1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 static struct page *hwpoison_page;
104 static pfn_t hwpoison_pfn;
105
106 struct page *fault_page;
107 pfn_t fault_pfn;
108
kvm_is_mmio_pfn(pfn_t pfn)109 inline int kvm_is_mmio_pfn(pfn_t pfn)
110 {
111 if (pfn_valid(pfn)) {
112 int reserved;
113 struct page *tail = pfn_to_page(pfn);
114 struct page *head = compound_trans_head(tail);
115 reserved = PageReserved(head);
116 if (head != tail) {
117 /*
118 * "head" is not a dangling pointer
119 * (compound_trans_head takes care of that)
120 * but the hugepage may have been splitted
121 * from under us (and we may not hold a
122 * reference count on the head page so it can
123 * be reused before we run PageReferenced), so
124 * we've to check PageTail before returning
125 * what we just read.
126 */
127 smp_rmb();
128 if (PageTail(tail))
129 return reserved;
130 }
131 return PageReserved(tail);
132 }
133
134 return true;
135 }
136
137 /*
138 * Switches to specified vcpu, until a matching vcpu_put()
139 */
vcpu_load(struct kvm_vcpu * vcpu)140 void vcpu_load(struct kvm_vcpu *vcpu)
141 {
142 int cpu;
143
144 mutex_lock(&vcpu->mutex);
145 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
146 /* The thread running this VCPU changed. */
147 struct pid *oldpid = vcpu->pid;
148 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
149 rcu_assign_pointer(vcpu->pid, newpid);
150 synchronize_rcu();
151 put_pid(oldpid);
152 }
153 cpu = get_cpu();
154 preempt_notifier_register(&vcpu->preempt_notifier);
155 kvm_arch_vcpu_load(vcpu, cpu);
156 put_cpu();
157 }
158
vcpu_put(struct kvm_vcpu * vcpu)159 void vcpu_put(struct kvm_vcpu *vcpu)
160 {
161 preempt_disable();
162 kvm_arch_vcpu_put(vcpu);
163 preempt_notifier_unregister(&vcpu->preempt_notifier);
164 preempt_enable();
165 mutex_unlock(&vcpu->mutex);
166 }
167
ack_flush(void * _completed)168 static void ack_flush(void *_completed)
169 {
170 }
171
make_all_cpus_request(struct kvm * kvm,unsigned int req)172 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
173 {
174 int i, cpu, me;
175 cpumask_var_t cpus;
176 bool called = true;
177 struct kvm_vcpu *vcpu;
178
179 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
180
181 me = get_cpu();
182 kvm_for_each_vcpu(i, vcpu, kvm) {
183 kvm_make_request(req, vcpu);
184 cpu = vcpu->cpu;
185
186 /* Set ->requests bit before we read ->mode */
187 smp_mb();
188
189 if (cpus != NULL && cpu != -1 && cpu != me &&
190 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
191 cpumask_set_cpu(cpu, cpus);
192 }
193 if (unlikely(cpus == NULL))
194 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
195 else if (!cpumask_empty(cpus))
196 smp_call_function_many(cpus, ack_flush, NULL, 1);
197 else
198 called = false;
199 put_cpu();
200 free_cpumask_var(cpus);
201 return called;
202 }
203
kvm_flush_remote_tlbs(struct kvm * kvm)204 void kvm_flush_remote_tlbs(struct kvm *kvm)
205 {
206 long dirty_count = kvm->tlbs_dirty;
207
208 smp_mb();
209 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
210 ++kvm->stat.remote_tlb_flush;
211 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
212 }
213
kvm_reload_remote_mmus(struct kvm * kvm)214 void kvm_reload_remote_mmus(struct kvm *kvm)
215 {
216 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
217 }
218
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
220 {
221 struct page *page;
222 int r;
223
224 mutex_init(&vcpu->mutex);
225 vcpu->cpu = -1;
226 vcpu->kvm = kvm;
227 vcpu->vcpu_id = id;
228 vcpu->pid = NULL;
229 init_waitqueue_head(&vcpu->wq);
230 kvm_async_pf_vcpu_init(vcpu);
231
232 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
233 if (!page) {
234 r = -ENOMEM;
235 goto fail;
236 }
237 vcpu->run = page_address(page);
238
239 r = kvm_arch_vcpu_init(vcpu);
240 if (r < 0)
241 goto fail_free_run;
242 return 0;
243
244 fail_free_run:
245 free_page((unsigned long)vcpu->run);
246 fail:
247 return r;
248 }
249 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
250
kvm_vcpu_uninit(struct kvm_vcpu * vcpu)251 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
252 {
253 put_pid(vcpu->pid);
254 kvm_arch_vcpu_uninit(vcpu);
255 free_page((unsigned long)vcpu->run);
256 }
257 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
258
259 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_to_kvm(struct mmu_notifier * mn)260 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
261 {
262 return container_of(mn, struct kvm, mmu_notifier);
263 }
264
kvm_mmu_notifier_invalidate_page(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)265 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
266 struct mm_struct *mm,
267 unsigned long address)
268 {
269 struct kvm *kvm = mmu_notifier_to_kvm(mn);
270 int need_tlb_flush, idx;
271
272 /*
273 * When ->invalidate_page runs, the linux pte has been zapped
274 * already but the page is still allocated until
275 * ->invalidate_page returns. So if we increase the sequence
276 * here the kvm page fault will notice if the spte can't be
277 * established because the page is going to be freed. If
278 * instead the kvm page fault establishes the spte before
279 * ->invalidate_page runs, kvm_unmap_hva will release it
280 * before returning.
281 *
282 * The sequence increase only need to be seen at spin_unlock
283 * time, and not at spin_lock time.
284 *
285 * Increasing the sequence after the spin_unlock would be
286 * unsafe because the kvm page fault could then establish the
287 * pte after kvm_unmap_hva returned, without noticing the page
288 * is going to be freed.
289 */
290 idx = srcu_read_lock(&kvm->srcu);
291 spin_lock(&kvm->mmu_lock);
292
293 kvm->mmu_notifier_seq++;
294 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
295 /* we've to flush the tlb before the pages can be freed */
296 if (need_tlb_flush)
297 kvm_flush_remote_tlbs(kvm);
298
299 spin_unlock(&kvm->mmu_lock);
300 srcu_read_unlock(&kvm->srcu, idx);
301 }
302
kvm_mmu_notifier_change_pte(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address,pte_t pte)303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
304 struct mm_struct *mm,
305 unsigned long address,
306 pte_t pte)
307 {
308 struct kvm *kvm = mmu_notifier_to_kvm(mn);
309 int idx;
310
311 idx = srcu_read_lock(&kvm->srcu);
312 spin_lock(&kvm->mmu_lock);
313 kvm->mmu_notifier_seq++;
314 kvm_set_spte_hva(kvm, address, pte);
315 spin_unlock(&kvm->mmu_lock);
316 srcu_read_unlock(&kvm->srcu, idx);
317 }
318
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
320 struct mm_struct *mm,
321 unsigned long start,
322 unsigned long end)
323 {
324 struct kvm *kvm = mmu_notifier_to_kvm(mn);
325 int need_tlb_flush = 0, idx;
326
327 idx = srcu_read_lock(&kvm->srcu);
328 spin_lock(&kvm->mmu_lock);
329 /*
330 * The count increase must become visible at unlock time as no
331 * spte can be established without taking the mmu_lock and
332 * count is also read inside the mmu_lock critical section.
333 */
334 kvm->mmu_notifier_count++;
335 for (; start < end; start += PAGE_SIZE)
336 need_tlb_flush |= kvm_unmap_hva(kvm, start);
337 need_tlb_flush |= kvm->tlbs_dirty;
338 /* we've to flush the tlb before the pages can be freed */
339 if (need_tlb_flush)
340 kvm_flush_remote_tlbs(kvm);
341
342 spin_unlock(&kvm->mmu_lock);
343 srcu_read_unlock(&kvm->srcu, idx);
344 }
345
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
347 struct mm_struct *mm,
348 unsigned long start,
349 unsigned long end)
350 {
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
352
353 spin_lock(&kvm->mmu_lock);
354 /*
355 * This sequence increase will notify the kvm page fault that
356 * the page that is going to be mapped in the spte could have
357 * been freed.
358 */
359 kvm->mmu_notifier_seq++;
360 smp_wmb();
361 /*
362 * The above sequence increase must be visible before the
363 * below count decrease, which is ensured by the smp_wmb above
364 * in conjunction with the smp_rmb in mmu_notifier_retry().
