1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
4 * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5 *
6 * KVM Xen emulation
7 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include "x86.h"
11 #include "xen.h"
12 #include "hyperv.h"
13 #include "lapic.h"
14
15 #include <linux/eventfd.h>
16 #include <linux/kvm_host.h>
17 #include <linux/sched/stat.h>
18
19 #include <trace/events/kvm.h>
20 #include <xen/interface/xen.h>
21 #include <xen/interface/vcpu.h>
22 #include <xen/interface/version.h>
23 #include <xen/interface/event_channel.h>
24 #include <xen/interface/sched.h>
25
26 #include <asm/xen/cpuid.h>
27
28 #include "cpuid.h"
29 #include "trace.h"
30
31 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm);
32 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data);
33 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r);
34
35 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);
36
kvm_xen_shared_info_init(struct kvm * kvm,gfn_t gfn)37 static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn)
38 {
39 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
40 struct pvclock_wall_clock *wc;
41 gpa_t gpa = gfn_to_gpa(gfn);
42 u32 *wc_sec_hi;
43 u32 wc_version;
44 u64 wall_nsec;
45 int ret = 0;
46 int idx = srcu_read_lock(&kvm->srcu);
47
48 if (gfn == KVM_XEN_INVALID_GFN) {
49 kvm_gpc_deactivate(gpc);
50 goto out;
51 }
52
53 do {
54 ret = kvm_gpc_activate(gpc, gpa, PAGE_SIZE);
55 if (ret)
56 goto out;
57
58 /*
59 * This code mirrors kvm_write_wall_clock() except that it writes
60 * directly through the pfn cache and doesn't mark the page dirty.
61 */
62 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
63
64 /* It could be invalid again already, so we need to check */
65 read_lock_irq(&gpc->lock);
66
67 if (gpc->valid)
68 break;
69
70 read_unlock_irq(&gpc->lock);
71 } while (1);
72
73 /* Paranoia checks on the 32-bit struct layout */
74 BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
75 BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
76 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
77
78 #ifdef CONFIG_X86_64
79 /* Paranoia checks on the 64-bit struct layout */
80 BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
81 BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);
82
83 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
84 struct shared_info *shinfo = gpc->khva;
85
86 wc_sec_hi = &shinfo->wc_sec_hi;
87 wc = &shinfo->wc;
88 } else
89 #endif
90 {
91 struct compat_shared_info *shinfo = gpc->khva;
92
93 wc_sec_hi = &shinfo->arch.wc_sec_hi;
94 wc = &shinfo->wc;
95 }
96
97 /* Increment and ensure an odd value */
98 wc_version = wc->version = (wc->version + 1) | 1;
99 smp_wmb();
100
101 wc->nsec = do_div(wall_nsec, 1000000000);
102 wc->sec = (u32)wall_nsec;
103 *wc_sec_hi = wall_nsec >> 32;
104 smp_wmb();
105
106 wc->version = wc_version + 1;
107 read_unlock_irq(&gpc->lock);
108
109 kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
110
111 out:
112 srcu_read_unlock(&kvm->srcu, idx);
113 return ret;
114 }
115
kvm_xen_inject_timer_irqs(struct kvm_vcpu * vcpu)116 void kvm_xen_inject_timer_irqs(struct kvm_vcpu *vcpu)
117 {
118 if (atomic_read(&vcpu->arch.xen.timer_pending) > 0) {
119 struct kvm_xen_evtchn e;
120
121 e.vcpu_id = vcpu->vcpu_id;
122 e.vcpu_idx = vcpu->vcpu_idx;
123 e.port = vcpu->arch.xen.timer_virq;
124 e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
125
126 kvm_xen_set_evtchn(&e, vcpu->kvm);
127
128 vcpu->arch.xen.timer_expires = 0;
129 atomic_set(&vcpu->arch.xen.timer_pending, 0);
130 }
131 }
132
xen_timer_callback(struct hrtimer * timer)133 static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer)
134 {
135 struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu,
136 arch.xen.timer);
137 if (atomic_read(&vcpu->arch.xen.timer_pending))
138 return HRTIMER_NORESTART;
139
140 atomic_inc(&vcpu->arch.xen.timer_pending);
141 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
142 kvm_vcpu_kick(vcpu);
143
144 return HRTIMER_NORESTART;
145 }
146
kvm_xen_start_timer(struct kvm_vcpu * vcpu,u64 guest_abs,s64 delta_ns)147 static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs, s64 delta_ns)
148 {
149 atomic_set(&vcpu->arch.xen.timer_pending, 0);
150 vcpu->arch.xen.timer_expires = guest_abs;
151
152 if (delta_ns <= 0) {
153 xen_timer_callback(&vcpu->arch.xen.timer);
154 } else {
155 ktime_t ktime_now = ktime_get();
156 hrtimer_start(&vcpu->arch.xen.timer,
157 ktime_add_ns(ktime_now, delta_ns),
158 HRTIMER_MODE_ABS_HARD);
159 }
160 }
161
kvm_xen_stop_timer(struct kvm_vcpu * vcpu)162 static void kvm_xen_stop_timer(struct kvm_vcpu *vcpu)
163 {
164 hrtimer_cancel(&vcpu->arch.xen.timer);
165 vcpu->arch.xen.timer_expires = 0;
166 atomic_set(&vcpu->arch.xen.timer_pending, 0);
167 }
168
kvm_xen_init_timer(struct kvm_vcpu * vcpu)169 static void kvm_xen_init_timer(struct kvm_vcpu *vcpu)
170 {
171 hrtimer_init(&vcpu->arch.xen.timer, CLOCK_MONOTONIC,
172 HRTIMER_MODE_ABS_HARD);
173 vcpu->arch.xen.timer.function = xen_timer_callback;
174 }
175
kvm_xen_update_runstate_guest(struct kvm_vcpu * v,bool atomic)176 static void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, bool atomic)
177 {
178 struct kvm_vcpu_xen *vx = &v->arch.xen;
179 struct gfn_to_pfn_cache *gpc1 = &vx->runstate_cache;
180 struct gfn_to_pfn_cache *gpc2 = &vx->runstate2_cache;
181 size_t user_len, user_len1, user_len2;
182 struct vcpu_runstate_info rs;
183 unsigned long flags;
184 size_t times_ofs;
185 uint8_t *update_bit = NULL;
186 uint64_t entry_time;
187 uint64_t *rs_times;
188 int *rs_state;
189
190 /*
191 * The only difference between 32-bit and 64-bit versions of the
192 * runstate struct is the alignment of uint64_t in 32-bit, which
193 * means that the 64-bit version has an additional 4 bytes of
194 * padding after the first field 'state'. Let's be really really
195 * paranoid about that, and matching it with our internal data
196 * structures that we memcpy into it...
197 */
198 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0);
199 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0);
200 BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
201 #ifdef CONFIG_X86_64
202 /*
203 * The 64-bit structure has 4 bytes of padding before 'state_entry_time'
204 * so each subsequent field is shifted by 4, and it's 4 bytes longer.
205 */
206 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
207 offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
208 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
209 offsetof(struct compat_vcpu_runstate_info, time) + 4);
210 BUILD_BUG_ON(sizeof(struct vcpu_runstate_info) != 0x2c + 4);
211 #endif
212 /*
213 * The state field is in the same place at the start of both structs,
214 * and is the same size (int) as vx->current_runstate.
215 */
216 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
217 offsetof(struct compat_vcpu_runstate_info, state));
218 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) !=
219 sizeof(vx->current_runstate));
220 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) !=
221 sizeof(vx->current_runstate));
222
223 /*
224 * The state_entry_time field is 64 bits in both versions, and the
225 * XEN_RUNSTATE_UPDATE flag is in the top bit, which given that x86
226 * is little-endian means that it's in the last *byte* of the word.
227 * That detail is important later.
228 */
229 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) !=
230 sizeof(uint64_t));
231 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) !=
232 sizeof(uint64_t));
233 BUILD_BUG_ON((XEN_RUNSTATE_UPDATE >> 56) != 0x80);
234
235 /*
236 * The time array is four 64-bit quantities in both versions, matching
237 * the vx->runstate_times and immediately following state_entry_time.
238 */
239 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
240 offsetof(struct vcpu_runstate_info, time) - sizeof(uint64_t));
241 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
242 offsetof(struct compat_vcpu_runstate_info, time) - sizeof(uint64_t));
243 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
244 sizeof_field(struct compat_vcpu_runstate_info, time));
245 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
246 sizeof(vx->runstate_times));
247
248 if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
249 user_len = sizeof(struct vcpu_runstate_info);
250 times_ofs = offsetof(struct vcpu_runstate_info,
251 state_entry_time);
252 } else {
253 user_len = sizeof(struct compat_vcpu_runstate_info);
254 times_ofs = offsetof(struct compat_vcpu_runstate_info,
255 state_entry_time);
256 }
257
258 /*
259 * There are basically no alignment constraints. The guest can set it
260 * up so it crosses from one page to the next, and at arbitrary byte
261 * alignment (and the 32-bit ABI doesn't align the 64-bit integers
262 * anyway, even if the overall struct had been 64-bit aligned).
263 */
264 if ((gpc1->gpa & ~PAGE_MASK) + user_len >= PAGE_SIZE) {
265 user_len1 = PAGE_SIZE - (gpc1->gpa & ~PAGE_MASK);
266 user_len2 = user_len - user_len1;
267 } else {
268 user_len1 = user_len;
269 user_len2 = 0;
270 }
271 BUG_ON(user_len1 + user_len2 != user_len);
272
273 retry:
274 /*
275 * Attempt to obtain the GPC lock on *both* (if there are two)
276 * gfn_to_pfn caches that cover the region.
