1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97 * Ordering of locks:
98 *
99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100 */
101
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109
110 static struct kmem_cache *kvm_vcpu_cache;
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118 static const struct file_operations stat_fops_per_vm;
119
120 static struct file_operations kvm_chardev_ops;
121
122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123 unsigned long arg);
124 #ifdef CONFIG_KVM_COMPAT
125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126 unsigned long arg);
127 #define KVM_COMPAT(c) .compat_ioctl = (c)
128 #else
129 /*
130 * For architectures that don't implement a compat infrastructure,
131 * adopt a double line of defense:
132 * - Prevent a compat task from opening /dev/kvm
133 * - If the open has been done by a 64bit task, and the KVM fd
134 * passed to a compat task, let the ioctls fail.
135 */
kvm_no_compat_ioctl(struct file * file,unsigned int ioctl,unsigned long arg)136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137 unsigned long arg) { return -EINVAL; }
138
kvm_no_compat_open(struct inode * inode,struct file * file)139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
140 {
141 return is_compat_task() ? -ENODEV : 0;
142 }
143 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
144 .open = kvm_no_compat_open
145 #endif
146 static int hardware_enable_all(void);
147 static void hardware_disable_all(void);
148
149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
150
151 __visible bool kvm_rebooting;
152 EXPORT_SYMBOL_GPL(kvm_rebooting);
153
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159
160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
161
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
163 unsigned long start, unsigned long end)
164 {
165 }
166
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
168 {
169 }
170
kvm_is_zone_device_pfn(kvm_pfn_t pfn)171 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
172 {
173 /*
174 * The metadata used by is_zone_device_page() to determine whether or
175 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
176 * the device has been pinned, e.g. by get_user_pages(). WARN if the
177 * page_count() is zero to help detect bad usage of this helper.
178 */
179 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
180 return false;
181
182 return is_zone_device_page(pfn_to_page(pfn));
183 }
184
kvm_is_reserved_pfn(kvm_pfn_t pfn)185 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
186 {
187 /*
188 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
189 * perspective they are "normal" pages, albeit with slightly different
190 * usage rules.
191 */
192 if (pfn_valid(pfn))
193 return PageReserved(pfn_to_page(pfn)) &&
194 !is_zero_pfn(pfn) &&
195 !kvm_is_zone_device_pfn(pfn);
196
197 return true;
198 }
199
200 /*
201 * Switches to specified vcpu, until a matching vcpu_put()
202 */
vcpu_load(struct kvm_vcpu * vcpu)203 void vcpu_load(struct kvm_vcpu *vcpu)
204 {
205 int cpu = get_cpu();
206
207 __this_cpu_write(kvm_running_vcpu, vcpu);
208 preempt_notifier_register(&vcpu->preempt_notifier);
209 kvm_arch_vcpu_load(vcpu, cpu);
210 put_cpu();
211 }
212 EXPORT_SYMBOL_GPL(vcpu_load);
213
vcpu_put(struct kvm_vcpu * vcpu)214 void vcpu_put(struct kvm_vcpu *vcpu)
215 {
216 preempt_disable();
217 kvm_arch_vcpu_put(vcpu);
218 preempt_notifier_unregister(&vcpu->preempt_notifier);
219 __this_cpu_write(kvm_running_vcpu, NULL);
220 preempt_enable();
221 }
222 EXPORT_SYMBOL_GPL(vcpu_put);
223
224 /* TODO: merge with kvm_arch_vcpu_should_kick */
kvm_request_needs_ipi(struct kvm_vcpu * vcpu,unsigned req)225 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
226 {
227 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
228
229 /*
230 * We need to wait for the VCPU to reenable interrupts and get out of
231 * READING_SHADOW_PAGE_TABLES mode.
232 */
233 if (req & KVM_REQUEST_WAIT)
234 return mode != OUTSIDE_GUEST_MODE;
235
236 /*
237 * Need to kick a running VCPU, but otherwise there is nothing to do.
238 */
239 return mode == IN_GUEST_MODE;
240 }
241
ack_flush(void * _completed)242 static void ack_flush(void *_completed)
243 {
244 }
245
kvm_kick_many_cpus(struct cpumask * cpus,bool wait)246 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
247 {
248 if (cpumask_empty(cpus))
249 return false;
250
251 smp_call_function_many(cpus, ack_flush, NULL, wait);
252 return true;
253 }
254
kvm_make_vcpu_request(struct kvm_vcpu * vcpu,unsigned int req,struct cpumask * tmp,int current_cpu)255 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
256 struct cpumask *tmp, int current_cpu)
257 {
258 int cpu;
259
260 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
261 __kvm_make_request(req, vcpu);
262
263 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
264 return;
265
266 /*
267 * Note, the vCPU could get migrated to a different pCPU at any point
268 * after kvm_request_needs_ipi(), which could result in sending an IPI
269 * to the previous pCPU. But, that's OK because the purpose of the IPI
270 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
271 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
272 * after this point is also OK, as the requirement is only that KVM wait
273 * for vCPUs that were reading SPTEs _before_ any changes were
274 * finalized. See kvm_vcpu_kick() for more details on handling requests.
275 */
276 if (kvm_request_needs_ipi(vcpu, req)) {
277 cpu = READ_ONCE(vcpu->cpu);
278 if (cpu != -1 && cpu != current_cpu)
279 __cpumask_set_cpu(cpu, tmp);
280 }
281 }
282
kvm_make_vcpus_request_mask(struct kvm * kvm,unsigned int req,unsigned long * vcpu_bitmap)283 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
284 unsigned long *vcpu_bitmap)
285 {
286 struct kvm_vcpu *vcpu;
287 struct cpumask *cpus;
288 int i, me;
289 bool called;
290
291 me = get_cpu();
292
293 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
294 cpumask_clear(cpus);
295
296 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
297 vcpu = kvm_get_vcpu(kvm, i);
298 if (!vcpu)
299 continue;
300 kvm_make_vcpu_request(vcpu, req, cpus, me);
301 }
302
303 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
304 put_cpu();
305
306 return called;
307 }
308
kvm_make_all_cpus_request_except(struct kvm * kvm,unsigned int req,struct kvm_vcpu * except)309 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
310 struct kvm_vcpu *except)
311 {
312 struct kvm_vcpu *vcpu;
313 struct cpumask *cpus;
314 unsigned long i;
315 bool called;
316 int me;
317
318 me = get_cpu();
319
320 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
321 cpumask_clear(cpus);
322
323 kvm_for_each_vcpu(i, vcpu, kvm) {
324 if (vcpu == except)
325 continue;
326 kvm_make_vcpu_request(vcpu, req, cpus, me);
327 }
328
329 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
330 put_cpu();
331
332 return called;
333 }
334
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)335 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
336 {
337 return kvm_make_all_cpus_request_except(kvm, req, NULL);
338 }
339 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
340
341 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
kvm_flush_remote_tlbs(struct kvm * kvm)342 void kvm_flush_remote_tlbs(struct kvm *kvm)
343 {
344 ++kvm->stat.generic.remote_tlb_flush_requests;
345
346 /*
347 * We want to publish modifications to the page tables before reading
348 * mode. Pairs with a memory barrier in arch-specific code.
349 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
350 * and smp_mb in walk_shadow_page_lockless_begin/end.
351 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
352 *
353 * There is already an smp_mb__after_atomic() before
354 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
355 * barrier here.
356 */
357 if (!kvm_arch_flush_remote_tlb(kvm)
358 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
359 ++kvm->stat.generic.remote_tlb_flush;
360 }
361 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
362 #endif
363
kvm_flush_shadow_all(struct kvm * kvm)364 static void kvm_flush_shadow_all(struct kvm *kvm)
365 {
366 kvm_arch_flush_shadow_all(kvm);
367 kvm_arch_guest_memory_reclaimed(kvm);
368 }
369
370 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache * mc,gfp_t gfp_flags)371 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
372 gfp_t gfp_flags)
373 {
374 gfp_flags |= mc->gfp_zero;
375
376 if (mc->kmem_cache)
377 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
378 else
379 return (void *)__get_free_page(gfp_flags);
380 }
381
kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int min)382 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
383 {
384 void *obj;
385
386 if (mc->nobjs >= min)
387 return 0;
388 while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
389 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
390 if (!obj)
391 return mc->nobjs >= min ? 0 : -ENOMEM;
392 mc->objects[mc->nobjs++] = obj;
393 }
394 return 0;
395 }
396
kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache * mc)397 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
398 {
399 return mc->nobjs;
400 }
401
kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)402 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
403 {
404 while (mc->nobjs) {
405 if (mc->kmem_cache)
406 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
407 else
408 free_page((unsigned long)mc->objects[--mc->nobjs]);
409 }
410 }
411
kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)412 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
413 {
414 void *p;
415
416 if (WARN_ON(!mc->nobjs))
417 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
418 else
419 p = mc->objects[--mc->nobjs];
420 BUG_ON(!p);
421 return p;
422 }
423 #endif
424
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)425 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
426 {
427 mutex_init(&vcpu->mutex);
428 vcpu->cpu = -1;
429 vcpu->kvm = kvm;
430 vcpu->vcpu_id = id;
431 vcpu->pid = NULL;
432 #ifndef __KVM_HAVE_ARCH_WQP
433 rcuwait_init(&vcpu->wait);
434 #endif
435 kvm_async_pf_vcpu_init(vcpu);
436
437 kvm_vcpu_set_in_spin_loop(vcpu, false);
438 kvm_vcpu_set_dy_eligible(vcpu, false);
439 vcpu->preempted = false;
440 vcpu->ready = false;
441 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
442 vcpu->last_used_slot = NULL;
443 }
444
kvm_vcpu_destroy(struct kvm_vcpu * vcpu)445 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
446 {
447 kvm_arch_vcpu_destroy(vcpu);
448 kvm_dirty_ring_free(&vcpu->dirty_ring);
449
450 /*
451 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
452 * the vcpu->pid pointer, and at destruction time all file descriptors
453 * are already gone.
454 */
455 put_pid(rcu_dereference_protected(vcpu->pid, 1));
456
457 free_page((unsigned long)vcpu->run);
458 kmem_cache_free(kvm_vcpu_cache, vcpu);
459 }
460
kvm_destroy_vcpus(struct kvm * kvm)461 void kvm_destroy_vcpus(struct kvm *kvm)
462 {
463 unsigned long i;
464 struct kvm_vcpu *vcpu;
465
466 kvm_for_each_vcpu(i, vcpu, kvm) {
467 kvm_vcpu_destroy(vcpu);
468 xa_erase(&kvm->vcpu_array, i);
469 }
470
471 atomic_set(&kvm->online_vcpus, 0);
472 }
473 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
474
475 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_to_kvm(struct mmu_notifier * mn)476 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
477 {
478 return container_of(mn, struct kvm, mmu_notifier);
479 }
480
kvm_mmu_notifier_invalidate_range(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)481 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
482 struct mm_struct *mm,
483 unsigned long start, unsigned long end)
484 {
485 struct kvm *kvm = mmu_notifier_to_kvm(mn);
486 int idx;
487
488 idx = srcu_read_lock(&kvm->srcu);
489 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
490 srcu_read_unlock(&kvm->srcu, idx);
491 }
492
493 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
494
495 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
496 unsigned long end);
497
498 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
499
500 struct kvm_hva_range {
501 unsigned long start;
502 unsigned long end;
503 pte_t pte;
504 hva_handler_t handler;
505 on_lock_fn_t on_lock;
506 on_unlock_fn_t on_unlock;
507 bool flush_on_ret;
508 bool may_block;
509 };
510
511 /*
512 * Use a dedicated stub instead of NULL to indicate that there is no callback
513 * function/handler. The compiler technically can't guarantee that a real
514 * function will have a non-zero address, and so it will generate code to
515 * check for !NULL, whereas comparing against a stub will be elided at compile
516 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
517 */
kvm_null_fn(void)518 static void kvm_null_fn(void)
519 {
520
521 }
522 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
523
524 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
525 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
526 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
527 node; \
528 node = interval_tree_iter_next(node, start, last)) \
529
__kvm_handle_hva_range(struct kvm * kvm,const struct kvm_hva_range * range)530 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
531 const struct kvm_hva_range *range)
532 {
533 bool ret = false, locked = false;
534 struct kvm_gfn_range gfn_range;
535 struct kvm_memory_slot *slot;
536 struct kvm_memslots *slots;
537 int i, idx;
538
539 if (WARN_ON_ONCE(range->end <= range->start))
540 return 0;
541
542 /* A null handler is allowed if and only if on_lock() is provided. */
543 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
544 IS_KVM_NULL_FN(range->handler)))
545 return 0;
546
547 idx = srcu_read_lock(&kvm->srcu);
548
549 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
550 struct interval_tree_node *node;
551
552 slots = __kvm_memslots(kvm, i);
553 kvm_for_each_memslot_in_hva_range(node, slots,
554 range->start, range->end - 1) {
555 unsigned long hva_start, hva_end;
556
557 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
558 hva_start = max(range->start, slot->userspace_addr);
559 hva_end = min(range->end, slot->userspace_addr +
560 (slot->npages << PAGE_SHIFT));
561
562 /*
563 * To optimize for the likely case where the address
564 * range is covered by zero or one memslots, don't
565 * bother making these conditional (to avoid writes on
566 * the second or later invocation of the handler).
