1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97 * Ordering of locks:
98 *
99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100 */
101
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109
110 static struct kmem_cache *kvm_vcpu_cache;
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118 static const struct file_operations stat_fops_per_vm;
119
120 static struct file_operations kvm_chardev_ops;
121
122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123 unsigned long arg);
124 #ifdef CONFIG_KVM_COMPAT
125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126 unsigned long arg);
127 #define KVM_COMPAT(c) .compat_ioctl = (c)
128 #else
129 /*
130 * For architectures that don't implement a compat infrastructure,
131 * adopt a double line of defense:
132 * - Prevent a compat task from opening /dev/kvm
133 * - If the open has been done by a 64bit task, and the KVM fd
134 * passed to a compat task, let the ioctls fail.
135 */
kvm_no_compat_ioctl(struct file * file,unsigned int ioctl,unsigned long arg)136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137 unsigned long arg) { return -EINVAL; }
138
kvm_no_compat_open(struct inode * inode,struct file * file)139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
140 {
141 return is_compat_task() ? -ENODEV : 0;
142 }
143 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
144 .open = kvm_no_compat_open
145 #endif
146 static int hardware_enable_all(void);
147 static void hardware_disable_all(void);
148
149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
150
151 __visible bool kvm_rebooting;
152 EXPORT_SYMBOL_GPL(kvm_rebooting);
153
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159
160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
161
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
163 unsigned long start, unsigned long end)
164 {
165 }
166
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
168 {
169 }
170
kvm_is_zone_device_page(struct page * page)171 bool kvm_is_zone_device_page(struct page *page)
172 {
173 /*
174 * The metadata used by is_zone_device_page() to determine whether or
175 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
176 * the device has been pinned, e.g. by get_user_pages(). WARN if the
177 * page_count() is zero to help detect bad usage of this helper.
178 */
179 if (WARN_ON_ONCE(!page_count(page)))
180 return false;
181
182 return is_zone_device_page(page);
183 }
184
185 /*
186 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
187 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types
188 * is likely incomplete, it has been compiled purely through people wanting to
189 * back guest with a certain type of memory and encountering issues.
190 */
kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)191 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
192 {
193 struct page *page;
194
195 if (!pfn_valid(pfn))
196 return NULL;
197
198 page = pfn_to_page(pfn);
199 if (!PageReserved(page))
200 return page;
201
202 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
203 if (is_zero_pfn(pfn))
204 return page;
205
206 /*
207 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
208 * perspective they are "normal" pages, albeit with slightly different
209 * usage rules.
210 */
211 if (kvm_is_zone_device_page(page))
212 return page;
213
214 return NULL;
215 }
216
217 /*
218 * Switches to specified vcpu, until a matching vcpu_put()
219 */
vcpu_load(struct kvm_vcpu * vcpu)220 void vcpu_load(struct kvm_vcpu *vcpu)
221 {
222 int cpu = get_cpu();
223
224 __this_cpu_write(kvm_running_vcpu, vcpu);
225 preempt_notifier_register(&vcpu->preempt_notifier);
226 kvm_arch_vcpu_load(vcpu, cpu);
227 put_cpu();
228 }
229 EXPORT_SYMBOL_GPL(vcpu_load);
230
vcpu_put(struct kvm_vcpu * vcpu)231 void vcpu_put(struct kvm_vcpu *vcpu)
232 {
233 preempt_disable();
234 kvm_arch_vcpu_put(vcpu);
235 preempt_notifier_unregister(&vcpu->preempt_notifier);
236 __this_cpu_write(kvm_running_vcpu, NULL);
237 preempt_enable();
238 }
239 EXPORT_SYMBOL_GPL(vcpu_put);
240
241 /* TODO: merge with kvm_arch_vcpu_should_kick */
kvm_request_needs_ipi(struct kvm_vcpu * vcpu,unsigned req)242 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
243 {
244 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
245
246 /*
247 * We need to wait for the VCPU to reenable interrupts and get out of
248 * READING_SHADOW_PAGE_TABLES mode.
249 */
250 if (req & KVM_REQUEST_WAIT)
251 return mode != OUTSIDE_GUEST_MODE;
252
253 /*
254 * Need to kick a running VCPU, but otherwise there is nothing to do.
255 */
256 return mode == IN_GUEST_MODE;
257 }
258
ack_kick(void * _completed)259 static void ack_kick(void *_completed)
260 {
261 }
262
kvm_kick_many_cpus(struct cpumask * cpus,bool wait)263 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
264 {
265 if (cpumask_empty(cpus))
266 return false;
267
268 smp_call_function_many(cpus, ack_kick, NULL, wait);
269 return true;
270 }
271
kvm_make_vcpu_request(struct kvm_vcpu * vcpu,unsigned int req,struct cpumask * tmp,int current_cpu)272 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
273 struct cpumask *tmp, int current_cpu)
274 {
275 int cpu;
276
277 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
278 __kvm_make_request(req, vcpu);
279
280 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
281 return;
282
283 /*
284 * Note, the vCPU could get migrated to a different pCPU at any point
285 * after kvm_request_needs_ipi(), which could result in sending an IPI
286 * to the previous pCPU. But, that's OK because the purpose of the IPI
287 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
288 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
289 * after this point is also OK, as the requirement is only that KVM wait
290 * for vCPUs that were reading SPTEs _before_ any changes were
291 * finalized. See kvm_vcpu_kick() for more details on handling requests.
292 */
293 if (kvm_request_needs_ipi(vcpu, req)) {
294 cpu = READ_ONCE(vcpu->cpu);
295 if (cpu != -1 && cpu != current_cpu)
296 __cpumask_set_cpu(cpu, tmp);
297 }
298 }
299
kvm_make_vcpus_request_mask(struct kvm * kvm,unsigned int req,unsigned long * vcpu_bitmap)300 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
301 unsigned long *vcpu_bitmap)
302 {
303 struct kvm_vcpu *vcpu;
304 struct cpumask *cpus;
305 int i, me;
306 bool called;
307
308 me = get_cpu();
309
310 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
311 cpumask_clear(cpus);
312
313 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
314 vcpu = kvm_get_vcpu(kvm, i);
315 if (!vcpu)
316 continue;
317 kvm_make_vcpu_request(vcpu, req, cpus, me);
318 }
319
320 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
321 put_cpu();
322
323 return called;
324 }
325
kvm_make_all_cpus_request_except(struct kvm * kvm,unsigned int req,struct kvm_vcpu * except)326 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
327 struct kvm_vcpu *except)
328 {
329 struct kvm_vcpu *vcpu;
330 struct cpumask *cpus;
331 unsigned long i;
332 bool called;
333 int me;
334
335 me = get_cpu();
336
337 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
338 cpumask_clear(cpus);
339
340 kvm_for_each_vcpu(i, vcpu, kvm) {
341 if (vcpu == except)
342 continue;
343 kvm_make_vcpu_request(vcpu, req, cpus, me);
344 }
345
346 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
347 put_cpu();
348
349 return called;
350 }
351
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)352 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
353 {
354 return kvm_make_all_cpus_request_except(kvm, req, NULL);
355 }
356 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
357
358 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
kvm_flush_remote_tlbs(struct kvm * kvm)359 void kvm_flush_remote_tlbs(struct kvm *kvm)
360 {
361 ++kvm->stat.generic.remote_tlb_flush_requests;
362
363 /*
364 * We want to publish modifications to the page tables before reading
365 * mode. Pairs with a memory barrier in arch-specific code.
366 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
367 * and smp_mb in walk_shadow_page_lockless_begin/end.
368 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
369 *
370 * There is already an smp_mb__after_atomic() before
371 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
372 * barrier here.
373 */
374 if (!kvm_arch_flush_remote_tlb(kvm)
375 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
376 ++kvm->stat.generic.remote_tlb_flush;
377 }
378 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
379 #endif
380
kvm_flush_shadow_all(struct kvm * kvm)381 static void kvm_flush_shadow_all(struct kvm *kvm)
382 {
383 kvm_arch_flush_shadow_all(kvm);
384 kvm_arch_guest_memory_reclaimed(kvm);
385 }
386
387 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache * mc,gfp_t gfp_flags)388 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
389 gfp_t gfp_flags)
390 {
391 gfp_flags |= mc->gfp_zero;
392
393 if (mc->kmem_cache)
394 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
395 else
396 return (void *)__get_free_page(gfp_flags);
397 }
398
__kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int capacity,int min)399 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
400 {
401 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
402 void *obj;
403
404 if (mc->nobjs >= min)
405 return 0;
406
407 if (unlikely(!mc->objects)) {
408 if (WARN_ON_ONCE(!capacity))
409 return -EIO;
410
411 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
412 if (!mc->objects)
413 return -ENOMEM;
414
415 mc->capacity = capacity;
416 }
417
418 /* It is illegal to request a different capacity across topups. */
419 if (WARN_ON_ONCE(mc->capacity != capacity))
420 return -EIO;
421
422 while (mc->nobjs < mc->capacity) {
423 obj = mmu_memory_cache_alloc_obj(mc, gfp);
424 if (!obj)
425 return mc->nobjs >= min ? 0 : -ENOMEM;
426 mc->objects[mc->nobjs++] = obj;
427 }
428 return 0;
429 }
430
kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int min)431 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
432 {
433 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
434 }
435
kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache * mc)436 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
437 {
438 return mc->nobjs;
439 }
440
kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)441 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
442 {
443 while (mc->nobjs) {
444 if (mc->kmem_cache)
445 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
446 else
447 free_page((unsigned long)mc->objects[--mc->nobjs]);
448 }
449
450 kvfree(mc->objects);
451
452 mc->objects = NULL;
453 mc->capacity = 0;
454 }
455
kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)456 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
457 {
458 void *p;
459
460 if (WARN_ON(!mc->nobjs))
461 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
462 else
463 p = mc->objects[--mc->nobjs];
464 BUG_ON(!p);
465 return p;
466 }
467 #endif
468
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)469 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
470 {
471 mutex_init(&vcpu->mutex);
472 vcpu->cpu = -1;
473 vcpu->kvm = kvm;
474 vcpu->vcpu_id = id;
475 vcpu->pid = NULL;
476 #ifndef __KVM_HAVE_ARCH_WQP
477 rcuwait_init(&vcpu->wait);
478 #endif
479 kvm_async_pf_vcpu_init(vcpu);
480
481 kvm_vcpu_set_in_spin_loop(vcpu, false);
482 kvm_vcpu_set_dy_eligible(vcpu, false);
483 vcpu->preempted = false;
484 vcpu->ready = false;
485 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
486 vcpu->last_used_slot = NULL;
487
488 /* Fill the stats id string for the vcpu */
489 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
490 task_pid_nr(current), id);
491 }
492
kvm_vcpu_destroy(struct kvm_vcpu * vcpu)493 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
494 {
495 kvm_arch_vcpu_destroy(vcpu);
496 kvm_dirty_ring_free(&vcpu->dirty_ring);
497
498 /*
499 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
500 * the vcpu->pid pointer, and at destruction time all file descriptors
501 * are already gone.
502 */
503 put_pid(rcu_dereference_protected(vcpu->pid, 1));
504
505 free_page((unsigned long)vcpu->run);
506 kmem_cache_free(kvm_vcpu_cache, vcpu);
507 }
508
kvm_destroy_vcpus(struct kvm * kvm)509 void kvm_destroy_vcpus(struct kvm *kvm)
510 {
511 unsigned long i;
512 struct kvm_vcpu *vcpu;
513
514 kvm_for_each_vcpu(i, vcpu, kvm) {
515 kvm_vcpu_destroy(vcpu);
516 xa_erase(&kvm->vcpu_array, i);
517 }
518
519 atomic_set(&kvm->online_vcpus, 0);
520 }
521 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
522
523 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_to_kvm(struct mmu_notifier * mn)524 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
525 {
526 return container_of(mn, struct kvm, mmu_notifier);
527 }
528
kvm_mmu_notifier_invalidate_range(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)529 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
530 struct mm_struct *mm,
531 unsigned long start, unsigned long end)
532 {
533 struct kvm *kvm = mmu_notifier_to_kvm(mn);
534 int idx;
535
536 idx = srcu_read_lock(&kvm->srcu);
537 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
538 srcu_read_unlock(&kvm->srcu, idx);
539 }
540
541 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
542
543 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
544 unsigned long end);
545
546 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
547
548 struct kvm_hva_range {
549 unsigned long start;
550 unsigned long end;
551 pte_t pte;
552 hva_handler_t handler;
553 on_lock_fn_t on_lock;
554 on_unlock_fn_t on_unlock;
555 bool flush_on_ret;
556 bool may_block;
557 };
558
559 /*
560 * Use a dedicated stub instead of NULL to indicate that there is no callback
561 * function/handler. The compiler technically can't guarantee that a real
562 * function will have a non-zero address, and so it will generate code to
563 * check for !NULL, whereas comparing against a stub will be elided at compile
564 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
565 */
kvm_null_fn(void)566 static void kvm_null_fn(void)
567 {
568
569 }
570 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
571
572 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
573 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
574 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
575 node; \
576 node = interval_tree_iter_next(node, start, last)) \
577
__kvm_handle_hva_range(struct kvm * kvm,const struct kvm_hva_range * range)578 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
579 const struct kvm_hva_range *range)
580 {
581 bool ret = false, locked = false;
582 struct kvm_gfn_range gfn_range;
583 struct kvm_memory_slot *slot;
584 struct kvm_memslots *slots;
585 int i, idx;
586
587 if (WARN_ON_ONCE(range->end <= range->start))
588 return 0;
589
590 /* A null handler is allowed if and only if on_lock() is provided. */
591 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
592 IS_KVM_NULL_FN(range->handler)))
593 return 0;
594
595 idx = srcu_read_lock(&kvm->srcu);
596
597 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
598 struct interval_tree_node *node;
599
600 slots = __kvm_memslots(kvm, i);
601 kvm_for_each_memslot_in_hva_range(node, slots,
602 range->start, range->end - 1) {
603 unsigned long hva_start, hva_end;
604
605 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
606 hva_start = max(range->start, slot->userspace_addr);
607 hva_end = min(range->end, slot->userspace_addr +
608 (slot->npages << PAGE_SHIFT));
609
610 /*
611 * To optimize for the likely case where the address
612 * range is covered by zero or one memslots, don't
613 * bother making these conditional (to avoid writes on
614 * the second or later invocation of the handler).
615 */
616 gfn_range.pte = range->pte;
617 gfn_range.may_block = range->may_block;
618
619 /*
620 * {gfn(page) | page intersects with [hva_start, hva_end)} =
621 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
622 */
623 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
624 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
625 gfn_range.slot = slot;
626
627 if (!locked) {
628 locked = true;
629 KVM_MMU_LOCK(kvm);
630 if (!IS_KVM_NULL_FN(range->on_lock))
631 range->on_lock(kvm, range->start, range->end);
632 if (IS_KVM_NULL_FN(range->handler))
633 break;
634 }
635 ret |= range->handler(kvm, &gfn_range);
636 }
637 }
638
639 if (range->flush_on_ret && ret)
640 kvm_flush_remote_tlbs(kvm);
641
642 if (locked) {
643 KVM_MMU_UNLOCK(kvm);
644 if (!IS_KVM_NULL_FN(range->on_unlock))
645 range->on_unlock(kvm);
646 }
647
648 srcu_read_unlock(&kvm->srcu, idx);
649
650 /* The notifiers are averse to booleans. :-( */
651 return (int)ret;
652 }
653
kvm_handle_hva_range(struct mmu_notifier * mn,unsigned long start,unsigned long end,pte_t pte,hva_handler_t handler)654 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
655 unsigned long start,
656 unsigned long end,
657 pte_t pte,
658 hva_handler_t handler)
659 {
660 struct kvm *kvm = mmu_notifier_to_kvm(mn);
661 const struct kvm_hva_range range = {
662 .start = start,
663 .end = end,
664 .pte = pte,
665 .handler = handler,
666 .on_lock = (void *)kvm_null_fn,
667 .on_unlock = (void *)kvm_null_fn,
668 .flush_on_ret = true,
669 .may_block = false,
670 };
671
672 return __kvm_handle_hva_range(kvm, &range);
673 }
674
kvm_handle_hva_range_no_flush(struct mmu_notifier * mn,unsigned long start,unsigned long end,hva_handler_t handler)675 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
676 unsigned long start,
677 unsigned long end,
678 hva_handler_t handler)
679 {
680 struct kvm *kvm = mmu_notifier_to_kvm(mn);
681 const struct kvm_hva_range range = {
682 .start = start,
683 .end = end,
684 .pte = __pte(0),
685 .handler = handler,
686 .on_lock = (void *)kvm_null_fn,
687 .on_unlock = (void *)kvm_null_fn,
688 .flush_on_ret = false,
689 .may_block = false,
690 };
691
692 return __kvm_handle_hva_range(kvm, &range);
693 }
kvm_mmu_notifier_change_pte(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address,pte_t pte)694 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
695 struct mm_struct *mm,
696 unsigned long address,
697 pte_t pte)
698 {
699 struct kvm *kvm = mmu_notifier_to_kvm(mn);
700
701 trace_kvm_set_spte_hva(address);
702
703 /*
704 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
705 * If mmu_invalidate_in_progress is zero, then no in-progress
706 * invalidations, including this one, found a relevant memslot at
707 * start(); rechecking memslots here is unnecessary. Note, a false
708 * positive (count elevated by a different invalidation) is sub-optimal
709 * but functionally ok.
710 */
711 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
712 if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
713 return;
714
715 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
716 }
717
kvm_mmu_invalidate_begin(struct kvm * kvm,unsigned long start,unsigned long end)718 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
719 unsigned long end)
720 {
721 /*
722 * The count increase must become visible at unlock time as no
723 * spte can be established without taking the mmu_lock and
724 * count is also read inside the mmu_lock critical section.
725 */
726 kvm->mmu_invalidate_in_progress++;
727 if (likely(kvm->mmu_invalidate_in_progress == 1)) {
728 kvm->mmu_invalidate_range_start = start;
729 kvm->mmu_invalidate_range_end = end;
730 } else {
731 /*
732 * Fully tracking multiple concurrent ranges has diminishing
733 * returns. Keep things simple and just find the minimal range
734 * which includes the current and new ranges. As there won't be
735 * enough information to subtract a range after its invalidate
736 * completes, any ranges invalidated concurrently will
737 * accumulate and persist until all outstanding invalidates
738 * complete.
739 */
740 kvm->mmu_invalidate_range_start =
741 min(kvm->mmu_invalidate_range_start, start);
742 kvm->mmu_invalidate_range_end =
743 max(kvm->mmu_invalidate_range_end, end);
744 }
745 }
746
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,const struct mmu_notifier_range * range)747 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
748 const struct mmu_notifier_range *range)
749 {
750 struct kvm *kvm = mmu_notifier_to_kvm(mn);
751 const struct kvm_hva_range hva_range = {
752 .start = range->start,
753 .end = range->end,
754 .pte = __pte(0),
755 .handler = kvm_unmap_gfn_range,
756 .on_lock = kvm_mmu_invalidate_begin,
757 .on_unlock = kvm_arch_guest_memory_reclaimed,
758 .flush_on_ret = true,
759 .may_block = mmu_notifier_range_blockable(range),
760 };
761
762 trace_kvm_unmap_hva_range(range->start, range->end);
763
764 /*
765 * Prevent memslot modification between range_start() and range_end()
766 * so that conditionally locking provides the same result in both
767 * functions. Without that guarantee, the mmu_invalidate_in_progress
768 * adjustments will be imbalanced.
769 *
770 * Pairs with the decrement in range_end().
771 */
772 spin_lock(&kvm->mn_invalidate_lock);
773 kvm->mn_active_invalidate_count++;
774 spin_unlock(&kvm->mn_invalidate_lock);
775
776 /*
777 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
778 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
779 * each cache's lock. There are relatively few caches in existence at
780 * any given time, and the caches themselves can check for hva overlap,
781 * i.e. don't need to rely on memslot overlap checks for performance.
782 * Because this runs without holding mmu_lock, the pfn caches must use
783 * mn_active_invalidate_count (see above) instead of
784 * mmu_invalidate_in_progress.
785 */
786 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
787 hva_range.may_block);
788
789 __kvm_handle_hva_range(kvm, &hva_range);
790
791 return 0;
792 }
793
kvm_mmu_invalidate_end(struct kvm * kvm,unsigned long start,unsigned long end)794 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
795 unsigned long end)
796 {
797 /*
798 * This sequence increase will notify the kvm page fault that
799 * the page that is going to be mapped in the spte could have
800 * been freed.
801 */
802 kvm->mmu_invalidate_seq++;
803 smp_wmb();
804 /*
805 * The above sequence increase must be visible before the
806 * below count decrease, which is ensured by the smp_wmb above
807 * in conjunction with the smp_rmb in mmu_invalidate_retry().
808 */
809 kvm->mmu_invalidate_in_progress--;
810 }
811
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,const struct mmu_notifier_range * range)812 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
813 const struct mmu_notifier_range *range)
814 {
815 struct kvm *kvm = mmu_notifier_to_kvm(mn);
816 const struct kvm_hva_range hva_range = {
817 .start = range->start,
818 .end = range->end,
819 .pte = __pte(0),
820 .handler = (void *)kvm_null_fn,
821 .on_lock = kvm_mmu_invalidate_end,
822 .on_unlock = (void *)kvm_null_fn,
823 .flush_on_ret = false,
824 .may_block = mmu_notifier_range_blockable(range),
825 };
826 bool wake;
827
828 __kvm_handle_hva_range(kvm, &hva_range);
829
830 /* Pairs with the increment in range_start(). */
831 spin_lock(&kvm->mn_invalidate_lock);
832 wake = (--kvm->mn_active_invalidate_count == 0);
833 spin_unlock(&kvm->mn_invalidate_lock);
834
835 /*
836 * There can only be one waiter, since the wait happens under
837 * slots_lock.
838 */
839 if (wake)
840 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
841
842 BUG_ON(kvm->mmu_invalidate_in_progress < 0);
843 }
844
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)845 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
846 struct mm_struct *mm,
847 unsigned long start,
848 unsigned long end)
849 {
850 trace_kvm_age_hva(start, end);
851
852 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
853 }
854
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)855 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
856 struct mm_struct *mm,
857 unsigned long start,
858 unsigned long end)
859 {
860 trace_kvm_age_hva(start, end);
861
862 /*
863 * Even though we do not flush TLB, this will still adversely
864 * affect performance on pre-Haswell Intel EPT, where there is
865 * no EPT Access Bit to clear so that we have to tear down EPT
866 * tables instead. If we find this unacceptable, we can always
867 * add a parameter to kvm_age_hva so that it effectively doesn't
868 * do anything on clear_young.
