1 /*
2 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
3 *
4 * Author: Yu Liu, yu.liu@freescale.com
5 *
6 * Description:
7 * This file is based on arch/powerpc/kvm/44x_tlb.c,
8 * by Hollis Blanchard <hollisb@us.ibm.com>.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_host.h>
21 #include <linux/highmem.h>
22 #include <linux/log2.h>
23 #include <linux/uaccess.h>
24 #include <linux/sched.h>
25 #include <linux/rwsem.h>
26 #include <linux/vmalloc.h>
27 #include <linux/hugetlb.h>
28 #include <asm/kvm_ppc.h>
29 #include <asm/kvm_e500.h>
30
31 #include "../mm/mmu_decl.h"
32 #include "e500_tlb.h"
33 #include "trace.h"
34 #include "timing.h"
35
36 #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
37
38 struct id {
39 unsigned long val;
40 struct id **pentry;
41 };
42
43 #define NUM_TIDS 256
44
45 /*
46 * This table provide mappings from:
47 * (guestAS,guestTID,guestPR) --> ID of physical cpu
48 * guestAS [0..1]
49 * guestTID [0..255]
50 * guestPR [0..1]
51 * ID [1..255]
52 * Each vcpu keeps one vcpu_id_table.
53 */
54 struct vcpu_id_table {
55 struct id id[2][NUM_TIDS][2];
56 };
57
58 /*
59 * This table provide reversed mappings of vcpu_id_table:
60 * ID --> address of vcpu_id_table item.
61 * Each physical core has one pcpu_id_table.
62 */
63 struct pcpu_id_table {
64 struct id *entry[NUM_TIDS];
65 };
66
67 static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids);
68
69 /* This variable keeps last used shadow ID on local core.
70 * The valid range of shadow ID is [1..255] */
71 static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid);
72
73 static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
74
get_entry(struct kvmppc_vcpu_e500 * vcpu_e500,int tlbsel,int entry)75 static struct kvm_book3e_206_tlb_entry *get_entry(
76 struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, int entry)
77 {
78 int offset = vcpu_e500->gtlb_offset[tlbsel];
79 return &vcpu_e500->gtlb_arch[offset + entry];
80 }
81
82 /*
83 * Allocate a free shadow id and setup a valid sid mapping in given entry.
84 * A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
85 *
86 * The caller must have preemption disabled, and keep it that way until
87 * it has finished with the returned shadow id (either written into the
88 * TLB or arch.shadow_pid, or discarded).
89 */
local_sid_setup_one(struct id * entry)90 static inline int local_sid_setup_one(struct id *entry)
91 {
92 unsigned long sid;
93 int ret = -1;
94
95 sid = ++(__get_cpu_var(pcpu_last_used_sid));
96 if (sid < NUM_TIDS) {
97 __get_cpu_var(pcpu_sids).entry[sid] = entry;
98 entry->val = sid;
99 entry->pentry = &__get_cpu_var(pcpu_sids).entry[sid];
100 ret = sid;
101 }
102
103 /*
104 * If sid == NUM_TIDS, we've run out of sids. We return -1, and
105 * the caller will invalidate everything and start over.
106 *
107 * sid > NUM_TIDS indicates a race, which we disable preemption to
108 * avoid.
109 */
110 WARN_ON(sid > NUM_TIDS);
111
112 return ret;
113 }
114
115 /*
116 * Check if given entry contain a valid shadow id mapping.
117 * An ID mapping is considered valid only if
118 * both vcpu and pcpu know this mapping.
119 *
120 * The caller must have preemption disabled, and keep it that way until
121 * it has finished with the returned shadow id (either written into the
122 * TLB or arch.shadow_pid, or discarded).
123 */
local_sid_lookup(struct id * entry)124 static inline int local_sid_lookup(struct id *entry)
125 {
126 if (entry && entry->val != 0 &&
127 __get_cpu_var(pcpu_sids).entry[entry->val] == entry &&
128 entry->pentry == &__get_cpu_var(pcpu_sids).entry[entry->val])
129 return entry->val;
130 return -1;
131 }
132
133 /* Invalidate all id mappings on local core -- call with preempt disabled */
local_sid_destroy_all(void)134 static inline void local_sid_destroy_all(void)
135 {
136 __get_cpu_var(pcpu_last_used_sid) = 0;
137 memset(&__get_cpu_var(pcpu_sids), 0, sizeof(__get_cpu_var(pcpu_sids)));
138 }
139
kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 * vcpu_e500)140 static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500)
141 {
142 vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL);
143 return vcpu_e500->idt;
144 }
145
kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 * vcpu_e500)146 static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500)
147 {
148 kfree(vcpu_e500->idt);
149 }
150
151 /* Invalidate all mappings on vcpu */
kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 * vcpu_e500)152 static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500)
153 {
154 memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table));
155
156 /* Update shadow pid when mappings are changed */
157 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
158 }
159
160 /* Invalidate one ID mapping on vcpu */
kvmppc_e500_id_table_reset_one(struct kvmppc_vcpu_e500 * vcpu_e500,int as,int pid,int pr)161 static inline void kvmppc_e500_id_table_reset_one(
162 struct kvmppc_vcpu_e500 *vcpu_e500,
163 int as, int pid, int pr)
164 {
165 struct vcpu_id_table *idt = vcpu_e500->idt;
166
167 BUG_ON(as >= 2);
168 BUG_ON(pid >= NUM_TIDS);
169 BUG_ON(pr >= 2);
170
171 idt->id[as][pid][pr].val = 0;
172 idt->id[as][pid][pr].pentry = NULL;
173
174 /* Update shadow pid when mappings are changed */
175 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
176 }
177
178 /*
179 * Map guest (vcpu,AS,ID,PR) to physical core shadow id.
180 * This function first lookup if a valid mapping exists,
181 * if not, then creates a new one.
182 *
183 * The caller must have preemption disabled, and keep it that way until
184 * it has finished with the returned shadow id (either written into the
185 * TLB or arch.shadow_pid, or discarded).
