1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_irqfd.h>
21 #include <linux/irqbypass.h>
22 #include <linux/sched/stat.h>
23 #include <linux/psci.h>
24 #include <trace/events/kvm.h>
25
26 #define CREATE_TRACE_POINTS
27 #include "trace_arm.h"
28
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_nested.h>
40 #include <asm/kvm_pkvm.h>
41 #include <asm/kvm_emulate.h>
42 #include <asm/sections.h>
43
44 #include <kvm/arm_hypercalls.h>
45 #include <kvm/arm_pmu.h>
46 #include <kvm/arm_psci.h>
47
48 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
49
50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
51
52 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
54
55 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
56
57 static bool vgic_present, kvm_arm_initialised;
58
59 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
60 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
61
is_kvm_arm_initialised(void)62 bool is_kvm_arm_initialised(void)
63 {
64 return kvm_arm_initialised;
65 }
66
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)67 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
68 {
69 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
70 }
71
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)72 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
73 struct kvm_enable_cap *cap)
74 {
75 int r;
76 u64 new_cap;
77
78 if (cap->flags)
79 return -EINVAL;
80
81 switch (cap->cap) {
82 case KVM_CAP_ARM_NISV_TO_USER:
83 r = 0;
84 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
85 &kvm->arch.flags);
86 break;
87 case KVM_CAP_ARM_MTE:
88 mutex_lock(&kvm->lock);
89 if (!system_supports_mte() || kvm->created_vcpus) {
90 r = -EINVAL;
91 } else {
92 r = 0;
93 set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
94 }
95 mutex_unlock(&kvm->lock);
96 break;
97 case KVM_CAP_ARM_SYSTEM_SUSPEND:
98 r = 0;
99 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
100 break;
101 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
102 new_cap = cap->args[0];
103
104 mutex_lock(&kvm->slots_lock);
105 /*
106 * To keep things simple, allow changing the chunk
107 * size only when no memory slots have been created.
108 */
109 if (!kvm_are_all_memslots_empty(kvm)) {
110 r = -EINVAL;
111 } else if (new_cap && !kvm_is_block_size_supported(new_cap)) {
112 r = -EINVAL;
113 } else {
114 r = 0;
115 kvm->arch.mmu.split_page_chunk_size = new_cap;
116 }
117 mutex_unlock(&kvm->slots_lock);
118 break;
119 default:
120 r = -EINVAL;
121 break;
122 }
123
124 return r;
125 }
126
kvm_arm_default_max_vcpus(void)127 static int kvm_arm_default_max_vcpus(void)
128 {
129 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
130 }
131
132 /**
133 * kvm_arch_init_vm - initializes a VM data structure
134 * @kvm: pointer to the KVM struct
135 */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)136 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
137 {
138 int ret;
139
140 mutex_init(&kvm->arch.config_lock);
141
142 #ifdef CONFIG_LOCKDEP
143 /* Clue in lockdep that the config_lock must be taken inside kvm->lock */
144 mutex_lock(&kvm->lock);
145 mutex_lock(&kvm->arch.config_lock);
146 mutex_unlock(&kvm->arch.config_lock);
147 mutex_unlock(&kvm->lock);
148 #endif
149
150 ret = kvm_share_hyp(kvm, kvm + 1);
151 if (ret)
152 return ret;
153
154 ret = pkvm_init_host_vm(kvm);
155 if (ret)
156 goto err_unshare_kvm;
157
158 if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
159 ret = -ENOMEM;
160 goto err_unshare_kvm;
161 }
162 cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
163
164 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
165 if (ret)
166 goto err_free_cpumask;
167
168 kvm_vgic_early_init(kvm);
169
170 kvm_timer_init_vm(kvm);
171
172 /* The maximum number of VCPUs is limited by the host's GIC model */
173 kvm->max_vcpus = kvm_arm_default_max_vcpus();
174
175 kvm_arm_init_hypercalls(kvm);
176
177 bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
178
179 return 0;
180
181 err_free_cpumask:
182 free_cpumask_var(kvm->arch.supported_cpus);
183 err_unshare_kvm:
184 kvm_unshare_hyp(kvm, kvm + 1);
185 return ret;
186 }
187
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)188 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
189 {
190 return VM_FAULT_SIGBUS;
191 }
192
193
194 /**
195 * kvm_arch_destroy_vm - destroy the VM data structure
196 * @kvm: pointer to the KVM struct
197 */
kvm_arch_destroy_vm(struct kvm * kvm)198 void kvm_arch_destroy_vm(struct kvm *kvm)
199 {
200 bitmap_free(kvm->arch.pmu_filter);
201 free_cpumask_var(kvm->arch.supported_cpus);
202
203 kvm_vgic_destroy(kvm);
204
205 if (is_protected_kvm_enabled())
206 pkvm_destroy_hyp_vm(kvm);
207
208 kvm_destroy_vcpus(kvm);
209
210 kvm_unshare_hyp(kvm, kvm + 1);
211
212 kvm_arm_teardown_hypercalls(kvm);
213 }
214
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)215 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
216 {
217 int r;
218 switch (ext) {
219 case KVM_CAP_IRQCHIP:
220 r = vgic_present;
221 break;
222 case KVM_CAP_IOEVENTFD:
223 case KVM_CAP_DEVICE_CTRL:
224 case KVM_CAP_USER_MEMORY:
225 case KVM_CAP_SYNC_MMU:
226 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
227 case KVM_CAP_ONE_REG:
228 case KVM_CAP_ARM_PSCI:
229 case KVM_CAP_ARM_PSCI_0_2:
230 case KVM_CAP_READONLY_MEM:
231 case KVM_CAP_MP_STATE:
232 case KVM_CAP_IMMEDIATE_EXIT:
233 case KVM_CAP_VCPU_EVENTS:
234 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
235 case KVM_CAP_ARM_NISV_TO_USER:
236 case KVM_CAP_ARM_INJECT_EXT_DABT:
237 case KVM_CAP_SET_GUEST_DEBUG:
238 case KVM_CAP_VCPU_ATTRIBUTES:
239 case KVM_CAP_PTP_KVM:
240 case KVM_CAP_ARM_SYSTEM_SUSPEND:
241 case KVM_CAP_IRQFD_RESAMPLE:
242 case KVM_CAP_COUNTER_OFFSET:
243 r = 1;
244 break;
245 case KVM_CAP_SET_GUEST_DEBUG2:
246 return KVM_GUESTDBG_VALID_MASK;
247 case KVM_CAP_ARM_SET_DEVICE_ADDR:
248 r = 1;
249 break;
250 case KVM_CAP_NR_VCPUS:
251 /*
252 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
253 * architectures, as it does not always bound it to
254 * KVM_CAP_MAX_VCPUS. It should not matter much because
255 * this is just an advisory value.