277 */
278 if (atomic) {
279 local_irq_save(flags);
280 if (!read_trylock(&gpc1->lock)) {
281 local_irq_restore(flags);
282 return;
283 }
284 } else {
285 read_lock_irqsave(&gpc1->lock, flags);
286 }
287 while (!kvm_gpc_check(gpc1, user_len1)) {
288 read_unlock_irqrestore(&gpc1->lock, flags);
289
290 /* When invoked from kvm_sched_out() we cannot sleep */
291 if (atomic)
292 return;
293
294 if (kvm_gpc_refresh(gpc1, user_len1))
295 return;
296
297 read_lock_irqsave(&gpc1->lock, flags);
298 }
299
300 if (likely(!user_len2)) {
301 /*
302 * Set up three pointers directly to the runstate_info
303 * struct in the guest (via the GPC).
304 *
305 * • @rs_state → state field
306 * • @rs_times → state_entry_time field.
307 * • @update_bit → last byte of state_entry_time, which
308 * contains the XEN_RUNSTATE_UPDATE bit.
309 */
310 rs_state = gpc1->khva;
311 rs_times = gpc1->khva + times_ofs;
312 if (v->kvm->arch.xen.runstate_update_flag)
313 update_bit = ((void *)(&rs_times[1])) - 1;
314 } else {
315 /*
316 * The guest's runstate_info is split across two pages and we
317 * need to hold and validate both GPCs simultaneously. We can
318 * declare a lock ordering GPC1 > GPC2 because nothing else
319 * takes them more than one at a time. Set a subclass on the
320 * gpc1 lock to make lockdep shut up about it.
321 */
322 lock_set_subclass(&gpc1->lock.dep_map, 1, _THIS_IP_);
323 if (atomic) {
324 if (!read_trylock(&gpc2->lock)) {
325 read_unlock_irqrestore(&gpc1->lock, flags);
326 return;
327 }
328 } else {
329 read_lock(&gpc2->lock);
330 }
331
332 if (!kvm_gpc_check(gpc2, user_len2)) {
333 read_unlock(&gpc2->lock);
334 read_unlock_irqrestore(&gpc1->lock, flags);
335
336 /* When invoked from kvm_sched_out() we cannot sleep */
337 if (atomic)
338 return;
339
340 /*
341 * Use kvm_gpc_activate() here because if the runstate
342 * area was configured in 32-bit mode and only extends
343 * to the second page now because the guest changed to
344 * 64-bit mode, the second GPC won't have been set up.
345 */
346 if (kvm_gpc_activate(gpc2, gpc1->gpa + user_len1,
347 user_len2))
348 return;
349
350 /*
351 * We dropped the lock on GPC1 so we have to go all the
352 * way back and revalidate that too.
353 */
354 goto retry;
355 }
356
357 /*
358 * In this case, the runstate_info struct will be assembled on
359 * the kernel stack (compat or not as appropriate) and will
360 * be copied to GPC1/GPC2 with a dual memcpy. Set up the three
361 * rs pointers accordingly.
362 */
363 rs_times = &rs.state_entry_time;
364
365 /*
366 * The rs_state pointer points to the start of what we'll
367 * copy to the guest, which in the case of a compat guest
368 * is the 32-bit field that the compiler thinks is padding.
369 */
370 rs_state = ((void *)rs_times) - times_ofs;
371
372 /*
373 * The update_bit is still directly in the guest memory,
374 * via one GPC or the other.
375 */
376 if (v->kvm->arch.xen.runstate_update_flag) {
377 if (user_len1 >= times_ofs + sizeof(uint64_t))
378 update_bit = gpc1->khva + times_ofs +
379 sizeof(uint64_t) - 1;
380 else
381 update_bit = gpc2->khva + times_ofs +
382 sizeof(uint64_t) - 1 - user_len1;
383 }
384
385 #ifdef CONFIG_X86_64
386 /*
387 * Don't leak kernel memory through the padding in the 64-bit
388 * version of the struct.
389 */
390 memset(&rs, 0, offsetof(struct vcpu_runstate_info, state_entry_time));
391 #endif
392 }
393
394 /*
395 * First, set the XEN_RUNSTATE_UPDATE bit in the top bit of the
396 * state_entry_time field, directly in the guest. We need to set
397 * that (and write-barrier) before writing to the rest of the
398 * structure, and clear it last. Just as Xen does, we address the
399 * single *byte* in which it resides because it might be in a
400 * different cache line to the rest of the 64-bit word, due to
401 * the (lack of) alignment constraints.
402 */
403 entry_time = vx->runstate_entry_time;
404 if (update_bit) {
405 entry_time |= XEN_RUNSTATE_UPDATE;
406 *update_bit = (vx->runstate_entry_time | XEN_RUNSTATE_UPDATE) >> 56;
407 smp_wmb();
408 }
409
410 /*
411 * Now assemble the actual structure, either on our kernel stack
412 * or directly in the guest according to how the rs_state and
413 * rs_times pointers were set up above.
414 */
415 *rs_state = vx->current_runstate;
416 rs_times[0] = entry_time;
417 memcpy(rs_times + 1, vx->runstate_times, sizeof(vx->runstate_times));
418
419 /* For the split case, we have to then copy it to the guest. */
420 if (user_len2) {
421 memcpy(gpc1->khva, rs_state, user_len1);
422 memcpy(gpc2->khva, ((void *)rs_state) + user_len1, user_len2);
423 }
424 smp_wmb();
425
426 /* Finally, clear the XEN_RUNSTATE_UPDATE bit. */
427 if (update_bit) {
428 entry_time &= ~XEN_RUNSTATE_UPDATE;
429 *update_bit = entry_time >> 56;
430 smp_wmb();
431 }
432
433 if (user_len2)
434 read_unlock(&gpc2->lock);
435
436 read_unlock_irqrestore(&gpc1->lock, flags);
437
438 mark_page_dirty_in_slot(v->kvm, gpc1->memslot, gpc1->gpa >> PAGE_SHIFT);
439 if (user_len2)
440 mark_page_dirty_in_slot(v->kvm, gpc2->memslot, gpc2->gpa >> PAGE_SHIFT);
441 }
442
kvm_xen_update_runstate(struct kvm_vcpu * v,int state)443 void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
444 {
445 struct kvm_vcpu_xen *vx = &v->arch.xen;
446 u64 now = get_kvmclock_ns(v->kvm);
447 u64 delta_ns = now - vx->runstate_entry_time;
448 u64 run_delay = current->sched_info.run_delay;
449
450 if (unlikely(!vx->runstate_entry_time))
451 vx->current_runstate = RUNSTATE_offline;
452
453 /*
454 * Time waiting for the scheduler isn't "stolen" if the
455 * vCPU wasn't running anyway.
456 */
457 if (vx->current_runstate == RUNSTATE_running) {
458 u64 steal_ns = run_delay - vx->last_steal;
459
460 delta_ns -= steal_ns;
461
462 vx->runstate_times[RUNSTATE_runnable] += steal_ns;
463 }
464 vx->last_steal = run_delay;
465
466 vx->runstate_times[vx->current_runstate] += delta_ns;
467 vx->current_runstate = state;
468 vx->runstate_entry_time = now;
469
470 if (vx->runstate_cache.active)
471 kvm_xen_update_runstate_guest(v, state == RUNSTATE_runnable);
472 }
473
kvm_xen_inject_vcpu_vector(struct kvm_vcpu * v)474 static void kvm_xen_inject_vcpu_vector(struct kvm_vcpu *v)
475 {
476 struct kvm_lapic_irq irq = { };
477 int r;
478
479 irq.dest_id = v->vcpu_id;
480 irq.vector = v->arch.xen.upcall_vector;
481 irq.dest_mode = APIC_DEST_PHYSICAL;
482 irq.shorthand = APIC_DEST_NOSHORT;
483 irq.delivery_mode = APIC_DM_FIXED;
484 irq.level = 1;
485
486 /* The fast version will always work for physical unicast */
487 WARN_ON_ONCE(!kvm_irq_delivery_to_apic_fast(v->kvm, NULL, &irq, &r, NULL));
488 }
489
490 /*
491 * On event channel delivery, the vcpu_info may not have been accessible.
492 * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which
493 * need to be marked into the vcpu_info (and evtchn_upcall_pending set).
494 * Do so now that we can sleep in the context of the vCPU to bring the
495 * page in, and refresh the pfn cache for it.
496 */
kvm_xen_inject_pending_events(struct kvm_vcpu * v)497 void kvm_xen_inject_pending_events(struct kvm_vcpu *v)
498 {
499 unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel);
500 struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
501 unsigned long flags;
502
503 if (!evtchn_pending_sel)
504 return;
505
506 /*
507 * Yes, this is an open-coded loop. But that's just what put_user()
508 * does anyway. Page it in and retry the instruction. We're just a
509 * little more honest about it.