567 */
568 gfn_range.pte = range->pte;
569 gfn_range.may_block = range->may_block;
570
571 /*
572 * {gfn(page) | page intersects with [hva_start, hva_end)} =
573 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
574 */
575 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
576 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
577 gfn_range.slot = slot;
578
579 if (!locked) {
580 locked = true;
581 KVM_MMU_LOCK(kvm);
582 if (!IS_KVM_NULL_FN(range->on_lock))
583 range->on_lock(kvm, range->start, range->end);
584 if (IS_KVM_NULL_FN(range->handler))
585 break;
586 }
587 ret |= range->handler(kvm, &gfn_range);
588 }
589 }
590
591 if (range->flush_on_ret && ret)
592 kvm_flush_remote_tlbs(kvm);
593
594 if (locked) {
595 KVM_MMU_UNLOCK(kvm);
596 if (!IS_KVM_NULL_FN(range->on_unlock))
597 range->on_unlock(kvm);
598 }
599
600 srcu_read_unlock(&kvm->srcu, idx);
601
602 /* The notifiers are averse to booleans. :-( */
603 return (int)ret;
604 }
605
kvm_handle_hva_range(struct mmu_notifier * mn,unsigned long start,unsigned long end,pte_t pte,hva_handler_t handler)606 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
607 unsigned long start,
608 unsigned long end,
609 pte_t pte,
610 hva_handler_t handler)
611 {
612 struct kvm *kvm = mmu_notifier_to_kvm(mn);
613 const struct kvm_hva_range range = {
614 .start = start,
615 .end = end,
616 .pte = pte,
617 .handler = handler,
618 .on_lock = (void *)kvm_null_fn,
619 .on_unlock = (void *)kvm_null_fn,
620 .flush_on_ret = true,
621 .may_block = false,
622 };
623
624 return __kvm_handle_hva_range(kvm, &range);
625 }
626
kvm_handle_hva_range_no_flush(struct mmu_notifier * mn,unsigned long start,unsigned long end,hva_handler_t handler)627 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
628 unsigned long start,
629 unsigned long end,
630 hva_handler_t handler)
631 {
632 struct kvm *kvm = mmu_notifier_to_kvm(mn);
633 const struct kvm_hva_range range = {
634 .start = start,
635 .end = end,
636 .pte = __pte(0),
637 .handler = handler,
638 .on_lock = (void *)kvm_null_fn,
639 .on_unlock = (void *)kvm_null_fn,
640 .flush_on_ret = false,
641 .may_block = false,
642 };
643
644 return __kvm_handle_hva_range(kvm, &range);
645 }
kvm_mmu_notifier_change_pte(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address,pte_t pte)646 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
647 struct mm_struct *mm,
648 unsigned long address,
649 pte_t pte)
650 {
651 struct kvm *kvm = mmu_notifier_to_kvm(mn);
652
653 trace_kvm_set_spte_hva(address);
654
655 /*
656 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
657 * If mmu_notifier_count is zero, then no in-progress invalidations,
658 * including this one, found a relevant memslot at start(); rechecking
659 * memslots here is unnecessary. Note, a false positive (count elevated
660 * by a different invalidation) is sub-optimal but functionally ok.
661 */
662 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
663 if (!READ_ONCE(kvm->mmu_notifier_count))
664 return;
665
666 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
667 }
668
kvm_inc_notifier_count(struct kvm * kvm,unsigned long start,unsigned long end)669 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
670 unsigned long end)
671 {
672 /*
673 * The count increase must become visible at unlock time as no
674 * spte can be established without taking the mmu_lock and
675 * count is also read inside the mmu_lock critical section.
676 */
677 kvm->mmu_notifier_count++;
678 if (likely(kvm->mmu_notifier_count == 1)) {
679 kvm->mmu_notifier_range_start = start;
680 kvm->mmu_notifier_range_end = end;
681 } else {
682 /*
683 * Fully tracking multiple concurrent ranges has diminishing
684 * returns. Keep things simple and just find the minimal range
685 * which includes the current and new ranges. As there won't be
686 * enough information to subtract a range after its invalidate
687 * completes, any ranges invalidated concurrently will
688 * accumulate and persist until all outstanding invalidates
689 * complete.
690 */
691 kvm->mmu_notifier_range_start =
692 min(kvm->mmu_notifier_range_start, start);
693 kvm->mmu_notifier_range_end =
694 max(kvm->mmu_notifier_range_end, end);
695 }
696 }
697
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,const struct mmu_notifier_range * range)698 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
699 const struct mmu_notifier_range *range)
700 {
701 struct kvm *kvm = mmu_notifier_to_kvm(mn);
702 const struct kvm_hva_range hva_range = {
703 .start = range->start,
704 .end = range->end,
705 .pte = __pte(0),
706 .handler = kvm_unmap_gfn_range,
707 .on_lock = kvm_inc_notifier_count,
708 .on_unlock = kvm_arch_guest_memory_reclaimed,
709 .flush_on_ret = true,
710 .may_block = mmu_notifier_range_blockable(range),
711 };
712
713 trace_kvm_unmap_hva_range(range->start, range->end);
714
715 /*
716 * Prevent memslot modification between range_start() and range_end()
717 * so that conditionally locking provides the same result in both
718 * functions. Without that guarantee, the mmu_notifier_count
719 * adjustments will be imbalanced.
720 *
721 * Pairs with the decrement in range_end().
722 */
723 spin_lock(&kvm->mn_invalidate_lock);
724 kvm->mn_active_invalidate_count++;
725 spin_unlock(&kvm->mn_invalidate_lock);
726
727 /*
728 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
729 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
730 * each cache's lock. There are relatively few caches in existence at
731 * any given time, and the caches themselves can check for hva overlap,
732 * i.e. don't need to rely on memslot overlap checks for performance.
733 * Because this runs without holding mmu_lock, the pfn caches must use
734 * mn_active_invalidate_count (see above) instead of mmu_notifier_count.
735 */
736 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
737 hva_range.may_block);
738
739 __kvm_handle_hva_range(kvm, &hva_range);
740
741 return 0;
742 }
743
kvm_dec_notifier_count(struct kvm * kvm,unsigned long start,unsigned long end)744 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
745 unsigned long end)
746 {
747 /*
748 * This sequence increase will notify the kvm page fault that
749 * the page that is going to be mapped in the spte could have
750 * been freed.
751 */
752 kvm->mmu_notifier_seq++;
753 smp_wmb();
754 /*
755 * The above sequence increase must be visible before the
756 * below count decrease, which is ensured by the smp_wmb above
757 * in conjunction with the smp_rmb in mmu_notifier_retry().
758 */
759 kvm->mmu_notifier_count--;
760 }
761
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,const struct mmu_notifier_range * range)762 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
763 const struct mmu_notifier_range *range)
764 {
765 struct kvm *kvm = mmu_notifier_to_kvm(mn);
766 const struct kvm_hva_range hva_range = {
767 .start = range->start,
768 .end = range->end,
769 .pte = __pte(0),
770 .handler = (void *)kvm_null_fn,
771 .on_lock = kvm_dec_notifier_count,
772 .on_unlock = (void *)kvm_null_fn,
773 .flush_on_ret = false,
774 .may_block = mmu_notifier_range_blockable(range),
775 };
776 bool wake;
777
778 __kvm_handle_hva_range(kvm, &hva_range);
779
780 /* Pairs with the increment in range_start(). */
781 spin_lock(&kvm->mn_invalidate_lock);
782 wake = (--kvm->mn_active_invalidate_count == 0);
783 spin_unlock(&kvm->mn_invalidate_lock);
784
785 /*
786 * There can only be one waiter, since the wait happens under
787 * slots_lock.
788 */
789 if (wake)
790 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
791
792 BUG_ON(kvm->mmu_notifier_count < 0);
793 }
794
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)795 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
796 struct mm_struct *mm,
797 unsigned long start,
798 unsigned long end)
799 {
800 trace_kvm_age_hva(start, end);
801
802 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
803 }
804
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)805 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
806 struct mm_struct *mm,
807 unsigned long start,
808 unsigned long end)
809 {
810 trace_kvm_age_hva(start, end);
811
812 /*
813 * Even though we do not flush TLB, this will still adversely
814 * affect performance on pre-Haswell Intel EPT, where there is
815 * no EPT Access Bit to clear so that we have to tear down EPT
816 * tables instead. If we find this unacceptable, we can always
817 * add a parameter to kvm_age_hva so that it effectively doesn't
818 * do anything on clear_young.
819 *
820 * Also note that currently we never issue secondary TLB flushes
821 * from clear_young, leaving this job up to the regular system
822 * cadence. If we find this inaccurate, we might come up with a
823 * more sophisticated heuristic later.
824 */
825 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
826 }
827
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)828 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
829 struct mm_struct *mm,
830 unsigned long address)
831 {
832 trace_kvm_test_age_hva(address);
833
834 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
835 kvm_test_age_gfn);
836 }
837
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)838 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
839 struct mm_struct *mm)
840 {
841 struct kvm *kvm = mmu_notifier_to_kvm(mn);
842 int idx;
843
844 idx = srcu_read_lock(&kvm->srcu);
845 kvm_flush_shadow_all(kvm);
846 srcu_read_unlock(&kvm->srcu, idx);
847 }
848
849 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
850 .invalidate_range = kvm_mmu_notifier_invalidate_range,
851 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
852 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
853 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
854 .clear_young = kvm_mmu_notifier_clear_young,
855 .test_young = kvm_mmu_notifier_test_young,
856 .change_pte = kvm_mmu_notifier_change_pte,
857 .release = kvm_mmu_notifier_release,
858 };
859
kvm_init_mmu_notifier(struct kvm * kvm)860 static int kvm_init_mmu_notifier(struct kvm *kvm)
861 {
862 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
863 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
864 }
865
866 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
867
kvm_init_mmu_notifier(struct kvm * kvm)868 static int kvm_init_mmu_notifier(struct kvm *kvm)
869 {
870 return 0;
871 }
872
873 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
874
875 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_pm_notifier_call(struct notifier_block * bl,unsigned long state,void * unused)876 static int kvm_pm_notifier_call(struct notifier_block *bl,
877 unsigned long state,
878 void *unused)
879 {
880 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
881
882 return kvm_arch_pm_notifier(kvm, state);
883 }
884
kvm_init_pm_notifier(struct kvm * kvm)885 static void kvm_init_pm_notifier(struct kvm *kvm)
886 {
887 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
888 /* Suspend KVM before we suspend ftrace, RCU, etc. */
889 kvm->pm_notifier.priority = INT_MAX;
890 register_pm_notifier(&kvm->pm_notifier);
891 }
892
kvm_destroy_pm_notifier(struct kvm * kvm)893 static void kvm_destroy_pm_notifier(struct kvm *kvm)
894 {
895 unregister_pm_notifier(&kvm->pm_notifier);
896 }
897 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
kvm_init_pm_notifier(struct kvm * kvm)898 static void kvm_init_pm_notifier(struct kvm *kvm)
899 {
900 }
901
kvm_destroy_pm_notifier(struct kvm * kvm)902 static void kvm_destroy_pm_notifier(struct kvm *kvm)
903 {
904 }
905 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
906
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)907 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
908 {
909 if (!memslot->dirty_bitmap)
910 return;
911
912 kvfree(memslot->dirty_bitmap);
913 memslot->dirty_bitmap = NULL;
914 }
915
916 /* This does not remove the slot from struct kvm_memslots data structures */
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)917 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
918 {
919 kvm_destroy_dirty_bitmap(slot);
920
921 kvm_arch_free_memslot(kvm, slot);
922
923 kfree(slot);
924 }
925
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)926 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
927 {
928 struct hlist_node *idnode;
929 struct kvm_memory_slot *memslot;
930 int bkt;
931
932 /*
933 * The same memslot objects live in both active and inactive sets,
934 * arbitrarily free using index '1' so the second invocation of this
935 * function isn't operating over a structure with dangling pointers
936 * (even though this function isn't actually touching them).