186 */
kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 * vcpu_e500,unsigned int as,unsigned int gid,unsigned int pr,int avoid_recursion)187 static unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
188 unsigned int as, unsigned int gid,
189 unsigned int pr, int avoid_recursion)
190 {
191 struct vcpu_id_table *idt = vcpu_e500->idt;
192 int sid;
193
194 BUG_ON(as >= 2);
195 BUG_ON(gid >= NUM_TIDS);
196 BUG_ON(pr >= 2);
197
198 sid = local_sid_lookup(&idt->id[as][gid][pr]);
199
200 while (sid <= 0) {
201 /* No mapping yet */
202 sid = local_sid_setup_one(&idt->id[as][gid][pr]);
203 if (sid <= 0) {
204 _tlbil_all();
205 local_sid_destroy_all();
206 }
207
208 /* Update shadow pid when mappings are changed */
209 if (!avoid_recursion)
210 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
211 }
212
213 return sid;
214 }
215
216 /* Map guest pid to shadow.
217 * We use PID to keep shadow of current guest non-zero PID,
218 * and use PID1 to keep shadow of guest zero PID.
219 * So that guest tlbe with TID=0 can be accessed at any time */
kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 * vcpu_e500)220 void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500)
221 {
222 preempt_disable();
223 vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500,
224 get_cur_as(&vcpu_e500->vcpu),
225 get_cur_pid(&vcpu_e500->vcpu),
226 get_cur_pr(&vcpu_e500->vcpu), 1);
227 vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500,
228 get_cur_as(&vcpu_e500->vcpu), 0,
229 get_cur_pr(&vcpu_e500->vcpu), 1);
230 preempt_enable();
231 }
232
gtlb0_get_next_victim(struct kvmppc_vcpu_e500 * vcpu_e500)233 static inline unsigned int gtlb0_get_next_victim(
234 struct kvmppc_vcpu_e500 *vcpu_e500)
235 {
236 unsigned int victim;
237
238 victim = vcpu_e500->gtlb_nv[0]++;
239 if (unlikely(vcpu_e500->gtlb_nv[0] >= vcpu_e500->gtlb_params[0].ways))
240 vcpu_e500->gtlb_nv[0] = 0;
241
242 return victim;
243 }
244
tlb1_max_shadow_size(void)245 static inline unsigned int tlb1_max_shadow_size(void)
246 {
247 /* reserve one entry for magic page */
248 return host_tlb_params[1].entries - tlbcam_index - 1;
249 }
250
tlbe_is_writable(struct kvm_book3e_206_tlb_entry * tlbe)251 static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
252 {
253 return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
254 }
255
e500_shadow_mas3_attrib(u32 mas3,int usermode)256 static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
257 {
258 /* Mask off reserved bits. */
259 mas3 &= MAS3_ATTRIB_MASK;
260
261 if (!usermode) {
262 /* Guest is in supervisor mode,
263 * so we need to translate guest
264 * supervisor permissions into user permissions. */
265 mas3 &= ~E500_TLB_USER_PERM_MASK;
266 mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
267 }
268
269 return mas3 | E500_TLB_SUPER_PERM_MASK;
270 }
271
e500_shadow_mas2_attrib(u32 mas2,int usermode)272 static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode)
273 {
274 #ifdef CONFIG_SMP
275 return (mas2 & MAS2_ATTRIB_MASK) | MAS2_M;
276 #else
277 return mas2 & MAS2_ATTRIB_MASK;
278 #endif
279 }
280
281 /*
282 * writing shadow tlb entry to host TLB
283 */
__write_host_tlbe(struct kvm_book3e_206_tlb_entry * stlbe,uint32_t mas0)284 static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
285 uint32_t mas0)
286 {
287 unsigned long flags;
288
289 local_irq_save(flags);
290 mtspr(SPRN_MAS0, mas0);
291 mtspr(SPRN_MAS1, stlbe->mas1);
292 mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
293 mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
294 mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
295 asm volatile("isync; tlbwe" : : : "memory");
296 local_irq_restore(flags);
297
298 trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
299 stlbe->mas2, stlbe->mas7_3);
300 }
301
302 /*
303 * Acquire a mas0 with victim hint, as if we just took a TLB miss.
304 *
305 * We don't care about the address we're searching for, other than that it's
306 * in the right set and is not present in the TLB. Using a zero PID and a
307 * userspace address means we don't have to set and then restore MAS5, or
308 * calculate a proper MAS6 value.
309 */
get_host_mas0(unsigned long eaddr)310 static u32 get_host_mas0(unsigned long eaddr)
311 {
312 unsigned long flags;
313 u32 mas0;
314
315 local_irq_save(flags);
316 mtspr(SPRN_MAS6, 0);
317 asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
318 mas0 = mfspr(SPRN_MAS0);
319 local_irq_restore(flags);
320
321 return mas0;
322 }
323
324 /* sesel is for tlb1 only */
write_host_tlbe(struct kvmppc_vcpu_e500 * vcpu_e500,int tlbsel,int sesel,struct kvm_book3e_206_tlb_entry * stlbe)325 static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
326 int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
327 {
328 u32 mas0;
329
330 if (tlbsel == 0) {
331 mas0 = get_host_mas0(stlbe->mas2);
332 __write_host_tlbe(stlbe, mas0);
333 } else {
334 __write_host_tlbe(stlbe,
335 MAS0_TLBSEL(1) |
336 MAS0_ESEL(to_htlb1_esel(sesel)));
337 }
338 }
339
kvmppc_map_magic(struct kvm_vcpu * vcpu)340 void kvmppc_map_magic(struct kvm_vcpu *vcpu)
341 {
342 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
343 struct kvm_book3e_206_tlb_entry magic;
344 ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
345 unsigned int stid;
346 pfn_t pfn;
347
348 pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
349 get_page(pfn_to_page(pfn));
350
351 preempt_disable();
352 stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
353
354 magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
355 MAS1_TSIZE(BOOK3E_PAGESZ_4K);
356 magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
357 magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
358 MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
359 magic.mas8 = 0;
360
361 __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index));
362 preempt_enable();
363 }
364
kvmppc_e500_tlb_load(struct kvm_vcpu * vcpu,int cpu)365 void kvmppc_e500_tlb_load(struct kvm_vcpu *vcpu, int cpu)
366 {
367 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
368
369 /* Shadow PID may be expired on local core */
370 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
371 }
372
kvmppc_e500_tlb_put(struct kvm_vcpu * vcpu)373 void kvmppc_e500_tlb_put(struct kvm_vcpu *vcpu)
374 {
375 }
376
inval_gtlbe_on_host(struct kvmppc_vcpu_e500 * vcpu_e500,int tlbsel,int esel)377 static void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500,
378 int tlbsel, int esel)
379 {
380 struct kvm_book3e_206_tlb_entry *gtlbe =
381 get_entry(vcpu_e500, tlbsel, esel);
382 struct vcpu_id_table *idt = vcpu_e500->idt;
383 unsigned int pr, tid, ts, pid;
384 u32 val, eaddr;
385 unsigned long flags;
386
387 ts = get_tlb_ts(gtlbe);
388 tid = get_tlb_tid(gtlbe);
389
390 preempt_disable();
391
392 /* One guest ID may be mapped to two shadow IDs */
393 for (pr = 0; pr < 2; pr++) {
394 /*
395 * The shadow PID can have a valid mapping on at most one
396 * host CPU. In the common case, it will be valid on this
397 * CPU, in which case (for TLB0) we do a local invalidation
398 * of the specific address.