256 */
257 r = min_t(unsigned int, num_online_cpus(),
258 kvm_arm_default_max_vcpus());
259 break;
260 case KVM_CAP_MAX_VCPUS:
261 case KVM_CAP_MAX_VCPU_ID:
262 if (kvm)
263 r = kvm->max_vcpus;
264 else
265 r = kvm_arm_default_max_vcpus();
266 break;
267 case KVM_CAP_MSI_DEVID:
268 if (!kvm)
269 r = -EINVAL;
270 else
271 r = kvm->arch.vgic.msis_require_devid;
272 break;
273 case KVM_CAP_ARM_USER_IRQ:
274 /*
275 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
276 * (bump this number if adding more devices)
277 */
278 r = 1;
279 break;
280 case KVM_CAP_ARM_MTE:
281 r = system_supports_mte();
282 break;
283 case KVM_CAP_STEAL_TIME:
284 r = kvm_arm_pvtime_supported();
285 break;
286 case KVM_CAP_ARM_EL1_32BIT:
287 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
288 break;
289 case KVM_CAP_GUEST_DEBUG_HW_BPS:
290 r = get_num_brps();
291 break;
292 case KVM_CAP_GUEST_DEBUG_HW_WPS:
293 r = get_num_wrps();
294 break;
295 case KVM_CAP_ARM_PMU_V3:
296 r = kvm_arm_support_pmu_v3();
297 break;
298 case KVM_CAP_ARM_INJECT_SERROR_ESR:
299 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
300 break;
301 case KVM_CAP_ARM_VM_IPA_SIZE:
302 r = get_kvm_ipa_limit();
303 break;
304 case KVM_CAP_ARM_SVE:
305 r = system_supports_sve();
306 break;
307 case KVM_CAP_ARM_PTRAUTH_ADDRESS:
308 case KVM_CAP_ARM_PTRAUTH_GENERIC:
309 r = system_has_full_ptr_auth();
310 break;
311 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
312 if (kvm)
313 r = kvm->arch.mmu.split_page_chunk_size;
314 else
315 r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
316 break;
317 case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
318 r = kvm_supported_block_sizes();
319 break;
320 default:
321 r = 0;
322 }
323
324 return r;
325 }
326
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)327 long kvm_arch_dev_ioctl(struct file *filp,
328 unsigned int ioctl, unsigned long arg)
329 {
330 return -EINVAL;
331 }
332
kvm_arch_alloc_vm(void)333 struct kvm *kvm_arch_alloc_vm(void)
334 {
335 size_t sz = sizeof(struct kvm);
336
337 if (!has_vhe())
338 return kzalloc(sz, GFP_KERNEL_ACCOUNT);
339
340 return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
341 }
342
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)343 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
344 {
345 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
346 return -EBUSY;
347
348 if (id >= kvm->max_vcpus)
349 return -EINVAL;
350
351 return 0;
352 }
353
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)354 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
355 {
356 int err;
357
358 spin_lock_init(&vcpu->arch.mp_state_lock);
359
360 #ifdef CONFIG_LOCKDEP
361 /* Inform lockdep that the config_lock is acquired after vcpu->mutex */
362 mutex_lock(&vcpu->mutex);
363 mutex_lock(&vcpu->kvm->arch.config_lock);
364 mutex_unlock(&vcpu->kvm->arch.config_lock);
365 mutex_unlock(&vcpu->mutex);
366 #endif
367
368 /* Force users to call KVM_ARM_VCPU_INIT */
369 vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
370 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
371
372 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
373
374 /*
375 * Default value for the FP state, will be overloaded at load
376 * time if we support FP (pretty likely)
377 */
378 vcpu->arch.fp_state = FP_STATE_FREE;
379
380 /* Set up the timer */
381 kvm_timer_vcpu_init(vcpu);
382
383 kvm_pmu_vcpu_init(vcpu);
384
385 kvm_arm_reset_debug_ptr(vcpu);
386
387 kvm_arm_pvtime_vcpu_init(&vcpu->arch);
388
389 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
390
391 err = kvm_vgic_vcpu_init(vcpu);
392 if (err)
393 return err;
394
395 return kvm_share_hyp(vcpu, vcpu + 1);
396 }
397
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)398 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
399 {
400 }
401
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)402 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
403 {
404 if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
405 static_branch_dec(&userspace_irqchip_in_use);
406
407 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
408 kvm_timer_vcpu_terminate(vcpu);
409 kvm_pmu_vcpu_destroy(vcpu);
410 kvm_vgic_vcpu_destroy(vcpu);
411 kvm_arm_vcpu_destroy(vcpu);
412 }
413
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)414 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
415 {
416
417 }
418
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)419 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
420 {
421
422 }
423
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)424 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
425 {
426 struct kvm_s2_mmu *mmu;
427 int *last_ran;
428
429 mmu = vcpu->arch.hw_mmu;
430 last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
431
432 /*
433 * We guarantee that both TLBs and I-cache are private to each
434 * vcpu. If detecting that a vcpu from the same VM has
435 * previously run on the same physical CPU, call into the
436 * hypervisor code to nuke the relevant contexts.
437 *
438 * We might get preempted before the vCPU actually runs, but
439 * over-invalidation doesn't affect correctness.
440 */
441 if (*last_ran != vcpu->vcpu_id) {
442 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
443 *last_ran = vcpu->vcpu_id;
444 }
445
446 vcpu->cpu = cpu;
447
448 kvm_vgic_load(vcpu);
449 kvm_timer_vcpu_load(vcpu);
450 if (has_vhe())
451 kvm_vcpu_load_sysregs_vhe(vcpu);
452 kvm_arch_vcpu_load_fp(vcpu);
453 kvm_vcpu_pmu_restore_guest(vcpu);
454 if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
455 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
456
457 if (single_task_running())
458 vcpu_clear_wfx_traps(vcpu);
459 else
460 vcpu_set_wfx_traps(vcpu);
461
462 if (vcpu_has_ptrauth(vcpu))
463 vcpu_ptrauth_disable(vcpu);
464 kvm_arch_vcpu_load_debug_state_flags(vcpu);
465
466 if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
467 vcpu_set_on_unsupported_cpu(vcpu);
468 }
469
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)470 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
471 {
472 kvm_arch_vcpu_put_debug_state_flags(vcpu);
473 kvm_arch_vcpu_put_fp(vcpu);
474 if (has_vhe())
475 kvm_vcpu_put_sysregs_vhe(vcpu);
476 kvm_timer_vcpu_put(vcpu);
477 kvm_vgic_put(vcpu);
478 kvm_vcpu_pmu_restore_host(vcpu);
479 kvm_arm_vmid_clear_active();
480
481 vcpu_clear_on_unsupported_cpu(vcpu);
482 vcpu->cpu = -1;
483 }
484
__kvm_arm_vcpu_power_off(struct kvm_vcpu * vcpu)485 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
486 {
487 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
488 kvm_make_request(KVM_REQ_SLEEP, vcpu);
489 kvm_vcpu_kick(vcpu);
490 }
491
kvm_arm_vcpu_power_off(struct kvm_vcpu * vcpu)492 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
493 {
494 spin_lock(&vcpu->arch.mp_state_lock);
495 __kvm_arm_vcpu_power_off(vcpu);
496 spin_unlock(&vcpu->arch.mp_state_lock);
497 }
498
kvm_arm_vcpu_stopped(struct kvm_vcpu * vcpu)499 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
500 {
501 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
502 }
503
kvm_arm_vcpu_suspend(struct kvm_vcpu * vcpu)504 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
505 {
506 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
507 kvm_make_request(KVM_REQ_SUSPEND, vcpu);
508 kvm_vcpu_kick(vcpu);
509 }
510
kvm_arm_vcpu_suspended(struct kvm_vcpu * vcpu)511 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
512 {
513 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
514 }
515
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)516 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
517 struct kvm_mp_state *mp_state)
518 {
519 *mp_state = READ_ONCE(vcpu->arch.mp_state);
520
521 return 0;
522 }
523
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)524 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
525 struct kvm_mp_state *mp_state)
526 {
527 int ret = 0;
528
529 spin_lock(&vcpu->arch.mp_state_lock);
530
531 switch (mp_state->mp_state) {
532 case KVM_MP_STATE_RUNNABLE:
533 WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
534 break;
535 case KVM_MP_STATE_STOPPED:
536 __kvm_arm_vcpu_power_off(vcpu);
537 break;
538 case KVM_MP_STATE_SUSPENDED:
539 kvm_arm_vcpu_suspend(vcpu);
540 break;
541 default:
542 ret = -EINVAL;
543 }
544
545 spin_unlock(&vcpu->arch.mp_state_lock);
546
547 return ret;
548 }
549
550 /**
551 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
552 * @v: The VCPU pointer
553 *
554 * If the guest CPU is not waiting for interrupts or an interrupt line is
555 * asserted, the CPU is by definition runnable.
556 */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)557 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
558 {
559 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
560 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
561 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
562 }
563
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)564 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
565 {
566 return vcpu_mode_priv(vcpu);
567 }
568
569 #ifdef CONFIG_GUEST_PERF_EVENTS
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)570 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
571 {
572 return *vcpu_pc(vcpu);
573 }
574 #endif
575
kvm_vcpu_initialized(struct kvm_vcpu * vcpu)576 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
577 {
578 return vcpu_get_flag(vcpu, VCPU_INITIALIZED);
579 }
580
581 /*
582 * Handle both the initialisation that is being done when the vcpu is
583 * run for the first time, as well as the updates that must be
584 * performed each time we get a new thread dealing with this vcpu.
585 */
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)586 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
587 {
588 struct kvm *kvm = vcpu->kvm;
589 int ret;
590
591 if (!kvm_vcpu_initialized(vcpu))
592 return -ENOEXEC;
593
594 if (!kvm_arm_vcpu_is_finalized(vcpu))
595 return -EPERM;
596
597 ret = kvm_arch_vcpu_run_map_fp(vcpu);
598 if (ret)
599 return ret;
600
601 if (likely(vcpu_has_run_once(vcpu)))
602 return 0;
603
604 kvm_arm_vcpu_init_debug(vcpu);
605
606 if (likely(irqchip_in_kernel(kvm))) {
607 /*
608 * Map the VGIC hardware resources before running a vcpu the
609 * first time on this VM.
610 */
611 ret = kvm_vgic_map_resources(kvm);
612 if (ret)
613 return ret;
614 }
615
616 ret = kvm_timer_enable(vcpu);
617 if (ret)
618 return ret;
619
620 ret = kvm_arm_pmu_v3_enable(vcpu);
621 if (ret)
622 return ret;
623
624 if (is_protected_kvm_enabled()) {
625 ret = pkvm_create_hyp_vm(kvm);
626 if (ret)
627 return ret;
628 }
629
630 if (!irqchip_in_kernel(kvm)) {
631 /*
632 * Tell the rest of the code that there are userspace irqchip
633 * VMs in the wild.
634 */
635 static_branch_inc(&userspace_irqchip_in_use);
636 }
637
638 /*
639 * Initialize traps for protected VMs.
640 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
641 * the code is in place for first run initialization at EL2.