937 */
938 if (!slots->node_idx)
939 return;
940
941 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
942 kvm_free_memslot(kvm, memslot);
943 }
944
kvm_stats_debugfs_mode(const struct _kvm_stats_desc * pdesc)945 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
946 {
947 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
948 case KVM_STATS_TYPE_INSTANT:
949 return 0444;
950 case KVM_STATS_TYPE_CUMULATIVE:
951 case KVM_STATS_TYPE_PEAK:
952 default:
953 return 0644;
954 }
955 }
956
957
kvm_destroy_vm_debugfs(struct kvm * kvm)958 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
959 {
960 int i;
961 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
962 kvm_vcpu_stats_header.num_desc;
963
964 if (IS_ERR(kvm->debugfs_dentry))
965 return;
966
967 debugfs_remove_recursive(kvm->debugfs_dentry);
968
969 if (kvm->debugfs_stat_data) {
970 for (i = 0; i < kvm_debugfs_num_entries; i++)
971 kfree(kvm->debugfs_stat_data[i]);
972 kfree(kvm->debugfs_stat_data);
973 }
974 }
975
kvm_create_vm_debugfs(struct kvm * kvm,int fd)976 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
977 {
978 static DEFINE_MUTEX(kvm_debugfs_lock);
979 struct dentry *dent;
980 char dir_name[ITOA_MAX_LEN * 2];
981 struct kvm_stat_data *stat_data;
982 const struct _kvm_stats_desc *pdesc;
983 int i, ret;
984 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
985 kvm_vcpu_stats_header.num_desc;
986
987 if (!debugfs_initialized())
988 return 0;
989
990 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
991 mutex_lock(&kvm_debugfs_lock);
992 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
993 if (dent) {
994 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
995 dput(dent);
996 mutex_unlock(&kvm_debugfs_lock);
997 return 0;
998 }
999 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1000 mutex_unlock(&kvm_debugfs_lock);
1001 if (IS_ERR(dent))
1002 return 0;
1003
1004 kvm->debugfs_dentry = dent;
1005 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1006 sizeof(*kvm->debugfs_stat_data),
1007 GFP_KERNEL_ACCOUNT);
1008 if (!kvm->debugfs_stat_data)
1009 return -ENOMEM;
1010
1011 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1012 pdesc = &kvm_vm_stats_desc[i];
1013 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1014 if (!stat_data)
1015 return -ENOMEM;
1016
1017 stat_data->kvm = kvm;
1018 stat_data->desc = pdesc;
1019 stat_data->kind = KVM_STAT_VM;
1020 kvm->debugfs_stat_data[i] = stat_data;
1021 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1022 kvm->debugfs_dentry, stat_data,
1023 &stat_fops_per_vm);
1024 }
1025
1026 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1027 pdesc = &kvm_vcpu_stats_desc[i];
1028 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1029 if (!stat_data)
1030 return -ENOMEM;
1031
1032 stat_data->kvm = kvm;
1033 stat_data->desc = pdesc;
1034 stat_data->kind = KVM_STAT_VCPU;
1035 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1036 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1037 kvm->debugfs_dentry, stat_data,
1038 &stat_fops_per_vm);
1039 }
1040
1041 ret = kvm_arch_create_vm_debugfs(kvm);
1042 if (ret) {
1043 kvm_destroy_vm_debugfs(kvm);
1044 return i;
1045 }
1046
1047 return 0;
1048 }
1049
1050 /*
1051 * Called after the VM is otherwise initialized, but just before adding it to
1052 * the vm_list.
1053 */
kvm_arch_post_init_vm(struct kvm * kvm)1054 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1055 {
1056 return 0;
1057 }
1058
1059 /*
1060 * Called just after removing the VM from the vm_list, but before doing any
1061 * other destruction.
1062 */
kvm_arch_pre_destroy_vm(struct kvm * kvm)1063 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1064 {
1065 }
1066
1067 /*
1068 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1069 * be setup already, so we can create arch-specific debugfs entries under it.
1070 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1071 * a per-arch destroy interface is not needed.
1072 */
kvm_arch_create_vm_debugfs(struct kvm * kvm)1073 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1074 {
1075 return 0;
1076 }
1077
kvm_create_vm(unsigned long type)1078 static struct kvm *kvm_create_vm(unsigned long type)
1079 {
1080 struct kvm *kvm = kvm_arch_alloc_vm();
1081 struct kvm_memslots *slots;
1082 int r = -ENOMEM;
1083 int i, j;
1084
1085 if (!kvm)
1086 return ERR_PTR(-ENOMEM);
1087
1088 /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1089 __module_get(kvm_chardev_ops.owner);
1090
1091 KVM_MMU_LOCK_INIT(kvm);
1092 mmgrab(current->mm);
1093 kvm->mm = current->mm;
1094 kvm_eventfd_init(kvm);
1095 mutex_init(&kvm->lock);
1096 mutex_init(&kvm->irq_lock);
1097 mutex_init(&kvm->slots_lock);
1098 mutex_init(&kvm->slots_arch_lock);
1099 spin_lock_init(&kvm->mn_invalidate_lock);
1100 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1101 xa_init(&kvm->vcpu_array);
1102
1103 INIT_LIST_HEAD(&kvm->gpc_list);
1104 spin_lock_init(&kvm->gpc_lock);
1105
1106 INIT_LIST_HEAD(&kvm->devices);
1107 kvm->max_vcpus = KVM_MAX_VCPUS;
1108
1109 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1110
1111 /*
1112 * Force subsequent debugfs file creations to fail if the VM directory
1113 * is not created (by kvm_create_vm_debugfs()).
1114 */
1115 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1116
1117 if (init_srcu_struct(&kvm->srcu))
1118 goto out_err_no_srcu;
1119 if (init_srcu_struct(&kvm->irq_srcu))
1120 goto out_err_no_irq_srcu;
1121
1122 refcount_set(&kvm->users_count, 1);
1123 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1124 for (j = 0; j < 2; j++) {
1125 slots = &kvm->__memslots[i][j];
1126
1127 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1128 slots->hva_tree = RB_ROOT_CACHED;
1129 slots->gfn_tree = RB_ROOT;
1130 hash_init(slots->id_hash);
1131 slots->node_idx = j;
1132
1133 /* Generations must be different for each address space. */
1134 slots->generation = i;
1135 }
1136
1137 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1138 }
1139
1140 for (i = 0; i < KVM_NR_BUSES; i++) {
1141 rcu_assign_pointer(kvm->buses[i],
1142 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1143 if (!kvm->buses[i])
1144 goto out_err_no_arch_destroy_vm;
1145 }
1146
1147 kvm->max_halt_poll_ns = halt_poll_ns;
1148
1149 r = kvm_arch_init_vm(kvm, type);
1150 if (r)
1151 goto out_err_no_arch_destroy_vm;
1152
1153 r = hardware_enable_all();
1154 if (r)
1155 goto out_err_no_disable;
1156
1157 #ifdef CONFIG_HAVE_KVM_IRQFD
1158 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1159 #endif
1160
1161 r = kvm_init_mmu_notifier(kvm);
1162 if (r)
1163 goto out_err_no_mmu_notifier;
1164
1165 r = kvm_arch_post_init_vm(kvm);
1166 if (r)
1167 goto out_err;
1168
1169 mutex_lock(&kvm_lock);
1170 list_add(&kvm->vm_list, &vm_list);
1171 mutex_unlock(&kvm_lock);
1172
1173 preempt_notifier_inc();
1174 kvm_init_pm_notifier(kvm);
1175
1176 return kvm;
1177
1178 out_err:
1179 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1180 if (kvm->mmu_notifier.ops)
1181 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1182 #endif
1183 out_err_no_mmu_notifier:
1184 hardware_disable_all();
1185 out_err_no_disable:
1186 kvm_arch_destroy_vm(kvm);
1187 out_err_no_arch_destroy_vm:
1188 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1189 for (i = 0; i < KVM_NR_BUSES; i++)
1190 kfree(kvm_get_bus(kvm, i));
1191 cleanup_srcu_struct(&kvm->irq_srcu);
1192 out_err_no_irq_srcu:
1193 cleanup_srcu_struct(&kvm->srcu);
1194 out_err_no_srcu:
1195 kvm_arch_free_vm(kvm);
1196 mmdrop(current->mm);
1197 module_put(kvm_chardev_ops.owner);
1198 return ERR_PTR(r);
1199 }
1200
kvm_destroy_devices(struct kvm * kvm)1201 static void kvm_destroy_devices(struct kvm *kvm)
1202 {
1203 struct kvm_device *dev, *tmp;
1204
1205 /*
1206 * We do not need to take the kvm->lock here, because nobody else
1207 * has a reference to the struct kvm at this point and therefore
1208 * cannot access the devices list anyhow.
1209 */
1210 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1211 list_del(&dev->vm_node);
1212 dev->ops->destroy(dev);
1213 }
1214 }
1215
kvm_destroy_vm(struct kvm * kvm)1216 static void kvm_destroy_vm(struct kvm *kvm)
1217 {
1218 int i;
1219 struct mm_struct *mm = kvm->mm;
1220
1221 kvm_destroy_pm_notifier(kvm);
1222 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1223 kvm_destroy_vm_debugfs(kvm);
1224 kvm_arch_sync_events(kvm);
1225 mutex_lock(&kvm_lock);
1226 list_del(&kvm->vm_list);
1227 mutex_unlock(&kvm_lock);
1228 kvm_arch_pre_destroy_vm(kvm);
1229
1230 kvm_free_irq_routing(kvm);
1231 for (i = 0; i < KVM_NR_BUSES; i++) {
1232 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1233
1234 if (bus)
1235 kvm_io_bus_destroy(bus);
1236 kvm->buses[i] = NULL;
1237 }
1238 kvm_coalesced_mmio_free(kvm);
1239 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1240 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1241 /*
1242 * At this point, pending calls to invalidate_range_start()
1243 * have completed but no more MMU notifiers will run, so
1244 * mn_active_invalidate_count may remain unbalanced.
1245 * No threads can be waiting in install_new_memslots as the
1246 * last reference on KVM has been dropped, but freeing
1247 * memslots would deadlock without this manual intervention.
1248 */
1249 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1250 kvm->mn_active_invalidate_count = 0;
1251 #else
1252 kvm_flush_shadow_all(kvm);
1253 #endif
1254 kvm_arch_destroy_vm(kvm);
1255 kvm_destroy_devices(kvm);
1256 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1257 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1258 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1259 }
1260 cleanup_srcu_struct(&kvm->irq_srcu);
1261 cleanup_srcu_struct(&kvm->srcu);
1262 kvm_arch_free_vm(kvm);
1263 preempt_notifier_dec();
1264 hardware_disable_all();
1265 mmdrop(mm);
1266 module_put(kvm_chardev_ops.owner);
1267 }
1268
kvm_get_kvm(struct kvm * kvm)1269 void kvm_get_kvm(struct kvm *kvm)
1270 {
1271 refcount_inc(&kvm->users_count);
1272 }
1273 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1274
1275 /*
1276 * Make sure the vm is not during destruction, which is a safe version of
1277 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1278 */
kvm_get_kvm_safe(struct kvm * kvm)1279 bool kvm_get_kvm_safe(struct kvm *kvm)
1280 {
1281 return refcount_inc_not_zero(&kvm->users_count);
1282 }
1283 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1284
kvm_put_kvm(struct kvm * kvm)1285 void kvm_put_kvm(struct kvm *kvm)
1286 {
1287 if (refcount_dec_and_test(&kvm->users_count))
1288 kvm_destroy_vm(kvm);
1289 }
1290 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1291
1292 /*
1293 * Used to put a reference that was taken on behalf of an object associated
1294 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1295 * of the new file descriptor fails and the reference cannot be transferred to
1296 * its final owner. In such cases, the caller is still actively using @kvm and
1297 * will fail miserably if the refcount unexpectedly hits zero.
1298 */
kvm_put_kvm_no_destroy(struct kvm * kvm)1299 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1300 {
1301 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1302 }
1303 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1304
kvm_vm_release(struct inode * inode,struct file * filp)1305 static int kvm_vm_release(struct inode *inode, struct file *filp)
1306 {
1307 struct kvm *kvm = filp->private_data;
1308
1309 kvm_irqfd_release(kvm);
1310
1311 kvm_put_kvm(kvm);
1312 return 0;
1313 }
1314
1315 /*
1316 * Allocation size is twice as large as the actual dirty bitmap size.
1317 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1318 */
kvm_alloc_dirty_bitmap(struct kvm_memory_slot * memslot)1319 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1320 {
1321 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1322
1323 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1324 if (!memslot->dirty_bitmap)
1325 return -ENOMEM;
1326
1327 return 0;
1328 }
1329
kvm_get_inactive_memslots(struct kvm * kvm,int as_id)1330 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1331 {
1332 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1333 int node_idx_inactive = active->node_idx ^ 1;
1334
1335 return &kvm->__memslots[as_id][node_idx_inactive];
1336 }
1337
1338 /*
1339 * Helper to get the address space ID when one of memslot pointers may be NULL.