510 */
511 read_lock_irqsave(&gpc->lock, flags);
512 while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
513 read_unlock_irqrestore(&gpc->lock, flags);
514
515 if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info)))
516 return;
517
518 read_lock_irqsave(&gpc->lock, flags);
519 }
520
521 /* Now gpc->khva is a valid kernel address for the vcpu_info */
522 if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
523 struct vcpu_info *vi = gpc->khva;
524
525 asm volatile(LOCK_PREFIX "orq %0, %1\n"
526 "notq %0\n"
527 LOCK_PREFIX "andq %0, %2\n"
528 : "=r" (evtchn_pending_sel),
529 "+m" (vi->evtchn_pending_sel),
530 "+m" (v->arch.xen.evtchn_pending_sel)
531 : "0" (evtchn_pending_sel));
532 WRITE_ONCE(vi->evtchn_upcall_pending, 1);
533 } else {
534 u32 evtchn_pending_sel32 = evtchn_pending_sel;
535 struct compat_vcpu_info *vi = gpc->khva;
536
537 asm volatile(LOCK_PREFIX "orl %0, %1\n"
538 "notl %0\n"
539 LOCK_PREFIX "andl %0, %2\n"
540 : "=r" (evtchn_pending_sel32),
541 "+m" (vi->evtchn_pending_sel),
542 "+m" (v->arch.xen.evtchn_pending_sel)
543 : "0" (evtchn_pending_sel32));
544 WRITE_ONCE(vi->evtchn_upcall_pending, 1);
545 }
546 read_unlock_irqrestore(&gpc->lock, flags);
547
548 /* For the per-vCPU lapic vector, deliver it as MSI. */
549 if (v->arch.xen.upcall_vector)
550 kvm_xen_inject_vcpu_vector(v);
551
552 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
553 }
554
__kvm_xen_has_interrupt(struct kvm_vcpu * v)555 int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
556 {
557 struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
558 unsigned long flags;
559 u8 rc = 0;
560
561 /*
562 * If the global upcall vector (HVMIRQ_callback_vector) is set and
563 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
564 */
565
566 /* No need for compat handling here */
567 BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
568 offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
569 BUILD_BUG_ON(sizeof(rc) !=
570 sizeof_field(struct vcpu_info, evtchn_upcall_pending));
571 BUILD_BUG_ON(sizeof(rc) !=
572 sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending));
573
574 read_lock_irqsave(&gpc->lock, flags);
575 while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
576 read_unlock_irqrestore(&gpc->lock, flags);
577
578 /*
579 * This function gets called from kvm_vcpu_block() after setting the
580 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately
581 * from a HLT. So we really mustn't sleep. If the page ended up absent
582 * at that point, just return 1 in order to trigger an immediate wake,
583 * and we'll end up getting called again from a context where we *can*
584 * fault in the page and wait for it.
585 */
586 if (in_atomic() || !task_is_running(current))
587 return 1;
588
589 if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) {
590 /*
591 * If this failed, userspace has screwed up the
592 * vcpu_info mapping. No interrupts for you.
593 */
594 return 0;
595 }
596 read_lock_irqsave(&gpc->lock, flags);
597 }
598
599 rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending;
600 read_unlock_irqrestore(&gpc->lock, flags);
601 return rc;
602 }
603
kvm_xen_hvm_set_attr(struct kvm * kvm,struct kvm_xen_hvm_attr * data)604 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
605 {
606 int r = -ENOENT;
607
608
609 switch (data->type) {
610 case KVM_XEN_ATTR_TYPE_LONG_MODE:
611 if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
612 r = -EINVAL;
613 } else {
614 mutex_lock(&kvm->arch.xen.xen_lock);
615 kvm->arch.xen.long_mode = !!data->u.long_mode;
616 mutex_unlock(&kvm->arch.xen.xen_lock);
617 r = 0;
618 }
619 break;
620
621 case KVM_XEN_ATTR_TYPE_SHARED_INFO:
622 mutex_lock(&kvm->arch.xen.xen_lock);
623 r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn);
624 mutex_unlock(&kvm->arch.xen.xen_lock);
625 break;
626
627 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
628 if (data->u.vector && data->u.vector < 0x10)
629 r = -EINVAL;
630 else {
631 mutex_lock(&kvm->arch.xen.xen_lock);
632 kvm->arch.xen.upcall_vector = data->u.vector;
633 mutex_unlock(&kvm->arch.xen.xen_lock);
634 r = 0;
635 }
636 break;
637
638 case KVM_XEN_ATTR_TYPE_EVTCHN:
639 r = kvm_xen_setattr_evtchn(kvm, data);
640 break;
641
642 case KVM_XEN_ATTR_TYPE_XEN_VERSION:
643 mutex_lock(&kvm->arch.xen.xen_lock);
644 kvm->arch.xen.xen_version = data->u.xen_version;
645 mutex_unlock(&kvm->arch.xen.xen_lock);
646 r = 0;
647 break;
648
649 case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
650 if (!sched_info_on()) {
651 r = -EOPNOTSUPP;
652 break;
653 }
654 mutex_lock(&kvm->arch.xen.xen_lock);
655 kvm->arch.xen.runstate_update_flag = !!data->u.runstate_update_flag;
656 mutex_unlock(&kvm->arch.xen.xen_lock);
657 r = 0;
658 break;
659
660 default:
661 break;
662 }
663
664 return r;
665 }
666
kvm_xen_hvm_get_attr(struct kvm * kvm,struct kvm_xen_hvm_attr * data)667 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
668 {
669 int r = -ENOENT;
670
671 mutex_lock(&kvm->arch.xen.xen_lock);
672
673 switch (data->type) {
674 case KVM_XEN_ATTR_TYPE_LONG_MODE:
675 data->u.long_mode = kvm->arch.xen.long_mode;
676 r = 0;
677 break;
678
679 case KVM_XEN_ATTR_TYPE_SHARED_INFO:
680 if (kvm->arch.xen.shinfo_cache.active)
681 data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa);
682 else
683 data->u.shared_info.gfn = KVM_XEN_INVALID_GFN;
684 r = 0;
685 break;
686
687 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
688 data->u.vector = kvm->arch.xen.upcall_vector;
689 r = 0;
690 break;
691
692 case KVM_XEN_ATTR_TYPE_XEN_VERSION:
693 data->u.xen_version = kvm->arch.xen.xen_version;
694 r = 0;
695 break;
696
697 case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
698 if (!sched_info_on()) {
699 r = -EOPNOTSUPP;
700 break;
701 }
702 data->u.runstate_update_flag = kvm->arch.xen.runstate_update_flag;
703 r = 0;
704 break;
705
706 default:
707 break;
708 }
709
710 mutex_unlock(&kvm->arch.xen.xen_lock);
711 return r;
712 }
713
kvm_xen_vcpu_set_attr(struct kvm_vcpu * vcpu,struct kvm_xen_vcpu_attr * data)714 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
715 {
716 int idx, r = -ENOENT;
717
718 mutex_lock(&vcpu->kvm->arch.xen.xen_lock);
719 idx = srcu_read_lock(&vcpu->kvm->srcu);
720
721 switch (data->type) {
722 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
723 /* No compat necessary here. */
724 BUILD_BUG_ON(sizeof(struct vcpu_info) !=
725 sizeof(struct compat_vcpu_info));
726 BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
727 offsetof(struct compat_vcpu_info, time));
728
729 if (data->u.gpa == KVM_XEN_INVALID_GPA) {
730 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
731 r = 0;
732 break;
733 }
734
735 r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_info_cache,
736 data->u.gpa, sizeof(struct vcpu_info));
737 if (!r)
738 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
739
740 break;
741
742 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
743 if (data->u.gpa == KVM_XEN_INVALID_GPA) {
744 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
745 r = 0;
746 break;
747 }
748
749 r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_time_info_cache,
750 data->u.gpa,
751 sizeof(struct pvclock_vcpu_time_info));
752 if (!r)
753 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
754 break;
755
756 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: {
757 size_t sz, sz1, sz2;
758
759 if (!sched_info_on()) {
760 r = -EOPNOTSUPP;
761 break;
762 }
763 if (data->u.gpa == KVM_XEN_INVALID_GPA) {
764 r = 0;
765 deactivate_out:
766 kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
767 kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
768 break;
769 }
770
771 /*
772 * If the guest switches to 64-bit mode after setting the runstate
773 * address, that's actually OK. kvm_xen_update_runstate_guest()
774 * will cope.
