180
2181 switch (id) {
2182 case KVM_REG_PPC_DEBUG_INST:
2183 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
2184 break;
2185 case KVM_REG_PPC_HIOR:
2186 *val = get_reg_val(id, 0);
2187 break;
2188 case KVM_REG_PPC_DABR:
2189 *val = get_reg_val(id, vcpu->arch.dabr);
2190 break;
2191 case KVM_REG_PPC_DABRX:
2192 *val = get_reg_val(id, vcpu->arch.dabrx);
2193 break;
2194 case KVM_REG_PPC_DSCR:
2195 *val = get_reg_val(id, vcpu->arch.dscr);
2196 break;
2197 case KVM_REG_PPC_PURR:
2198 *val = get_reg_val(id, vcpu->arch.purr);
2199 break;
2200 case KVM_REG_PPC_SPURR:
2201 *val = get_reg_val(id, vcpu->arch.spurr);
2202 break;
2203 case KVM_REG_PPC_AMR:
2204 *val = get_reg_val(id, vcpu->arch.amr);
2205 break;
2206 case KVM_REG_PPC_UAMOR:
2207 *val = get_reg_val(id, vcpu->arch.uamor);
2208 break;
2209 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2210 i = id - KVM_REG_PPC_MMCR0;
2211 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
2212 break;
2213 case KVM_REG_PPC_MMCR2:
2214 *val = get_reg_val(id, vcpu->arch.mmcr[2]);
2215 break;
2216 case KVM_REG_PPC_MMCRA:
2217 *val = get_reg_val(id, vcpu->arch.mmcra);
2218 break;
2219 case KVM_REG_PPC_MMCRS:
2220 *val = get_reg_val(id, vcpu->arch.mmcrs);
2221 break;
2222 case KVM_REG_PPC_MMCR3:
2223 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2224 break;
2225 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2226 i = id - KVM_REG_PPC_PMC1;
2227 *val = get_reg_val(id, vcpu->arch.pmc[i]);
2228 break;
2229 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2230 i = id - KVM_REG_PPC_SPMC1;
2231 *val = get_reg_val(id, vcpu->arch.spmc[i]);
2232 break;
2233 case KVM_REG_PPC_SIAR:
2234 *val = get_reg_val(id, vcpu->arch.siar);
2235 break;
2236 case KVM_REG_PPC_SDAR:
2237 *val = get_reg_val(id, vcpu->arch.sdar);
2238 break;
2239 case KVM_REG_PPC_SIER:
2240 *val = get_reg_val(id, vcpu->arch.sier[0]);
2241 break;
2242 case KVM_REG_PPC_SIER2:
2243 *val = get_reg_val(id, vcpu->arch.sier[1]);
2244 break;
2245 case KVM_REG_PPC_SIER3:
2246 *val = get_reg_val(id, vcpu->arch.sier[2]);
2247 break;
2248 case KVM_REG_PPC_IAMR:
2249 *val = get_reg_val(id, vcpu->arch.iamr);
2250 break;
2251 case KVM_REG_PPC_PSPB:
2252 *val = get_reg_val(id, vcpu->arch.pspb);
2253 break;
2254 case KVM_REG_PPC_DPDES:
2255 /*
2256 * On POWER9, where we are emulating msgsndp etc.,
2257 * we return 1 bit for each vcpu, which can come from
2258 * either vcore->dpdes or doorbell_request.
2259 * On POWER8, doorbell_request is 0.
2260 */
2261 if (cpu_has_feature(CPU_FTR_ARCH_300))
2262 *val = get_reg_val(id, vcpu->arch.doorbell_request);
2263 else
2264 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
2265 break;
2266 case KVM_REG_PPC_VTB:
2267 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
2268 break;
2269 case KVM_REG_PPC_DAWR:
2270 *val = get_reg_val(id, vcpu->arch.dawr0);
2271 break;
2272 case KVM_REG_PPC_DAWRX:
2273 *val = get_reg_val(id, vcpu->arch.dawrx0);
2274 break;
2275 case KVM_REG_PPC_DAWR1:
2276 *val = get_reg_val(id, vcpu->arch.dawr1);
2277 break;
2278 case KVM_REG_PPC_DAWRX1:
2279 *val = get_reg_val(id, vcpu->arch.dawrx1);
2280 break;
2281 case KVM_REG_PPC_CIABR:
2282 *val = get_reg_val(id, vcpu->arch.ciabr);
2283 break;
2284 case KVM_REG_PPC_CSIGR:
2285 *val = get_reg_val(id, vcpu->arch.csigr);
2286 break;
2287 case KVM_REG_PPC_TACR:
2288 *val = get_reg_val(id, vcpu->arch.tacr);
2289 break;
2290 case KVM_REG_PPC_TCSCR:
2291 *val = get_reg_val(id, vcpu->arch.tcscr);
2292 break;
2293 case KVM_REG_PPC_PID:
2294 *val = get_reg_val(id, vcpu->arch.pid);
2295 break;
2296 case KVM_REG_PPC_ACOP:
2297 *val = get_reg_val(id, vcpu->arch.acop);
2298 break;
2299 case KVM_REG_PPC_WORT:
2300 *val = get_reg_val(id, vcpu->arch.wort);
2301 break;
2302 case KVM_REG_PPC_TIDR:
2303 *val = get_reg_val(id, vcpu->arch.tid);
2304 break;
2305 case KVM_REG_PPC_PSSCR:
2306 *val = get_reg_val(id, vcpu->arch.psscr);
2307 break;
2308 case KVM_REG_PPC_VPA_ADDR:
2309 spin_lock(&vcpu->arch.vpa_update_lock);
2310 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2311 spin_unlock(&vcpu->arch.vpa_update_lock);
2312 break;
2313 case KVM_REG_PPC_VPA_SLB:
2314 spin_lock(&vcpu->arch.vpa_update_lock);
2315 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2316 val->vpaval.length = vcpu->arch.slb_shadow.len;
2317 spin_unlock(&vcpu->arch.vpa_update_lock);
2318 break;
2319 case KVM_REG_PPC_VPA_DTL:
2320 spin_lock(&vcpu->arch.vpa_update_lock);
2321 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2322 val->vpaval.length = vcpu->arch.dtl.len;
2323 spin_unlock(&vcpu->arch.vpa_update_lock);
2324 break;
2325 case KVM_REG_PPC_TB_OFFSET:
2326 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
2327 break;
2328 case KVM_REG_PPC_LPCR:
2329 case KVM_REG_PPC_LPCR_64:
2330 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
2331 break;
2332 case KVM_REG_PPC_PPR:
2333 *val = get_reg_val(id, vcpu->arch.ppr);
2334 break;
2335 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2336 case KVM_REG_PPC_TFHAR:
2337 *val = get_reg_val(id, vcpu->arch.tfhar);
2338 break;
2339 case KVM_REG_PPC_TFIAR:
2340 *val = get_reg_val(id, vcpu->arch.tfiar);
2341 break;
2342 case KVM_REG_PPC_TEXASR:
2343 *val = get_reg_val(id, vcpu->arch.texasr);
2344 break;
2345 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2346 i = id - KVM_REG_PPC_TM_GPR0;
2347 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2348 break;
2349 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2350 {
2351 int j;
2352 i = id - KVM_REG_PPC_TM_VSR0;
2353 if (i < 32)
2354 for (j = 0; j < TS_FPRWIDTH; j++)
2355 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2356 else {
2357 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2358 val->vval = vcpu->arch.vr_tm.vr[i-32];
2359 else
2360 r = -ENXIO;
2361 }
2362 break;
2363 }
2364 case KVM_REG_PPC_TM_CR:
2365 *val = get_reg_val(id, vcpu->arch.cr_tm);
2366 break;
2367 case KVM_REG_PPC_TM_XER:
2368 *val = get_reg_val(id, vcpu->arch.xer_tm);
2369 break;
2370 case KVM_REG_PPC_TM_LR:
2371 *val = get_reg_val(id, vcpu->arch.lr_tm);
2372 break;
2373 case KVM_REG_PPC_TM_CTR:
2374 *val = get_reg_val(id, vcpu->arch.ctr_tm);
2375 break;
2376 case KVM_REG_PPC_TM_FPSCR:
2377 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2378 break;
2379 case KVM_REG_PPC_TM_AMR:
2380 *val = get_reg_val(id, vcpu->arch.amr_tm);
2381 break;
2382 case KVM_REG_PPC_TM_PPR:
2383 *val = get_reg_val(id, vcpu->arch.ppr_tm);
2384 break;
2385 case KVM_REG_PPC_TM_VRSAVE:
2386 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
2387 break;
2388 case KVM_REG_PPC_TM_VSCR:
2389 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2390 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2391 else
2392 r = -ENXIO;
2393 break;
2394 case KVM_REG_PPC_TM_DSCR:
2395 *val = get_reg_val(id, vcpu->arch.dscr_tm);
2396 break;
2397 case KVM_REG_PPC_TM_TAR:
2398 *val = get_reg_val(id, vcpu->arch.tar_tm);
2399 break;
2400 #endif
2401 case KVM_REG_PPC_ARCH_COMPAT:
2402 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
2403 break;
2404 case KVM_REG_PPC_DEC_EXPIRY:
2405 *val = get_reg_val(id, vcpu->arch.dec_expires);
2406 break;
2407 case KVM_REG_PPC_ONLINE:
2408 *val = get_reg_val(id, vcpu->arch.online);
2409 break;
2410 case KVM_REG_PPC_PTCR:
2411 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2412 break;
2413 default:
2414 r = -EINVAL;
2415 break;
2416 }
2417
2418 return r;
2419 }
2420
kvmppc_set_one_reg_hv(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)2421 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2422 union kvmppc_one_reg *val)
2423 {
2424 int r = 0;
2425 long int i;
2426 unsigned long addr, len;
2427
2428 switch (id) {
2429 case KVM_REG_PPC_HIOR:
2430 /* Only allow this to be set to zero */
2431 if (set_reg_val(id, *val))
2432 r = -EINVAL;
2433 break;
2434 case KVM_REG_PPC_DABR:
2435 vcpu->arch.dabr = set_reg_val(id, *val);
2436 break;
2437 case KVM_REG_PPC_DABRX:
2438 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2439 break;
2440 case KVM_REG_PPC_DSCR:
2441 vcpu->arch.dscr = set_reg_val(id, *val);
2442 break;
2443 case KVM_REG_PPC_PURR:
2444 vcpu->arch.purr = set_reg_val(id, *val);
2445 break;
2446 case KVM_REG_PPC_SPURR:
2447 vcpu->arch.spurr = set_reg_val(id, *val);
2448 break;
2449 case KVM_REG_PPC_AMR:
2450 vcpu->arch.amr = set_reg_val(id, *val);
2451 break;
2452 case KVM_REG_PPC_UAMOR:
2453 vcpu->arch.uamor = set_reg_val(id, *val);
2454 break;
2455 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2456 i = id - KVM_REG_PPC_MMCR0;
2457 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
2458 break;
2459 case KVM_REG_PPC_MMCR2:
2460 vcpu->arch.mmcr[2] = set_reg_val(id, *val);
2461 break;
2462 case KVM_REG_PPC_MMCRA:
2463 vcpu->arch.mmcra = set_reg_val(id, *val);
2464 break;
2465 case KVM_REG_PPC_MMCRS:
2466 vcpu->arch.mmcrs = set_reg_val(id, *val);
2467 break;
2468 case KVM_REG_PPC_MMCR3:
2469 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2470 break;
2471 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2472 i = id - KVM_REG_PPC_PMC1;
2473 vcpu->arch.pmc[i] = set_reg_val(id, *val);
2474 break;
2475 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2476 i = id - KVM_REG_PPC_SPMC1;
2477 vcpu->arch.spmc[i] = set_reg_val(id, *val);
2478 break;
2479 case KVM_REG_PPC_SIAR:
2480 vcpu->arch.siar = set_reg_val(id, *val);
2481 break;
2482 case KVM_REG_PPC_SDAR:
2483 vcpu->arch.sdar = set_reg_val(id, *val);
2484 break;
2485 case KVM_REG_PPC_SIER:
2486 vcpu->arch.sier[0] = set_reg_val(id, *val);
2487 break;
2488 case KVM_REG_PPC_SIER2:
2489 vcpu->arch.sier[1] = set_reg_val(id, *val);
2490 break;
2491 case KVM_REG_PPC_SIER3:
2492 vcpu->arch.sier[2] = set_reg_val(id, *val);
2493 break;
2494 case KVM_REG_PPC_IAMR:
2495 vcpu->arch.iamr = set_reg_val(id, *val);
2496 break;
2497 case KVM_REG_PPC_PSPB:
2498 vcpu->arch.pspb = set_reg_val(id, *val);
2499 break;
2500 case KVM_REG_PPC_DPDES:
2501 if (cpu_has_feature(CPU_FTR_ARCH_300))
2502 vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1;
2503 else
2504 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2505 break;
2506 case KVM_REG_PPC_VTB:
2507 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
2508 break;
2509 case KVM_REG_PPC_DAWR:
2510 vcpu->arch.dawr0 = set_reg_val(id, *val);
2511 break;
2512 case KVM_REG_PPC_DAWRX:
2513 vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP;
2514 break;
2515 case KVM_REG_PPC_DAWR1:
2516 vcpu->arch.dawr1 = set_reg_val(id, *val);
2517 break;
2518 case KVM_REG_PPC_DAWRX1:
2519 vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP;
2520 break;
2521 case KVM_REG_PPC_CIABR:
2522 vcpu->arch.ciabr = set_reg_val(id, *val);
2523 /* Don't allow setting breakpoints in hypervisor code */
2524 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
2525 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
2526 break;
2527 case KVM_REG_PPC_CSIGR:
2528 vcpu->arch.csigr = set_reg_val(id, *val);
2529 break;
2530 case KVM_REG_PPC_TACR:
2531 vcpu->arch.tacr = set_reg_val(id, *val);
2532 break;
2533 case KVM_REG_PPC_TCSCR:
2534 vcpu->arch.tcscr = set_reg_val(id, *val);
2535 break;
2536 case KVM_REG_PPC_PID:
2537 vcpu->arch.pid = set_reg_val(id, *val);
2538 break;
2539 case KVM_REG_PPC_ACOP:
2540 vcpu->arch.acop = set_reg_val(id, *val);
2541 break;
2542 case KVM_REG_PPC_WORT:
2543 vcpu->arch.wort = set_reg_val(id, *val);
2544 break;
2545 case KVM_REG_PPC_TIDR:
2546 vcpu->arch.tid = set_reg_val(id, *val);
2547 break;
2548 case KVM_REG_PPC_PSSCR:
2549 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2550 break;
2551 case KVM_REG_PPC_VPA_ADDR:
2552 addr = set_reg_val(id, *val);
2553 r = -EINVAL;
2554 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2555 vcpu->arch.dtl.next_gpa))
2556 break;
2557 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2558 break;
2559 case KVM_REG_PPC_VPA_SLB:
2560 addr = val->vpaval.addr;
2561 len = val->vpaval.length;
2562 r = -EINVAL;
2563 if (addr && !vcpu->arch.vpa.next_gpa)
2564 break;
2565 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2566 break;
2567 case KVM_REG_PPC_VPA_DTL:
2568 addr = val->vpaval.addr;
2569 len = val->vpaval.length;
2570 r = -EINVAL;
2571 if (addr && (len < sizeof(struct dtl_entry) ||
2572 !vcpu->arch.vpa.next_gpa))
2573 break;
2574 len -= len % sizeof(struct dtl_entry);
2575 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2576 break;
2577 case KVM_REG_PPC_TB_OFFSET:
2578 {
2579 /* round up to multiple of 2^24 */
2580 u64 tb_offset = ALIGN(set_reg_val(id, *val), 1UL << 24);
2581
2582 /*
2583 * Now that we know the timebase offset, update the
2584 * decrementer expiry with a guest timebase value. If
2585 * the userspace does not set DEC_EXPIRY, this ensures
2586 * a migrated vcpu at least starts with an expired
2587 * decrementer, which is better than a large one that
2588 * causes a hang.
2589 */
2590 if (!vcpu->arch.dec_expires && tb_offset)
2591 vcpu->arch.dec_expires = get_tb() + tb_offset;
2592
2593 vcpu->arch.vcore->tb_offset = tb_offset;
2594 break;
2595 }
2596 case KVM_REG_PPC_LPCR:
2597 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2598 break;
2599 case KVM_REG_PPC_LPCR_64:
2600 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2601 break;
2602 case KVM_REG_PPC_PPR:
2603 vcpu->arch.ppr = set_reg_val(id, *val);
2604 break;
2605 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2606 case KVM_REG_PPC_TFHAR:
2607 vcpu->arch.tfhar = set_reg_val(id, *val);
2608 break;
2609 case KVM_REG_PPC_TFIAR:
2610 vcpu->arch.tfiar = set_reg_val(id, *val);
2611 break;
2612 case KVM_REG_PPC_TEXASR:
2613 vcpu->arch.texasr = set_reg_val(id, *val);
2614 break;
2615 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2616 i = id - KVM_REG_PPC_TM_GPR0;
2617 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2618 break;
2619 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2620 {
2621 int j;
2622 i = id - KVM_REG_PPC_TM_VSR0;
2623 if (i < 32)
2624 for (j = 0; j < TS_FPRWIDTH; j++)
2625 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2626 else
2627 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2628 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2629 else
2630 r = -ENXIO;
2631 break;
2632 }
2633 case KVM_REG_PPC_TM_CR:
2634 vcpu->arch.cr_tm = set_reg_val(id, *val);
2635 break;
2636 case KVM_REG_PPC_TM_XER:
2637 vcpu->arch.xer_tm = set_reg_val(id, *val);
2638 break;
2639 case KVM_REG_PPC_TM_LR:
2640 vcpu->arch.lr_tm = set_reg_val(id, *val);
2641 break;
2642 case KVM_REG_PPC_TM_CTR:
2643 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2644 break;
2645 case KVM_REG_PPC_TM_FPSCR:
2646 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2647 break;
2648 case KVM_REG_PPC_TM_AMR:
2649 vcpu->arch.amr_tm = set_reg_val(id, *val);
2650 break;
2651 case KVM_REG_PPC_TM_PPR:
2652 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2653 break;
2654 case KVM_REG_PPC_TM_VRSAVE:
2655 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2656 break;
2657 case KVM_REG_PPC_TM_VSCR:
2658 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2659 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2660 else
2661 r = - ENXIO;
2662 break;
2663 case KVM_REG_PPC_TM_DSCR:
2664 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2665 break;
2666 case KVM_REG_PPC_TM_TAR:
2667 vcpu->arch.tar_tm = set_reg_val(id, *val);
2668 break;
2669 #endif
2670 case KVM_REG_PPC_ARCH_COMPAT:
2671 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2672 break;
2673 case KVM_REG_PPC_DEC_EXPIRY:
2674 vcpu->arch.dec_expires = set_reg_val(id, *val);
2675 break;
2676 case KVM_REG_PPC_ONLINE:
2677 i = set_reg_val(id, *val);
2678 if (i && !vcpu->arch.online)
2679 atomic_inc(&vcpu->arch.vcore->online_count);
2680 else if (!i && vcpu->arch.online)
2681 atomic_dec(&vcpu->arch.vcore->online_count);
2682 vcpu->arch.online = i;
2683 break;
2684 case KVM_REG_PPC_PTCR:
2685 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2686 break;
2687 default:
2688 r = -EINVAL;
2689 break;
2690 }
2691
2692 return r;
2693 }
2694
2695 /*
2696 * On POWER9, threads are independent and can be in different partitions.