1340 * This also serves as a sanity that at least one of the pointers is non-NULL,
1341 * and that their address space IDs don't diverge.
1342 */
kvm_memslots_get_as_id(struct kvm_memory_slot * a,struct kvm_memory_slot * b)1343 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1344 struct kvm_memory_slot *b)
1345 {
1346 if (WARN_ON_ONCE(!a && !b))
1347 return 0;
1348
1349 if (!a)
1350 return b->as_id;
1351 if (!b)
1352 return a->as_id;
1353
1354 WARN_ON_ONCE(a->as_id != b->as_id);
1355 return a->as_id;
1356 }
1357
kvm_insert_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * slot)1358 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1359 struct kvm_memory_slot *slot)
1360 {
1361 struct rb_root *gfn_tree = &slots->gfn_tree;
1362 struct rb_node **node, *parent;
1363 int idx = slots->node_idx;
1364
1365 parent = NULL;
1366 for (node = &gfn_tree->rb_node; *node; ) {
1367 struct kvm_memory_slot *tmp;
1368
1369 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1370 parent = *node;
1371 if (slot->base_gfn < tmp->base_gfn)
1372 node = &(*node)->rb_left;
1373 else if (slot->base_gfn > tmp->base_gfn)
1374 node = &(*node)->rb_right;
1375 else
1376 BUG();
1377 }
1378
1379 rb_link_node(&slot->gfn_node[idx], parent, node);
1380 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1381 }
1382
kvm_erase_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * slot)1383 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1384 struct kvm_memory_slot *slot)
1385 {
1386 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1387 }
1388
kvm_replace_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1389 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1390 struct kvm_memory_slot *old,
1391 struct kvm_memory_slot *new)
1392 {
1393 int idx = slots->node_idx;
1394
1395 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1396
1397 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1398 &slots->gfn_tree);
1399 }
1400
1401 /*
1402 * Replace @old with @new in the inactive memslots.
1403 *
1404 * With NULL @old this simply adds @new.
1405 * With NULL @new this simply removes @old.
1406 *
1407 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1408 * appropriately.
1409 */
kvm_replace_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1410 static void kvm_replace_memslot(struct kvm *kvm,
1411 struct kvm_memory_slot *old,
1412 struct kvm_memory_slot *new)
1413 {
1414 int as_id = kvm_memslots_get_as_id(old, new);
1415 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1416 int idx = slots->node_idx;
1417
1418 if (old) {
1419 hash_del(&old->id_node[idx]);
1420 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1421
1422 if ((long)old == atomic_long_read(&slots->last_used_slot))
1423 atomic_long_set(&slots->last_used_slot, (long)new);
1424
1425 if (!new) {
1426 kvm_erase_gfn_node(slots, old);
1427 return;
1428 }
1429 }
1430
1431 /*
1432 * Initialize @new's hva range. Do this even when replacing an @old
1433 * slot, kvm_copy_memslot() deliberately does not touch node data.
1434 */
1435 new->hva_node[idx].start = new->userspace_addr;
1436 new->hva_node[idx].last = new->userspace_addr +
1437 (new->npages << PAGE_SHIFT) - 1;
1438
1439 /*
1440 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1441 * hva_node needs to be swapped with remove+insert even though hva can't
1442 * change when replacing an existing slot.
1443 */
1444 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1445 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1446
1447 /*
1448 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1449 * switch the node in the gfn tree instead of removing the old and
1450 * inserting the new as two separate operations. Replacement is a
1451 * single O(1) operation versus two O(log(n)) operations for
1452 * remove+insert.
1453 */
1454 if (old && old->base_gfn == new->base_gfn) {
1455 kvm_replace_gfn_node(slots, old, new);
1456 } else {
1457 if (old)
1458 kvm_erase_gfn_node(slots, old);
1459 kvm_insert_gfn_node(slots, new);
1460 }
1461 }
1462
check_memory_region_flags(const struct kvm_userspace_memory_region * mem)1463 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1464 {
1465 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1466
1467 #ifdef __KVM_HAVE_READONLY_MEM
1468 valid_flags |= KVM_MEM_READONLY;
1469 #endif
1470
1471 if (mem->flags & ~valid_flags)
1472 return -EINVAL;
1473
1474 return 0;
1475 }
1476
kvm_swap_active_memslots(struct kvm * kvm,int as_id)1477 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1478 {
1479 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1480
1481 /* Grab the generation from the activate memslots. */
1482 u64 gen = __kvm_memslots(kvm, as_id)->generation;
1483
1484 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1485 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1486
1487 /*
1488 * Do not store the new memslots while there are invalidations in
1489 * progress, otherwise the locking in invalidate_range_start and
1490 * invalidate_range_end will be unbalanced.
1491 */
1492 spin_lock(&kvm->mn_invalidate_lock);
1493 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1494 while (kvm->mn_active_invalidate_count) {
1495 set_current_state(TASK_UNINTERRUPTIBLE);
1496 spin_unlock(&kvm->mn_invalidate_lock);
1497 schedule();
1498 spin_lock(&kvm->mn_invalidate_lock);
1499 }
1500 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1501 rcu_assign_pointer(kvm->memslots[as_id], slots);
1502 spin_unlock(&kvm->mn_invalidate_lock);
1503
1504 /*
1505 * Acquired in kvm_set_memslot. Must be released before synchronize
1506 * SRCU below in order to avoid deadlock with another thread
1507 * acquiring the slots_arch_lock in an srcu critical section.
1508 */
1509 mutex_unlock(&kvm->slots_arch_lock);
1510
1511 synchronize_srcu_expedited(&kvm->srcu);
1512
1513 /*
1514 * Increment the new memslot generation a second time, dropping the
1515 * update in-progress flag and incrementing the generation based on
1516 * the number of address spaces. This provides a unique and easily
1517 * identifiable generation number while the memslots are in flux.
1518 */
1519 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1520
1521 /*
1522 * Generations must be unique even across address spaces. We do not need
1523 * a global counter for that, instead the generation space is evenly split
1524 * across address spaces. For example, with two address spaces, address
1525 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1526 * use generations 1, 3, 5, ...
1527 */
1528 gen += KVM_ADDRESS_SPACE_NUM;
1529
1530 kvm_arch_memslots_updated(kvm, gen);
1531
1532 slots->generation = gen;
1533 }
1534
kvm_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1535 static int kvm_prepare_memory_region(struct kvm *kvm,
1536 const struct kvm_memory_slot *old,
1537 struct kvm_memory_slot *new,
1538 enum kvm_mr_change change)
1539 {
1540 int r;
1541
1542 /*
1543 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1544 * will be freed on "commit". If logging is enabled in both old and
1545 * new, reuse the existing bitmap. If logging is enabled only in the
1546 * new and KVM isn't using a ring buffer, allocate and initialize a
1547 * new bitmap.
1548 */
1549 if (change != KVM_MR_DELETE) {
1550 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1551 new->dirty_bitmap = NULL;
1552 else if (old && old->dirty_bitmap)
1553 new->dirty_bitmap = old->dirty_bitmap;
1554 else if (!kvm->dirty_ring_size) {
1555 r = kvm_alloc_dirty_bitmap(new);
1556 if (r)
1557 return r;
1558
1559 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1560 bitmap_set(new->dirty_bitmap, 0, new->npages);
1561 }
1562 }
1563
1564 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1565
1566 /* Free the bitmap on failure if it was allocated above. */
1567 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1568 kvm_destroy_dirty_bitmap(new);
1569
1570 return r;
1571 }
1572
kvm_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1573 static void kvm_commit_memory_region(struct kvm *kvm,
1574 struct kvm_memory_slot *old,
1575 const struct kvm_memory_slot *new,
1576 enum kvm_mr_change change)
1577 {
1578 /*
1579 * Update the total number of memslot pages before calling the arch
1580 * hook so that architectures can consume the result directly.
1581 */
1582 if (change == KVM_MR_DELETE)
1583 kvm->nr_memslot_pages -= old->npages;
1584 else if (change == KVM_MR_CREATE)
1585 kvm->nr_memslot_pages += new->npages;
1586
1587 kvm_arch_commit_memory_region(kvm, old, new, change);
1588
1589 switch (change) {
1590 case KVM_MR_CREATE:
1591 /* Nothing more to do. */
1592 break;
1593 case KVM_MR_DELETE:
1594 /* Free the old memslot and all its metadata. */
1595 kvm_free_memslot(kvm, old);
1596 break;
1597 case KVM_MR_MOVE:
1598 case KVM_MR_FLAGS_ONLY:
1599 /*
1600 * Free the dirty bitmap as needed; the below check encompasses
1601 * both the flags and whether a ring buffer is being used)
1602 */
1603 if (old->dirty_bitmap && !new->dirty_bitmap)
1604 kvm_destroy_dirty_bitmap(old);
1605
1606 /*
1607 * The final quirk. Free the detached, old slot, but only its
1608 * memory, not any metadata. Metadata, including arch specific
1609 * data, may be reused by @new.
1610 */
1611 kfree(old);
1612 break;
1613 default:
1614 BUG();
1615 }
1616 }
1617
1618 /*
1619 * Activate @new, which must be installed in the inactive slots by the caller,
1620 * by swapping the active slots and then propagating @new to @old once @old is
1621 * unreachable and can be safely modified.
1622 *
1623 * With NULL @old this simply adds @new to @active (while swapping the sets).
1624 * With NULL @new this simply removes @old from @active and frees it
1625 * (while also swapping the sets).
1626 */
kvm_activate_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1627 static void kvm_activate_memslot(struct kvm *kvm,
1628 struct kvm_memory_slot *old,
1629 struct kvm_memory_slot *new)
1630 {
1631 int as_id = kvm_memslots_get_as_id(old, new);
1632
1633 kvm_swap_active_memslots(kvm, as_id);
1634
1635 /* Propagate the new memslot to the now inactive memslots. */
1636 kvm_replace_memslot(kvm, old, new);
1637 }
1638
kvm_copy_memslot(struct kvm_memory_slot * dest,const struct kvm_memory_slot * src)1639 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1640 const struct kvm_memory_slot *src)
1641 {
1642 dest->base_gfn = src->base_gfn;
1643 dest->npages = src->npages;
1644 dest->dirty_bitmap = src->dirty_bitmap;
1645 dest->arch = src->arch;
1646 dest->userspace_addr = src->userspace_addr;
1647 dest->flags = src->flags;
1648 dest->id = src->id;
1649 dest->as_id = src->as_id;
1650 }
1651
kvm_invalidate_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * invalid_slot)1652 static void kvm_invalidate_memslot(struct kvm *kvm,
1653 struct kvm_memory_slot *old,
1654 struct kvm_memory_slot *invalid_slot)
1655 {
1656 /*
1657 * Mark the current slot INVALID. As with all memslot modifications,
1658 * this must be done on an unreachable slot to avoid modifying the
1659 * current slot in the active tree.
1660 */
1661 kvm_copy_memslot(invalid_slot, old);
1662 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1663 kvm_replace_memslot(kvm, old, invalid_slot);
1664
1665 /*
1666 * Activate the slot that is now marked INVALID, but don't propagate
1667 * the slot to the now inactive slots. The slot is either going to be
1668 * deleted or recreated as a new slot.
1669 */
1670 kvm_swap_active_memslots(kvm, old->as_id);
1671
1672 /*
1673 * From this point no new shadow pages pointing to a deleted, or moved,
1674 * memslot will be created. Validation of sp->gfn happens in:
1675 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1676 * - kvm_is_visible_gfn (mmu_check_root)
1677 */
1678 kvm_arch_flush_shadow_memslot(kvm, old);
1679 kvm_arch_guest_memory_reclaimed(kvm);
1680
1681 /* Was released by kvm_swap_active_memslots, reacquire. */
1682 mutex_lock(&kvm->slots_arch_lock);
1683
1684 /*
1685 * Copy the arch-specific field of the newly-installed slot back to the
1686 * old slot as the arch data could have changed between releasing
1687 * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1688 * above. Writers are required to retrieve memslots *after* acquiring
1689 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1690 */
1691 old->arch = invalid_slot->arch;
1692 }
1693
kvm_create_memslot(struct kvm * kvm,struct kvm_memory_slot * new)1694 static void kvm_create_memslot(struct kvm *kvm,
1695 struct kvm_memory_slot *new)
1696 {
1697 /* Add the new memslot to the inactive set and activate. */
1698 kvm_replace_memslot(kvm, NULL, new);
1699 kvm_activate_memslot(kvm, NULL, new);
1700 }
1701
kvm_delete_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * invalid_slot)1702 static void kvm_delete_memslot(struct kvm *kvm,
1703 struct kvm_memory_slot *old,
1704 struct kvm_memory_slot *invalid_slot)
1705 {
1706 /*
1707 * Remove the old memslot (in the inactive memslots) by passing NULL as
1708 * the "new" slot, and for the invalid version in the active slots.