775 */
776 if (IS_ENABLED(CONFIG_64BIT) && vcpu->kvm->arch.xen.long_mode)
777 sz = sizeof(struct vcpu_runstate_info);
778 else
779 sz = sizeof(struct compat_vcpu_runstate_info);
780
781 /* How much fits in the (first) page? */
782 sz1 = PAGE_SIZE - (data->u.gpa & ~PAGE_MASK);
783 r = kvm_gpc_activate(&vcpu->arch.xen.runstate_cache,
784 data->u.gpa, sz1);
785 if (r)
786 goto deactivate_out;
787
788 /* Either map the second page, or deactivate the second GPC */
789 if (sz1 >= sz) {
790 kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
791 } else {
792 sz2 = sz - sz1;
793 BUG_ON((data->u.gpa + sz1) & ~PAGE_MASK);
794 r = kvm_gpc_activate(&vcpu->arch.xen.runstate2_cache,
795 data->u.gpa + sz1, sz2);
796 if (r)
797 goto deactivate_out;
798 }
799
800 kvm_xen_update_runstate_guest(vcpu, false);
801 break;
802 }
803 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
804 if (!sched_info_on()) {
805 r = -EOPNOTSUPP;
806 break;
807 }
808 if (data->u.runstate.state > RUNSTATE_offline) {
809 r = -EINVAL;
810 break;
811 }
812
813 kvm_xen_update_runstate(vcpu, data->u.runstate.state);
814 r = 0;
815 break;
816
817 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
818 if (!sched_info_on()) {
819 r = -EOPNOTSUPP;
820 break;
821 }
822 if (data->u.runstate.state > RUNSTATE_offline) {
823 r = -EINVAL;
824 break;
825 }
826 if (data->u.runstate.state_entry_time !=
827 (data->u.runstate.time_running +
828 data->u.runstate.time_runnable +
829 data->u.runstate.time_blocked +
830 data->u.runstate.time_offline)) {
831 r = -EINVAL;
832 break;
833 }
834 if (get_kvmclock_ns(vcpu->kvm) <
835 data->u.runstate.state_entry_time) {
836 r = -EINVAL;
837 break;
838 }
839
840 vcpu->arch.xen.current_runstate = data->u.runstate.state;
841 vcpu->arch.xen.runstate_entry_time =
842 data->u.runstate.state_entry_time;
843 vcpu->arch.xen.runstate_times[RUNSTATE_running] =
844 data->u.runstate.time_running;
845 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
846 data->u.runstate.time_runnable;
847 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
848 data->u.runstate.time_blocked;
849 vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
850 data->u.runstate.time_offline;
851 vcpu->arch.xen.last_steal = current->sched_info.run_delay;
852 r = 0;
853 break;
854
855 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
856 if (!sched_info_on()) {
857 r = -EOPNOTSUPP;
858 break;
859 }
860 if (data->u.runstate.state > RUNSTATE_offline &&
861 data->u.runstate.state != (u64)-1) {
862 r = -EINVAL;
863 break;
864 }
865 /* The adjustment must add up */
866 if (data->u.runstate.state_entry_time !=
867 (data->u.runstate.time_running +
868 data->u.runstate.time_runnable +
869 data->u.runstate.time_blocked +
870 data->u.runstate.time_offline)) {
871 r = -EINVAL;
872 break;
873 }
874
875 if (get_kvmclock_ns(vcpu->kvm) <
876 (vcpu->arch.xen.runstate_entry_time +
877 data->u.runstate.state_entry_time)) {
878 r = -EINVAL;
879 break;
880 }
881
882 vcpu->arch.xen.runstate_entry_time +=
883 data->u.runstate.state_entry_time;
884 vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
885 data->u.runstate.time_running;
886 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
887 data->u.runstate.time_runnable;
888 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
889 data->u.runstate.time_blocked;
890 vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
891 data->u.runstate.time_offline;
892
893 if (data->u.runstate.state <= RUNSTATE_offline)
894 kvm_xen_update_runstate(vcpu, data->u.runstate.state);
895 else if (vcpu->arch.xen.runstate_cache.active)
896 kvm_xen_update_runstate_guest(vcpu, false);
897 r = 0;
898 break;
899
900 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
901 if (data->u.vcpu_id >= KVM_MAX_VCPUS)
902 r = -EINVAL;
903 else {
904 vcpu->arch.xen.vcpu_id = data->u.vcpu_id;
905 r = 0;
906 }
907 break;
908
909 case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
910 if (data->u.timer.port &&
911 data->u.timer.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) {
912 r = -EINVAL;
913 break;
914 }
915
916 if (!vcpu->arch.xen.timer.function)
917 kvm_xen_init_timer(vcpu);
918
919 /* Stop the timer (if it's running) before changing the vector */
920 kvm_xen_stop_timer(vcpu);
921 vcpu->arch.xen.timer_virq = data->u.timer.port;
922
923 /* Start the timer if the new value has a valid vector+expiry. */
924 if (data->u.timer.port && data->u.timer.expires_ns)
925 kvm_xen_start_timer(vcpu, data->u.timer.expires_ns,
926 data->u.timer.expires_ns -
927 get_kvmclock_ns(vcpu->kvm));
928
929 r = 0;
930 break;
931
932 case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
933 if (data->u.vector && data->u.vector < 0x10)
934 r = -EINVAL;
935 else {
936 vcpu->arch.xen.upcall_vector = data->u.vector;
937 r = 0;
938 }
939 break;
940
941 default:
942 break;
943 }
944
945 srcu_read_unlock(&vcpu->kvm->srcu, idx);
946 mutex_unlock(&vcpu->kvm->arch.xen.xen_lock);
947 return r;
948 }
949
kvm_xen_vcpu_get_attr(struct kvm_vcpu * vcpu,struct kvm_xen_vcpu_attr * data)950 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
951 {
952 int r = -ENOENT;
953
954 mutex_lock(&vcpu->kvm->arch.xen.xen_lock);
955
956 switch (data->type) {
957 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
958 if (vcpu->arch.xen.vcpu_info_cache.active)
959 data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
960 else
961 data->u.gpa = KVM_XEN_INVALID_GPA;
962 r = 0;
963 break;
964
965 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
966 if (vcpu->arch.xen.vcpu_time_info_cache.active)
967 data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
968 else
969 data->u.gpa = KVM_XEN_INVALID_GPA;
970 r = 0;
971 break;
972
973 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
974 if (!sched_info_on()) {
975 r = -EOPNOTSUPP;
976 break;
977 }
978 if (vcpu->arch.xen.runstate_cache.active) {
979 data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
980 r = 0;
981 }
982 break;
983
984 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
985 if (!sched_info_on()) {
986 r = -EOPNOTSUPP;
987 break;
988 }
989 data->u.runstate.state = vcpu->arch.xen.current_runstate;
990 r = 0;
991 break;
992
993 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
994 if (!sched_info_on()) {
995 r = -EOPNOTSUPP;
996 break;
997 }
998 data->u.runstate.state = vcpu->arch.xen.current_runstate;
999 data->u.runstate.state_entry_time =
1000 vcpu->arch.xen.runstate_entry_time;
1001 data->u.runstate.time_running =
1002 vcpu->arch.xen.runstate_times[RUNSTATE_running];
1003 data->u.runstate.time_runnable =
1004 vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
1005 data->u.runstate.time_blocked =
1006 vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
1007 data->u.runstate.time_offline =
1008 vcpu->arch.xen.runstate_times[RUNSTATE_offline];
1009 r = 0;
1010 break;
1011
1012 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
1013 r = -EINVAL;
1014 break;
1015
1016 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
1017 data->u.vcpu_id = vcpu->arch.xen.vcpu_id;
1018 r = 0;
1019 break;
1020
1021 case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
1022 data->u.timer.port = vcpu->arch.xen.timer_virq;
1023 data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
1024 data->u.timer.expires_ns = vcpu->arch.xen.timer_expires;
1025 r = 0;
1026 break;
1027
1028 case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
1029 data->u.vector = vcpu->arch.xen.upcall_vector;
1030 r = 0;
1031 break;
1032
1033 default:
1034 break;
1035 }
1036
1037 mutex_unlock(&vcpu->kvm->arch.xen.xen_lock);
1038 return r;
1039 }
1040
kvm_xen_write_hypercall_page(struct kvm_vcpu * vcpu,u64 data)1041 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
1042 {
1043 struct kvm *kvm = vcpu->kvm;
1044 u32 page_num = data & ~PAGE_MASK;
1045 u64 page_addr = data & PAGE_MASK;
1046 bool lm = is_long_mode(vcpu);
1047
1048 /* Latch long_mode for shared_info pages etc. */
1049 vcpu->kvm->arch.xen.long_mode = lm;
1050
1051 /*
1052 * If Xen hypercall intercept is enabled, fill the hypercall
1053 * page with VMCALL/VMMCALL instructions since that's what
1054 * we catch. Else the VMM has provided the hypercall pages
1055 * with instructions of its own choosing, so use those.
1056 */
1057 if (kvm_xen_hypercall_enabled(kvm)) {
1058 u8 instructions[32];
1059 int i;
1060
1061 if (page_num)
1062 return 1;
1063
1064 /* mov imm32, %eax */
1065 instructions[0] = 0xb8;
1066
1067 /* vmcall / vmmcall */
1068 static_call(kvm_x86_patch_hypercall)(vcpu, instructions + 5);
1069
1070 /* ret */
1071 instructions[8] = 0xc3;
1072
1073 /* int3 to pad */
1074 memset(instructions + 9, 0xcc, sizeof(instructions) - 9);
1075
1076 for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
1077 *(u32 *)&instructions[1] = i;
1078 if (kvm_vcpu_write_guest(vcpu,
1079 page_addr + (i * sizeof(instructions)),
1080 instructions, sizeof(instructions)))
1081 return 1;
1082 }
1083 } else {
1084 /*
1085 * Note, truncation is a non-issue as 'lm' is guaranteed to be
1086 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
1087 */
1088 hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64
1089 : kvm->arch.xen_hvm_config.blob_addr_32;
1090 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1091 : kvm->arch.xen_hvm_config.blob_size_32;
1092 u8 *page;
1093 int ret;
1094
1095 if (page_num >= blob_size)
1096 return 1;
1097
1098 blob_addr += page_num * PAGE_SIZE;
1099
1100 page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
1101 if (IS_ERR(page))
1102 return PTR_ERR(page);
1103
1104 ret = kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE);
1105 kfree(page);
1106 if (ret)
1107 return 1;
1108 }
1109 return 0;
1110 }
1111
kvm_xen_hvm_config(struct kvm * kvm,struct kvm_xen_hvm_config * xhc)1112 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
1113 {
1114 /* Only some feature flags need to be *enabled* by userspace */
1115 u32 permitted_flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
1116 KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
1117
1118 if (xhc->flags & ~permitted_flags)
1119 return -EINVAL;
1120
1121 /*
1122 * With hypercall interception the kernel generates its own
1123 * hypercall page so it must not be provided.