2697 * Therefore we consider each thread to be a subcore.
2698 * There is a restriction that all threads have to be in the same
2699 * MMU mode (radix or HPT), unfortunately, but since we only support
2700 * HPT guests on a HPT host so far, that isn't an impediment yet.
2701 */
threads_per_vcore(struct kvm * kvm)2702 static int threads_per_vcore(struct kvm *kvm)
2703 {
2704 if (cpu_has_feature(CPU_FTR_ARCH_300))
2705 return 1;
2706 return threads_per_subcore;
2707 }
2708
kvmppc_vcore_create(struct kvm * kvm,int id)2709 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2710 {
2711 struct kvmppc_vcore *vcore;
2712
2713 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2714
2715 if (vcore == NULL)
2716 return NULL;
2717
2718 spin_lock_init(&vcore->lock);
2719 spin_lock_init(&vcore->stoltb_lock);
2720 rcuwait_init(&vcore->wait);
2721 vcore->preempt_tb = TB_NIL;
2722 vcore->lpcr = kvm->arch.lpcr;
2723 vcore->first_vcpuid = id;
2724 vcore->kvm = kvm;
2725 INIT_LIST_HEAD(&vcore->preempt_list);
2726
2727 return vcore;
2728 }
2729
2730 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2731 static struct debugfs_timings_element {
2732 const char *name;
2733 size_t offset;
2734 } timings[] = {
2735 #ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING
2736 {"vcpu_entry", offsetof(struct kvm_vcpu, arch.vcpu_entry)},
2737 {"guest_entry", offsetof(struct kvm_vcpu, arch.guest_entry)},
2738 {"in_guest", offsetof(struct kvm_vcpu, arch.in_guest)},
2739 {"guest_exit", offsetof(struct kvm_vcpu, arch.guest_exit)},
2740 {"vcpu_exit", offsetof(struct kvm_vcpu, arch.vcpu_exit)},
2741 {"hypercall", offsetof(struct kvm_vcpu, arch.hcall)},
2742 {"page_fault", offsetof(struct kvm_vcpu, arch.pg_fault)},
2743 #else
2744 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
2745 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
2746 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
2747 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
2748 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
2749 #endif
2750 };
2751
2752 #define N_TIMINGS (ARRAY_SIZE(timings))
2753
2754 struct debugfs_timings_state {
2755 struct kvm_vcpu *vcpu;
2756 unsigned int buflen;
2757 char buf[N_TIMINGS * 100];
2758 };
2759
debugfs_timings_open(struct inode * inode,struct file * file)2760 static int debugfs_timings_open(struct inode *inode, struct file *file)
2761 {
2762 struct kvm_vcpu *vcpu = inode->i_private;
2763 struct debugfs_timings_state *p;
2764
2765 p = kzalloc(sizeof(*p), GFP_KERNEL);
2766 if (!p)
2767 return -ENOMEM;
2768
2769 kvm_get_kvm(vcpu->kvm);
2770 p->vcpu = vcpu;
2771 file->private_data = p;
2772
2773 return nonseekable_open(inode, file);
2774 }
2775
debugfs_timings_release(struct inode * inode,struct file * file)2776 static int debugfs_timings_release(struct inode *inode, struct file *file)
2777 {
2778 struct debugfs_timings_state *p = file->private_data;
2779
2780 kvm_put_kvm(p->vcpu->kvm);
2781 kfree(p);
2782 return 0;
2783 }
2784
debugfs_timings_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)2785 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2786 size_t len, loff_t *ppos)
2787 {
2788 struct debugfs_timings_state *p = file->private_data;
2789 struct kvm_vcpu *vcpu = p->vcpu;
2790 char *s, *buf_end;
2791 struct kvmhv_tb_accumulator tb;
2792 u64 count;
2793 loff_t pos;
2794 ssize_t n;
2795 int i, loops;
2796 bool ok;
2797
2798 if (!p->buflen) {
2799 s = p->buf;
2800 buf_end = s + sizeof(p->buf);
2801 for (i = 0; i < N_TIMINGS; ++i) {
2802 struct kvmhv_tb_accumulator *acc;
2803
2804 acc = (struct kvmhv_tb_accumulator *)
2805 ((unsigned long)vcpu + timings[i].offset);
2806 ok = false;
2807 for (loops = 0; loops < 1000; ++loops) {
2808 count = acc->seqcount;
2809 if (!(count & 1)) {
2810 smp_rmb();
2811 tb = *acc;
2812 smp_rmb();
2813 if (count == acc->seqcount) {
2814 ok = true;
2815 break;
2816 }
2817 }
2818 udelay(1);
2819 }
2820 if (!ok)
2821 snprintf(s, buf_end - s, "%s: stuck\n",
2822 timings[i].name);
2823 else
2824 snprintf(s, buf_end - s,
2825 "%s: %llu %llu %llu %llu\n",
2826 timings[i].name, count / 2,
2827 tb_to_ns(tb.tb_total),
2828 tb_to_ns(tb.tb_min),
2829 tb_to_ns(tb.tb_max));
2830 s += strlen(s);
2831 }
2832 p->buflen = s - p->buf;
2833 }
2834
2835 pos = *ppos;
2836 if (pos >= p->buflen)
2837 return 0;
2838 if (len > p->buflen - pos)
2839 len = p->buflen - pos;
2840 n = copy_to_user(buf, p->buf + pos, len);
2841 if (n) {
2842 if (n == len)
2843 return -EFAULT;
2844 len -= n;
2845 }
2846 *ppos = pos + len;
2847 return len;
2848 }
2849
debugfs_timings_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)2850 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2851 size_t len, loff_t *ppos)
2852 {
2853 return -EACCES;
2854 }
2855
2856 static const struct file_operations debugfs_timings_ops = {
2857 .owner = THIS_MODULE,
2858 .open = debugfs_timings_open,
2859 .release = debugfs_timings_release,
2860 .read = debugfs_timings_read,
2861 .write = debugfs_timings_write,
2862 .llseek = generic_file_llseek,
2863 };
2864
2865 /* Create a debugfs directory for the vcpu */
kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu * vcpu,struct dentry * debugfs_dentry)2866 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2867 {
2868 if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING))
2869 debugfs_create_file("timings", 0444, debugfs_dentry, vcpu,
2870 &debugfs_timings_ops);
2871 return 0;
2872 }
2873
2874 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu * vcpu,struct dentry * debugfs_dentry)2875 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2876 {
2877 return 0;
2878 }
2879 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2880
kvmppc_core_vcpu_create_hv(struct kvm_vcpu * vcpu)2881 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2882 {
2883 int err;
2884 int core;
2885 struct kvmppc_vcore *vcore;
2886 struct kvm *kvm;
2887 unsigned int id;
2888
2889 kvm = vcpu->kvm;
2890 id = vcpu->vcpu_id;
2891
2892 vcpu->arch.shared = &vcpu->arch.shregs;
2893 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2894 /*
2895 * The shared struct is never shared on HV,
2896 * so we can always use host endianness
2897 */
2898 #ifdef __BIG_ENDIAN__
2899 vcpu->arch.shared_big_endian = true;
2900 #else
2901 vcpu->arch.shared_big_endian = false;
2902 #endif
2903 #endif
2904 vcpu->arch.mmcr[0] = MMCR0_FC;
2905 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
2906 vcpu->arch.mmcr[0] |= MMCR0_PMCCEXT;
2907 vcpu->arch.mmcra = MMCRA_BHRB_DISABLE;
2908 }
2909
2910 vcpu->arch.ctrl = CTRL_RUNLATCH;
2911 /* default to host PVR, since we can't spoof it */
2912 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2913 spin_lock_init(&vcpu->arch.vpa_update_lock);
2914 spin_lock_init(&vcpu->arch.tbacct_lock);
2915 vcpu->arch.busy_preempt = TB_NIL;
2916 vcpu->arch.shregs.msr = MSR_ME;
2917 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2918
2919 /*
2920 * Set the default HFSCR for the guest from the host value.
2921 * This value is only used on POWER9.
2922 * On POWER9, we want to virtualize the doorbell facility, so we
2923 * don't set the HFSCR_MSGP bit, and that causes those instructions
2924 * to trap and then we emulate them.
2925 */
2926 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2927 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2928 if (cpu_has_feature(CPU_FTR_HVMODE)) {
2929 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2930 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2931 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2932 vcpu->arch.hfscr |= HFSCR_TM;
2933 #endif
2934 }
2935 if (cpu_has_feature(CPU_FTR_TM_COMP))
2936 vcpu->arch.hfscr |= HFSCR_TM;
2937
2938 vcpu->arch.hfscr_permitted = vcpu->arch.hfscr;
2939
2940 /*
2941 * PM, EBB, TM are demand-faulted so start with it clear.
2942 */
2943 vcpu->arch.hfscr &= ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM);
2944
2945 kvmppc_mmu_book3s_hv_init(vcpu);
2946
2947 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2948
2949 init_waitqueue_head(&vcpu->arch.cpu_run);
2950
2951 mutex_lock(&kvm->lock);
2952 vcore = NULL;
2953 err = -EINVAL;
2954 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2955 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2956 pr_devel("KVM: VCPU ID too high\n");
2957 core = KVM_MAX_VCORES;
2958 } else {
2959 BUG_ON(kvm->arch.smt_mode != 1);
2960 core = kvmppc_pack_vcpu_id(kvm, id);
2961 }
2962 } else {
2963 core = id / kvm->arch.smt_mode;
2964 }
2965 if (core < KVM_MAX_VCORES) {
2966 vcore = kvm->arch.vcores[core];
2967 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2968 pr_devel("KVM: collision on id %u", id);
2969 vcore = NULL;
2970 } else if (!vcore) {
2971 /*
2972 * Take mmu_setup_lock for mutual exclusion
2973 * with kvmppc_update_lpcr().
2974 */
2975 err = -ENOMEM;
2976 vcore = kvmppc_vcore_create(kvm,
2977 id & ~(kvm->arch.smt_mode - 1));
2978 mutex_lock(&kvm->arch.mmu_setup_lock);
2979 kvm->arch.vcores[core] = vcore;
2980 kvm->arch.online_vcores++;
2981 mutex_unlock(&kvm->arch.mmu_setup_lock);
2982 }
2983 }
2984 mutex_unlock(&kvm->lock);
2985
2986 if (!vcore)
2987 return err;
2988
2989 spin_lock(&vcore->lock);
2990 ++vcore->num_threads;
2991 spin_unlock(&vcore->lock);
2992 vcpu->arch.vcore = vcore;
2993 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2994 vcpu->arch.thread_cpu = -1;
2995 vcpu->arch.prev_cpu = -1;
2996
2997 vcpu->arch.cpu_type = KVM_CPU_3S_64;
2998 kvmppc_sanity_check(vcpu);
2999
3000 return 0;
3001 }
3002
kvmhv_set_smt_mode(struct kvm * kvm,unsigned long smt_mode,unsigned long flags)3003 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
3004 unsigned long flags)
3005 {
3006 int err;
3007 int esmt = 0;
3008
3009 if (flags)
3010 return -EINVAL;
3011 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
3012 return -EINVAL;
3013 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3014 /*
3015 * On POWER8 (or POWER7), the threading mode is "strict",
3016 * so we pack smt_mode vcpus per vcore.
3017 */
3018 if (smt_mode > threads_per_subcore)
3019 return -EINVAL;
3020 } else {
3021 /*
3022 * On POWER9, the threading mode is "loose",
3023 * so each vcpu gets its own vcore.
3024 */
3025 esmt = smt_mode;
3026 smt_mode = 1;
3027 }
3028 mutex_lock(&kvm->lock);
3029 err = -EBUSY;
3030 if (!kvm->arch.online_vcores) {
3031 kvm->arch.smt_mode = smt_mode;
3032 kvm->arch.emul_smt_mode = esmt;
3033 err = 0;
3034 }
3035 mutex_unlock(&kvm->lock);
3036
3037 return err;
3038 }
3039
unpin_vpa(struct kvm * kvm,struct kvmppc_vpa * vpa)3040 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
3041 {
3042 if (vpa->pinned_addr)
3043 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
3044 vpa->dirty);
3045 }
3046
kvmppc_core_vcpu_free_hv(struct kvm_vcpu * vcpu)3047 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
3048 {
3049 spin_lock(&vcpu->arch.vpa_update_lock);
3050 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
3051 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
3052 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
3053 spin_unlock(&vcpu->arch.vpa_update_lock);
3054 }
3055
kvmppc_core_check_requests_hv(struct kvm_vcpu * vcpu)3056 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
3057 {
3058 /* Indicate we want to get back into the guest */
3059 return 1;
3060 }
3061
kvmppc_set_timer(struct kvm_vcpu * vcpu)3062 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
3063 {
3064 unsigned long dec_nsec, now;
3065
3066 now = get_tb();
3067 if (now > kvmppc_dec_expires_host_tb(vcpu)) {
3068 /* decrementer has already gone negative */
3069 kvmppc_core_queue_dec(vcpu);
3070 kvmppc_core_prepare_to_enter(vcpu);
3071 return;
3072 }
3073 dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now);
3074 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
3075 vcpu->arch.timer_running = 1;
3076 }
3077
3078 extern int __kvmppc_vcore_entry(void);
3079
kvmppc_remove_runnable(struct kvmppc_vcore * vc,struct kvm_vcpu * vcpu,u64 tb)3080 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
3081 struct kvm_vcpu *vcpu, u64 tb)
3082 {
3083 u64 now;
3084
3085 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3086 return;
3087 spin_lock_irq(&vcpu->arch.tbacct_lock);
3088 now = tb;
3089 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
3090 vcpu->arch.stolen_logged;
3091 vcpu->arch.busy_preempt = now;
3092 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3093 spin_unlock_irq(&vcpu->arch.tbacct_lock);
3094 --vc->n_runnable;
3095 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
3096 }
3097
kvmppc_grab_hwthread(int cpu)3098 static int kvmppc_grab_hwthread(int cpu)
3099 {
3100 struct paca_struct *tpaca;
3101 long timeout = 10000;
3102
3103 tpaca = paca_ptrs[cpu];
3104
3105 /* Ensure the thread won't go into the kernel if it wakes */
3106 tpaca->kvm_hstate.kvm_vcpu = NULL;
3107 tpaca->kvm_hstate.kvm_vcore = NULL;
3108 tpaca->kvm_hstate.napping = 0;
3109 smp_wmb();
3110 tpaca->kvm_hstate.hwthread_req = 1;
3111
3112 /*
3113 * If the thread is already executing in the kernel (e.g. handling
3114 * a stray interrupt), wait for it to get back to nap mode.
3115 * The smp_mb() is to ensure that our setting of hwthread_req
3116 * is visible before we look at hwthread_state, so if this
3117 * races with the code at system_reset_pSeries and the thread
3118 * misses our setting of hwthread_req, we are sure to see its
3119 * setting of hwthread_state, and vice versa.
3120 */
3121 smp_mb();
3122 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
3123 if (--timeout <= 0) {
3124 pr_err("KVM: couldn't grab cpu %d\n", cpu);
3125 return -EBUSY;
3126 }
3127 udelay(1);
3128 }
3129 return 0;
3130 }
3131
kvmppc_release_hwthread(int cpu)3132 static void kvmppc_release_hwthread(int cpu)
3133 {
3134 struct paca_struct *tpaca;
3135
3136 tpaca = paca_ptrs[cpu];
3137 tpaca->kvm_hstate.hwthread_req = 0;
3138 tpaca->kvm_hstate.kvm_vcpu = NULL;
3139 tpaca->kvm_hstate.kvm_vcore = NULL;
3140 tpaca->kvm_hstate.kvm_split_mode = NULL;
3141 }
3142
3143 static DEFINE_PER_CPU(struct kvm *, cpu_in_guest);
3144
radix_flush_cpu(struct kvm * kvm,int cpu,struct kvm_vcpu * vcpu)3145 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
3146 {
3147 struct kvm_nested_guest *nested = vcpu->arch.nested;
3148 cpumask_t *need_tlb_flush;
3149 int i;
3150
3151 if (nested)
3152 need_tlb_flush = &nested->need_tlb_flush;
3153 else
3154 need_tlb_flush = &kvm->arch.need_tlb_flush;
3155
3156 cpu = cpu_first_tlb_thread_sibling(cpu);
3157 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3158 i += cpu_tlb_thread_sibling_step())
3159 cpumask_set_cpu(i, need_tlb_flush);
3160
3161 /*
3162 * Make sure setting of bit in need_tlb_flush precedes testing of
3163 * cpu_in_guest. The matching barrier on the other side is hwsync
3164 * when switching to guest MMU mode, which happens between
3165 * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit
3166 * being tested.