399 *
400 * If the shadow PID is not valid on the current host CPU, or
401 * if we're invalidating a TLB1 entry, we invalidate the
402 * entire shadow PID.
403 */
404 if (tlbsel == 1 ||
405 (pid = local_sid_lookup(&idt->id[ts][tid][pr])) <= 0) {
406 kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr);
407 continue;
408 }
409
410 /*
411 * The guest is invalidating a TLB0 entry which is in a PID
412 * that has a valid shadow mapping on this host CPU. We
413 * search host TLB0 to invalidate it's shadow TLB entry,
414 * similar to __tlbil_va except that we need to look in AS1.
415 */
416 val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS;
417 eaddr = get_tlb_eaddr(gtlbe);
418
419 local_irq_save(flags);
420
421 mtspr(SPRN_MAS6, val);
422 asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr));
423 val = mfspr(SPRN_MAS1);
424 if (val & MAS1_VALID) {
425 mtspr(SPRN_MAS1, val & ~MAS1_VALID);
426 asm volatile("tlbwe");
427 }
428
429 local_irq_restore(flags);
430 }
431
432 preempt_enable();
433 }
434
tlb0_set_base(gva_t addr,int sets,int ways)435 static int tlb0_set_base(gva_t addr, int sets, int ways)
436 {
437 int set_base;
438
439 set_base = (addr >> PAGE_SHIFT) & (sets - 1);
440 set_base *= ways;
441
442 return set_base;
443 }
444
gtlb0_set_base(struct kvmppc_vcpu_e500 * vcpu_e500,gva_t addr)445 static int gtlb0_set_base(struct kvmppc_vcpu_e500 *vcpu_e500, gva_t addr)
446 {
447 return tlb0_set_base(addr, vcpu_e500->gtlb_params[0].sets,
448 vcpu_e500->gtlb_params[0].ways);
449 }
450
get_tlb_esel(struct kvm_vcpu * vcpu,int tlbsel)451 static unsigned int get_tlb_esel(struct kvm_vcpu *vcpu, int tlbsel)
452 {
453 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
454 int esel = get_tlb_esel_bit(vcpu);
455
456 if (tlbsel == 0) {
457 esel &= vcpu_e500->gtlb_params[0].ways - 1;
458 esel += gtlb0_set_base(vcpu_e500, vcpu->arch.shared->mas2);
459 } else {
460 esel &= vcpu_e500->gtlb_params[tlbsel].entries - 1;
461 }
462
463 return esel;
464 }
465
466 /* Search the guest TLB for a matching entry. */
kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 * vcpu_e500,gva_t eaddr,int tlbsel,unsigned int pid,int as)467 static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 *vcpu_e500,
468 gva_t eaddr, int tlbsel, unsigned int pid, int as)
469 {
470 int size = vcpu_e500->gtlb_params[tlbsel].entries;
471 unsigned int set_base, offset;
472 int i;
473
474 if (tlbsel == 0) {
475 set_base = gtlb0_set_base(vcpu_e500, eaddr);
476 size = vcpu_e500->gtlb_params[0].ways;
477 } else {
478 set_base = 0;
479 }
480
481 offset = vcpu_e500->gtlb_offset[tlbsel];
482
483 for (i = 0; i < size; i++) {
484 struct kvm_book3e_206_tlb_entry *tlbe =
485 &vcpu_e500->gtlb_arch[offset + set_base + i];
486 unsigned int tid;
487
488 if (eaddr < get_tlb_eaddr(tlbe))
489 continue;
490
491 if (eaddr > get_tlb_end(tlbe))
492 continue;
493
494 tid = get_tlb_tid(tlbe);
495 if (tid && (tid != pid))
496 continue;
497
498 if (!get_tlb_v(tlbe))
499 continue;
500
501 if (get_tlb_ts(tlbe) != as && as != -1)
502 continue;
503
504 return set_base + i;
505 }
506
507 return -1;
508 }
509
kvmppc_e500_ref_setup(struct tlbe_ref * ref,struct kvm_book3e_206_tlb_entry * gtlbe,pfn_t pfn)510 static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
511 struct kvm_book3e_206_tlb_entry *gtlbe,
512 pfn_t pfn)
513 {
514 ref->pfn = pfn;
515 ref->flags = E500_TLB_VALID;
516
517 if (tlbe_is_writable(gtlbe))
518 ref->flags |= E500_TLB_DIRTY;
519 }
520
kvmppc_e500_ref_release(struct tlbe_ref * ref)521 static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
522 {
523 if (ref->flags & E500_TLB_VALID) {
524 if (ref->flags & E500_TLB_DIRTY)
525 kvm_release_pfn_dirty(ref->pfn);
526 else
527 kvm_release_pfn_clean(ref->pfn);
528
529 ref->flags = 0;
530 }
531 }
532
clear_tlb_privs(struct kvmppc_vcpu_e500 * vcpu_e500)533 static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
534 {
535 int tlbsel = 0;
536 int i;
537
538 for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
539 struct tlbe_ref *ref =
540 &vcpu_e500->gtlb_priv[tlbsel][i].ref;
541 kvmppc_e500_ref_release(ref);
542 }
543 }
544
clear_tlb_refs(struct kvmppc_vcpu_e500 * vcpu_e500)545 static void clear_tlb_refs(struct kvmppc_vcpu_e500 *vcpu_e500)
546 {
547 int stlbsel = 1;
548 int i;
549
550 kvmppc_e500_id_table_reset_all(vcpu_e500);
551
552 for (i = 0; i < host_tlb_params[stlbsel].entries; i++) {
553 struct tlbe_ref *ref =
554 &vcpu_e500->tlb_refs[stlbsel][i];
555 kvmppc_e500_ref_release(ref);
556 }
557
558 clear_tlb_privs(vcpu_e500);
559 }
560
kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu * vcpu,unsigned int eaddr,int as)561 static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu,
562 unsigned int eaddr, int as)
563 {
564 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
565 unsigned int victim, pidsel, tsized;
566 int tlbsel;
567
568 /* since we only have two TLBs, only lower bit is used. */