869 *
870 * Also note that currently we never issue secondary TLB flushes
871 * from clear_young, leaving this job up to the regular system
872 * cadence. If we find this inaccurate, we might come up with a
873 * more sophisticated heuristic later.
874 */
875 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
876 }
877
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)878 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
879 struct mm_struct *mm,
880 unsigned long address)
881 {
882 trace_kvm_test_age_hva(address);
883
884 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
885 kvm_test_age_gfn);
886 }
887
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)888 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
889 struct mm_struct *mm)
890 {
891 struct kvm *kvm = mmu_notifier_to_kvm(mn);
892 int idx;
893
894 idx = srcu_read_lock(&kvm->srcu);
895 kvm_flush_shadow_all(kvm);
896 srcu_read_unlock(&kvm->srcu, idx);
897 }
898
899 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
900 .invalidate_range = kvm_mmu_notifier_invalidate_range,
901 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
902 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
903 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
904 .clear_young = kvm_mmu_notifier_clear_young,
905 .test_young = kvm_mmu_notifier_test_young,
906 .change_pte = kvm_mmu_notifier_change_pte,
907 .release = kvm_mmu_notifier_release,
908 };
909
kvm_init_mmu_notifier(struct kvm * kvm)910 static int kvm_init_mmu_notifier(struct kvm *kvm)
911 {
912 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
913 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
914 }
915
916 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
917
kvm_init_mmu_notifier(struct kvm * kvm)918 static int kvm_init_mmu_notifier(struct kvm *kvm)
919 {
920 return 0;
921 }
922
923 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
924
925 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_pm_notifier_call(struct notifier_block * bl,unsigned long state,void * unused)926 static int kvm_pm_notifier_call(struct notifier_block *bl,
927 unsigned long state,
928 void *unused)
929 {
930 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
931
932 return kvm_arch_pm_notifier(kvm, state);
933 }
934
kvm_init_pm_notifier(struct kvm * kvm)935 static void kvm_init_pm_notifier(struct kvm *kvm)
936 {
937 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
938 /* Suspend KVM before we suspend ftrace, RCU, etc. */
939 kvm->pm_notifier.priority = INT_MAX;
940 register_pm_notifier(&kvm->pm_notifier);
941 }
942
kvm_destroy_pm_notifier(struct kvm * kvm)943 static void kvm_destroy_pm_notifier(struct kvm *kvm)
944 {
945 unregister_pm_notifier(&kvm->pm_notifier);
946 }
947 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
kvm_init_pm_notifier(struct kvm * kvm)948 static void kvm_init_pm_notifier(struct kvm *kvm)
949 {
950 }
951
kvm_destroy_pm_notifier(struct kvm * kvm)952 static void kvm_destroy_pm_notifier(struct kvm *kvm)
953 {
954 }
955 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
956
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)957 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
958 {
959 if (!memslot->dirty_bitmap)
960 return;
961
962 kvfree(memslot->dirty_bitmap);
963 memslot->dirty_bitmap = NULL;
964 }
965
966 /* This does not remove the slot from struct kvm_memslots data structures */
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)967 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
968 {
969 kvm_destroy_dirty_bitmap(slot);
970
971 kvm_arch_free_memslot(kvm, slot);
972
973 kfree(slot);
974 }
975
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)976 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
977 {
978 struct hlist_node *idnode;
979 struct kvm_memory_slot *memslot;
980 int bkt;
981
982 /*
983 * The same memslot objects live in both active and inactive sets,
984 * arbitrarily free using index '1' so the second invocation of this
985 * function isn't operating over a structure with dangling pointers
986 * (even though this function isn't actually touching them).
987 */
988 if (!slots->node_idx)
989 return;
990
991 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
992 kvm_free_memslot(kvm, memslot);
993 }
994
kvm_stats_debugfs_mode(const struct _kvm_stats_desc * pdesc)995 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
996 {
997 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
998 case KVM_STATS_TYPE_INSTANT:
999 return 0444;
1000 case KVM_STATS_TYPE_CUMULATIVE:
1001 case KVM_STATS_TYPE_PEAK:
1002 default:
1003 return 0644;
1004 }
1005 }
1006
1007
kvm_destroy_vm_debugfs(struct kvm * kvm)1008 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1009 {
1010 int i;
1011 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1012 kvm_vcpu_stats_header.num_desc;
1013
1014 if (IS_ERR(kvm->debugfs_dentry))
1015 return;
1016
1017 debugfs_remove_recursive(kvm->debugfs_dentry);
1018
1019 if (kvm->debugfs_stat_data) {
1020 for (i = 0; i < kvm_debugfs_num_entries; i++)
1021 kfree(kvm->debugfs_stat_data[i]);
1022 kfree(kvm->debugfs_stat_data);
1023 }
1024 }
1025
kvm_create_vm_debugfs(struct kvm * kvm,const char * fdname)1026 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1027 {
1028 static DEFINE_MUTEX(kvm_debugfs_lock);
1029 struct dentry *dent;
1030 char dir_name[ITOA_MAX_LEN * 2];
1031 struct kvm_stat_data *stat_data;
1032 const struct _kvm_stats_desc *pdesc;
1033 int i, ret = -ENOMEM;
1034 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1035 kvm_vcpu_stats_header.num_desc;
1036
1037 if (!debugfs_initialized())
1038 return 0;
1039
1040 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1041 mutex_lock(&kvm_debugfs_lock);
1042 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1043 if (dent) {
1044 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1045 dput(dent);
1046 mutex_unlock(&kvm_debugfs_lock);
1047 return 0;
1048 }
1049 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1050 mutex_unlock(&kvm_debugfs_lock);
1051 if (IS_ERR(dent))
1052 return 0;
1053
1054 kvm->debugfs_dentry = dent;
1055 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1056 sizeof(*kvm->debugfs_stat_data),
1057 GFP_KERNEL_ACCOUNT);
1058 if (!kvm->debugfs_stat_data)
1059 goto out_err;
1060
1061 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1062 pdesc = &kvm_vm_stats_desc[i];
1063 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1064 if (!stat_data)
1065 goto out_err;
1066
1067 stat_data->kvm = kvm;
1068 stat_data->desc = pdesc;
1069 stat_data->kind = KVM_STAT_VM;
1070 kvm->debugfs_stat_data[i] = stat_data;
1071 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1072 kvm->debugfs_dentry, stat_data,
1073 &stat_fops_per_vm);
1074 }
1075
1076 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1077 pdesc = &kvm_vcpu_stats_desc[i];
1078 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1079 if (!stat_data)
1080 goto out_err;
1081
1082 stat_data->kvm = kvm;
1083 stat_data->desc = pdesc;
1084 stat_data->kind = KVM_STAT_VCPU;
1085 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1086 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1087 kvm->debugfs_dentry, stat_data,
1088 &stat_fops_per_vm);
1089 }
1090
1091 ret = kvm_arch_create_vm_debugfs(kvm);
1092 if (ret)
1093 goto out_err;
1094
1095 return 0;
1096 out_err:
1097 kvm_destroy_vm_debugfs(kvm);
1098 return ret;
1099 }
1100
1101 /*
1102 * Called after the VM is otherwise initialized, but just before adding it to
1103 * the vm_list.
1104 */
kvm_arch_post_init_vm(struct kvm * kvm)1105 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1106 {
1107 return 0;
1108 }
1109
1110 /*
1111 * Called just after removing the VM from the vm_list, but before doing any
1112 * other destruction.
1113 */
kvm_arch_pre_destroy_vm(struct kvm * kvm)1114 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1115 {
1116 }
1117
1118 /*
1119 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1120 * be setup already, so we can create arch-specific debugfs entries under it.
1121 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1122 * a per-arch destroy interface is not needed.
1123 */
kvm_arch_create_vm_debugfs(struct kvm * kvm)1124 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1125 {
1126 return 0;
1127 }
1128
kvm_create_vm(unsigned long type,const char * fdname)1129 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1130 {
1131 struct kvm *kvm = kvm_arch_alloc_vm();
1132 struct kvm_memslots *slots;
1133 int r = -ENOMEM;
1134 int i, j;
1135
1136 if (!kvm)
1137 return ERR_PTR(-ENOMEM);
1138
1139 /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1140 __module_get(kvm_chardev_ops.owner);
1141
1142 KVM_MMU_LOCK_INIT(kvm);
1143 mmgrab(current->mm);
1144 kvm->mm = current->mm;
1145 kvm_eventfd_init(kvm);
1146 mutex_init(&kvm->lock);
1147 mutex_init(&kvm->irq_lock);
1148 mutex_init(&kvm->slots_lock);
1149 mutex_init(&kvm->slots_arch_lock);
1150 spin_lock_init(&kvm->mn_invalidate_lock);
1151 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1152 xa_init(&kvm->vcpu_array);
1153
1154 INIT_LIST_HEAD(&kvm->gpc_list);
1155 spin_lock_init(&kvm->gpc_lock);
1156
1157 INIT_LIST_HEAD(&kvm->devices);
1158 kvm->max_vcpus = KVM_MAX_VCPUS;
1159
1160 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1161
1162 /*
1163 * Force subsequent debugfs file creations to fail if the VM directory
1164 * is not created (by kvm_create_vm_debugfs()).
1165 */
1166 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1167
1168 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1169 task_pid_nr(current));
1170
1171 if (init_srcu_struct(&kvm->srcu))
1172 goto out_err_no_srcu;
1173 if (init_srcu_struct(&kvm->irq_srcu))
1174 goto out_err_no_irq_srcu;
1175
1176 refcount_set(&kvm->users_count, 1);
1177 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1178 for (j = 0; j < 2; j++) {
1179 slots = &kvm->__memslots[i][j];
1180
1181 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1182 slots->hva_tree = RB_ROOT_CACHED;
1183 slots->gfn_tree = RB_ROOT;
1184 hash_init(slots->id_hash);
1185 slots->node_idx = j;
1186
1187 /* Generations must be different for each address space. */
1188 slots->generation = i;
1189 }
1190
1191 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1192 }
1193
1194 for (i = 0; i < KVM_NR_BUSES; i++) {
1195 rcu_assign_pointer(kvm->buses[i],
1196 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1197 if (!kvm->buses[i])
1198 goto out_err_no_arch_destroy_vm;
1199 }
1200
1201 r = kvm_arch_init_vm(kvm, type);
1202 if (r)
1203 goto out_err_no_arch_destroy_vm;
1204
1205 r = hardware_enable_all();
1206 if (r)
1207 goto out_err_no_disable;
1208
1209 #ifdef CONFIG_HAVE_KVM_IRQFD
1210 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1211 #endif
1212
1213 r = kvm_init_mmu_notifier(kvm);
1214 if (r)
1215 goto out_err_no_mmu_notifier;
1216
1217 r = kvm_coalesced_mmio_init(kvm);
1218 if (r < 0)
1219 goto out_no_coalesced_mmio;
1220
1221 r = kvm_create_vm_debugfs(kvm, fdname);
1222 if (r)
1223 goto out_err_no_debugfs;
1224
1225 r = kvm_arch_post_init_vm(kvm);
1226 if (r)
1227 goto out_err;
1228
1229 mutex_lock(&kvm_lock);
1230 list_add(&kvm->vm_list, &vm_list);
1231 mutex_unlock(&kvm_lock);
1232
1233 preempt_notifier_inc();
1234 kvm_init_pm_notifier(kvm);
1235
1236 return kvm;
1237
1238 out_err:
1239 kvm_destroy_vm_debugfs(kvm);
1240 out_err_no_debugfs:
1241 kvm_coalesced_mmio_free(kvm);
1242 out_no_coalesced_mmio:
1243 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1244 if (kvm->mmu_notifier.ops)
1245 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1246 #endif
1247 out_err_no_mmu_notifier:
1248 hardware_disable_all();
1249 out_err_no_disable:
1250 kvm_arch_destroy_vm(kvm);
1251 out_err_no_arch_destroy_vm:
1252 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1253 for (i = 0; i < KVM_NR_BUSES; i++)
1254 kfree(kvm_get_bus(kvm, i));
1255 cleanup_srcu_struct(&kvm->irq_srcu);
1256 out_err_no_irq_srcu:
1257 cleanup_srcu_struct(&kvm->srcu);
1258 out_err_no_srcu:
1259 kvm_arch_free_vm(kvm);
1260 mmdrop(current->mm);
1261 module_put(kvm_chardev_ops.owner);
1262 return ERR_PTR(r);
1263 }
1264
kvm_destroy_devices(struct kvm * kvm)1265 static void kvm_destroy_devices(struct kvm *kvm)
1266 {
1267 struct kvm_device *dev, *tmp;
1268
1269 /*
1270 * We do not need to take the kvm->lock here, because nobody else
1271 * has a reference to the struct kvm at this point and therefore
1272 * cannot access the devices list anyhow.
1273 */
1274 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1275 list_del(&dev->vm_node);
1276 dev->ops->destroy(dev);
1277 }
1278 }
1279
kvm_destroy_vm(struct kvm * kvm)1280 static void kvm_destroy_vm(struct kvm *kvm)
1281 {
1282 int i;
1283 struct mm_struct *mm = kvm->mm;
1284
1285 kvm_destroy_pm_notifier(kvm);
1286 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1287 kvm_destroy_vm_debugfs(kvm);
1288 kvm_arch_sync_events(kvm);
1289 mutex_lock(&kvm_lock);
1290 list_del(&kvm->vm_list);
1291 mutex_unlock(&kvm_lock);
1292 kvm_arch_pre_destroy_vm(kvm);
1293
1294 kvm_free_irq_routing(kvm);
1295 for (i = 0; i < KVM_NR_BUSES; i++) {
1296 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1297
1298 if (bus)
1299 kvm_io_bus_destroy(bus);
1300 kvm->buses[i] = NULL;
1301 }
1302 kvm_coalesced_mmio_free(kvm);
1303 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1304 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1305 /*
1306 * At this point, pending calls to invalidate_range_start()
1307 * have completed but no more MMU notifiers will run, so
1308 * mn_active_invalidate_count may remain unbalanced.
1309 * No threads can be waiting in install_new_memslots as the
1310 * last reference on KVM has been dropped, but freeing
1311 * memslots would deadlock without this manual intervention.
1312 */
1313 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1314 kvm->mn_active_invalidate_count = 0;
1315 #else
1316 kvm_flush_shadow_all(kvm);
1317 #endif
1318 kvm_arch_destroy_vm(kvm);
1319 kvm_destroy_devices(kvm);
1320 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1321 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1322 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1323 }
1324 cleanup_srcu_struct(&kvm->irq_srcu);
1325 cleanup_srcu_struct(&kvm->srcu);
1326 kvm_arch_free_vm(kvm);
1327 preempt_notifier_dec();
1328 hardware_disable_all();
1329 mmdrop(mm);
1330 module_put(kvm_chardev_ops.owner);
1331 }
1332
kvm_get_kvm(struct kvm * kvm)1333 void kvm_get_kvm(struct kvm *kvm)
1334 {
1335 refcount_inc(&kvm->users_count);
1336 }
1337 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1338
1339 /*
1340 * Make sure the vm is not during destruction, which is a safe version of
1341 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1342 */
kvm_get_kvm_safe(struct kvm * kvm)1343 bool kvm_get_kvm_safe(struct kvm *kvm)
1344 {
1345 return refcount_inc_not_zero(&kvm->users_count);
1346 }
1347 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1348
kvm_put_kvm(struct kvm * kvm)1349 void kvm_put_kvm(struct kvm *kvm)
1350 {
1351 if (refcount_dec_and_test(&kvm->users_count))
1352 kvm_destroy_vm(kvm);
1353 }
1354 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1355
1356 /*
1357 * Used to put a reference that was taken on behalf of an object associated
1358 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1359 * of the new file descriptor fails and the reference cannot be transferred to
1360 * its final owner. In such cases, the caller is still actively using @kvm and
1361 * will fail miserably if the refcount unexpectedly hits zero.
1362 */
kvm_put_kvm_no_destroy(struct kvm * kvm)1363 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1364 {
1365 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1366 }
1367 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1368
kvm_vm_release(struct inode * inode,struct file * filp)1369 static int kvm_vm_release(struct inode *inode, struct file *filp)
1370 {
1371 struct kvm *kvm = filp->private_data;
1372
1373 kvm_irqfd_release(kvm);
1374
1375 kvm_put_kvm(kvm);
1376 return 0;
1377 }
1378
1379 /*
1380 * Allocation size is twice as large as the actual dirty bitmap size.
1381 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1382 */
kvm_alloc_dirty_bitmap(struct kvm_memory_slot * memslot)1383 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1384 {
1385 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1386
1387 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1388 if (!memslot->dirty_bitmap)
1389 return -ENOMEM;
1390
1391 return 0;
1392 }
1393
kvm_get_inactive_memslots(struct kvm * kvm,int as_id)1394 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1395 {
1396 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1397 int node_idx_inactive = active->node_idx ^ 1;
1398
1399 return &kvm->__memslots[as_id][node_idx_inactive];
1400 }
1401
1402 /*
1403 * Helper to get the address space ID when one of memslot pointers may be NULL.
1404 * This also serves as a sanity that at least one of the pointers is non-NULL,
1405 * and that their address space IDs don't diverge.
1406 */
kvm_memslots_get_as_id(struct kvm_memory_slot * a,struct kvm_memory_slot * b)1407 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1408 struct kvm_memory_slot *b)
1409 {
1410 if (WARN_ON_ONCE(!a && !b))
1411 return 0;
1412
1413 if (!a)
1414 return b->as_id;
1415 if (!b)
1416 return a->as_id;
1417
1418 WARN_ON_ONCE(a->as_id != b->as_id);
1419 return a->as_id;
1420 }
1421
kvm_insert_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * slot)1422 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1423 struct kvm_memory_slot *slot)
1424 {
1425 struct rb_root *gfn_tree = &slots->gfn_tree;
1426 struct rb_node **node, *parent;
1427 int idx = slots->node_idx;
1428
1429 parent = NULL;
1430 for (node = &gfn_tree->rb_node; *node; ) {
1431 struct kvm_memory_slot *tmp;
1432
1433 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1434 parent = *node;
1435 if (slot->base_gfn < tmp->base_gfn)
1436 node = &(*node)->rb_left;
1437 else if (slot->base_gfn > tmp->base_gfn)
1438 node = &(*node)->rb_right;
1439 else
1440 BUG();
1441 }
1442
1443 rb_link_node(&slot->gfn_node[idx], parent, node);
1444 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1445 }
1446
kvm_erase_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * slot)1447 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1448 struct kvm_memory_slot *slot)
1449 {
1450 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1451 }
1452
kvm_replace_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1453 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1454 struct kvm_memory_slot *old,
1455 struct kvm_memory_slot *new)
1456 {
1457 int idx = slots->node_idx;
1458
1459 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1460
1461 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1462 &slots->gfn_tree);
1463 }
1464
1465 /*
1466 * Replace @old with @new in the inactive memslots.
1467 *
1468 * With NULL @old this simply adds @new.
1469 * With NULL @new this simply removes @old.
1470 *
1471 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1472 * appropriately.
1473 */
kvm_replace_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1474 static void kvm_replace_memslot(struct kvm *kvm,
1475 struct kvm_memory_slot *old,
1476 struct kvm_memory_slot *new)
1477 {
1478 int as_id = kvm_memslots_get_as_id(old, new);
1479 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1480 int idx = slots->node_idx;
1481
1482 if (old) {
1483 hash_del(&old->id_node[idx]);
1484 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1485
1486 if ((long)old == atomic_long_read(&slots->last_used_slot))
1487 atomic_long_set(&slots->last_used_slot, (long)new);
1488
1489 if (!new) {
1490 kvm_erase_gfn_node(slots, old);
1491 return;
1492 }
1493 }
1494
1495 /*
1496 * Initialize @new's hva range. Do this even when replacing an @old
1497 * slot, kvm_copy_memslot() deliberately does not touch node data.
1498 */
1499 new->hva_node[idx].start = new->userspace_addr;
1500 new->hva_node[idx].last = new->userspace_addr +
1501 (new->npages << PAGE_SHIFT) - 1;
1502
1503 /*
1504 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1505 * hva_node needs to be swapped with remove+insert even though hva can't
1506 * change when replacing an existing slot.
1507 */
1508 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1509 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1510
1511 /*
1512 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1513 * switch the node in the gfn tree instead of removing the old and
1514 * inserting the new as two separate operations. Replacement is a
1515 * single O(1) operation versus two O(log(n)) operations for
1516 * remove+insert.
1517 */
1518 if (old && old->base_gfn == new->base_gfn) {
1519 kvm_replace_gfn_node(slots, old, new);
1520 } else {
1521 if (old)
1522 kvm_erase_gfn_node(slots, old);
1523 kvm_insert_gfn_node(slots, new);
1524 }
1525 }
1526
check_memory_region_flags(const struct kvm_userspace_memory_region * mem)1527 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1528 {
1529 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1530
1531 #ifdef __KVM_HAVE_READONLY_MEM
1532 valid_flags |= KVM_MEM_READONLY;
1533 #endif
1534
1535 if (mem->flags & ~valid_flags)
1536 return -EINVAL;
1537
1538 return 0;
1539 }
1540
kvm_swap_active_memslots(struct kvm * kvm,int as_id)1541 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1542 {
1543 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1544
1545 /* Grab the generation from the activate memslots. */
1546 u64 gen = __kvm_memslots(kvm, as_id)->generation;
1547
1548 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1549 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1550
1551 /*
1552 * Do not store the new memslots while there are invalidations in
1553 * progress, otherwise the locking in invalidate_range_start and
1554 * invalidate_range_end will be unbalanced.