3167 */
3168 smp_mb();
3169
3170 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3171 i += cpu_tlb_thread_sibling_step()) {
3172 struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i);
3173
3174 if (running == kvm)
3175 smp_call_function_single(i, do_nothing, NULL, 1);
3176 }
3177 }
3178
do_migrate_away_vcpu(void * arg)3179 static void do_migrate_away_vcpu(void *arg)
3180 {
3181 struct kvm_vcpu *vcpu = arg;
3182 struct kvm *kvm = vcpu->kvm;
3183
3184 /*
3185 * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync;
3186 * ptesync sequence on the old CPU before migrating to a new one, in
3187 * case we interrupted the guest between a tlbie ; eieio ;
3188 * tlbsync; ptesync sequence.
3189 *
3190 * Otherwise, ptesync is sufficient for ordering tlbiel sequences.
3191 */
3192 if (kvm->arch.lpcr & LPCR_GTSE)
3193 asm volatile("eieio; tlbsync; ptesync");
3194 else
3195 asm volatile("ptesync");
3196 }
3197
kvmppc_prepare_radix_vcpu(struct kvm_vcpu * vcpu,int pcpu)3198 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
3199 {
3200 struct kvm_nested_guest *nested = vcpu->arch.nested;
3201 struct kvm *kvm = vcpu->kvm;
3202 int prev_cpu;
3203
3204 if (!cpu_has_feature(CPU_FTR_HVMODE))
3205 return;
3206
3207 if (nested)
3208 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
3209 else
3210 prev_cpu = vcpu->arch.prev_cpu;
3211
3212 /*
3213 * With radix, the guest can do TLB invalidations itself,
3214 * and it could choose to use the local form (tlbiel) if
3215 * it is invalidating a translation that has only ever been
3216 * used on one vcpu. However, that doesn't mean it has
3217 * only ever been used on one physical cpu, since vcpus
3218 * can move around between pcpus. To cope with this, when
3219 * a vcpu moves from one pcpu to another, we need to tell
3220 * any vcpus running on the same core as this vcpu previously
3221 * ran to flush the TLB.
3222 */
3223 if (prev_cpu != pcpu) {
3224 if (prev_cpu >= 0) {
3225 if (cpu_first_tlb_thread_sibling(prev_cpu) !=
3226 cpu_first_tlb_thread_sibling(pcpu))
3227 radix_flush_cpu(kvm, prev_cpu, vcpu);
3228
3229 smp_call_function_single(prev_cpu,
3230 do_migrate_away_vcpu, vcpu, 1);
3231 }
3232 if (nested)
3233 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
3234 else
3235 vcpu->arch.prev_cpu = pcpu;
3236 }
3237 }
3238
kvmppc_start_thread(struct kvm_vcpu * vcpu,struct kvmppc_vcore * vc)3239 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
3240 {
3241 int cpu;
3242 struct paca_struct *tpaca;
3243
3244 cpu = vc->pcpu;
3245 if (vcpu) {
3246 if (vcpu->arch.timer_running) {
3247 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
3248 vcpu->arch.timer_running = 0;
3249 }
3250 cpu += vcpu->arch.ptid;
3251 vcpu->cpu = vc->pcpu;
3252 vcpu->arch.thread_cpu = cpu;
3253 }
3254 tpaca = paca_ptrs[cpu];
3255 tpaca->kvm_hstate.kvm_vcpu = vcpu;
3256 tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
3257 tpaca->kvm_hstate.fake_suspend = 0;
3258 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
3259 smp_wmb();
3260 tpaca->kvm_hstate.kvm_vcore = vc;
3261 if (cpu != smp_processor_id())
3262 kvmppc_ipi_thread(cpu);
3263 }
3264
kvmppc_wait_for_nap(int n_threads)3265 static void kvmppc_wait_for_nap(int n_threads)
3266 {
3267 int cpu = smp_processor_id();
3268 int i, loops;
3269
3270 if (n_threads <= 1)
3271 return;
3272 for (loops = 0; loops < 1000000; ++loops) {
3273 /*
3274 * Check if all threads are finished.
3275 * We set the vcore pointer when starting a thread
3276 * and the thread clears it when finished, so we look
3277 * for any threads that still have a non-NULL vcore ptr.
3278 */
3279 for (i = 1; i < n_threads; ++i)
3280 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3281 break;
3282 if (i == n_threads) {
3283 HMT_medium();
3284 return;
3285 }
3286 HMT_low();
3287 }
3288 HMT_medium();
3289 for (i = 1; i < n_threads; ++i)
3290 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3291 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
3292 }
3293
3294 /*
3295 * Check that we are on thread 0 and that any other threads in
3296 * this core are off-line. Then grab the threads so they can't
3297 * enter the kernel.
3298 */
on_primary_thread(void)3299 static int on_primary_thread(void)
3300 {
3301 int cpu = smp_processor_id();
3302 int thr;
3303
3304 /* Are we on a primary subcore? */
3305 if (cpu_thread_in_subcore(cpu))
3306 return 0;
3307
3308 thr = 0;
3309 while (++thr < threads_per_subcore)
3310 if (cpu_online(cpu + thr))
3311 return 0;
3312
3313 /* Grab all hw threads so they can't go into the kernel */
3314 for (thr = 1; thr < threads_per_subcore; ++thr) {
3315 if (kvmppc_grab_hwthread(cpu + thr)) {
3316 /* Couldn't grab one; let the others go */
3317 do {
3318 kvmppc_release_hwthread(cpu + thr);
3319 } while (--thr > 0);
3320 return 0;
3321 }
3322 }
3323 return 1;
3324 }
3325
3326 /*
3327 * A list of virtual cores for each physical CPU.
3328 * These are vcores that could run but their runner VCPU tasks are
3329 * (or may be) preempted.
3330 */
3331 struct preempted_vcore_list {
3332 struct list_head list;
3333 spinlock_t lock;
3334 };
3335
3336 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
3337
init_vcore_lists(void)3338 static void init_vcore_lists(void)
3339 {
3340 int cpu;
3341
3342 for_each_possible_cpu(cpu) {
3343 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
3344 spin_lock_init(&lp->lock);
3345 INIT_LIST_HEAD(&lp->list);
3346 }
3347 }
3348
kvmppc_vcore_preempt(struct kvmppc_vcore * vc)3349 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
3350 {
3351 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3352
3353 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3354
3355 vc->vcore_state = VCORE_PREEMPT;
3356 vc->pcpu = smp_processor_id();
3357 if (vc->num_threads < threads_per_vcore(vc->kvm)) {
3358 spin_lock(&lp->lock);
3359 list_add_tail(&vc->preempt_list, &lp->list);
3360 spin_unlock(&lp->lock);
3361 }
3362
3363 /* Start accumulating stolen time */
3364 kvmppc_core_start_stolen(vc, mftb());
3365 }
3366
kvmppc_vcore_end_preempt(struct kvmppc_vcore * vc)3367 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3368 {
3369 struct preempted_vcore_list *lp;
3370
3371 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3372
3373 kvmppc_core_end_stolen(vc, mftb());
3374 if (!list_empty(&vc->preempt_list)) {
3375 lp = &per_cpu(preempted_vcores, vc->pcpu);
3376 spin_lock(&lp->lock);
3377 list_del_init(&vc->preempt_list);
3378 spin_unlock(&lp->lock);
3379 }
3380 vc->vcore_state = VCORE_INACTIVE;
3381 }
3382
3383 /*
3384 * This stores information about the virtual cores currently
3385 * assigned to a physical core.
3386 */
3387 struct core_info {
3388 int n_subcores;
3389 int max_subcore_threads;
3390 int total_threads;
3391 int subcore_threads[MAX_SUBCORES];
3392 struct kvmppc_vcore *vc[MAX_SUBCORES];
3393 };
3394
3395 /*
3396 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
3397 * respectively in 2-way micro-threading (split-core) mode on POWER8.
3398 */
3399 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3400
init_core_info(struct core_info * cip,struct kvmppc_vcore * vc)3401 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3402 {
3403 memset(cip, 0, sizeof(*cip));
3404 cip->n_subcores = 1;
3405 cip->max_subcore_threads = vc->num_threads;
3406 cip->total_threads = vc->num_threads;
3407 cip->subcore_threads[0] = vc->num_threads;
3408 cip->vc[0] = vc;
3409 }
3410
subcore_config_ok(int n_subcores,int n_threads)3411 static bool subcore_config_ok(int n_subcores, int n_threads)
3412 {
3413 /*
3414 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3415 * split-core mode, with one thread per subcore.
3416 */
3417 if (cpu_has_feature(CPU_FTR_ARCH_300))
3418 return n_subcores <= 4 && n_threads == 1;
3419
3420 /* On POWER8, can only dynamically split if unsplit to begin with */
3421 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3422 return false;
3423 if (n_subcores > MAX_SUBCORES)
3424 return false;
3425 if (n_subcores > 1) {
3426 if (!(dynamic_mt_modes & 2))
3427 n_subcores = 4;
3428 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3429 return false;
3430 }
3431
3432 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
3433 }
3434
init_vcore_to_run(struct kvmppc_vcore * vc)3435 static void init_vcore_to_run(struct kvmppc_vcore *vc)
3436 {
3437 vc->entry_exit_map = 0;
3438 vc->in_guest = 0;
3439 vc->napping_threads = 0;
3440 vc->conferring_threads = 0;
3441 vc->tb_offset_applied = 0;
3442 }
3443
can_dynamic_split(struct kvmppc_vcore * vc,struct core_info * cip)3444 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3445 {
3446 int n_threads = vc->num_threads;
3447 int sub;
3448
3449 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3450 return false;
3451
3452 /* In one_vm_per_core mode, require all vcores to be from the same vm */
3453 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3454 return false;
3455
3456 if (n_threads < cip->max_subcore_threads)
3457 n_threads = cip->max_subcore_threads;
3458 if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
3459 return false;
3460 cip->max_subcore_threads = n_threads;
3461
3462 sub = cip->n_subcores;
3463 ++cip->n_subcores;
3464 cip->total_threads += vc->num_threads;
3465 cip->subcore_threads[sub] = vc->num_threads;
3466 cip->vc[sub] = vc;
3467 init_vcore_to_run(vc);
3468 list_del_init(&vc->preempt_list);
3469
3470 return true;
3471 }
3472
3473 /*
3474 * Work out whether it is possible to piggyback the execution of
3475 * vcore *pvc onto the execution of the other vcores described in *cip.
3476 */
can_piggyback(struct kvmppc_vcore * pvc,struct core_info * cip,int target_threads)3477 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3478 int target_threads)
3479 {
3480 if (cip->total_threads + pvc->num_threads > target_threads)
3481 return false;
3482
3483 return can_dynamic_split(pvc, cip);
3484 }
3485
prepare_threads(struct kvmppc_vcore * vc)3486 static void prepare_threads(struct kvmppc_vcore *vc)
3487 {
3488 int i;
3489 struct kvm_vcpu *vcpu;
3490
3491 for_each_runnable_thread(i, vcpu, vc) {
3492 if (signal_pending(vcpu->arch.run_task))
3493 vcpu->arch.ret = -EINTR;
3494 else if (vcpu->arch.vpa.update_pending ||
3495 vcpu->arch.slb_shadow.update_pending ||
3496 vcpu->arch.dtl.update_pending)
3497 vcpu->arch.ret = RESUME_GUEST;
3498 else
3499 continue;
3500 kvmppc_remove_runnable(vc, vcpu, mftb());
3501 wake_up(&vcpu->arch.cpu_run);
3502 }
3503 }
3504
collect_piggybacks(struct core_info * cip,int target_threads)3505 static void collect_piggybacks(struct core_info *cip, int target_threads)
3506 {
3507 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3508 struct kvmppc_vcore *pvc, *vcnext;
3509
3510 spin_lock(&lp->lock);
3511 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3512 if (!spin_trylock(&pvc->lock))
3513 continue;
3514 prepare_threads(pvc);
3515 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
3516 list_del_init(&pvc->preempt_list);
3517 if (pvc->runner == NULL) {
3518 pvc->vcore_state = VCORE_INACTIVE;
3519 kvmppc_core_end_stolen(pvc, mftb());
3520 }
3521 spin_unlock(&pvc->lock);
3522 continue;
3523 }
3524 if (!can_piggyback(pvc, cip, target_threads)) {
3525 spin_unlock(&pvc->lock);
3526 continue;
3527 }
3528 kvmppc_core_end_stolen(pvc, mftb());
3529 pvc->vcore_state = VCORE_PIGGYBACK;
3530 if (cip->total_threads >= target_threads)
3531 break;
3532 }
3533 spin_unlock(&lp->lock);
3534 }
3535
recheck_signals_and_mmu(struct core_info * cip)3536 static bool recheck_signals_and_mmu(struct core_info *cip)
3537 {
3538 int sub, i;
3539 struct kvm_vcpu *vcpu;
3540 struct kvmppc_vcore *vc;
3541
3542 for (sub = 0; sub < cip->n_subcores; ++sub) {
3543 vc = cip->vc[sub];
3544 if (!vc->kvm->arch.mmu_ready)
3545 return true;
3546 for_each_runnable_thread(i, vcpu, vc)
3547 if (signal_pending(vcpu->arch.run_task))
3548 return true;
3549 }
3550 return false;
3551 }
3552
post_guest_process(struct kvmppc_vcore * vc,bool is_master)3553 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3554 {
3555 int still_running = 0, i;
3556 u64 now;
3557 long ret;
3558 struct kvm_vcpu *vcpu;
3559
3560 spin_lock(&vc->lock);
3561 now = get_tb();
3562 for_each_runnable_thread(i, vcpu, vc) {
3563 /*
3564 * It's safe to unlock the vcore in the loop here, because
3565 * for_each_runnable_thread() is safe against removal of
3566 * the vcpu, and the vcore state is VCORE_EXITING here,
3567 * so any vcpus becoming runnable will have their arch.trap
3568 * set to zero and can't actually run in the guest.
3569 */
3570 spin_unlock(&vc->lock);
3571 /* cancel pending dec exception if dec is positive */
3572 if (now < kvmppc_dec_expires_host_tb(vcpu) &&
3573 kvmppc_core_pending_dec(vcpu))
3574 kvmppc_core_dequeue_dec(vcpu);
3575
3576 trace_kvm_guest_exit(vcpu);
3577
3578 ret = RESUME_GUEST;
3579 if (vcpu->arch.trap)
3580 ret = kvmppc_handle_exit_hv(vcpu,
3581 vcpu->arch.run_task);
3582
3583 vcpu->arch.ret = ret;
3584 vcpu->arch.trap = 0;
3585
3586 spin_lock(&vc->lock);
3587 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3588 if (vcpu->arch.pending_exceptions)
3589 kvmppc_core_prepare_to_enter(vcpu);
3590 if (vcpu->arch.ceded)
3591 kvmppc_set_timer(vcpu);
3592 else
3593 ++still_running;
3594 } else {
3595 kvmppc_remove_runnable(vc, vcpu, mftb());
3596 wake_up(&vcpu->arch.cpu_run);
3597 }
3598 }
3599 if (!is_master) {
3600 if (still_running > 0) {
3601 kvmppc_vcore_preempt(vc);
3602 } else if (vc->runner) {
3603 vc->vcore_state = VCORE_PREEMPT;
3604 kvmppc_core_start_stolen(vc, mftb());
3605 } else {
3606 vc->vcore_state = VCORE_INACTIVE;
3607 }
3608 if (vc->n_runnable > 0 && vc->runner == NULL) {
3609 /* make sure there's a candidate runner awake */
3610 i = -1;
3611 vcpu = next_runnable_thread(vc, &i);
3612 wake_up(&vcpu->arch.cpu_run);
3613 }
3614 }
3615 spin_unlock(&vc->lock);
3616 }
3617
3618 /*
3619 * Clear core from the list of active host cores as we are about to
3620 * enter the guest. Only do this if it is the primary thread of the
3621 * core (not if a subcore) that is entering the guest.
3622 */
kvmppc_clear_host_core(unsigned int cpu)3623 static inline int kvmppc_clear_host_core(unsigned int cpu)
3624 {
3625 int core;
3626
3627 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3628 return 0;
3629 /*
3630 * Memory barrier can be omitted here as we will do a smp_wmb()
3631 * later in kvmppc_start_thread and we need ensure that state is
3632 * visible to other CPUs only after we enter guest.
3633 */
3634 core = cpu >> threads_shift;
3635 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3636 return 0;
3637 }
3638
3639 /*
3640 * Advertise this core as an active host core since we exited the guest
3641 * Only need to do this if it is the primary thread of the core that is
3642 * exiting.
3643 */
kvmppc_set_host_core(unsigned int cpu)3644 static inline int kvmppc_set_host_core(unsigned int cpu)
3645 {
3646 int core;
3647
3648 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3649 return 0;
3650
3651 /*
3652 * Memory barrier can be omitted here because we do a spin_unlock
3653 * immediately after this which provides the memory barrier.
3654 */
3655 core = cpu >> threads_shift;
3656 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3657 return 0;
3658 }
3659
set_irq_happened(int trap)3660 static void set_irq_happened(int trap)
3661 {
3662 switch (trap) {
3663 case BOOK3S_INTERRUPT_EXTERNAL:
3664 local_paca->irq_happened |= PACA_IRQ_EE;
3665 break;
3666 case BOOK3S_INTERRUPT_H_DOORBELL:
3667 local_paca->irq_happened |= PACA_IRQ_DBELL;
3668 break;
3669 case BOOK3S_INTERRUPT_HMI:
3670 local_paca->irq_happened |= PACA_IRQ_HMI;
3671 break;
3672 case BOOK3S_INTERRUPT_SYSTEM_RESET:
3673 replay_system_reset();
3674 break;
3675 }
3676 }
3677
3678 /*
3679 * Run a set of guest threads on a physical core.