569 tlbsel = (vcpu->arch.shared->mas4 >> 28) & 0x1;
570 victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
571 pidsel = (vcpu->arch.shared->mas4 >> 16) & 0xf;
572 tsized = (vcpu->arch.shared->mas4 >> 7) & 0x1f;
573
574 vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim)
575 | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
576 vcpu->arch.shared->mas1 = MAS1_VALID | (as ? MAS1_TS : 0)
577 | MAS1_TID(vcpu_e500->pid[pidsel])
578 | MAS1_TSIZE(tsized);
579 vcpu->arch.shared->mas2 = (eaddr & MAS2_EPN)
580 | (vcpu->arch.shared->mas4 & MAS2_ATTRIB_MASK);
581 vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3;
582 vcpu->arch.shared->mas6 = (vcpu->arch.shared->mas6 & MAS6_SPID1)
583 | (get_cur_pid(vcpu) << 16)
584 | (as ? MAS6_SAS : 0);
585 }
586
587 /* TID must be supplied by the caller */
kvmppc_e500_setup_stlbe(struct kvmppc_vcpu_e500 * vcpu_e500,struct kvm_book3e_206_tlb_entry * gtlbe,int tsize,struct tlbe_ref * ref,u64 gvaddr,struct kvm_book3e_206_tlb_entry * stlbe)588 static inline void kvmppc_e500_setup_stlbe(
589 struct kvmppc_vcpu_e500 *vcpu_e500,
590 struct kvm_book3e_206_tlb_entry *gtlbe,
591 int tsize, struct tlbe_ref *ref, u64 gvaddr,
592 struct kvm_book3e_206_tlb_entry *stlbe)
593 {
594 pfn_t pfn = ref->pfn;
595
596 BUG_ON(!(ref->flags & E500_TLB_VALID));
597
598 /* Force TS=1 IPROT=0 for all guest mappings. */
599 stlbe->mas1 = MAS1_TSIZE(tsize) | MAS1_TS | MAS1_VALID;
600 stlbe->mas2 = (gvaddr & MAS2_EPN)
601 | e500_shadow_mas2_attrib(gtlbe->mas2,
602 vcpu_e500->vcpu.arch.shared->msr & MSR_PR);
603 stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT)
604 | e500_shadow_mas3_attrib(gtlbe->mas7_3,
605 vcpu_e500->vcpu.arch.shared->msr & MSR_PR);
606 }
607
kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 * vcpu_e500,u64 gvaddr,gfn_t gfn,struct kvm_book3e_206_tlb_entry * gtlbe,int tlbsel,struct kvm_book3e_206_tlb_entry * stlbe,struct tlbe_ref * ref)608 static inline void kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
609 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
610 int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
611 struct tlbe_ref *ref)
612 {
613 struct kvm_memory_slot *slot;
614 unsigned long pfn, hva;
615 int pfnmap = 0;
616 int tsize = BOOK3E_PAGESZ_4K;
617
618 /*
619 * Translate guest physical to true physical, acquiring
620 * a page reference if it is normal, non-reserved memory.
621 *
622 * gfn_to_memslot() must succeed because otherwise we wouldn't
623 * have gotten this far. Eventually we should just pass the slot
624 * pointer through from the first lookup.
625 */
626 slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
627 hva = gfn_to_hva_memslot(slot, gfn);
628
629 if (tlbsel == 1) {
630 struct vm_area_struct *vma;
631 down_read(¤t->mm->mmap_sem);
632
633 vma = find_vma(current->mm, hva);
634 if (vma && hva >= vma->vm_start &&
635 (vma->vm_flags & VM_PFNMAP)) {
636 /*
637 * This VMA is a physically contiguous region (e.g.
638 * /dev/mem) that bypasses normal Linux page
639 * management. Find the overlap between the
640 * vma and the memslot.
641 */
642
643 unsigned long start, end;
644 unsigned long slot_start, slot_end;
645
646 pfnmap = 1;
647
648 start = vma->vm_pgoff;
649 end = start +
650 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);
651
652 pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
653
654 slot_start = pfn - (gfn - slot->base_gfn);
655 slot_end = slot_start + slot->npages;
656
657 if (start < slot_start)
658 start = slot_start;
659 if (end > slot_end)
660 end = slot_end;
661
662 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
663 MAS1_TSIZE_SHIFT;
664
665 /*
666 * e500 doesn't implement the lowest tsize bit,
667 * or 1K pages.
668 */
669 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
670
671 /*
672 * Now find the largest tsize (up to what the guest
673 * requested) that will cover gfn, stay within the
674 * range, and for which gfn and pfn are mutually
675 * aligned.
676 */
677
678 for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
679 unsigned long gfn_start, gfn_end, tsize_pages;
680 tsize_pages = 1 << (tsize - 2);
681
682 gfn_start = gfn & ~(tsize_pages - 1);
683 gfn_end = gfn_start + tsize_pages;
684
685 if (gfn_start + pfn - gfn < start)
686 continue;
687 if (gfn_end + pfn - gfn > end)
688 continue;
689 if ((gfn & (tsize_pages - 1)) !=
690 (pfn & (tsize_pages - 1)))
691 continue;
692
693 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
694 pfn &= ~(tsize_pages - 1);
695 break;
696 }
697 } else if (vma && hva >= vma->vm_start &&
698 (vma->vm_flags & VM_HUGETLB)) {
699 unsigned long psize = vma_kernel_pagesize(vma);
700
701 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
702 MAS1_TSIZE_SHIFT;
703
704 /*
705 * Take the largest page size that satisfies both host
706 * and guest mapping
707 */
708 tsize = min(__ilog2(psize) - 10, tsize);
709
710 /*
711 * e500 doesn't implement the lowest tsize bit,
712 * or 1K pages.