1555 */
1556 spin_lock(&kvm->mn_invalidate_lock);
1557 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1558 while (kvm->mn_active_invalidate_count) {
1559 set_current_state(TASK_UNINTERRUPTIBLE);
1560 spin_unlock(&kvm->mn_invalidate_lock);
1561 schedule();
1562 spin_lock(&kvm->mn_invalidate_lock);
1563 }
1564 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1565 rcu_assign_pointer(kvm->memslots[as_id], slots);
1566 spin_unlock(&kvm->mn_invalidate_lock);
1567
1568 /*
1569 * Acquired in kvm_set_memslot. Must be released before synchronize
1570 * SRCU below in order to avoid deadlock with another thread
1571 * acquiring the slots_arch_lock in an srcu critical section.
1572 */
1573 mutex_unlock(&kvm->slots_arch_lock);
1574
1575 synchronize_srcu_expedited(&kvm->srcu);
1576
1577 /*
1578 * Increment the new memslot generation a second time, dropping the
1579 * update in-progress flag and incrementing the generation based on
1580 * the number of address spaces. This provides a unique and easily
1581 * identifiable generation number while the memslots are in flux.
1582 */
1583 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1584
1585 /*
1586 * Generations must be unique even across address spaces. We do not need
1587 * a global counter for that, instead the generation space is evenly split
1588 * across address spaces. For example, with two address spaces, address
1589 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1590 * use generations 1, 3, 5, ...
1591 */
1592 gen += KVM_ADDRESS_SPACE_NUM;
1593
1594 kvm_arch_memslots_updated(kvm, gen);
1595
1596 slots->generation = gen;
1597 }
1598
kvm_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1599 static int kvm_prepare_memory_region(struct kvm *kvm,
1600 const struct kvm_memory_slot *old,
1601 struct kvm_memory_slot *new,
1602 enum kvm_mr_change change)
1603 {
1604 int r;
1605
1606 /*
1607 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1608 * will be freed on "commit". If logging is enabled in both old and
1609 * new, reuse the existing bitmap. If logging is enabled only in the
1610 * new and KVM isn't using a ring buffer, allocate and initialize a
1611 * new bitmap.
1612 */
1613 if (change != KVM_MR_DELETE) {
1614 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1615 new->dirty_bitmap = NULL;
1616 else if (old && old->dirty_bitmap)
1617 new->dirty_bitmap = old->dirty_bitmap;
1618 else if (!kvm->dirty_ring_size) {
1619 r = kvm_alloc_dirty_bitmap(new);
1620 if (r)
1621 return r;
1622
1623 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1624 bitmap_set(new->dirty_bitmap, 0, new->npages);
1625 }
1626 }
1627
1628 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1629
1630 /* Free the bitmap on failure if it was allocated above. */
1631 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1632 kvm_destroy_dirty_bitmap(new);
1633
1634 return r;
1635 }
1636
kvm_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1637 static void kvm_commit_memory_region(struct kvm *kvm,
1638 struct kvm_memory_slot *old,
1639 const struct kvm_memory_slot *new,
1640 enum kvm_mr_change change)
1641 {
1642 /*
1643 * Update the total number of memslot pages before calling the arch
1644 * hook so that architectures can consume the result directly.
1645 */
1646 if (change == KVM_MR_DELETE)
1647 kvm->nr_memslot_pages -= old->npages;
1648 else if (change == KVM_MR_CREATE)
1649 kvm->nr_memslot_pages += new->npages;
1650
1651 kvm_arch_commit_memory_region(kvm, old, new, change);
1652
1653 switch (change) {
1654 case KVM_MR_CREATE:
1655 /* Nothing more to do. */
1656 break;
1657 case KVM_MR_DELETE:
1658 /* Free the old memslot and all its metadata. */
1659 kvm_free_memslot(kvm, old);
1660 break;
1661 case KVM_MR_MOVE:
1662 case KVM_MR_FLAGS_ONLY:
1663 /*
1664 * Free the dirty bitmap as needed; the below check encompasses
1665 * both the flags and whether a ring buffer is being used)
1666 */
1667 if (old->dirty_bitmap && !new->dirty_bitmap)
1668 kvm_destroy_dirty_bitmap(old);
1669
1670 /*
1671 * The final quirk. Free the detached, old slot, but only its
1672 * memory, not any metadata. Metadata, including arch specific
1673 * data, may be reused by @new.
1674 */
1675 kfree(old);
1676 break;
1677 default:
1678 BUG();
1679 }
1680 }
1681
1682 /*
1683 * Activate @new, which must be installed in the inactive slots by the caller,
1684 * by swapping the active slots and then propagating @new to @old once @old is
1685 * unreachable and can be safely modified.
1686 *
1687 * With NULL @old this simply adds @new to @active (while swapping the sets).
1688 * With NULL @new this simply removes @old from @active and frees it
1689 * (while also swapping the sets).
1690 */
kvm_activate_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1691 static void kvm_activate_memslot(struct kvm *kvm,
1692 struct kvm_memory_slot *old,
1693 struct kvm_memory_slot *new)
1694 {
1695 int as_id = kvm_memslots_get_as_id(old, new);
1696
1697 kvm_swap_active_memslots(kvm, as_id);
1698
1699 /* Propagate the new memslot to the now inactive memslots. */
1700 kvm_replace_memslot(kvm, old, new);
1701 }
1702
kvm_copy_memslot(struct kvm_memory_slot * dest,const struct kvm_memory_slot * src)1703 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1704 const struct kvm_memory_slot *src)
1705 {
1706 dest->base_gfn = src->base_gfn;
1707 dest->npages = src->npages;
1708 dest->dirty_bitmap = src->dirty_bitmap;
1709 dest->arch = src->arch;
1710 dest->userspace_addr = src->userspace_addr;
1711 dest->flags = src->flags;
1712 dest->id = src->id;
1713 dest->as_id = src->as_id;
1714 }
1715
kvm_invalidate_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * invalid_slot)1716 static void kvm_invalidate_memslot(struct kvm *kvm,
1717 struct kvm_memory_slot *old,
1718 struct kvm_memory_slot *invalid_slot)
1719 {
1720 /*
1721 * Mark the current slot INVALID. As with all memslot modifications,
1722 * this must be done on an unreachable slot to avoid modifying the
1723 * current slot in the active tree.
1724 */
1725 kvm_copy_memslot(invalid_slot, old);
1726 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1727 kvm_replace_memslot(kvm, old, invalid_slot);
1728
1729 /*
1730 * Activate the slot that is now marked INVALID, but don't propagate
1731 * the slot to the now inactive slots. The slot is either going to be
1732 * deleted or recreated as a new slot.
1733 */
1734 kvm_swap_active_memslots(kvm, old->as_id);
1735
1736 /*
1737 * From this point no new shadow pages pointing to a deleted, or moved,
1738 * memslot will be created. Validation of sp->gfn happens in:
1739 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1740 * - kvm_is_visible_gfn (mmu_check_root)
1741 */
1742 kvm_arch_flush_shadow_memslot(kvm, old);
1743 kvm_arch_guest_memory_reclaimed(kvm);
1744
1745 /* Was released by kvm_swap_active_memslots, reacquire. */
1746 mutex_lock(&kvm->slots_arch_lock);
1747
1748 /*
1749 * Copy the arch-specific field of the newly-installed slot back to the
1750 * old slot as the arch data could have changed between releasing
1751 * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1752 * above. Writers are required to retrieve memslots *after* acquiring
1753 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1754 */
1755 old->arch = invalid_slot->arch;
1756 }
1757
kvm_create_memslot(struct kvm * kvm,struct kvm_memory_slot * new)1758 static void kvm_create_memslot(struct kvm *kvm,
1759 struct kvm_memory_slot *new)
1760 {
1761 /* Add the new memslot to the inactive set and activate. */
1762 kvm_replace_memslot(kvm, NULL, new);
1763 kvm_activate_memslot(kvm, NULL, new);
1764 }
1765
kvm_delete_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * invalid_slot)1766 static void kvm_delete_memslot(struct kvm *kvm,
1767 struct kvm_memory_slot *old,
1768 struct kvm_memory_slot *invalid_slot)
1769 {
1770 /*
1771 * Remove the old memslot (in the inactive memslots) by passing NULL as
1772 * the "new" slot, and for the invalid version in the active slots.
1773 */
1774 kvm_replace_memslot(kvm, old, NULL);
1775 kvm_activate_memslot(kvm, invalid_slot, NULL);
1776 }
1777
kvm_move_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,struct kvm_memory_slot * invalid_slot)1778 static void kvm_move_memslot(struct kvm *kvm,
1779 struct kvm_memory_slot *old,
1780 struct kvm_memory_slot *new,
1781 struct kvm_memory_slot *invalid_slot)
1782 {
1783 /*
1784 * Replace the old memslot in the inactive slots, and then swap slots
1785 * and replace the current INVALID with the new as well.
1786 */
1787 kvm_replace_memslot(kvm, old, new);
1788 kvm_activate_memslot(kvm, invalid_slot, new);
1789 }
1790
kvm_update_flags_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1791 static void kvm_update_flags_memslot(struct kvm *kvm,
1792 struct kvm_memory_slot *old,
1793 struct kvm_memory_slot *new)
1794 {
1795 /*
1796 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1797 * an intermediate step. Instead, the old memslot is simply replaced
1798 * with a new, updated copy in both memslot sets.
1799 */
1800 kvm_replace_memslot(kvm, old, new);
1801 kvm_activate_memslot(kvm, old, new);
1802 }
1803
kvm_set_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1804 static int kvm_set_memslot(struct kvm *kvm,
1805 struct kvm_memory_slot *old,
1806 struct kvm_memory_slot *new,
1807 enum kvm_mr_change change)
1808 {
1809 struct kvm_memory_slot *invalid_slot;
1810 int r;
1811
1812 /*
1813 * Released in kvm_swap_active_memslots.
1814 *
1815 * Must be held from before the current memslots are copied until
1816 * after the new memslots are installed with rcu_assign_pointer,
1817 * then released before the synchronize srcu in kvm_swap_active_memslots.
1818 *
1819 * When modifying memslots outside of the slots_lock, must be held
1820 * before reading the pointer to the current memslots until after all
1821 * changes to those memslots are complete.
1822 *
1823 * These rules ensure that installing new memslots does not lose
1824 * changes made to the previous memslots.
1825 */
1826 mutex_lock(&kvm->slots_arch_lock);
1827
1828 /*
1829 * Invalidate the old slot if it's being deleted or moved. This is
1830 * done prior to actually deleting/moving the memslot to allow vCPUs to
1831 * continue running by ensuring there are no mappings or shadow pages
1832 * for the memslot when it is deleted/moved. Without pre-invalidation
1833 * (and without a lock), a window would exist between effecting the
1834 * delete/move and committing the changes in arch code where KVM or a
1835 * guest could access a non-existent memslot.
1836 *
1837 * Modifications are done on a temporary, unreachable slot. The old
1838 * slot needs to be preserved in case a later step fails and the
1839 * invalidation needs to be reverted.
1840 */
1841 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1842 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1843 if (!invalid_slot) {
1844 mutex_unlock(&kvm->slots_arch_lock);
1845 return -ENOMEM;
1846 }
1847 kvm_invalidate_memslot(kvm, old, invalid_slot);
1848 }
1849
1850 r = kvm_prepare_memory_region(kvm, old, new, change);
1851 if (r) {
1852 /*
1853 * For DELETE/MOVE, revert the above INVALID change. No
1854 * modifications required since the original slot was preserved
1855 * in the inactive slots. Changing the active memslots also
1856 * release slots_arch_lock.
1857 */
1858 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1859 kvm_activate_memslot(kvm, invalid_slot, old);
1860 kfree(invalid_slot);
1861 } else {
1862 mutex_unlock(&kvm->slots_arch_lock);
1863 }
1864 return r;
1865 }
1866
1867 /*
1868 * For DELETE and MOVE, the working slot is now active as the INVALID
1869 * version of the old slot. MOVE is particularly special as it reuses
1870 * the old slot and returns a copy of the old slot (in working_slot).
1871 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1872 * old slot is detached but otherwise preserved.
1873 */
1874 if (change == KVM_MR_CREATE)
1875 kvm_create_memslot(kvm, new);
1876 else if (change == KVM_MR_DELETE)
1877 kvm_delete_memslot(kvm, old, invalid_slot);
1878 else if (change == KVM_MR_MOVE)
1879 kvm_move_memslot(kvm, old, new, invalid_slot);
1880 else if (change == KVM_MR_FLAGS_ONLY)
1881 kvm_update_flags_memslot(kvm, old, new);
1882 else
1883 BUG();
1884
1885 /* Free the temporary INVALID slot used for DELETE and MOVE. */
1886 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1887 kfree(invalid_slot);
1888
1889 /*
1890 * No need to refresh new->arch, changes after dropping slots_arch_lock
1891 * will directly hit the final, active memslot. Architectures are
1892 * responsible for knowing that new->arch may be stale.
1893 */
1894 kvm_commit_memory_region(kvm, old, new, change);
1895
1896 return 0;
1897 }
1898
kvm_check_memslot_overlap(struct kvm_memslots * slots,int id,gfn_t start,gfn_t end)1899 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1900 gfn_t start, gfn_t end)
1901 {
1902 struct kvm_memslot_iter iter;
1903
1904 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1905 if (iter.slot->id != id)
1906 return true;
1907 }
1908
1909 return false;
1910 }
1911
1912 /*
1913 * Allocate some memory and give it an address in the guest physical address
1914 * space.
1915 *
1916 * Discontiguous memory is allowed, mostly for framebuffers.
1917 *
1918 * Must be called holding kvm->slots_lock for write.
1919 */
__kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1920 int __kvm_set_memory_region(struct kvm *kvm,
1921 const struct kvm_userspace_memory_region *mem)
1922 {
1923 struct kvm_memory_slot *old, *new;
1924 struct kvm_memslots *slots;
1925 enum kvm_mr_change change;
1926 unsigned long npages;
1927 gfn_t base_gfn;
1928 int as_id, id;
1929 int r;
1930
1931 r = check_memory_region_flags(mem);
1932 if (r)
1933 return r;
1934
1935 as_id = mem->slot >> 16;
1936 id = (u16)mem->slot;
1937
1938 /* General sanity checks */
1939 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1940 (mem->memory_size != (unsigned long)mem->memory_size))
1941 return -EINVAL;
1942 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1943 return -EINVAL;
1944 /* We can read the guest memory with __xxx_user() later on. */
1945 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1946 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1947 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1948 mem->memory_size))
1949 return -EINVAL;
1950 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1951 return -EINVAL;
1952 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1953 return -EINVAL;
1954 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1955 return -EINVAL;
1956
1957 slots = __kvm_memslots(kvm, as_id);
1958
1959 /*
1960 * Note, the old memslot (and the pointer itself!) may be invalidated
1961 * and/or destroyed by kvm_set_memslot().
1962 */
1963 old = id_to_memslot(slots, id);
1964
1965 if (!mem->memory_size) {
1966 if (!old || !old->npages)
1967 return -EINVAL;
1968
1969 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1970 return -EIO;
1971
1972 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1973 }
1974
1975 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1976 npages = (mem->memory_size >> PAGE_SHIFT);
1977
1978 if (!old || !old->npages) {
1979 change = KVM_MR_CREATE;
1980
1981 /*
1982 * To simplify KVM internals, the total number of pages across
1983 * all memslots must fit in an unsigned long.
1984 */
1985 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1986 return -EINVAL;
1987 } else { /* Modify an existing slot. */
1988 if ((mem->userspace_addr != old->userspace_addr) ||
1989 (npages != old->npages) ||
1990 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1991 return -EINVAL;
1992
1993 if (base_gfn != old->base_gfn)
1994 change = KVM_MR_MOVE;
1995 else if (mem->flags != old->flags)
1996 change = KVM_MR_FLAGS_ONLY;
1997 else /* Nothing to change. */
1998 return 0;
1999 }
2000
2001 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2002 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2003 return -EEXIST;
2004
2005 /* Allocate a slot that will persist in the memslot. */
2006 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2007 if (!new)
2008 return -ENOMEM;
2009
2010 new->as_id = as_id;
2011 new->id = id;
2012 new->base_gfn = base_gfn;
2013 new->npages = npages;
2014 new->flags = mem->flags;
2015 new->userspace_addr = mem->userspace_addr;
2016
2017 r = kvm_set_memslot(kvm, old, new, change);
2018 if (r)
2019 kfree(new);
2020 return r;
2021 }
2022 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2023
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)2024 int kvm_set_memory_region(struct kvm *kvm,
2025 const struct kvm_userspace_memory_region *mem)
2026 {
2027 int r;
2028
2029 mutex_lock(&kvm->slots_lock);
2030 r = __kvm_set_memory_region(kvm, mem);
2031 mutex_unlock(&kvm->slots_lock);
2032 return r;
2033 }
2034 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2035
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem)2036 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2037 struct kvm_userspace_memory_region *mem)
2038 {
2039 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2040 return -EINVAL;
2041
2042 return kvm_set_memory_region(kvm, mem);
2043 }
2044
2045 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2046 /**
2047 * kvm_get_dirty_log - get a snapshot of dirty pages
2048 * @kvm: pointer to kvm instance
2049 * @log: slot id and address to which we copy the log
2050 * @is_dirty: set to '1' if any dirty pages were found
2051 * @memslot: set to the associated memslot, always valid on success
2052 */
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty,struct kvm_memory_slot ** memslot)2053 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2054 int *is_dirty, struct kvm_memory_slot **memslot)
2055 {
2056 struct kvm_memslots *slots;
2057 int i, as_id, id;
2058 unsigned long n;
2059 unsigned long any = 0;
2060
2061 /* Dirty ring tracking is exclusive to dirty log tracking */
2062 if (kvm->dirty_ring_size)
2063 return -ENXIO;
2064
2065 *memslot = NULL;
2066 *is_dirty = 0;
2067
2068 as_id = log->slot >> 16;
2069 id = (u16)log->slot;
2070 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2071 return -EINVAL;
2072
2073 slots = __kvm_memslots(kvm, as_id);
2074 *memslot = id_to_memslot(slots, id);
2075 if (!(*memslot) || !(*memslot)->dirty_bitmap)
2076 return -ENOENT;
2077
2078 kvm_arch_sync_dirty_log(kvm, *memslot);
2079
2080 n = kvm_dirty_bitmap_bytes(*memslot);
2081
2082 for (i = 0; !any && i < n/sizeof(long); ++i)
2083 any = (*memslot)->dirty_bitmap[i];
2084
2085 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2086 return -EFAULT;
2087
2088 if (any)
2089 *is_dirty = 1;
2090 return 0;
2091 }
2092 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2093
2094 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2095 /**
2096 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2097 * and reenable dirty page tracking for the corresponding pages.
2098 * @kvm: pointer to kvm instance
2099 * @log: slot id and address to which we copy the log
2100 *
2101 * We need to keep it in mind that VCPU threads can write to the bitmap
2102 * concurrently. So, to avoid losing track of dirty pages we keep the
2103 * following order:
2104 *
2105 * 1. Take a snapshot of the bit and clear it if needed.
2106 * 2. Write protect the corresponding page.
2107 * 3. Copy the snapshot to the userspace.
2108 * 4. Upon return caller flushes TLB's if needed.
2109 *
2110 * Between 2 and 4, the guest may write to the page using the remaining TLB
2111 * entry. This is not a problem because the page is reported dirty using
2112 * the snapshot taken before and step 4 ensures that writes done after
2113 * exiting to userspace will be logged for the next call.
2114 *
2115 */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log)2116 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2117 {
2118 struct kvm_memslots *slots;
2119 struct kvm_memory_slot *memslot;
2120 int i, as_id, id;
2121 unsigned long n;
2122 unsigned long *dirty_bitmap;
2123 unsigned long *dirty_bitmap_buffer;
2124 bool flush;
2125
2126 /* Dirty ring tracking is exclusive to dirty log tracking */
2127 if (kvm->dirty_ring_size)
2128 return -ENXIO;
2129
2130 as_id = log->slot >> 16;
2131 id = (u16)log->slot;
2132 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2133 return -EINVAL;
2134
2135 slots = __kvm_memslots(kvm, as_id);
2136 memslot = id_to_memslot(slots, id);
2137 if (!memslot || !memslot->dirty_bitmap)
2138 return -ENOENT;
2139
2140 dirty_bitmap = memslot->dirty_bitmap;
2141
2142 kvm_arch_sync_dirty_log(kvm, memslot);
2143
2144 n = kvm_dirty_bitmap_bytes(memslot);
2145 flush = false;
2146 if (kvm->manual_dirty_log_protect) {
2147 /*
2148 * Unlike kvm_get_dirty_log, we always return false in *flush,
2149 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2150 * is some code duplication between this function and
2151 * kvm_get_dirty_log, but hopefully all architecture
2152 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2153 * can be eliminated.
2154 */
2155 dirty_bitmap_buffer = dirty_bitmap;
2156 } else {
2157 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2158 memset(dirty_bitmap_buffer, 0, n);
2159
2160 KVM_MMU_LOCK(kvm);
2161 for (i = 0; i < n / sizeof(long); i++) {
2162 unsigned long mask;
2163 gfn_t offset;
2164
2165 if (!dirty_bitmap[i])
2166 continue;
2167
2168 flush = true;
2169 mask = xchg(&dirty_bitmap[i], 0);
2170 dirty_bitmap_buffer[i] = mask;
2171
2172 offset = i * BITS_PER_LONG;
2173 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2174 offset, mask);
2175 }
2176 KVM_MMU_UNLOCK(kvm);
2177 }
2178
2179 if (flush)
2180 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2181
2182 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2183 return -EFAULT;
2184 return 0;
2185 }
2186
2187
2188 /**
2189 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2190 * @kvm: kvm instance
2191 * @log: slot id and address to which we copy the log
2192 *
2193 * Steps 1-4 below provide general overview of dirty page logging. See
2194 * kvm_get_dirty_log_protect() function description for additional details.
2195 *
2196 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2197 * always flush the TLB (step 4) even if previous step failed and the dirty
2198 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2199 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2200 * writes will be marked dirty for next log read.
2201 *
2202 * 1. Take a snapshot of the bit and clear it if needed.
2203 * 2. Write protect the corresponding page.
2204 * 3. Copy the snapshot to the userspace.
2205 * 4. Flush TLB's if needed.
2206 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)2207 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2208 struct kvm_dirty_log *log)
2209 {
2210 int r;
2211
2212 mutex_lock(&kvm->slots_lock);
2213
2214 r = kvm_get_dirty_log_protect(kvm, log);
2215
2216 mutex_unlock(&kvm->slots_lock);
2217 return r;
2218 }
2219
2220 /**
2221 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2222 * and reenable dirty page tracking for the corresponding pages.