642 */
643 if (kvm_vm_is_protected(kvm))
644 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
645
646 mutex_lock(&kvm->arch.config_lock);
647 set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
648 mutex_unlock(&kvm->arch.config_lock);
649
650 return ret;
651 }
652
kvm_arch_intc_initialized(struct kvm * kvm)653 bool kvm_arch_intc_initialized(struct kvm *kvm)
654 {
655 return vgic_initialized(kvm);
656 }
657
kvm_arm_halt_guest(struct kvm * kvm)658 void kvm_arm_halt_guest(struct kvm *kvm)
659 {
660 unsigned long i;
661 struct kvm_vcpu *vcpu;
662
663 kvm_for_each_vcpu(i, vcpu, kvm)
664 vcpu->arch.pause = true;
665 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
666 }
667
kvm_arm_resume_guest(struct kvm * kvm)668 void kvm_arm_resume_guest(struct kvm *kvm)
669 {
670 unsigned long i;
671 struct kvm_vcpu *vcpu;
672
673 kvm_for_each_vcpu(i, vcpu, kvm) {
674 vcpu->arch.pause = false;
675 __kvm_vcpu_wake_up(vcpu);
676 }
677 }
678
kvm_vcpu_sleep(struct kvm_vcpu * vcpu)679 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
680 {
681 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
682
683 rcuwait_wait_event(wait,
684 (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
685 TASK_INTERRUPTIBLE);
686
687 if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
688 /* Awaken to handle a signal, request we sleep again later. */
689 kvm_make_request(KVM_REQ_SLEEP, vcpu);
690 }
691
692 /*
693 * Make sure we will observe a potential reset request if we've
694 * observed a change to the power state. Pairs with the smp_wmb() in
695 * kvm_psci_vcpu_on().
696 */
697 smp_rmb();
698 }
699
700 /**
701 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
702 * @vcpu: The VCPU pointer
703 *
704 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
705 * the vCPU is runnable. The vCPU may or may not be scheduled out, depending
706 * on when a wake event arrives, e.g. there may already be a pending wake event.
707 */
kvm_vcpu_wfi(struct kvm_vcpu * vcpu)708 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
709 {
710 /*
711 * Sync back the state of the GIC CPU interface so that we have
712 * the latest PMR and group enables. This ensures that
713 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
714 * we have pending interrupts, e.g. when determining if the
715 * vCPU should block.
716 *
717 * For the same reason, we want to tell GICv4 that we need
718 * doorbells to be signalled, should an interrupt become pending.
719 */
720 preempt_disable();
721 kvm_vgic_vmcr_sync(vcpu);
722 vcpu_set_flag(vcpu, IN_WFI);
723 vgic_v4_put(vcpu);
724 preempt_enable();
725
726 kvm_vcpu_halt(vcpu);
727 vcpu_clear_flag(vcpu, IN_WFIT);
728
729 preempt_disable();
730 vcpu_clear_flag(vcpu, IN_WFI);
731 vgic_v4_load(vcpu);
732 preempt_enable();
733 }
734
kvm_vcpu_suspend(struct kvm_vcpu * vcpu)735 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
736 {
737 if (!kvm_arm_vcpu_suspended(vcpu))
738 return 1;
739
740 kvm_vcpu_wfi(vcpu);
741
742 /*
743 * The suspend state is sticky; we do not leave it until userspace
744 * explicitly marks the vCPU as runnable. Request that we suspend again
745 * later.
746 */
747 kvm_make_request(KVM_REQ_SUSPEND, vcpu);
748
749 /*
750 * Check to make sure the vCPU is actually runnable. If so, exit to
751 * userspace informing it of the wakeup condition.
752 */
753 if (kvm_arch_vcpu_runnable(vcpu)) {
754 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
755 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
756 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
757 return 0;
758 }
759
760 /*
761 * Otherwise, we were unblocked to process a different event, such as a
762 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
763 * process the event.
764 */
765 return 1;
766 }
767
768 /**
769 * check_vcpu_requests - check and handle pending vCPU requests
770 * @vcpu: the VCPU pointer
771 *
772 * Return: 1 if we should enter the guest
773 * 0 if we should exit to userspace
774 * < 0 if we should exit to userspace, where the return value indicates
775 * an error
776 */
check_vcpu_requests(struct kvm_vcpu * vcpu)777 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
778 {
779 if (kvm_request_pending(vcpu)) {
780 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
781 kvm_vcpu_sleep(vcpu);
782
783 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
784 kvm_reset_vcpu(vcpu);
785
786 /*
787 * Clear IRQ_PENDING requests that were made to guarantee
788 * that a VCPU sees new virtual interrupts.
789 */
790 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
791
792 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
793 kvm_update_stolen_time(vcpu);
794
795 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
796 /* The distributor enable bits were changed */
797 preempt_disable();
798 vgic_v4_put(vcpu);
799 vgic_v4_load(vcpu);
800 preempt_enable();
801 }
802
803 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
804 kvm_pmu_handle_pmcr(vcpu,
805 __vcpu_sys_reg(vcpu, PMCR_EL0));
806
807 if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
808 kvm_vcpu_pmu_restore_guest(vcpu);
809
810 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
811 return kvm_vcpu_suspend(vcpu);
812
813 if (kvm_dirty_ring_check_request(vcpu))
814 return 0;
815 }
816
817 return 1;
818 }
819
vcpu_mode_is_bad_32bit(struct kvm_vcpu * vcpu)820 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
821 {
822 if (likely(!vcpu_mode_is_32bit(vcpu)))
823 return false;
824
825 if (vcpu_has_nv(vcpu))
826 return true;
827
828 return !kvm_supports_32bit_el0();
829 }
830
831 /**
832 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
833 * @vcpu: The VCPU pointer
834 * @ret: Pointer to write optional return code
835 *
836 * Returns: true if the VCPU needs to return to a preemptible + interruptible
837 * and skip guest entry.
838 *
839 * This function disambiguates between two different types of exits: exits to a
840 * preemptible + interruptible kernel context and exits to userspace. For an
841 * exit to userspace, this function will write the return code to ret and return
842 * true. For an exit to preemptible + interruptible kernel context (i.e. check
843 * for pending work and re-enter), return true without writing to ret.
844 */
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu,int * ret)845 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
846 {
847 struct kvm_run *run = vcpu->run;
848
849 /*
850 * If we're using a userspace irqchip, then check if we need
851 * to tell a userspace irqchip about timer or PMU level
852 * changes and if so, exit to userspace (the actual level
853 * state gets updated in kvm_timer_update_run and
854 * kvm_pmu_update_run below).
855 */
856 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
857 if (kvm_timer_should_notify_user(vcpu) ||
858 kvm_pmu_should_notify_user(vcpu)) {
859 *ret = -EINTR;
860 run->exit_reason = KVM_EXIT_INTR;
861 return true;
862 }
863 }
864
865 if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
866 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
867 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
868 run->fail_entry.cpu = smp_processor_id();
869 *ret = 0;
870 return true;
871 }
872
873 return kvm_request_pending(vcpu) ||
874 xfer_to_guest_mode_work_pending();
875 }
876
877 /*
878 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
879 * the vCPU is running.
880 *
881 * This must be noinstr as instrumentation may make use of RCU, and this is not
882 * safe during the EQS.
883 */
kvm_arm_vcpu_enter_exit(struct kvm_vcpu * vcpu)884 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
885 {
886 int ret;
887
888 guest_state_enter_irqoff();
889 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
890 guest_state_exit_irqoff();
891
892 return ret;
893 }
894
895 /**
896 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
897 * @vcpu: The VCPU pointer
898 *
899 * This function is called through the VCPU_RUN ioctl called from user space. It
900 * will execute VM code in a loop until the time slice for the process is used
901 * or some emulation is needed from user space in which case the function will
902 * return with return value 0 and with the kvm_run structure filled in with the
903 * required data for the requested emulation.
904 */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)905 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
906 {
907 struct kvm_run *run = vcpu->run;
908 int ret;
909
910 if (run->exit_reason == KVM_EXIT_MMIO) {
911 ret = kvm_handle_mmio_return(vcpu);
912 if (ret)
913 return ret;
914 }
915
916 vcpu_load(vcpu);
917
918 if (run->immediate_exit) {
919 ret = -EINTR;
920 goto out;
921 }
922
923 kvm_sigset_activate(vcpu);
924
925 ret = 1;
926 run->exit_reason = KVM_EXIT_UNKNOWN;
927 run->flags = 0;
928 while (ret > 0) {
929 /*
930 * Check conditions before entering the guest
931 */
932 ret = xfer_to_guest_mode_handle_work(vcpu);
933 if (!ret)
934 ret = 1;
935
936 if (ret > 0)
937 ret = check_vcpu_requests(vcpu);
938
939 /*
940 * Preparing the interrupts to be injected also
941 * involves poking the GIC, which must be done in a
942 * non-preemptible context.
943 */
944 preempt_disable();
945
946 /*
947 * The VMID allocator only tracks active VMIDs per
948 * physical CPU, and therefore the VMID allocated may not be
949 * preserved on VMID roll-over if the task was preempted,
950 * making a thread's VMID inactive. So we need to call
951 * kvm_arm_vmid_update() in non-premptible context.
952 */
953 kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid);
954
955 kvm_pmu_flush_hwstate(vcpu);
956
957 local_irq_disable();
958
959 kvm_vgic_flush_hwstate(vcpu);
960
961 kvm_pmu_update_vcpu_events(vcpu);
962
963 /*
964 * Ensure we set mode to IN_GUEST_MODE after we disable
965 * interrupts and before the final VCPU requests check.