713 */
714 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
715 }
716
717 up_read(¤t->mm->mmap_sem);
718 }
719
720 if (likely(!pfnmap)) {
721 unsigned long tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT);
722 pfn = gfn_to_pfn_memslot(vcpu_e500->vcpu.kvm, slot, gfn);
723 if (is_error_pfn(pfn)) {
724 printk(KERN_ERR "Couldn't get real page for gfn %lx!\n",
725 (long)gfn);
726 kvm_release_pfn_clean(pfn);
727 return;
728 }
729
730 /* Align guest and physical address to page map boundaries */
731 pfn &= ~(tsize_pages - 1);
732 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
733 }
734
735 /* Drop old ref and setup new one. */
736 kvmppc_e500_ref_release(ref);
737 kvmppc_e500_ref_setup(ref, gtlbe, pfn);
738
739 kvmppc_e500_setup_stlbe(vcpu_e500, gtlbe, tsize, ref, gvaddr, stlbe);
740 }
741
742 /* XXX only map the one-one case, for now use TLB0 */
kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 * vcpu_e500,int esel,struct kvm_book3e_206_tlb_entry * stlbe)743 static void kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500,
744 int esel,
745 struct kvm_book3e_206_tlb_entry *stlbe)
746 {
747 struct kvm_book3e_206_tlb_entry *gtlbe;
748 struct tlbe_ref *ref;
749
750 gtlbe = get_entry(vcpu_e500, 0, esel);
751 ref = &vcpu_e500->gtlb_priv[0][esel].ref;
752
753 kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
754 get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
755 gtlbe, 0, stlbe, ref);
756 }
757
758 /* Caller must ensure that the specified guest TLB entry is safe to insert into
759 * the shadow TLB. */
760 /* XXX for both one-one and one-to-many , for now use TLB1 */
kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 * vcpu_e500,u64 gvaddr,gfn_t gfn,struct kvm_book3e_206_tlb_entry * gtlbe,struct kvm_book3e_206_tlb_entry * stlbe)761 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
762 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
763 struct kvm_book3e_206_tlb_entry *stlbe)
764 {
765 struct tlbe_ref *ref;
766 unsigned int victim;
767
768 victim = vcpu_e500->host_tlb1_nv++;
769
770 if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
771 vcpu_e500->host_tlb1_nv = 0;
772
773 ref = &vcpu_e500->tlb_refs[1][victim];
774 kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe, ref);
775
776 return victim;
777 }
778
kvmppc_mmu_msr_notify(struct kvm_vcpu * vcpu,u32 old_msr)779 void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
780 {
781 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
782
783 /* Recalc shadow pid since MSR changes */
784 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
785 }
786
kvmppc_e500_gtlbe_invalidate(struct kvmppc_vcpu_e500 * vcpu_e500,int tlbsel,int esel)787 static inline int kvmppc_e500_gtlbe_invalidate(
788 struct kvmppc_vcpu_e500 *vcpu_e500,
789 int tlbsel, int esel)
790 {
791 struct kvm_book3e_206_tlb_entry *gtlbe =
792 get_entry(vcpu_e500, tlbsel, esel);
793
794 if (unlikely(get_tlb_iprot(gtlbe)))
795 return -1;
796
797 gtlbe->mas1 = 0;
798
799 return 0;
800 }
801
kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 * vcpu_e500,ulong value)802 int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500, ulong value)
803 {
804 int esel;
805
806 if (value & MMUCSR0_TLB0FI)
807 for (esel = 0; esel < vcpu_e500->gtlb_params[0].entries; esel++)
808 kvmppc_e500_gtlbe_invalidate(vcpu_e500, 0, esel);
809 if (value & MMUCSR0_TLB1FI)
810 for (esel = 0; esel < vcpu_e500->gtlb_params[1].entries; esel++)
811 kvmppc_e500_gtlbe_invalidate(vcpu_e500, 1, esel);
812
813 /* Invalidate all vcpu id mappings */
814 kvmppc_e500_id_table_reset_all(vcpu_e500);
815
816 return EMULATE_DONE;
817 }
818
kvmppc_e500_emul_tlbivax(struct kvm_vcpu * vcpu,int ra,int rb)819 int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, int ra, int rb)
820 {
821 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
822 unsigned int ia;
823 int esel, tlbsel;
824 gva_t ea;
825
826 ea = ((ra) ? kvmppc_get_gpr(vcpu, ra) : 0) + kvmppc_get_gpr(vcpu, rb);
827
828 ia = (ea >> 2) & 0x1;
829
830 /* since we only have two TLBs, only lower bit is used. */
831 tlbsel = (ea >> 3) & 0x1;
832
833 if (ia) {
834 /* invalidate all entries */
835 for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries;
836 esel++)
837 kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
838 } else {
839 ea &= 0xfffff000;
840 esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel,
841 get_cur_pid(vcpu), -1);
842 if (esel >= 0)
843 kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
844 }
845
846 /* Invalidate all vcpu id mappings */
847 kvmppc_e500_id_table_reset_all(vcpu_e500);
848
849 return EMULATE_DONE;
850 }
851
kvmppc_e500_emul_tlbre(struct kvm_vcpu * vcpu)852 int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu)
853 {
854 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
855 int tlbsel, esel;
856 struct kvm_book3e_206_tlb_entry *gtlbe;
857
858 tlbsel = get_tlb_tlbsel(vcpu);
859 esel = get_tlb_esel(vcpu, tlbsel);
860
861 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
862 vcpu->arch.shared->mas0 &= ~MAS0_NV(~0);
863 vcpu->arch.shared->mas0 |= MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
864 vcpu->arch.shared->mas1 = gtlbe->mas1;
865 vcpu->arch.shared->mas2 = gtlbe->mas2;
866 vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
867
868 return EMULATE_DONE;
869 }
870
kvmppc_e500_emul_tlbsx(struct kvm_vcpu * vcpu,int rb)871 int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, int rb)
872 {
873 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
874 int as = !!get_cur_sas(vcpu);