365 */
366 kvm->mmu_notifier_count--;
367 spin_unlock(&kvm->mmu_lock);
368
369 BUG_ON(kvm->mmu_notifier_count < 0);
370 }
371
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
373 struct mm_struct *mm,
374 unsigned long address)
375 {
376 struct kvm *kvm = mmu_notifier_to_kvm(mn);
377 int young, idx;
378
379 idx = srcu_read_lock(&kvm->srcu);
380 spin_lock(&kvm->mmu_lock);
381
382 young = kvm_age_hva(kvm, address);
383 if (young)
384 kvm_flush_remote_tlbs(kvm);
385
386 spin_unlock(&kvm->mmu_lock);
387 srcu_read_unlock(&kvm->srcu, idx);
388
389 return young;
390 }
391
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)392 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
393 struct mm_struct *mm,
394 unsigned long address)
395 {
396 struct kvm *kvm = mmu_notifier_to_kvm(mn);
397 int young, idx;
398
399 idx = srcu_read_lock(&kvm->srcu);
400 spin_lock(&kvm->mmu_lock);
401 young = kvm_test_age_hva(kvm, address);
402 spin_unlock(&kvm->mmu_lock);
403 srcu_read_unlock(&kvm->srcu, idx);
404
405 return young;
406 }
407
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)408 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
409 struct mm_struct *mm)
410 {
411 struct kvm *kvm = mmu_notifier_to_kvm(mn);
412 int idx;
413
414 idx = srcu_read_lock(&kvm->srcu);
415 kvm_arch_flush_shadow(kvm);
416 srcu_read_unlock(&kvm->srcu, idx);
417 }
418
419 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
420 .invalidate_page = kvm_mmu_notifier_invalidate_page,
421 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
422 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
423 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
424 .test_young = kvm_mmu_notifier_test_young,
425 .change_pte = kvm_mmu_notifier_change_pte,
426 .release = kvm_mmu_notifier_release,
427 };
428
kvm_init_mmu_notifier(struct kvm * kvm)429 static int kvm_init_mmu_notifier(struct kvm *kvm)
430 {
431 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
432 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
433 }
434
435 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
436
kvm_init_mmu_notifier(struct kvm * kvm)437 static int kvm_init_mmu_notifier(struct kvm *kvm)
438 {
439 return 0;
440 }
441
442 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
443
kvm_init_memslots_id(struct kvm * kvm)444 static void kvm_init_memslots_id(struct kvm *kvm)
445 {
446 int i;
447 struct kvm_memslots *slots = kvm->memslots;
448
449 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
450 slots->id_to_index[i] = slots->memslots[i].id = i;
451 }
452
kvm_create_vm(unsigned long type)453 static struct kvm *kvm_create_vm(unsigned long type)
454 {
455 int r, i;
456 struct kvm *kvm = kvm_arch_alloc_vm();
457
458 if (!kvm)
459 return ERR_PTR(-ENOMEM);
460
461 r = kvm_arch_init_vm(kvm, type);
462 if (r)
463 goto out_err_nodisable;
464
465 r = hardware_enable_all();
466 if (r)
467 goto out_err_nodisable;
468
469 #ifdef CONFIG_HAVE_KVM_IRQCHIP
470 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
471 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
472 #endif
473
474 r = -ENOMEM;
475 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
476 if (!kvm->memslots)
477 goto out_err_nosrcu;
478 kvm_init_memslots_id(kvm);
479 if (init_srcu_struct(&kvm->srcu))
480 goto out_err_nosrcu;
481 for (i = 0; i < KVM_NR_BUSES; i++) {
482 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
483 GFP_KERNEL);
484 if (!kvm->buses[i])
485 goto out_err;
486 }
487
488 spin_lock_init(&kvm->mmu_lock);
489 kvm->mm = current->mm;
490 atomic_inc(&kvm->mm->mm_count);
491 kvm_eventfd_init(kvm);
492 mutex_init(&kvm->lock);
493 mutex_init(&kvm->irq_lock);
494 mutex_init(&kvm->slots_lock);
495 atomic_set(&kvm->users_count, 1);
496
497 r = kvm_init_mmu_notifier(kvm);
498 if (r)
499 goto out_err;
500
501 raw_spin_lock(&kvm_lock);
502 list_add(&kvm->vm_list, &vm_list);
503 raw_spin_unlock(&kvm_lock);
504
505 return kvm;
506
507 out_err:
508 cleanup_srcu_struct(&kvm->srcu);
509 out_err_nosrcu:
510 hardware_disable_all();
511 out_err_nodisable:
512 for (i = 0; i < KVM_NR_BUSES; i++)
513 kfree(kvm->buses[i]);
514 kfree(kvm->memslots);
515 kvm_arch_free_vm(kvm);
516 return ERR_PTR(r);
517 }
518
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)519 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
520 {
521 if (!memslot->dirty_bitmap)
522 return;
523
524 if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
525 vfree(memslot->dirty_bitmap_head);
526 else
527 kfree(memslot->dirty_bitmap_head);
528
529 memslot->dirty_bitmap = NULL;
530 memslot->dirty_bitmap_head = NULL;
531 }
532
533 /*
534 * Free any memory in @free but not in @dont.
535 */
kvm_free_physmem_slot(struct kvm_memory_slot * free,struct kvm_memory_slot * dont)536 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
537 struct kvm_memory_slot *dont)
538 {
539 if (!dont || free->rmap != dont->rmap)
540 vfree(free->rmap);
541
542 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
543 kvm_destroy_dirty_bitmap(free);
544
545 kvm_arch_free_memslot(free, dont);
546
547 free->npages = 0;
548 free->rmap = NULL;
549 }
550
kvm_free_physmem(struct kvm * kvm)551 void kvm_free_physmem(struct kvm *kvm)
552 {
553 struct kvm_memslots *slots = kvm->memslots;
554 struct kvm_memory_slot *memslot;
555
556 kvm_for_each_memslot(memslot, slots)
557 kvm_free_physmem_slot(memslot, NULL);
558
559 kfree(kvm->memslots);
560 }
561
kvm_destroy_vm(struct kvm * kvm)562 static void kvm_destroy_vm(struct kvm *kvm)
563 {
564 int i;
565 struct mm_struct *mm = kvm->mm;
566
567 kvm_arch_sync_events(kvm);
568 raw_spin_lock(&kvm_lock);
569 list_del(&kvm->vm_list);
570 raw_spin_unlock(&kvm_lock);
571 kvm_free_irq_routing(kvm);
572 for (i = 0; i < KVM_NR_BUSES; i++)
573 kvm_io_bus_destroy(kvm->buses[i]);
574 kvm_coalesced_mmio_free(kvm);
575 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
576 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
577 #else
578 kvm_arch_flush_shadow(kvm);
579 #endif
580 kvm_arch_destroy_vm(kvm);
581 kvm_free_physmem(kvm);
582 cleanup_srcu_struct(&kvm->srcu);
583 kvm_arch_free_vm(kvm);
584 hardware_disable_all();
585 mmdrop(mm);
586 }
587
kvm_get_kvm(struct kvm * kvm)588 void kvm_get_kvm(struct kvm *kvm)
589 {
590 atomic_inc(&kvm->users_count);
591 }
592 EXPORT_SYMBOL_GPL(kvm_get_kvm);
593
kvm_put_kvm(struct kvm * kvm)594 void kvm_put_kvm(struct kvm *kvm)
595 {
596 if (atomic_dec_and_test(&kvm->users_count))
597 kvm_destroy_vm(kvm);
598 }
599 EXPORT_SYMBOL_GPL(kvm_put_kvm);
600
601
kvm_vm_release(struct inode * inode,struct file * filp)602 static int kvm_vm_release(struct inode *inode, struct file *filp)
603 {
604 struct kvm *kvm = filp->private_data;
605
606 kvm_irqfd_release(kvm);
607
608 kvm_put_kvm(kvm);
609 return 0;
610 }
611
612 /*
613 * Allocation size is twice as large as the actual dirty bitmap size.
614 * This makes it possible to do double buffering: see x86's
615 * kvm_vm_ioctl_get_dirty_log().
616 */
kvm_create_dirty_bitmap(struct kvm_memory_slot * memslot)617 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
618 {
619 #ifndef CONFIG_S390
620 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
621
622 if (dirty_bytes > PAGE_SIZE)
623 memslot->dirty_bitmap = vzalloc(dirty_bytes);
624 else
625 memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
626
627 if (!memslot->dirty_bitmap)
628 return -ENOMEM;
629
630 memslot->dirty_bitmap_head = memslot->dirty_bitmap;
631 memslot->nr_dirty_pages = 0;
632 #endif /* !CONFIG_S390 */
633 return 0;
634 }
635
cmp_memslot(const void * slot1,const void * slot2)636 static int cmp_memslot(const void *slot1, const void *slot2)
637 {
638 struct kvm_memory_slot *s1, *s2;
639
640 s1 = (struct kvm_memory_slot *)slot1;
641 s2 = (struct kvm_memory_slot *)slot2;
642
643 if (s1->npages < s2->npages)
644 return 1;
645 if (s1->npages > s2->npages)
646 return -1;
647
648 return 0;
649 }
650
651 /*
652 * Sort the memslots base on its size, so the larger slots
653 * will get better fit.
654 */
sort_memslots(struct kvm_memslots * slots)655 static void sort_memslots(struct kvm_memslots *slots)
656 {
657 int i;
658
659 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
660 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
661
662 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
663 slots->id_to_index[slots->memslots[i].id] = i;
664 }
665
update_memslots(struct kvm_memslots * slots,struct kvm_memory_slot * new)666 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
667 {
668 if (new) {
669 int id = new->id;
670 struct kvm_memory_slot *old = id_to_memslot(slots, id);
671 unsigned long npages = old->npages;
672
673 *old = *new;
674 if (new->npages != npages)
675 sort_memslots(slots);
676 }
677
678 slots->generation++;
679 }
680
681 /*
682 * Allocate some memory and give it an address in the guest physical address
683 * space.
684 *
685 * Discontiguous memory is allowed, mostly for framebuffers.
686 *
687 * Must be called holding mmap_sem for write.
688 */
__kvm_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem,int user_alloc)689 int __kvm_set_memory_region(struct kvm *kvm,
690 struct kvm_userspace_memory_region *mem,
691 int user_alloc)
692 {
693 int r;
694 gfn_t base_gfn;
695 unsigned long npages;
696 struct kvm_memory_slot *memslot, *slot;
697 struct kvm_memory_slot old, new;
698 struct kvm_memslots *slots, *old_memslots;
699
700 r = -EINVAL;
701 /* General sanity checks */
702 if (mem->memory_size & (PAGE_SIZE - 1))
703 goto out;
704 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
705 goto out;
706 /* We can read the guest memory with __xxx_user() later on. */
707 if (user_alloc &&
708 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
709 !access_ok(VERIFY_WRITE,
710 (void __user *)(unsigned long)mem->userspace_addr,
711 mem->memory_size)))
712 goto out;
713 if (mem->slot >= KVM_MEM_SLOTS_NUM)
714 goto out;
715 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
716 goto out;
717
718 memslot = id_to_memslot(kvm->memslots, mem->slot);
719 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
720 npages = mem->memory_size >> PAGE_SHIFT;
721
722 r = -EINVAL;
723 if (npages > KVM_MEM_MAX_NR_PAGES)
724 goto out;
725
726 if (!npages)
727 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
728
729 new = old = *memslot;
730
731 new.id = mem->slot;
732 new.base_gfn = base_gfn;
733 new.npages = npages;
734 new.flags = mem->flags;
735
736 /* Disallow changing a memory slot's size. */
737 r = -EINVAL;
738 if (npages && old.npages && npages != old.npages)
739 goto out_free;
740
741 /* Check for overlaps */
742 r = -EEXIST;
743 kvm_for_each_memslot(slot, kvm->memslots) {
744 if (slot->id >= KVM_MEMORY_SLOTS || slot == memslot)
745 continue;
746 if (!((base_gfn + npages <= slot->base_gfn) ||
747 (base_gfn >= slot->base_gfn + slot->npages)))
748 goto out_free;
749 }
750
751 /* Free page dirty bitmap if unneeded */
752 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
753 new.dirty_bitmap = NULL;
754
755 r = -ENOMEM;
756
757 /* Allocate if a slot is being created */
758 if (npages && !old.npages) {
759 new.user_alloc = user_alloc;
760 new.userspace_addr = mem->userspace_addr;
761 #ifndef CONFIG_S390
762 new.rmap = vzalloc(npages * sizeof(*new.rmap));
763 if (!new.rmap)
764 goto out_free;
765 #endif /* not defined CONFIG_S390 */
766 if (kvm_arch_create_memslot(&new, npages))
767 goto out_free;
768 }
769
770 /* Allocate page dirty bitmap if needed */
771 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
772 if (kvm_create_dirty_bitmap(&new) < 0)
773 goto out_free;
774 /* destroy any largepage mappings for dirty tracking */
775 }
776
777 if (!npages || base_gfn != old.base_gfn) {
778 struct kvm_memory_slot *slot;
779
780 r = -ENOMEM;
781 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
782 GFP_KERNEL);
783 if (!slots)
784 goto out_free;
785 slot = id_to_memslot(slots, mem->slot);
786 slot->flags |= KVM_MEMSLOT_INVALID;
787
788 update_memslots(slots, NULL);
789
790 old_memslots = kvm->memslots;
791 rcu_assign_pointer(kvm->memslots, slots);
792 synchronize_srcu_expedited(&kvm->srcu);
793 /* slot was deleted or moved, clear iommu mapping */
794 kvm_iommu_unmap_pages(kvm, &old);
795 /* From this point no new shadow pages pointing to a deleted,
796 * or moved, memslot will be created.