2223 * @kvm: pointer to kvm instance
2224 * @log: slot id and address from which to fetch the bitmap of dirty pages
2225 */
kvm_clear_dirty_log_protect(struct kvm * kvm,struct kvm_clear_dirty_log * log)2226 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2227 struct kvm_clear_dirty_log *log)
2228 {
2229 struct kvm_memslots *slots;
2230 struct kvm_memory_slot *memslot;
2231 int as_id, id;
2232 gfn_t offset;
2233 unsigned long i, n;
2234 unsigned long *dirty_bitmap;
2235 unsigned long *dirty_bitmap_buffer;
2236 bool flush;
2237
2238 /* Dirty ring tracking is exclusive to dirty log tracking */
2239 if (kvm->dirty_ring_size)
2240 return -ENXIO;
2241
2242 as_id = log->slot >> 16;
2243 id = (u16)log->slot;
2244 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2245 return -EINVAL;
2246
2247 if (log->first_page & 63)
2248 return -EINVAL;
2249
2250 slots = __kvm_memslots(kvm, as_id);
2251 memslot = id_to_memslot(slots, id);
2252 if (!memslot || !memslot->dirty_bitmap)
2253 return -ENOENT;
2254
2255 dirty_bitmap = memslot->dirty_bitmap;
2256
2257 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2258
2259 if (log->first_page > memslot->npages ||
2260 log->num_pages > memslot->npages - log->first_page ||
2261 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2262 return -EINVAL;
2263
2264 kvm_arch_sync_dirty_log(kvm, memslot);
2265
2266 flush = false;
2267 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2268 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2269 return -EFAULT;
2270
2271 KVM_MMU_LOCK(kvm);
2272 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2273 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2274 i++, offset += BITS_PER_LONG) {
2275 unsigned long mask = *dirty_bitmap_buffer++;
2276 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2277 if (!mask)
2278 continue;
2279
2280 mask &= atomic_long_fetch_andnot(mask, p);
2281
2282 /*
2283 * mask contains the bits that really have been cleared. This
2284 * never includes any bits beyond the length of the memslot (if
2285 * the length is not aligned to 64 pages), therefore it is not
2286 * a problem if userspace sets them in log->dirty_bitmap.
2287 */
2288 if (mask) {
2289 flush = true;
2290 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2291 offset, mask);
2292 }
2293 }
2294 KVM_MMU_UNLOCK(kvm);
2295
2296 if (flush)
2297 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2298
2299 return 0;
2300 }
2301
kvm_vm_ioctl_clear_dirty_log(struct kvm * kvm,struct kvm_clear_dirty_log * log)2302 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2303 struct kvm_clear_dirty_log *log)
2304 {
2305 int r;
2306
2307 mutex_lock(&kvm->slots_lock);
2308
2309 r = kvm_clear_dirty_log_protect(kvm, log);
2310
2311 mutex_unlock(&kvm->slots_lock);
2312 return r;
2313 }
2314 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2315
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)2316 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2317 {
2318 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2319 }
2320 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2321
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)2322 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2323 {
2324 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2325 u64 gen = slots->generation;
2326 struct kvm_memory_slot *slot;
2327
2328 /*
2329 * This also protects against using a memslot from a different address space,
2330 * since different address spaces have different generation numbers.
2331 */
2332 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2333 vcpu->last_used_slot = NULL;
2334 vcpu->last_used_slot_gen = gen;
2335 }
2336
2337 slot = try_get_memslot(vcpu->last_used_slot, gfn);
2338 if (slot)
2339 return slot;
2340
2341 /*
2342 * Fall back to searching all memslots. We purposely use
2343 * search_memslots() instead of __gfn_to_memslot() to avoid
2344 * thrashing the VM-wide last_used_slot in kvm_memslots.
2345 */
2346 slot = search_memslots(slots, gfn, false);
2347 if (slot) {
2348 vcpu->last_used_slot = slot;
2349 return slot;
2350 }
2351
2352 return NULL;
2353 }
2354
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)2355 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2356 {
2357 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2358
2359 return kvm_is_visible_memslot(memslot);
2360 }
2361 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2362
kvm_vcpu_is_visible_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)2363 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2364 {
2365 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2366
2367 return kvm_is_visible_memslot(memslot);
2368 }
2369 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2370
kvm_host_page_size(struct kvm_vcpu * vcpu,gfn_t gfn)2371 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2372 {
2373 struct vm_area_struct *vma;
2374 unsigned long addr, size;
2375
2376 size = PAGE_SIZE;
2377
2378 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2379 if (kvm_is_error_hva(addr))
2380 return PAGE_SIZE;
2381
2382 mmap_read_lock(current->mm);
2383 vma = find_vma(current->mm, addr);
2384 if (!vma)
2385 goto out;
2386
2387 size = vma_kernel_pagesize(vma);
2388
2389 out:
2390 mmap_read_unlock(current->mm);
2391
2392 return size;
2393 }
2394
memslot_is_readonly(const struct kvm_memory_slot * slot)2395 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2396 {
2397 return slot->flags & KVM_MEM_READONLY;
2398 }
2399
__gfn_to_hva_many(const struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)2400 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2401 gfn_t *nr_pages, bool write)
2402 {
2403 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2404 return KVM_HVA_ERR_BAD;
2405
2406 if (memslot_is_readonly(slot) && write)
2407 return KVM_HVA_ERR_RO_BAD;
2408
2409 if (nr_pages)
2410 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2411
2412 return __gfn_to_hva_memslot(slot, gfn);
2413 }
2414
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)2415 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2416 gfn_t *nr_pages)
2417 {
2418 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2419 }
2420
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)2421 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2422 gfn_t gfn)
2423 {
2424 return gfn_to_hva_many(slot, gfn, NULL);
2425 }
2426 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2427
gfn_to_hva(struct kvm * kvm,gfn_t gfn)2428 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2429 {
2430 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2431 }
2432 EXPORT_SYMBOL_GPL(gfn_to_hva);
2433
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)2434 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2435 {
2436 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2437 }
2438 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2439
2440 /*
2441 * Return the hva of a @gfn and the R/W attribute if possible.
2442 *
2443 * @slot: the kvm_memory_slot which contains @gfn
2444 * @gfn: the gfn to be translated
2445 * @writable: used to return the read/write attribute of the @slot if the hva
2446 * is valid and @writable is not NULL
2447 */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)2448 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2449 gfn_t gfn, bool *writable)
2450 {
2451 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2452
2453 if (!kvm_is_error_hva(hva) && writable)
2454 *writable = !memslot_is_readonly(slot);
2455
2456 return hva;
2457 }
2458
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)2459 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2460 {
2461 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2462
2463 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2464 }
2465
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)2466 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2467 {
2468 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2469
2470 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2471 }
2472
check_user_page_hwpoison(unsigned long addr)2473 static inline int check_user_page_hwpoison(unsigned long addr)
2474 {
2475 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2476
2477 rc = get_user_pages(addr, 1, flags, NULL, NULL);
2478 return rc == -EHWPOISON;
2479 }
2480
2481 /*
2482 * The fast path to get the writable pfn which will be stored in @pfn,
2483 * true indicates success, otherwise false is returned. It's also the
2484 * only part that runs if we can in atomic context.
2485 */
hva_to_pfn_fast(unsigned long addr,bool write_fault,bool * writable,kvm_pfn_t * pfn)2486 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2487 bool *writable, kvm_pfn_t *pfn)
2488 {
2489 struct page *page[1];
2490
2491 /*
2492 * Fast pin a writable pfn only if it is a write fault request
2493 * or the caller allows to map a writable pfn for a read fault
2494 * request.
2495 */
2496 if (!(write_fault || writable))
2497 return false;
2498
2499 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2500 *pfn = page_to_pfn(page[0]);
2501
2502 if (writable)
2503 *writable = true;
2504 return true;
2505 }
2506
2507 return false;
2508 }
2509
2510 /*
2511 * The slow path to get the pfn of the specified host virtual address,
2512 * 1 indicates success, -errno is returned if error is detected.
2513 */
hva_to_pfn_slow(unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * pfn)2514 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2515 bool *writable, kvm_pfn_t *pfn)
2516 {
2517 unsigned int flags = FOLL_HWPOISON;
2518 struct page *page;
2519 int npages;
2520
2521 might_sleep();
2522
2523 if (writable)
2524 *writable = write_fault;
2525
2526 if (write_fault)
2527 flags |= FOLL_WRITE;
2528 if (async)
2529 flags |= FOLL_NOWAIT;
2530
2531 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2532 if (npages != 1)
2533 return npages;
2534
2535 /* map read fault as writable if possible */
2536 if (unlikely(!write_fault) && writable) {
2537 struct page *wpage;
2538
2539 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2540 *writable = true;
2541 put_page(page);
2542 page = wpage;
2543 }
2544 }
2545 *pfn = page_to_pfn(page);
2546 return npages;
2547 }
2548
vma_is_valid(struct vm_area_struct * vma,bool write_fault)2549 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2550 {
2551 if (unlikely(!(vma->vm_flags & VM_READ)))
2552 return false;
2553
2554 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2555 return false;
2556
2557 return true;
2558 }
2559
kvm_try_get_pfn(kvm_pfn_t pfn)2560 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2561 {
2562 struct page *page = kvm_pfn_to_refcounted_page(pfn);
2563
2564 if (!page)
2565 return 1;
2566
2567 return get_page_unless_zero(page);
2568 }
2569
hva_to_pfn_remapped(struct vm_area_struct * vma,unsigned long addr,bool write_fault,bool * writable,kvm_pfn_t * p_pfn)2570 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2571 unsigned long addr, bool write_fault,
2572 bool *writable, kvm_pfn_t *p_pfn)
2573 {
2574 kvm_pfn_t pfn;
2575 pte_t *ptep;
2576 spinlock_t *ptl;
2577 int r;
2578
2579 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2580 if (r) {
2581 /*
2582 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2583 * not call the fault handler, so do it here.
2584 */
2585 bool unlocked = false;
2586 r = fixup_user_fault(current->mm, addr,
2587 (write_fault ? FAULT_FLAG_WRITE : 0),
2588 &unlocked);
2589 if (unlocked)
2590 return -EAGAIN;
2591 if (r)
2592 return r;
2593
2594 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2595 if (r)
2596 return r;
2597 }
2598
2599 if (write_fault && !pte_write(*ptep)) {
2600 pfn = KVM_PFN_ERR_RO_FAULT;
2601 goto out;
2602 }
2603
2604 if (writable)
2605 *writable = pte_write(*ptep);
2606 pfn = pte_pfn(*ptep);
2607
2608 /*
2609 * Get a reference here because callers of *hva_to_pfn* and
2610 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2611 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
2612 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2613 * simply do nothing for reserved pfns.
2614 *
2615 * Whoever called remap_pfn_range is also going to call e.g.
2616 * unmap_mapping_range before the underlying pages are freed,
2617 * causing a call to our MMU notifier.
2618 *
2619 * Certain IO or PFNMAP mappings can be backed with valid
2620 * struct pages, but be allocated without refcounting e.g.,
2621 * tail pages of non-compound higher order allocations, which
2622 * would then underflow the refcount when the caller does the
2623 * required put_page. Don't allow those pages here.
2624 */
2625 if (!kvm_try_get_pfn(pfn))
2626 r = -EFAULT;
2627
2628 out:
2629 pte_unmap_unlock(ptep, ptl);
2630 *p_pfn = pfn;
2631
2632 return r;
2633 }
2634
2635 /*
2636 * Pin guest page in memory and return its pfn.
2637 * @addr: host virtual address which maps memory to the guest
2638 * @atomic: whether this function can sleep
2639 * @async: whether this function need to wait IO complete if the
2640 * host page is not in the memory
2641 * @write_fault: whether we should get a writable host page
2642 * @writable: whether it allows to map a writable host page for !@write_fault
2643 *
2644 * The function will map a writable host page for these two cases:
2645 * 1): @write_fault = true
2646 * 2): @write_fault = false && @writable, @writable will tell the caller
2647 * whether the mapping is writable.
2648 */
hva_to_pfn(unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable)2649 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2650 bool write_fault, bool *writable)
2651 {
2652 struct vm_area_struct *vma;
2653 kvm_pfn_t pfn;
2654 int npages, r;
2655
2656 /* we can do it either atomically or asynchronously, not both */
2657 BUG_ON(atomic && async);
2658
2659 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2660 return pfn;
2661
2662 if (atomic)
2663 return KVM_PFN_ERR_FAULT;
2664
2665 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2666 if (npages == 1)
2667 return pfn;
2668
2669 mmap_read_lock(current->mm);
2670 if (npages == -EHWPOISON ||
2671 (!async && check_user_page_hwpoison(addr))) {
2672 pfn = KVM_PFN_ERR_HWPOISON;
2673 goto exit;
2674 }
2675
2676 retry:
2677 vma = vma_lookup(current->mm, addr);
2678
2679 if (vma == NULL)
2680 pfn = KVM_PFN_ERR_FAULT;
2681 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2682 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2683 if (r == -EAGAIN)
2684 goto retry;
2685 if (r < 0)
2686 pfn = KVM_PFN_ERR_FAULT;
2687 } else {
2688 if (async && vma_is_valid(vma, write_fault))
2689 *async = true;
2690 pfn = KVM_PFN_ERR_FAULT;
2691 }
2692 exit:
2693 mmap_read_unlock(current->mm);
2694 return pfn;
2695 }
2696
__gfn_to_pfn_memslot(const struct kvm_memory_slot * slot,gfn_t gfn,bool atomic,bool * async,bool write_fault,bool * writable,hva_t * hva)2697 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2698 bool atomic, bool *async, bool write_fault,
2699 bool *writable, hva_t *hva)
2700 {
2701 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2702
2703 if (hva)
2704 *hva = addr;
2705
2706 if (addr == KVM_HVA_ERR_RO_BAD) {
2707 if (writable)
2708 *writable = false;
2709 return KVM_PFN_ERR_RO_FAULT;
2710 }
2711
2712 if (kvm_is_error_hva(addr)) {
2713 if (writable)
2714 *writable = false;
2715 return KVM_PFN_NOSLOT;
2716 }
2717
2718 /* Do not map writable pfn in the readonly memslot. */
2719 if (writable && memslot_is_readonly(slot)) {
2720 *writable = false;
2721 writable = NULL;
2722 }
2723
2724 return hva_to_pfn(addr, atomic, async, write_fault,
2725 writable);
2726 }
2727 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2728
gfn_to_pfn_prot(struct kvm * kvm,gfn_t gfn,bool write_fault,bool * writable)2729 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2730 bool *writable)
2731 {
2732 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2733 write_fault, writable, NULL);
2734 }
2735 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2736
gfn_to_pfn_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)2737 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2738 {
2739 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2740 }
2741 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2742
gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot * slot,gfn_t gfn)2743 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2744 {
2745 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2746 }
2747 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2748
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu * vcpu,gfn_t gfn)2749 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2750 {
2751 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2752 }
2753 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2754
gfn_to_pfn(struct kvm * kvm,gfn_t gfn)2755 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2756 {
2757 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2758 }
2759 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2760
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn)2761 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2762 {
2763 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2764 }
2765 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2766
gfn_to_page_many_atomic(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)2767 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2768 struct page **pages, int nr_pages)
2769 {
2770 unsigned long addr;
2771 gfn_t entry = 0;
2772
2773 addr = gfn_to_hva_many(slot, gfn, &entry);
2774 if (kvm_is_error_hva(addr))
2775 return -1;
2776
2777 if (entry < nr_pages)
2778 return 0;
2779
2780 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2781 }
2782 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2783
2784 /*
2785 * Do not use this helper unless you are absolutely certain the gfn _must_ be
2786 * backed by 'struct page'. A valid example is if the backing memslot is
2787 * controlled by KVM. Note, if the returned page is valid, it's refcount has
2788 * been elevated by gfn_to_pfn().
2789 */
gfn_to_page(struct kvm * kvm,gfn_t gfn)2790 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2791 {
2792 struct page *page;
2793 kvm_pfn_t pfn;
2794
2795 pfn = gfn_to_pfn(kvm, gfn);
2796
2797 if (is_error_noslot_pfn(pfn))
2798 return KVM_ERR_PTR_BAD_PAGE;
2799
2800 page = kvm_pfn_to_refcounted_page(pfn);
2801 if (!page)
2802 return KVM_ERR_PTR_BAD_PAGE;
2803
2804 return page;
2805 }
2806 EXPORT_SYMBOL_GPL(gfn_to_page);
2807
kvm_release_pfn(kvm_pfn_t pfn,bool dirty)2808 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2809 {
2810 if (dirty)
2811 kvm_release_pfn_dirty(pfn);
2812 else
2813 kvm_release_pfn_clean(pfn);
2814 }
2815
kvm_vcpu_map(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map)2816 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2817 {
2818 kvm_pfn_t pfn;
2819 void *hva = NULL;
2820 struct page *page = KVM_UNMAPPED_PAGE;
2821
2822 if (!map)
2823 return -EINVAL;
2824
2825 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2826 if (is_error_noslot_pfn(pfn))
2827 return -EINVAL;
2828
2829 if (pfn_valid(pfn)) {
2830 page = pfn_to_page(pfn);
2831 hva = kmap(page);
2832 #ifdef CONFIG_HAS_IOMEM
2833 } else {
2834 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2835 #endif
2836 }
2837
2838 if (!hva)
2839 return -EFAULT;
2840
2841 map->page = page;
2842 map->hva = hva;
2843 map->pfn = pfn;
2844 map->gfn = gfn;
2845
2846 return 0;
2847 }
2848 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2849
kvm_vcpu_unmap(struct kvm_vcpu * vcpu,struct kvm_host_map * map,bool dirty)2850 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2851 {
2852 if (!map)
2853 return;
2854
2855 if (!map->hva)
2856 return;
2857
2858 if (map->page != KVM_UNMAPPED_PAGE)
2859 kunmap(map->page);
2860 #ifdef CONFIG_HAS_IOMEM
2861 else
2862 memunmap(map->hva);
2863 #endif
2864
2865 if (dirty)
2866 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2867
2868 kvm_release_pfn(map->pfn, dirty);
2869
2870 map->hva = NULL;
2871 map->page = NULL;
2872 }
2873 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2874
kvm_is_ad_tracked_page(struct page * page)2875 static bool kvm_is_ad_tracked_page(struct page *page)
2876 {
2877 /*
2878 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2879 * touched (e.g. set dirty) except by its owner".
2880 */
2881 return !PageReserved(page);
2882 }
2883
kvm_set_page_dirty(struct page * page)2884 static void kvm_set_page_dirty(struct page *page)
2885 {
2886 if (kvm_is_ad_tracked_page(page))
2887 SetPageDirty(page);
2888 }
2889
kvm_set_page_accessed(struct page * page)2890 static void kvm_set_page_accessed(struct page *page)
2891 {
2892 if (kvm_is_ad_tracked_page(page))
2893 mark_page_accessed(page);
2894 }
2895
kvm_release_page_clean(struct page * page)2896 void kvm_release_page_clean(struct page *page)
2897 {
2898 WARN_ON(is_error_page(page));
2899
2900 kvm_set_page_accessed(page);
2901 put_page(page);
2902 }
2903 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2904
kvm_release_pfn_clean(kvm_pfn_t pfn)2905 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2906 {
2907 struct page *page;
2908
2909 if (is_error_noslot_pfn(pfn))
2910 return;
2911
2912 page = kvm_pfn_to_refcounted_page(pfn);
2913 if (!page)
2914 return;
2915
2916 kvm_release_page_clean(page);
2917 }
2918 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2919
kvm_release_page_dirty(struct page * page)2920 void kvm_release_page_dirty(struct page *page)
2921 {
2922 WARN_ON(is_error_page(page));
2923
2924 kvm_set_page_dirty(page);
2925 kvm_release_page_clean(page);
2926 }
2927 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2928
kvm_release_pfn_dirty(kvm_pfn_t pfn)2929 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2930 {
2931 struct page *page;
2932
2933 if (is_error_noslot_pfn(pfn))
2934 return;
2935
2936 page = kvm_pfn_to_refcounted_page(pfn);
2937 if (!page)
2938 return;
2939
2940 kvm_release_page_dirty(page);
2941 }
2942 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2943
2944 /*
2945 * Note, checking for an error/noslot pfn is the caller's responsibility when
2946 * directly marking a page dirty/accessed. Unlike the "release" helpers, the
2947 * "set" helpers are not to be used when the pfn might point at garbage.