1709 */
1710 kvm_replace_memslot(kvm, old, NULL);
1711 kvm_activate_memslot(kvm, invalid_slot, NULL);
1712 }
1713
kvm_move_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,struct kvm_memory_slot * invalid_slot)1714 static void kvm_move_memslot(struct kvm *kvm,
1715 struct kvm_memory_slot *old,
1716 struct kvm_memory_slot *new,
1717 struct kvm_memory_slot *invalid_slot)
1718 {
1719 /*
1720 * Replace the old memslot in the inactive slots, and then swap slots
1721 * and replace the current INVALID with the new as well.
1722 */
1723 kvm_replace_memslot(kvm, old, new);
1724 kvm_activate_memslot(kvm, invalid_slot, new);
1725 }
1726
kvm_update_flags_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1727 static void kvm_update_flags_memslot(struct kvm *kvm,
1728 struct kvm_memory_slot *old,
1729 struct kvm_memory_slot *new)
1730 {
1731 /*
1732 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1733 * an intermediate step. Instead, the old memslot is simply replaced
1734 * with a new, updated copy in both memslot sets.
1735 */
1736 kvm_replace_memslot(kvm, old, new);
1737 kvm_activate_memslot(kvm, old, new);
1738 }
1739
kvm_set_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1740 static int kvm_set_memslot(struct kvm *kvm,
1741 struct kvm_memory_slot *old,
1742 struct kvm_memory_slot *new,
1743 enum kvm_mr_change change)
1744 {
1745 struct kvm_memory_slot *invalid_slot;
1746 int r;
1747
1748 /*
1749 * Released in kvm_swap_active_memslots.
1750 *
1751 * Must be held from before the current memslots are copied until
1752 * after the new memslots are installed with rcu_assign_pointer,
1753 * then released before the synchronize srcu in kvm_swap_active_memslots.
1754 *
1755 * When modifying memslots outside of the slots_lock, must be held
1756 * before reading the pointer to the current memslots until after all
1757 * changes to those memslots are complete.
1758 *
1759 * These rules ensure that installing new memslots does not lose
1760 * changes made to the previous memslots.
1761 */
1762 mutex_lock(&kvm->slots_arch_lock);
1763
1764 /*
1765 * Invalidate the old slot if it's being deleted or moved. This is
1766 * done prior to actually deleting/moving the memslot to allow vCPUs to
1767 * continue running by ensuring there are no mappings or shadow pages
1768 * for the memslot when it is deleted/moved. Without pre-invalidation
1769 * (and without a lock), a window would exist between effecting the
1770 * delete/move and committing the changes in arch code where KVM or a
1771 * guest could access a non-existent memslot.
1772 *
1773 * Modifications are done on a temporary, unreachable slot. The old
1774 * slot needs to be preserved in case a later step fails and the
1775 * invalidation needs to be reverted.
1776 */
1777 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1778 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1779 if (!invalid_slot) {
1780 mutex_unlock(&kvm->slots_arch_lock);
1781 return -ENOMEM;
1782 }
1783 kvm_invalidate_memslot(kvm, old, invalid_slot);
1784 }
1785
1786 r = kvm_prepare_memory_region(kvm, old, new, change);
1787 if (r) {
1788 /*
1789 * For DELETE/MOVE, revert the above INVALID change. No
1790 * modifications required since the original slot was preserved
1791 * in the inactive slots. Changing the active memslots also
1792 * release slots_arch_lock.
1793 */
1794 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1795 kvm_activate_memslot(kvm, invalid_slot, old);
1796 kfree(invalid_slot);
1797 } else {
1798 mutex_unlock(&kvm->slots_arch_lock);
1799 }
1800 return r;
1801 }
1802
1803 /*
1804 * For DELETE and MOVE, the working slot is now active as the INVALID
1805 * version of the old slot. MOVE is particularly special as it reuses
1806 * the old slot and returns a copy of the old slot (in working_slot).
1807 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1808 * old slot is detached but otherwise preserved.
1809 */
1810 if (change == KVM_MR_CREATE)
1811 kvm_create_memslot(kvm, new);
1812 else if (change == KVM_MR_DELETE)
1813 kvm_delete_memslot(kvm, old, invalid_slot);
1814 else if (change == KVM_MR_MOVE)
1815 kvm_move_memslot(kvm, old, new, invalid_slot);
1816 else if (change == KVM_MR_FLAGS_ONLY)
1817 kvm_update_flags_memslot(kvm, old, new);
1818 else
1819 BUG();
1820
1821 /* Free the temporary INVALID slot used for DELETE and MOVE. */
1822 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1823 kfree(invalid_slot);
1824
1825 /*
1826 * No need to refresh new->arch, changes after dropping slots_arch_lock
1827 * will directly hit the final, active memslot. Architectures are
1828 * responsible for knowing that new->arch may be stale.
1829 */
1830 kvm_commit_memory_region(kvm, old, new, change);
1831
1832 return 0;
1833 }
1834
kvm_check_memslot_overlap(struct kvm_memslots * slots,int id,gfn_t start,gfn_t end)1835 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1836 gfn_t start, gfn_t end)
1837 {
1838 struct kvm_memslot_iter iter;
1839
1840 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1841 if (iter.slot->id != id)
1842 return true;
1843 }
1844
1845 return false;
1846 }
1847
1848 /*
1849 * Allocate some memory and give it an address in the guest physical address
1850 * space.
1851 *
1852 * Discontiguous memory is allowed, mostly for framebuffers.
1853 *
1854 * Must be called holding kvm->slots_lock for write.
1855 */
__kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1856 int __kvm_set_memory_region(struct kvm *kvm,
1857 const struct kvm_userspace_memory_region *mem)
1858 {
1859 struct kvm_memory_slot *old, *new;
1860 struct kvm_memslots *slots;
1861 enum kvm_mr_change change;
1862 unsigned long npages;
1863 gfn_t base_gfn;
1864 int as_id, id;
1865 int r;
1866
1867 r = check_memory_region_flags(mem);
1868 if (r)
1869 return r;
1870
1871 as_id = mem->slot >> 16;
1872 id = (u16)mem->slot;
1873
1874 /* General sanity checks */
1875 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1876 (mem->memory_size != (unsigned long)mem->memory_size))
1877 return -EINVAL;
1878 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1879 return -EINVAL;
1880 /* We can read the guest memory with __xxx_user() later on. */
1881 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1882 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1883 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1884 mem->memory_size))
1885 return -EINVAL;
1886 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1887 return -EINVAL;
1888 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1889 return -EINVAL;
1890 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1891 return -EINVAL;
1892
1893 slots = __kvm_memslots(kvm, as_id);
1894
1895 /*
1896 * Note, the old memslot (and the pointer itself!) may be invalidated
1897 * and/or destroyed by kvm_set_memslot().
1898 */
1899 old = id_to_memslot(slots, id);
1900
1901 if (!mem->memory_size) {
1902 if (!old || !old->npages)
1903 return -EINVAL;
1904
1905 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1906 return -EIO;
1907
1908 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1909 }
1910
1911 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1912 npages = (mem->memory_size >> PAGE_SHIFT);
1913
1914 if (!old || !old->npages) {
1915 change = KVM_MR_CREATE;
1916
1917 /*
1918 * To simplify KVM internals, the total number of pages across
1919 * all memslots must fit in an unsigned long.
1920 */
1921 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1922 return -EINVAL;
1923 } else { /* Modify an existing slot. */
1924 if ((mem->userspace_addr != old->userspace_addr) ||
1925 (npages != old->npages) ||
1926 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1927 return -EINVAL;
1928
1929 if (base_gfn != old->base_gfn)
1930 change = KVM_MR_MOVE;
1931 else if (mem->flags != old->flags)
1932 change = KVM_MR_FLAGS_ONLY;
1933 else /* Nothing to change. */
1934 return 0;
1935 }
1936
1937 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
1938 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
1939 return -EEXIST;
1940
1941 /* Allocate a slot that will persist in the memslot. */
1942 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
1943 if (!new)
1944 return -ENOMEM;
1945
1946 new->as_id = as_id;
1947 new->id = id;
1948 new->base_gfn = base_gfn;
1949 new->npages = npages;
1950 new->flags = mem->flags;
1951 new->userspace_addr = mem->userspace_addr;
1952
1953 r = kvm_set_memslot(kvm, old, new, change);
1954 if (r)
1955 kfree(new);
1956 return r;
1957 }
1958 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1959
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1960 int kvm_set_memory_region(struct kvm *kvm,
1961 const struct kvm_userspace_memory_region *mem)
1962 {
1963 int r;
1964
1965 mutex_lock(&kvm->slots_lock);
1966 r = __kvm_set_memory_region(kvm, mem);
1967 mutex_unlock(&kvm->slots_lock);
1968 return r;
1969 }
1970 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1971
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem)1972 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1973 struct kvm_userspace_memory_region *mem)
1974 {
1975 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1976 return -EINVAL;
1977
1978 return kvm_set_memory_region(kvm, mem);
1979 }
1980
1981 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1982 /**
1983 * kvm_get_dirty_log - get a snapshot of dirty pages
1984 * @kvm: pointer to kvm instance
1985 * @log: slot id and address to which we copy the log
1986 * @is_dirty: set to '1' if any dirty pages were found
1987 * @memslot: set to the associated memslot, always valid on success
1988 */
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty,struct kvm_memory_slot ** memslot)1989 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1990 int *is_dirty, struct kvm_memory_slot **memslot)
1991 {
1992 struct kvm_memslots *slots;
1993 int i, as_id, id;
1994 unsigned long n;
1995 unsigned long any = 0;
1996
1997 /* Dirty ring tracking is exclusive to dirty log tracking */
1998 if (kvm->dirty_ring_size)
1999 return -ENXIO;
2000
2001 *memslot = NULL;
2002 *is_dirty = 0;
2003
2004 as_id = log->slot >> 16;
2005 id = (u16)log->slot;
2006 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2007 return -EINVAL;
2008
2009 slots = __kvm_memslots(kvm, as_id);
2010 *memslot = id_to_memslot(slots, id);
2011 if (!(*memslot) || !(*memslot)->dirty_bitmap)
2012 return -ENOENT;
2013
2014 kvm_arch_sync_dirty_log(kvm, *memslot);
2015
2016 n = kvm_dirty_bitmap_bytes(*memslot);
2017
2018 for (i = 0; !any && i < n/sizeof(long); ++i)
2019 any = (*memslot)->dirty_bitmap[i];
2020
2021 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2022 return -EFAULT;
2023
2024 if (any)
2025 *is_dirty = 1;
2026 return 0;
2027 }
2028 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2029
2030 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2031 /**
2032 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2033 * and reenable dirty page tracking for the corresponding pages.
2034 * @kvm: pointer to kvm instance
2035 * @log: slot id and address to which we copy the log
2036 *
2037 * We need to keep it in mind that VCPU threads can write to the bitmap
2038 * concurrently. So, to avoid losing track of dirty pages we keep the
2039 * following order:
2040 *
2041 * 1. Take a snapshot of the bit and clear it if needed.
2042 * 2. Write protect the corresponding page.
2043 * 3. Copy the snapshot to the userspace.
2044 * 4. Upon return caller flushes TLB's if needed.
2045 *
2046 * Between 2 and 4, the guest may write to the page using the remaining TLB
2047 * entry. This is not a problem because the page is reported dirty using
2048 * the snapshot taken before and step 4 ensures that writes done after
2049 * exiting to userspace will be logged for the next call.
2050 *
2051 */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log)2052 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2053 {
2054 struct kvm_memslots *slots;
2055 struct kvm_memory_slot *memslot;
2056 int i, as_id, id;
2057 unsigned long n;
2058 unsigned long *dirty_bitmap;
2059 unsigned long *dirty_bitmap_buffer;
2060 bool flush;
2061
2062 /* Dirty ring tracking is exclusive to dirty log tracking */
2063 if (kvm->dirty_ring_size)
2064 return -ENXIO;
2065
2066 as_id = log->slot >> 16;
2067 id = (u16)log->slot;
2068 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2069 return -EINVAL;
2070
2071 slots = __kvm_memslots(kvm, as_id);
2072 memslot = id_to_memslot(slots, id);
2073 if (!memslot || !memslot->dirty_bitmap)
2074 return -ENOENT;
2075
2076 dirty_bitmap = memslot->dirty_bitmap;
2077
2078 kvm_arch_sync_dirty_log(kvm, memslot);
2079
2080 n = kvm_dirty_bitmap_bytes(memslot);
2081 flush = false;
2082 if (kvm->manual_dirty_log_protect) {
2083 /*
2084 * Unlike kvm_get_dirty_log, we always return false in *flush,
2085 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2086 * is some code duplication between this function and
2087 * kvm_get_dirty_log, but hopefully all architecture
2088 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2089 * can be eliminated.