797 *
798 * validation of sp->gfn happens in:
799 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
800 * - kvm_is_visible_gfn (mmu_check_roots)
801 */
802 kvm_arch_flush_shadow(kvm);
803 kfree(old_memslots);
804 }
805
806 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
807 if (r)
808 goto out_free;
809
810 r = -ENOMEM;
811 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
812 GFP_KERNEL);
813 if (!slots)
814 goto out_free;
815
816 /* map new memory slot into the iommu */
817 if (npages) {
818 r = kvm_iommu_map_pages(kvm, &new);
819 if (r)
820 goto out_slots;
821 }
822
823 /* actual memory is freed via old in kvm_free_physmem_slot below */
824 if (!npages) {
825 new.rmap = NULL;
826 new.dirty_bitmap = NULL;
827 memset(&new.arch, 0, sizeof(new.arch));
828 }
829
830 update_memslots(slots, &new);
831 old_memslots = kvm->memslots;
832 rcu_assign_pointer(kvm->memslots, slots);
833 synchronize_srcu_expedited(&kvm->srcu);
834
835 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
836
837 /*
838 * If the new memory slot is created, we need to clear all
839 * mmio sptes.
840 */
841 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
842 kvm_arch_flush_shadow(kvm);
843
844 kvm_free_physmem_slot(&old, &new);
845 kfree(old_memslots);
846
847 return 0;
848
849 out_slots:
850 kfree(slots);
851 out_free:
852 kvm_free_physmem_slot(&new, &old);
853 out:
854 return r;
855
856 }
857 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
858
kvm_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem,int user_alloc)859 int kvm_set_memory_region(struct kvm *kvm,
860 struct kvm_userspace_memory_region *mem,
861 int user_alloc)
862 {
863 int r;
864
865 mutex_lock(&kvm->slots_lock);
866 r = __kvm_set_memory_region(kvm, mem, user_alloc);
867 mutex_unlock(&kvm->slots_lock);
868 return r;
869 }
870 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
871
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem,int user_alloc)872 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
873 struct
874 kvm_userspace_memory_region *mem,
875 int user_alloc)
876 {
877 if (mem->slot >= KVM_MEMORY_SLOTS)
878 return -EINVAL;
879 return kvm_set_memory_region(kvm, mem, user_alloc);
880 }
881
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty)882 int kvm_get_dirty_log(struct kvm *kvm,
883 struct kvm_dirty_log *log, int *is_dirty)
884 {
885 struct kvm_memory_slot *memslot;
886 int r, i;
887 unsigned long n;
888 unsigned long any = 0;
889
890 r = -EINVAL;
891 if (log->slot >= KVM_MEMORY_SLOTS)
892 goto out;
893
894 memslot = id_to_memslot(kvm->memslots, log->slot);
895 r = -ENOENT;
896 if (!memslot->dirty_bitmap)
897 goto out;
898
899 n = kvm_dirty_bitmap_bytes(memslot);
900
901 for (i = 0; !any && i < n/sizeof(long); ++i)
902 any = memslot->dirty_bitmap[i];
903
904 r = -EFAULT;
905 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
906 goto out;
907
908 if (any)
909 *is_dirty = 1;
910
911 r = 0;
912 out:
913 return r;
914 }
915
kvm_largepages_enabled(void)916 bool kvm_largepages_enabled(void)
917 {
918 return largepages_enabled;
919 }
920
kvm_disable_largepages(void)921 void kvm_disable_largepages(void)
922 {
923 largepages_enabled = false;
924 }
925 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
926
is_error_page(struct page * page)927 int is_error_page(struct page *page)
928 {
929 return page == bad_page || page == hwpoison_page || page == fault_page;
930 }
931 EXPORT_SYMBOL_GPL(is_error_page);
932
is_error_pfn(pfn_t pfn)933 int is_error_pfn(pfn_t pfn)
934 {
935 return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
936 }
937 EXPORT_SYMBOL_GPL(is_error_pfn);
938
is_hwpoison_pfn(pfn_t pfn)939 int is_hwpoison_pfn(pfn_t pfn)
940 {
941 return pfn == hwpoison_pfn;
942 }
943 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
944
is_fault_pfn(pfn_t pfn)945 int is_fault_pfn(pfn_t pfn)
946 {
947 return pfn == fault_pfn;
948 }
949 EXPORT_SYMBOL_GPL(is_fault_pfn);
950
is_noslot_pfn(pfn_t pfn)951 int is_noslot_pfn(pfn_t pfn)
952 {
953 return pfn == bad_pfn;
954 }
955 EXPORT_SYMBOL_GPL(is_noslot_pfn);
956
is_invalid_pfn(pfn_t pfn)957 int is_invalid_pfn(pfn_t pfn)
958 {
959 return pfn == hwpoison_pfn || pfn == fault_pfn;
960 }
961 EXPORT_SYMBOL_GPL(is_invalid_pfn);
962
bad_hva(void)963 static inline unsigned long bad_hva(void)
964 {
965 return PAGE_OFFSET;
966 }
967
kvm_is_error_hva(unsigned long addr)968 int kvm_is_error_hva(unsigned long addr)
969 {
970 return addr == bad_hva();
971 }
972 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
973
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)974 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
975 {
976 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
977 }
978 EXPORT_SYMBOL_GPL(gfn_to_memslot);
979
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)980 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
981 {
982 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
983
984 if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
985 memslot->flags & KVM_MEMSLOT_INVALID)
986 return 0;
987
988 return 1;
989 }
990 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
991
kvm_host_page_size(struct kvm * kvm,gfn_t gfn)992 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
993 {
994 struct vm_area_struct *vma;
995 unsigned long addr, size;
996
997 size = PAGE_SIZE;
998
999 addr = gfn_to_hva(kvm, gfn);
1000 if (kvm_is_error_hva(addr))
1001 return PAGE_SIZE;
1002
1003 down_read(¤t->mm->mmap_sem);
1004 vma = find_vma(current->mm, addr);
1005 if (!vma)
1006 goto out;
1007
1008 size = vma_kernel_pagesize(vma);
1009
1010 out:
1011 up_read(¤t->mm->mmap_sem);
1012
1013 return size;
1014 }
1015
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)1016 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1017 gfn_t *nr_pages)
1018 {
1019 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1020 return bad_hva();
1021
1022 if (nr_pages)
1023 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1024
1025 return gfn_to_hva_memslot(slot, gfn);
1026 }
1027
gfn_to_hva(struct kvm * kvm,gfn_t gfn)1028 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1029 {
1030 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1031 }
1032 EXPORT_SYMBOL_GPL(gfn_to_hva);
1033
get_fault_pfn(void)1034 static pfn_t get_fault_pfn(void)
1035 {
1036 get_page(fault_page);
1037 return fault_pfn;
1038 }
1039
get_user_page_nowait(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,int write,struct page ** page)1040 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1041 unsigned long start, int write, struct page **page)
1042 {
1043 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1044
1045 if (write)
1046 flags |= FOLL_WRITE;
1047
1048 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1049 }
1050
check_user_page_hwpoison(unsigned long addr)1051 static inline int check_user_page_hwpoison(unsigned long addr)
1052 {
1053 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1054
1055 rc = __get_user_pages(current, current->mm, addr, 1,
1056 flags, NULL, NULL, NULL);
1057 return rc == -EHWPOISON;
1058 }
1059
hva_to_pfn(struct kvm * kvm,unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable)1060 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1061 bool *async, bool write_fault, bool *writable)
1062 {
1063 struct page *page[1];
1064 int npages = 0;
1065 pfn_t pfn;
1066
1067 /* we can do it either atomically or asynchronously, not both */
1068 BUG_ON(atomic && async);
1069
1070 BUG_ON(!write_fault && !writable);
1071
1072 if (writable)
1073 *writable = true;
1074
1075 if (atomic || async)
1076 npages = __get_user_pages_fast(addr, 1, 1, page);
1077
1078 if (unlikely(npages != 1) && !atomic) {
1079 might_sleep();
1080
1081 if (writable)
1082 *writable = write_fault;
1083
1084 if (async) {
1085 down_read(¤t->mm->mmap_sem);
1086 npages = get_user_page_nowait(current, current->mm,
1087 addr, write_fault, page);
1088 up_read(¤t->mm->mmap_sem);
1089 } else
1090 npages = get_user_pages_fast(addr, 1, write_fault,
1091 page);
1092
1093 /* map read fault as writable if possible */
1094 if (unlikely(!write_fault) && npages == 1) {
1095 struct page *wpage[1];
1096
1097 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1098 if (npages == 1) {
1099 *writable = true;
1100 put_page(page[0]);
1101 page[0] = wpage[0];
1102 }
1103 npages = 1;
1104 }
1105 }
1106
1107 if (unlikely(npages != 1)) {
1108 struct vm_area_struct *vma;
1109
1110 if (atomic)
1111 return get_fault_pfn();
1112
1113 down_read(¤t->mm->mmap_sem);
1114 if (npages == -EHWPOISON ||
1115 (!async && check_user_page_hwpoison(addr))) {
1116 up_read(¤t->mm->mmap_sem);
1117 get_page(hwpoison_page);
1118 return page_to_pfn(hwpoison_page);
1119 }
1120
1121 vma = find_vma_intersection(current->mm, addr, addr+1);
1122
1123 if (vma == NULL)
1124 pfn = get_fault_pfn();