966 * See the comment in kvm_vcpu_exiting_guest_mode() and
967 * Documentation/virt/kvm/vcpu-requests.rst
968 */
969 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
970
971 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
972 vcpu->mode = OUTSIDE_GUEST_MODE;
973 isb(); /* Ensure work in x_flush_hwstate is committed */
974 kvm_pmu_sync_hwstate(vcpu);
975 if (static_branch_unlikely(&userspace_irqchip_in_use))
976 kvm_timer_sync_user(vcpu);
977 kvm_vgic_sync_hwstate(vcpu);
978 local_irq_enable();
979 preempt_enable();
980 continue;
981 }
982
983 kvm_arm_setup_debug(vcpu);
984 kvm_arch_vcpu_ctxflush_fp(vcpu);
985
986 /**************************************************************
987 * Enter the guest
988 */
989 trace_kvm_entry(*vcpu_pc(vcpu));
990 guest_timing_enter_irqoff();
991
992 ret = kvm_arm_vcpu_enter_exit(vcpu);
993
994 vcpu->mode = OUTSIDE_GUEST_MODE;
995 vcpu->stat.exits++;
996 /*
997 * Back from guest
998 *************************************************************/
999
1000 kvm_arm_clear_debug(vcpu);
1001
1002 /*
1003 * We must sync the PMU state before the vgic state so
1004 * that the vgic can properly sample the updated state of the
1005 * interrupt line.
1006 */
1007 kvm_pmu_sync_hwstate(vcpu);
1008
1009 /*
1010 * Sync the vgic state before syncing the timer state because
1011 * the timer code needs to know if the virtual timer
1012 * interrupts are active.
1013 */
1014 kvm_vgic_sync_hwstate(vcpu);
1015
1016 /*
1017 * Sync the timer hardware state before enabling interrupts as
1018 * we don't want vtimer interrupts to race with syncing the
1019 * timer virtual interrupt state.
1020 */
1021 if (static_branch_unlikely(&userspace_irqchip_in_use))
1022 kvm_timer_sync_user(vcpu);
1023
1024 kvm_arch_vcpu_ctxsync_fp(vcpu);
1025
1026 /*
1027 * We must ensure that any pending interrupts are taken before
1028 * we exit guest timing so that timer ticks are accounted as
1029 * guest time. Transiently unmask interrupts so that any
1030 * pending interrupts are taken.
1031 *
1032 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1033 * context synchronization event) is necessary to ensure that
1034 * pending interrupts are taken.
1035 */
1036 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1037 local_irq_enable();
1038 isb();
1039 local_irq_disable();
1040 }
1041
1042 guest_timing_exit_irqoff();
1043
1044 local_irq_enable();
1045
1046 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1047
1048 /* Exit types that need handling before we can be preempted */
1049 handle_exit_early(vcpu, ret);
1050
1051 preempt_enable();
1052
1053 /*
1054 * The ARMv8 architecture doesn't give the hypervisor
1055 * a mechanism to prevent a guest from dropping to AArch32 EL0
1056 * if implemented by the CPU. If we spot the guest in such
1057 * state and that we decided it wasn't supposed to do so (like
1058 * with the asymmetric AArch32 case), return to userspace with
1059 * a fatal error.
1060 */
1061 if (vcpu_mode_is_bad_32bit(vcpu)) {
1062 /*
1063 * As we have caught the guest red-handed, decide that
1064 * it isn't fit for purpose anymore by making the vcpu
1065 * invalid. The VMM can try and fix it by issuing a
1066 * KVM_ARM_VCPU_INIT if it really wants to.
1067 */
1068 vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1069 ret = ARM_EXCEPTION_IL;
1070 }
1071
1072 ret = handle_exit(vcpu, ret);
1073 }
1074
1075 /* Tell userspace about in-kernel device output levels */
1076 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1077 kvm_timer_update_run(vcpu);
1078 kvm_pmu_update_run(vcpu);
1079 }
1080
1081 kvm_sigset_deactivate(vcpu);
1082
1083 out:
1084 /*
1085 * In the unlikely event that we are returning to userspace
1086 * with pending exceptions or PC adjustment, commit these
1087 * adjustments in order to give userspace a consistent view of
1088 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1089 * being preempt-safe on VHE.
1090 */
1091 if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1092 vcpu_get_flag(vcpu, INCREMENT_PC)))
1093 kvm_call_hyp(__kvm_adjust_pc, vcpu);
1094
1095 vcpu_put(vcpu);
1096 return ret;
1097 }
1098
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)1099 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1100 {
1101 int bit_index;
1102 bool set;
1103 unsigned long *hcr;
1104
1105 if (number == KVM_ARM_IRQ_CPU_IRQ)
1106 bit_index = __ffs(HCR_VI);
1107 else /* KVM_ARM_IRQ_CPU_FIQ */
1108 bit_index = __ffs(HCR_VF);
1109
1110 hcr = vcpu_hcr(vcpu);
1111 if (level)
1112 set = test_and_set_bit(bit_index, hcr);
1113 else
1114 set = test_and_clear_bit(bit_index, hcr);
1115
1116 /*
1117 * If we didn't change anything, no need to wake up or kick other CPUs
1118 */
1119 if (set == level)
1120 return 0;
1121
1122 /*
1123 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1124 * trigger a world-switch round on the running physical CPU to set the
1125 * virtual IRQ/FIQ fields in the HCR appropriately.
1126 */
1127 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1128 kvm_vcpu_kick(vcpu);
1129
1130 return 0;
1131 }
1132
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)1133 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1134 bool line_status)
1135 {
1136 u32 irq = irq_level->irq;
1137 unsigned int irq_type, vcpu_idx, irq_num;
1138 int nrcpus = atomic_read(&kvm->online_vcpus);
1139 struct kvm_vcpu *vcpu = NULL;
1140 bool level = irq_level->level;
1141
1142 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1143 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1144 vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1145 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1146
1147 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1148
1149 switch (irq_type) {
1150 case KVM_ARM_IRQ_TYPE_CPU:
1151 if (irqchip_in_kernel(kvm))
1152 return -ENXIO;
1153
1154 if (vcpu_idx >= nrcpus)
1155 return -EINVAL;
1156
1157 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1158 if (!vcpu)
1159 return -EINVAL;
1160
1161 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1162 return -EINVAL;
1163
1164 return vcpu_interrupt_line(vcpu, irq_num, level);
1165 case KVM_ARM_IRQ_TYPE_PPI:
1166 if (!irqchip_in_kernel(kvm))
1167 return -ENXIO;
1168
1169 if (vcpu_idx >= nrcpus)
1170 return -EINVAL;
1171
1172 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1173 if (!vcpu)
1174 return -EINVAL;
1175
1176 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1177 return -EINVAL;
1178
1179 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1180 case KVM_ARM_IRQ_TYPE_SPI:
1181 if (!irqchip_in_kernel(kvm))
1182 return -ENXIO;
1183
1184 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1185 return -EINVAL;
1186
1187 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1188 }
1189
1190 return -EINVAL;
1191 }
1192
kvm_vcpu_init_check_features(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1193 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1194 const struct kvm_vcpu_init *init)
1195 {
1196 unsigned long features = init->features[0];
1197 int i;
1198
1199 if (features & ~KVM_VCPU_VALID_FEATURES)
1200 return -ENOENT;
1201
1202 for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1203 if (init->features[i])
1204 return -ENOENT;
1205 }
1206
1207 if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1208 return 0;
1209
1210 if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1))
1211 return -EINVAL;
1212
1213 /* MTE is incompatible with AArch32 */
1214 if (kvm_has_mte(vcpu->kvm))
1215 return -EINVAL;
1216
1217 /* NV is incompatible with AArch32 */
1218 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1219 return -EINVAL;
1220
1221 return 0;
1222 }
1223
kvm_vcpu_init_changed(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1224 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1225 const struct kvm_vcpu_init *init)
1226 {
1227 unsigned long features = init->features[0];
1228
1229 return !bitmap_equal(vcpu->arch.features, &features, KVM_VCPU_MAX_FEATURES);
1230 }
1231
__kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1232 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1233 const struct kvm_vcpu_init *init)
1234 {
1235 unsigned long features = init->features[0];
1236 struct kvm *kvm = vcpu->kvm;
1237 int ret = -EINVAL;
1238
1239 mutex_lock(&kvm->arch.config_lock);
1240
1241 if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1242 !bitmap_equal(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES))
1243 goto out_unlock;
1244
1245 bitmap_copy(vcpu->arch.features, &features, KVM_VCPU_MAX_FEATURES);
1246
1247 /* Now we know what it is, we can reset it. */
1248 ret = kvm_reset_vcpu(vcpu);
1249 if (ret) {
1250 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1251 goto out_unlock;
1252 }
1253
1254 bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1255 set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1256 vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1257 out_unlock:
1258 mutex_unlock(&kvm->arch.config_lock);
1259 return ret;
1260 }
1261
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1262 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1263 const struct kvm_vcpu_init *init)
1264 {
1265 int ret;
1266
1267 if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1268 init->target != kvm_target_cpu())
1269 return -EINVAL;
1270
1271 ret = kvm_vcpu_init_check_features(vcpu, init);
1272 if (ret)
1273 return ret;
1274
1275 if (!kvm_vcpu_initialized(vcpu))
1276 return __kvm_vcpu_set_target(vcpu, init);
1277
1278 if (kvm_vcpu_init_changed(vcpu, init))
1279 return -EINVAL;
1280
1281 return kvm_reset_vcpu(vcpu);
1282 }
1283
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)1284 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1285 struct kvm_vcpu_init *init)
1286 {
1287 bool power_off = false;
1288 int ret;
1289
1290 /*
1291 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1292 * reflecting it in the finalized feature set, thus limiting its scope
1293 * to a single KVM_ARM_VCPU_INIT call.