3680 * Called with vc->lock held.
3681 */
kvmppc_run_core(struct kvmppc_vcore * vc)3682 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3683 {
3684 struct kvm_vcpu *vcpu;
3685 int i;
3686 int srcu_idx;
3687 struct core_info core_info;
3688 struct kvmppc_vcore *pvc;
3689 struct kvm_split_mode split_info, *sip;
3690 int split, subcore_size, active;
3691 int sub;
3692 bool thr0_done;
3693 unsigned long cmd_bit, stat_bit;
3694 int pcpu, thr;
3695 int target_threads;
3696 int controlled_threads;
3697 int trap;
3698 bool is_power8;
3699
3700 if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3701 return;
3702
3703 /*
3704 * Remove from the list any threads that have a signal pending
3705 * or need a VPA update done
3706 */
3707 prepare_threads(vc);
3708
3709 /* if the runner is no longer runnable, let the caller pick a new one */
3710 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3711 return;
3712
3713 /*
3714 * Initialize *vc.
3715 */
3716 init_vcore_to_run(vc);
3717 vc->preempt_tb = TB_NIL;
3718
3719 /*
3720 * Number of threads that we will be controlling: the same as
3721 * the number of threads per subcore, except on POWER9,
3722 * where it's 1 because the threads are (mostly) independent.
3723 */
3724 controlled_threads = threads_per_vcore(vc->kvm);
3725
3726 /*
3727 * Make sure we are running on primary threads, and that secondary
3728 * threads are offline. Also check if the number of threads in this
3729 * guest are greater than the current system threads per guest.
3730 */
3731 if ((controlled_threads > 1) &&
3732 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3733 for_each_runnable_thread(i, vcpu, vc) {
3734 vcpu->arch.ret = -EBUSY;
3735 kvmppc_remove_runnable(vc, vcpu, mftb());
3736 wake_up(&vcpu->arch.cpu_run);
3737 }
3738 goto out;
3739 }
3740
3741 /*
3742 * See if we could run any other vcores on the physical core
3743 * along with this one.
3744 */
3745 init_core_info(&core_info, vc);
3746 pcpu = smp_processor_id();
3747 target_threads = controlled_threads;
3748 if (target_smt_mode && target_smt_mode < target_threads)
3749 target_threads = target_smt_mode;
3750 if (vc->num_threads < target_threads)
3751 collect_piggybacks(&core_info, target_threads);
3752
3753 /*
3754 * Hard-disable interrupts, and check resched flag and signals.
3755 * If we need to reschedule or deliver a signal, clean up
3756 * and return without going into the guest(s).
3757 * If the mmu_ready flag has been cleared, don't go into the
3758 * guest because that means a HPT resize operation is in progress.
3759 */
3760 local_irq_disable();
3761 hard_irq_disable();
3762 if (lazy_irq_pending() || need_resched() ||
3763 recheck_signals_and_mmu(&core_info)) {
3764 local_irq_enable();
3765 vc->vcore_state = VCORE_INACTIVE;
3766 /* Unlock all except the primary vcore */
3767 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3768 pvc = core_info.vc[sub];
3769 /* Put back on to the preempted vcores list */
3770 kvmppc_vcore_preempt(pvc);
3771 spin_unlock(&pvc->lock);
3772 }
3773 for (i = 0; i < controlled_threads; ++i)
3774 kvmppc_release_hwthread(pcpu + i);
3775 return;
3776 }
3777
3778 kvmppc_clear_host_core(pcpu);
3779
3780 /* Decide on micro-threading (split-core) mode */
3781 subcore_size = threads_per_subcore;
3782 cmd_bit = stat_bit = 0;
3783 split = core_info.n_subcores;
3784 sip = NULL;
3785 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
3786
3787 if (split > 1) {
3788 sip = &split_info;
3789 memset(&split_info, 0, sizeof(split_info));
3790 for (sub = 0; sub < core_info.n_subcores; ++sub)
3791 split_info.vc[sub] = core_info.vc[sub];
3792
3793 if (is_power8) {
3794 if (split == 2 && (dynamic_mt_modes & 2)) {
3795 cmd_bit = HID0_POWER8_1TO2LPAR;
3796 stat_bit = HID0_POWER8_2LPARMODE;
3797 } else {
3798 split = 4;
3799 cmd_bit = HID0_POWER8_1TO4LPAR;
3800 stat_bit = HID0_POWER8_4LPARMODE;
3801 }
3802 subcore_size = MAX_SMT_THREADS / split;
3803 split_info.rpr = mfspr(SPRN_RPR);
3804 split_info.pmmar = mfspr(SPRN_PMMAR);
3805 split_info.ldbar = mfspr(SPRN_LDBAR);
3806 split_info.subcore_size = subcore_size;
3807 } else {
3808 split_info.subcore_size = 1;
3809 }
3810
3811 /* order writes to split_info before kvm_split_mode pointer */
3812 smp_wmb();
3813 }
3814
3815 for (thr = 0; thr < controlled_threads; ++thr) {
3816 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3817
3818 paca->kvm_hstate.napping = 0;
3819 paca->kvm_hstate.kvm_split_mode = sip;
3820 }
3821
3822 /* Initiate micro-threading (split-core) on POWER8 if required */
3823 if (cmd_bit) {
3824 unsigned long hid0 = mfspr(SPRN_HID0);
3825
3826 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3827 mb();
3828 mtspr(SPRN_HID0, hid0);
3829 isync();
3830 for (;;) {
3831 hid0 = mfspr(SPRN_HID0);
3832 if (hid0 & stat_bit)
3833 break;
3834 cpu_relax();
3835 }
3836 }
3837
3838 /*
3839 * On POWER8, set RWMR register.
3840 * Since it only affects PURR and SPURR, it doesn't affect
3841 * the host, so we don't save/restore the host value.
3842 */
3843 if (is_power8) {
3844 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3845 int n_online = atomic_read(&vc->online_count);
3846
3847 /*
3848 * Use the 8-thread value if we're doing split-core
3849 * or if the vcore's online count looks bogus.
3850 */
3851 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3852 n_online >= 1 && n_online <= MAX_SMT_THREADS)
3853 rwmr_val = p8_rwmr_values[n_online];
3854 mtspr(SPRN_RWMR, rwmr_val);
3855 }
3856
3857 /* Start all the threads */
3858 active = 0;
3859 for (sub = 0; sub < core_info.n_subcores; ++sub) {
3860 thr = is_power8 ? subcore_thread_map[sub] : sub;
3861 thr0_done = false;
3862 active |= 1 << thr;
3863 pvc = core_info.vc[sub];
3864 pvc->pcpu = pcpu + thr;
3865 for_each_runnable_thread(i, vcpu, pvc) {
3866 /*
3867 * XXX: is kvmppc_start_thread called too late here?
3868 * It updates vcpu->cpu and vcpu->arch.thread_cpu
3869 * which are used by kvmppc_fast_vcpu_kick_hv(), but
3870 * kick is called after new exceptions become available
3871 * and exceptions are checked earlier than here, by
3872 * kvmppc_core_prepare_to_enter.
3873 */
3874 kvmppc_start_thread(vcpu, pvc);
3875 kvmppc_update_vpa_dispatch(vcpu, pvc);
3876 trace_kvm_guest_enter(vcpu);
3877 if (!vcpu->arch.ptid)
3878 thr0_done = true;
3879 active |= 1 << (thr + vcpu->arch.ptid);
3880 }
3881 /*
3882 * We need to start the first thread of each subcore
3883 * even if it doesn't have a vcpu.
3884 */
3885 if (!thr0_done)
3886 kvmppc_start_thread(NULL, pvc);
3887 }
3888
3889 /*
3890 * Ensure that split_info.do_nap is set after setting
3891 * the vcore pointer in the PACA of the secondaries.
3892 */
3893 smp_mb();
3894
3895 /*
3896 * When doing micro-threading, poke the inactive threads as well.
3897 * This gets them to the nap instruction after kvm_do_nap,
3898 * which reduces the time taken to unsplit later.
3899 */
3900 if (cmd_bit) {
3901 split_info.do_nap = 1; /* ask secondaries to nap when done */
3902 for (thr = 1; thr < threads_per_subcore; ++thr)
3903 if (!(active & (1 << thr)))
3904 kvmppc_ipi_thread(pcpu + thr);
3905 }
3906
3907 vc->vcore_state = VCORE_RUNNING;
3908 preempt_disable();
3909
3910 trace_kvmppc_run_core(vc, 0);
3911
3912 for (sub = 0; sub < core_info.n_subcores; ++sub)
3913 spin_unlock(&core_info.vc[sub]->lock);
3914
3915 guest_timing_enter_irqoff();
3916
3917 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3918
3919 guest_state_enter_irqoff();
3920 this_cpu_disable_ftrace();
3921
3922 trap = __kvmppc_vcore_entry();
3923
3924 this_cpu_enable_ftrace();
3925 guest_state_exit_irqoff();
3926
3927 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3928
3929 set_irq_happened(trap);
3930
3931 spin_lock(&vc->lock);
3932 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3933 vc->vcore_state = VCORE_EXITING;
3934
3935 /* wait for secondary threads to finish writing their state to memory */
3936 kvmppc_wait_for_nap(controlled_threads);
3937
3938 /* Return to whole-core mode if we split the core earlier */
3939 if (cmd_bit) {
3940 unsigned long hid0 = mfspr(SPRN_HID0);
3941 unsigned long loops = 0;
3942
3943 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3944 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3945 mb();
3946 mtspr(SPRN_HID0, hid0);
3947 isync();
3948 for (;;) {
3949 hid0 = mfspr(SPRN_HID0);
3950 if (!(hid0 & stat_bit))
3951 break;
3952 cpu_relax();
3953 ++loops;
3954 }
3955 split_info.do_nap = 0;
3956 }
3957
3958 kvmppc_set_host_core(pcpu);
3959
3960 if (!vtime_accounting_enabled_this_cpu()) {
3961 local_irq_enable();
3962 /*
3963 * Service IRQs here before guest_timing_exit_irqoff() so any
3964 * ticks that occurred while running the guest are accounted to
3965 * the guest. If vtime accounting is enabled, accounting uses
3966 * TB rather than ticks, so it can be done without enabling
3967 * interrupts here, which has the problem that it accounts
3968 * interrupt processing overhead to the host.
3969 */
3970 local_irq_disable();
3971 }
3972 guest_timing_exit_irqoff();
3973
3974 local_irq_enable();
3975
3976 /* Let secondaries go back to the offline loop */
3977 for (i = 0; i < controlled_threads; ++i) {
3978 kvmppc_release_hwthread(pcpu + i);
3979 if (sip && sip->napped[i])
3980 kvmppc_ipi_thread(pcpu + i);
3981 }
3982
3983 spin_unlock(&vc->lock);
3984
3985 /* make sure updates to secondary vcpu structs are visible now */
3986 smp_mb();
3987
3988 preempt_enable();
3989
3990 for (sub = 0; sub < core_info.n_subcores; ++sub) {
3991 pvc = core_info.vc[sub];
3992 post_guest_process(pvc, pvc == vc);
3993 }
3994
3995 spin_lock(&vc->lock);
3996
3997 out:
3998 vc->vcore_state = VCORE_INACTIVE;
3999 trace_kvmppc_run_core(vc, 1);
4000 }
4001
hcall_is_xics(unsigned long req)4002 static inline bool hcall_is_xics(unsigned long req)
4003 {
4004 return req == H_EOI || req == H_CPPR || req == H_IPI ||
4005 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
4006 }
4007
vcpu_vpa_increment_dispatch(struct kvm_vcpu * vcpu)4008 static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu)
4009 {
4010 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
4011 if (lp) {
4012 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
4013 lp->yield_count = cpu_to_be32(yield_count);
4014 vcpu->arch.vpa.dirty = 1;
4015 }
4016 }
4017
4018 /* call our hypervisor to load up HV regs and go */
kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu * vcpu,u64 time_limit,unsigned long lpcr,u64 * tb)4019 static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb)
4020 {
4021 struct kvmppc_vcore *vc = vcpu->arch.vcore;
4022 unsigned long host_psscr;
4023 unsigned long msr;
4024 struct hv_guest_state hvregs;
4025 struct p9_host_os_sprs host_os_sprs;
4026 s64 dec;
4027 int trap;
4028
4029 msr = mfmsr();
4030
4031 save_p9_host_os_sprs(&host_os_sprs);
4032
4033 /*
4034 * We need to save and restore the guest visible part of the
4035 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
4036 * doesn't do this for us. Note only required if pseries since
4037 * this is done in kvmhv_vcpu_entry_p9() below otherwise.
4038 */
4039 host_psscr = mfspr(SPRN_PSSCR_PR);
4040
4041 kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
4042 if (lazy_irq_pending())
4043 return 0;
4044
4045 if (unlikely(load_vcpu_state(vcpu, &host_os_sprs)))
4046 msr = mfmsr(); /* TM restore can update msr */
4047
4048 if (vcpu->arch.psscr != host_psscr)
4049 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
4050
4051 kvmhv_save_hv_regs(vcpu, &hvregs);
4052 hvregs.lpcr = lpcr;
4053 hvregs.amor = ~0;
4054 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
4055 hvregs.version = HV_GUEST_STATE_VERSION;
4056 if (vcpu->arch.nested) {
4057 hvregs.lpid = vcpu->arch.nested->shadow_lpid;
4058 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
4059 } else {
4060 hvregs.lpid = vcpu->kvm->arch.lpid;
4061 hvregs.vcpu_token = vcpu->vcpu_id;
4062 }
4063 hvregs.hdec_expiry = time_limit;
4064
4065 /*
4066 * When setting DEC, we must always deal with irq_work_raise
4067 * via NMI vs setting DEC. The problem occurs right as we
4068 * switch into guest mode if a NMI hits and sets pending work
4069 * and sets DEC, then that will apply to the guest and not
4070 * bring us back to the host.
4071 *
4072 * irq_work_raise could check a flag (or possibly LPCR[HDICE]
4073 * for example) and set HDEC to 1? That wouldn't solve the
4074 * nested hv case which needs to abort the hcall or zero the
4075 * time limit.
4076 *
4077 * XXX: Another day's problem.
4078 */
4079 mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb);
4080
4081 mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
4082 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
4083 switch_pmu_to_guest(vcpu, &host_os_sprs);
4084 accumulate_time(vcpu, &vcpu->arch.in_guest);
4085 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
4086 __pa(&vcpu->arch.regs));
4087 accumulate_time(vcpu, &vcpu->arch.guest_exit);
4088 kvmhv_restore_hv_return_state(vcpu, &hvregs);
4089 switch_pmu_to_host(vcpu, &host_os_sprs);
4090 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
4091 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
4092 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
4093 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
4094
4095 store_vcpu_state(vcpu);
4096
4097 dec = mfspr(SPRN_DEC);
4098 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
4099 dec = (s32) dec;
4100 *tb = mftb();
4101 vcpu->arch.dec_expires = dec + (*tb + vc->tb_offset);
4102
4103 timer_rearm_host_dec(*tb);
4104
4105 restore_p9_host_os_sprs(vcpu, &host_os_sprs);
4106 if (vcpu->arch.psscr != host_psscr)
4107 mtspr(SPRN_PSSCR_PR, host_psscr);
4108
4109 return trap;
4110 }
4111
4112 /*
4113 * Guest entry for POWER9 and later CPUs.
4114 */
kvmhv_p9_guest_entry(struct kvm_vcpu * vcpu,u64 time_limit,unsigned long lpcr,u64 * tb)4115 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
4116 unsigned long lpcr, u64 *tb)
4117 {
4118 struct kvm *kvm = vcpu->kvm;
4119 struct kvm_nested_guest *nested = vcpu->arch.nested;
4120 u64 next_timer;
4121 int trap;
4122
4123 next_timer = timer_get_next_tb();
4124 if (*tb >= next_timer)
4125 return BOOK3S_INTERRUPT_HV_DECREMENTER;
4126 if (next_timer < time_limit)
4127 time_limit = next_timer;
4128 else if (*tb >= time_limit) /* nested time limit */
4129 return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER;
4130
4131 vcpu->arch.ceded = 0;
4132
4133 vcpu_vpa_increment_dispatch(vcpu);
4134
4135 if (kvmhv_on_pseries()) {
4136 trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb);
4137
4138 /* H_CEDE has to be handled now, not later */
4139 if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested &&
4140 kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
4141 kvmppc_cede(vcpu);
4142 kvmppc_set_gpr(vcpu, 3, 0);
4143 trap = 0;
4144 }
4145
4146 } else if (nested) {
4147 __this_cpu_write(cpu_in_guest, kvm);
4148 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4149 __this_cpu_write(cpu_in_guest, NULL);
4150
4151 } else {
4152 kvmppc_xive_push_vcpu(vcpu);
4153
4154 __this_cpu_write(cpu_in_guest, kvm);
4155 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4156 __this_cpu_write(cpu_in_guest, NULL);
4157
4158 if (trap == BOOK3S_INTERRUPT_SYSCALL &&
4159 !(vcpu->arch.shregs.msr & MSR_PR)) {
4160 unsigned long req = kvmppc_get_gpr(vcpu, 3);
4161
4162 /*
4163 * XIVE rearm and XICS hcalls must be handled
4164 * before xive context is pulled (is this
4165 * true?)
4166 */
4167 if (req == H_CEDE) {
4168 /* H_CEDE has to be handled now */
4169 kvmppc_cede(vcpu);
4170 if (!kvmppc_xive_rearm_escalation(vcpu)) {
4171 /*
4172 * Pending escalation so abort
4173 * the cede.