1125 else if ((vma->vm_flags & VM_PFNMAP)) {
1126 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1127 vma->vm_pgoff;
1128 BUG_ON(!kvm_is_mmio_pfn(pfn));
1129 } else {
1130 if (async && (vma->vm_flags & VM_WRITE))
1131 *async = true;
1132 pfn = get_fault_pfn();
1133 }
1134 up_read(¤t->mm->mmap_sem);
1135 } else
1136 pfn = page_to_pfn(page[0]);
1137
1138 return pfn;
1139 }
1140
hva_to_pfn_atomic(struct kvm * kvm,unsigned long addr)1141 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1142 {
1143 return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1144 }
1145 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1146
__gfn_to_pfn(struct kvm * kvm,gfn_t gfn,bool atomic,bool * async,bool write_fault,bool * writable)1147 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1148 bool write_fault, bool *writable)
1149 {
1150 unsigned long addr;
1151
1152 if (async)
1153 *async = false;
1154
1155 addr = gfn_to_hva(kvm, gfn);
1156 if (kvm_is_error_hva(addr)) {
1157 get_page(bad_page);
1158 return page_to_pfn(bad_page);
1159 }
1160
1161 return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1162 }
1163
gfn_to_pfn_atomic(struct kvm * kvm,gfn_t gfn)1164 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1165 {
1166 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1167 }
1168 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1169
gfn_to_pfn_async(struct kvm * kvm,gfn_t gfn,bool * async,bool write_fault,bool * writable)1170 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1171 bool write_fault, bool *writable)
1172 {
1173 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1174 }
1175 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1176
gfn_to_pfn(struct kvm * kvm,gfn_t gfn)1177 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1178 {
1179 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1180 }
1181 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1182
gfn_to_pfn_prot(struct kvm * kvm,gfn_t gfn,bool write_fault,bool * writable)1183 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1184 bool *writable)
1185 {
1186 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1187 }
1188 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1189
gfn_to_pfn_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn)1190 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1191 struct kvm_memory_slot *slot, gfn_t gfn)
1192 {
1193 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1194 return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1195 }
1196
gfn_to_page_many_atomic(struct kvm * kvm,gfn_t gfn,struct page ** pages,int nr_pages)1197 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1198 int nr_pages)
1199 {
1200 unsigned long addr;
1201 gfn_t entry;
1202
1203 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1204 if (kvm_is_error_hva(addr))
1205 return -1;
1206
1207 if (entry < nr_pages)
1208 return 0;
1209
1210 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1211 }
1212 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1213
gfn_to_page(struct kvm * kvm,gfn_t gfn)1214 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1215 {
1216 pfn_t pfn;
1217
1218 pfn = gfn_to_pfn(kvm, gfn);
1219 if (!kvm_is_mmio_pfn(pfn))
1220 return pfn_to_page(pfn);
1221
1222 WARN_ON(kvm_is_mmio_pfn(pfn));
1223
1224 get_page(bad_page);
1225 return bad_page;
1226 }
1227
1228 EXPORT_SYMBOL_GPL(gfn_to_page);
1229
kvm_release_page_clean(struct page * page)1230 void kvm_release_page_clean(struct page *page)
1231 {
1232 kvm_release_pfn_clean(page_to_pfn(page));
1233 }
1234 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1235
kvm_release_pfn_clean(pfn_t pfn)1236 void kvm_release_pfn_clean(pfn_t pfn)
1237 {
1238 if (!kvm_is_mmio_pfn(pfn))
1239 put_page(pfn_to_page(pfn));
1240 }
1241 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1242
kvm_release_page_dirty(struct page * page)1243 void kvm_release_page_dirty(struct page *page)
1244 {
1245 kvm_release_pfn_dirty(page_to_pfn(page));
1246 }
1247 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1248
kvm_release_pfn_dirty(pfn_t pfn)1249 void kvm_release_pfn_dirty(pfn_t pfn)
1250 {
1251 kvm_set_pfn_dirty(pfn);
1252 kvm_release_pfn_clean(pfn);
1253 }
1254 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1255
kvm_set_page_dirty(struct page * page)1256 void kvm_set_page_dirty(struct page *page)
1257 {
1258 kvm_set_pfn_dirty(page_to_pfn(page));
1259 }
1260 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1261
kvm_set_pfn_dirty(pfn_t pfn)1262 void kvm_set_pfn_dirty(pfn_t pfn)
1263 {
1264 if (!kvm_is_mmio_pfn(pfn)) {
1265 struct page *page = pfn_to_page(pfn);
1266 if (!PageReserved(page))
1267 SetPageDirty(page);
1268 }
1269 }
1270 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1271
kvm_set_pfn_accessed(pfn_t pfn)1272 void kvm_set_pfn_accessed(pfn_t pfn)
1273 {
1274 if (!kvm_is_mmio_pfn(pfn))
1275 mark_page_accessed(pfn_to_page(pfn));
1276 }
1277 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1278
kvm_get_pfn(pfn_t pfn)1279 void kvm_get_pfn(pfn_t pfn)
1280 {
1281 if (!kvm_is_mmio_pfn(pfn))
1282 get_page(pfn_to_page(pfn));
1283 }
1284 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1285
next_segment(unsigned long len,int offset)1286 static int next_segment(unsigned long len, int offset)
1287 {
1288 if (len > PAGE_SIZE - offset)
1289 return PAGE_SIZE - offset;
1290 else
1291 return len;
1292 }
1293
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)1294 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1295 int len)
1296 {
1297 int r;
1298 unsigned long addr;
1299
1300 addr = gfn_to_hva(kvm, gfn);
1301 if (kvm_is_error_hva(addr))
1302 return -EFAULT;
1303 r = __copy_from_user(data, (void __user *)addr + offset, len);
1304 if (r)
1305 return -EFAULT;
1306 return 0;
1307 }
1308 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1309
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)1310 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1311 {
1312 gfn_t gfn = gpa >> PAGE_SHIFT;
1313 int seg;
1314 int offset = offset_in_page(gpa);
1315 int ret;
1316
1317 while ((seg = next_segment(len, offset)) != 0) {
1318 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1319 if (ret < 0)
1320 return ret;
1321 offset = 0;
1322 len -= seg;
1323 data += seg;
1324 ++gfn;
1325 }
1326 return 0;
1327 }
1328 EXPORT_SYMBOL_GPL(kvm_read_guest);
1329
kvm_read_guest_atomic(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)1330 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1331 unsigned long len)
1332 {
1333 int r;
1334 unsigned long addr;
1335 gfn_t gfn = gpa >> PAGE_SHIFT;
1336 int offset = offset_in_page(gpa);
1337
1338 addr = gfn_to_hva(kvm, gfn);
1339 if (kvm_is_error_hva(addr))
1340 return -EFAULT;
1341 pagefault_disable();
1342 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1343 pagefault_enable();
1344 if (r)
1345 return -EFAULT;
1346 return 0;
1347 }
1348 EXPORT_SYMBOL(kvm_read_guest_atomic);
1349
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)1350 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1351 int offset, int len)
1352 {
1353 int r;
1354 unsigned long addr;
1355
1356 addr = gfn_to_hva(kvm, gfn);
1357 if (kvm_is_error_hva(addr))
1358 return -EFAULT;
1359 r = __copy_to_user((void __user *)addr + offset, data, len);
1360 if (r)
1361 return -EFAULT;
1362 mark_page_dirty(kvm, gfn);
1363 return 0;
1364 }
1365 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1366
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)1367 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1368 unsigned long len)
1369 {
1370 gfn_t gfn = gpa >> PAGE_SHIFT;
1371 int seg;
1372 int offset = offset_in_page(gpa);
1373 int ret;
1374
1375 while ((seg = next_segment(len, offset)) != 0) {
1376 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1377 if (ret < 0)
1378 return ret;
1379 offset = 0;
1380 len -= seg;
1381 data += seg;
1382 ++gfn;
1383 }
1384 return 0;
1385 }
1386
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)1387 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1388 gpa_t gpa, unsigned long len)
1389 {
1390 struct kvm_memslots *slots = kvm_memslots(kvm);
1391 int offset = offset_in_page(gpa);
1392 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1393 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1394 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1395 gfn_t nr_pages_avail;
1396
1397 ghc->gpa = gpa;
1398 ghc->generation = slots->generation;
1399 ghc->len = len;
1400 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1401 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1402 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1403 ghc->hva += offset;
1404 } else {
1405 /*
1406 * If the requested region crosses two memslots, we still
1407 * verify that the entire region is valid here.