1294 */
1295 if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1296 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1297 power_off = true;
1298 }
1299
1300 ret = kvm_vcpu_set_target(vcpu, init);
1301 if (ret)
1302 return ret;
1303
1304 /*
1305 * Ensure a rebooted VM will fault in RAM pages and detect if the
1306 * guest MMU is turned off and flush the caches as needed.
1307 *
1308 * S2FWB enforces all memory accesses to RAM being cacheable,
1309 * ensuring that the data side is always coherent. We still
1310 * need to invalidate the I-cache though, as FWB does *not*
1311 * imply CTR_EL0.DIC.
1312 */
1313 if (vcpu_has_run_once(vcpu)) {
1314 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1315 stage2_unmap_vm(vcpu->kvm);
1316 else
1317 icache_inval_all_pou();
1318 }
1319
1320 vcpu_reset_hcr(vcpu);
1321 vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu);
1322
1323 /*
1324 * Handle the "start in power-off" case.
1325 */
1326 spin_lock(&vcpu->arch.mp_state_lock);
1327
1328 if (power_off)
1329 __kvm_arm_vcpu_power_off(vcpu);
1330 else
1331 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1332
1333 spin_unlock(&vcpu->arch.mp_state_lock);
1334
1335 return 0;
1336 }
1337
kvm_arm_vcpu_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1338 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1339 struct kvm_device_attr *attr)
1340 {
1341 int ret = -ENXIO;
1342
1343 switch (attr->group) {
1344 default:
1345 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1346 break;
1347 }
1348
1349 return ret;
1350 }
1351
kvm_arm_vcpu_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1352 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1353 struct kvm_device_attr *attr)
1354 {
1355 int ret = -ENXIO;
1356
1357 switch (attr->group) {
1358 default:
1359 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1360 break;
1361 }
1362
1363 return ret;
1364 }
1365
kvm_arm_vcpu_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1366 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1367 struct kvm_device_attr *attr)
1368 {
1369 int ret = -ENXIO;
1370
1371 switch (attr->group) {
1372 default:
1373 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1374 break;
1375 }
1376
1377 return ret;
1378 }
1379
kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1380 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1381 struct kvm_vcpu_events *events)
1382 {
1383 memset(events, 0, sizeof(*events));
1384
1385 return __kvm_arm_vcpu_get_events(vcpu, events);
1386 }
1387
kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1388 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1389 struct kvm_vcpu_events *events)
1390 {
1391 int i;
1392
1393 /* check whether the reserved field is zero */
1394 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1395 if (events->reserved[i])
1396 return -EINVAL;
1397
1398 /* check whether the pad field is zero */
1399 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1400 if (events->exception.pad[i])
1401 return -EINVAL;
1402
1403 return __kvm_arm_vcpu_set_events(vcpu, events);
1404 }
1405
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1406 long kvm_arch_vcpu_ioctl(struct file *filp,
1407 unsigned int ioctl, unsigned long arg)
1408 {
1409 struct kvm_vcpu *vcpu = filp->private_data;
1410 void __user *argp = (void __user *)arg;
1411 struct kvm_device_attr attr;
1412 long r;
1413
1414 switch (ioctl) {
1415 case KVM_ARM_VCPU_INIT: {
1416 struct kvm_vcpu_init init;
1417
1418 r = -EFAULT;
1419 if (copy_from_user(&init, argp, sizeof(init)))
1420 break;
1421
1422 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1423 break;
1424 }
1425 case KVM_SET_ONE_REG:
1426 case KVM_GET_ONE_REG: {
1427 struct kvm_one_reg reg;
1428
1429 r = -ENOEXEC;
1430 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1431 break;
1432
1433 r = -EFAULT;
1434 if (copy_from_user(®, argp, sizeof(reg)))
1435 break;
1436
1437 /*
1438 * We could owe a reset due to PSCI. Handle the pending reset
1439 * here to ensure userspace register accesses are ordered after
1440 * the reset.
1441 */
1442 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1443 kvm_reset_vcpu(vcpu);
1444
1445 if (ioctl == KVM_SET_ONE_REG)
1446 r = kvm_arm_set_reg(vcpu, ®);
1447 else
1448 r = kvm_arm_get_reg(vcpu, ®);
1449 break;
1450 }
1451 case KVM_GET_REG_LIST: {
1452 struct kvm_reg_list __user *user_list = argp;
1453 struct kvm_reg_list reg_list;
1454 unsigned n;
1455
1456 r = -ENOEXEC;
1457 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1458 break;
1459
1460 r = -EPERM;
1461 if (!kvm_arm_vcpu_is_finalized(vcpu))
1462 break;
1463
1464 r = -EFAULT;
1465 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
1466 break;
1467 n = reg_list.n;
1468 reg_list.n = kvm_arm_num_regs(vcpu);
1469 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
1470 break;
1471 r = -E2BIG;
1472 if (n < reg_list.n)
1473 break;
1474 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1475 break;
1476 }
1477 case KVM_SET_DEVICE_ATTR: {
1478 r = -EFAULT;
1479 if (copy_from_user(&attr, argp, sizeof(attr)))
1480 break;
1481 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1482 break;
1483 }
1484 case KVM_GET_DEVICE_ATTR: {
1485 r = -EFAULT;
1486 if (copy_from_user(&attr, argp, sizeof(attr)))
1487 break;
1488 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1489 break;
1490 }
1491 case KVM_HAS_DEVICE_ATTR: {
1492 r = -EFAULT;
1493 if (copy_from_user(&attr, argp, sizeof(attr)))
1494 break;
1495 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1496 break;
1497 }
1498 case KVM_GET_VCPU_EVENTS: {
1499 struct kvm_vcpu_events events;
1500
1501 if (kvm_arm_vcpu_get_events(vcpu, &events))
1502 return -EINVAL;
1503
1504 if (copy_to_user(argp, &events, sizeof(events)))
1505 return -EFAULT;
1506
1507 return 0;
1508 }
1509 case KVM_SET_VCPU_EVENTS: {
1510 struct kvm_vcpu_events events;
1511
1512 if (copy_from_user(&events, argp, sizeof(events)))
1513 return -EFAULT;
1514
1515 return kvm_arm_vcpu_set_events(vcpu, &events);
1516 }
1517 case KVM_ARM_VCPU_FINALIZE: {
1518 int what;
1519
1520 if (!kvm_vcpu_initialized(vcpu))
1521 return -ENOEXEC;
1522
1523 if (get_user(what, (const int __user *)argp))
1524 return -EFAULT;
1525
1526 return kvm_arm_vcpu_finalize(vcpu, what);
1527 }
1528 default:
1529 r = -EINVAL;
1530 }
1531
1532 return r;
1533 }
1534
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)1535 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1536 {
1537
1538 }
1539
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)1540 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1541 struct kvm_arm_device_addr *dev_addr)
1542 {
1543 switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1544 case KVM_ARM_DEVICE_VGIC_V2:
1545 if (!vgic_present)
1546 return -ENXIO;
1547 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1548 default:
1549 return -ENODEV;
1550 }
1551 }
1552
kvm_vm_has_attr(struct kvm * kvm,struct kvm_device_attr * attr)1553 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1554 {
1555 switch (attr->group) {
1556 case KVM_ARM_VM_SMCCC_CTRL:
1557 return kvm_vm_smccc_has_attr(kvm, attr);
1558 default:
1559 return -ENXIO;
1560 }
1561 }
1562
kvm_vm_set_attr(struct kvm * kvm,struct kvm_device_attr * attr)1563 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1564 {
1565 switch (attr->group) {
1566 case KVM_ARM_VM_SMCCC_CTRL:
1567 return kvm_vm_smccc_set_attr(kvm, attr);
1568 default:
1569 return -ENXIO;
1570 }
1571 }
1572
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1573 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1574 {
1575 struct kvm *kvm = filp->private_data;
1576 void __user *argp = (void __user *)arg;
1577 struct kvm_device_attr attr;
1578
1579 switch (ioctl) {
1580 case KVM_CREATE_IRQCHIP: {
1581 int ret;
1582 if (!vgic_present)
1583 return -ENXIO;
1584 mutex_lock(&kvm->lock);
1585 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1586 mutex_unlock(&kvm->lock);
1587 return ret;
1588 }
1589 case KVM_ARM_SET_DEVICE_ADDR: {
1590 struct kvm_arm_device_addr dev_addr;
1591
1592 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1593 return -EFAULT;
1594 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1595 }
1596 case KVM_ARM_PREFERRED_TARGET: {
1597 struct kvm_vcpu_init init = {
1598 .target = KVM_ARM_TARGET_GENERIC_V8,
1599 };
1600
1601 if (copy_to_user(argp, &init, sizeof(init)))
1602 return -EFAULT;
1603
1604 return 0;
1605 }
1606 case KVM_ARM_MTE_COPY_TAGS: {
1607 struct kvm_arm_copy_mte_tags copy_tags;
1608
1609 if (copy_from_user(©_tags, argp, sizeof(copy_tags)))
1610 return -EFAULT;
1611 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags);
1612 }
1613 case KVM_ARM_SET_COUNTER_OFFSET: {
1614 struct kvm_arm_counter_offset offset;
1615
1616 if (copy_from_user(&offset, argp, sizeof(offset)))
1617 return -EFAULT;
1618 return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1619 }
1620 case KVM_HAS_DEVICE_ATTR: {
1621 if (copy_from_user(&attr, argp, sizeof(attr)))
1622 return -EFAULT;
1623
1624 return kvm_vm_has_attr(kvm, &attr);
1625 }
1626 case KVM_SET_DEVICE_ATTR: {
1627 if (copy_from_user(&attr, argp, sizeof(attr)))
1628 return -EFAULT;
1629
1630 return kvm_vm_set_attr(kvm, &attr);
1631 }
1632 default:
1633 return -EINVAL;
1634 }
1635 }
1636
1637 /* unlocks vcpus from @vcpu_lock_idx and smaller */
unlock_vcpus(struct kvm * kvm,int vcpu_lock_idx)1638 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
1639 {
1640 struct kvm_vcpu *tmp_vcpu;
1641
1642 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1643 tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1644 mutex_unlock(&tmp_vcpu->mutex);
1645 }
1646 }
1647
unlock_all_vcpus(struct kvm * kvm)1648 void unlock_all_vcpus(struct kvm *kvm)
1649 {
1650 lockdep_assert_held(&kvm->lock);
1651
1652 unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
1653 }
1654
1655 /* Returns true if all vcpus were locked, false otherwise */
lock_all_vcpus(struct kvm * kvm)1656 bool lock_all_vcpus(struct kvm *kvm)
1657 {
1658 struct kvm_vcpu *tmp_vcpu;
1659 unsigned long c;
1660
1661 lockdep_assert_held(&kvm->lock);
1662
1663 /*
1664 * Any time a vcpu is in an ioctl (including running), the
1665 * core KVM code tries to grab the vcpu->mutex.