4174 */
4175 vcpu->arch.ceded = 0;
4176 }
4177 kvmppc_set_gpr(vcpu, 3, 0);
4178 trap = 0;
4179
4180 } else if (req == H_ENTER_NESTED) {
4181 /*
4182 * L2 should not run with the L1
4183 * context so rearm and pull it.
4184 */
4185 if (!kvmppc_xive_rearm_escalation(vcpu)) {
4186 /*
4187 * Pending escalation so abort
4188 * H_ENTER_NESTED.
4189 */
4190 kvmppc_set_gpr(vcpu, 3, 0);
4191 trap = 0;
4192 }
4193
4194 } else if (hcall_is_xics(req)) {
4195 int ret;
4196
4197 ret = kvmppc_xive_xics_hcall(vcpu, req);
4198 if (ret != H_TOO_HARD) {
4199 kvmppc_set_gpr(vcpu, 3, ret);
4200 trap = 0;
4201 }
4202 }
4203 }
4204 kvmppc_xive_pull_vcpu(vcpu);
4205
4206 if (kvm_is_radix(kvm))
4207 vcpu->arch.slb_max = 0;
4208 }
4209
4210 vcpu_vpa_increment_dispatch(vcpu);
4211
4212 return trap;
4213 }
4214
4215 /*
4216 * Wait for some other vcpu thread to execute us, and
4217 * wake us up when we need to handle something in the host.
4218 */
kvmppc_wait_for_exec(struct kvmppc_vcore * vc,struct kvm_vcpu * vcpu,int wait_state)4219 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
4220 struct kvm_vcpu *vcpu, int wait_state)
4221 {
4222 DEFINE_WAIT(wait);
4223
4224 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
4225 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4226 spin_unlock(&vc->lock);
4227 schedule();
4228 spin_lock(&vc->lock);
4229 }
4230 finish_wait(&vcpu->arch.cpu_run, &wait);
4231 }
4232
grow_halt_poll_ns(struct kvmppc_vcore * vc)4233 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
4234 {
4235 if (!halt_poll_ns_grow)
4236 return;
4237
4238 vc->halt_poll_ns *= halt_poll_ns_grow;
4239 if (vc->halt_poll_ns < halt_poll_ns_grow_start)
4240 vc->halt_poll_ns = halt_poll_ns_grow_start;
4241 }
4242
shrink_halt_poll_ns(struct kvmppc_vcore * vc)4243 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
4244 {
4245 if (halt_poll_ns_shrink == 0)
4246 vc->halt_poll_ns = 0;
4247 else
4248 vc->halt_poll_ns /= halt_poll_ns_shrink;
4249 }
4250
4251 #ifdef CONFIG_KVM_XICS
xive_interrupt_pending(struct kvm_vcpu * vcpu)4252 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4253 {
4254 if (!xics_on_xive())
4255 return false;
4256 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
4257 vcpu->arch.xive_saved_state.cppr;
4258 }
4259 #else
xive_interrupt_pending(struct kvm_vcpu * vcpu)4260 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4261 {
4262 return false;
4263 }
4264 #endif /* CONFIG_KVM_XICS */
4265
kvmppc_vcpu_woken(struct kvm_vcpu * vcpu)4266 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
4267 {
4268 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
4269 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
4270 return true;
4271
4272 return false;
4273 }
4274
kvmppc_vcpu_check_block(struct kvm_vcpu * vcpu)4275 static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu)
4276 {
4277 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
4278 return true;
4279 return false;
4280 }
4281
4282 /*
4283 * Check to see if any of the runnable vcpus on the vcore have pending
4284 * exceptions or are no longer ceded
4285 */
kvmppc_vcore_check_block(struct kvmppc_vcore * vc)4286 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
4287 {
4288 struct kvm_vcpu *vcpu;
4289 int i;
4290
4291 for_each_runnable_thread(i, vcpu, vc) {
4292 if (kvmppc_vcpu_check_block(vcpu))
4293 return 1;
4294 }
4295
4296 return 0;
4297 }
4298
4299 /*
4300 * All the vcpus in this vcore are idle, so wait for a decrementer
4301 * or external interrupt to one of the vcpus. vc->lock is held.
4302 */
kvmppc_vcore_blocked(struct kvmppc_vcore * vc)4303 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
4304 {
4305 ktime_t cur, start_poll, start_wait;
4306 int do_sleep = 1;
4307 u64 block_ns;
4308
4309 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
4310
4311 /* Poll for pending exceptions and ceded state */
4312 cur = start_poll = ktime_get();
4313 if (vc->halt_poll_ns) {
4314 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
4315 ++vc->runner->stat.generic.halt_attempted_poll;
4316
4317 vc->vcore_state = VCORE_POLLING;
4318 spin_unlock(&vc->lock);
4319
4320 do {
4321 if (kvmppc_vcore_check_block(vc)) {
4322 do_sleep = 0;
4323 break;
4324 }
4325 cur = ktime_get();
4326 } while (kvm_vcpu_can_poll(cur, stop));
4327
4328 spin_lock(&vc->lock);
4329 vc->vcore_state = VCORE_INACTIVE;
4330
4331 if (!do_sleep) {
4332 ++vc->runner->stat.generic.halt_successful_poll;
4333 goto out;
4334 }
4335 }
4336
4337 prepare_to_rcuwait(&vc->wait);
4338 set_current_state(TASK_INTERRUPTIBLE);
4339 if (kvmppc_vcore_check_block(vc)) {
4340 finish_rcuwait(&vc->wait);
4341 do_sleep = 0;
4342 /* If we polled, count this as a successful poll */
4343 if (vc->halt_poll_ns)
4344 ++vc->runner->stat.generic.halt_successful_poll;
4345 goto out;
4346 }
4347
4348 start_wait = ktime_get();
4349
4350 vc->vcore_state = VCORE_SLEEPING;
4351 trace_kvmppc_vcore_blocked(vc->runner, 0);
4352 spin_unlock(&vc->lock);
4353 schedule();
4354 finish_rcuwait(&vc->wait);
4355 spin_lock(&vc->lock);
4356 vc->vcore_state = VCORE_INACTIVE;
4357 trace_kvmppc_vcore_blocked(vc->runner, 1);
4358 ++vc->runner->stat.halt_successful_wait;
4359
4360 cur = ktime_get();
4361
4362 out:
4363 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
4364
4365 /* Attribute wait time */
4366 if (do_sleep) {
4367 vc->runner->stat.generic.halt_wait_ns +=
4368 ktime_to_ns(cur) - ktime_to_ns(start_wait);
4369 KVM_STATS_LOG_HIST_UPDATE(
4370 vc->runner->stat.generic.halt_wait_hist,
4371 ktime_to_ns(cur) - ktime_to_ns(start_wait));
4372 /* Attribute failed poll time */
4373 if (vc->halt_poll_ns) {
4374 vc->runner->stat.generic.halt_poll_fail_ns +=
4375 ktime_to_ns(start_wait) -
4376 ktime_to_ns(start_poll);
4377 KVM_STATS_LOG_HIST_UPDATE(
4378 vc->runner->stat.generic.halt_poll_fail_hist,
4379 ktime_to_ns(start_wait) -
4380 ktime_to_ns(start_poll));
4381 }
4382 } else {
4383 /* Attribute successful poll time */
4384 if (vc->halt_poll_ns) {
4385 vc->runner->stat.generic.halt_poll_success_ns +=
4386 ktime_to_ns(cur) -
4387 ktime_to_ns(start_poll);
4388 KVM_STATS_LOG_HIST_UPDATE(
4389 vc->runner->stat.generic.halt_poll_success_hist,
4390 ktime_to_ns(cur) - ktime_to_ns(start_poll));
4391 }
4392 }
4393
4394 /* Adjust poll time */
4395 if (halt_poll_ns) {
4396 if (block_ns <= vc->halt_poll_ns)
4397 ;
4398 /* We slept and blocked for longer than the max halt time */
4399 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4400 shrink_halt_poll_ns(vc);
4401 /* We slept and our poll time is too small */
4402 else if (vc->halt_poll_ns < halt_poll_ns &&
4403 block_ns < halt_poll_ns)
4404 grow_halt_poll_ns(vc);
4405 if (vc->halt_poll_ns > halt_poll_ns)
4406 vc->halt_poll_ns = halt_poll_ns;
4407 } else
4408 vc->halt_poll_ns = 0;
4409
4410 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
4411 }
4412
4413 /*
4414 * This never fails for a radix guest, as none of the operations it does
4415 * for a radix guest can fail or have a way to report failure.
4416 */
kvmhv_setup_mmu(struct kvm_vcpu * vcpu)4417 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4418 {
4419 int r = 0;
4420 struct kvm *kvm = vcpu->kvm;
4421
4422 mutex_lock(&kvm->arch.mmu_setup_lock);
4423 if (!kvm->arch.mmu_ready) {
4424 if (!kvm_is_radix(kvm))
4425 r = kvmppc_hv_setup_htab_rma(vcpu);
4426 if (!r) {
4427 if (cpu_has_feature(CPU_FTR_ARCH_300))
4428 kvmppc_setup_partition_table(kvm);
4429 kvm->arch.mmu_ready = 1;
4430 }
4431 }
4432 mutex_unlock(&kvm->arch.mmu_setup_lock);
4433 return r;
4434 }
4435
kvmppc_run_vcpu(struct kvm_vcpu * vcpu)4436 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4437 {
4438 struct kvm_run *run = vcpu->run;
4439 int n_ceded, i, r;
4440 struct kvmppc_vcore *vc;
4441 struct kvm_vcpu *v;
4442
4443 trace_kvmppc_run_vcpu_enter(vcpu);
4444
4445 run->exit_reason = 0;
4446 vcpu->arch.ret = RESUME_GUEST;
4447 vcpu->arch.trap = 0;
4448 kvmppc_update_vpas(vcpu);
4449
4450 /*
4451 * Synchronize with other threads in this virtual core
4452 */
4453 vc = vcpu->arch.vcore;
4454 spin_lock(&vc->lock);
4455 vcpu->arch.ceded = 0;
4456 vcpu->arch.run_task = current;
4457 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4458 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4459 vcpu->arch.busy_preempt = TB_NIL;
4460 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4461 ++vc->n_runnable;
4462
4463 /*
4464 * This happens the first time this is called for a vcpu.
4465 * If the vcore is already running, we may be able to start
4466 * this thread straight away and have it join in.
4467 */
4468 if (!signal_pending(current)) {
4469 if ((vc->vcore_state == VCORE_PIGGYBACK ||
4470 vc->vcore_state == VCORE_RUNNING) &&
4471 !VCORE_IS_EXITING(vc)) {
4472 kvmppc_update_vpa_dispatch(vcpu, vc);
4473 kvmppc_start_thread(vcpu, vc);
4474 trace_kvm_guest_enter(vcpu);
4475 } else if (vc->vcore_state == VCORE_SLEEPING) {
4476 rcuwait_wake_up(&vc->wait);
4477 }
4478
4479 }
4480
4481 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4482 !signal_pending(current)) {
4483 /* See if the MMU is ready to go */
4484 if (!vcpu->kvm->arch.mmu_ready) {
4485 spin_unlock(&vc->lock);
4486 r = kvmhv_setup_mmu(vcpu);
4487 spin_lock(&vc->lock);
4488 if (r) {
4489 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4490 run->fail_entry.
4491 hardware_entry_failure_reason = 0;
4492 vcpu->arch.ret = r;
4493 break;
4494 }
4495 }
4496
4497 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4498 kvmppc_vcore_end_preempt(vc);
4499
4500 if (vc->vcore_state != VCORE_INACTIVE) {
4501 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4502 continue;
4503 }
4504 for_each_runnable_thread(i, v, vc) {
4505 kvmppc_core_prepare_to_enter(v);
4506 if (signal_pending(v->arch.run_task)) {
4507 kvmppc_remove_runnable(vc, v, mftb());
4508 v->stat.signal_exits++;
4509 v->run->exit_reason = KVM_EXIT_INTR;
4510 v->arch.ret = -EINTR;
4511 wake_up(&v->arch.cpu_run);
4512 }
4513 }
4514 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4515 break;
4516 n_ceded = 0;
4517 for_each_runnable_thread(i, v, vc) {
4518 if (!kvmppc_vcpu_woken(v))
4519 n_ceded += v->arch.ceded;
4520 else
4521 v->arch.ceded = 0;
4522 }
4523 vc->runner = vcpu;
4524 if (n_ceded == vc->n_runnable) {
4525 kvmppc_vcore_blocked(vc);
4526 } else if (need_resched()) {
4527 kvmppc_vcore_preempt(vc);
4528 /* Let something else run */
4529 cond_resched_lock(&vc->lock);
4530 if (vc->vcore_state == VCORE_PREEMPT)
4531 kvmppc_vcore_end_preempt(vc);
4532 } else {
4533 kvmppc_run_core(vc);
4534 }
4535 vc->runner = NULL;
4536 }
4537
4538 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4539 (vc->vcore_state == VCORE_RUNNING ||
4540 vc->vcore_state == VCORE_EXITING ||
4541 vc->vcore_state == VCORE_PIGGYBACK))
4542 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4543
4544 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4545 kvmppc_vcore_end_preempt(vc);
4546
4547 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4548 kvmppc_remove_runnable(vc, vcpu, mftb());
4549 vcpu->stat.signal_exits++;
4550 run->exit_reason = KVM_EXIT_INTR;
4551 vcpu->arch.ret = -EINTR;
4552 }
4553
4554 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4555 /* Wake up some vcpu to run the core */
4556 i = -1;
4557 v = next_runnable_thread(vc, &i);
4558 wake_up(&v->arch.cpu_run);
4559 }
4560
4561 trace_kvmppc_run_vcpu_exit(vcpu);
4562 spin_unlock(&vc->lock);
4563 return vcpu->arch.ret;
4564 }
4565
kvmhv_run_single_vcpu(struct kvm_vcpu * vcpu,u64 time_limit,unsigned long lpcr)4566 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4567 unsigned long lpcr)
4568 {
4569 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
4570 struct kvm_run *run = vcpu->run;
4571 int trap, r, pcpu;
4572 int srcu_idx;
4573 struct kvmppc_vcore *vc;
4574 struct kvm *kvm = vcpu->kvm;
4575 struct kvm_nested_guest *nested = vcpu->arch.nested;
4576 unsigned long flags;
4577 u64 tb;
4578
4579 trace_kvmppc_run_vcpu_enter(vcpu);
4580
4581 run->exit_reason = 0;
4582 vcpu->arch.ret = RESUME_GUEST;
4583 vcpu->arch.trap = 0;
4584
4585 vc = vcpu->arch.vcore;
4586 vcpu->arch.ceded = 0;
4587 vcpu->arch.run_task = current;
4588 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4589
4590 /* See if the MMU is ready to go */
4591 if (unlikely(!kvm->arch.mmu_ready)) {
4592 r = kvmhv_setup_mmu(vcpu);
4593 if (r) {
4594 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4595 run->fail_entry.hardware_entry_failure_reason = 0;
4596 vcpu->arch.ret = r;
4597 return r;
4598 }
4599 }
4600
4601 if (need_resched())
4602 cond_resched();
4603
4604 kvmppc_update_vpas(vcpu);
4605
4606 preempt_disable();
4607 pcpu = smp_processor_id();
4608 if (kvm_is_radix(kvm))
4609 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4610
4611 /* flags save not required, but irq_pmu has no disable/enable API */
4612 powerpc_local_irq_pmu_save(flags);
4613
4614 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4615
4616 if (signal_pending(current))
4617 goto sigpend;
4618 if (need_resched() || !kvm->arch.mmu_ready)
4619 goto out;
4620
4621 vcpu->cpu = pcpu;
4622 vcpu->arch.thread_cpu = pcpu;
4623 vc->pcpu = pcpu;
4624 local_paca->kvm_hstate.kvm_vcpu = vcpu;
4625 local_paca->kvm_hstate.ptid = 0;
4626 local_paca->kvm_hstate.fake_suspend = 0;
4627
4628 /*
4629 * Orders set cpu/thread_cpu vs testing for pending interrupts and
4630 * doorbells below. The other side is when these fields are set vs
4631 * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to
4632 * kick a vCPU to notice the pending interrupt.
4633 */
4634 smp_mb();
4635
4636 if (!nested) {
4637 kvmppc_core_prepare_to_enter(vcpu);
4638 if (vcpu->arch.shregs.msr & MSR_EE) {
4639 if (xive_interrupt_pending(vcpu))
4640 kvmppc_inject_interrupt_hv(vcpu,
4641 BOOK3S_INTERRUPT_EXTERNAL, 0);
4642 } else if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4643 &vcpu->arch.pending_exceptions)) {
4644 lpcr |= LPCR_MER;
4645 }
4646 } else if (vcpu->arch.pending_exceptions ||
4647 vcpu->arch.doorbell_request ||
4648 xive_interrupt_pending(vcpu)) {
4649 vcpu->arch.ret = RESUME_HOST;
4650 goto out;
4651 }
4652
4653 if (vcpu->arch.timer_running) {
4654 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
4655 vcpu->arch.timer_running = 0;
4656 }
4657
4658 tb = mftb();
4659
4660 kvmppc_update_vpa_dispatch_p9(vcpu, vc, tb + vc->tb_offset);
4661
4662 trace_kvm_guest_enter(vcpu);
4663
4664 guest_timing_enter_irqoff();
4665
4666 srcu_idx = srcu_read_lock(&kvm->srcu);
4667
4668 guest_state_enter_irqoff();
4669 this_cpu_disable_ftrace();
4670
4671 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb);
4672 vcpu->arch.trap = trap;
4673
4674 this_cpu_enable_ftrace();
4675 guest_state_exit_irqoff();
4676
4677 srcu_read_unlock(&kvm->srcu, srcu_idx);
4678
4679 set_irq_happened(trap);
4680
4681 vcpu->cpu = -1;
4682 vcpu->arch.thread_cpu = -1;
4683 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4684
4685 if (!vtime_accounting_enabled_this_cpu()) {
4686 powerpc_local_irq_pmu_restore(flags);
4687 /*
4688 * Service IRQs here before guest_timing_exit_irqoff() so any
4689 * ticks that occurred while running the guest are accounted to
4690 * the guest. If vtime accounting is enabled, accounting uses
4691 * TB rather than ticks, so it can be done without enabling
4692 * interrupts here, which has the problem that it accounts
4693 * interrupt processing overhead to the host.