2948 */
kvm_set_pfn_dirty(kvm_pfn_t pfn)2949 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2950 {
2951 if (WARN_ON(is_error_noslot_pfn(pfn)))
2952 return;
2953
2954 if (pfn_valid(pfn))
2955 kvm_set_page_dirty(pfn_to_page(pfn));
2956 }
2957 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2958
kvm_set_pfn_accessed(kvm_pfn_t pfn)2959 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2960 {
2961 if (WARN_ON(is_error_noslot_pfn(pfn)))
2962 return;
2963
2964 if (pfn_valid(pfn))
2965 kvm_set_page_accessed(pfn_to_page(pfn));
2966 }
2967 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2968
next_segment(unsigned long len,int offset)2969 static int next_segment(unsigned long len, int offset)
2970 {
2971 if (len > PAGE_SIZE - offset)
2972 return PAGE_SIZE - offset;
2973 else
2974 return len;
2975 }
2976
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)2977 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2978 void *data, int offset, int len)
2979 {
2980 int r;
2981 unsigned long addr;
2982
2983 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2984 if (kvm_is_error_hva(addr))
2985 return -EFAULT;
2986 r = __copy_from_user(data, (void __user *)addr + offset, len);
2987 if (r)
2988 return -EFAULT;
2989 return 0;
2990 }
2991
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)2992 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2993 int len)
2994 {
2995 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2996
2997 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2998 }
2999 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3000
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)3001 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3002 int offset, int len)
3003 {
3004 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3005
3006 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3007 }
3008 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3009
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)3010 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3011 {
3012 gfn_t gfn = gpa >> PAGE_SHIFT;
3013 int seg;
3014 int offset = offset_in_page(gpa);
3015 int ret;
3016
3017 while ((seg = next_segment(len, offset)) != 0) {
3018 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3019 if (ret < 0)
3020 return ret;
3021 offset = 0;
3022 len -= seg;
3023 data += seg;
3024 ++gfn;
3025 }
3026 return 0;
3027 }
3028 EXPORT_SYMBOL_GPL(kvm_read_guest);
3029
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)3030 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3031 {
3032 gfn_t gfn = gpa >> PAGE_SHIFT;
3033 int seg;
3034 int offset = offset_in_page(gpa);
3035 int ret;
3036
3037 while ((seg = next_segment(len, offset)) != 0) {
3038 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3039 if (ret < 0)
3040 return ret;
3041 offset = 0;
3042 len -= seg;
3043 data += seg;
3044 ++gfn;
3045 }
3046 return 0;
3047 }
3048 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3049
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)3050 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3051 void *data, int offset, unsigned long len)
3052 {
3053 int r;
3054 unsigned long addr;
3055
3056 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3057 if (kvm_is_error_hva(addr))
3058 return -EFAULT;
3059 pagefault_disable();
3060 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3061 pagefault_enable();
3062 if (r)
3063 return -EFAULT;
3064 return 0;
3065 }
3066
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)3067 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3068 void *data, unsigned long len)
3069 {
3070 gfn_t gfn = gpa >> PAGE_SHIFT;
3071 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3072 int offset = offset_in_page(gpa);
3073
3074 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3075 }
3076 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3077
__kvm_write_guest_page(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)3078 static int __kvm_write_guest_page(struct kvm *kvm,
3079 struct kvm_memory_slot *memslot, gfn_t gfn,
3080 const void *data, int offset, int len)
3081 {
3082 int r;
3083 unsigned long addr;
3084
3085 addr = gfn_to_hva_memslot(memslot, gfn);
3086 if (kvm_is_error_hva(addr))
3087 return -EFAULT;
3088 r = __copy_to_user((void __user *)addr + offset, data, len);
3089 if (r)
3090 return -EFAULT;
3091 mark_page_dirty_in_slot(kvm, memslot, gfn);
3092 return 0;
3093 }
3094
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)3095 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3096 const void *data, int offset, int len)
3097 {
3098 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3099
3100 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3101 }
3102 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3103
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)3104 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3105 const void *data, int offset, int len)
3106 {
3107 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3108
3109 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3110 }
3111 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3112
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)3113 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3114 unsigned long len)
3115 {
3116 gfn_t gfn = gpa >> PAGE_SHIFT;
3117 int seg;
3118 int offset = offset_in_page(gpa);
3119 int ret;
3120
3121 while ((seg = next_segment(len, offset)) != 0) {
3122 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3123 if (ret < 0)
3124 return ret;
3125 offset = 0;
3126 len -= seg;
3127 data += seg;
3128 ++gfn;
3129 }
3130 return 0;
3131 }
3132 EXPORT_SYMBOL_GPL(kvm_write_guest);
3133
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)3134 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3135 unsigned long len)
3136 {
3137 gfn_t gfn = gpa >> PAGE_SHIFT;
3138 int seg;
3139 int offset = offset_in_page(gpa);
3140 int ret;
3141
3142 while ((seg = next_segment(len, offset)) != 0) {
3143 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3144 if (ret < 0)
3145 return ret;
3146 offset = 0;
3147 len -= seg;
3148 data += seg;
3149 ++gfn;
3150 }
3151 return 0;
3152 }
3153 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3154
__kvm_gfn_to_hva_cache_init(struct kvm_memslots * slots,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3155 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3156 struct gfn_to_hva_cache *ghc,
3157 gpa_t gpa, unsigned long len)
3158 {
3159 int offset = offset_in_page(gpa);
3160 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3161 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3162 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3163 gfn_t nr_pages_avail;
3164
3165 /* Update ghc->generation before performing any error checks. */
3166 ghc->generation = slots->generation;
3167
3168 if (start_gfn > end_gfn) {
3169 ghc->hva = KVM_HVA_ERR_BAD;
3170 return -EINVAL;
3171 }
3172
3173 /*
3174 * If the requested region crosses two memslots, we still
3175 * verify that the entire region is valid here.
3176 */
3177 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3178 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3179 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3180 &nr_pages_avail);
3181 if (kvm_is_error_hva(ghc->hva))
3182 return -EFAULT;
3183 }
3184
3185 /* Use the slow path for cross page reads and writes. */
3186 if (nr_pages_needed == 1)
3187 ghc->hva += offset;
3188 else
3189 ghc->memslot = NULL;
3190
3191 ghc->gpa = gpa;
3192 ghc->len = len;
3193 return 0;
3194 }
3195
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3196 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3197 gpa_t gpa, unsigned long len)
3198 {
3199 struct kvm_memslots *slots = kvm_memslots(kvm);
3200 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3201 }
3202 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3203
kvm_write_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3204 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3205 void *data, unsigned int offset,
3206 unsigned long len)
3207 {
3208 struct kvm_memslots *slots = kvm_memslots(kvm);
3209 int r;
3210 gpa_t gpa = ghc->gpa + offset;
3211
3212 if (WARN_ON_ONCE(len + offset > ghc->len))
3213 return -EINVAL;
3214
3215 if (slots->generation != ghc->generation) {
3216 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3217 return -EFAULT;
3218 }
3219
3220 if (kvm_is_error_hva(ghc->hva))
3221 return -EFAULT;
3222
3223 if (unlikely(!ghc->memslot))
3224 return kvm_write_guest(kvm, gpa, data, len);
3225
3226 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3227 if (r)
3228 return -EFAULT;
3229 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3230
3231 return 0;
3232 }
3233 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3234
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3235 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3236 void *data, unsigned long len)
3237 {
3238 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3239 }
3240 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3241
kvm_read_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3242 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3243 void *data, unsigned int offset,
3244 unsigned long len)
3245 {
3246 struct kvm_memslots *slots = kvm_memslots(kvm);
3247 int r;
3248 gpa_t gpa = ghc->gpa + offset;
3249
3250 if (WARN_ON_ONCE(len + offset > ghc->len))
3251 return -EINVAL;
3252
3253 if (slots->generation != ghc->generation) {
3254 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3255 return -EFAULT;
3256 }
3257
3258 if (kvm_is_error_hva(ghc->hva))
3259 return -EFAULT;
3260
3261 if (unlikely(!ghc->memslot))
3262 return kvm_read_guest(kvm, gpa, data, len);
3263
3264 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3265 if (r)
3266 return -EFAULT;
3267
3268 return 0;
3269 }
3270 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3271
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3272 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3273 void *data, unsigned long len)
3274 {
3275 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3276 }
3277 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3278
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)3279 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3280 {
3281 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3282 gfn_t gfn = gpa >> PAGE_SHIFT;
3283 int seg;
3284 int offset = offset_in_page(gpa);
3285 int ret;
3286
3287 while ((seg = next_segment(len, offset)) != 0) {
3288 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3289 if (ret < 0)
3290 return ret;
3291 offset = 0;
3292 len -= seg;
3293 ++gfn;
3294 }
3295 return 0;
3296 }
3297 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3298
mark_page_dirty_in_slot(struct kvm * kvm,const struct kvm_memory_slot * memslot,gfn_t gfn)3299 void mark_page_dirty_in_slot(struct kvm *kvm,
3300 const struct kvm_memory_slot *memslot,
3301 gfn_t gfn)
3302 {
3303 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3304
3305 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3306 if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm))
3307 return;
3308 #endif
3309
3310 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3311 unsigned long rel_gfn = gfn - memslot->base_gfn;
3312 u32 slot = (memslot->as_id << 16) | memslot->id;
3313
3314 if (kvm->dirty_ring_size)
3315 kvm_dirty_ring_push(&vcpu->dirty_ring,
3316 slot, rel_gfn);
3317 else
3318 set_bit_le(rel_gfn, memslot->dirty_bitmap);
3319 }
3320 }
3321 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3322
mark_page_dirty(struct kvm * kvm,gfn_t gfn)3323 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3324 {
3325 struct kvm_memory_slot *memslot;
3326
3327 memslot = gfn_to_memslot(kvm, gfn);
3328 mark_page_dirty_in_slot(kvm, memslot, gfn);
3329 }
3330 EXPORT_SYMBOL_GPL(mark_page_dirty);
3331
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)3332 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3333 {
3334 struct kvm_memory_slot *memslot;
3335
3336 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3337 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3338 }
3339 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3340
kvm_sigset_activate(struct kvm_vcpu * vcpu)3341 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3342 {
3343 if (!vcpu->sigset_active)
3344 return;
3345
3346 /*
3347 * This does a lockless modification of ->real_blocked, which is fine
3348 * because, only current can change ->real_blocked and all readers of
3349 * ->real_blocked don't care as long ->real_blocked is always a subset
3350 * of ->blocked.
3351 */
3352 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
3353 }
3354
kvm_sigset_deactivate(struct kvm_vcpu * vcpu)3355 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3356 {
3357 if (!vcpu->sigset_active)
3358 return;
3359
3360 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
3361 sigemptyset(¤t->real_blocked);
3362 }
3363
grow_halt_poll_ns(struct kvm_vcpu * vcpu)3364 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3365 {
3366 unsigned int old, val, grow, grow_start;
3367
3368 old = val = vcpu->halt_poll_ns;
3369 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3370 grow = READ_ONCE(halt_poll_ns_grow);
3371 if (!grow)
3372 goto out;
3373
3374 val *= grow;
3375 if (val < grow_start)
3376 val = grow_start;
3377
3378 vcpu->halt_poll_ns = val;
3379 out:
3380 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3381 }
3382
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)3383 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3384 {
3385 unsigned int old, val, shrink, grow_start;
3386
3387 old = val = vcpu->halt_poll_ns;
3388 shrink = READ_ONCE(halt_poll_ns_shrink);
3389 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3390 if (shrink == 0)
3391 val = 0;
3392 else
3393 val /= shrink;
3394
3395 if (val < grow_start)
3396 val = 0;
3397
3398 vcpu->halt_poll_ns = val;
3399 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3400 }
3401
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)3402 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3403 {
3404 int ret = -EINTR;
3405 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3406
3407 if (kvm_arch_vcpu_runnable(vcpu))
3408 goto out;
3409 if (kvm_cpu_has_pending_timer(vcpu))
3410 goto out;
3411 if (signal_pending(current))
3412 goto out;
3413 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3414 goto out;
3415
3416 ret = 0;
3417 out:
3418 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3419 return ret;
3420 }
3421
3422 /*
3423 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3424 * pending. This is mostly used when halting a vCPU, but may also be used
3425 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3426 */
kvm_vcpu_block(struct kvm_vcpu * vcpu)3427 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3428 {
3429 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3430 bool waited = false;
3431
3432 vcpu->stat.generic.blocking = 1;
3433
3434 preempt_disable();
3435 kvm_arch_vcpu_blocking(vcpu);
3436 prepare_to_rcuwait(wait);
3437 preempt_enable();
3438
3439 for (;;) {
3440 set_current_state(TASK_INTERRUPTIBLE);
3441
3442 if (kvm_vcpu_check_block(vcpu) < 0)
3443 break;
3444
3445 waited = true;
3446 schedule();
3447 }
3448
3449 preempt_disable();
3450 finish_rcuwait(wait);
3451 kvm_arch_vcpu_unblocking(vcpu);
3452 preempt_enable();
3453
3454 vcpu->stat.generic.blocking = 0;
3455
3456 return waited;
3457 }
3458
update_halt_poll_stats(struct kvm_vcpu * vcpu,ktime_t start,ktime_t end,bool success)3459 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3460 ktime_t end, bool success)
3461 {
3462 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3463 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3464
3465 ++vcpu->stat.generic.halt_attempted_poll;
3466
3467 if (success) {
3468 ++vcpu->stat.generic.halt_successful_poll;
3469
3470 if (!vcpu_valid_wakeup(vcpu))
3471 ++vcpu->stat.generic.halt_poll_invalid;
3472
3473 stats->halt_poll_success_ns += poll_ns;
3474 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3475 } else {
3476 stats->halt_poll_fail_ns += poll_ns;
3477 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3478 }
3479 }
3480
kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu * vcpu)3481 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3482 {
3483 struct kvm *kvm = vcpu->kvm;
3484
3485 if (kvm->override_halt_poll_ns) {
3486 /*
3487 * Ensure kvm->max_halt_poll_ns is not read before
3488 * kvm->override_halt_poll_ns.
3489 *
3490 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3491 */
3492 smp_rmb();
3493 return READ_ONCE(kvm->max_halt_poll_ns);
3494 }
3495
3496 return READ_ONCE(halt_poll_ns);
3497 }
3498
3499 /*
3500 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3501 * polling is enabled, busy wait for a short time before blocking to avoid the
3502 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3503 * is halted.
3504 */
kvm_vcpu_halt(struct kvm_vcpu * vcpu)3505 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3506 {
3507 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3508 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3509 ktime_t start, cur, poll_end;
3510 bool waited = false;
3511 bool do_halt_poll;
3512 u64 halt_ns;
3513
3514 if (vcpu->halt_poll_ns > max_halt_poll_ns)
3515 vcpu->halt_poll_ns = max_halt_poll_ns;
3516
3517 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3518
3519 start = cur = poll_end = ktime_get();
3520 if (do_halt_poll) {
3521 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3522
3523 do {
3524 /*
3525 * This sets KVM_REQ_UNHALT if an interrupt
3526 * arrives.
3527 */
3528 if (kvm_vcpu_check_block(vcpu) < 0)
3529 goto out;
3530 cpu_relax();
3531 poll_end = cur = ktime_get();
3532 } while (kvm_vcpu_can_poll(cur, stop));
3533 }
3534
3535 waited = kvm_vcpu_block(vcpu);
3536
3537 cur = ktime_get();
3538 if (waited) {
3539 vcpu->stat.generic.halt_wait_ns +=
3540 ktime_to_ns(cur) - ktime_to_ns(poll_end);
3541 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3542 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3543 }
3544 out:
3545 /* The total time the vCPU was "halted", including polling time. */
3546 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3547
3548 /*
3549 * Note, halt-polling is considered successful so long as the vCPU was
3550 * never actually scheduled out, i.e. even if the wake event arrived
3551 * after of the halt-polling loop itself, but before the full wait.
3552 */
3553 if (do_halt_poll)
3554 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3555
3556 if (halt_poll_allowed) {
3557 /* Recompute the max halt poll time in case it changed. */
3558 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3559
3560 if (!vcpu_valid_wakeup(vcpu)) {
3561 shrink_halt_poll_ns(vcpu);
3562 } else if (max_halt_poll_ns) {
3563 if (halt_ns <= vcpu->halt_poll_ns)
3564 ;
3565 /* we had a long block, shrink polling */
3566 else if (vcpu->halt_poll_ns &&
3567 halt_ns > max_halt_poll_ns)
3568 shrink_halt_poll_ns(vcpu);
3569 /* we had a short halt and our poll time is too small */
3570 else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3571 halt_ns < max_halt_poll_ns)
3572 grow_halt_poll_ns(vcpu);
3573 } else {
3574 vcpu->halt_poll_ns = 0;
3575 }
3576 }
3577
3578 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3579 }
3580 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3581
kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)3582 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3583 {
3584 if (__kvm_vcpu_wake_up(vcpu)) {
3585 WRITE_ONCE(vcpu->ready, true);
3586 ++vcpu->stat.generic.halt_wakeup;
3587 return true;
3588 }
3589
3590 return false;
3591 }
3592 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3593
3594 #ifndef CONFIG_S390
3595 /*
3596 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3597 */
kvm_vcpu_kick(struct kvm_vcpu * vcpu)3598 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3599 {
3600 int me, cpu;
3601
3602 if (kvm_vcpu_wake_up(vcpu))
3603 return;
3604
3605 me = get_cpu();
3606 /*
3607 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3608 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3609 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3610 * within the vCPU thread itself.
3611 */
3612 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3613 if (vcpu->mode == IN_GUEST_MODE)
3614 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3615 goto out;
3616 }
3617
3618 /*
3619 * Note, the vCPU could get migrated to a different pCPU at any point
3620 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3621 * IPI to the previous pCPU. But, that's ok because the purpose of the
3622 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3623 * vCPU also requires it to leave IN_GUEST_MODE.
3624 */
3625 if (kvm_arch_vcpu_should_kick(vcpu)) {
3626 cpu = READ_ONCE(vcpu->cpu);
3627 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3628 smp_send_reschedule(cpu);
3629 }
3630 out:
3631 put_cpu();
3632 }
3633 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3634 #endif /* !CONFIG_S390 */
3635
kvm_vcpu_yield_to(struct kvm_vcpu * target)3636 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3637 {
3638 struct pid *pid;
3639 struct task_struct *task = NULL;
3640 int ret = 0;
3641
3642 rcu_read_lock();
3643 pid = rcu_dereference(target->pid);
3644 if (pid)
3645 task = get_pid_task(pid, PIDTYPE_PID);
3646 rcu_read_unlock();
3647 if (!task)
3648 return ret;
3649 ret = yield_to(task, 1);
3650 put_task_struct(task);
3651
3652 return ret;
3653 }
3654 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3655
3656 /*
3657 * Helper that checks whether a VCPU is eligible for directed yield.
3658 * Most eligible candidate to yield is decided by following heuristics:
3659 *
3660 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3661 * (preempted lock holder), indicated by @in_spin_loop.
3662 * Set at the beginning and cleared at the end of interception/PLE handler.
3663 *
3664 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3665 * chance last time (mostly it has become eligible now since we have probably
3666 * yielded to lockholder in last iteration. This is done by toggling
3667 * @dy_eligible each time a VCPU checked for eligibility.)
3668 *
3669 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3670 * to preempted lock-holder could result in wrong VCPU selection and CPU
3671 * burning. Giving priority for a potential lock-holder increases lock
3672 * progress.
3673 *
3674 * Since algorithm is based on heuristics, accessing another VCPU data without
3675 * locking does not harm. It may result in trying to yield to same VCPU, fail
3676 * and continue with next VCPU and so on.
3677 */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)3678 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3679 {
3680 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3681 bool eligible;
3682
3683 eligible = !vcpu->spin_loop.in_spin_loop ||
3684 vcpu->spin_loop.dy_eligible;
3685
3686 if (vcpu->spin_loop.in_spin_loop)
3687 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3688
3689 return eligible;
3690 #else
3691 return true;
3692 #endif
3693 }
3694
3695 /*
3696 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3697 * a vcpu_load/vcpu_put pair. However, for most architectures
3698 * kvm_arch_vcpu_runnable does not require vcpu_load.
3699 */
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)3700 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3701 {
3702 return kvm_arch_vcpu_runnable(vcpu);
3703 }
3704
vcpu_dy_runnable(struct kvm_vcpu * vcpu)3705 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3706 {
3707 if (kvm_arch_dy_runnable(vcpu))
3708 return true;
3709
3710 #ifdef CONFIG_KVM_ASYNC_PF
3711 if (!list_empty_careful(&vcpu->async_pf.done))
3712 return true;
3713 #endif
3714
3715 return false;
3716 }
3717
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)3718 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3719 {
3720 return false;
3721 }
3722
kvm_vcpu_on_spin(struct kvm_vcpu * me,bool yield_to_kernel_mode)3723 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3724 {
3725 struct kvm *kvm = me->kvm;
3726 struct kvm_vcpu *vcpu;
3727 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3728 unsigned long i;
3729 int yielded = 0;
3730 int try = 3;
3731 int pass;
3732
3733 kvm_vcpu_set_in_spin_loop(me, true);
3734 /*
3735 * We boost the priority of a VCPU that is runnable but not
3736 * currently running, because it got preempted by something
3737 * else and called schedule in __vcpu_run. Hopefully that
3738 * VCPU is holding the lock that we need and will release it.
3739 * We approximate round-robin by starting at the last boosted VCPU.
3740 */
3741 for (pass = 0; pass < 2 && !yielded && try; pass++) {
3742 kvm_for_each_vcpu(i, vcpu, kvm) {
3743 if (!pass && i <= last_boosted_vcpu) {
3744 i = last_boosted_vcpu;
3745 continue;
3746 } else if (pass && i > last_boosted_vcpu)
3747 break;
3748 if (!READ_ONCE(vcpu->ready))
3749 continue;
3750 if (vcpu == me)
3751 continue;
3752 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3753 continue;
3754 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3755 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3756 !kvm_arch_vcpu_in_kernel(vcpu))
3757 continue;
3758 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3759 continue;
3760
3761 yielded = kvm_vcpu_yield_to(vcpu);
3762 if (yielded > 0) {
3763 kvm->last_boosted_vcpu = i;
3764 break;
3765 } else if (yielded < 0) {
3766 try--;
3767 if (!try)
3768 break;
3769 }
3770 }
3771 }
3772 kvm_vcpu_set_in_spin_loop(me, false);
3773
3774 /* Ensure vcpu is not eligible during next spinloop */
3775 kvm_vcpu_set_dy_eligible(me, false);
3776 }
3777 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3778
kvm_page_in_dirty_ring(struct kvm * kvm,unsigned long pgoff)3779 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3780 {
3781 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3782 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3783 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3784 kvm->dirty_ring_size / PAGE_SIZE);
3785 #else
3786 return false;
3787 #endif
3788 }
3789
kvm_vcpu_fault(struct vm_fault * vmf)3790 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3791 {
3792 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3793 struct page *page;
3794
3795 if (vmf->pgoff == 0)
3796 page = virt_to_page(vcpu->run);
3797 #ifdef CONFIG_X86
3798 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3799 page = virt_to_page(vcpu->arch.pio_data);
3800 #endif
3801 #ifdef CONFIG_KVM_MMIO
3802 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3803 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3804 #endif
3805 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3806 page = kvm_dirty_ring_get_page(
3807 &vcpu->dirty_ring,
3808 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3809 else
3810 return kvm_arch_vcpu_fault(vcpu, vmf);
3811 get_page(page);
3812 vmf->page = page;
3813 return 0;
3814 }
3815
3816 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3817 .fault = kvm_vcpu_fault,
3818 };
3819
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)3820 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3821 {
3822 struct kvm_vcpu *vcpu = file->private_data;
3823 unsigned long pages = vma_pages(vma);
3824
3825 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3826 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3827 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3828 return -EINVAL;
3829
3830 vma->vm_ops = &kvm_vcpu_vm_ops;
3831 return 0;
3832 }
3833
kvm_vcpu_release(struct inode * inode,struct file * filp)3834 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3835 {
3836 struct kvm_vcpu *vcpu = filp->private_data;
3837
3838 kvm_put_kvm(vcpu->kvm);
3839 return 0;
3840 }
3841
3842 static const struct file_operations kvm_vcpu_fops = {
3843 .release = kvm_vcpu_release,
3844 .unlocked_ioctl = kvm_vcpu_ioctl,
3845 .mmap = kvm_vcpu_mmap,
3846 .llseek = noop_llseek,
3847 KVM_COMPAT(kvm_vcpu_compat_ioctl),
3848 };
3849
3850 /*
3851 * Allocates an inode for the vcpu.