2090 */
2091 dirty_bitmap_buffer = dirty_bitmap;
2092 } else {
2093 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2094 memset(dirty_bitmap_buffer, 0, n);
2095
2096 KVM_MMU_LOCK(kvm);
2097 for (i = 0; i < n / sizeof(long); i++) {
2098 unsigned long mask;
2099 gfn_t offset;
2100
2101 if (!dirty_bitmap[i])
2102 continue;
2103
2104 flush = true;
2105 mask = xchg(&dirty_bitmap[i], 0);
2106 dirty_bitmap_buffer[i] = mask;
2107
2108 offset = i * BITS_PER_LONG;
2109 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2110 offset, mask);
2111 }
2112 KVM_MMU_UNLOCK(kvm);
2113 }
2114
2115 if (flush)
2116 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2117
2118 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2119 return -EFAULT;
2120 return 0;
2121 }
2122
2123
2124 /**
2125 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2126 * @kvm: kvm instance
2127 * @log: slot id and address to which we copy the log
2128 *
2129 * Steps 1-4 below provide general overview of dirty page logging. See
2130 * kvm_get_dirty_log_protect() function description for additional details.
2131 *
2132 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2133 * always flush the TLB (step 4) even if previous step failed and the dirty
2134 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2135 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2136 * writes will be marked dirty for next log read.
2137 *
2138 * 1. Take a snapshot of the bit and clear it if needed.
2139 * 2. Write protect the corresponding page.
2140 * 3. Copy the snapshot to the userspace.
2141 * 4. Flush TLB's if needed.
2142 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)2143 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2144 struct kvm_dirty_log *log)
2145 {
2146 int r;
2147
2148 mutex_lock(&kvm->slots_lock);
2149
2150 r = kvm_get_dirty_log_protect(kvm, log);
2151
2152 mutex_unlock(&kvm->slots_lock);
2153 return r;
2154 }
2155
2156 /**
2157 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2158 * and reenable dirty page tracking for the corresponding pages.
2159 * @kvm: pointer to kvm instance
2160 * @log: slot id and address from which to fetch the bitmap of dirty pages
2161 */
kvm_clear_dirty_log_protect(struct kvm * kvm,struct kvm_clear_dirty_log * log)2162 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2163 struct kvm_clear_dirty_log *log)
2164 {
2165 struct kvm_memslots *slots;
2166 struct kvm_memory_slot *memslot;
2167 int as_id, id;
2168 gfn_t offset;
2169 unsigned long i, n;
2170 unsigned long *dirty_bitmap;
2171 unsigned long *dirty_bitmap_buffer;
2172 bool flush;
2173
2174 /* Dirty ring tracking is exclusive to dirty log tracking */
2175 if (kvm->dirty_ring_size)
2176 return -ENXIO;
2177
2178 as_id = log->slot >> 16;
2179 id = (u16)log->slot;
2180 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2181 return -EINVAL;
2182
2183 if (log->first_page & 63)
2184 return -EINVAL;
2185
2186 slots = __kvm_memslots(kvm, as_id);
2187 memslot = id_to_memslot(slots, id);
2188 if (!memslot || !memslot->dirty_bitmap)
2189 return -ENOENT;
2190
2191 dirty_bitmap = memslot->dirty_bitmap;
2192
2193 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2194
2195 if (log->first_page > memslot->npages ||
2196 log->num_pages > memslot->npages - log->first_page ||
2197 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2198 return -EINVAL;
2199
2200 kvm_arch_sync_dirty_log(kvm, memslot);
2201
2202 flush = false;
2203 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2204 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2205 return -EFAULT;
2206
2207 KVM_MMU_LOCK(kvm);
2208 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2209 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2210 i++, offset += BITS_PER_LONG) {
2211 unsigned long mask = *dirty_bitmap_buffer++;
2212 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2213 if (!mask)
2214 continue;
2215
2216 mask &= atomic_long_fetch_andnot(mask, p);
2217
2218 /*
2219 * mask contains the bits that really have been cleared. This
2220 * never includes any bits beyond the length of the memslot (if
2221 * the length is not aligned to 64 pages), therefore it is not
2222 * a problem if userspace sets them in log->dirty_bitmap.
2223 */
2224 if (mask) {
2225 flush = true;
2226 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2227 offset, mask);
2228 }
2229 }
2230 KVM_MMU_UNLOCK(kvm);
2231
2232 if (flush)
2233 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2234
2235 return 0;
2236 }
2237
kvm_vm_ioctl_clear_dirty_log(struct kvm * kvm,struct kvm_clear_dirty_log * log)2238 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2239 struct kvm_clear_dirty_log *log)
2240 {
2241 int r;
2242
2243 mutex_lock(&kvm->slots_lock);
2244
2245 r = kvm_clear_dirty_log_protect(kvm, log);
2246
2247 mutex_unlock(&kvm->slots_lock);
2248 return r;
2249 }
2250 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2251
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)2252 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2253 {
2254 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2255 }
2256 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2257
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)2258 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2259 {
2260 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2261 u64 gen = slots->generation;
2262 struct kvm_memory_slot *slot;
2263
2264 /*
2265 * This also protects against using a memslot from a different address space,
2266 * since different address spaces have different generation numbers.
2267 */
2268 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2269 vcpu->last_used_slot = NULL;
2270 vcpu->last_used_slot_gen = gen;
2271 }
2272
2273 slot = try_get_memslot(vcpu->last_used_slot, gfn);
2274 if (slot)
2275 return slot;
2276
2277 /*
2278 * Fall back to searching all memslots. We purposely use
2279 * search_memslots() instead of __gfn_to_memslot() to avoid
2280 * thrashing the VM-wide last_used_slot in kvm_memslots.
2281 */
2282 slot = search_memslots(slots, gfn, false);
2283 if (slot) {
2284 vcpu->last_used_slot = slot;
2285 return slot;
2286 }
2287
2288 return NULL;
2289 }
2290
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)2291 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2292 {
2293 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2294
2295 return kvm_is_visible_memslot(memslot);
2296 }
2297 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2298
kvm_vcpu_is_visible_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)2299 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2300 {
2301 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2302
2303 return kvm_is_visible_memslot(memslot);
2304 }
2305 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2306
kvm_host_page_size(struct kvm_vcpu * vcpu,gfn_t gfn)2307 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2308 {
2309 struct vm_area_struct *vma;
2310 unsigned long addr, size;
2311
2312 size = PAGE_SIZE;
2313
2314 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2315 if (kvm_is_error_hva(addr))
2316 return PAGE_SIZE;
2317
2318 mmap_read_lock(current->mm);
2319 vma = find_vma(current->mm, addr);
2320 if (!vma)
2321 goto out;
2322
2323 size = vma_kernel_pagesize(vma);
2324
2325 out:
2326 mmap_read_unlock(current->mm);
2327
2328 return size;
2329 }
2330
memslot_is_readonly(const struct kvm_memory_slot * slot)2331 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2332 {
2333 return slot->flags & KVM_MEM_READONLY;
2334 }
2335
__gfn_to_hva_many(const struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)2336 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2337 gfn_t *nr_pages, bool write)
2338 {
2339 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2340 return KVM_HVA_ERR_BAD;
2341
2342 if (memslot_is_readonly(slot) && write)
2343 return KVM_HVA_ERR_RO_BAD;
2344
2345 if (nr_pages)
2346 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2347
2348 return __gfn_to_hva_memslot(slot, gfn);
2349 }
2350
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)2351 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2352 gfn_t *nr_pages)
2353 {
2354 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2355 }
2356
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)2357 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2358 gfn_t gfn)
2359 {
2360 return gfn_to_hva_many(slot, gfn, NULL);
2361 }
2362 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2363
gfn_to_hva(struct kvm * kvm,gfn_t gfn)2364 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2365 {
2366 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2367 }
2368 EXPORT_SYMBOL_GPL(gfn_to_hva);
2369
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)2370 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2371 {
2372 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2373 }
2374 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2375
2376 /*
2377 * Return the hva of a @gfn and the R/W attribute if possible.
2378 *
2379 * @slot: the kvm_memory_slot which contains @gfn
2380 * @gfn: the gfn to be translated
2381 * @writable: used to return the read/write attribute of the @slot if the hva
2382 * is valid and @writable is not NULL
2383 */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)2384 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2385 gfn_t gfn, bool *writable)
2386 {
2387 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2388
2389 if (!kvm_is_error_hva(hva) && writable)
2390 *writable = !memslot_is_readonly(slot);
2391
2392 return hva;
2393 }
2394
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)2395 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2396 {
2397 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2398
2399 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2400 }
2401
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)2402 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2403 {
2404 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2405
2406 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2407 }
2408
check_user_page_hwpoison(unsigned long addr)2409 static inline int check_user_page_hwpoison(unsigned long addr)
2410 {
2411 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2412
2413 rc = get_user_pages(addr, 1, flags, NULL, NULL);
2414 return rc == -EHWPOISON;
2415 }
2416
2417 /*
2418 * The fast path to get the writable pfn which will be stored in @pfn,
2419 * true indicates success, otherwise false is returned. It's also the
2420 * only part that runs if we can in atomic context.
2421 */
hva_to_pfn_fast(unsigned long addr,bool write_fault,bool * writable,kvm_pfn_t * pfn)2422 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2423 bool *writable, kvm_pfn_t *pfn)
2424 {
2425 struct page *page[1];
2426
2427 /*
2428 * Fast pin a writable pfn only if it is a write fault request
2429 * or the caller allows to map a writable pfn for a read fault
2430 * request.
2431 */
2432 if (!(write_fault || writable))
2433 return false;
2434
2435 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2436 *pfn = page_to_pfn(page[0]);
2437
2438 if (writable)
2439 *writable = true;
2440 return true;
2441 }
2442
2443 return false;
2444 }
2445
2446 /*
2447 * The slow path to get the pfn of the specified host virtual address,
2448 * 1 indicates success, -errno is returned if error is detected.
2449 */
hva_to_pfn_slow(unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * pfn)2450 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2451 bool *writable, kvm_pfn_t *pfn)
2452 {
2453 unsigned int flags = FOLL_HWPOISON;
2454 struct page *page;
2455 int npages = 0;
2456
2457 might_sleep();
2458
2459 if (writable)
2460 *writable = write_fault;
2461
2462 if (write_fault)
2463 flags |= FOLL_WRITE;
2464 if (async)
2465 flags |= FOLL_NOWAIT;
2466
2467 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2468 if (npages != 1)
2469 return npages;
2470
2471 /* map read fault as writable if possible */
2472 if (unlikely(!write_fault) && writable) {
2473 struct page *wpage;
2474
2475 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2476 *writable = true;
2477 put_page(page);
2478 page = wpage;
2479 }
2480 }
2481 *pfn = page_to_pfn(page);
2482 return npages;
2483 }
2484
vma_is_valid(struct vm_area_struct * vma,bool write_fault)2485 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2486 {
2487 if (unlikely(!(vma->vm_flags & VM_READ)))
2488 return false;
2489
2490 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2491 return false;
2492
2493 return true;
2494 }
2495
kvm_try_get_pfn(kvm_pfn_t pfn)2496 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2497 {
2498 if (kvm_is_reserved_pfn(pfn))
2499 return 1;
2500 return get_page_unless_zero(pfn_to_page(pfn));
2501 }
2502
hva_to_pfn_remapped(struct vm_area_struct * vma,unsigned long addr,bool write_fault,bool * writable,kvm_pfn_t * p_pfn)2503 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2504 unsigned long addr, bool write_fault,
2505 bool *writable, kvm_pfn_t *p_pfn)
2506 {
2507 kvm_pfn_t pfn;
2508 pte_t *ptep;
2509 spinlock_t *ptl;
2510 int r;
2511
2512 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2513 if (r) {
2514 /*
2515 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2516 * not call the fault handler, so do it here.
2517 */
2518 bool unlocked = false;
2519 r = fixup_user_fault(current->mm, addr,
2520 (write_fault ? FAULT_FLAG_WRITE : 0),
2521 &unlocked);
2522 if (unlocked)
2523 return -EAGAIN;
2524 if (r)
2525 return r;
2526
2527 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2528 if (r)
2529 return r;
2530 }
2531
2532 if (write_fault && !pte_write(*ptep)) {
2533 pfn = KVM_PFN_ERR_RO_FAULT;
2534 goto out;
2535 }
2536
2537 if (writable)
2538 *writable = pte_write(*ptep);
2539 pfn = pte_pfn(*ptep);
2540
2541 /*
2542 * Get a reference here because callers of *hva_to_pfn* and
2543 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2544 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
2545 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2546 * simply do nothing for reserved pfns.