4694 */
4695 powerpc_local_irq_pmu_save(flags);
4696 }
4697 guest_timing_exit_irqoff();
4698
4699 powerpc_local_irq_pmu_restore(flags);
4700
4701 preempt_enable();
4702
4703 /*
4704 * cancel pending decrementer exception if DEC is now positive, or if
4705 * entering a nested guest in which case the decrementer is now owned
4706 * by L2 and the L1 decrementer is provided in hdec_expires
4707 */
4708 if (kvmppc_core_pending_dec(vcpu) &&
4709 ((tb < kvmppc_dec_expires_host_tb(vcpu)) ||
4710 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4711 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4712 kvmppc_core_dequeue_dec(vcpu);
4713
4714 trace_kvm_guest_exit(vcpu);
4715 r = RESUME_GUEST;
4716 if (trap) {
4717 if (!nested)
4718 r = kvmppc_handle_exit_hv(vcpu, current);
4719 else
4720 r = kvmppc_handle_nested_exit(vcpu);
4721 }
4722 vcpu->arch.ret = r;
4723
4724 if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) {
4725 kvmppc_set_timer(vcpu);
4726
4727 prepare_to_rcuwait(wait);
4728 for (;;) {
4729 set_current_state(TASK_INTERRUPTIBLE);
4730 if (signal_pending(current)) {
4731 vcpu->stat.signal_exits++;
4732 run->exit_reason = KVM_EXIT_INTR;
4733 vcpu->arch.ret = -EINTR;
4734 break;
4735 }
4736
4737 if (kvmppc_vcpu_check_block(vcpu))
4738 break;
4739
4740 trace_kvmppc_vcore_blocked(vcpu, 0);
4741 schedule();
4742 trace_kvmppc_vcore_blocked(vcpu, 1);
4743 }
4744 finish_rcuwait(wait);
4745 }
4746 vcpu->arch.ceded = 0;
4747
4748 done:
4749 trace_kvmppc_run_vcpu_exit(vcpu);
4750
4751 return vcpu->arch.ret;
4752
4753 sigpend:
4754 vcpu->stat.signal_exits++;
4755 run->exit_reason = KVM_EXIT_INTR;
4756 vcpu->arch.ret = -EINTR;
4757 out:
4758 vcpu->cpu = -1;
4759 vcpu->arch.thread_cpu = -1;
4760 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4761 powerpc_local_irq_pmu_restore(flags);
4762 preempt_enable();
4763 goto done;
4764 }
4765
kvmppc_vcpu_run_hv(struct kvm_vcpu * vcpu)4766 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4767 {
4768 struct kvm_run *run = vcpu->run;
4769 int r;
4770 int srcu_idx;
4771 struct kvm *kvm;
4772 unsigned long msr;
4773
4774 start_timing(vcpu, &vcpu->arch.vcpu_entry);
4775
4776 if (!vcpu->arch.sane) {
4777 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4778 return -EINVAL;
4779 }
4780
4781 /* No need to go into the guest when all we'll do is come back out */
4782 if (signal_pending(current)) {
4783 run->exit_reason = KVM_EXIT_INTR;
4784 return -EINTR;
4785 }
4786
4787 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4788 /*
4789 * Don't allow entry with a suspended transaction, because
4790 * the guest entry/exit code will lose it.
4791 */
4792 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4793 (current->thread.regs->msr & MSR_TM)) {
4794 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4795 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4796 run->fail_entry.hardware_entry_failure_reason = 0;
4797 return -EINVAL;
4798 }
4799 }
4800 #endif
4801
4802 /*
4803 * Force online to 1 for the sake of old userspace which doesn't
4804 * set it.
4805 */
4806 if (!vcpu->arch.online) {
4807 atomic_inc(&vcpu->arch.vcore->online_count);
4808 vcpu->arch.online = 1;
4809 }
4810
4811 kvmppc_core_prepare_to_enter(vcpu);
4812
4813 kvm = vcpu->kvm;
4814 atomic_inc(&kvm->arch.vcpus_running);
4815 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4816 smp_mb();
4817
4818 msr = 0;
4819 if (IS_ENABLED(CONFIG_PPC_FPU))
4820 msr |= MSR_FP;
4821 if (cpu_has_feature(CPU_FTR_ALTIVEC))
4822 msr |= MSR_VEC;
4823 if (cpu_has_feature(CPU_FTR_VSX))
4824 msr |= MSR_VSX;
4825 if ((cpu_has_feature(CPU_FTR_TM) ||
4826 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) &&
4827 (vcpu->arch.hfscr & HFSCR_TM))
4828 msr |= MSR_TM;
4829 msr = msr_check_and_set(msr);
4830
4831 kvmppc_save_user_regs();
4832
4833 kvmppc_save_current_sprs();
4834
4835 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4836 vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4837 vcpu->arch.pgdir = kvm->mm->pgd;
4838 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4839
4840 do {
4841 accumulate_time(vcpu, &vcpu->arch.guest_entry);
4842 if (cpu_has_feature(CPU_FTR_ARCH_300))
4843 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4844 vcpu->arch.vcore->lpcr);
4845 else
4846 r = kvmppc_run_vcpu(vcpu);
4847
4848 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
4849 accumulate_time(vcpu, &vcpu->arch.hcall);
4850
4851 if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) {
4852 /*
4853 * These should have been caught reflected
4854 * into the guest by now. Final sanity check:
4855 * don't allow userspace to execute hcalls in
4856 * the hypervisor.
4857 */
4858 r = RESUME_GUEST;
4859 continue;
4860 }
4861 trace_kvm_hcall_enter(vcpu);
4862 r = kvmppc_pseries_do_hcall(vcpu);
4863 trace_kvm_hcall_exit(vcpu, r);
4864 kvmppc_core_prepare_to_enter(vcpu);
4865 } else if (r == RESUME_PAGE_FAULT) {
4866 accumulate_time(vcpu, &vcpu->arch.pg_fault);
4867 srcu_idx = srcu_read_lock(&kvm->srcu);
4868 r = kvmppc_book3s_hv_page_fault(vcpu,
4869 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4870 srcu_read_unlock(&kvm->srcu, srcu_idx);
4871 } else if (r == RESUME_PASSTHROUGH) {
4872 if (WARN_ON(xics_on_xive()))
4873 r = H_SUCCESS;
4874 else
4875 r = kvmppc_xics_rm_complete(vcpu, 0);
4876 }
4877 } while (is_kvmppc_resume_guest(r));
4878 accumulate_time(vcpu, &vcpu->arch.vcpu_exit);
4879
4880 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4881 atomic_dec(&kvm->arch.vcpus_running);
4882
4883 srr_regs_clobbered();
4884
4885 end_timing(vcpu);
4886
4887 return r;
4888 }
4889
kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size ** sps,int shift,int sllp)4890 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4891 int shift, int sllp)
4892 {
4893 (*sps)->page_shift = shift;
4894 (*sps)->slb_enc = sllp;
4895 (*sps)->enc[0].page_shift = shift;
4896 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4897 /*
4898 * Add 16MB MPSS support (may get filtered out by userspace)
4899 */
4900 if (shift != 24) {
4901 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4902 if (penc != -1) {
4903 (*sps)->enc[1].page_shift = 24;
4904 (*sps)->enc[1].pte_enc = penc;
4905 }
4906 }
4907 (*sps)++;
4908 }
4909
kvm_vm_ioctl_get_smmu_info_hv(struct kvm * kvm,struct kvm_ppc_smmu_info * info)4910 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4911 struct kvm_ppc_smmu_info *info)
4912 {
4913 struct kvm_ppc_one_seg_page_size *sps;
4914
4915 /*
4916 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4917 * POWER7 doesn't support keys for instruction accesses,
4918 * POWER8 and POWER9 do.
4919 */
4920 info->data_keys = 32;
4921 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4922
4923 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4924 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4925 info->slb_size = 32;
4926
4927 /* We only support these sizes for now, and no muti-size segments */
4928 sps = &info->sps[0];
4929 kvmppc_add_seg_page_size(&sps, 12, 0);
4930 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4931 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4932
4933 /* If running as a nested hypervisor, we don't support HPT guests */
4934 if (kvmhv_on_pseries())
4935 info->flags |= KVM_PPC_NO_HASH;
4936
4937 return 0;
4938 }
4939
4940 /*
4941 * Get (and clear) the dirty memory log for a memory slot.
4942 */
kvm_vm_ioctl_get_dirty_log_hv(struct kvm * kvm,struct kvm_dirty_log * log)4943 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4944 struct kvm_dirty_log *log)
4945 {
4946 struct kvm_memslots *slots;
4947 struct kvm_memory_slot *memslot;
4948 int r;
4949 unsigned long n, i;
4950 unsigned long *buf, *p;
4951 struct kvm_vcpu *vcpu;
4952
4953 mutex_lock(&kvm->slots_lock);
4954
4955 r = -EINVAL;
4956 if (log->slot >= KVM_USER_MEM_SLOTS)
4957 goto out;
4958
4959 slots = kvm_memslots(kvm);
4960 memslot = id_to_memslot(slots, log->slot);
4961 r = -ENOENT;
4962 if (!memslot || !memslot->dirty_bitmap)
4963 goto out;
4964
4965 /*
4966 * Use second half of bitmap area because both HPT and radix
4967 * accumulate bits in the first half.
4968 */
4969 n = kvm_dirty_bitmap_bytes(memslot);
4970 buf = memslot->dirty_bitmap + n / sizeof(long);
4971 memset(buf, 0, n);
4972
4973 if (kvm_is_radix(kvm))
4974 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4975 else
4976 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4977 if (r)
4978 goto out;
4979
4980 /*
4981 * We accumulate dirty bits in the first half of the
4982 * memslot's dirty_bitmap area, for when pages are paged
4983 * out or modified by the host directly. Pick up these
4984 * bits and add them to the map.
4985 */
4986 p = memslot->dirty_bitmap;
4987 for (i = 0; i < n / sizeof(long); ++i)
4988 buf[i] |= xchg(&p[i], 0);
4989
4990 /* Harvest dirty bits from VPA and DTL updates */
4991 /* Note: we never modify the SLB shadow buffer areas */
4992 kvm_for_each_vcpu(i, vcpu, kvm) {
4993 spin_lock(&vcpu->arch.vpa_update_lock);
4994 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4995 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4996 spin_unlock(&vcpu->arch.vpa_update_lock);
4997 }
4998
4999 r = -EFAULT;
5000 if (copy_to_user(log->dirty_bitmap, buf, n))
5001 goto out;
5002
5003 r = 0;
5004 out:
5005 mutex_unlock(&kvm->slots_lock);
5006 return r;
5007 }
5008
kvmppc_core_free_memslot_hv(struct kvm_memory_slot * slot)5009 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
5010 {
5011 vfree(slot->arch.rmap);
5012 slot->arch.rmap = NULL;
5013 }
5014
kvmppc_core_prepare_memory_region_hv(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)5015 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
5016 const struct kvm_memory_slot *old,
5017 struct kvm_memory_slot *new,
5018 enum kvm_mr_change change)
5019 {
5020 if (change == KVM_MR_CREATE) {
5021 unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap));
5022
5023 if ((size >> PAGE_SHIFT) > totalram_pages())
5024 return -ENOMEM;
5025
5026 new->arch.rmap = vzalloc(size);
5027 if (!new->arch.rmap)
5028 return -ENOMEM;
5029 } else if (change != KVM_MR_DELETE) {
5030 new->arch.rmap = old->arch.rmap;
5031 }
5032
5033 return 0;
5034 }
5035
kvmppc_core_commit_memory_region_hv(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)5036 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
5037 struct kvm_memory_slot *old,
5038 const struct kvm_memory_slot *new,
5039 enum kvm_mr_change change)
5040 {
5041 /*
5042 * If we are creating or modifying a memslot, it might make
5043 * some address that was previously cached as emulated
5044 * MMIO be no longer emulated MMIO, so invalidate
5045 * all the caches of emulated MMIO translations.
5046 */
5047 if (change != KVM_MR_DELETE)
5048 atomic64_inc(&kvm->arch.mmio_update);
5049
5050 /*
5051 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
5052 * have already called kvm_arch_flush_shadow_memslot() to
5053 * flush shadow mappings. For KVM_MR_CREATE we have no
5054 * previous mappings. So the only case to handle is
5055 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
5056 * has been changed.
5057 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
5058 * to get rid of any THP PTEs in the partition-scoped page tables
5059 * so we can track dirtiness at the page level; we flush when
5060 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
5061 * using THP PTEs.
5062 */
5063 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
5064 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
5065 kvmppc_radix_flush_memslot(kvm, old);
5066 /*
5067 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
5068 */
5069 if (!kvm->arch.secure_guest)
5070 return;
5071
5072 switch (change) {
5073 case KVM_MR_CREATE:
5074 /*
5075 * @TODO kvmppc_uvmem_memslot_create() can fail and
5076 * return error. Fix this.
5077 */
5078 kvmppc_uvmem_memslot_create(kvm, new);
5079 break;
5080 case KVM_MR_DELETE:
5081 kvmppc_uvmem_memslot_delete(kvm, old);
5082 break;
5083 default:
5084 /* TODO: Handle KVM_MR_MOVE */
5085 break;
5086 }
5087 }
5088
5089 /*
5090 * Update LPCR values in kvm->arch and in vcores.
5091 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
5092 * of kvm->arch.lpcr update).
5093 */
kvmppc_update_lpcr(struct kvm * kvm,unsigned long lpcr,unsigned long mask)5094 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
5095 {
5096 long int i;
5097 u32 cores_done = 0;
5098
5099 if ((kvm->arch.lpcr & mask) == lpcr)
5100 return;
5101
5102 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
5103
5104 for (i = 0; i < KVM_MAX_VCORES; ++i) {
5105 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
5106 if (!vc)
5107 continue;
5108
5109 spin_lock(&vc->lock);
5110 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
5111 verify_lpcr(kvm, vc->lpcr);
5112 spin_unlock(&vc->lock);
5113 if (++cores_done >= kvm->arch.online_vcores)
5114 break;
5115 }
5116 }
5117
kvmppc_setup_partition_table(struct kvm * kvm)5118 void kvmppc_setup_partition_table(struct kvm *kvm)
5119 {
5120 unsigned long dw0, dw1;
5121
5122 if (!kvm_is_radix(kvm)) {
5123 /* PS field - page size for VRMA */
5124 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
5125 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
5126 /* HTABSIZE and HTABORG fields */
5127 dw0 |= kvm->arch.sdr1;
5128
5129 /* Second dword as set by userspace */
5130 dw1 = kvm->arch.process_table;
5131 } else {
5132 dw0 = PATB_HR | radix__get_tree_size() |
5133 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
5134 dw1 = PATB_GR | kvm->arch.process_table;
5135 }
5136 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
5137 }
5138
5139 /*
5140 * Set up HPT (hashed page table) and RMA (real-mode area).
5141 * Must be called with kvm->arch.mmu_setup_lock held.
5142 */
kvmppc_hv_setup_htab_rma(struct kvm_vcpu * vcpu)5143 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
5144 {
5145 int err = 0;
5146 struct kvm *kvm = vcpu->kvm;
5147 unsigned long hva;
5148 struct kvm_memory_slot *memslot;
5149 struct vm_area_struct *vma;
5150 unsigned long lpcr = 0, senc;
5151 unsigned long psize, porder;
5152 int srcu_idx;
5153
5154 /* Allocate hashed page table (if not done already) and reset it */
5155 if (!kvm->arch.hpt.virt) {
5156 int order = KVM_DEFAULT_HPT_ORDER;
5157 struct kvm_hpt_info info;
5158
5159 err = kvmppc_allocate_hpt(&info, order);
5160 /* If we get here, it means userspace didn't specify a
5161 * size explicitly. So, try successively smaller
5162 * sizes if the default failed. */
5163 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
5164 err = kvmppc_allocate_hpt(&info, order);
5165
5166 if (err < 0) {
5167 pr_err("KVM: Couldn't alloc HPT\n");
5168 goto out;
5169 }
5170
5171 kvmppc_set_hpt(kvm, &info);
5172 }
5173
5174 /* Look up the memslot for guest physical address 0 */
5175 srcu_idx = srcu_read_lock(&kvm->srcu);
5176 memslot = gfn_to_memslot(kvm, 0);
5177
5178 /* We must have some memory at 0 by now */
5179 err = -EINVAL;
5180 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
5181 goto out_srcu;
5182
5183 /* Look up the VMA for the start of this memory slot */
5184 hva = memslot->userspace_addr;
5185 mmap_read_lock(kvm->mm);
5186 vma = vma_lookup(kvm->mm, hva);
5187 if (!vma || (vma->vm_flags & VM_IO))
5188 goto up_out;
5189
5190 psize = vma_kernel_pagesize(vma);
5191
5192 mmap_read_unlock(kvm->mm);
5193
5194 /* We can handle 4k, 64k or 16M pages in the VRMA */
5195 if (psize >= 0x1000000)
5196 psize = 0x1000000;
5197 else if (psize >= 0x10000)
5198 psize = 0x10000;
5199 else
5200 psize = 0x1000;
5201 porder = __ilog2(psize);
5202
5203 senc = slb_pgsize_encoding(psize);
5204 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
5205 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5206 /* Create HPTEs in the hash page table for the VRMA */
5207 kvmppc_map_vrma(vcpu, memslot, porder);
5208
5209 /* Update VRMASD field in the LPCR */
5210 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
5211 /* the -4 is to account for senc values starting at 0x10 */
5212 lpcr = senc << (LPCR_VRMASD_SH - 4);
5213 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
5214 }
5215
5216 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
5217 smp_wmb();
5218 err = 0;
5219 out_srcu:
5220 srcu_read_unlock(&kvm->srcu, srcu_idx);
5221 out:
5222 return err;
5223
5224 up_out:
5225 mmap_read_unlock(kvm->mm);
5226 goto out_srcu;
5227 }
5228
5229 /*
5230 * Must be called with kvm->arch.mmu_setup_lock held and
5231 * mmu_ready = 0 and no vcpus running.