3852 */
create_vcpu_fd(struct kvm_vcpu * vcpu)3853 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3854 {
3855 char name[8 + 1 + ITOA_MAX_LEN + 1];
3856
3857 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3858 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3859 }
3860
3861 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
vcpu_get_pid(void * data,u64 * val)3862 static int vcpu_get_pid(void *data, u64 *val)
3863 {
3864 struct kvm_vcpu *vcpu = (struct kvm_vcpu *) data;
3865 *val = pid_nr(rcu_access_pointer(vcpu->pid));
3866 return 0;
3867 }
3868
3869 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3870
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)3871 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3872 {
3873 struct dentry *debugfs_dentry;
3874 char dir_name[ITOA_MAX_LEN * 2];
3875
3876 if (!debugfs_initialized())
3877 return;
3878
3879 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3880 debugfs_dentry = debugfs_create_dir(dir_name,
3881 vcpu->kvm->debugfs_dentry);
3882 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3883 &vcpu_get_pid_fops);
3884
3885 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3886 }
3887 #endif
3888
3889 /*
3890 * Creates some virtual cpus. Good luck creating more than one.
3891 */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,u32 id)3892 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3893 {
3894 int r;
3895 struct kvm_vcpu *vcpu;
3896 struct page *page;
3897
3898 if (id >= KVM_MAX_VCPU_IDS)
3899 return -EINVAL;
3900
3901 mutex_lock(&kvm->lock);
3902 if (kvm->created_vcpus >= kvm->max_vcpus) {
3903 mutex_unlock(&kvm->lock);
3904 return -EINVAL;
3905 }
3906
3907 r = kvm_arch_vcpu_precreate(kvm, id);
3908 if (r) {
3909 mutex_unlock(&kvm->lock);
3910 return r;
3911 }
3912
3913 kvm->created_vcpus++;
3914 mutex_unlock(&kvm->lock);
3915
3916 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3917 if (!vcpu) {
3918 r = -ENOMEM;
3919 goto vcpu_decrement;
3920 }
3921
3922 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3923 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3924 if (!page) {
3925 r = -ENOMEM;
3926 goto vcpu_free;
3927 }
3928 vcpu->run = page_address(page);
3929
3930 kvm_vcpu_init(vcpu, kvm, id);
3931
3932 r = kvm_arch_vcpu_create(vcpu);
3933 if (r)
3934 goto vcpu_free_run_page;
3935
3936 if (kvm->dirty_ring_size) {
3937 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3938 id, kvm->dirty_ring_size);
3939 if (r)
3940 goto arch_vcpu_destroy;
3941 }
3942
3943 mutex_lock(&kvm->lock);
3944 if (kvm_get_vcpu_by_id(kvm, id)) {
3945 r = -EEXIST;
3946 goto unlock_vcpu_destroy;
3947 }
3948
3949 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3950 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3951 BUG_ON(r == -EBUSY);
3952 if (r)
3953 goto unlock_vcpu_destroy;
3954
3955 /* Now it's all set up, let userspace reach it */
3956 kvm_get_kvm(kvm);
3957 r = create_vcpu_fd(vcpu);
3958 if (r < 0) {
3959 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3960 kvm_put_kvm_no_destroy(kvm);
3961 goto unlock_vcpu_destroy;
3962 }
3963
3964 /*
3965 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
3966 * pointer before kvm->online_vcpu's incremented value.
3967 */
3968 smp_wmb();
3969 atomic_inc(&kvm->online_vcpus);
3970
3971 mutex_unlock(&kvm->lock);
3972 kvm_arch_vcpu_postcreate(vcpu);
3973 kvm_create_vcpu_debugfs(vcpu);
3974 return r;
3975
3976 unlock_vcpu_destroy:
3977 mutex_unlock(&kvm->lock);
3978 kvm_dirty_ring_free(&vcpu->dirty_ring);
3979 arch_vcpu_destroy:
3980 kvm_arch_vcpu_destroy(vcpu);
3981 vcpu_free_run_page:
3982 free_page((unsigned long)vcpu->run);
3983 vcpu_free:
3984 kmem_cache_free(kvm_vcpu_cache, vcpu);
3985 vcpu_decrement:
3986 mutex_lock(&kvm->lock);
3987 kvm->created_vcpus--;
3988 mutex_unlock(&kvm->lock);
3989 return r;
3990 }
3991
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)3992 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3993 {
3994 if (sigset) {
3995 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3996 vcpu->sigset_active = 1;
3997 vcpu->sigset = *sigset;
3998 } else
3999 vcpu->sigset_active = 0;
4000 return 0;
4001 }
4002
kvm_vcpu_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)4003 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4004 size_t size, loff_t *offset)
4005 {
4006 struct kvm_vcpu *vcpu = file->private_data;
4007
4008 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4009 &kvm_vcpu_stats_desc[0], &vcpu->stat,
4010 sizeof(vcpu->stat), user_buffer, size, offset);
4011 }
4012
4013 static const struct file_operations kvm_vcpu_stats_fops = {
4014 .read = kvm_vcpu_stats_read,
4015 .llseek = noop_llseek,
4016 };
4017
kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu * vcpu)4018 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4019 {
4020 int fd;
4021 struct file *file;
4022 char name[15 + ITOA_MAX_LEN + 1];
4023
4024 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4025
4026 fd = get_unused_fd_flags(O_CLOEXEC);
4027 if (fd < 0)
4028 return fd;
4029
4030 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4031 if (IS_ERR(file)) {
4032 put_unused_fd(fd);
4033 return PTR_ERR(file);
4034 }
4035 file->f_mode |= FMODE_PREAD;
4036 fd_install(fd, file);
4037
4038 return fd;
4039 }
4040
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4041 static long kvm_vcpu_ioctl(struct file *filp,
4042 unsigned int ioctl, unsigned long arg)
4043 {
4044 struct kvm_vcpu *vcpu = filp->private_data;
4045 void __user *argp = (void __user *)arg;
4046 int r;
4047 struct kvm_fpu *fpu = NULL;
4048 struct kvm_sregs *kvm_sregs = NULL;
4049
4050 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4051 return -EIO;
4052
4053 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4054 return -EINVAL;
4055
4056 /*
4057 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4058 * execution; mutex_lock() would break them.
4059 */
4060 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4061 if (r != -ENOIOCTLCMD)
4062 return r;
4063
4064 if (mutex_lock_killable(&vcpu->mutex))
4065 return -EINTR;
4066 switch (ioctl) {
4067 case KVM_RUN: {
4068 struct pid *oldpid;
4069 r = -EINVAL;
4070 if (arg)
4071 goto out;
4072 oldpid = rcu_access_pointer(vcpu->pid);
4073 if (unlikely(oldpid != task_pid(current))) {
4074 /* The thread running this VCPU changed. */
4075 struct pid *newpid;
4076
4077 r = kvm_arch_vcpu_run_pid_change(vcpu);
4078 if (r)
4079 break;
4080
4081 newpid = get_task_pid(current, PIDTYPE_PID);
4082 rcu_assign_pointer(vcpu->pid, newpid);
4083 if (oldpid)
4084 synchronize_rcu();
4085 put_pid(oldpid);
4086 }
4087 r = kvm_arch_vcpu_ioctl_run(vcpu);
4088 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4089 break;
4090 }
4091 case KVM_GET_REGS: {
4092 struct kvm_regs *kvm_regs;
4093
4094 r = -ENOMEM;
4095 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4096 if (!kvm_regs)
4097 goto out;
4098 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4099 if (r)
4100 goto out_free1;
4101 r = -EFAULT;
4102 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4103 goto out_free1;
4104 r = 0;
4105 out_free1:
4106 kfree(kvm_regs);
4107 break;
4108 }
4109 case KVM_SET_REGS: {
4110 struct kvm_regs *kvm_regs;
4111
4112 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4113 if (IS_ERR(kvm_regs)) {
4114 r = PTR_ERR(kvm_regs);
4115 goto out;
4116 }
4117 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4118 kfree(kvm_regs);
4119 break;
4120 }
4121 case KVM_GET_SREGS: {
4122 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4123 GFP_KERNEL_ACCOUNT);
4124 r = -ENOMEM;
4125 if (!kvm_sregs)
4126 goto out;
4127 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4128 if (r)
4129 goto out;
4130 r = -EFAULT;
4131 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4132 goto out;
4133 r = 0;
4134 break;
4135 }
4136 case KVM_SET_SREGS: {
4137 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4138 if (IS_ERR(kvm_sregs)) {
4139 r = PTR_ERR(kvm_sregs);
4140 kvm_sregs = NULL;
4141 goto out;
4142 }
4143 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4144 break;
4145 }
4146 case KVM_GET_MP_STATE: {
4147 struct kvm_mp_state mp_state;
4148
4149 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4150 if (r)
4151 goto out;
4152 r = -EFAULT;
4153 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4154 goto out;
4155 r = 0;
4156 break;
4157 }
4158 case KVM_SET_MP_STATE: {
4159 struct kvm_mp_state mp_state;
4160
4161 r = -EFAULT;
4162 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4163 goto out;
4164 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4165 break;
4166 }
4167 case KVM_TRANSLATE: {
4168 struct kvm_translation tr;
4169
4170 r = -EFAULT;
4171 if (copy_from_user(&tr, argp, sizeof(tr)))
4172 goto out;
4173 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4174 if (r)
4175 goto out;
4176 r = -EFAULT;
4177 if (copy_to_user(argp, &tr, sizeof(tr)))
4178 goto out;
4179 r = 0;
4180 break;
4181 }
4182 case KVM_SET_GUEST_DEBUG: {
4183 struct kvm_guest_debug dbg;
4184
4185 r = -EFAULT;
4186 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4187 goto out;
4188 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4189 break;
4190 }
4191 case KVM_SET_SIGNAL_MASK: {
4192 struct kvm_signal_mask __user *sigmask_arg = argp;
4193 struct kvm_signal_mask kvm_sigmask;
4194 sigset_t sigset, *p;
4195
4196 p = NULL;
4197 if (argp) {
4198 r = -EFAULT;
4199 if (copy_from_user(&kvm_sigmask, argp,
4200 sizeof(kvm_sigmask)))
4201 goto out;
4202 r = -EINVAL;
4203 if (kvm_sigmask.len != sizeof(sigset))
4204 goto out;
4205 r = -EFAULT;
4206 if (copy_from_user(&sigset, sigmask_arg->sigset,
4207 sizeof(sigset)))
4208 goto out;
4209 p = &sigset;
4210 }
4211 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4212 break;
4213 }
4214 case KVM_GET_FPU: {
4215 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4216 r = -ENOMEM;
4217 if (!fpu)
4218 goto out;
4219 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4220 if (r)
4221 goto out;
4222 r = -EFAULT;
4223 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4224 goto out;
4225 r = 0;
4226 break;
4227 }
4228 case KVM_SET_FPU: {
4229 fpu = memdup_user(argp, sizeof(*fpu));
4230 if (IS_ERR(fpu)) {
4231 r = PTR_ERR(fpu);
4232 fpu = NULL;
4233 goto out;
4234 }
4235 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4236 break;
4237 }
4238 case KVM_GET_STATS_FD: {
4239 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4240 break;
4241 }
4242 default:
4243 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4244 }
4245 out:
4246 mutex_unlock(&vcpu->mutex);
4247 kfree(fpu);
4248 kfree(kvm_sregs);
4249 return r;
4250 }
4251
4252 #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4253 static long kvm_vcpu_compat_ioctl(struct file *filp,
4254 unsigned int ioctl, unsigned long arg)
4255 {
4256 struct kvm_vcpu *vcpu = filp->private_data;
4257 void __user *argp = compat_ptr(arg);
4258 int r;
4259
4260 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4261 return -EIO;
4262
4263 switch (ioctl) {
4264 case KVM_SET_SIGNAL_MASK: {
4265 struct kvm_signal_mask __user *sigmask_arg = argp;
4266 struct kvm_signal_mask kvm_sigmask;
4267 sigset_t sigset;
4268
4269 if (argp) {
4270 r = -EFAULT;
4271 if (copy_from_user(&kvm_sigmask, argp,
4272 sizeof(kvm_sigmask)))
4273 goto out;
4274 r = -EINVAL;
4275 if (kvm_sigmask.len != sizeof(compat_sigset_t))
4276 goto out;
4277 r = -EFAULT;
4278 if (get_compat_sigset(&sigset,
4279 (compat_sigset_t __user *)sigmask_arg->sigset))
4280 goto out;
4281 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4282 } else
4283 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4284 break;
4285 }
4286 default:
4287 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4288 }
4289
4290 out:
4291 return r;
4292 }
4293 #endif
4294
kvm_device_mmap(struct file * filp,struct vm_area_struct * vma)4295 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4296 {
4297 struct kvm_device *dev = filp->private_data;
4298
4299 if (dev->ops->mmap)
4300 return dev->ops->mmap(dev, vma);
4301
4302 return -ENODEV;
4303 }
4304
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)4305 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4306 int (*accessor)(struct kvm_device *dev,
4307 struct kvm_device_attr *attr),
4308 unsigned long arg)
4309 {
4310 struct kvm_device_attr attr;
4311
4312 if (!accessor)
4313 return -EPERM;
4314
4315 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4316 return -EFAULT;
4317
4318 return accessor(dev, &attr);
4319 }
4320
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4321 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4322 unsigned long arg)
4323 {
4324 struct kvm_device *dev = filp->private_data;
4325
4326 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4327 return -EIO;
4328
4329 switch (ioctl) {
4330 case KVM_SET_DEVICE_ATTR:
4331 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4332 case KVM_GET_DEVICE_ATTR:
4333 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4334 case KVM_HAS_DEVICE_ATTR:
4335 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4336 default:
4337 if (dev->ops->ioctl)
4338 return dev->ops->ioctl(dev, ioctl, arg);
4339
4340 return -ENOTTY;
4341 }
4342 }
4343
kvm_device_release(struct inode * inode,struct file * filp)4344 static int kvm_device_release(struct inode *inode, struct file *filp)
4345 {
4346 struct kvm_device *dev = filp->private_data;
4347 struct kvm *kvm = dev->kvm;
4348
4349 if (dev->ops->release) {
4350 mutex_lock(&kvm->lock);
4351 list_del(&dev->vm_node);
4352 dev->ops->release(dev);
4353 mutex_unlock(&kvm->lock);
4354 }
4355
4356 kvm_put_kvm(kvm);
4357 return 0;
4358 }
4359
4360 static const struct file_operations kvm_device_fops = {
4361 .unlocked_ioctl = kvm_device_ioctl,
4362 .release = kvm_device_release,
4363 KVM_COMPAT(kvm_device_ioctl),
4364 .mmap = kvm_device_mmap,
4365 };
4366
kvm_device_from_filp(struct file * filp)4367 struct kvm_device *kvm_device_from_filp(struct file *filp)
4368 {
4369 if (filp->f_op != &kvm_device_fops)
4370 return NULL;
4371
4372 return filp->private_data;
4373 }
4374
4375 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4376 #ifdef CONFIG_KVM_MPIC
4377 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4378 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4379 #endif
4380 };
4381
kvm_register_device_ops(const struct kvm_device_ops * ops,u32 type)4382 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4383 {
4384 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4385 return -ENOSPC;
4386
4387 if (kvm_device_ops_table[type] != NULL)
4388 return -EEXIST;
4389
4390 kvm_device_ops_table[type] = ops;
4391 return 0;
4392 }
4393
kvm_unregister_device_ops(u32 type)4394 void kvm_unregister_device_ops(u32 type)
4395 {
4396 if (kvm_device_ops_table[type] != NULL)
4397 kvm_device_ops_table[type] = NULL;
4398 }
4399
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)4400 static int kvm_ioctl_create_device(struct kvm *kvm,
4401 struct kvm_create_device *cd)
4402 {
4403 const struct kvm_device_ops *ops;
4404 struct kvm_device *dev;
4405 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4406 int type;
4407 int ret;
4408
4409 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4410 return -ENODEV;
4411
4412 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4413 ops = kvm_device_ops_table[type];
4414 if (ops == NULL)
4415 return -ENODEV;
4416
4417 if (test)
4418 return 0;
4419
4420 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4421 if (!dev)
4422 return -ENOMEM;
4423
4424 dev->ops = ops;
4425 dev->kvm = kvm;
4426
4427 mutex_lock(&kvm->lock);
4428 ret = ops->create(dev, type);
4429 if (ret < 0) {
4430 mutex_unlock(&kvm->lock);
4431 kfree(dev);
4432 return ret;
4433 }
4434 list_add(&dev->vm_node, &kvm->devices);
4435 mutex_unlock(&kvm->lock);
4436
4437 if (ops->init)
4438 ops->init(dev);
4439
4440 kvm_get_kvm(kvm);
4441 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4442 if (ret < 0) {
4443 kvm_put_kvm_no_destroy(kvm);
4444 mutex_lock(&kvm->lock);
4445 list_del(&dev->vm_node);
4446 if (ops->release)
4447 ops->release(dev);
4448 mutex_unlock(&kvm->lock);
4449 if (ops->destroy)
4450 ops->destroy(dev);
4451 return ret;
4452 }
4453
4454 cd->fd = ret;
4455 return 0;
4456 }
4457
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)4458 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4459 {
4460 switch (arg) {
4461 case KVM_CAP_USER_MEMORY:
4462 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4463 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4464 case KVM_CAP_INTERNAL_ERROR_DATA:
4465 #ifdef CONFIG_HAVE_KVM_MSI
4466 case KVM_CAP_SIGNAL_MSI:
4467 #endif
4468 #ifdef CONFIG_HAVE_KVM_IRQFD
4469 case KVM_CAP_IRQFD:
4470 case KVM_CAP_IRQFD_RESAMPLE:
4471 #endif
4472 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4473 case KVM_CAP_CHECK_EXTENSION_VM:
4474 case KVM_CAP_ENABLE_CAP_VM:
4475 case KVM_CAP_HALT_POLL:
4476 return 1;
4477 #ifdef CONFIG_KVM_MMIO
4478 case KVM_CAP_COALESCED_MMIO:
4479 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4480 case KVM_CAP_COALESCED_PIO:
4481 return 1;
4482 #endif
4483 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4484 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4485 return KVM_DIRTY_LOG_MANUAL_CAPS;
4486 #endif
4487 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4488 case KVM_CAP_IRQ_ROUTING:
4489 return KVM_MAX_IRQ_ROUTES;
4490 #endif
4491 #if KVM_ADDRESS_SPACE_NUM > 1
4492 case KVM_CAP_MULTI_ADDRESS_SPACE:
4493 return KVM_ADDRESS_SPACE_NUM;
4494 #endif
4495 case KVM_CAP_NR_MEMSLOTS:
4496 return KVM_USER_MEM_SLOTS;
4497 case KVM_CAP_DIRTY_LOG_RING:
4498 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4499 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4500 #else
4501 return 0;
4502 #endif
4503 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4504 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4505 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4506 #else
4507 return 0;
4508 #endif
4509 case KVM_CAP_BINARY_STATS_FD:
4510 case KVM_CAP_SYSTEM_EVENT_DATA:
4511 return 1;
4512 default:
4513 break;
4514 }
4515 return kvm_vm_ioctl_check_extension(kvm, arg);
4516 }
4517
kvm_vm_ioctl_enable_dirty_log_ring(struct kvm * kvm,u32 size)4518 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4519 {
4520 int r;
4521
4522 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4523 return -EINVAL;
4524
4525 /* the size should be power of 2 */
4526 if (!size || (size & (size - 1)))
4527 return -EINVAL;
4528
4529 /* Should be bigger to keep the reserved entries, or a page */
4530 if (size < kvm_dirty_ring_get_rsvd_entries() *
4531 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4532 return -EINVAL;
4533
4534 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4535 sizeof(struct kvm_dirty_gfn))
4536 return -E2BIG;
4537
4538 /* We only allow it to set once */
4539 if (kvm->dirty_ring_size)
4540 return -EINVAL;
4541
4542 mutex_lock(&kvm->lock);
4543
4544 if (kvm->created_vcpus) {
4545 /* We don't allow to change this value after vcpu created */
4546 r = -EINVAL;
4547 } else {
4548 kvm->dirty_ring_size = size;
4549 r = 0;
4550 }
4551
4552 mutex_unlock(&kvm->lock);
4553 return r;
4554 }
4555
kvm_vm_ioctl_reset_dirty_pages(struct kvm * kvm)4556 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4557 {
4558 unsigned long i;
4559 struct kvm_vcpu *vcpu;
4560 int cleared = 0;
4561
4562 if (!kvm->dirty_ring_size)
4563 return -EINVAL;
4564
4565 mutex_lock(&kvm->slots_lock);
4566
4567 kvm_for_each_vcpu(i, vcpu, kvm)
4568 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4569
4570 mutex_unlock(&kvm->slots_lock);
4571
4572 if (cleared)
4573 kvm_flush_remote_tlbs(kvm);
4574
4575 return cleared;
4576 }
4577
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)4578 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4579 struct kvm_enable_cap *cap)
4580 {
4581 return -EINVAL;
4582 }
4583
kvm_vm_ioctl_enable_cap_generic(struct kvm * kvm,struct kvm_enable_cap * cap)4584 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4585 struct kvm_enable_cap *cap)
4586 {
4587 switch (cap->cap) {
4588 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4589 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4590 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4591
4592 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4593 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4594
4595 if (cap->flags || (cap->args[0] & ~allowed_options))
4596 return -EINVAL;
4597 kvm->manual_dirty_log_protect = cap->args[0];
4598 return 0;
4599 }
4600 #endif
4601 case KVM_CAP_HALT_POLL: {
4602 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4603 return -EINVAL;
4604
4605 kvm->max_halt_poll_ns = cap->args[0];
4606
4607 /*
4608 * Ensure kvm->override_halt_poll_ns does not become visible
4609 * before kvm->max_halt_poll_ns.