1408 */
1409 while (start_gfn <= end_gfn) {
1410 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1411 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1412 &nr_pages_avail);
1413 if (kvm_is_error_hva(ghc->hva))
1414 return -EFAULT;
1415 start_gfn += nr_pages_avail;
1416 }
1417 /* Use the slow path for cross page reads and writes. */
1418 ghc->memslot = NULL;
1419 }
1420 return 0;
1421 }
1422 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1423
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)1424 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1425 void *data, unsigned long len)
1426 {
1427 struct kvm_memslots *slots = kvm_memslots(kvm);
1428 int r;
1429
1430 BUG_ON(len > ghc->len);
1431
1432 if (slots->generation != ghc->generation)
1433 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1434
1435 if (unlikely(!ghc->memslot))
1436 return kvm_write_guest(kvm, ghc->gpa, data, len);
1437
1438 if (kvm_is_error_hva(ghc->hva))
1439 return -EFAULT;
1440
1441 r = __copy_to_user((void __user *)ghc->hva, data, len);
1442 if (r)
1443 return -EFAULT;
1444 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1445
1446 return 0;
1447 }
1448 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1449
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)1450 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1451 void *data, unsigned long len)
1452 {
1453 struct kvm_memslots *slots = kvm_memslots(kvm);
1454 int r;
1455
1456 BUG_ON(len > ghc->len);
1457
1458 if (slots->generation != ghc->generation)
1459 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1460
1461 if (unlikely(!ghc->memslot))
1462 return kvm_read_guest(kvm, ghc->gpa, data, len);
1463
1464 if (kvm_is_error_hva(ghc->hva))
1465 return -EFAULT;
1466
1467 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1468 if (r)
1469 return -EFAULT;
1470
1471 return 0;
1472 }
1473 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1474
kvm_clear_guest_page(struct kvm * kvm,gfn_t gfn,int offset,int len)1475 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1476 {
1477 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1478 offset, len);
1479 }
1480 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1481
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)1482 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1483 {
1484 gfn_t gfn = gpa >> PAGE_SHIFT;
1485 int seg;
1486 int offset = offset_in_page(gpa);
1487 int ret;
1488
1489 while ((seg = next_segment(len, offset)) != 0) {
1490 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1491 if (ret < 0)
1492 return ret;
1493 offset = 0;
1494 len -= seg;
1495 ++gfn;
1496 }
1497 return 0;
1498 }
1499 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1500
mark_page_dirty_in_slot(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t gfn)1501 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1502 gfn_t gfn)
1503 {
1504 if (memslot && memslot->dirty_bitmap) {
1505 unsigned long rel_gfn = gfn - memslot->base_gfn;
1506
1507 if (!test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap))
1508 memslot->nr_dirty_pages++;
1509 }
1510 }
1511
mark_page_dirty(struct kvm * kvm,gfn_t gfn)1512 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1513 {
1514 struct kvm_memory_slot *memslot;
1515
1516 memslot = gfn_to_memslot(kvm, gfn);
1517 mark_page_dirty_in_slot(kvm, memslot, gfn);
1518 }
1519
1520 /*
1521 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1522 */
kvm_vcpu_block(struct kvm_vcpu * vcpu)1523 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1524 {
1525 DEFINE_WAIT(wait);
1526
1527 for (;;) {
1528 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1529
1530 if (kvm_arch_vcpu_runnable(vcpu)) {
1531 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1532 break;
1533 }
1534 if (kvm_cpu_has_pending_timer(vcpu))
1535 break;
1536 if (signal_pending(current))
1537 break;
1538
1539 schedule();
1540 }
1541
1542 finish_wait(&vcpu->wq, &wait);
1543 }
1544
kvm_resched(struct kvm_vcpu * vcpu)1545 void kvm_resched(struct kvm_vcpu *vcpu)
1546 {
1547 if (!need_resched())
1548 return;
1549 cond_resched();
1550 }
1551 EXPORT_SYMBOL_GPL(kvm_resched);
1552
kvm_vcpu_on_spin(struct kvm_vcpu * me)1553 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1554 {
1555 struct kvm *kvm = me->kvm;
1556 struct kvm_vcpu *vcpu;
1557 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1558 int yielded = 0;
1559 int pass;
1560 int i;
1561
1562 /*
1563 * We boost the priority of a VCPU that is runnable but not
1564 * currently running, because it got preempted by something
1565 * else and called schedule in __vcpu_run. Hopefully that
1566 * VCPU is holding the lock that we need and will release it.
1567 * We approximate round-robin by starting at the last boosted VCPU.
1568 */
1569 for (pass = 0; pass < 2 && !yielded; pass++) {
1570 kvm_for_each_vcpu(i, vcpu, kvm) {
1571 struct task_struct *task = NULL;
1572 struct pid *pid;
1573 if (!pass && i < last_boosted_vcpu) {
1574 i = last_boosted_vcpu;
1575 continue;
1576 } else if (pass && i > last_boosted_vcpu)
1577 break;
1578 if (vcpu == me)
1579 continue;
1580 if (waitqueue_active(&vcpu->wq))
1581 continue;
1582 rcu_read_lock();
1583 pid = rcu_dereference(vcpu->pid);
1584 if (pid)
1585 task = get_pid_task(vcpu->pid, PIDTYPE_PID);
1586 rcu_read_unlock();
1587 if (!task)
1588 continue;
1589 if (task->flags & PF_VCPU) {
1590 put_task_struct(task);
1591 continue;
1592 }
1593 if (yield_to(task, 1)) {
1594 put_task_struct(task);
1595 kvm->last_boosted_vcpu = i;
1596 yielded = 1;
1597 break;
1598 }
1599 put_task_struct(task);
1600 }
1601 }
1602 }
1603 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1604
kvm_vcpu_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1605 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1606 {
1607 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1608 struct page *page;
1609
1610 if (vmf->pgoff == 0)
1611 page = virt_to_page(vcpu->run);
1612 #ifdef CONFIG_X86
1613 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1614 page = virt_to_page(vcpu->arch.pio_data);
1615 #endif
1616 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1617 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1618 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1619 #endif
1620 else
1621 return kvm_arch_vcpu_fault(vcpu, vmf);
1622 get_page(page);
1623 vmf->page = page;
1624 return 0;
1625 }
1626
1627 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1628 .fault = kvm_vcpu_fault,
1629 };
1630
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)1631 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1632 {
1633 vma->vm_ops = &kvm_vcpu_vm_ops;
1634 return 0;
1635 }
1636
kvm_vcpu_release(struct inode * inode,struct file * filp)1637 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1638 {
1639 struct kvm_vcpu *vcpu = filp->private_data;
1640
1641 kvm_put_kvm(vcpu->kvm);
1642 return 0;
1643 }
1644
1645 static struct file_operations kvm_vcpu_fops = {
1646 .release = kvm_vcpu_release,
1647 .unlocked_ioctl = kvm_vcpu_ioctl,
1648 #ifdef CONFIG_COMPAT
1649 .compat_ioctl = kvm_vcpu_compat_ioctl,
1650 #endif
1651 .mmap = kvm_vcpu_mmap,
1652 .llseek = noop_llseek,
1653 };
1654
1655 /*
1656 * Allocates an inode for the vcpu.
1657 */
create_vcpu_fd(struct kvm_vcpu * vcpu)1658 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1659 {
1660 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1661 }
1662
1663 /*
1664 * Creates some virtual cpus. Good luck creating more than one.
1665 */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,u32 id)1666 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1667 {
1668 int r;
1669 struct kvm_vcpu *vcpu, *v;
1670
1671 if (id >= KVM_MAX_VCPUS)
1672 return -EINVAL;
1673
1674 vcpu = kvm_arch_vcpu_create(kvm, id);
1675 if (IS_ERR(vcpu))
1676 return PTR_ERR(vcpu);
1677
1678 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1679
1680 r = kvm_arch_vcpu_setup(vcpu);
1681 if (r)
1682 goto vcpu_destroy;
1683
1684 mutex_lock(&kvm->lock);
1685 if (!kvm_vcpu_compatible(vcpu)) {
1686 r = -EINVAL;
1687 goto unlock_vcpu_destroy;
1688 }
1689 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1690 r = -EINVAL;
1691 goto unlock_vcpu_destroy;
1692 }
1693
1694 kvm_for_each_vcpu(r, v, kvm)
1695 if (v->vcpu_id == id) {
1696 r = -EEXIST;
1697 goto unlock_vcpu_destroy;
1698 }
1699
1700 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1701
1702 /* Now it's all set up, let userspace reach it */
1703 kvm_get_kvm(kvm);
1704 r = create_vcpu_fd(vcpu);
1705 if (r < 0) {
1706 kvm_put_kvm(kvm);
1707 goto unlock_vcpu_destroy;
1708 }
1709
1710 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1711 smp_wmb();
1712 atomic_inc(&kvm->online_vcpus);
1713
1714 mutex_unlock(&kvm->lock);
1715 return r;
1716
1717 unlock_vcpu_destroy:
1718 mutex_unlock(&kvm->lock);
1719 vcpu_destroy:
1720 kvm_arch_vcpu_destroy(vcpu);
1721 return r;
1722 }
1723
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)1724 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1725 {
1726 if (sigset) {
1727 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1728 vcpu->sigset_active = 1;
1729 vcpu->sigset = *sigset;
1730 } else
1731 vcpu->sigset_active = 0;
1732 return 0;
1733 }
1734
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1735 static long kvm_vcpu_ioctl(struct file *filp,
1736 unsigned int ioctl, unsigned long arg)
1737 {
1738 struct kvm_vcpu *vcpu = filp->private_data;
1739 void __user *argp = (void __user *)arg;
1740 int r;
1741 struct kvm_fpu *fpu = NULL;
1742 struct kvm_sregs *kvm_sregs = NULL;
1743
1744 if (vcpu->kvm->mm != current->mm)
1745 return -EIO;
1746
1747 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1748 /*
1749 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1750 * so vcpu_load() would break it.