1666 *
1667 * By grabbing the vcpu->mutex of all VCPUs we ensure that no
1668 * other VCPUs can fiddle with the state while we access it.
1669 */
1670 kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
1671 if (!mutex_trylock(&tmp_vcpu->mutex)) {
1672 unlock_vcpus(kvm, c - 1);
1673 return false;
1674 }
1675 }
1676
1677 return true;
1678 }
1679
nvhe_percpu_size(void)1680 static unsigned long nvhe_percpu_size(void)
1681 {
1682 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1683 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1684 }
1685
nvhe_percpu_order(void)1686 static unsigned long nvhe_percpu_order(void)
1687 {
1688 unsigned long size = nvhe_percpu_size();
1689
1690 return size ? get_order(size) : 0;
1691 }
1692
1693 /* A lookup table holding the hypervisor VA for each vector slot */
1694 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1695
kvm_init_vector_slot(void * base,enum arm64_hyp_spectre_vector slot)1696 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1697 {
1698 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1699 }
1700
kvm_init_vector_slots(void)1701 static int kvm_init_vector_slots(void)
1702 {
1703 int err;
1704 void *base;
1705
1706 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1707 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1708
1709 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1710 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1711
1712 if (kvm_system_needs_idmapped_vectors() &&
1713 !is_protected_kvm_enabled()) {
1714 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1715 __BP_HARDEN_HYP_VECS_SZ, &base);
1716 if (err)
1717 return err;
1718 }
1719
1720 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1721 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1722 return 0;
1723 }
1724
cpu_prepare_hyp_mode(int cpu,u32 hyp_va_bits)1725 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1726 {
1727 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1728 unsigned long tcr;
1729
1730 /*
1731 * Calculate the raw per-cpu offset without a translation from the
1732 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1733 * so that we can use adr_l to access per-cpu variables in EL2.
1734 * Also drop the KASAN tag which gets in the way...
1735 */
1736 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1737 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1738
1739 params->mair_el2 = read_sysreg(mair_el1);
1740
1741 tcr = read_sysreg(tcr_el1);
1742 if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
1743 tcr |= TCR_EPD1_MASK;
1744 } else {
1745 tcr &= TCR_EL2_MASK;
1746 tcr |= TCR_EL2_RES1;
1747 }
1748 tcr &= ~TCR_T0SZ_MASK;
1749 tcr |= TCR_T0SZ(hyp_va_bits);
1750 params->tcr_el2 = tcr;
1751
1752 params->pgd_pa = kvm_mmu_get_httbr();
1753 if (is_protected_kvm_enabled())
1754 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1755 else
1756 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1757 if (cpus_have_final_cap(ARM64_KVM_HVHE))
1758 params->hcr_el2 |= HCR_E2H;
1759 params->vttbr = params->vtcr = 0;
1760
1761 /*
1762 * Flush the init params from the data cache because the struct will
1763 * be read while the MMU is off.
1764 */
1765 kvm_flush_dcache_to_poc(params, sizeof(*params));
1766 }
1767
hyp_install_host_vector(void)1768 static void hyp_install_host_vector(void)
1769 {
1770 struct kvm_nvhe_init_params *params;
1771 struct arm_smccc_res res;
1772
1773 /* Switch from the HYP stub to our own HYP init vector */
1774 __hyp_set_vectors(kvm_get_idmap_vector());
1775
1776 /*
1777 * Call initialization code, and switch to the full blown HYP code.
1778 * If the cpucaps haven't been finalized yet, something has gone very
1779 * wrong, and hyp will crash and burn when it uses any
1780 * cpus_have_const_cap() wrapper.
1781 */
1782 BUG_ON(!system_capabilities_finalized());
1783 params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1784 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1785 WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1786 }
1787
cpu_init_hyp_mode(void)1788 static void cpu_init_hyp_mode(void)
1789 {
1790 hyp_install_host_vector();
1791
1792 /*
1793 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1794 * at EL2.
1795 */
1796 if (this_cpu_has_cap(ARM64_SSBS) &&
1797 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1798 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1799 }
1800 }
1801
cpu_hyp_reset(void)1802 static void cpu_hyp_reset(void)
1803 {
1804 if (!is_kernel_in_hyp_mode())
1805 __hyp_reset_vectors();
1806 }
1807
1808 /*
1809 * EL2 vectors can be mapped and rerouted in a number of ways,
1810 * depending on the kernel configuration and CPU present:
1811 *
1812 * - If the CPU is affected by Spectre-v2, the hardening sequence is
1813 * placed in one of the vector slots, which is executed before jumping
1814 * to the real vectors.
1815 *
1816 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1817 * containing the hardening sequence is mapped next to the idmap page,
1818 * and executed before jumping to the real vectors.
1819 *
1820 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1821 * empty slot is selected, mapped next to the idmap page, and
1822 * executed before jumping to the real vectors.
1823 *
1824 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1825 * VHE, as we don't have hypervisor-specific mappings. If the system
1826 * is VHE and yet selects this capability, it will be ignored.
1827 */
cpu_set_hyp_vector(void)1828 static void cpu_set_hyp_vector(void)
1829 {
1830 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1831 void *vector = hyp_spectre_vector_selector[data->slot];
1832
1833 if (!is_protected_kvm_enabled())
1834 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1835 else
1836 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1837 }
1838
cpu_hyp_init_context(void)1839 static void cpu_hyp_init_context(void)
1840 {
1841 kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1842
1843 if (!is_kernel_in_hyp_mode())
1844 cpu_init_hyp_mode();
1845 }
1846
cpu_hyp_init_features(void)1847 static void cpu_hyp_init_features(void)
1848 {
1849 cpu_set_hyp_vector();
1850 kvm_arm_init_debug();
1851
1852 if (is_kernel_in_hyp_mode())
1853 kvm_timer_init_vhe();
1854
1855 if (vgic_present)
1856 kvm_vgic_init_cpu_hardware();
1857 }
1858
cpu_hyp_reinit(void)1859 static void cpu_hyp_reinit(void)
1860 {
1861 cpu_hyp_reset();
1862 cpu_hyp_init_context();
1863 cpu_hyp_init_features();
1864 }
1865
cpu_hyp_init(void * discard)1866 static void cpu_hyp_init(void *discard)
1867 {
1868 if (!__this_cpu_read(kvm_hyp_initialized)) {
1869 cpu_hyp_reinit();
1870 __this_cpu_write(kvm_hyp_initialized, 1);
1871 }
1872 }
1873
cpu_hyp_uninit(void * discard)1874 static void cpu_hyp_uninit(void *discard)
1875 {
1876 if (__this_cpu_read(kvm_hyp_initialized)) {
1877 cpu_hyp_reset();
1878 __this_cpu_write(kvm_hyp_initialized, 0);
1879 }
1880 }
1881
kvm_arch_hardware_enable(void)1882 int kvm_arch_hardware_enable(void)
1883 {
1884 /*
1885 * Most calls to this function are made with migration
1886 * disabled, but not with preemption disabled. The former is
1887 * enough to ensure correctness, but most of the helpers
1888 * expect the later and will throw a tantrum otherwise.