4610 *
4611 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4612 */
4613 smp_wmb();
4614 kvm->override_halt_poll_ns = true;
4615
4616 return 0;
4617 }
4618 case KVM_CAP_DIRTY_LOG_RING:
4619 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4620 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4621 return -EINVAL;
4622
4623 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4624 default:
4625 return kvm_vm_ioctl_enable_cap(kvm, cap);
4626 }
4627 }
4628
kvm_vm_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)4629 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4630 size_t size, loff_t *offset)
4631 {
4632 struct kvm *kvm = file->private_data;
4633
4634 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4635 &kvm_vm_stats_desc[0], &kvm->stat,
4636 sizeof(kvm->stat), user_buffer, size, offset);
4637 }
4638
4639 static const struct file_operations kvm_vm_stats_fops = {
4640 .read = kvm_vm_stats_read,
4641 .llseek = noop_llseek,
4642 };
4643
kvm_vm_ioctl_get_stats_fd(struct kvm * kvm)4644 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4645 {
4646 int fd;
4647 struct file *file;
4648
4649 fd = get_unused_fd_flags(O_CLOEXEC);
4650 if (fd < 0)
4651 return fd;
4652
4653 file = anon_inode_getfile("kvm-vm-stats",
4654 &kvm_vm_stats_fops, kvm, O_RDONLY);
4655 if (IS_ERR(file)) {
4656 put_unused_fd(fd);
4657 return PTR_ERR(file);
4658 }
4659 file->f_mode |= FMODE_PREAD;
4660 fd_install(fd, file);
4661
4662 return fd;
4663 }
4664
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4665 static long kvm_vm_ioctl(struct file *filp,
4666 unsigned int ioctl, unsigned long arg)
4667 {
4668 struct kvm *kvm = filp->private_data;
4669 void __user *argp = (void __user *)arg;
4670 int r;
4671
4672 if (kvm->mm != current->mm || kvm->vm_dead)
4673 return -EIO;
4674 switch (ioctl) {
4675 case KVM_CREATE_VCPU:
4676 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4677 break;
4678 case KVM_ENABLE_CAP: {
4679 struct kvm_enable_cap cap;
4680
4681 r = -EFAULT;
4682 if (copy_from_user(&cap, argp, sizeof(cap)))
4683 goto out;
4684 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4685 break;
4686 }
4687 case KVM_SET_USER_MEMORY_REGION: {
4688 struct kvm_userspace_memory_region kvm_userspace_mem;
4689
4690 r = -EFAULT;
4691 if (copy_from_user(&kvm_userspace_mem, argp,
4692 sizeof(kvm_userspace_mem)))
4693 goto out;
4694
4695 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4696 break;
4697 }
4698 case KVM_GET_DIRTY_LOG: {
4699 struct kvm_dirty_log log;
4700
4701 r = -EFAULT;
4702 if (copy_from_user(&log, argp, sizeof(log)))
4703 goto out;
4704 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4705 break;
4706 }
4707 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4708 case KVM_CLEAR_DIRTY_LOG: {
4709 struct kvm_clear_dirty_log log;
4710
4711 r = -EFAULT;
4712 if (copy_from_user(&log, argp, sizeof(log)))
4713 goto out;
4714 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4715 break;
4716 }
4717 #endif
4718 #ifdef CONFIG_KVM_MMIO
4719 case KVM_REGISTER_COALESCED_MMIO: {
4720 struct kvm_coalesced_mmio_zone zone;
4721
4722 r = -EFAULT;
4723 if (copy_from_user(&zone, argp, sizeof(zone)))
4724 goto out;
4725 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4726 break;
4727 }
4728 case KVM_UNREGISTER_COALESCED_MMIO: {
4729 struct kvm_coalesced_mmio_zone zone;
4730
4731 r = -EFAULT;
4732 if (copy_from_user(&zone, argp, sizeof(zone)))
4733 goto out;
4734 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4735 break;
4736 }
4737 #endif
4738 case KVM_IRQFD: {
4739 struct kvm_irqfd data;
4740
4741 r = -EFAULT;
4742 if (copy_from_user(&data, argp, sizeof(data)))
4743 goto out;
4744 r = kvm_irqfd(kvm, &data);
4745 break;
4746 }
4747 case KVM_IOEVENTFD: {
4748 struct kvm_ioeventfd data;
4749
4750 r = -EFAULT;
4751 if (copy_from_user(&data, argp, sizeof(data)))
4752 goto out;
4753 r = kvm_ioeventfd(kvm, &data);
4754 break;
4755 }
4756 #ifdef CONFIG_HAVE_KVM_MSI
4757 case KVM_SIGNAL_MSI: {
4758 struct kvm_msi msi;
4759
4760 r = -EFAULT;
4761 if (copy_from_user(&msi, argp, sizeof(msi)))
4762 goto out;
4763 r = kvm_send_userspace_msi(kvm, &msi);
4764 break;
4765 }
4766 #endif
4767 #ifdef __KVM_HAVE_IRQ_LINE
4768 case KVM_IRQ_LINE_STATUS:
4769 case KVM_IRQ_LINE: {
4770 struct kvm_irq_level irq_event;
4771
4772 r = -EFAULT;
4773 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4774 goto out;
4775
4776 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4777 ioctl == KVM_IRQ_LINE_STATUS);
4778 if (r)
4779 goto out;
4780
4781 r = -EFAULT;
4782 if (ioctl == KVM_IRQ_LINE_STATUS) {
4783 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4784 goto out;
4785 }
4786
4787 r = 0;
4788 break;
4789 }
4790 #endif
4791 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4792 case KVM_SET_GSI_ROUTING: {
4793 struct kvm_irq_routing routing;
4794 struct kvm_irq_routing __user *urouting;
4795 struct kvm_irq_routing_entry *entries = NULL;
4796
4797 r = -EFAULT;
4798 if (copy_from_user(&routing, argp, sizeof(routing)))
4799 goto out;
4800 r = -EINVAL;
4801 if (!kvm_arch_can_set_irq_routing(kvm))
4802 goto out;
4803 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4804 goto out;
4805 if (routing.flags)
4806 goto out;
4807 if (routing.nr) {
4808 urouting = argp;
4809 entries = vmemdup_user(urouting->entries,
4810 array_size(sizeof(*entries),
4811 routing.nr));
4812 if (IS_ERR(entries)) {
4813 r = PTR_ERR(entries);
4814 goto out;
4815 }
4816 }
4817 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4818 routing.flags);
4819 kvfree(entries);
4820 break;
4821 }
4822 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4823 case KVM_CREATE_DEVICE: {
4824 struct kvm_create_device cd;
4825
4826 r = -EFAULT;
4827 if (copy_from_user(&cd, argp, sizeof(cd)))
4828 goto out;
4829
4830 r = kvm_ioctl_create_device(kvm, &cd);
4831 if (r)
4832 goto out;
4833
4834 r = -EFAULT;
4835 if (copy_to_user(argp, &cd, sizeof(cd)))
4836 goto out;
4837
4838 r = 0;
4839 break;
4840 }
4841 case KVM_CHECK_EXTENSION:
4842 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4843 break;
4844 case KVM_RESET_DIRTY_RINGS:
4845 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4846 break;
4847 case KVM_GET_STATS_FD:
4848 r = kvm_vm_ioctl_get_stats_fd(kvm);
4849 break;
4850 default:
4851 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4852 }
4853 out:
4854 return r;
4855 }
4856
4857 #ifdef CONFIG_KVM_COMPAT
4858 struct compat_kvm_dirty_log {
4859 __u32 slot;
4860 __u32 padding1;
4861 union {
4862 compat_uptr_t dirty_bitmap; /* one bit per page */
4863 __u64 padding2;
4864 };
4865 };
4866
4867 struct compat_kvm_clear_dirty_log {
4868 __u32 slot;
4869 __u32 num_pages;
4870 __u64 first_page;
4871 union {
4872 compat_uptr_t dirty_bitmap; /* one bit per page */
4873 __u64 padding2;
4874 };
4875 };
4876
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4877 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4878 unsigned long arg)
4879 {
4880 return -ENOTTY;
4881 }
4882
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4883 static long kvm_vm_compat_ioctl(struct file *filp,
4884 unsigned int ioctl, unsigned long arg)
4885 {
4886 struct kvm *kvm = filp->private_data;
4887 int r;
4888
4889 if (kvm->mm != current->mm || kvm->vm_dead)
4890 return -EIO;
4891
4892 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4893 if (r != -ENOTTY)
4894 return r;
4895
4896 switch (ioctl) {
4897 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4898 case KVM_CLEAR_DIRTY_LOG: {
4899 struct compat_kvm_clear_dirty_log compat_log;
4900 struct kvm_clear_dirty_log log;
4901
4902 if (copy_from_user(&compat_log, (void __user *)arg,
4903 sizeof(compat_log)))
4904 return -EFAULT;
4905 log.slot = compat_log.slot;
4906 log.num_pages = compat_log.num_pages;
4907 log.first_page = compat_log.first_page;
4908 log.padding2 = compat_log.padding2;
4909 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4910
4911 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4912 break;
4913 }
4914 #endif
4915 case KVM_GET_DIRTY_LOG: {
4916 struct compat_kvm_dirty_log compat_log;
4917 struct kvm_dirty_log log;
4918
4919 if (copy_from_user(&compat_log, (void __user *)arg,
4920 sizeof(compat_log)))
4921 return -EFAULT;
4922 log.slot = compat_log.slot;
4923 log.padding1 = compat_log.padding1;
4924 log.padding2 = compat_log.padding2;
4925 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4926
4927 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4928 break;
4929 }
4930 default:
4931 r = kvm_vm_ioctl(filp, ioctl, arg);
4932 }
4933 return r;
4934 }
4935 #endif
4936
4937 static const struct file_operations kvm_vm_fops = {
4938 .release = kvm_vm_release,
4939 .unlocked_ioctl = kvm_vm_ioctl,
4940 .llseek = noop_llseek,
4941 KVM_COMPAT(kvm_vm_compat_ioctl),
4942 };
4943
file_is_kvm(struct file * file)4944 bool file_is_kvm(struct file *file)
4945 {
4946 return file && file->f_op == &kvm_vm_fops;
4947 }
4948 EXPORT_SYMBOL_GPL(file_is_kvm);
4949
kvm_dev_ioctl_create_vm(unsigned long type)4950 static int kvm_dev_ioctl_create_vm(unsigned long type)
4951 {
4952 char fdname[ITOA_MAX_LEN + 1];
4953 int r, fd;
4954 struct kvm *kvm;
4955 struct file *file;
4956
4957 fd = get_unused_fd_flags(O_CLOEXEC);
4958 if (fd < 0)
4959 return fd;
4960
4961 snprintf(fdname, sizeof(fdname), "%d", fd);
4962
4963 kvm = kvm_create_vm(type, fdname);
4964 if (IS_ERR(kvm)) {
4965 r = PTR_ERR(kvm);
4966 goto put_fd;
4967 }
4968
4969 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4970 if (IS_ERR(file)) {
4971 r = PTR_ERR(file);
4972 goto put_kvm;
4973 }
4974
4975 /*
4976 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4977 * already set, with ->release() being kvm_vm_release(). In error
4978 * cases it will be called by the final fput(file) and will take
4979 * care of doing kvm_put_kvm(kvm).
4980 */
4981 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4982
4983 fd_install(fd, file);
4984 return fd;
4985
4986 put_kvm:
4987 kvm_put_kvm(kvm);
4988 put_fd:
4989 put_unused_fd(fd);
4990 return r;
4991 }
4992
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4993 static long kvm_dev_ioctl(struct file *filp,
4994 unsigned int ioctl, unsigned long arg)
4995 {
4996 long r = -EINVAL;
4997
4998 switch (ioctl) {
4999 case KVM_GET_API_VERSION:
5000 if (arg)
5001 goto out;
5002 r = KVM_API_VERSION;
5003 break;
5004 case KVM_CREATE_VM:
5005 r = kvm_dev_ioctl_create_vm(arg);
5006 break;
5007 case KVM_CHECK_EXTENSION:
5008 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5009 break;
5010 case KVM_GET_VCPU_MMAP_SIZE:
5011 if (arg)
5012 goto out;
5013 r = PAGE_SIZE; /* struct kvm_run */
5014 #ifdef CONFIG_X86
5015 r += PAGE_SIZE; /* pio data page */
5016 #endif
5017 #ifdef CONFIG_KVM_MMIO
5018 r += PAGE_SIZE; /* coalesced mmio ring page */
5019 #endif
5020 break;
5021 case KVM_TRACE_ENABLE:
5022 case KVM_TRACE_PAUSE:
5023 case KVM_TRACE_DISABLE:
5024 r = -EOPNOTSUPP;
5025 break;
5026 default:
5027 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5028 }
5029 out:
5030 return r;
5031 }
5032
5033 static struct file_operations kvm_chardev_ops = {
5034 .unlocked_ioctl = kvm_dev_ioctl,
5035 .llseek = noop_llseek,
5036 KVM_COMPAT(kvm_dev_ioctl),
5037 };
5038
5039 static struct miscdevice kvm_dev = {
5040 KVM_MINOR,
5041 "kvm",
5042 &kvm_chardev_ops,
5043 };
5044
hardware_enable_nolock(void * junk)5045 static void hardware_enable_nolock(void *junk)
5046 {
5047 int cpu = raw_smp_processor_id();
5048 int r;
5049
5050 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
5051 return;
5052
5053 cpumask_set_cpu(cpu, cpus_hardware_enabled);
5054
5055 r = kvm_arch_hardware_enable();
5056
5057 if (r) {
5058 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5059 atomic_inc(&hardware_enable_failed);
5060 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
5061 }
5062 }
5063
kvm_starting_cpu(unsigned int cpu)5064 static int kvm_starting_cpu(unsigned int cpu)
5065 {
5066 raw_spin_lock(&kvm_count_lock);
5067 if (kvm_usage_count)
5068 hardware_enable_nolock(NULL);
5069 raw_spin_unlock(&kvm_count_lock);
5070 return 0;
5071 }
5072
hardware_disable_nolock(void * junk)5073 static void hardware_disable_nolock(void *junk)
5074 {
5075 int cpu = raw_smp_processor_id();
5076
5077 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
5078 return;
5079 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5080 kvm_arch_hardware_disable();
5081 }
5082
kvm_dying_cpu(unsigned int cpu)5083 static int kvm_dying_cpu(unsigned int cpu)
5084 {
5085 raw_spin_lock(&kvm_count_lock);
5086 if (kvm_usage_count)
5087 hardware_disable_nolock(NULL);
5088 raw_spin_unlock(&kvm_count_lock);
5089 return 0;
5090 }
5091
hardware_disable_all_nolock(void)5092 static void hardware_disable_all_nolock(void)
5093 {
5094 BUG_ON(!kvm_usage_count);
5095
5096 kvm_usage_count--;
5097 if (!kvm_usage_count)
5098 on_each_cpu(hardware_disable_nolock, NULL, 1);
5099 }
5100
hardware_disable_all(void)5101 static void hardware_disable_all(void)
5102 {
5103 raw_spin_lock(&kvm_count_lock);
5104 hardware_disable_all_nolock();
5105 raw_spin_unlock(&kvm_count_lock);
5106 }
5107
hardware_enable_all(void)5108 static int hardware_enable_all(void)
5109 {
5110 int r = 0;
5111
5112 raw_spin_lock(&kvm_count_lock);
5113
5114 kvm_usage_count++;
5115 if (kvm_usage_count == 1) {
5116 atomic_set(&hardware_enable_failed, 0);
5117 on_each_cpu(hardware_enable_nolock, NULL, 1);
5118
5119 if (atomic_read(&hardware_enable_failed)) {
5120 hardware_disable_all_nolock();
5121 r = -EBUSY;
5122 }
5123 }
5124
5125 raw_spin_unlock(&kvm_count_lock);
5126
5127 return r;
5128 }
5129
kvm_reboot(struct notifier_block * notifier,unsigned long val,void * v)5130 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
5131 void *v)
5132 {
5133 /*
5134 * Some (well, at least mine) BIOSes hang on reboot if
5135 * in vmx root mode.
5136 *
5137 * And Intel TXT required VMX off for all cpu when system shutdown.
5138 */
5139 pr_info("kvm: exiting hardware virtualization\n");
5140 kvm_rebooting = true;
5141 on_each_cpu(hardware_disable_nolock, NULL, 1);
5142 return NOTIFY_OK;
5143 }
5144
5145 static struct notifier_block kvm_reboot_notifier = {
5146 .notifier_call = kvm_reboot,
5147 .priority = 0,
5148 };
5149
kvm_io_bus_destroy(struct kvm_io_bus * bus)5150 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5151 {
5152 int i;
5153
5154 for (i = 0; i < bus->dev_count; i++) {
5155 struct kvm_io_device *pos = bus->range[i].dev;
5156
5157 kvm_iodevice_destructor(pos);
5158 }
5159 kfree(bus);
5160 }
5161
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)5162 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5163 const struct kvm_io_range *r2)
5164 {
5165 gpa_t addr1 = r1->addr;
5166 gpa_t addr2 = r2->addr;
5167
5168 if (addr1 < addr2)
5169 return -1;
5170
5171 /* If r2->len == 0, match the exact address. If r2->len != 0,
5172 * accept any overlapping write. Any order is acceptable for
5173 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5174 * we process all of them.
5175 */
5176 if (r2->len) {
5177 addr1 += r1->len;
5178 addr2 += r2->len;
5179 }
5180
5181 if (addr1 > addr2)
5182 return 1;
5183
5184 return 0;
5185 }
5186
kvm_io_bus_sort_cmp(const void * p1,const void * p2)5187 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5188 {
5189 return kvm_io_bus_cmp(p1, p2);
5190 }
5191
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)5192 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5193 gpa_t addr, int len)
5194 {
5195 struct kvm_io_range *range, key;
5196 int off;
5197
5198 key = (struct kvm_io_range) {
5199 .addr = addr,
5200 .len = len,
5201 };
5202
5203 range = bsearch(&key, bus->range, bus->dev_count,
5204 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5205 if (range == NULL)
5206 return -ENOENT;
5207
5208 off = range - bus->range;
5209
5210 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5211 off--;
5212
5213 return off;
5214 }
5215
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)5216 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5217 struct kvm_io_range *range, const void *val)
5218 {
5219 int idx;
5220
5221 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5222 if (idx < 0)
5223 return -EOPNOTSUPP;
5224
5225 while (idx < bus->dev_count &&
5226 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5227 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5228 range->len, val))
5229 return idx;
5230 idx++;
5231 }
5232
5233 return -EOPNOTSUPP;
5234 }
5235
5236 /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)5237 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5238 int len, const void *val)
5239 {
5240 struct kvm_io_bus *bus;
5241 struct kvm_io_range range;
5242 int r;
5243
5244 range = (struct kvm_io_range) {
5245 .addr = addr,
5246 .len = len,
5247 };
5248
5249 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5250 if (!bus)
5251 return -ENOMEM;
5252 r = __kvm_io_bus_write(vcpu, bus, &range, val);
5253 return r < 0 ? r : 0;
5254 }
5255 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5256
5257 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)5258 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5259 gpa_t addr, int len, const void *val, long cookie)
5260 {
5261 struct kvm_io_bus *bus;
5262 struct kvm_io_range range;
5263
5264 range = (struct kvm_io_range) {
5265 .addr = addr,
5266 .len = len,
5267 };
5268
5269 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5270 if (!bus)
5271 return -ENOMEM;
5272
5273 /* First try the device referenced by cookie. */
5274 if ((cookie >= 0) && (cookie < bus->dev_count) &&
5275 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5276 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5277 val))
5278 return cookie;
5279
5280 /*
5281 * cookie contained garbage; fall back to search and return the
5282 * correct cookie value.
5283 */
5284 return __kvm_io_bus_write(vcpu, bus, &range, val);
5285 }
5286
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)5287 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5288 struct kvm_io_range *range, void *val)
5289 {
5290 int idx;
5291
5292 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5293 if (idx < 0)
5294 return -EOPNOTSUPP;
5295
5296 while (idx < bus->dev_count &&
5297 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5298 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5299 range->len, val))
5300 return idx;
5301 idx++;
5302 }
5303
5304 return -EOPNOTSUPP;
5305 }
5306
5307 /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)5308 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5309 int len, void *val)
5310 {
5311 struct kvm_io_bus *bus;
5312 struct kvm_io_range range;
5313 int r;
5314
5315 range = (struct kvm_io_range) {
5316 .addr = addr,
5317 .len = len,
5318 };
5319
5320 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5321 if (!bus)
5322 return -ENOMEM;
5323 r = __kvm_io_bus_read(vcpu, bus, &range, val);
5324 return r < 0 ? r : 0;
5325 }
5326
5327 /* Caller must hold slots_lock. */
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)5328 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5329 int len, struct kvm_io_device *dev)
5330 {
5331 int i;
5332 struct kvm_io_bus *new_bus, *bus;
5333 struct kvm_io_range range;
5334
5335 bus = kvm_get_bus(kvm, bus_idx);
5336 if (!bus)
5337 return -ENOMEM;
5338
5339 /* exclude ioeventfd which is limited by maximum fd */
5340 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5341 return -ENOSPC;
5342
5343 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5344 GFP_KERNEL_ACCOUNT);
5345 if (!new_bus)
5346 return -ENOMEM;
5347
5348 range = (struct kvm_io_range) {
5349 .addr = addr,
5350 .len = len,
5351 .dev = dev,
5352 };
5353
5354 for (i = 0; i < bus->dev_count; i++)
5355 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5356 break;
5357
5358 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5359 new_bus->dev_count++;
5360 new_bus->range[i] = range;
5361 memcpy(new_bus->range + i + 1, bus->range + i,
5362 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5363 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5364 synchronize_srcu_expedited(&kvm->srcu);
5365 kfree(bus);
5366
5367 return 0;
5368 }
5369
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)5370 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5371 struct kvm_io_device *dev)
5372 {
5373 int i, j;
5374 struct kvm_io_bus *new_bus, *bus;
5375
5376 lockdep_assert_held(&kvm->slots_lock);
5377
5378 bus = kvm_get_bus(kvm, bus_idx);
5379 if (!bus)
5380 return 0;
5381
5382 for (i = 0; i < bus->dev_count; i++) {
5383 if (bus->range[i].dev == dev) {
5384 break;
5385 }
5386 }
5387
5388 if (i == bus->dev_count)
5389 return 0;
5390
5391 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5392 GFP_KERNEL_ACCOUNT);
5393 if (new_bus) {
5394 memcpy(new_bus, bus, struct_size(bus, range, i));
5395 new_bus->dev_count--;
5396 memcpy(new_bus->range + i, bus->range + i + 1,
5397 flex_array_size(new_bus, range, new_bus->dev_count - i));
5398 }
5399
5400 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5401 synchronize_srcu_expedited(&kvm->srcu);
5402
5403 /* Destroy the old bus _after_ installing the (null) bus. */
5404 if (!new_bus) {
5405 pr_err("kvm: failed to shrink bus, removing it completely\n");
5406 for (j = 0; j < bus->dev_count; j++) {
5407 if (j == i)
5408 continue;
5409 kvm_iodevice_destructor(bus->range[j].dev);
5410 }
5411 }
5412
5413 kfree(bus);
5414 return new_bus ? 0 : -ENOMEM;
5415 }
5416
kvm_io_bus_get_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr)5417 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5418 gpa_t addr)
5419 {
5420 struct kvm_io_bus *bus;
5421 int dev_idx, srcu_idx;
5422 struct kvm_io_device *iodev = NULL;
5423
5424 srcu_idx = srcu_read_lock(&kvm->srcu);
5425
5426 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5427 if (!bus)
5428 goto out_unlock;
5429
5430 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5431 if (dev_idx < 0)
5432 goto out_unlock;
5433
5434 iodev = bus->range[dev_idx].dev;
5435
5436 out_unlock:
5437 srcu_read_unlock(&kvm->srcu, srcu_idx);
5438
5439 return iodev;
5440 }
5441 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5442
kvm_debugfs_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)5443 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5444 int (*get)(void *, u64 *), int (*set)(void *, u64),
5445 const char *fmt)
5446 {
5447 int ret;
5448 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5449 inode->i_private;
5450
5451 /*
5452 * The debugfs files are a reference to the kvm struct which
5453 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
5454 * avoids the race between open and the removal of the debugfs directory.