875 unsigned int pid = get_cur_spid(vcpu);
876 int esel, tlbsel;
877 struct kvm_book3e_206_tlb_entry *gtlbe = NULL;
878 gva_t ea;
879
880 ea = kvmppc_get_gpr(vcpu, rb);
881
882 for (tlbsel = 0; tlbsel < 2; tlbsel++) {
883 esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, as);
884 if (esel >= 0) {
885 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
886 break;
887 }
888 }
889
890 if (gtlbe) {
891 esel &= vcpu_e500->gtlb_params[tlbsel].ways - 1;
892
893 vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(esel)
894 | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
895 vcpu->arch.shared->mas1 = gtlbe->mas1;
896 vcpu->arch.shared->mas2 = gtlbe->mas2;
897 vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
898 } else {
899 int victim;
900
901 /* since we only have two TLBs, only lower bit is used. */
902 tlbsel = vcpu->arch.shared->mas4 >> 28 & 0x1;
903 victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
904
905 vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel)
906 | MAS0_ESEL(victim)
907 | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
908 vcpu->arch.shared->mas1 =
909 (vcpu->arch.shared->mas6 & MAS6_SPID0)
910 | (vcpu->arch.shared->mas6 & (MAS6_SAS ? MAS1_TS : 0))
911 | (vcpu->arch.shared->mas4 & MAS4_TSIZED(~0));
912 vcpu->arch.shared->mas2 &= MAS2_EPN;
913 vcpu->arch.shared->mas2 |= vcpu->arch.shared->mas4 &
914 MAS2_ATTRIB_MASK;
915 vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 |
916 MAS3_U2 | MAS3_U3;
917 }
918
919 kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS);
920 return EMULATE_DONE;
921 }
922
923 /* sesel is for tlb1 only */
write_stlbe(struct kvmppc_vcpu_e500 * vcpu_e500,struct kvm_book3e_206_tlb_entry * gtlbe,struct kvm_book3e_206_tlb_entry * stlbe,int stlbsel,int sesel)924 static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
925 struct kvm_book3e_206_tlb_entry *gtlbe,
926 struct kvm_book3e_206_tlb_entry *stlbe,
927 int stlbsel, int sesel)
928 {
929 int stid;
930
931 preempt_disable();
932 stid = kvmppc_e500_get_sid(vcpu_e500, get_tlb_ts(gtlbe),
933 get_tlb_tid(gtlbe),
934 get_cur_pr(&vcpu_e500->vcpu), 0);
935
936 stlbe->mas1 |= MAS1_TID(stid);
937 write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
938 preempt_enable();
939 }
940
kvmppc_e500_emul_tlbwe(struct kvm_vcpu * vcpu)941 int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu)
942 {
943 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
944 struct kvm_book3e_206_tlb_entry *gtlbe;
945 int tlbsel, esel;
946
947 tlbsel = get_tlb_tlbsel(vcpu);
948 esel = get_tlb_esel(vcpu, tlbsel);
949
950 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
951
952 if (get_tlb_v(gtlbe))
953 inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
954
955 gtlbe->mas1 = vcpu->arch.shared->mas1;
956 gtlbe->mas2 = vcpu->arch.shared->mas2;
957 gtlbe->mas7_3 = vcpu->arch.shared->mas7_3;
958
959 trace_kvm_booke206_gtlb_write(vcpu->arch.shared->mas0, gtlbe->mas1,
960 gtlbe->mas2, gtlbe->mas7_3);
961
962 /* Invalidate shadow mappings for the about-to-be-clobbered TLBE. */
963 if (tlbe_is_host_safe(vcpu, gtlbe)) {
964 struct kvm_book3e_206_tlb_entry stlbe;
965 int stlbsel, sesel;
966 u64 eaddr;
967 u64 raddr;
968
969 switch (tlbsel) {
970 case 0:
971 /* TLB0 */
972 gtlbe->mas1 &= ~MAS1_TSIZE(~0);
973 gtlbe->mas1 |= MAS1_TSIZE(BOOK3E_PAGESZ_4K);
974
975 stlbsel = 0;
976 kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
977 sesel = 0; /* unused */
978
979 break;
980
981 case 1:
982 /* TLB1 */
983 eaddr = get_tlb_eaddr(gtlbe);
984 raddr = get_tlb_raddr(gtlbe);
985
986 /* Create a 4KB mapping on the host.
987 * If the guest wanted a large page,
988 * only the first 4KB is mapped here and the rest
989 * are mapped on the fly. */
990 stlbsel = 1;
991 sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr,
992 raddr >> PAGE_SHIFT, gtlbe, &stlbe);
993 break;
994
995 default:
996 BUG();
997 }
998
999 write_stlbe(vcpu_e500, gtlbe, &stlbe, stlbsel, sesel);
1000 }
1001
1002 kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS);
1003 return EMULATE_DONE;
1004 }
1005
kvmppc_mmu_itlb_index(struct kvm_vcpu * vcpu,gva_t eaddr)1006 int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
1007 {
1008 unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
1009
1010 return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
1011 }
1012
kvmppc_mmu_dtlb_index(struct kvm_vcpu * vcpu,gva_t eaddr)1013 int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
1014 {
1015 unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
1016
1017 return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
1018 }
1019
kvmppc_mmu_itlb_miss(struct kvm_vcpu * vcpu)1020 void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu)
1021 {
1022 unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
1023
1024 kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.pc, as);
1025 }
1026
kvmppc_mmu_dtlb_miss(struct kvm_vcpu * vcpu)1027 void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu)
1028 {
1029 unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
1030
1031 kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as);
1032 }
1033
kvmppc_mmu_xlate(struct kvm_vcpu * vcpu,unsigned int index,gva_t eaddr)1034 gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int index,
1035 gva_t eaddr)
1036 {
1037 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
1038 struct kvm_book3e_206_tlb_entry *gtlbe;
1039 u64 pgmask;
1040
1041 gtlbe = get_entry(vcpu_e500, tlbsel_of(index), esel_of(index));
1042 pgmask = get_tlb_bytes(gtlbe) - 1;
1043
1044 return get_tlb_raddr(gtlbe) | (eaddr & pgmask);