1751 */
1752 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1753 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1754 #endif
1755
1756
1757 vcpu_load(vcpu);
1758 switch (ioctl) {
1759 case KVM_RUN:
1760 r = -EINVAL;
1761 if (arg)
1762 goto out;
1763 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1764 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1765 break;
1766 case KVM_GET_REGS: {
1767 struct kvm_regs *kvm_regs;
1768
1769 r = -ENOMEM;
1770 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1771 if (!kvm_regs)
1772 goto out;
1773 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1774 if (r)
1775 goto out_free1;
1776 r = -EFAULT;
1777 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1778 goto out_free1;
1779 r = 0;
1780 out_free1:
1781 kfree(kvm_regs);
1782 break;
1783 }
1784 case KVM_SET_REGS: {
1785 struct kvm_regs *kvm_regs;
1786
1787 r = -ENOMEM;
1788 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1789 if (IS_ERR(kvm_regs)) {
1790 r = PTR_ERR(kvm_regs);
1791 goto out;
1792 }
1793 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1794 if (r)
1795 goto out_free2;
1796 r = 0;
1797 out_free2:
1798 kfree(kvm_regs);
1799 break;
1800 }
1801 case KVM_GET_SREGS: {
1802 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1803 r = -ENOMEM;
1804 if (!kvm_sregs)
1805 goto out;
1806 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1807 if (r)
1808 goto out;
1809 r = -EFAULT;
1810 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1811 goto out;
1812 r = 0;
1813 break;
1814 }
1815 case KVM_SET_SREGS: {
1816 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1817 if (IS_ERR(kvm_sregs)) {
1818 r = PTR_ERR(kvm_sregs);
1819 goto out;
1820 }
1821 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1822 if (r)
1823 goto out;
1824 r = 0;
1825 break;
1826 }
1827 case KVM_GET_MP_STATE: {
1828 struct kvm_mp_state mp_state;
1829
1830 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1831 if (r)
1832 goto out;
1833 r = -EFAULT;
1834 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1835 goto out;
1836 r = 0;
1837 break;
1838 }
1839 case KVM_SET_MP_STATE: {
1840 struct kvm_mp_state mp_state;
1841
1842 r = -EFAULT;
1843 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1844 goto out;
1845 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1846 if (r)
1847 goto out;
1848 r = 0;
1849 break;
1850 }
1851 case KVM_TRANSLATE: {
1852 struct kvm_translation tr;
1853
1854 r = -EFAULT;
1855 if (copy_from_user(&tr, argp, sizeof tr))
1856 goto out;
1857 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1858 if (r)
1859 goto out;
1860 r = -EFAULT;
1861 if (copy_to_user(argp, &tr, sizeof tr))
1862 goto out;
1863 r = 0;
1864 break;
1865 }
1866 case KVM_SET_GUEST_DEBUG: {
1867 struct kvm_guest_debug dbg;
1868
1869 r = -EFAULT;
1870 if (copy_from_user(&dbg, argp, sizeof dbg))
1871 goto out;
1872 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1873 if (r)
1874 goto out;
1875 r = 0;
1876 break;
1877 }
1878 case KVM_SET_SIGNAL_MASK: {
1879 struct kvm_signal_mask __user *sigmask_arg = argp;
1880 struct kvm_signal_mask kvm_sigmask;
1881 sigset_t sigset, *p;
1882
1883 p = NULL;
1884 if (argp) {
1885 r = -EFAULT;
1886 if (copy_from_user(&kvm_sigmask, argp,
1887 sizeof kvm_sigmask))
1888 goto out;
1889 r = -EINVAL;
1890 if (kvm_sigmask.len != sizeof sigset)
1891 goto out;
1892 r = -EFAULT;
1893 if (copy_from_user(&sigset, sigmask_arg->sigset,
1894 sizeof sigset))
1895 goto out;
1896 p = &sigset;
1897 }
1898 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1899 break;
1900 }
1901 case KVM_GET_FPU: {
1902 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1903 r = -ENOMEM;
1904 if (!fpu)
1905 goto out;
1906 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1907 if (r)
1908 goto out;
1909 r = -EFAULT;
1910 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1911 goto out;
1912 r = 0;
1913 break;
1914 }
1915 case KVM_SET_FPU: {
1916 fpu = memdup_user(argp, sizeof(*fpu));
1917 if (IS_ERR(fpu)) {
1918 r = PTR_ERR(fpu);
1919 goto out;
1920 }
1921 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1922 if (r)
1923 goto out;
1924 r = 0;
1925 break;
1926 }
1927 default:
1928 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1929 }
1930 out:
1931 vcpu_put(vcpu);
1932 kfree(fpu);
1933 kfree(kvm_sregs);
1934 return r;
1935 }
1936
1937 #ifdef CONFIG_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1938 static long kvm_vcpu_compat_ioctl(struct file *filp,
1939 unsigned int ioctl, unsigned long arg)
1940 {
1941 struct kvm_vcpu *vcpu = filp->private_data;
1942 void __user *argp = compat_ptr(arg);
1943 int r;
1944
1945 if (vcpu->kvm->mm != current->mm)
1946 return -EIO;
1947
1948 switch (ioctl) {
1949 case KVM_SET_SIGNAL_MASK: {
1950 struct kvm_signal_mask __user *sigmask_arg = argp;
1951 struct kvm_signal_mask kvm_sigmask;
1952 compat_sigset_t csigset;
1953 sigset_t sigset;
1954
1955 if (argp) {
1956 r = -EFAULT;
1957 if (copy_from_user(&kvm_sigmask, argp,
1958 sizeof kvm_sigmask))
1959 goto out;
1960 r = -EINVAL;
1961 if (kvm_sigmask.len != sizeof csigset)
1962 goto out;
1963 r = -EFAULT;
1964 if (copy_from_user(&csigset, sigmask_arg->sigset,
1965 sizeof csigset))
1966 goto out;
1967 }
1968 sigset_from_compat(&sigset, &csigset);
1969 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1970 break;
1971 }
1972 default:
1973 r = kvm_vcpu_ioctl(filp, ioctl, arg);
1974 }
1975
1976 out:
1977 return r;
1978 }
1979 #endif
1980
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1981 static long kvm_vm_ioctl(struct file *filp,
1982 unsigned int ioctl, unsigned long arg)
1983 {
1984 struct kvm *kvm = filp->private_data;
1985 void __user *argp = (void __user *)arg;
1986 int r;
1987
1988 if (kvm->mm != current->mm)
1989 return -EIO;
1990 switch (ioctl) {
1991 case KVM_CREATE_VCPU:
1992 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1993 if (r < 0)
1994 goto out;
1995 break;
1996 case KVM_SET_USER_MEMORY_REGION: {
1997 struct kvm_userspace_memory_region kvm_userspace_mem;
1998
1999 r = -EFAULT;
2000 if (copy_from_user(&kvm_userspace_mem, argp,
2001 sizeof kvm_userspace_mem))
2002 goto out;
2003
2004 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2005 if (r)
2006 goto out;
2007 break;
2008 }
2009 case KVM_GET_DIRTY_LOG: {
2010 struct kvm_dirty_log log;
2011
2012 r = -EFAULT;
2013 if (copy_from_user(&log, argp, sizeof log))
2014 goto out;
2015 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2016 if (r)
2017 goto out;
2018 break;
2019 }
2020 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2021 case KVM_REGISTER_COALESCED_MMIO: {
2022 struct kvm_coalesced_mmio_zone zone;
2023 r = -EFAULT;
2024 if (copy_from_user(&zone, argp, sizeof zone))
2025 goto out;
2026 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2027 if (r)
2028 goto out;
2029 r = 0;
2030 break;
2031 }
2032 case KVM_UNREGISTER_COALESCED_MMIO: {
2033 struct kvm_coalesced_mmio_zone zone;
2034 r = -EFAULT;
2035 if (copy_from_user(&zone, argp, sizeof zone))
2036 goto out;
2037 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2038 if (r)
2039 goto out;
2040 r = 0;
2041 break;
2042 }
2043 #endif
2044 case KVM_IRQFD: {
2045 struct kvm_irqfd data;
2046
2047 r = -EFAULT;
2048 if (copy_from_user(&data, argp, sizeof data))
2049 goto out;
2050 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2051 break;
2052 }
2053 case KVM_IOEVENTFD: {
2054 struct kvm_ioeventfd data;
2055
2056 r = -EFAULT;
2057 if (copy_from_user(&data, argp, sizeof data))
2058 goto out;
2059 r = kvm_ioeventfd(kvm, &data);
2060 break;
2061 }
2062 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2063 case KVM_SET_BOOT_CPU_ID:
2064 r = 0;
2065 mutex_lock(&kvm->lock);
2066 if (atomic_read(&kvm->online_vcpus) != 0)
2067 r = -EBUSY;
2068 else
2069 kvm->bsp_vcpu_id = arg;
2070 mutex_unlock(&kvm->lock);
2071 break;
2072 #endif
2073 default:
2074 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2075 if (r == -ENOTTY)
2076 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2077 }
2078 out:
2079 return r;
2080 }
2081
2082 #ifdef CONFIG_COMPAT