1124 */
1125 if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
1126 (xhc->blob_addr_32 || xhc->blob_addr_64 ||
1127 xhc->blob_size_32 || xhc->blob_size_64))
1128 return -EINVAL;
1129
1130 mutex_lock(&kvm->arch.xen.xen_lock);
1131
1132 if (xhc->msr && !kvm->arch.xen_hvm_config.msr)
1133 static_branch_inc(&kvm_xen_enabled.key);
1134 else if (!xhc->msr && kvm->arch.xen_hvm_config.msr)
1135 static_branch_slow_dec_deferred(&kvm_xen_enabled);
1136
1137 memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc));
1138
1139 mutex_unlock(&kvm->arch.xen.xen_lock);
1140 return 0;
1141 }
1142
kvm_xen_hypercall_set_result(struct kvm_vcpu * vcpu,u64 result)1143 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1144 {
1145 kvm_rax_write(vcpu, result);
1146 return kvm_skip_emulated_instruction(vcpu);
1147 }
1148
kvm_xen_hypercall_complete_userspace(struct kvm_vcpu * vcpu)1149 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1150 {
1151 struct kvm_run *run = vcpu->run;
1152
1153 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
1154 return 1;
1155
1156 return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result);
1157 }
1158
max_evtchn_port(struct kvm * kvm)1159 static inline int max_evtchn_port(struct kvm *kvm)
1160 {
1161 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode)
1162 return EVTCHN_2L_NR_CHANNELS;
1163 else
1164 return COMPAT_EVTCHN_2L_NR_CHANNELS;
1165 }
1166
wait_pending_event(struct kvm_vcpu * vcpu,int nr_ports,evtchn_port_t * ports)1167 static bool wait_pending_event(struct kvm_vcpu *vcpu, int nr_ports,
1168 evtchn_port_t *ports)
1169 {
1170 struct kvm *kvm = vcpu->kvm;
1171 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1172 unsigned long *pending_bits;
1173 unsigned long flags;
1174 bool ret = true;
1175 int idx, i;
1176
1177 idx = srcu_read_lock(&kvm->srcu);
1178 read_lock_irqsave(&gpc->lock, flags);
1179 if (!kvm_gpc_check(gpc, PAGE_SIZE))
1180 goto out_rcu;
1181
1182 ret = false;
1183 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1184 struct shared_info *shinfo = gpc->khva;
1185 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1186 } else {
1187 struct compat_shared_info *shinfo = gpc->khva;
1188 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1189 }
1190
1191 for (i = 0; i < nr_ports; i++) {
1192 if (test_bit(ports[i], pending_bits)) {
1193 ret = true;
1194 break;
1195 }
1196 }
1197
1198 out_rcu:
1199 read_unlock_irqrestore(&gpc->lock, flags);
1200 srcu_read_unlock(&kvm->srcu, idx);
1201
1202 return ret;
1203 }
1204
kvm_xen_schedop_poll(struct kvm_vcpu * vcpu,bool longmode,u64 param,u64 * r)1205 static bool kvm_xen_schedop_poll(struct kvm_vcpu *vcpu, bool longmode,
1206 u64 param, u64 *r)
1207 {
1208 struct sched_poll sched_poll;
1209 evtchn_port_t port, *ports;
1210 struct x86_exception e;
1211 int i;
1212
1213 if (!lapic_in_kernel(vcpu) ||
1214 !(vcpu->kvm->arch.xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_EVTCHN_SEND))
1215 return false;
1216
1217 if (IS_ENABLED(CONFIG_64BIT) && !longmode) {
1218 struct compat_sched_poll sp32;
1219
1220 /* Sanity check that the compat struct definition is correct */
1221 BUILD_BUG_ON(sizeof(sp32) != 16);
1222
1223 if (kvm_read_guest_virt(vcpu, param, &sp32, sizeof(sp32), &e)) {
1224 *r = -EFAULT;
1225 return true;
1226 }
1227
1228 /*
1229 * This is a 32-bit pointer to an array of evtchn_port_t which
1230 * are uint32_t, so once it's converted no further compat
1231 * handling is needed.
1232 */
1233 sched_poll.ports = (void *)(unsigned long)(sp32.ports);
1234 sched_poll.nr_ports = sp32.nr_ports;
1235 sched_poll.timeout = sp32.timeout;
1236 } else {
1237 if (kvm_read_guest_virt(vcpu, param, &sched_poll,
1238 sizeof(sched_poll), &e)) {
1239 *r = -EFAULT;
1240 return true;
1241 }
1242 }
1243
1244 if (unlikely(sched_poll.nr_ports > 1)) {
1245 /* Xen (unofficially) limits number of pollers to 128 */
1246 if (sched_poll.nr_ports > 128) {
1247 *r = -EINVAL;
1248 return true;
1249 }
1250
1251 ports = kmalloc_array(sched_poll.nr_ports,
1252 sizeof(*ports), GFP_KERNEL);
1253 if (!ports) {
1254 *r = -ENOMEM;
1255 return true;
1256 }
1257 } else
1258 ports = &port;
1259
1260 if (kvm_read_guest_virt(vcpu, (gva_t)sched_poll.ports, ports,
1261 sched_poll.nr_ports * sizeof(*ports), &e)) {
1262 *r = -EFAULT;
1263 return true;
1264 }
1265
1266 for (i = 0; i < sched_poll.nr_ports; i++) {
1267 if (ports[i] >= max_evtchn_port(vcpu->kvm)) {
1268 *r = -EINVAL;
1269 goto out;
1270 }
1271 }
1272
1273 if (sched_poll.nr_ports == 1)
1274 vcpu->arch.xen.poll_evtchn = port;
1275 else
1276 vcpu->arch.xen.poll_evtchn = -1;
1277
1278 set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1279
1280 if (!wait_pending_event(vcpu, sched_poll.nr_ports, ports)) {
1281 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
1282
1283 if (sched_poll.timeout)
1284 mod_timer(&vcpu->arch.xen.poll_timer,
1285 jiffies + nsecs_to_jiffies(sched_poll.timeout));
1286
1287 kvm_vcpu_halt(vcpu);
1288
1289 if (sched_poll.timeout)
1290 del_timer(&vcpu->arch.xen.poll_timer);
1291
1292 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1293 }
1294
1295 vcpu->arch.xen.poll_evtchn = 0;
1296 *r = 0;
1297 out:
1298 /* Really, this is only needed in case of timeout */
1299 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1300
1301 if (unlikely(sched_poll.nr_ports > 1))
1302 kfree(ports);
1303 return true;
1304 }
1305
cancel_evtchn_poll(struct timer_list * t)1306 static void cancel_evtchn_poll(struct timer_list *t)
1307 {
1308 struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.xen.poll_timer);
1309
1310 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1311 kvm_vcpu_kick(vcpu);
1312 }
1313
kvm_xen_hcall_sched_op(struct kvm_vcpu * vcpu,bool longmode,int cmd,u64 param,u64 * r)1314 static bool kvm_xen_hcall_sched_op(struct kvm_vcpu *vcpu, bool longmode,
1315 int cmd, u64 param, u64 *r)
1316 {
1317 switch (cmd) {
1318 case SCHEDOP_poll:
1319 if (kvm_xen_schedop_poll(vcpu, longmode, param, r))
1320 return true;
1321 fallthrough;
1322 case SCHEDOP_yield:
1323 kvm_vcpu_on_spin(vcpu, true);
1324 *r = 0;
1325 return true;
1326 default:
1327 break;
1328 }
1329
1330 return false;
1331 }
1332
1333 struct compat_vcpu_set_singleshot_timer {
1334 uint64_t timeout_abs_ns;
1335 uint32_t flags;
1336 } __attribute__((packed));
1337
kvm_xen_hcall_vcpu_op(struct kvm_vcpu * vcpu,bool longmode,int cmd,int vcpu_id,u64 param,u64 * r)1338 static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd,
1339 int vcpu_id, u64 param, u64 *r)
1340 {
1341 struct vcpu_set_singleshot_timer oneshot;
1342 struct x86_exception e;
1343 s64 delta;
1344
1345 if (!kvm_xen_timer_enabled(vcpu))
1346 return false;
1347
1348 switch (cmd) {
1349 case VCPUOP_set_singleshot_timer:
1350 if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1351 *r = -EINVAL;
1352 return true;
1353 }
1354
1355 /*
1356 * The only difference for 32-bit compat is the 4 bytes of
1357 * padding after the interesting part of the structure. So
1358 * for a faithful emulation of Xen we have to *try* to copy
1359 * the padding and return -EFAULT if we can't. Otherwise we
1360 * might as well just have copied the 12-byte 32-bit struct.
1361 */
1362 BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1363 offsetof(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1364 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1365 sizeof_field(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1366 BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, flags) !=
1367 offsetof(struct vcpu_set_singleshot_timer, flags));
1368 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, flags) !=
1369 sizeof_field(struct vcpu_set_singleshot_timer, flags));
1370
1371 if (kvm_read_guest_virt(vcpu, param, &oneshot, longmode ? sizeof(oneshot) :
1372 sizeof(struct compat_vcpu_set_singleshot_timer), &e)) {
1373 *r = -EFAULT;
1374 return true;
1375 }
1376
1377 delta = oneshot.timeout_abs_ns - get_kvmclock_ns(vcpu->kvm);
1378 if ((oneshot.flags & VCPU_SSHOTTMR_future) && delta < 0) {
1379 *r = -ETIME;
1380 return true;
1381 }
1382
1383 kvm_xen_start_timer(vcpu, oneshot.timeout_abs_ns, delta);
1384 *r = 0;
1385 return true;
1386
1387 case VCPUOP_stop_singleshot_timer:
1388 if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1389 *r = -EINVAL;
1390 return true;
1391 }
1392 kvm_xen_stop_timer(vcpu);
1393 *r = 0;
1394 return true;
1395 }
1396
1397 return false;
1398 }
1399
kvm_xen_hcall_set_timer_op(struct kvm_vcpu * vcpu,uint64_t timeout,u64 * r)1400 static bool kvm_xen_hcall_set_timer_op(struct kvm_vcpu *vcpu, uint64_t timeout,
1401 u64 *r)
1402 {
1403 if (!kvm_xen_timer_enabled(vcpu))
1404 return false;
1405
1406 if (timeout) {
1407 uint64_t guest_now = get_kvmclock_ns(vcpu->kvm);
1408 int64_t delta = timeout - guest_now;
1409
1410 /* Xen has a 'Linux workaround' in do_set_timer_op() which
1411 * checks for negative absolute timeout values (caused by
1412 * integer overflow), and for values about 13 days in the
1413 * future (2^50ns) which would be caused by jiffies
1414 * overflow. For those cases, it sets the timeout 100ms in
1415 * the future (not *too* soon, since if a guest really did
1416 * set a long timeout on purpose we don't want to keep
1417 * churning CPU time by waking it up).