1045 }
1046
kvmppc_mmu_destroy(struct kvm_vcpu * vcpu)1047 void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
1048 {
1049 }
1050
kvmppc_mmu_map(struct kvm_vcpu * vcpu,u64 eaddr,gpa_t gpaddr,unsigned int index)1051 void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
1052 unsigned int index)
1053 {
1054 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
1055 struct tlbe_priv *priv;
1056 struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
1057 int tlbsel = tlbsel_of(index);
1058 int esel = esel_of(index);
1059 int stlbsel, sesel;
1060
1061 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
1062
1063 switch (tlbsel) {
1064 case 0:
1065 stlbsel = 0;
1066 sesel = 0; /* unused */
1067 priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
1068
1069 kvmppc_e500_setup_stlbe(vcpu_e500, gtlbe, BOOK3E_PAGESZ_4K,
1070 &priv->ref, eaddr, &stlbe);
1071 break;
1072
1073 case 1: {
1074 gfn_t gfn = gpaddr >> PAGE_SHIFT;
1075
1076 stlbsel = 1;
1077 sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn,
1078 gtlbe, &stlbe);
1079 break;
1080 }
1081
1082 default:
1083 BUG();
1084 break;
1085 }
1086
1087 write_stlbe(vcpu_e500, gtlbe, &stlbe, stlbsel, sesel);
1088 }
1089
kvmppc_e500_tlb_search(struct kvm_vcpu * vcpu,gva_t eaddr,unsigned int pid,int as)1090 int kvmppc_e500_tlb_search(struct kvm_vcpu *vcpu,
1091 gva_t eaddr, unsigned int pid, int as)
1092 {
1093 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
1094 int esel, tlbsel;
1095
1096 for (tlbsel = 0; tlbsel < 2; tlbsel++) {
1097 esel = kvmppc_e500_tlb_index(vcpu_e500, eaddr, tlbsel, pid, as);
1098 if (esel >= 0)
1099 return index_of(tlbsel, esel);
1100 }
1101
1102 return -1;
1103 }
1104
kvmppc_set_pid(struct kvm_vcpu * vcpu,u32 pid)1105 void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
1106 {
1107 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
1108
1109 if (vcpu->arch.pid != pid) {
1110 vcpu_e500->pid[0] = vcpu->arch.pid = pid;
1111 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
1112 }
1113 }
1114
kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 * vcpu_e500)1115 void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
1116 {
1117 struct kvm_book3e_206_tlb_entry *tlbe;
1118
1119 /* Insert large initial mapping for guest. */
1120 tlbe = get_entry(vcpu_e500, 1, 0);
1121 tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M);
1122 tlbe->mas2 = 0;
1123 tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK;
1124
1125 /* 4K map for serial output. Used by kernel wrapper. */
1126 tlbe = get_entry(vcpu_e500, 1, 1);
1127 tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K);
1128 tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
1129 tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
1130 }
1131
free_gtlb(struct kvmppc_vcpu_e500 * vcpu_e500)1132 static void free_gtlb(struct kvmppc_vcpu_e500 *vcpu_e500)
1133 {
1134 int i;
1135
1136 clear_tlb_refs(vcpu_e500);
1137 kfree(vcpu_e500->gtlb_priv[0]);
1138 kfree(vcpu_e500->gtlb_priv[1]);
1139
1140 if (vcpu_e500->shared_tlb_pages) {
1141 vfree((void *)(round_down((uintptr_t)vcpu_e500->gtlb_arch,
1142 PAGE_SIZE)));
1143
1144 for (i = 0; i < vcpu_e500->num_shared_tlb_pages; i++) {
1145 set_page_dirty_lock(vcpu_e500->shared_tlb_pages[i]);
1146 put_page(vcpu_e500->shared_tlb_pages[i]);
1147 }
1148
1149 vcpu_e500->num_shared_tlb_pages = 0;
1150 vcpu_e500->shared_tlb_pages = NULL;
1151 } else {
1152 kfree(vcpu_e500->gtlb_arch);
1153 }
1154
1155 vcpu_e500->gtlb_arch = NULL;
1156 }
1157
kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu * vcpu,struct kvm_config_tlb * cfg)1158 int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu,
1159 struct kvm_config_tlb *cfg)
1160 {
1161 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
1162 struct kvm_book3e_206_tlb_params params;
1163 char *virt;
1164 struct page **pages;
1165 struct tlbe_priv *privs[2] = {};
1166 size_t array_len;
1167 u32 sets;
1168 int num_pages, ret, i;
1169
1170 if (cfg->mmu_type != KVM_MMU_FSL_BOOKE_NOHV)
1171 return -EINVAL;
1172
1173 if (copy_from_user(¶ms, (void __user *)(uintptr_t)cfg->params,
1174 sizeof(params)))
1175 return -EFAULT;
1176
1177 if (params.tlb_sizes[1] > 64)
1178 return -EINVAL;
1179 if (params.tlb_ways[1] != params.tlb_sizes[1])
1180 return -EINVAL;
1181 if (params.tlb_sizes[2] != 0 || params.tlb_sizes[3] != 0)
1182 return -EINVAL;
1183 if (params.tlb_ways[2] != 0 || params.tlb_ways[3] != 0)
1184 return -EINVAL;
1185
1186 if (!is_power_of_2(params.tlb_ways[0]))
1187 return -EINVAL;
1188
1189 sets = params.tlb_sizes[0] >> ilog2(params.tlb_ways[0]);
1190 if (!is_power_of_2(sets))
1191 return -EINVAL;
1192
1193 array_len = params.tlb_sizes[0] + params.tlb_sizes[1];
1194 array_len *= sizeof(struct kvm_book3e_206_tlb_entry);
1195
1196 if (cfg->array_len < array_len)
1197 return -EINVAL;
1198
1199 num_pages = DIV_ROUND_UP(cfg->array + array_len - 1, PAGE_SIZE) -
1200 cfg->array / PAGE_SIZE;
1201 pages = kmalloc(sizeof(struct page *) * num_pages, GFP_KERNEL);
1202 if (!pages)
1203 return -ENOMEM;
1204
1205 ret = get_user_pages_fast(cfg->array, num_pages, 1, pages);
1206 if (ret < 0)
1207 goto err_pages;
1208
1209 if (ret != num_pages) {
1210 num_pages = ret;
1211 ret = -EFAULT;
1212 goto err_put_page;
1213 }
1214
1215 virt = vmap(pages, num_pages, VM_MAP, PAGE_KERNEL);
1216 if (!virt)
1217 goto err_put_page;
1218
1219 privs[0] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[0],
1220 GFP_KERNEL);
1221 privs[1] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[1],
1222 GFP_KERNEL);
1223
1224 if (!privs[0] || !privs[1])