1889 */
1890 preempt_disable();
1891
1892 cpu_hyp_init(NULL);
1893
1894 kvm_vgic_cpu_up();
1895 kvm_timer_cpu_up();
1896
1897 preempt_enable();
1898
1899 return 0;
1900 }
1901
kvm_arch_hardware_disable(void)1902 void kvm_arch_hardware_disable(void)
1903 {
1904 kvm_timer_cpu_down();
1905 kvm_vgic_cpu_down();
1906
1907 if (!is_protected_kvm_enabled())
1908 cpu_hyp_uninit(NULL);
1909 }
1910
1911 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1912 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1913 unsigned long cmd,
1914 void *v)
1915 {
1916 /*
1917 * kvm_hyp_initialized is left with its old value over
1918 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1919 * re-enable hyp.
1920 */
1921 switch (cmd) {
1922 case CPU_PM_ENTER:
1923 if (__this_cpu_read(kvm_hyp_initialized))
1924 /*
1925 * don't update kvm_hyp_initialized here
1926 * so that the hyp will be re-enabled
1927 * when we resume. See below.
1928 */
1929 cpu_hyp_reset();
1930
1931 return NOTIFY_OK;
1932 case CPU_PM_ENTER_FAILED:
1933 case CPU_PM_EXIT:
1934 if (__this_cpu_read(kvm_hyp_initialized))
1935 /* The hyp was enabled before suspend. */
1936 cpu_hyp_reinit();
1937
1938 return NOTIFY_OK;
1939
1940 default:
1941 return NOTIFY_DONE;
1942 }
1943 }
1944
1945 static struct notifier_block hyp_init_cpu_pm_nb = {
1946 .notifier_call = hyp_init_cpu_pm_notifier,
1947 };
1948
hyp_cpu_pm_init(void)1949 static void __init hyp_cpu_pm_init(void)
1950 {
1951 if (!is_protected_kvm_enabled())
1952 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1953 }
hyp_cpu_pm_exit(void)1954 static void __init hyp_cpu_pm_exit(void)
1955 {
1956 if (!is_protected_kvm_enabled())
1957 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1958 }
1959 #else
hyp_cpu_pm_init(void)1960 static inline void __init hyp_cpu_pm_init(void)
1961 {
1962 }
hyp_cpu_pm_exit(void)1963 static inline void __init hyp_cpu_pm_exit(void)
1964 {
1965 }
1966 #endif
1967
init_cpu_logical_map(void)1968 static void __init init_cpu_logical_map(void)
1969 {
1970 unsigned int cpu;
1971
1972 /*
1973 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1974 * Only copy the set of online CPUs whose features have been checked
1975 * against the finalized system capabilities. The hypervisor will not
1976 * allow any other CPUs from the `possible` set to boot.
1977 */
1978 for_each_online_cpu(cpu)
1979 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1980 }
1981
1982 #define init_psci_0_1_impl_state(config, what) \
1983 config.psci_0_1_ ## what ## _implemented = psci_ops.what
1984
init_psci_relay(void)1985 static bool __init init_psci_relay(void)
1986 {
1987 /*
1988 * If PSCI has not been initialized, protected KVM cannot install
1989 * itself on newly booted CPUs.
1990 */
1991 if (!psci_ops.get_version) {
1992 kvm_err("Cannot initialize protected mode without PSCI\n");
1993 return false;
1994 }
1995
1996 kvm_host_psci_config.version = psci_ops.get_version();
1997 kvm_host_psci_config.smccc_version = arm_smccc_get_version();
1998
1999 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2000 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2001 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2002 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2003 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2004 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2005 }
2006 return true;
2007 }
2008
init_subsystems(void)2009 static int __init init_subsystems(void)
2010 {
2011 int err = 0;
2012
2013 /*
2014 * Enable hardware so that subsystem initialisation can access EL2.
2015 */
2016 on_each_cpu(cpu_hyp_init, NULL, 1);
2017
2018 /*
2019 * Register CPU lower-power notifier
2020 */
2021 hyp_cpu_pm_init();
2022
2023 /*
2024 * Init HYP view of VGIC
2025 */
2026 err = kvm_vgic_hyp_init();
2027 switch (err) {
2028 case 0:
2029 vgic_present = true;
2030 break;
2031 case -ENODEV:
2032 case -ENXIO:
2033 vgic_present = false;
2034 err = 0;
2035 break;
2036 default:
2037 goto out;
2038 }
2039
2040 /*
2041 * Init HYP architected timer support
2042 */
2043 err = kvm_timer_hyp_init(vgic_present);
2044 if (err)
2045 goto out;
2046
2047 kvm_register_perf_callbacks(NULL);
2048
2049 out:
2050 if (err)
2051 hyp_cpu_pm_exit();
2052
2053 if (err || !is_protected_kvm_enabled())
2054 on_each_cpu(cpu_hyp_uninit, NULL, 1);
2055
2056 return err;
2057 }
2058
teardown_subsystems(void)2059 static void __init teardown_subsystems(void)
2060 {
2061 kvm_unregister_perf_callbacks();
2062 hyp_cpu_pm_exit();
2063 }
2064
teardown_hyp_mode(void)2065 static void __init teardown_hyp_mode(void)
2066 {
2067 int cpu;
2068
2069 free_hyp_pgds();
2070 for_each_possible_cpu(cpu) {
2071 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
2072 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2073 }
2074 }
2075
do_pkvm_init(u32 hyp_va_bits)2076 static int __init do_pkvm_init(u32 hyp_va_bits)
2077 {
2078 void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2079 int ret;
2080
2081 preempt_disable();
2082 cpu_hyp_init_context();
2083 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2084 num_possible_cpus(), kern_hyp_va(per_cpu_base),
2085 hyp_va_bits);
2086 cpu_hyp_init_features();
2087
2088 /*
2089 * The stub hypercalls are now disabled, so set our local flag to
2090 * prevent a later re-init attempt in kvm_arch_hardware_enable().
2091 */
2092 __this_cpu_write(kvm_hyp_initialized, 1);
2093 preempt_enable();
2094
2095 return ret;
2096 }
2097
get_hyp_id_aa64pfr0_el1(void)2098 static u64 get_hyp_id_aa64pfr0_el1(void)
2099 {
2100 /*
2101 * Track whether the system isn't affected by spectre/meltdown in the
2102 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2103 * Although this is per-CPU, we make it global for simplicity, e.g., not
2104 * to have to worry about vcpu migration.
2105 *
2106 * Unlike for non-protected VMs, userspace cannot override this for
2107 * protected VMs.
2108 */
2109 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2110
2111 val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2112 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2113
2114 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2115 arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2116 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2117 arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2118
2119 return val;
2120 }
2121
kvm_hyp_init_symbols(void)2122 static void kvm_hyp_init_symbols(void)
2123 {
2124 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2125 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2126 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2127 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2128 kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2129 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2130 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2131 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2132 kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2133 kvm_nvhe_sym(__icache_flags) = __icache_flags;
2134 kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2135 }
2136
kvm_hyp_init_protection(u32 hyp_va_bits)2137 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2138 {
2139 void *addr = phys_to_virt(hyp_mem_base);
2140 int ret;
2141
2142 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2143 if (ret)
2144 return ret;
2145
2146 ret = do_pkvm_init(hyp_va_bits);
2147 if (ret)
2148 return ret;
2149
2150 free_hyp_pgds();
2151
2152 return 0;
2153 }
2154
pkvm_hyp_init_ptrauth(void)2155 static void pkvm_hyp_init_ptrauth(void)
2156 {
2157 struct kvm_cpu_context *hyp_ctxt;
2158 int cpu;
2159
2160 for_each_possible_cpu(cpu) {
2161 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2162 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2163 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2164 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2165 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2166 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2167 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2168 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2169 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2170 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2171 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2172 }
2173 }
2174
2175 /* Inits Hyp-mode on all online CPUs */
init_hyp_mode(void)2176 static int __init init_hyp_mode(void)
2177 {
2178 u32 hyp_va_bits;
2179 int cpu;
2180 int err = -ENOMEM;
2181
2182 /*
2183 * The protected Hyp-mode cannot be initialized if the memory pool
2184 * allocation has failed.
2185 */
2186 if (is_protected_kvm_enabled() && !hyp_mem_base)
2187 goto out_err;
2188
2189 /*
2190 * Allocate Hyp PGD and setup Hyp identity mapping
2191 */
2192 err = kvm_mmu_init(&hyp_va_bits);
2193 if (err)
2194 goto out_err;
2195
2196 /*
2197 * Allocate stack pages for Hypervisor-mode
2198 */
2199 for_each_possible_cpu(cpu) {
2200 unsigned long stack_page;
2201
2202 stack_page = __get_free_page(GFP_KERNEL);
2203 if (!stack_page) {
2204 err = -ENOMEM;
2205 goto out_err;
2206 }
2207
2208 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
2209 }
2210
2211 /*
2212 * Allocate and initialize pages for Hypervisor-mode percpu regions.