1418 */
1419 if (unlikely((int64_t)timeout < 0 ||
1420 (delta > 0 && (uint32_t) (delta >> 50) != 0))) {
1421 delta = 100 * NSEC_PER_MSEC;
1422 timeout = guest_now + delta;
1423 }
1424
1425 kvm_xen_start_timer(vcpu, timeout, delta);
1426 } else {
1427 kvm_xen_stop_timer(vcpu);
1428 }
1429
1430 *r = 0;
1431 return true;
1432 }
1433
kvm_xen_hypercall(struct kvm_vcpu * vcpu)1434 int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
1435 {
1436 bool longmode;
1437 u64 input, params[6], r = -ENOSYS;
1438 bool handled = false;
1439 u8 cpl;
1440
1441 input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX);
1442
1443 /* Hyper-V hypercalls get bit 31 set in EAX */
1444 if ((input & 0x80000000) &&
1445 kvm_hv_hypercall_enabled(vcpu))
1446 return kvm_hv_hypercall(vcpu);
1447
1448 longmode = is_64_bit_hypercall(vcpu);
1449 if (!longmode) {
1450 params[0] = (u32)kvm_rbx_read(vcpu);
1451 params[1] = (u32)kvm_rcx_read(vcpu);
1452 params[2] = (u32)kvm_rdx_read(vcpu);
1453 params[3] = (u32)kvm_rsi_read(vcpu);
1454 params[4] = (u32)kvm_rdi_read(vcpu);
1455 params[5] = (u32)kvm_rbp_read(vcpu);
1456 }
1457 #ifdef CONFIG_X86_64
1458 else {
1459 params[0] = (u64)kvm_rdi_read(vcpu);
1460 params[1] = (u64)kvm_rsi_read(vcpu);
1461 params[2] = (u64)kvm_rdx_read(vcpu);
1462 params[3] = (u64)kvm_r10_read(vcpu);
1463 params[4] = (u64)kvm_r8_read(vcpu);
1464 params[5] = (u64)kvm_r9_read(vcpu);
1465 }
1466 #endif
1467 cpl = static_call(kvm_x86_get_cpl)(vcpu);
1468 trace_kvm_xen_hypercall(cpl, input, params[0], params[1], params[2],
1469 params[3], params[4], params[5]);
1470
1471 /*
1472 * Only allow hypercall acceleration for CPL0. The rare hypercalls that
1473 * are permitted in guest userspace can be handled by the VMM.
1474 */
1475 if (unlikely(cpl > 0))
1476 goto handle_in_userspace;
1477
1478 switch (input) {
1479 case __HYPERVISOR_xen_version:
1480 if (params[0] == XENVER_version && vcpu->kvm->arch.xen.xen_version) {
1481 r = vcpu->kvm->arch.xen.xen_version;
1482 handled = true;
1483 }
1484 break;
1485 case __HYPERVISOR_event_channel_op:
1486 if (params[0] == EVTCHNOP_send)
1487 handled = kvm_xen_hcall_evtchn_send(vcpu, params[1], &r);
1488 break;
1489 case __HYPERVISOR_sched_op:
1490 handled = kvm_xen_hcall_sched_op(vcpu, longmode, params[0],
1491 params[1], &r);
1492 break;
1493 case __HYPERVISOR_vcpu_op:
1494 handled = kvm_xen_hcall_vcpu_op(vcpu, longmode, params[0], params[1],
1495 params[2], &r);
1496 break;
1497 case __HYPERVISOR_set_timer_op: {
1498 u64 timeout = params[0];
1499 /* In 32-bit mode, the 64-bit timeout is in two 32-bit params. */
1500 if (!longmode)
1501 timeout |= params[1] << 32;
1502 handled = kvm_xen_hcall_set_timer_op(vcpu, timeout, &r);
1503 break;
1504 }
1505 default:
1506 break;
1507 }
1508
1509 if (handled)
1510 return kvm_xen_hypercall_set_result(vcpu, r);
1511
1512 handle_in_userspace:
1513 vcpu->run->exit_reason = KVM_EXIT_XEN;
1514 vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
1515 vcpu->run->xen.u.hcall.longmode = longmode;
1516 vcpu->run->xen.u.hcall.cpl = cpl;
1517 vcpu->run->xen.u.hcall.input = input;
1518 vcpu->run->xen.u.hcall.params[0] = params[0];
1519 vcpu->run->xen.u.hcall.params[1] = params[1];
1520 vcpu->run->xen.u.hcall.params[2] = params[2];
1521 vcpu->run->xen.u.hcall.params[3] = params[3];
1522 vcpu->run->xen.u.hcall.params[4] = params[4];
1523 vcpu->run->xen.u.hcall.params[5] = params[5];
1524 vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
1525 vcpu->arch.complete_userspace_io =
1526 kvm_xen_hypercall_complete_userspace;
1527
1528 return 0;
1529 }
1530
kvm_xen_check_poller(struct kvm_vcpu * vcpu,int port)1531 static void kvm_xen_check_poller(struct kvm_vcpu *vcpu, int port)
1532 {
1533 int poll_evtchn = vcpu->arch.xen.poll_evtchn;
1534
1535 if ((poll_evtchn == port || poll_evtchn == -1) &&
1536 test_and_clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask)) {
1537 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1538 kvm_vcpu_kick(vcpu);
1539 }
1540 }
1541
1542 /*
1543 * The return value from this function is propagated to kvm_set_irq() API,
1544 * so it returns:
1545 * < 0 Interrupt was ignored (masked or not delivered for other reasons)
1546 * = 0 Interrupt was coalesced (previous irq is still pending)
1547 * > 0 Number of CPUs interrupt was delivered to
1548 *
1549 * It is also called directly from kvm_arch_set_irq_inatomic(), where the
1550 * only check on its return value is a comparison with -EWOULDBLOCK'.
1551 */
kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn * xe,struct kvm * kvm)1552 int kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1553 {
1554 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1555 struct kvm_vcpu *vcpu;
1556 unsigned long *pending_bits, *mask_bits;
1557 unsigned long flags;
1558 int port_word_bit;
1559 bool kick_vcpu = false;
1560 int vcpu_idx, idx, rc;
1561
1562 vcpu_idx = READ_ONCE(xe->vcpu_idx);
1563 if (vcpu_idx >= 0)
1564 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1565 else {
1566 vcpu = kvm_get_vcpu_by_id(kvm, xe->vcpu_id);
1567 if (!vcpu)
1568 return -EINVAL;
1569 WRITE_ONCE(xe->vcpu_idx, vcpu->vcpu_idx);
1570 }
1571
1572 if (!vcpu->arch.xen.vcpu_info_cache.active)
1573 return -EINVAL;
1574
1575 if (xe->port >= max_evtchn_port(kvm))
1576 return -EINVAL;
1577
1578 rc = -EWOULDBLOCK;
1579
1580 idx = srcu_read_lock(&kvm->srcu);
1581
1582 read_lock_irqsave(&gpc->lock, flags);
1583 if (!kvm_gpc_check(gpc, PAGE_SIZE))
1584 goto out_rcu;
1585
1586 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1587 struct shared_info *shinfo = gpc->khva;
1588 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1589 mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1590 port_word_bit = xe->port / 64;
1591 } else {
1592 struct compat_shared_info *shinfo = gpc->khva;
1593 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1594 mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1595 port_word_bit = xe->port / 32;
1596 }
1597
1598 /*
1599 * If this port wasn't already set, and if it isn't masked, then
1600 * we try to set the corresponding bit in the in-kernel shadow of
1601 * evtchn_pending_sel for the target vCPU. And if *that* wasn't
1602 * already set, then we kick the vCPU in question to write to the
1603 * *real* evtchn_pending_sel in its own guest vcpu_info struct.
1604 */
1605 if (test_and_set_bit(xe->port, pending_bits)) {
1606 rc = 0; /* It was already raised */
1607 } else if (test_bit(xe->port, mask_bits)) {
1608 rc = -ENOTCONN; /* Masked */
1609 kvm_xen_check_poller(vcpu, xe->port);
1610 } else {
1611 rc = 1; /* Delivered to the bitmap in shared_info. */
1612 /* Now switch to the vCPU's vcpu_info to set the index and pending_sel */
1613 read_unlock_irqrestore(&gpc->lock, flags);
1614 gpc = &vcpu->arch.xen.vcpu_info_cache;
1615
1616 read_lock_irqsave(&gpc->lock, flags);
1617 if (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
1618 /*
1619 * Could not access the vcpu_info. Set the bit in-kernel
1620 * and prod the vCPU to deliver it for itself.