1225 goto err_put_page;
1226
1227 free_gtlb(vcpu_e500);
1228
1229 vcpu_e500->gtlb_priv[0] = privs[0];
1230 vcpu_e500->gtlb_priv[1] = privs[1];
1231
1232 vcpu_e500->gtlb_arch = (struct kvm_book3e_206_tlb_entry *)
1233 (virt + (cfg->array & (PAGE_SIZE - 1)));
1234
1235 vcpu_e500->gtlb_params[0].entries = params.tlb_sizes[0];
1236 vcpu_e500->gtlb_params[1].entries = params.tlb_sizes[1];
1237
1238 vcpu_e500->gtlb_offset[0] = 0;
1239 vcpu_e500->gtlb_offset[1] = params.tlb_sizes[0];
1240
1241 vcpu_e500->tlb0cfg &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
1242 if (params.tlb_sizes[0] <= 2048)
1243 vcpu_e500->tlb0cfg |= params.tlb_sizes[0];
1244 vcpu_e500->tlb0cfg |= params.tlb_ways[0] << TLBnCFG_ASSOC_SHIFT;
1245
1246 vcpu_e500->tlb1cfg &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
1247 vcpu_e500->tlb1cfg |= params.tlb_sizes[1];
1248 vcpu_e500->tlb1cfg |= params.tlb_ways[1] << TLBnCFG_ASSOC_SHIFT;
1249
1250 vcpu_e500->shared_tlb_pages = pages;
1251 vcpu_e500->num_shared_tlb_pages = num_pages;
1252
1253 vcpu_e500->gtlb_params[0].ways = params.tlb_ways[0];
1254 vcpu_e500->gtlb_params[0].sets = sets;
1255
1256 vcpu_e500->gtlb_params[1].ways = params.tlb_sizes[1];
1257 vcpu_e500->gtlb_params[1].sets = 1;
1258
1259 return 0;
1260
1261 err_put_page:
1262 kfree(privs[0]);
1263 kfree(privs[1]);
1264
1265 for (i = 0; i < num_pages; i++)
1266 put_page(pages[i]);
1267
1268 err_pages:
1269 kfree(pages);
1270 return ret;
1271 }
1272
kvm_vcpu_ioctl_dirty_tlb(struct kvm_vcpu * vcpu,struct kvm_dirty_tlb * dirty)1273 int kvm_vcpu_ioctl_dirty_tlb(struct kvm_vcpu *vcpu,
1274 struct kvm_dirty_tlb *dirty)
1275 {
1276 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
1277
1278 clear_tlb_refs(vcpu_e500);
1279 return 0;
1280 }
1281
kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 * vcpu_e500)1282 int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500)
1283 {
1284 int entry_size = sizeof(struct kvm_book3e_206_tlb_entry);
1285 int entries = KVM_E500_TLB0_SIZE + KVM_E500_TLB1_SIZE;
1286
1287 host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
1288 host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
1289
1290 /*
1291 * This should never happen on real e500 hardware, but is
1292 * architecturally possible -- e.g. in some weird nested
1293 * virtualization case.
1294 */
1295 if (host_tlb_params[0].entries == 0 ||
1296 host_tlb_params[1].entries == 0) {
1297 pr_err("%s: need to know host tlb size\n", __func__);
1298 return -ENODEV;
1299 }
1300
1301 host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
1302 TLBnCFG_ASSOC_SHIFT;
1303 host_tlb_params[1].ways = host_tlb_params[1].entries;
1304
1305 if (!is_power_of_2(host_tlb_params[0].entries) ||
1306 !is_power_of_2(host_tlb_params[0].ways) ||
1307 host_tlb_params[0].entries < host_tlb_params[0].ways ||
1308 host_tlb_params[0].ways == 0) {
1309 pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
1310 __func__, host_tlb_params[0].entries,
1311 host_tlb_params[0].ways);
1312 return -ENODEV;
1313 }
1314
1315 host_tlb_params[0].sets =
1316 host_tlb_params[0].entries / host_tlb_params[0].ways;
1317 host_tlb_params[1].sets = 1;
1318
1319 vcpu_e500->gtlb_params[0].entries = KVM_E500_TLB0_SIZE;
1320 vcpu_e500->gtlb_params[1].entries = KVM_E500_TLB1_SIZE;
1321
1322 vcpu_e500->gtlb_params[0].ways = KVM_E500_TLB0_WAY_NUM;
1323 vcpu_e500->gtlb_params[0].sets =
1324 KVM_E500_TLB0_SIZE / KVM_E500_TLB0_WAY_NUM;
1325
1326 vcpu_e500->gtlb_params[1].ways = KVM_E500_TLB1_SIZE;
1327 vcpu_e500->gtlb_params[1].sets = 1;
1328
1329 vcpu_e500->gtlb_arch = kmalloc(entries * entry_size, GFP_KERNEL);
1330 if (!vcpu_e500->gtlb_arch)
1331 return -ENOMEM;
1332
1333 vcpu_e500->gtlb_offset[0] = 0;
1334 vcpu_e500->gtlb_offset[1] = KVM_E500_TLB0_SIZE;
1335
1336 vcpu_e500->tlb_refs[0] =
1337 kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[0].entries,
1338 GFP_KERNEL);
1339 if (!vcpu_e500->tlb_refs[0])
1340 goto err;
1341
1342 vcpu_e500->tlb_refs[1] =
1343 kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[1].entries,
1344 GFP_KERNEL);
1345 if (!vcpu_e500->tlb_refs[1])
1346 goto err;
1347
1348 vcpu_e500->gtlb_priv[0] = kzalloc(sizeof(struct tlbe_ref) *
1349 vcpu_e500->gtlb_params[0].entries,
1350 GFP_KERNEL);
1351 if (!vcpu_e500->gtlb_priv[0])
1352 goto err;
1353
1354 vcpu_e500->gtlb_priv[1] = kzalloc(sizeof(struct tlbe_ref) *
1355 vcpu_e500->gtlb_params[1].entries,
1356 GFP_KERNEL);
1357 if (!vcpu_e500->gtlb_priv[1])
1358 goto err;
1359
1360 if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL)
1361 goto err;
1362
1363 /* Init TLB configuration register */
1364 vcpu_e500->tlb0cfg = mfspr(SPRN_TLB0CFG) &
1365 ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
1366 vcpu_e500->tlb0cfg |= vcpu_e500->gtlb_params[0].entries;
1367 vcpu_e500->tlb0cfg |=
1368 vcpu_e500->gtlb_params[0].ways << TLBnCFG_ASSOC_SHIFT;
1369
1370 vcpu_e500->tlb1cfg = mfspr(SPRN_TLB1CFG) &
1371 ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
1372 vcpu_e500->tlb0cfg |= vcpu_e500->gtlb_params[1].entries;
1373 vcpu_e500->tlb0cfg |=
1374 vcpu_e500->gtlb_params[1].ways << TLBnCFG_ASSOC_SHIFT;
1375
1376 return 0;
1377
1378 err:
1379 free_gtlb(vcpu_e500);
1380 kfree(vcpu_e500->tlb_refs[0]);
1381 kfree(vcpu_e500->tlb_refs[1]);
1382 return -1;
1383 }
1384
kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 * vcpu_e500)1385 void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
1386 {
1387 free_gtlb(vcpu_e500);
1388 kvmppc_e500_id_table_free(vcpu_e500);
1389
1390 kfree(vcpu_e500->tlb_refs[0]);
1391 kfree(vcpu_e500->tlb_refs[1]);
1392 }
1393