5232 */
kvmppc_switch_mmu_to_hpt(struct kvm * kvm)5233 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
5234 {
5235 unsigned long lpcr, lpcr_mask;
5236
5237 if (nesting_enabled(kvm))
5238 kvmhv_release_all_nested(kvm);
5239 kvmppc_rmap_reset(kvm);
5240 kvm->arch.process_table = 0;
5241 /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5242 spin_lock(&kvm->mmu_lock);
5243 kvm->arch.radix = 0;
5244 spin_unlock(&kvm->mmu_lock);
5245 kvmppc_free_radix(kvm);
5246
5247 lpcr = LPCR_VPM1;
5248 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5249 if (cpu_has_feature(CPU_FTR_ARCH_31))
5250 lpcr_mask |= LPCR_HAIL;
5251 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5252
5253 return 0;
5254 }
5255
5256 /*
5257 * Must be called with kvm->arch.mmu_setup_lock held and
5258 * mmu_ready = 0 and no vcpus running.
5259 */
kvmppc_switch_mmu_to_radix(struct kvm * kvm)5260 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
5261 {
5262 unsigned long lpcr, lpcr_mask;
5263 int err;
5264
5265 err = kvmppc_init_vm_radix(kvm);
5266 if (err)
5267 return err;
5268 kvmppc_rmap_reset(kvm);
5269 /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5270 spin_lock(&kvm->mmu_lock);
5271 kvm->arch.radix = 1;
5272 spin_unlock(&kvm->mmu_lock);
5273 kvmppc_free_hpt(&kvm->arch.hpt);
5274
5275 lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5276 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5277 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5278 lpcr_mask |= LPCR_HAIL;
5279 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5280 (kvm->arch.host_lpcr & LPCR_HAIL))
5281 lpcr |= LPCR_HAIL;
5282 }
5283 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5284
5285 return 0;
5286 }
5287
5288 #ifdef CONFIG_KVM_XICS
5289 /*
5290 * Allocate a per-core structure for managing state about which cores are
5291 * running in the host versus the guest and for exchanging data between
5292 * real mode KVM and CPU running in the host.
5293 * This is only done for the first VM.
5294 * The allocated structure stays even if all VMs have stopped.
5295 * It is only freed when the kvm-hv module is unloaded.
5296 * It's OK for this routine to fail, we just don't support host
5297 * core operations like redirecting H_IPI wakeups.
5298 */
kvmppc_alloc_host_rm_ops(void)5299 void kvmppc_alloc_host_rm_ops(void)
5300 {
5301 struct kvmppc_host_rm_ops *ops;
5302 unsigned long l_ops;
5303 int cpu, core;
5304 int size;
5305
5306 if (cpu_has_feature(CPU_FTR_ARCH_300))
5307 return;
5308
5309 /* Not the first time here ? */
5310 if (kvmppc_host_rm_ops_hv != NULL)
5311 return;
5312
5313 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
5314 if (!ops)
5315 return;
5316
5317 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
5318 ops->rm_core = kzalloc(size, GFP_KERNEL);
5319
5320 if (!ops->rm_core) {
5321 kfree(ops);
5322 return;
5323 }
5324
5325 cpus_read_lock();
5326
5327 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
5328 if (!cpu_online(cpu))
5329 continue;
5330
5331 core = cpu >> threads_shift;
5332 ops->rm_core[core].rm_state.in_host = 1;
5333 }
5334
5335 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
5336
5337 /*
5338 * Make the contents of the kvmppc_host_rm_ops structure visible
5339 * to other CPUs before we assign it to the global variable.
5340 * Do an atomic assignment (no locks used here), but if someone
5341 * beats us to it, just free our copy and return.
5342 */
5343 smp_wmb();
5344 l_ops = (unsigned long) ops;
5345
5346 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
5347 cpus_read_unlock();
5348 kfree(ops->rm_core);
5349 kfree(ops);
5350 return;
5351 }
5352
5353 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
5354 "ppc/kvm_book3s:prepare",
5355 kvmppc_set_host_core,
5356 kvmppc_clear_host_core);
5357 cpus_read_unlock();
5358 }
5359
kvmppc_free_host_rm_ops(void)5360 void kvmppc_free_host_rm_ops(void)
5361 {
5362 if (kvmppc_host_rm_ops_hv) {
5363 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
5364 kfree(kvmppc_host_rm_ops_hv->rm_core);
5365 kfree(kvmppc_host_rm_ops_hv);
5366 kvmppc_host_rm_ops_hv = NULL;
5367 }
5368 }
5369 #endif
5370
kvmppc_core_init_vm_hv(struct kvm * kvm)5371 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
5372 {
5373 unsigned long lpcr, lpid;
5374 int ret;
5375
5376 mutex_init(&kvm->arch.uvmem_lock);
5377 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
5378 mutex_init(&kvm->arch.mmu_setup_lock);
5379
5380 /* Allocate the guest's logical partition ID */
5381
5382 lpid = kvmppc_alloc_lpid();
5383 if ((long)lpid < 0)
5384 return -ENOMEM;
5385 kvm->arch.lpid = lpid;
5386
5387 kvmppc_alloc_host_rm_ops();
5388
5389 kvmhv_vm_nested_init(kvm);
5390
5391 /*
5392 * Since we don't flush the TLB when tearing down a VM,
5393 * and this lpid might have previously been used,
5394 * make sure we flush on each core before running the new VM.
5395 * On POWER9, the tlbie in mmu_partition_table_set_entry()
5396 * does this flush for us.
5397 */
5398 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5399 cpumask_setall(&kvm->arch.need_tlb_flush);
5400
5401 /* Start out with the default set of hcalls enabled */
5402 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5403 sizeof(kvm->arch.enabled_hcalls));
5404
5405 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5406 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
5407
5408 /* Init LPCR for virtual RMA mode */
5409 if (cpu_has_feature(CPU_FTR_HVMODE)) {
5410 kvm->arch.host_lpid = mfspr(SPRN_LPID);
5411 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5412 lpcr &= LPCR_PECE | LPCR_LPES;
5413 } else {
5414 /*
5415 * The L2 LPES mode will be set by the L0 according to whether
5416 * or not it needs to take external interrupts in HV mode.
5417 */
5418 lpcr = 0;
5419 }
5420 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5421 LPCR_VPM0 | LPCR_VPM1;
5422 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5423 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5424 /* On POWER8 turn on online bit to enable PURR/SPURR */
5425 if (cpu_has_feature(CPU_FTR_ARCH_207S))
5426 lpcr |= LPCR_ONL;
5427 /*
5428 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5429 * Set HVICE bit to enable hypervisor virtualization interrupts.
5430 * Set HEIC to prevent OS interrupts to go to hypervisor (should
5431 * be unnecessary but better safe than sorry in case we re-enable
5432 * EE in HV mode with this LPCR still set)
5433 */
5434 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5435 lpcr &= ~LPCR_VPM0;
5436 lpcr |= LPCR_HVICE | LPCR_HEIC;
5437
5438 /*
5439 * If xive is enabled, we route 0x500 interrupts directly
5440 * to the guest.
5441 */
5442 if (xics_on_xive())
5443 lpcr |= LPCR_LPES;
5444 }
5445
5446 /*
5447 * If the host uses radix, the guest starts out as radix.
5448 */
5449 if (radix_enabled()) {
5450 kvm->arch.radix = 1;
5451 kvm->arch.mmu_ready = 1;
5452 lpcr &= ~LPCR_VPM1;
5453 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5454 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5455 cpu_has_feature(CPU_FTR_ARCH_31) &&
5456 (kvm->arch.host_lpcr & LPCR_HAIL))
5457 lpcr |= LPCR_HAIL;
5458 ret = kvmppc_init_vm_radix(kvm);
5459 if (ret) {
5460 kvmppc_free_lpid(kvm->arch.lpid);
5461 return ret;
5462 }
5463 kvmppc_setup_partition_table(kvm);
5464 }
5465
5466 verify_lpcr(kvm, lpcr);
5467 kvm->arch.lpcr = lpcr;
5468
5469 /* Initialization for future HPT resizes */
5470 kvm->arch.resize_hpt = NULL;
5471
5472 /*
5473 * Work out how many sets the TLB has, for the use of
5474 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5475 */
5476 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5477 /*
5478 * P10 will flush all the congruence class with a single tlbiel
5479 */
5480 kvm->arch.tlb_sets = 1;
5481 } else if (radix_enabled())
5482 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
5483 else if (cpu_has_feature(CPU_FTR_ARCH_300))
5484 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
5485 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5486 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
5487 else
5488 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
5489
5490 /*
5491 * Track that we now have a HV mode VM active. This blocks secondary
5492 * CPU threads from coming online.
5493 */
5494 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5495 kvm_hv_vm_activated();
5496
5497 /*
5498 * Initialize smt_mode depending on processor.
5499 * POWER8 and earlier have to use "strict" threading, where
5500 * all vCPUs in a vcore have to run on the same (sub)core,
5501 * whereas on POWER9 the threads can each run a different
5502 * guest.
5503 */
5504 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5505 kvm->arch.smt_mode = threads_per_subcore;
5506 else
5507 kvm->arch.smt_mode = 1;
5508 kvm->arch.emul_smt_mode = 1;
5509
5510 return 0;
5511 }
5512
kvmppc_arch_create_vm_debugfs_hv(struct kvm * kvm)5513 static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm)
5514 {
5515 kvmppc_mmu_debugfs_init(kvm);
5516 if (radix_enabled())
5517 kvmhv_radix_debugfs_init(kvm);
5518 return 0;
5519 }
5520
kvmppc_free_vcores(struct kvm * kvm)5521 static void kvmppc_free_vcores(struct kvm *kvm)
5522 {
5523 long int i;
5524
5525 for (i = 0; i < KVM_MAX_VCORES; ++i)
5526 kfree(kvm->arch.vcores[i]);
5527 kvm->arch.online_vcores = 0;
5528 }
5529
kvmppc_core_destroy_vm_hv(struct kvm * kvm)5530 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5531 {
5532 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5533 kvm_hv_vm_deactivated();
5534
5535 kvmppc_free_vcores(kvm);
5536
5537
5538 if (kvm_is_radix(kvm))
5539 kvmppc_free_radix(kvm);
5540 else
5541 kvmppc_free_hpt(&kvm->arch.hpt);
5542
5543 /* Perform global invalidation and return lpid to the pool */
5544 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5545 if (nesting_enabled(kvm))
5546 kvmhv_release_all_nested(kvm);
5547 kvm->arch.process_table = 0;
5548 if (kvm->arch.secure_guest)
5549 uv_svm_terminate(kvm->arch.lpid);
5550 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5551 }
5552
5553 kvmppc_free_lpid(kvm->arch.lpid);
5554
5555 kvmppc_free_pimap(kvm);
5556 }
5557
5558 /* We don't need to emulate any privileged instructions or dcbz */
kvmppc_core_emulate_op_hv(struct kvm_vcpu * vcpu,unsigned int inst,int * advance)5559 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5560 unsigned int inst, int *advance)
5561 {
5562 return EMULATE_FAIL;
5563 }
5564
kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu * vcpu,int sprn,ulong spr_val)5565 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5566 ulong spr_val)
5567 {
5568 return EMULATE_FAIL;
5569 }
5570
kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu * vcpu,int sprn,ulong * spr_val)5571 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5572 ulong *spr_val)
5573 {
5574 return EMULATE_FAIL;
5575 }
5576
kvmppc_core_check_processor_compat_hv(void)5577 static int kvmppc_core_check_processor_compat_hv(void)
5578 {
5579 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5580 cpu_has_feature(CPU_FTR_ARCH_206))
5581 return 0;
5582
5583 /* POWER9 in radix mode is capable of being a nested hypervisor. */
5584 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5585 return 0;
5586
5587 return -EIO;
5588 }
5589
5590 #ifdef CONFIG_KVM_XICS
5591
kvmppc_free_pimap(struct kvm * kvm)5592 void kvmppc_free_pimap(struct kvm *kvm)
5593 {
5594 kfree(kvm->arch.pimap);
5595 }
5596
kvmppc_alloc_pimap(void)5597 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5598 {
5599 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5600 }
5601
kvmppc_set_passthru_irq(struct kvm * kvm,int host_irq,int guest_gsi)5602 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5603 {
5604 struct irq_desc *desc;
5605 struct kvmppc_irq_map *irq_map;
5606 struct kvmppc_passthru_irqmap *pimap;
5607 struct irq_chip *chip;
5608 int i, rc = 0;
5609 struct irq_data *host_data;
5610
5611 if (!kvm_irq_bypass)
5612 return 1;
5613
5614 desc = irq_to_desc(host_irq);
5615 if (!desc)
5616 return -EIO;
5617
5618 mutex_lock(&kvm->lock);
5619
5620 pimap = kvm->arch.pimap;
5621 if (pimap == NULL) {
5622 /* First call, allocate structure to hold IRQ map */
5623 pimap = kvmppc_alloc_pimap();
5624 if (pimap == NULL) {
5625 mutex_unlock(&kvm->lock);
5626 return -ENOMEM;
5627 }
5628 kvm->arch.pimap = pimap;
5629 }
5630
5631 /*
5632 * For now, we only support interrupts for which the EOI operation
5633 * is an OPAL call followed by a write to XIRR, since that's
5634 * what our real-mode EOI code does, or a XIVE interrupt
5635 */
5636 chip = irq_data_get_irq_chip(&desc->irq_data);
5637 if (!chip || !is_pnv_opal_msi(chip)) {
5638 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5639 host_irq, guest_gsi);
5640 mutex_unlock(&kvm->lock);
5641 return -ENOENT;
5642 }
5643
5644 /*
5645 * See if we already have an entry for this guest IRQ number.
5646 * If it's mapped to a hardware IRQ number, that's an error,
5647 * otherwise re-use this entry.
5648 */
5649 for (i = 0; i < pimap->n_mapped; i++) {
5650 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5651 if (pimap->mapped[i].r_hwirq) {
5652 mutex_unlock(&kvm->lock);
5653 return -EINVAL;
5654 }
5655 break;
5656 }
5657 }
5658
5659 if (i == KVMPPC_PIRQ_MAPPED) {
5660 mutex_unlock(&kvm->lock);
5661 return -EAGAIN; /* table is full */
5662 }
5663
5664 irq_map = &pimap->mapped[i];
5665
5666 irq_map->v_hwirq = guest_gsi;
5667 irq_map->desc = desc;
5668
5669 /*
5670 * Order the above two stores before the next to serialize with
5671 * the KVM real mode handler.
5672 */
5673 smp_wmb();
5674
5675 /*
5676 * The 'host_irq' number is mapped in the PCI-MSI domain but
5677 * the underlying calls, which will EOI the interrupt in real
5678 * mode, need an HW IRQ number mapped in the XICS IRQ domain.
5679 */
5680 host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq);
5681 irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data);
5682
5683 if (i == pimap->n_mapped)
5684 pimap->n_mapped++;
5685
5686 if (xics_on_xive())
5687 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq);
5688 else
5689 kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq);
5690 if (rc)
5691 irq_map->r_hwirq = 0;
5692
5693 mutex_unlock(&kvm->lock);
5694
5695 return 0;
5696 }
5697
kvmppc_clr_passthru_irq(struct kvm * kvm,int host_irq,int guest_gsi)5698 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5699 {
5700 struct irq_desc *desc;
5701 struct kvmppc_passthru_irqmap *pimap;
5702 int i, rc = 0;
5703
5704 if (!kvm_irq_bypass)
5705 return 0;
5706
5707 desc = irq_to_desc(host_irq);
5708 if (!desc)
5709 return -EIO;
5710
5711 mutex_lock(&kvm->lock);
5712 if (!kvm->arch.pimap)
5713 goto unlock;
5714
5715 pimap = kvm->arch.pimap;
5716
5717 for (i = 0; i < pimap->n_mapped; i++) {
5718 if (guest_gsi == pimap->mapped[i].v_hwirq)
5719 break;
5720 }
5721
5722 if (i == pimap->n_mapped) {
5723 mutex_unlock(&kvm->lock);
5724 return -ENODEV;
5725 }
5726
5727 if (xics_on_xive())
5728 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq);
5729 else
5730 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5731
5732 /* invalidate the entry (what to do on error from the above ?) */
5733 pimap->mapped[i].r_hwirq = 0;
5734
5735 /*
5736 * We don't free this structure even when the count goes to
5737 * zero. The structure is freed when we destroy the VM.
5738 */
5739 unlock:
5740 mutex_unlock(&kvm->lock);
5741 return rc;
5742 }
5743
kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)5744 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5745 struct irq_bypass_producer *prod)
5746 {
5747 int ret = 0;
5748 struct kvm_kernel_irqfd *irqfd =
5749 container_of(cons, struct kvm_kernel_irqfd, consumer);
5750
5751 irqfd->producer = prod;
5752
5753 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5754 if (ret)
5755 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5756 prod->irq, irqfd->gsi, ret);
5757
5758 return ret;
5759 }
5760
kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)5761 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5762 struct irq_bypass_producer *prod)
5763 {
5764 int ret;
5765 struct kvm_kernel_irqfd *irqfd =
5766 container_of(cons, struct kvm_kernel_irqfd, consumer);
5767
5768 irqfd->producer = NULL;
5769
5770 /*
5771 * When producer of consumer is unregistered, we change back to
5772 * default external interrupt handling mode - KVM real mode
5773 * will switch back to host.