1621 */
1622 if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel))
1623 kick_vcpu = true;
1624 goto out_rcu;
1625 }
1626
1627 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1628 struct vcpu_info *vcpu_info = gpc->khva;
1629 if (!test_and_set_bit(port_word_bit, &vcpu_info->evtchn_pending_sel)) {
1630 WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1631 kick_vcpu = true;
1632 }
1633 } else {
1634 struct compat_vcpu_info *vcpu_info = gpc->khva;
1635 if (!test_and_set_bit(port_word_bit,
1636 (unsigned long *)&vcpu_info->evtchn_pending_sel)) {
1637 WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1638 kick_vcpu = true;
1639 }
1640 }
1641
1642 /* For the per-vCPU lapic vector, deliver it as MSI. */
1643 if (kick_vcpu && vcpu->arch.xen.upcall_vector) {
1644 kvm_xen_inject_vcpu_vector(vcpu);
1645 kick_vcpu = false;
1646 }
1647 }
1648
1649 out_rcu:
1650 read_unlock_irqrestore(&gpc->lock, flags);
1651 srcu_read_unlock(&kvm->srcu, idx);
1652
1653 if (kick_vcpu) {
1654 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1655 kvm_vcpu_kick(vcpu);
1656 }
1657
1658 return rc;
1659 }
1660
kvm_xen_set_evtchn(struct kvm_xen_evtchn * xe,struct kvm * kvm)1661 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1662 {
1663 bool mm_borrowed = false;
1664 int rc;
1665
1666 rc = kvm_xen_set_evtchn_fast(xe, kvm);
1667 if (rc != -EWOULDBLOCK)
1668 return rc;
1669
1670 if (current->mm != kvm->mm) {
1671 /*
1672 * If not on a thread which already belongs to this KVM,
1673 * we'd better be in the irqfd workqueue.
1674 */
1675 if (WARN_ON_ONCE(current->mm))
1676 return -EINVAL;
1677
1678 kthread_use_mm(kvm->mm);
1679 mm_borrowed = true;
1680 }
1681
1682 mutex_lock(&kvm->arch.xen.xen_lock);
1683
1684 /*
1685 * It is theoretically possible for the page to be unmapped
1686 * and the MMU notifier to invalidate the shared_info before
1687 * we even get to use it. In that case, this looks like an
1688 * infinite loop. It was tempting to do it via the userspace
1689 * HVA instead... but that just *hides* the fact that it's
1690 * an infinite loop, because if a fault occurs and it waits
1691 * for the page to come back, it can *still* immediately
1692 * fault and have to wait again, repeatedly.
1693 *
1694 * Conversely, the page could also have been reinstated by
1695 * another thread before we even obtain the mutex above, so
1696 * check again *first* before remapping it.
1697 */
1698 do {
1699 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1700 int idx;
1701
1702 rc = kvm_xen_set_evtchn_fast(xe, kvm);
1703 if (rc != -EWOULDBLOCK)
1704 break;
1705
1706 idx = srcu_read_lock(&kvm->srcu);
1707 rc = kvm_gpc_refresh(gpc, PAGE_SIZE);
1708 srcu_read_unlock(&kvm->srcu, idx);
1709 } while(!rc);
1710
1711 mutex_unlock(&kvm->arch.xen.xen_lock);
1712
1713 if (mm_borrowed)
1714 kthread_unuse_mm(kvm->mm);
1715
1716 return rc;
1717 }
1718
1719 /* This is the version called from kvm_set_irq() as the .set function */
evtchn_set_fn(struct kvm_kernel_irq_routing_entry * e,struct kvm * kvm,int irq_source_id,int level,bool line_status)1720 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
1721 int irq_source_id, int level, bool line_status)
1722 {
1723 if (!level)
1724 return -EINVAL;
1725
1726 return kvm_xen_set_evtchn(&e->xen_evtchn, kvm);
1727 }
1728
1729 /*
1730 * Set up an event channel interrupt from the KVM IRQ routing table.
1731 * Used for e.g. PIRQ from passed through physical devices.
1732 */
kvm_xen_setup_evtchn(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * e,const struct kvm_irq_routing_entry * ue)1733 int kvm_xen_setup_evtchn(struct kvm *kvm,
1734 struct kvm_kernel_irq_routing_entry *e,
1735 const struct kvm_irq_routing_entry *ue)
1736
1737 {
1738 struct kvm_vcpu *vcpu;
1739
1740 if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm))
1741 return -EINVAL;
1742
1743 /* We only support 2 level event channels for now */
1744 if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1745 return -EINVAL;
1746
1747 /*
1748 * Xen gives us interesting mappings from vCPU index to APIC ID,
1749 * which means kvm_get_vcpu_by_id() has to iterate over all vCPUs
1750 * to find it. Do that once at setup time, instead of every time.
1751 * But beware that on live update / live migration, the routing
1752 * table might be reinstated before the vCPU threads have finished
1753 * recreating their vCPUs.
1754 */
1755 vcpu = kvm_get_vcpu_by_id(kvm, ue->u.xen_evtchn.vcpu);
1756 if (vcpu)
1757 e->xen_evtchn.vcpu_idx = vcpu->vcpu_idx;
1758 else
1759 e->xen_evtchn.vcpu_idx = -1;
1760
1761 e->xen_evtchn.port = ue->u.xen_evtchn.port;
1762 e->xen_evtchn.vcpu_id = ue->u.xen_evtchn.vcpu;
1763 e->xen_evtchn.priority = ue->u.xen_evtchn.priority;
1764 e->set = evtchn_set_fn;
1765
1766 return 0;
1767 }
1768
1769 /*
1770 * Explicit event sending from userspace with KVM_XEN_HVM_EVTCHN_SEND ioctl.
1771 */
kvm_xen_hvm_evtchn_send(struct kvm * kvm,struct kvm_irq_routing_xen_evtchn * uxe)1772 int kvm_xen_hvm_evtchn_send(struct kvm *kvm, struct kvm_irq_routing_xen_evtchn *uxe)
1773 {
1774 struct kvm_xen_evtchn e;
1775 int ret;
1776
1777 if (!uxe->port || uxe->port >= max_evtchn_port(kvm))
1778 return -EINVAL;
1779
1780 /* We only support 2 level event channels for now */
1781 if (uxe->priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1782 return -EINVAL;
1783
1784 e.port = uxe->port;
1785 e.vcpu_id = uxe->vcpu;
1786 e.vcpu_idx = -1;
1787 e.priority = uxe->priority;
1788
1789 ret = kvm_xen_set_evtchn(&e, kvm);
1790
1791 /*
1792 * None of that 'return 1 if it actually got delivered' nonsense.
1793 * We don't care if it was masked (-ENOTCONN) either.
1794 */
1795 if (ret > 0 || ret == -ENOTCONN)
1796 ret = 0;
1797
1798 return ret;
1799 }
1800
1801 /*
1802 * Support for *outbound* event channel events via the EVTCHNOP_send hypercall.
1803 */
1804 struct evtchnfd {
1805 u32 send_port;
1806 u32 type;
1807 union {
1808 struct kvm_xen_evtchn port;
1809 struct {
1810 u32 port; /* zero */
1811 struct eventfd_ctx *ctx;
1812 } eventfd;
1813 } deliver;
1814 };
1815
1816 /*
1817 * Update target vCPU or priority for a registered sending channel.
1818 */
kvm_xen_eventfd_update(struct kvm * kvm,struct kvm_xen_hvm_attr * data)1819 static int kvm_xen_eventfd_update(struct kvm *kvm,
1820 struct kvm_xen_hvm_attr *data)
1821 {
1822 u32 port = data->u.evtchn.send_port;
1823 struct evtchnfd *evtchnfd;
1824 int ret;
1825
1826 /* Protect writes to evtchnfd as well as the idr lookup. */
1827 mutex_lock(&kvm->arch.xen.xen_lock);
1828 evtchnfd = idr_find(&kvm->arch.xen.evtchn_ports, port);
1829
1830 ret = -ENOENT;
1831 if (!evtchnfd)
1832 goto out_unlock;
1833
1834 /* For an UPDATE, nothing may change except the priority/vcpu */
1835 ret = -EINVAL;
1836 if (evtchnfd->type != data->u.evtchn.type)
1837 goto out_unlock;
1838
1839 /*
1840 * Port cannot change, and if it's zero that was an eventfd
1841 * which can't be changed either.
1842 */
1843 if (!evtchnfd->deliver.port.port ||
1844 evtchnfd->deliver.port.port != data->u.evtchn.deliver.port.port)
1845 goto out_unlock;
1846
1847 /* We only support 2 level event channels for now */
1848 if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1849 goto out_unlock;
1850
1851 evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
1852 if (evtchnfd->deliver.port.vcpu_id != data->u.evtchn.deliver.port.vcpu) {
1853 evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
1854 evtchnfd->deliver.port.vcpu_idx = -1;
1855 }
1856 ret = 0;
1857 out_unlock:
1858 mutex_unlock(&kvm->arch.xen.xen_lock);
1859 return ret;
1860 }
1861
1862 /*
1863 * Configure the target (eventfd or local port delivery) for sending on
1864 * a given event channel.