2547 *
2548 * Whoever called remap_pfn_range is also going to call e.g.
2549 * unmap_mapping_range before the underlying pages are freed,
2550 * causing a call to our MMU notifier.
2551 *
2552 * Certain IO or PFNMAP mappings can be backed with valid
2553 * struct pages, but be allocated without refcounting e.g.,
2554 * tail pages of non-compound higher order allocations, which
2555 * would then underflow the refcount when the caller does the
2556 * required put_page. Don't allow those pages here.
2557 */
2558 if (!kvm_try_get_pfn(pfn))
2559 r = -EFAULT;
2560
2561 out:
2562 pte_unmap_unlock(ptep, ptl);
2563 *p_pfn = pfn;
2564
2565 return r;
2566 }
2567
2568 /*
2569 * Pin guest page in memory and return its pfn.
2570 * @addr: host virtual address which maps memory to the guest
2571 * @atomic: whether this function can sleep
2572 * @async: whether this function need to wait IO complete if the
2573 * host page is not in the memory
2574 * @write_fault: whether we should get a writable host page
2575 * @writable: whether it allows to map a writable host page for !@write_fault
2576 *
2577 * The function will map a writable host page for these two cases:
2578 * 1): @write_fault = true
2579 * 2): @write_fault = false && @writable, @writable will tell the caller
2580 * whether the mapping is writable.
2581 */
hva_to_pfn(unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable)2582 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2583 bool write_fault, bool *writable)
2584 {
2585 struct vm_area_struct *vma;
2586 kvm_pfn_t pfn = 0;
2587 int npages, r;
2588
2589 /* we can do it either atomically or asynchronously, not both */
2590 BUG_ON(atomic && async);
2591
2592 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2593 return pfn;
2594
2595 if (atomic)
2596 return KVM_PFN_ERR_FAULT;
2597
2598 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2599 if (npages == 1)
2600 return pfn;
2601
2602 mmap_read_lock(current->mm);
2603 if (npages == -EHWPOISON ||
2604 (!async && check_user_page_hwpoison(addr))) {
2605 pfn = KVM_PFN_ERR_HWPOISON;
2606 goto exit;
2607 }
2608
2609 retry:
2610 vma = vma_lookup(current->mm, addr);
2611
2612 if (vma == NULL)
2613 pfn = KVM_PFN_ERR_FAULT;
2614 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2615 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2616 if (r == -EAGAIN)
2617 goto retry;
2618 if (r < 0)
2619 pfn = KVM_PFN_ERR_FAULT;
2620 } else {
2621 if (async && vma_is_valid(vma, write_fault))
2622 *async = true;
2623 pfn = KVM_PFN_ERR_FAULT;
2624 }
2625 exit:
2626 mmap_read_unlock(current->mm);
2627 return pfn;
2628 }
2629
__gfn_to_pfn_memslot(const struct kvm_memory_slot * slot,gfn_t gfn,bool atomic,bool * async,bool write_fault,bool * writable,hva_t * hva)2630 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2631 bool atomic, bool *async, bool write_fault,
2632 bool *writable, hva_t *hva)
2633 {
2634 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2635
2636 if (hva)
2637 *hva = addr;
2638
2639 if (addr == KVM_HVA_ERR_RO_BAD) {
2640 if (writable)
2641 *writable = false;
2642 return KVM_PFN_ERR_RO_FAULT;
2643 }
2644
2645 if (kvm_is_error_hva(addr)) {
2646 if (writable)
2647 *writable = false;
2648 return KVM_PFN_NOSLOT;
2649 }
2650
2651 /* Do not map writable pfn in the readonly memslot. */
2652 if (writable && memslot_is_readonly(slot)) {
2653 *writable = false;
2654 writable = NULL;
2655 }
2656
2657 return hva_to_pfn(addr, atomic, async, write_fault,
2658 writable);
2659 }
2660 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2661
gfn_to_pfn_prot(struct kvm * kvm,gfn_t gfn,bool write_fault,bool * writable)2662 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2663 bool *writable)
2664 {
2665 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2666 write_fault, writable, NULL);
2667 }
2668 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2669
gfn_to_pfn_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)2670 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2671 {
2672 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2673 }
2674 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2675
gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot * slot,gfn_t gfn)2676 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2677 {
2678 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2679 }
2680 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2681
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu * vcpu,gfn_t gfn)2682 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2683 {
2684 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2685 }
2686 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2687
gfn_to_pfn(struct kvm * kvm,gfn_t gfn)2688 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2689 {
2690 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2691 }
2692 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2693
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn)2694 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2695 {
2696 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2697 }
2698 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2699
gfn_to_page_many_atomic(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)2700 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2701 struct page **pages, int nr_pages)
2702 {
2703 unsigned long addr;
2704 gfn_t entry = 0;
2705
2706 addr = gfn_to_hva_many(slot, gfn, &entry);
2707 if (kvm_is_error_hva(addr))
2708 return -1;
2709
2710 if (entry < nr_pages)
2711 return 0;
2712
2713 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2714 }
2715 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2716
kvm_pfn_to_page(kvm_pfn_t pfn)2717 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2718 {
2719 if (is_error_noslot_pfn(pfn))
2720 return KVM_ERR_PTR_BAD_PAGE;
2721
2722 if (kvm_is_reserved_pfn(pfn)) {
2723 WARN_ON(1);
2724 return KVM_ERR_PTR_BAD_PAGE;
2725 }
2726
2727 return pfn_to_page(pfn);
2728 }
2729
gfn_to_page(struct kvm * kvm,gfn_t gfn)2730 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2731 {
2732 kvm_pfn_t pfn;
2733
2734 pfn = gfn_to_pfn(kvm, gfn);
2735
2736 return kvm_pfn_to_page(pfn);
2737 }
2738 EXPORT_SYMBOL_GPL(gfn_to_page);
2739
kvm_release_pfn(kvm_pfn_t pfn,bool dirty)2740 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2741 {
2742 if (pfn == 0)
2743 return;
2744
2745 if (dirty)
2746 kvm_release_pfn_dirty(pfn);
2747 else
2748 kvm_release_pfn_clean(pfn);
2749 }
2750
kvm_vcpu_map(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map)2751 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2752 {
2753 kvm_pfn_t pfn;
2754 void *hva = NULL;
2755 struct page *page = KVM_UNMAPPED_PAGE;
2756
2757 if (!map)
2758 return -EINVAL;
2759
2760 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2761 if (is_error_noslot_pfn(pfn))
2762 return -EINVAL;
2763
2764 if (pfn_valid(pfn)) {
2765 page = pfn_to_page(pfn);
2766 hva = kmap(page);
2767 #ifdef CONFIG_HAS_IOMEM
2768 } else {
2769 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2770 #endif
2771 }
2772
2773 if (!hva)
2774 return -EFAULT;
2775
2776 map->page = page;
2777 map->hva = hva;
2778 map->pfn = pfn;
2779 map->gfn = gfn;
2780
2781 return 0;
2782 }
2783 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2784
kvm_vcpu_unmap(struct kvm_vcpu * vcpu,struct kvm_host_map * map,bool dirty)2785 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2786 {
2787 if (!map)
2788 return;
2789
2790 if (!map->hva)
2791 return;
2792
2793 if (map->page != KVM_UNMAPPED_PAGE)
2794 kunmap(map->page);
2795 #ifdef CONFIG_HAS_IOMEM
2796 else
2797 memunmap(map->hva);
2798 #endif
2799
2800 if (dirty)
2801 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2802
2803 kvm_release_pfn(map->pfn, dirty);
2804
2805 map->hva = NULL;
2806 map->page = NULL;
2807 }
2808 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2809
kvm_vcpu_gfn_to_page(struct kvm_vcpu * vcpu,gfn_t gfn)2810 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2811 {
2812 kvm_pfn_t pfn;
2813
2814 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2815
2816 return kvm_pfn_to_page(pfn);
2817 }
2818 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2819
kvm_release_page_clean(struct page * page)2820 void kvm_release_page_clean(struct page *page)
2821 {
2822 WARN_ON(is_error_page(page));
2823
2824 kvm_release_pfn_clean(page_to_pfn(page));
2825 }
2826 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2827
kvm_release_pfn_clean(kvm_pfn_t pfn)2828 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2829 {
2830 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2831 put_page(pfn_to_page(pfn));
2832 }
2833 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2834
kvm_release_page_dirty(struct page * page)2835 void kvm_release_page_dirty(struct page *page)
2836 {
2837 WARN_ON(is_error_page(page));
2838
2839 kvm_release_pfn_dirty(page_to_pfn(page));
2840 }
2841 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2842
kvm_release_pfn_dirty(kvm_pfn_t pfn)2843 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2844 {
2845 kvm_set_pfn_dirty(pfn);
2846 kvm_release_pfn_clean(pfn);
2847 }
2848 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2849
kvm_is_ad_tracked_pfn(kvm_pfn_t pfn)2850 static bool kvm_is_ad_tracked_pfn(kvm_pfn_t pfn)
2851 {
2852 if (!pfn_valid(pfn))
2853 return false;
2854
2855 /*
2856 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2857 * touched (e.g. set dirty) except by its owner".
2858 */
2859 return !PageReserved(pfn_to_page(pfn));
2860 }
2861
kvm_set_pfn_dirty(kvm_pfn_t pfn)2862 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2863 {
2864 if (kvm_is_ad_tracked_pfn(pfn))
2865 SetPageDirty(pfn_to_page(pfn));
2866 }
2867 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2868
kvm_set_pfn_accessed(kvm_pfn_t pfn)2869 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2870 {
2871 if (kvm_is_ad_tracked_pfn(pfn))
2872 mark_page_accessed(pfn_to_page(pfn));
2873 }
2874 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2875
next_segment(unsigned long len,int offset)2876 static int next_segment(unsigned long len, int offset)
2877 {
2878 if (len > PAGE_SIZE - offset)
2879 return PAGE_SIZE - offset;
2880 else
2881 return len;
2882 }
2883
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)2884 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2885 void *data, int offset, int len)
2886 {
2887 int r;
2888 unsigned long addr;
2889
2890 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2891 if (kvm_is_error_hva(addr))
2892 return -EFAULT;
2893 r = __copy_from_user(data, (void __user *)addr + offset, len);
2894 if (r)
2895 return -EFAULT;
2896 return 0;
2897 }
2898
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)2899 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2900 int len)
2901 {
2902 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2903
2904 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2905 }
2906 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2907
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)2908 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2909 int offset, int len)
2910 {
2911 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2912
2913 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2914 }
2915 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2916
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)2917 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2918 {
2919 gfn_t gfn = gpa >> PAGE_SHIFT;
2920 int seg;
2921 int offset = offset_in_page(gpa);
2922 int ret;
2923
2924 while ((seg = next_segment(len, offset)) != 0) {
2925 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2926 if (ret < 0)
2927 return ret;
2928 offset = 0;
2929 len -= seg;
2930 data += seg;
2931 ++gfn;
2932 }
2933 return 0;
2934 }
2935 EXPORT_SYMBOL_GPL(kvm_read_guest);
2936
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)2937 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2938 {
2939 gfn_t gfn = gpa >> PAGE_SHIFT;
2940 int seg;
2941 int offset = offset_in_page(gpa);
2942 int ret;
2943
2944 while ((seg = next_segment(len, offset)) != 0) {
2945 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2946 if (ret < 0)
2947 return ret;
2948 offset = 0;
2949 len -= seg;
2950 data += seg;
2951 ++gfn;
2952 }
2953 return 0;
2954 }
2955 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2956
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)2957 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2958 void *data, int offset, unsigned long len)
2959 {
2960 int r;
2961 unsigned long addr;
2962
2963 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2964 if (kvm_is_error_hva(addr))
2965 return -EFAULT;
2966 pagefault_disable();
2967 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2968 pagefault_enable();
2969 if (r)
2970 return -EFAULT;
2971 return 0;
2972 }
2973
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)2974 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2975 void *data, unsigned long len)
2976 {
2977 gfn_t gfn = gpa >> PAGE_SHIFT;
2978 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2979 int offset = offset_in_page(gpa);
2980
2981 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2982 }
2983 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2984
__kvm_write_guest_page(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)2985 static int __kvm_write_guest_page(struct kvm *kvm,
2986 struct kvm_memory_slot *memslot, gfn_t gfn,
2987 const void *data, int offset, int len)
2988 {
2989 int r;
2990 unsigned long addr;
2991
2992 addr = gfn_to_hva_memslot(memslot, gfn);
2993 if (kvm_is_error_hva(addr))
2994 return -EFAULT;
2995 r = __copy_to_user((void __user *)addr + offset, data, len);
2996 if (r)
2997 return -EFAULT;
2998 mark_page_dirty_in_slot(kvm, memslot, gfn);
2999 return 0;
3000 }
3001
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)3002 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3003 const void *data, int offset, int len)
3004 {
3005 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3006
3007 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3008 }
3009 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3010
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)3011 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3012 const void *data, int offset, int len)
3013 {
3014 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3015
3016 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3017 }
3018 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3019
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)3020 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3021 unsigned long len)
3022 {
3023 gfn_t gfn = gpa >> PAGE_SHIFT;
3024 int seg;
3025 int offset = offset_in_page(gpa);
3026 int ret;
3027
3028 while ((seg = next_segment(len, offset)) != 0) {
3029 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3030 if (ret < 0)
3031 return ret;
3032 offset = 0;
3033 len -= seg;
3034 data += seg;
3035 ++gfn;
3036 }
3037 return 0;
3038 }
3039 EXPORT_SYMBOL_GPL(kvm_write_guest);
3040
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)3041 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3042 unsigned long len)
3043 {
3044 gfn_t gfn = gpa >> PAGE_SHIFT;
3045 int seg;
3046 int offset = offset_in_page(gpa);
3047 int ret;
3048
3049 while ((seg = next_segment(len, offset)) != 0) {
3050 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3051 if (ret < 0)
3052 return ret;
3053 offset = 0;
3054 len -= seg;
3055 data += seg;
3056 ++gfn;
3057 }
3058 return 0;
3059 }
3060 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3061
__kvm_gfn_to_hva_cache_init(struct kvm_memslots * slots,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3062 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3063 struct gfn_to_hva_cache *ghc,
3064 gpa_t gpa, unsigned long len)
3065 {
3066 int offset = offset_in_page(gpa);
3067 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3068 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3069 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3070 gfn_t nr_pages_avail;
3071
3072 /* Update ghc->generation before performing any error checks. */
3073 ghc->generation = slots->generation;
3074
3075 if (start_gfn > end_gfn) {
3076 ghc->hva = KVM_HVA_ERR_BAD;
3077 return -EINVAL;
3078 }
3079
3080 /*
3081 * If the requested region crosses two memslots, we still
3082 * verify that the entire region is valid here.