5774 */
5775 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5776 if (ret)
5777 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5778 prod->irq, irqfd->gsi, ret);
5779 }
5780 #endif
5781
kvm_arch_vm_ioctl_hv(struct file * filp,unsigned int ioctl,unsigned long arg)5782 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5783 unsigned int ioctl, unsigned long arg)
5784 {
5785 struct kvm *kvm __maybe_unused = filp->private_data;
5786 void __user *argp = (void __user *)arg;
5787 long r;
5788
5789 switch (ioctl) {
5790
5791 case KVM_PPC_ALLOCATE_HTAB: {
5792 u32 htab_order;
5793
5794 /* If we're a nested hypervisor, we currently only support radix */
5795 if (kvmhv_on_pseries()) {
5796 r = -EOPNOTSUPP;
5797 break;
5798 }
5799
5800 r = -EFAULT;
5801 if (get_user(htab_order, (u32 __user *)argp))
5802 break;
5803 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5804 if (r)
5805 break;
5806 r = 0;
5807 break;
5808 }
5809
5810 case KVM_PPC_GET_HTAB_FD: {
5811 struct kvm_get_htab_fd ghf;
5812
5813 r = -EFAULT;
5814 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5815 break;
5816 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5817 break;
5818 }
5819
5820 case KVM_PPC_RESIZE_HPT_PREPARE: {
5821 struct kvm_ppc_resize_hpt rhpt;
5822
5823 r = -EFAULT;
5824 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5825 break;
5826
5827 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5828 break;
5829 }
5830
5831 case KVM_PPC_RESIZE_HPT_COMMIT: {
5832 struct kvm_ppc_resize_hpt rhpt;
5833
5834 r = -EFAULT;
5835 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5836 break;
5837
5838 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5839 break;
5840 }
5841
5842 default:
5843 r = -ENOTTY;
5844 }
5845
5846 return r;
5847 }
5848
5849 /*
5850 * List of hcall numbers to enable by default.
5851 * For compatibility with old userspace, we enable by default
5852 * all hcalls that were implemented before the hcall-enabling
5853 * facility was added. Note this list should not include H_RTAS.
5854 */
5855 static unsigned int default_hcall_list[] = {
5856 H_REMOVE,
5857 H_ENTER,
5858 H_READ,
5859 H_PROTECT,
5860 H_BULK_REMOVE,
5861 #ifdef CONFIG_SPAPR_TCE_IOMMU
5862 H_GET_TCE,
5863 H_PUT_TCE,
5864 #endif
5865 H_SET_DABR,
5866 H_SET_XDABR,
5867 H_CEDE,
5868 H_PROD,
5869 H_CONFER,
5870 H_REGISTER_VPA,
5871 #ifdef CONFIG_KVM_XICS
5872 H_EOI,
5873 H_CPPR,
5874 H_IPI,
5875 H_IPOLL,
5876 H_XIRR,
5877 H_XIRR_X,
5878 #endif
5879 0
5880 };
5881
init_default_hcalls(void)5882 static void init_default_hcalls(void)
5883 {
5884 int i;
5885 unsigned int hcall;
5886
5887 for (i = 0; default_hcall_list[i]; ++i) {
5888 hcall = default_hcall_list[i];
5889 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5890 __set_bit(hcall / 4, default_enabled_hcalls);
5891 }
5892 }
5893
kvmhv_configure_mmu(struct kvm * kvm,struct kvm_ppc_mmuv3_cfg * cfg)5894 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5895 {
5896 unsigned long lpcr;
5897 int radix;
5898 int err;
5899
5900 /* If not on a POWER9, reject it */
5901 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5902 return -ENODEV;
5903
5904 /* If any unknown flags set, reject it */
5905 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5906 return -EINVAL;
5907
5908 /* GR (guest radix) bit in process_table field must match */
5909 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5910 if (!!(cfg->process_table & PATB_GR) != radix)
5911 return -EINVAL;
5912
5913 /* Process table size field must be reasonable, i.e. <= 24 */
5914 if ((cfg->process_table & PRTS_MASK) > 24)
5915 return -EINVAL;
5916
5917 /* We can change a guest to/from radix now, if the host is radix */
5918 if (radix && !radix_enabled())
5919 return -EINVAL;
5920
5921 /* If we're a nested hypervisor, we currently only support radix */
5922 if (kvmhv_on_pseries() && !radix)
5923 return -EINVAL;
5924
5925 mutex_lock(&kvm->arch.mmu_setup_lock);
5926 if (radix != kvm_is_radix(kvm)) {
5927 if (kvm->arch.mmu_ready) {
5928 kvm->arch.mmu_ready = 0;
5929 /* order mmu_ready vs. vcpus_running */
5930 smp_mb();
5931 if (atomic_read(&kvm->arch.vcpus_running)) {
5932 kvm->arch.mmu_ready = 1;
5933 err = -EBUSY;
5934 goto out_unlock;
5935 }
5936 }
5937 if (radix)
5938 err = kvmppc_switch_mmu_to_radix(kvm);
5939 else
5940 err = kvmppc_switch_mmu_to_hpt(kvm);
5941 if (err)
5942 goto out_unlock;
5943 }
5944
5945 kvm->arch.process_table = cfg->process_table;
5946 kvmppc_setup_partition_table(kvm);
5947
5948 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5949 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5950 err = 0;
5951
5952 out_unlock:
5953 mutex_unlock(&kvm->arch.mmu_setup_lock);
5954 return err;
5955 }
5956
kvmhv_enable_nested(struct kvm * kvm)5957 static int kvmhv_enable_nested(struct kvm *kvm)
5958 {
5959 if (!nested)
5960 return -EPERM;
5961 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5962 return -ENODEV;
5963 if (!radix_enabled())
5964 return -ENODEV;
5965
5966 /* kvm == NULL means the caller is testing if the capability exists */
5967 if (kvm)
5968 kvm->arch.nested_enable = true;
5969 return 0;
5970 }
5971
kvmhv_load_from_eaddr(struct kvm_vcpu * vcpu,ulong * eaddr,void * ptr,int size)5972 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5973 int size)
5974 {
5975 int rc = -EINVAL;
5976
5977 if (kvmhv_vcpu_is_radix(vcpu)) {
5978 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5979
5980 if (rc > 0)
5981 rc = -EINVAL;
5982 }
5983
5984 /* For now quadrants are the only way to access nested guest memory */
5985 if (rc && vcpu->arch.nested)
5986 rc = -EAGAIN;
5987
5988 return rc;
5989 }
5990
kvmhv_store_to_eaddr(struct kvm_vcpu * vcpu,ulong * eaddr,void * ptr,int size)5991 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5992 int size)
5993 {
5994 int rc = -EINVAL;
5995
5996 if (kvmhv_vcpu_is_radix(vcpu)) {
5997 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5998
5999 if (rc > 0)
6000 rc = -EINVAL;
6001 }
6002
6003 /* For now quadrants are the only way to access nested guest memory */
6004 if (rc && vcpu->arch.nested)
6005 rc = -EAGAIN;
6006
6007 return rc;
6008 }
6009
unpin_vpa_reset(struct kvm * kvm,struct kvmppc_vpa * vpa)6010 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
6011 {
6012 unpin_vpa(kvm, vpa);
6013 vpa->gpa = 0;
6014 vpa->pinned_addr = NULL;
6015 vpa->dirty = false;
6016 vpa->update_pending = 0;
6017 }
6018
6019 /*
6020 * Enable a guest to become a secure VM, or test whether
6021 * that could be enabled.
6022 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
6023 * tested (kvm == NULL) or enabled (kvm != NULL).
6024 */
kvmhv_enable_svm(struct kvm * kvm)6025 static int kvmhv_enable_svm(struct kvm *kvm)
6026 {
6027 if (!kvmppc_uvmem_available())
6028 return -EINVAL;
6029 if (kvm)
6030 kvm->arch.svm_enabled = 1;
6031 return 0;
6032 }
6033
6034 /*
6035 * IOCTL handler to turn off secure mode of guest
6036 *
6037 * - Release all device pages
6038 * - Issue ucall to terminate the guest on the UV side
6039 * - Unpin the VPA pages.
6040 * - Reinit the partition scoped page tables
6041 */
kvmhv_svm_off(struct kvm * kvm)6042 static int kvmhv_svm_off(struct kvm *kvm)
6043 {
6044 struct kvm_vcpu *vcpu;
6045 int mmu_was_ready;
6046 int srcu_idx;
6047 int ret = 0;
6048 unsigned long i;
6049
6050 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
6051 return ret;
6052
6053 mutex_lock(&kvm->arch.mmu_setup_lock);
6054 mmu_was_ready = kvm->arch.mmu_ready;
6055 if (kvm->arch.mmu_ready) {
6056 kvm->arch.mmu_ready = 0;
6057 /* order mmu_ready vs. vcpus_running */
6058 smp_mb();
6059 if (atomic_read(&kvm->arch.vcpus_running)) {
6060 kvm->arch.mmu_ready = 1;
6061 ret = -EBUSY;
6062 goto out;
6063 }
6064 }
6065
6066 srcu_idx = srcu_read_lock(&kvm->srcu);
6067 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6068 struct kvm_memory_slot *memslot;
6069 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
6070 int bkt;
6071
6072 if (!slots)
6073 continue;
6074
6075 kvm_for_each_memslot(memslot, bkt, slots) {
6076 kvmppc_uvmem_drop_pages(memslot, kvm, true);
6077 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
6078 }
6079 }
6080 srcu_read_unlock(&kvm->srcu, srcu_idx);
6081
6082 ret = uv_svm_terminate(kvm->arch.lpid);
6083 if (ret != U_SUCCESS) {
6084 ret = -EINVAL;
6085 goto out;
6086 }
6087
6088 /*
6089 * When secure guest is reset, all the guest pages are sent
6090 * to UV via UV_PAGE_IN before the non-boot vcpus get a
6091 * chance to run and unpin their VPA pages. Unpinning of all
6092 * VPA pages is done here explicitly so that VPA pages
6093 * can be migrated to the secure side.
6094 *
6095 * This is required to for the secure SMP guest to reboot
6096 * correctly.
6097 */
6098 kvm_for_each_vcpu(i, vcpu, kvm) {
6099 spin_lock(&vcpu->arch.vpa_update_lock);
6100 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
6101 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
6102 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
6103 spin_unlock(&vcpu->arch.vpa_update_lock);
6104 }
6105
6106 kvmppc_setup_partition_table(kvm);
6107 kvm->arch.secure_guest = 0;
6108 kvm->arch.mmu_ready = mmu_was_ready;
6109 out:
6110 mutex_unlock(&kvm->arch.mmu_setup_lock);
6111 return ret;
6112 }
6113
kvmhv_enable_dawr1(struct kvm * kvm)6114 static int kvmhv_enable_dawr1(struct kvm *kvm)
6115 {
6116 if (!cpu_has_feature(CPU_FTR_DAWR1))
6117 return -ENODEV;
6118
6119 /* kvm == NULL means the caller is testing if the capability exists */
6120 if (kvm)
6121 kvm->arch.dawr1_enabled = true;
6122 return 0;
6123 }
6124
kvmppc_hash_v3_possible(void)6125 static bool kvmppc_hash_v3_possible(void)
6126 {
6127 if (!cpu_has_feature(CPU_FTR_ARCH_300))
6128 return false;
6129
6130 if (!cpu_has_feature(CPU_FTR_HVMODE))
6131 return false;
6132
6133 /*
6134 * POWER9 chips before version 2.02 can't have some threads in
6135 * HPT mode and some in radix mode on the same core.
6136 */
6137 if (radix_enabled()) {
6138 unsigned int pvr = mfspr(SPRN_PVR);
6139 if ((pvr >> 16) == PVR_POWER9 &&
6140 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
6141 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
6142 return false;
6143 }
6144
6145 return true;
6146 }
6147
6148 static struct kvmppc_ops kvm_ops_hv = {
6149 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
6150 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
6151 .get_one_reg = kvmppc_get_one_reg_hv,
6152 .set_one_reg = kvmppc_set_one_reg_hv,
6153 .vcpu_load = kvmppc_core_vcpu_load_hv,
6154 .vcpu_put = kvmppc_core_vcpu_put_hv,
6155 .inject_interrupt = kvmppc_inject_interrupt_hv,
6156 .set_msr = kvmppc_set_msr_hv,
6157 .vcpu_run = kvmppc_vcpu_run_hv,
6158 .vcpu_create = kvmppc_core_vcpu_create_hv,
6159 .vcpu_free = kvmppc_core_vcpu_free_hv,
6160 .check_requests = kvmppc_core_check_requests_hv,
6161 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
6162 .flush_memslot = kvmppc_core_flush_memslot_hv,
6163 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
6164 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
6165 .unmap_gfn_range = kvm_unmap_gfn_range_hv,
6166 .age_gfn = kvm_age_gfn_hv,
6167 .test_age_gfn = kvm_test_age_gfn_hv,
6168 .set_spte_gfn = kvm_set_spte_gfn_hv,
6169 .free_memslot = kvmppc_core_free_memslot_hv,
6170 .init_vm = kvmppc_core_init_vm_hv,
6171 .destroy_vm = kvmppc_core_destroy_vm_hv,
6172 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
6173 .emulate_op = kvmppc_core_emulate_op_hv,
6174 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
6175 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
6176 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
6177 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
6178 .hcall_implemented = kvmppc_hcall_impl_hv,
6179 #ifdef CONFIG_KVM_XICS
6180 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
6181 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
6182 #endif
6183 .configure_mmu = kvmhv_configure_mmu,
6184 .get_rmmu_info = kvmhv_get_rmmu_info,
6185 .set_smt_mode = kvmhv_set_smt_mode,
6186 .enable_nested = kvmhv_enable_nested,
6187 .load_from_eaddr = kvmhv_load_from_eaddr,
6188 .store_to_eaddr = kvmhv_store_to_eaddr,
6189 .enable_svm = kvmhv_enable_svm,
6190 .svm_off = kvmhv_svm_off,
6191 .enable_dawr1 = kvmhv_enable_dawr1,
6192 .hash_v3_possible = kvmppc_hash_v3_possible,
6193 .create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv,
6194 .create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv,
6195 };
6196
kvm_init_subcore_bitmap(void)6197 static int kvm_init_subcore_bitmap(void)
6198 {
6199 int i, j;
6200 int nr_cores = cpu_nr_cores();
6201 struct sibling_subcore_state *sibling_subcore_state;
6202
6203 for (i = 0; i < nr_cores; i++) {
6204 int first_cpu = i * threads_per_core;
6205 int node = cpu_to_node(first_cpu);
6206
6207 /* Ignore if it is already allocated. */
6208 if (paca_ptrs[first_cpu]->sibling_subcore_state)
6209 continue;
6210
6211 sibling_subcore_state =
6212 kzalloc_node(sizeof(struct sibling_subcore_state),
6213 GFP_KERNEL, node);
6214 if (!sibling_subcore_state)
6215 return -ENOMEM;
6216
6217
6218 for (j = 0; j < threads_per_core; j++) {
6219 int cpu = first_cpu + j;
6220
6221 paca_ptrs[cpu]->sibling_subcore_state =
6222 sibling_subcore_state;
6223 }
6224 }
6225 return 0;
6226 }
6227
kvmppc_radix_possible(void)6228 static int kvmppc_radix_possible(void)
6229 {
6230 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
6231 }
6232
kvmppc_book3s_init_hv(void)6233 static int kvmppc_book3s_init_hv(void)
6234 {
6235 int r;
6236
6237 if (!tlbie_capable) {
6238 pr_err("KVM-HV: Host does not support TLBIE\n");
6239 return -ENODEV;
6240 }
6241
6242 /*
6243 * FIXME!! Do we need to check on all cpus ?
6244 */
6245 r = kvmppc_core_check_processor_compat_hv();
6246 if (r < 0)
6247 return -ENODEV;
6248
6249 r = kvmhv_nested_init();
6250 if (r)
6251 return r;
6252
6253 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
6254 r = kvm_init_subcore_bitmap();
6255 if (r)
6256 goto err;
6257 }
6258
6259 /*
6260 * We need a way of accessing the XICS interrupt controller,
6261 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
6262 * indirectly, via OPAL.
6263 */
6264 #ifdef CONFIG_SMP
6265 if (!xics_on_xive() && !kvmhv_on_pseries() &&
6266 !local_paca->kvm_hstate.xics_phys) {
6267 struct device_node *np;
6268
6269 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
6270 if (!np) {
6271 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
6272 r = -ENODEV;
6273 goto err;
6274 }
6275 /* presence of intc confirmed - node can be dropped again */
6276 of_node_put(np);
6277 }
6278 #endif
6279
6280 init_default_hcalls();
6281
6282 init_vcore_lists();
6283
6284 r = kvmppc_mmu_hv_init();
6285 if (r)
6286 goto err;
6287
6288 if (kvmppc_radix_possible()) {
6289 r = kvmppc_radix_init();
6290 if (r)
6291 goto err;
6292 }
6293
6294 r = kvmppc_uvmem_init();
6295 if (r < 0) {
6296 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
6297 return r;
6298 }
6299
6300 kvm_ops_hv.owner = THIS_MODULE;
6301 kvmppc_hv_ops = &kvm_ops_hv;
6302
6303 return 0;
6304
6305 err:
6306 kvmhv_nested_exit();
6307 kvmppc_radix_exit();
6308
6309 return r;
6310 }
6311
kvmppc_book3s_exit_hv(void)6312 static void kvmppc_book3s_exit_hv(void)
6313 {
6314 kvmppc_uvmem_free();
6315 kvmppc_free_host_rm_ops();
6316 if (kvmppc_radix_possible())
6317 kvmppc_radix_exit();
6318 kvmppc_hv_ops = NULL;
6319 kvmhv_nested_exit();
6320 }
6321
6322 module_init(kvmppc_book3s_init_hv);
6323 module_exit(kvmppc_book3s_exit_hv);
6324 MODULE_LICENSE("GPL");
6325 MODULE_ALIAS_MISCDEV(KVM_MINOR);
6326 MODULE_ALIAS("devname:kvm");
6327