1865 */
kvm_xen_eventfd_assign(struct kvm * kvm,struct kvm_xen_hvm_attr * data)1866 static int kvm_xen_eventfd_assign(struct kvm *kvm,
1867 struct kvm_xen_hvm_attr *data)
1868 {
1869 u32 port = data->u.evtchn.send_port;
1870 struct eventfd_ctx *eventfd = NULL;
1871 struct evtchnfd *evtchnfd;
1872 int ret = -EINVAL;
1873
1874 evtchnfd = kzalloc(sizeof(struct evtchnfd), GFP_KERNEL);
1875 if (!evtchnfd)
1876 return -ENOMEM;
1877
1878 switch(data->u.evtchn.type) {
1879 case EVTCHNSTAT_ipi:
1880 /* IPI must map back to the same port# */
1881 if (data->u.evtchn.deliver.port.port != data->u.evtchn.send_port)
1882 goto out_noeventfd; /* -EINVAL */
1883 break;
1884
1885 case EVTCHNSTAT_interdomain:
1886 if (data->u.evtchn.deliver.port.port) {
1887 if (data->u.evtchn.deliver.port.port >= max_evtchn_port(kvm))
1888 goto out_noeventfd; /* -EINVAL */
1889 } else {
1890 eventfd = eventfd_ctx_fdget(data->u.evtchn.deliver.eventfd.fd);
1891 if (IS_ERR(eventfd)) {
1892 ret = PTR_ERR(eventfd);
1893 goto out_noeventfd;
1894 }
1895 }
1896 break;
1897
1898 case EVTCHNSTAT_virq:
1899 case EVTCHNSTAT_closed:
1900 case EVTCHNSTAT_unbound:
1901 case EVTCHNSTAT_pirq:
1902 default: /* Unknown event channel type */
1903 goto out; /* -EINVAL */
1904 }
1905
1906 evtchnfd->send_port = data->u.evtchn.send_port;
1907 evtchnfd->type = data->u.evtchn.type;
1908 if (eventfd) {
1909 evtchnfd->deliver.eventfd.ctx = eventfd;
1910 } else {
1911 /* We only support 2 level event channels for now */
1912 if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1913 goto out; /* -EINVAL; */
1914
1915 evtchnfd->deliver.port.port = data->u.evtchn.deliver.port.port;
1916 evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
1917 evtchnfd->deliver.port.vcpu_idx = -1;
1918 evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
1919 }
1920
1921 mutex_lock(&kvm->arch.xen.xen_lock);
1922 ret = idr_alloc(&kvm->arch.xen.evtchn_ports, evtchnfd, port, port + 1,
1923 GFP_KERNEL);
1924 mutex_unlock(&kvm->arch.xen.xen_lock);
1925 if (ret >= 0)
1926 return 0;
1927
1928 if (ret == -ENOSPC)
1929 ret = -EEXIST;
1930 out:
1931 if (eventfd)
1932 eventfd_ctx_put(eventfd);
1933 out_noeventfd:
1934 kfree(evtchnfd);
1935 return ret;
1936 }
1937
kvm_xen_eventfd_deassign(struct kvm * kvm,u32 port)1938 static int kvm_xen_eventfd_deassign(struct kvm *kvm, u32 port)
1939 {
1940 struct evtchnfd *evtchnfd;
1941
1942 mutex_lock(&kvm->arch.xen.xen_lock);
1943 evtchnfd = idr_remove(&kvm->arch.xen.evtchn_ports, port);
1944 mutex_unlock(&kvm->arch.xen.xen_lock);
1945
1946 if (!evtchnfd)
1947 return -ENOENT;
1948
1949 synchronize_srcu(&kvm->srcu);
1950 if (!evtchnfd->deliver.port.port)
1951 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
1952 kfree(evtchnfd);
1953 return 0;
1954 }
1955
kvm_xen_eventfd_reset(struct kvm * kvm)1956 static int kvm_xen_eventfd_reset(struct kvm *kvm)
1957 {
1958 struct evtchnfd *evtchnfd, **all_evtchnfds;
1959 int i;
1960 int n = 0;
1961
1962 mutex_lock(&kvm->arch.xen.xen_lock);
1963
1964 /*
1965 * Because synchronize_srcu() cannot be called inside the
1966 * critical section, first collect all the evtchnfd objects
1967 * in an array as they are removed from evtchn_ports.
1968 */
1969 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i)
1970 n++;
1971
1972 all_evtchnfds = kmalloc_array(n, sizeof(struct evtchnfd *), GFP_KERNEL);
1973 if (!all_evtchnfds) {
1974 mutex_unlock(&kvm->arch.xen.xen_lock);
1975 return -ENOMEM;
1976 }
1977
1978 n = 0;
1979 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
1980 all_evtchnfds[n++] = evtchnfd;
1981 idr_remove(&kvm->arch.xen.evtchn_ports, evtchnfd->send_port);
1982 }
1983 mutex_unlock(&kvm->arch.xen.xen_lock);
1984
1985 synchronize_srcu(&kvm->srcu);
1986
1987 while (n--) {
1988 evtchnfd = all_evtchnfds[n];
1989 if (!evtchnfd->deliver.port.port)
1990 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
1991 kfree(evtchnfd);
1992 }
1993 kfree(all_evtchnfds);
1994
1995 return 0;
1996 }
1997
kvm_xen_setattr_evtchn(struct kvm * kvm,struct kvm_xen_hvm_attr * data)1998 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
1999 {
2000 u32 port = data->u.evtchn.send_port;
2001
2002 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_RESET)
2003 return kvm_xen_eventfd_reset(kvm);
2004
2005 if (!port || port >= max_evtchn_port(kvm))
2006 return -EINVAL;
2007
2008 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_DEASSIGN)
2009 return kvm_xen_eventfd_deassign(kvm, port);
2010 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_UPDATE)
2011 return kvm_xen_eventfd_update(kvm, data);
2012 if (data->u.evtchn.flags)
2013 return -EINVAL;
2014
2015 return kvm_xen_eventfd_assign(kvm, data);
2016 }
2017
kvm_xen_hcall_evtchn_send(struct kvm_vcpu * vcpu,u64 param,u64 * r)2018 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r)
2019 {
2020 struct evtchnfd *evtchnfd;
2021 struct evtchn_send send;
2022 struct x86_exception e;
2023
2024 /* Sanity check: this structure is the same for 32-bit and 64-bit */
2025 BUILD_BUG_ON(sizeof(send) != 4);
2026 if (kvm_read_guest_virt(vcpu, param, &send, sizeof(send), &e)) {
2027 *r = -EFAULT;
2028 return true;
2029 }
2030
2031 /*
2032 * evtchnfd is protected by kvm->srcu; the idr lookup instead
2033 * is protected by RCU.
2034 */
2035 rcu_read_lock();
2036 evtchnfd = idr_find(&vcpu->kvm->arch.xen.evtchn_ports, send.port);
2037 rcu_read_unlock();
2038 if (!evtchnfd)
2039 return false;
2040
2041 if (evtchnfd->deliver.port.port) {
2042 int ret = kvm_xen_set_evtchn(&evtchnfd->deliver.port, vcpu->kvm);
2043 if (ret < 0 && ret != -ENOTCONN)
2044 return false;
2045 } else {
2046 eventfd_signal(evtchnfd->deliver.eventfd.ctx, 1);
2047 }
2048
2049 *r = 0;
2050 return true;
2051 }
2052
kvm_xen_init_vcpu(struct kvm_vcpu * vcpu)2053 void kvm_xen_init_vcpu(struct kvm_vcpu *vcpu)
2054 {
2055 vcpu->arch.xen.vcpu_id = vcpu->vcpu_idx;
2056 vcpu->arch.xen.poll_evtchn = 0;
2057
2058 timer_setup(&vcpu->arch.xen.poll_timer, cancel_evtchn_poll, 0);
2059
2060 kvm_gpc_init(&vcpu->arch.xen.runstate_cache, vcpu->kvm, NULL,
2061 KVM_HOST_USES_PFN);
2062 kvm_gpc_init(&vcpu->arch.xen.runstate2_cache, vcpu->kvm, NULL,
2063 KVM_HOST_USES_PFN);
2064 kvm_gpc_init(&vcpu->arch.xen.vcpu_info_cache, vcpu->kvm, NULL,
2065 KVM_HOST_USES_PFN);
2066 kvm_gpc_init(&vcpu->arch.xen.vcpu_time_info_cache, vcpu->kvm, NULL,
2067 KVM_HOST_USES_PFN);
2068 }
2069
kvm_xen_destroy_vcpu(struct kvm_vcpu * vcpu)2070 void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu)
2071 {
2072 if (kvm_xen_timer_enabled(vcpu))
2073 kvm_xen_stop_timer(vcpu);
2074
2075 kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
2076 kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
2077 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
2078 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
2079
2080 del_timer_sync(&vcpu->arch.xen.poll_timer);
2081 }
2082
kvm_xen_update_tsc_info(struct kvm_vcpu * vcpu)2083 void kvm_xen_update_tsc_info(struct kvm_vcpu *vcpu)
2084 {
2085 struct kvm_cpuid_entry2 *entry;
2086 u32 function;
2087
2088 if (!vcpu->arch.xen.cpuid.base)
2089 return;
2090
2091 function = vcpu->arch.xen.cpuid.base | XEN_CPUID_LEAF(3);
2092 if (function > vcpu->arch.xen.cpuid.limit)
2093 return;
2094
2095 entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
2096 if (entry) {
2097 entry->ecx = vcpu->arch.hv_clock.tsc_to_system_mul;
2098 entry->edx = vcpu->arch.hv_clock.tsc_shift;
2099 }
2100
2101 entry = kvm_find_cpuid_entry_index(vcpu, function, 2);
2102 if (entry)
2103 entry->eax = vcpu->arch.hw_tsc_khz;
2104 }
2105
kvm_xen_init_vm(struct kvm * kvm)2106 void kvm_xen_init_vm(struct kvm *kvm)
2107 {
2108 mutex_init(&kvm->arch.xen.xen_lock);
2109 idr_init(&kvm->arch.xen.evtchn_ports);
2110 kvm_gpc_init(&kvm->arch.xen.shinfo_cache, kvm, NULL, KVM_HOST_USES_PFN);
2111 }
2112
kvm_xen_destroy_vm(struct kvm * kvm)2113 void kvm_xen_destroy_vm(struct kvm *kvm)
2114 {
2115 struct evtchnfd *evtchnfd;
2116 int i;
2117
2118 kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
2119
2120 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
2121 if (!evtchnfd->deliver.port.port)
2122 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2123 kfree(evtchnfd);
2124 }
2125 idr_destroy(&kvm->arch.xen.evtchn_ports);
2126
2127 if (kvm->arch.xen_hvm_config.msr)
2128 static_branch_slow_dec_deferred(&kvm_xen_enabled);
2129 }
2130