5455 */
5456 if (!kvm_get_kvm_safe(stat_data->kvm))
5457 return -ENOENT;
5458
5459 ret = simple_attr_open(inode, file, get,
5460 kvm_stats_debugfs_mode(stat_data->desc) & 0222
5461 ? set : NULL, fmt);
5462 if (ret)
5463 kvm_put_kvm(stat_data->kvm);
5464
5465 return ret;
5466 }
5467
kvm_debugfs_release(struct inode * inode,struct file * file)5468 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5469 {
5470 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5471 inode->i_private;
5472
5473 simple_attr_release(inode, file);
5474 kvm_put_kvm(stat_data->kvm);
5475
5476 return 0;
5477 }
5478
kvm_get_stat_per_vm(struct kvm * kvm,size_t offset,u64 * val)5479 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5480 {
5481 *val = *(u64 *)((void *)(&kvm->stat) + offset);
5482
5483 return 0;
5484 }
5485
kvm_clear_stat_per_vm(struct kvm * kvm,size_t offset)5486 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5487 {
5488 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5489
5490 return 0;
5491 }
5492
kvm_get_stat_per_vcpu(struct kvm * kvm,size_t offset,u64 * val)5493 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5494 {
5495 unsigned long i;
5496 struct kvm_vcpu *vcpu;
5497
5498 *val = 0;
5499
5500 kvm_for_each_vcpu(i, vcpu, kvm)
5501 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5502
5503 return 0;
5504 }
5505
kvm_clear_stat_per_vcpu(struct kvm * kvm,size_t offset)5506 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5507 {
5508 unsigned long i;
5509 struct kvm_vcpu *vcpu;
5510
5511 kvm_for_each_vcpu(i, vcpu, kvm)
5512 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5513
5514 return 0;
5515 }
5516
kvm_stat_data_get(void * data,u64 * val)5517 static int kvm_stat_data_get(void *data, u64 *val)
5518 {
5519 int r = -EFAULT;
5520 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5521
5522 switch (stat_data->kind) {
5523 case KVM_STAT_VM:
5524 r = kvm_get_stat_per_vm(stat_data->kvm,
5525 stat_data->desc->desc.offset, val);
5526 break;
5527 case KVM_STAT_VCPU:
5528 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5529 stat_data->desc->desc.offset, val);
5530 break;
5531 }
5532
5533 return r;
5534 }
5535
kvm_stat_data_clear(void * data,u64 val)5536 static int kvm_stat_data_clear(void *data, u64 val)
5537 {
5538 int r = -EFAULT;
5539 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5540
5541 if (val)
5542 return -EINVAL;
5543
5544 switch (stat_data->kind) {
5545 case KVM_STAT_VM:
5546 r = kvm_clear_stat_per_vm(stat_data->kvm,
5547 stat_data->desc->desc.offset);
5548 break;
5549 case KVM_STAT_VCPU:
5550 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5551 stat_data->desc->desc.offset);
5552 break;
5553 }
5554
5555 return r;
5556 }
5557
kvm_stat_data_open(struct inode * inode,struct file * file)5558 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5559 {
5560 __simple_attr_check_format("%llu\n", 0ull);
5561 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5562 kvm_stat_data_clear, "%llu\n");
5563 }
5564
5565 static const struct file_operations stat_fops_per_vm = {
5566 .owner = THIS_MODULE,
5567 .open = kvm_stat_data_open,
5568 .release = kvm_debugfs_release,
5569 .read = simple_attr_read,
5570 .write = simple_attr_write,
5571 .llseek = no_llseek,
5572 };
5573
vm_stat_get(void * _offset,u64 * val)5574 static int vm_stat_get(void *_offset, u64 *val)
5575 {
5576 unsigned offset = (long)_offset;
5577 struct kvm *kvm;
5578 u64 tmp_val;
5579
5580 *val = 0;
5581 mutex_lock(&kvm_lock);
5582 list_for_each_entry(kvm, &vm_list, vm_list) {
5583 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5584 *val += tmp_val;
5585 }
5586 mutex_unlock(&kvm_lock);
5587 return 0;
5588 }
5589
vm_stat_clear(void * _offset,u64 val)5590 static int vm_stat_clear(void *_offset, u64 val)
5591 {
5592 unsigned offset = (long)_offset;
5593 struct kvm *kvm;
5594
5595 if (val)
5596 return -EINVAL;
5597
5598 mutex_lock(&kvm_lock);
5599 list_for_each_entry(kvm, &vm_list, vm_list) {
5600 kvm_clear_stat_per_vm(kvm, offset);
5601 }
5602 mutex_unlock(&kvm_lock);
5603
5604 return 0;
5605 }
5606
5607 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5608 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5609
vcpu_stat_get(void * _offset,u64 * val)5610 static int vcpu_stat_get(void *_offset, u64 *val)
5611 {
5612 unsigned offset = (long)_offset;
5613 struct kvm *kvm;
5614 u64 tmp_val;
5615
5616 *val = 0;
5617 mutex_lock(&kvm_lock);
5618 list_for_each_entry(kvm, &vm_list, vm_list) {
5619 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5620 *val += tmp_val;
5621 }
5622 mutex_unlock(&kvm_lock);
5623 return 0;
5624 }
5625
vcpu_stat_clear(void * _offset,u64 val)5626 static int vcpu_stat_clear(void *_offset, u64 val)
5627 {
5628 unsigned offset = (long)_offset;
5629 struct kvm *kvm;
5630
5631 if (val)
5632 return -EINVAL;
5633
5634 mutex_lock(&kvm_lock);
5635 list_for_each_entry(kvm, &vm_list, vm_list) {
5636 kvm_clear_stat_per_vcpu(kvm, offset);
5637 }
5638 mutex_unlock(&kvm_lock);
5639
5640 return 0;
5641 }
5642
5643 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5644 "%llu\n");
5645 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5646
kvm_uevent_notify_change(unsigned int type,struct kvm * kvm)5647 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5648 {
5649 struct kobj_uevent_env *env;
5650 unsigned long long created, active;
5651
5652 if (!kvm_dev.this_device || !kvm)
5653 return;
5654
5655 mutex_lock(&kvm_lock);
5656 if (type == KVM_EVENT_CREATE_VM) {
5657 kvm_createvm_count++;
5658 kvm_active_vms++;
5659 } else if (type == KVM_EVENT_DESTROY_VM) {
5660 kvm_active_vms--;
5661 }
5662 created = kvm_createvm_count;
5663 active = kvm_active_vms;
5664 mutex_unlock(&kvm_lock);
5665
5666 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5667 if (!env)
5668 return;
5669
5670 add_uevent_var(env, "CREATED=%llu", created);
5671 add_uevent_var(env, "COUNT=%llu", active);
5672
5673 if (type == KVM_EVENT_CREATE_VM) {
5674 add_uevent_var(env, "EVENT=create");
5675 kvm->userspace_pid = task_pid_nr(current);
5676 } else if (type == KVM_EVENT_DESTROY_VM) {
5677 add_uevent_var(env, "EVENT=destroy");
5678 }
5679 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5680
5681 if (!IS_ERR(kvm->debugfs_dentry)) {
5682 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5683
5684 if (p) {
5685 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5686 if (!IS_ERR(tmp))
5687 add_uevent_var(env, "STATS_PATH=%s", tmp);
5688 kfree(p);
5689 }
5690 }
5691 /* no need for checks, since we are adding at most only 5 keys */
5692 env->envp[env->envp_idx++] = NULL;
5693 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5694 kfree(env);
5695 }
5696
kvm_init_debug(void)5697 static void kvm_init_debug(void)
5698 {
5699 const struct file_operations *fops;
5700 const struct _kvm_stats_desc *pdesc;
5701 int i;
5702
5703 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5704
5705 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5706 pdesc = &kvm_vm_stats_desc[i];
5707 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5708 fops = &vm_stat_fops;
5709 else
5710 fops = &vm_stat_readonly_fops;
5711 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5712 kvm_debugfs_dir,
5713 (void *)(long)pdesc->desc.offset, fops);
5714 }
5715
5716 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5717 pdesc = &kvm_vcpu_stats_desc[i];
5718 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5719 fops = &vcpu_stat_fops;
5720 else
5721 fops = &vcpu_stat_readonly_fops;
5722 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5723 kvm_debugfs_dir,
5724 (void *)(long)pdesc->desc.offset, fops);
5725 }
5726 }
5727
kvm_suspend(void)5728 static int kvm_suspend(void)
5729 {
5730 if (kvm_usage_count)
5731 hardware_disable_nolock(NULL);
5732 return 0;
5733 }
5734
kvm_resume(void)5735 static void kvm_resume(void)
5736 {
5737 if (kvm_usage_count) {
5738 lockdep_assert_not_held(&kvm_count_lock);
5739 hardware_enable_nolock(NULL);
5740 }
5741 }
5742
5743 static struct syscore_ops kvm_syscore_ops = {
5744 .suspend = kvm_suspend,
5745 .resume = kvm_resume,
5746 };
5747
5748 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)5749 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5750 {
5751 return container_of(pn, struct kvm_vcpu, preempt_notifier);
5752 }
5753
kvm_sched_in(struct preempt_notifier * pn,int cpu)5754 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5755 {
5756 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5757
5758 WRITE_ONCE(vcpu->preempted, false);
5759 WRITE_ONCE(vcpu->ready, false);
5760
5761 __this_cpu_write(kvm_running_vcpu, vcpu);
5762 kvm_arch_sched_in(vcpu, cpu);
5763 kvm_arch_vcpu_load(vcpu, cpu);
5764 }
5765
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)5766 static void kvm_sched_out(struct preempt_notifier *pn,
5767 struct task_struct *next)
5768 {
5769 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5770
5771 if (current->on_rq) {
5772 WRITE_ONCE(vcpu->preempted, true);
5773 WRITE_ONCE(vcpu->ready, true);
5774 }
5775 kvm_arch_vcpu_put(vcpu);
5776 __this_cpu_write(kvm_running_vcpu, NULL);
5777 }
5778
5779 /**
5780 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5781 *
5782 * We can disable preemption locally around accessing the per-CPU variable,
5783 * and use the resolved vcpu pointer after enabling preemption again,
5784 * because even if the current thread is migrated to another CPU, reading
5785 * the per-CPU value later will give us the same value as we update the
5786 * per-CPU variable in the preempt notifier handlers.
5787 */
kvm_get_running_vcpu(void)5788 struct kvm_vcpu *kvm_get_running_vcpu(void)
5789 {
5790 struct kvm_vcpu *vcpu;
5791
5792 preempt_disable();
5793 vcpu = __this_cpu_read(kvm_running_vcpu);
5794 preempt_enable();
5795
5796 return vcpu;
5797 }
5798 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5799
5800 /**
5801 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5802 */
kvm_get_running_vcpus(void)5803 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5804 {
5805 return &kvm_running_vcpu;
5806 }
5807
5808 #ifdef CONFIG_GUEST_PERF_EVENTS
kvm_guest_state(void)5809 static unsigned int kvm_guest_state(void)
5810 {
5811 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5812 unsigned int state;
5813
5814 if (!kvm_arch_pmi_in_guest(vcpu))
5815 return 0;
5816
5817 state = PERF_GUEST_ACTIVE;
5818 if (!kvm_arch_vcpu_in_kernel(vcpu))
5819 state |= PERF_GUEST_USER;
5820
5821 return state;
5822 }
5823
kvm_guest_get_ip(void)5824 static unsigned long kvm_guest_get_ip(void)
5825 {
5826 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5827
5828 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5829 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5830 return 0;
5831
5832 return kvm_arch_vcpu_get_ip(vcpu);
5833 }
5834
5835 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5836 .state = kvm_guest_state,
5837 .get_ip = kvm_guest_get_ip,
5838 .handle_intel_pt_intr = NULL,
5839 };
5840
kvm_register_perf_callbacks(unsigned int (* pt_intr_handler)(void))5841 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5842 {
5843 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5844 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5845 }
kvm_unregister_perf_callbacks(void)5846 void kvm_unregister_perf_callbacks(void)
5847 {
5848 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5849 }
5850 #endif
5851
5852 struct kvm_cpu_compat_check {
5853 void *opaque;
5854 int *ret;
5855 };
5856
check_processor_compat(void * data)5857 static void check_processor_compat(void *data)
5858 {
5859 struct kvm_cpu_compat_check *c = data;
5860
5861 *c->ret = kvm_arch_check_processor_compat(c->opaque);
5862 }
5863
kvm_init(void * opaque,unsigned vcpu_size,unsigned vcpu_align,struct module * module)5864 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5865 struct module *module)
5866 {
5867 struct kvm_cpu_compat_check c;
5868 int r;
5869 int cpu;
5870
5871 r = kvm_arch_init(opaque);
5872 if (r)
5873 goto out_fail;
5874
5875 /*
5876 * kvm_arch_init makes sure there's at most one caller
5877 * for architectures that support multiple implementations,
5878 * like intel and amd on x86.
5879 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5880 * conflicts in case kvm is already setup for another implementation.
5881 */
5882 r = kvm_irqfd_init();
5883 if (r)
5884 goto out_irqfd;
5885
5886 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5887 r = -ENOMEM;
5888 goto out_free_0;
5889 }
5890
5891 r = kvm_arch_hardware_setup(opaque);
5892 if (r < 0)
5893 goto out_free_1;
5894
5895 c.ret = &r;
5896 c.opaque = opaque;
5897 for_each_online_cpu(cpu) {
5898 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5899 if (r < 0)
5900 goto out_free_2;
5901 }
5902
5903 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5904 kvm_starting_cpu, kvm_dying_cpu);
5905 if (r)
5906 goto out_free_2;
5907 register_reboot_notifier(&kvm_reboot_notifier);
5908
5909 /* A kmem cache lets us meet the alignment requirements of fx_save. */
5910 if (!vcpu_align)
5911 vcpu_align = __alignof__(struct kvm_vcpu);
5912 kvm_vcpu_cache =
5913 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5914 SLAB_ACCOUNT,
5915 offsetof(struct kvm_vcpu, arch),
5916 offsetofend(struct kvm_vcpu, stats_id)
5917 - offsetof(struct kvm_vcpu, arch),
5918 NULL);
5919 if (!kvm_vcpu_cache) {
5920 r = -ENOMEM;
5921 goto out_free_3;
5922 }
5923
5924 for_each_possible_cpu(cpu) {
5925 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5926 GFP_KERNEL, cpu_to_node(cpu))) {
5927 r = -ENOMEM;
5928 goto out_free_4;
5929 }
5930 }
5931
5932 r = kvm_async_pf_init();
5933 if (r)
5934 goto out_free_4;
5935
5936 kvm_chardev_ops.owner = module;
5937
5938 r = misc_register(&kvm_dev);
5939 if (r) {
5940 pr_err("kvm: misc device register failed\n");
5941 goto out_unreg;
5942 }
5943
5944 register_syscore_ops(&kvm_syscore_ops);
5945
5946 kvm_preempt_ops.sched_in = kvm_sched_in;
5947 kvm_preempt_ops.sched_out = kvm_sched_out;
5948
5949 kvm_init_debug();
5950
5951 r = kvm_vfio_ops_init();
5952 WARN_ON(r);
5953
5954 return 0;
5955
5956 out_unreg:
5957 kvm_async_pf_deinit();
5958 out_free_4:
5959 for_each_possible_cpu(cpu)
5960 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5961 kmem_cache_destroy(kvm_vcpu_cache);
5962 out_free_3:
5963 unregister_reboot_notifier(&kvm_reboot_notifier);
5964 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5965 out_free_2:
5966 kvm_arch_hardware_unsetup();
5967 out_free_1:
5968 free_cpumask_var(cpus_hardware_enabled);
5969 out_free_0:
5970 kvm_irqfd_exit();
5971 out_irqfd:
5972 kvm_arch_exit();
5973 out_fail:
5974 return r;
5975 }
5976 EXPORT_SYMBOL_GPL(kvm_init);
5977
kvm_exit(void)5978 void kvm_exit(void)
5979 {
5980 int cpu;
5981
5982 debugfs_remove_recursive(kvm_debugfs_dir);
5983 misc_deregister(&kvm_dev);
5984 for_each_possible_cpu(cpu)
5985 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5986 kmem_cache_destroy(kvm_vcpu_cache);
5987 kvm_async_pf_deinit();
5988 unregister_syscore_ops(&kvm_syscore_ops);
5989 unregister_reboot_notifier(&kvm_reboot_notifier);
5990 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5991 on_each_cpu(hardware_disable_nolock, NULL, 1);
5992 kvm_arch_hardware_unsetup();
5993 kvm_arch_exit();
5994 kvm_irqfd_exit();
5995 free_cpumask_var(cpus_hardware_enabled);
5996 kvm_vfio_ops_exit();
5997 }
5998 EXPORT_SYMBOL_GPL(kvm_exit);
5999
6000 struct kvm_vm_worker_thread_context {
6001 struct kvm *kvm;
6002 struct task_struct *parent;
6003 struct completion init_done;
6004 kvm_vm_thread_fn_t thread_fn;
6005 uintptr_t data;
6006 int err;
6007 };
6008
kvm_vm_worker_thread(void * context)6009 static int kvm_vm_worker_thread(void *context)
6010 {
6011 /*
6012 * The init_context is allocated on the stack of the parent thread, so
6013 * we have to locally copy anything that is needed beyond initialization
6014 */
6015 struct kvm_vm_worker_thread_context *init_context = context;
6016 struct task_struct *parent;
6017 struct kvm *kvm = init_context->kvm;
6018 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6019 uintptr_t data = init_context->data;
6020 int err;
6021
6022 err = kthread_park(current);
6023 /* kthread_park(current) is never supposed to return an error */
6024 WARN_ON(err != 0);
6025 if (err)
6026 goto init_complete;
6027
6028 err = cgroup_attach_task_all(init_context->parent, current);
6029 if (err) {
6030 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6031 __func__, err);
6032 goto init_complete;
6033 }
6034
6035 set_user_nice(current, task_nice(init_context->parent));
6036
6037 init_complete:
6038 init_context->err = err;
6039 complete(&init_context->init_done);
6040 init_context = NULL;
6041
6042 if (err)
6043 goto out;
6044
6045 /* Wait to be woken up by the spawner before proceeding. */
6046 kthread_parkme();
6047
6048 if (!kthread_should_stop())
6049 err = thread_fn(kvm, data);
6050
6051 out:
6052 /*
6053 * Move kthread back to its original cgroup to prevent it lingering in
6054 * the cgroup of the VM process, after the latter finishes its
6055 * execution.
6056 *
6057 * kthread_stop() waits on the 'exited' completion condition which is
6058 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6059 * kthread is removed from the cgroup in the cgroup_exit() which is
6060 * called after the exit_mm(). This causes the kthread_stop() to return
6061 * before the kthread actually quits the cgroup.
6062 */
6063 rcu_read_lock();
6064 parent = rcu_dereference(current->real_parent);
6065 get_task_struct(parent);
6066 rcu_read_unlock();
6067 cgroup_attach_task_all(parent, current);
6068 put_task_struct(parent);
6069
6070 return err;
6071 }
6072
kvm_vm_create_worker_thread(struct kvm * kvm,kvm_vm_thread_fn_t thread_fn,uintptr_t data,const char * name,struct task_struct ** thread_ptr)6073 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6074 uintptr_t data, const char *name,
6075 struct task_struct **thread_ptr)
6076 {
6077 struct kvm_vm_worker_thread_context init_context = {};
6078 struct task_struct *thread;
6079
6080 *thread_ptr = NULL;
6081 init_context.kvm = kvm;
6082 init_context.parent = current;
6083 init_context.thread_fn = thread_fn;
6084 init_context.data = data;
6085 init_completion(&init_context.init_done);
6086
6087 thread = kthread_run(kvm_vm_worker_thread, &init_context,
6088 "%s-%d", name, task_pid_nr(current));
6089 if (IS_ERR(thread))
6090 return PTR_ERR(thread);
6091
6092 /* kthread_run is never supposed to return NULL */
6093 WARN_ON(thread == NULL);
6094
6095 wait_for_completion(&init_context.init_done);
6096
6097 if (!init_context.err)
6098 *thread_ptr = thread;
6099
6100 return init_context.err;
6101 }
6102