2083 struct compat_kvm_dirty_log {
2084 __u32 slot;
2085 __u32 padding1;
2086 union {
2087 compat_uptr_t dirty_bitmap; /* one bit per page */
2088 __u64 padding2;
2089 };
2090 };
2091
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2092 static long kvm_vm_compat_ioctl(struct file *filp,
2093 unsigned int ioctl, unsigned long arg)
2094 {
2095 struct kvm *kvm = filp->private_data;
2096 int r;
2097
2098 if (kvm->mm != current->mm)
2099 return -EIO;
2100 switch (ioctl) {
2101 case KVM_GET_DIRTY_LOG: {
2102 struct compat_kvm_dirty_log compat_log;
2103 struct kvm_dirty_log log;
2104
2105 r = -EFAULT;
2106 if (copy_from_user(&compat_log, (void __user *)arg,
2107 sizeof(compat_log)))
2108 goto out;
2109 log.slot = compat_log.slot;
2110 log.padding1 = compat_log.padding1;
2111 log.padding2 = compat_log.padding2;
2112 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2113
2114 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2115 if (r)
2116 goto out;
2117 break;
2118 }
2119 default:
2120 r = kvm_vm_ioctl(filp, ioctl, arg);
2121 }
2122
2123 out:
2124 return r;
2125 }
2126 #endif
2127
kvm_vm_fault(struct vm_area_struct * vma,struct vm_fault * vmf)2128 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2129 {
2130 struct page *page[1];
2131 unsigned long addr;
2132 int npages;
2133 gfn_t gfn = vmf->pgoff;
2134 struct kvm *kvm = vma->vm_file->private_data;
2135
2136 addr = gfn_to_hva(kvm, gfn);
2137 if (kvm_is_error_hva(addr))
2138 return VM_FAULT_SIGBUS;
2139
2140 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2141 NULL);
2142 if (unlikely(npages != 1))
2143 return VM_FAULT_SIGBUS;
2144
2145 vmf->page = page[0];
2146 return 0;
2147 }
2148
2149 static const struct vm_operations_struct kvm_vm_vm_ops = {
2150 .fault = kvm_vm_fault,
2151 };
2152
kvm_vm_mmap(struct file * file,struct vm_area_struct * vma)2153 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2154 {
2155 vma->vm_ops = &kvm_vm_vm_ops;
2156 return 0;
2157 }
2158
2159 static struct file_operations kvm_vm_fops = {
2160 .release = kvm_vm_release,
2161 .unlocked_ioctl = kvm_vm_ioctl,
2162 #ifdef CONFIG_COMPAT
2163 .compat_ioctl = kvm_vm_compat_ioctl,
2164 #endif
2165 .mmap = kvm_vm_mmap,
2166 .llseek = noop_llseek,
2167 };
2168
kvm_dev_ioctl_create_vm(unsigned long type)2169 static int kvm_dev_ioctl_create_vm(unsigned long type)
2170 {
2171 int r;
2172 struct kvm *kvm;
2173
2174 kvm = kvm_create_vm(type);
2175 if (IS_ERR(kvm))
2176 return PTR_ERR(kvm);
2177 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2178 r = kvm_coalesced_mmio_init(kvm);
2179 if (r < 0) {
2180 kvm_put_kvm(kvm);
2181 return r;
2182 }
2183 #endif
2184 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2185 if (r < 0)
2186 kvm_put_kvm(kvm);
2187
2188 return r;
2189 }
2190
kvm_dev_ioctl_check_extension_generic(long arg)2191 static long kvm_dev_ioctl_check_extension_generic(long arg)
2192 {
2193 switch (arg) {
2194 case KVM_CAP_USER_MEMORY:
2195 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2196 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2197 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2198 case KVM_CAP_SET_BOOT_CPU_ID:
2199 #endif
2200 case KVM_CAP_INTERNAL_ERROR_DATA:
2201 return 1;
2202 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2203 case KVM_CAP_IRQ_ROUTING:
2204 return KVM_MAX_IRQ_ROUTES;
2205 #endif
2206 default:
2207 break;
2208 }
2209 return kvm_dev_ioctl_check_extension(arg);
2210 }
2211
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2212 static long kvm_dev_ioctl(struct file *filp,
2213 unsigned int ioctl, unsigned long arg)
2214 {
2215 long r = -EINVAL;
2216
2217 switch (ioctl) {
2218 case KVM_GET_API_VERSION:
2219 r = -EINVAL;
2220 if (arg)
2221 goto out;
2222 r = KVM_API_VERSION;
2223 break;
2224 case KVM_CREATE_VM:
2225 r = kvm_dev_ioctl_create_vm(arg);
2226 break;
2227 case KVM_CHECK_EXTENSION:
2228 r = kvm_dev_ioctl_check_extension_generic(arg);
2229 break;
2230 case KVM_GET_VCPU_MMAP_SIZE:
2231 r = -EINVAL;
2232 if (arg)
2233 goto out;
2234 r = PAGE_SIZE; /* struct kvm_run */
2235 #ifdef CONFIG_X86
2236 r += PAGE_SIZE; /* pio data page */
2237 #endif
2238 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2239 r += PAGE_SIZE; /* coalesced mmio ring page */
2240 #endif
2241 break;
2242 case KVM_TRACE_ENABLE:
2243 case KVM_TRACE_PAUSE:
2244 case KVM_TRACE_DISABLE:
2245 r = -EOPNOTSUPP;
2246 break;
2247 default:
2248 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2249 }
2250 out:
2251 return r;
2252 }
2253
2254 static struct file_operations kvm_chardev_ops = {
2255 .unlocked_ioctl = kvm_dev_ioctl,
2256 .compat_ioctl = kvm_dev_ioctl,
2257 .llseek = noop_llseek,
2258 };
2259
2260 static struct miscdevice kvm_dev = {
2261 KVM_MINOR,
2262 "kvm",
2263 &kvm_chardev_ops,
2264 };
2265
hardware_enable_nolock(void * junk)2266 static void hardware_enable_nolock(void *junk)
2267 {
2268 int cpu = raw_smp_processor_id();
2269 int r;
2270
2271 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2272 return;
2273
2274 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2275
2276 r = kvm_arch_hardware_enable(NULL);
2277
2278 if (r) {
2279 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2280 atomic_inc(&hardware_enable_failed);
2281 printk(KERN_INFO "kvm: enabling virtualization on "
2282 "CPU%d failed\n", cpu);
2283 }
2284 }
2285
hardware_enable(void * junk)2286 static void hardware_enable(void *junk)
2287 {
2288 raw_spin_lock(&kvm_lock);
2289 hardware_enable_nolock(junk);
2290 raw_spin_unlock(&kvm_lock);
2291 }
2292
hardware_disable_nolock(void * junk)2293 static void hardware_disable_nolock(void *junk)
2294 {
2295 int cpu = raw_smp_processor_id();
2296
2297 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2298 return;
2299 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2300 kvm_arch_hardware_disable(NULL);
2301 }
2302
hardware_disable(void * junk)2303 static void hardware_disable(void *junk)
2304 {
2305 raw_spin_lock(&kvm_lock);
2306 hardware_disable_nolock(junk);
2307 raw_spin_unlock(&kvm_lock);
2308 }
2309
hardware_disable_all_nolock(void)2310 static void hardware_disable_all_nolock(void)
2311 {
2312 BUG_ON(!kvm_usage_count);
2313
2314 kvm_usage_count--;
2315 if (!kvm_usage_count)
2316 on_each_cpu(hardware_disable_nolock, NULL, 1);
2317 }
2318
hardware_disable_all(void)2319 static void hardware_disable_all(void)
2320 {
2321 raw_spin_lock(&kvm_lock);
2322 hardware_disable_all_nolock();
2323 raw_spin_unlock(&kvm_lock);
2324 }
2325
hardware_enable_all(void)2326 static int hardware_enable_all(void)
2327 {
2328 int r = 0;
2329
2330 raw_spin_lock(&kvm_lock);
2331
2332 kvm_usage_count++;
2333 if (kvm_usage_count == 1) {
2334 atomic_set(&hardware_enable_failed, 0);
2335 on_each_cpu(hardware_enable_nolock, NULL, 1);
2336
2337 if (atomic_read(&hardware_enable_failed)) {
2338 hardware_disable_all_nolock();
2339 r = -EBUSY;
2340 }
2341 }
2342
2343 raw_spin_unlock(&kvm_lock);
2344
2345 return r;
2346 }
2347
kvm_cpu_hotplug(struct notifier_block * notifier,unsigned long val,void * v)2348 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2349 void *v)
2350 {
2351 int cpu = (long)v;
2352
2353 if (!kvm_usage_count)
2354 return NOTIFY_OK;
2355
2356 val &= ~CPU_TASKS_FROZEN;
2357 switch (val) {
2358 case CPU_DYING:
2359 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2360 cpu);
2361 hardware_disable(NULL);
2362 break;
2363 case CPU_STARTING:
2364 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2365 cpu);
2366 hardware_enable(NULL);
2367 break;
2368 }
2369 return NOTIFY_OK;
2370 }
2371
2372
kvm_spurious_fault(void)2373 asmlinkage void kvm_spurious_fault(void)
2374 {
2375 /* Fault while not rebooting. We want the trace. */
2376 BUG();
2377 }
2378 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2379
kvm_reboot(struct notifier_block * notifier,unsigned long val,void * v)2380 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2381 void *v)
2382 {
2383 /*
2384 * Some (well, at least mine) BIOSes hang on reboot if
2385 * in vmx root mode.
2386 *
2387 * And Intel TXT required VMX off for all cpu when system shutdown.