2213 */
2214 for_each_possible_cpu(cpu) {
2215 struct page *page;
2216 void *page_addr;
2217
2218 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2219 if (!page) {
2220 err = -ENOMEM;
2221 goto out_err;
2222 }
2223
2224 page_addr = page_address(page);
2225 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2226 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2227 }
2228
2229 /*
2230 * Map the Hyp-code called directly from the host
2231 */
2232 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2233 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2234 if (err) {
2235 kvm_err("Cannot map world-switch code\n");
2236 goto out_err;
2237 }
2238
2239 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2240 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2241 if (err) {
2242 kvm_err("Cannot map .hyp.rodata section\n");
2243 goto out_err;
2244 }
2245
2246 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2247 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2248 if (err) {
2249 kvm_err("Cannot map rodata section\n");
2250 goto out_err;
2251 }
2252
2253 /*
2254 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2255 * section thanks to an assertion in the linker script. Map it RW and
2256 * the rest of .bss RO.
2257 */
2258 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2259 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2260 if (err) {
2261 kvm_err("Cannot map hyp bss section: %d\n", err);
2262 goto out_err;
2263 }
2264
2265 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2266 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2267 if (err) {
2268 kvm_err("Cannot map bss section\n");
2269 goto out_err;
2270 }
2271
2272 /*
2273 * Map the Hyp stack pages
2274 */
2275 for_each_possible_cpu(cpu) {
2276 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2277 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2278
2279 err = create_hyp_stack(__pa(stack_page), ¶ms->stack_hyp_va);
2280 if (err) {
2281 kvm_err("Cannot map hyp stack\n");
2282 goto out_err;
2283 }
2284
2285 /*
2286 * Save the stack PA in nvhe_init_params. This will be needed
2287 * to recreate the stack mapping in protected nVHE mode.
2288 * __hyp_pa() won't do the right thing there, since the stack
2289 * has been mapped in the flexible private VA space.
2290 */
2291 params->stack_pa = __pa(stack_page);
2292 }
2293
2294 for_each_possible_cpu(cpu) {
2295 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2296 char *percpu_end = percpu_begin + nvhe_percpu_size();
2297
2298 /* Map Hyp percpu pages */
2299 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2300 if (err) {
2301 kvm_err("Cannot map hyp percpu region\n");
2302 goto out_err;
2303 }
2304
2305 /* Prepare the CPU initialization parameters */
2306 cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2307 }
2308
2309 kvm_hyp_init_symbols();
2310
2311 if (is_protected_kvm_enabled()) {
2312 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2313 cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH))
2314 pkvm_hyp_init_ptrauth();
2315
2316 init_cpu_logical_map();
2317
2318 if (!init_psci_relay()) {
2319 err = -ENODEV;
2320 goto out_err;
2321 }
2322
2323 err = kvm_hyp_init_protection(hyp_va_bits);
2324 if (err) {
2325 kvm_err("Failed to init hyp memory protection\n");
2326 goto out_err;
2327 }
2328 }
2329
2330 return 0;
2331
2332 out_err:
2333 teardown_hyp_mode();
2334 kvm_err("error initializing Hyp mode: %d\n", err);
2335 return err;
2336 }
2337
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)2338 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2339 {
2340 struct kvm_vcpu *vcpu;
2341 unsigned long i;
2342
2343 mpidr &= MPIDR_HWID_BITMASK;
2344 kvm_for_each_vcpu(i, vcpu, kvm) {
2345 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2346 return vcpu;
2347 }
2348 return NULL;
2349 }
2350
kvm_arch_irqchip_in_kernel(struct kvm * kvm)2351 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2352 {
2353 return irqchip_in_kernel(kvm);
2354 }
2355
kvm_arch_has_irq_bypass(void)2356 bool kvm_arch_has_irq_bypass(void)
2357 {
2358 return true;
2359 }
2360
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2361 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2362 struct irq_bypass_producer *prod)
2363 {
2364 struct kvm_kernel_irqfd *irqfd =
2365 container_of(cons, struct kvm_kernel_irqfd, consumer);
2366
2367 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2368 &irqfd->irq_entry);
2369 }
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2370 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2371 struct irq_bypass_producer *prod)
2372 {
2373 struct kvm_kernel_irqfd *irqfd =
2374 container_of(cons, struct kvm_kernel_irqfd, consumer);
2375
2376 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2377 &irqfd->irq_entry);
2378 }
2379
kvm_arch_irq_bypass_stop(struct irq_bypass_consumer * cons)2380 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2381 {
2382 struct kvm_kernel_irqfd *irqfd =
2383 container_of(cons, struct kvm_kernel_irqfd, consumer);
2384
2385 kvm_arm_halt_guest(irqfd->kvm);
2386 }
2387
kvm_arch_irq_bypass_start(struct irq_bypass_consumer * cons)2388 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2389 {
2390 struct kvm_kernel_irqfd *irqfd =
2391 container_of(cons, struct kvm_kernel_irqfd, consumer);
2392
2393 kvm_arm_resume_guest(irqfd->kvm);
2394 }
2395
2396 /* Initialize Hyp-mode and memory mappings on all CPUs */
kvm_arm_init(void)2397 static __init int kvm_arm_init(void)
2398 {
2399 int err;
2400 bool in_hyp_mode;
2401
2402 if (!is_hyp_mode_available()) {
2403 kvm_info("HYP mode not available\n");
2404 return -ENODEV;
2405 }
2406
2407 if (kvm_get_mode() == KVM_MODE_NONE) {
2408 kvm_info("KVM disabled from command line\n");
2409 return -ENODEV;
2410 }
2411
2412 err = kvm_sys_reg_table_init();
2413 if (err) {
2414 kvm_info("Error initializing system register tables");
2415 return err;
2416 }
2417
2418 in_hyp_mode = is_kernel_in_hyp_mode();
2419
2420 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2421 cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2422 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2423 "Only trusted guests should be used on this system.\n");
2424
2425 err = kvm_set_ipa_limit();
2426 if (err)
2427 return err;
2428
2429 err = kvm_arm_init_sve();
2430 if (err)
2431 return err;
2432
2433 err = kvm_arm_vmid_alloc_init();
2434 if (err) {
2435 kvm_err("Failed to initialize VMID allocator.\n");
2436 return err;
2437 }
2438
2439 if (!in_hyp_mode) {
2440 err = init_hyp_mode();
2441 if (err)
2442 goto out_err;
2443 }
2444
2445 err = kvm_init_vector_slots();
2446 if (err) {
2447 kvm_err("Cannot initialise vector slots\n");
2448 goto out_hyp;
2449 }
2450
2451 err = init_subsystems();
2452 if (err)
2453 goto out_hyp;
2454
2455 if (is_protected_kvm_enabled()) {
2456 kvm_info("Protected nVHE mode initialized successfully\n");
2457 } else if (in_hyp_mode) {
2458 kvm_info("VHE mode initialized successfully\n");
2459 } else {
2460 kvm_info("Hyp mode initialized successfully\n");
2461 }
2462
2463 /*
2464 * FIXME: Do something reasonable if kvm_init() fails after pKVM
2465 * hypervisor protection is finalized.
2466 */
2467 err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2468 if (err)
2469 goto out_subs;
2470
2471 kvm_arm_initialised = true;
2472
2473 return 0;
2474
2475 out_subs:
2476 teardown_subsystems();
2477 out_hyp:
2478 if (!in_hyp_mode)
2479 teardown_hyp_mode();
2480 out_err:
2481 kvm_arm_vmid_alloc_free();
2482 return err;
2483 }
2484
early_kvm_mode_cfg(char * arg)2485 static int __init early_kvm_mode_cfg(char *arg)
2486 {
2487 if (!arg)
2488 return -EINVAL;
2489
2490 if (strcmp(arg, "none") == 0) {
2491 kvm_mode = KVM_MODE_NONE;
2492 return 0;
2493 }
2494
2495 if (!is_hyp_mode_available()) {
2496 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2497 return 0;
2498 }
2499
2500 if (strcmp(arg, "protected") == 0) {
2501 if (!is_kernel_in_hyp_mode())
2502 kvm_mode = KVM_MODE_PROTECTED;
2503 else
2504 pr_warn_once("Protected KVM not available with VHE\n");
2505
2506 return 0;
2507 }
2508
2509 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2510 kvm_mode = KVM_MODE_DEFAULT;
2511 return 0;
2512 }
2513
2514 if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2515 kvm_mode = KVM_MODE_NV;
2516 return 0;
2517 }
2518
2519 return -EINVAL;
2520 }
2521 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2522
kvm_get_mode(void)2523 enum kvm_mode kvm_get_mode(void)
2524 {
2525 return kvm_mode;
2526 }
2527
2528 module_init(kvm_arm_init);
2529