2388 */
2389 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2390 kvm_rebooting = true;
2391 on_each_cpu(hardware_disable_nolock, NULL, 1);
2392 return NOTIFY_OK;
2393 }
2394
2395 static struct notifier_block kvm_reboot_notifier = {
2396 .notifier_call = kvm_reboot,
2397 .priority = 0,
2398 };
2399
kvm_io_bus_destroy(struct kvm_io_bus * bus)2400 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2401 {
2402 int i;
2403
2404 for (i = 0; i < bus->dev_count; i++) {
2405 struct kvm_io_device *pos = bus->range[i].dev;
2406
2407 kvm_iodevice_destructor(pos);
2408 }
2409 kfree(bus);
2410 }
2411
kvm_io_bus_sort_cmp(const void * p1,const void * p2)2412 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2413 {
2414 const struct kvm_io_range *r1 = p1;
2415 const struct kvm_io_range *r2 = p2;
2416
2417 if (r1->addr < r2->addr)
2418 return -1;
2419 if (r1->addr + r1->len > r2->addr + r2->len)
2420 return 1;
2421 return 0;
2422 }
2423
kvm_io_bus_insert_dev(struct kvm_io_bus * bus,struct kvm_io_device * dev,gpa_t addr,int len)2424 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2425 gpa_t addr, int len)
2426 {
2427 if (bus->dev_count == NR_IOBUS_DEVS)
2428 return -ENOSPC;
2429
2430 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2431 .addr = addr,
2432 .len = len,
2433 .dev = dev,
2434 };
2435
2436 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2437 kvm_io_bus_sort_cmp, NULL);
2438
2439 return 0;
2440 }
2441
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)2442 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2443 gpa_t addr, int len)
2444 {
2445 struct kvm_io_range *range, key;
2446 int off;
2447
2448 key = (struct kvm_io_range) {
2449 .addr = addr,
2450 .len = len,
2451 };
2452
2453 range = bsearch(&key, bus->range, bus->dev_count,
2454 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2455 if (range == NULL)
2456 return -ENOENT;
2457
2458 off = range - bus->range;
2459
2460 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2461 off--;
2462
2463 return off;
2464 }
2465
2466 /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)2467 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2468 int len, const void *val)
2469 {
2470 int idx;
2471 struct kvm_io_bus *bus;
2472 struct kvm_io_range range;
2473
2474 range = (struct kvm_io_range) {
2475 .addr = addr,
2476 .len = len,
2477 };
2478
2479 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2480 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2481 if (idx < 0)
2482 return -EOPNOTSUPP;
2483
2484 while (idx < bus->dev_count &&
2485 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2486 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2487 return 0;
2488 idx++;
2489 }
2490
2491 return -EOPNOTSUPP;
2492 }
2493
2494 /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)2495 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2496 int len, void *val)
2497 {
2498 int idx;
2499 struct kvm_io_bus *bus;
2500 struct kvm_io_range range;
2501
2502 range = (struct kvm_io_range) {
2503 .addr = addr,
2504 .len = len,
2505 };
2506
2507 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2508 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2509 if (idx < 0)
2510 return -EOPNOTSUPP;
2511
2512 while (idx < bus->dev_count &&
2513 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2514 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2515 return 0;
2516 idx++;
2517 }
2518
2519 return -EOPNOTSUPP;
2520 }
2521
2522 /* Caller must hold slots_lock. */
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)2523 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2524 int len, struct kvm_io_device *dev)
2525 {
2526 struct kvm_io_bus *new_bus, *bus;
2527
2528 bus = kvm->buses[bus_idx];
2529 if (bus->dev_count > NR_IOBUS_DEVS-1)
2530 return -ENOSPC;
2531
2532 new_bus = kmemdup(bus, sizeof(struct kvm_io_bus), GFP_KERNEL);
2533 if (!new_bus)
2534 return -ENOMEM;
2535 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2536 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2537 synchronize_srcu_expedited(&kvm->srcu);
2538 kfree(bus);
2539
2540 return 0;
2541 }
2542
2543 /* Caller must hold slots_lock. */
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)2544 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2545 struct kvm_io_device *dev)
2546 {
2547 int i, r;
2548 struct kvm_io_bus *new_bus, *bus;
2549
2550 bus = kvm->buses[bus_idx];
2551
2552 new_bus = kmemdup(bus, sizeof(*bus), GFP_KERNEL);
2553 if (!new_bus)
2554 return -ENOMEM;
2555
2556 r = -ENOENT;
2557 for (i = 0; i < new_bus->dev_count; i++)
2558 if (new_bus->range[i].dev == dev) {
2559 r = 0;
2560 new_bus->dev_count--;
2561 new_bus->range[i] = new_bus->range[new_bus->dev_count];
2562 sort(new_bus->range, new_bus->dev_count,
2563 sizeof(struct kvm_io_range),
2564 kvm_io_bus_sort_cmp, NULL);
2565 break;
2566 }
2567
2568 if (r) {
2569 kfree(new_bus);
2570 return r;
2571 }
2572
2573 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2574 synchronize_srcu_expedited(&kvm->srcu);
2575 kfree(bus);
2576 return r;
2577 }
2578
2579 static struct notifier_block kvm_cpu_notifier = {
2580 .notifier_call = kvm_cpu_hotplug,
2581 };
2582
vm_stat_get(void * _offset,u64 * val)2583 static int vm_stat_get(void *_offset, u64 *val)
2584 {
2585 unsigned offset = (long)_offset;
2586 struct kvm *kvm;
2587
2588 *val = 0;
2589 raw_spin_lock(&kvm_lock);
2590 list_for_each_entry(kvm, &vm_list, vm_list)
2591 *val += *(u32 *)((void *)kvm + offset);
2592 raw_spin_unlock(&kvm_lock);
2593 return 0;
2594 }
2595
2596 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2597
vcpu_stat_get(void * _offset,u64 * val)2598 static int vcpu_stat_get(void *_offset, u64 *val)
2599 {
2600 unsigned offset = (long)_offset;
2601 struct kvm *kvm;
2602 struct kvm_vcpu *vcpu;
2603 int i;
2604
2605 *val = 0;
2606 raw_spin_lock(&kvm_lock);
2607 list_for_each_entry(kvm, &vm_list, vm_list)
2608 kvm_for_each_vcpu(i, vcpu, kvm)
2609 *val += *(u32 *)((void *)vcpu + offset);
2610
2611 raw_spin_unlock(&kvm_lock);
2612 return 0;
2613 }
2614
2615 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2616
2617 static const struct file_operations *stat_fops[] = {
2618 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2619 [KVM_STAT_VM] = &vm_stat_fops,
2620 };
2621
kvm_init_debug(void)2622 static int kvm_init_debug(void)
2623 {
2624 int r = -EFAULT;
2625 struct kvm_stats_debugfs_item *p;
2626
2627 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2628 if (kvm_debugfs_dir == NULL)
2629 goto out;
2630
2631 for (p = debugfs_entries; p->name; ++p) {
2632 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2633 (void *)(long)p->offset,
2634 stat_fops[p->kind]);
2635 if (p->dentry == NULL)
2636 goto out_dir;
2637 }
2638
2639 return 0;
2640
2641 out_dir:
2642 debugfs_remove_recursive(kvm_debugfs_dir);
2643 out:
2644 return r;
2645 }
2646
kvm_exit_debug(void)2647 static void kvm_exit_debug(void)
2648 {
2649 struct kvm_stats_debugfs_item *p;
2650
2651 for (p = debugfs_entries; p->name; ++p)
2652 debugfs_remove(p->dentry);
2653 debugfs_remove(kvm_debugfs_dir);
2654 }
2655
kvm_suspend(void)2656 static int kvm_suspend(void)
2657 {
2658 if (kvm_usage_count)
2659 hardware_disable_nolock(NULL);
2660 return 0;
2661 }
2662
kvm_resume(void)2663 static void kvm_resume(void)
2664 {
2665 if (kvm_usage_count) {
2666 WARN_ON(raw_spin_is_locked(&kvm_lock));
2667 hardware_enable_nolock(NULL);
2668 }
2669 }
2670
2671 static struct syscore_ops kvm_syscore_ops = {
2672 .suspend = kvm_suspend,
2673 .resume = kvm_resume,
2674 };
2675
2676 struct page *bad_page;
2677 pfn_t bad_pfn;
2678
2679 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)2680 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2681 {
2682 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2683 }
2684
kvm_sched_in(struct preempt_notifier * pn,int cpu)2685 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2686 {
2687 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2688
2689 kvm_arch_vcpu_load(vcpu, cpu);
2690 }
2691
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)2692 static void kvm_sched_out(struct preempt_notifier *pn,
2693 struct task_struct *next)
2694 {
2695 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2696
2697 kvm_arch_vcpu_put(vcpu);
2698 }
2699
kvm_init(void * opaque,unsigned vcpu_size,unsigned vcpu_align,struct module * module)2700 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2701 struct module *module)
2702 {
2703 int r;
2704 int cpu;
2705
2706 r = kvm_arch_init(opaque);
2707 if (r)
2708 goto out_fail;
2709
2710 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2711
2712 if (bad_page == NULL) {
2713 r = -ENOMEM;
2714 goto out;
2715 }
2716
2717 bad_pfn = page_to_pfn(bad_page);
2718
2719 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2720
2721 if (hwpoison_page == NULL) {
2722 r = -ENOMEM;
2723 goto out_free_0;
2724 }
2725
2726 hwpoison_pfn = page_to_pfn(hwpoison_page);
2727
2728 fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2729
2730 if (fault_page == NULL) {
2731 r = -ENOMEM;
2732 goto out_free_0;
2733 }
2734
2735 fault_pfn = page_to_pfn(fault_page);
2736
2737 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2738 r = -ENOMEM;
2739 goto out_free_0;
2740 }
2741
2742 r = kvm_arch_hardware_setup();
2743 if (r < 0)
2744 goto out_free_0a;
2745
2746 for_each_online_cpu(cpu) {
2747 smp_call_function_single(cpu,
2748 kvm_arch_check_processor_compat,
2749 &r, 1);
2750 if (r < 0)
2751 goto out_free_1;
2752 }
2753
2754 r = register_cpu_notifier(&kvm_cpu_notifier);
2755 if (r)
2756 goto out_free_2;
2757 register_reboot_notifier(&kvm_reboot_notifier);
2758
2759 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2760 if (!vcpu_align)
2761 vcpu_align = __alignof__(struct kvm_vcpu);
2762 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2763 0, NULL);
2764 if (!kvm_vcpu_cache) {
2765 r = -ENOMEM;
2766 goto out_free_3;
2767 }
2768
2769 r = kvm_async_pf_init();
2770 if (r)
2771 goto out_free;
2772
2773 kvm_chardev_ops.owner = module;
2774 kvm_vm_fops.owner = module;
2775 kvm_vcpu_fops.owner = module;
2776
2777 r = misc_register(&kvm_dev);
2778 if (r) {
2779 printk(KERN_ERR "kvm: misc device register failed\n");
2780 goto out_unreg;
2781 }
2782
2783 register_syscore_ops(&kvm_syscore_ops);
2784
2785 kvm_preempt_ops.sched_in = kvm_sched_in;
2786 kvm_preempt_ops.sched_out = kvm_sched_out;
2787
2788 r = kvm_init_debug();
2789 if (r) {
2790 printk(KERN_ERR "kvm: create debugfs files failed\n");
2791 goto out_undebugfs;
2792 }
2793
2794 return 0;
2795
2796 out_undebugfs:
2797 unregister_syscore_ops(&kvm_syscore_ops);
2798 out_unreg:
2799 kvm_async_pf_deinit();
2800 out_free:
2801 kmem_cache_destroy(kvm_vcpu_cache);
2802 out_free_3:
2803 unregister_reboot_notifier(&kvm_reboot_notifier);
2804 unregister_cpu_notifier(&kvm_cpu_notifier);
2805 out_free_2:
2806 out_free_1:
2807 kvm_arch_hardware_unsetup();
2808 out_free_0a:
2809 free_cpumask_var(cpus_hardware_enabled);
2810 out_free_0:
2811 if (fault_page)
2812 __free_page(fault_page);
2813 if (hwpoison_page)
2814 __free_page(hwpoison_page);
2815 __free_page(bad_page);
2816 out:
2817 kvm_arch_exit();
2818 out_fail:
2819 return r;
2820 }
2821 EXPORT_SYMBOL_GPL(kvm_init);
2822
kvm_exit(void)2823 void kvm_exit(void)
2824 {
2825 kvm_exit_debug();
2826 misc_deregister(&kvm_dev);
2827 kmem_cache_destroy(kvm_vcpu_cache);
2828 kvm_async_pf_deinit();
2829 unregister_syscore_ops(&kvm_syscore_ops);
2830 unregister_reboot_notifier(&kvm_reboot_notifier);
2831 unregister_cpu_notifier(&kvm_cpu_notifier);
2832 on_each_cpu(hardware_disable_nolock, NULL, 1);
2833 kvm_arch_hardware_unsetup();
2834 kvm_arch_exit();
2835 free_cpumask_var(cpus_hardware_enabled);
2836 __free_page(hwpoison_page);
2837 __free_page(bad_page);
2838 }
2839 EXPORT_SYMBOL_GPL(kvm_exit);
2840