3083 */
3084 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3085 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3086 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3087 &nr_pages_avail);
3088 if (kvm_is_error_hva(ghc->hva))
3089 return -EFAULT;
3090 }
3091
3092 /* Use the slow path for cross page reads and writes. */
3093 if (nr_pages_needed == 1)
3094 ghc->hva += offset;
3095 else
3096 ghc->memslot = NULL;
3097
3098 ghc->gpa = gpa;
3099 ghc->len = len;
3100 return 0;
3101 }
3102
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3103 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3104 gpa_t gpa, unsigned long len)
3105 {
3106 struct kvm_memslots *slots = kvm_memslots(kvm);
3107 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3108 }
3109 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3110
kvm_write_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3111 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3112 void *data, unsigned int offset,
3113 unsigned long len)
3114 {
3115 struct kvm_memslots *slots = kvm_memslots(kvm);
3116 int r;
3117 gpa_t gpa = ghc->gpa + offset;
3118
3119 if (WARN_ON_ONCE(len + offset > ghc->len))
3120 return -EINVAL;
3121
3122 if (slots->generation != ghc->generation) {
3123 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3124 return -EFAULT;
3125 }
3126
3127 if (kvm_is_error_hva(ghc->hva))
3128 return -EFAULT;
3129
3130 if (unlikely(!ghc->memslot))
3131 return kvm_write_guest(kvm, gpa, data, len);
3132
3133 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3134 if (r)
3135 return -EFAULT;
3136 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3137
3138 return 0;
3139 }
3140 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3141
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3142 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3143 void *data, unsigned long len)
3144 {
3145 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3146 }
3147 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3148
kvm_read_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3149 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3150 void *data, unsigned int offset,
3151 unsigned long len)
3152 {
3153 struct kvm_memslots *slots = kvm_memslots(kvm);
3154 int r;
3155 gpa_t gpa = ghc->gpa + offset;
3156
3157 if (WARN_ON_ONCE(len + offset > ghc->len))
3158 return -EINVAL;
3159
3160 if (slots->generation != ghc->generation) {
3161 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3162 return -EFAULT;
3163 }
3164
3165 if (kvm_is_error_hva(ghc->hva))
3166 return -EFAULT;
3167
3168 if (unlikely(!ghc->memslot))
3169 return kvm_read_guest(kvm, gpa, data, len);
3170
3171 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3172 if (r)
3173 return -EFAULT;
3174
3175 return 0;
3176 }
3177 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3178
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3179 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3180 void *data, unsigned long len)
3181 {
3182 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3183 }
3184 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3185
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)3186 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3187 {
3188 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3189 gfn_t gfn = gpa >> PAGE_SHIFT;
3190 int seg;
3191 int offset = offset_in_page(gpa);
3192 int ret;
3193
3194 while ((seg = next_segment(len, offset)) != 0) {
3195 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3196 if (ret < 0)
3197 return ret;
3198 offset = 0;
3199 len -= seg;
3200 ++gfn;
3201 }
3202 return 0;
3203 }
3204 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3205
mark_page_dirty_in_slot(struct kvm * kvm,const struct kvm_memory_slot * memslot,gfn_t gfn)3206 void mark_page_dirty_in_slot(struct kvm *kvm,
3207 const struct kvm_memory_slot *memslot,
3208 gfn_t gfn)
3209 {
3210 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3211
3212 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3213 if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm))
3214 return;
3215 #endif
3216
3217 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3218 unsigned long rel_gfn = gfn - memslot->base_gfn;
3219 u32 slot = (memslot->as_id << 16) | memslot->id;
3220
3221 if (kvm->dirty_ring_size)
3222 kvm_dirty_ring_push(&vcpu->dirty_ring,
3223 slot, rel_gfn);
3224 else
3225 set_bit_le(rel_gfn, memslot->dirty_bitmap);
3226 }
3227 }
3228 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3229
mark_page_dirty(struct kvm * kvm,gfn_t gfn)3230 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3231 {
3232 struct kvm_memory_slot *memslot;
3233
3234 memslot = gfn_to_memslot(kvm, gfn);
3235 mark_page_dirty_in_slot(kvm, memslot, gfn);
3236 }
3237 EXPORT_SYMBOL_GPL(mark_page_dirty);
3238
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)3239 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3240 {
3241 struct kvm_memory_slot *memslot;
3242
3243 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3244 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3245 }
3246 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3247
kvm_sigset_activate(struct kvm_vcpu * vcpu)3248 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3249 {
3250 if (!vcpu->sigset_active)
3251 return;
3252
3253 /*
3254 * This does a lockless modification of ->real_blocked, which is fine
3255 * because, only current can change ->real_blocked and all readers of
3256 * ->real_blocked don't care as long ->real_blocked is always a subset
3257 * of ->blocked.
3258 */
3259 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
3260 }
3261
kvm_sigset_deactivate(struct kvm_vcpu * vcpu)3262 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3263 {
3264 if (!vcpu->sigset_active)
3265 return;
3266
3267 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
3268 sigemptyset(¤t->real_blocked);
3269 }
3270
grow_halt_poll_ns(struct kvm_vcpu * vcpu)3271 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3272 {
3273 unsigned int old, val, grow, grow_start;
3274
3275 old = val = vcpu->halt_poll_ns;
3276 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3277 grow = READ_ONCE(halt_poll_ns_grow);
3278 if (!grow)
3279 goto out;
3280
3281 val *= grow;
3282 if (val < grow_start)
3283 val = grow_start;
3284
3285 if (val > vcpu->kvm->max_halt_poll_ns)
3286 val = vcpu->kvm->max_halt_poll_ns;
3287
3288 vcpu->halt_poll_ns = val;
3289 out:
3290 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3291 }
3292
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)3293 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3294 {
3295 unsigned int old, val, shrink, grow_start;
3296
3297 old = val = vcpu->halt_poll_ns;
3298 shrink = READ_ONCE(halt_poll_ns_shrink);
3299 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3300 if (shrink == 0)
3301 val = 0;
3302 else
3303 val /= shrink;
3304
3305 if (val < grow_start)
3306 val = 0;
3307
3308 vcpu->halt_poll_ns = val;
3309 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3310 }
3311
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)3312 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3313 {
3314 int ret = -EINTR;
3315 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3316
3317 if (kvm_arch_vcpu_runnable(vcpu)) {
3318 kvm_make_request(KVM_REQ_UNHALT, vcpu);
3319 goto out;
3320 }
3321 if (kvm_cpu_has_pending_timer(vcpu))
3322 goto out;
3323 if (signal_pending(current))
3324 goto out;
3325 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3326 goto out;
3327
3328 ret = 0;
3329 out:
3330 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3331 return ret;
3332 }
3333
3334 /*
3335 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3336 * pending. This is mostly used when halting a vCPU, but may also be used
3337 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3338 */
kvm_vcpu_block(struct kvm_vcpu * vcpu)3339 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3340 {
3341 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3342 bool waited = false;
3343
3344 vcpu->stat.generic.blocking = 1;
3345
3346 preempt_disable();
3347 kvm_arch_vcpu_blocking(vcpu);
3348 prepare_to_rcuwait(wait);
3349 preempt_enable();
3350
3351 for (;;) {
3352 set_current_state(TASK_INTERRUPTIBLE);
3353
3354 if (kvm_vcpu_check_block(vcpu) < 0)
3355 break;
3356
3357 waited = true;
3358 schedule();
3359 }
3360
3361 preempt_disable();
3362 finish_rcuwait(wait);
3363 kvm_arch_vcpu_unblocking(vcpu);
3364 preempt_enable();
3365
3366 vcpu->stat.generic.blocking = 0;
3367
3368 return waited;
3369 }
3370
update_halt_poll_stats(struct kvm_vcpu * vcpu,ktime_t start,ktime_t end,bool success)3371 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3372 ktime_t end, bool success)
3373 {
3374 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3375 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3376
3377 ++vcpu->stat.generic.halt_attempted_poll;
3378
3379 if (success) {
3380 ++vcpu->stat.generic.halt_successful_poll;
3381
3382 if (!vcpu_valid_wakeup(vcpu))
3383 ++vcpu->stat.generic.halt_poll_invalid;
3384
3385 stats->halt_poll_success_ns += poll_ns;
3386 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3387 } else {
3388 stats->halt_poll_fail_ns += poll_ns;
3389 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3390 }
3391 }
3392
3393 /*
3394 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3395 * polling is enabled, busy wait for a short time before blocking to avoid the
3396 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3397 * is halted.
3398 */
kvm_vcpu_halt(struct kvm_vcpu * vcpu)3399 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3400 {
3401 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3402 bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3403 ktime_t start, cur, poll_end;
3404 bool waited = false;
3405 u64 halt_ns;
3406
3407 start = cur = poll_end = ktime_get();
3408 if (do_halt_poll) {
3409 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3410
3411 do {
3412 /*
3413 * This sets KVM_REQ_UNHALT if an interrupt
3414 * arrives.
3415 */
3416 if (kvm_vcpu_check_block(vcpu) < 0)
3417 goto out;
3418 cpu_relax();
3419 poll_end = cur = ktime_get();
3420 } while (kvm_vcpu_can_poll(cur, stop));
3421 }
3422
3423 waited = kvm_vcpu_block(vcpu);
3424
3425 cur = ktime_get();
3426 if (waited) {
3427 vcpu->stat.generic.halt_wait_ns +=
3428 ktime_to_ns(cur) - ktime_to_ns(poll_end);
3429 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3430 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3431 }
3432 out:
3433 /* The total time the vCPU was "halted", including polling time. */
3434 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3435
3436 /*
3437 * Note, halt-polling is considered successful so long as the vCPU was
3438 * never actually scheduled out, i.e. even if the wake event arrived
3439 * after of the halt-polling loop itself, but before the full wait.
3440 */
3441 if (do_halt_poll)
3442 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3443
3444 if (halt_poll_allowed) {
3445 if (!vcpu_valid_wakeup(vcpu)) {
3446 shrink_halt_poll_ns(vcpu);
3447 } else if (vcpu->kvm->max_halt_poll_ns) {
3448 if (halt_ns <= vcpu->halt_poll_ns)
3449 ;
3450 /* we had a long block, shrink polling */
3451 else if (vcpu->halt_poll_ns &&
3452 halt_ns > vcpu->kvm->max_halt_poll_ns)
3453 shrink_halt_poll_ns(vcpu);
3454 /* we had a short halt and our poll time is too small */
3455 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3456 halt_ns < vcpu->kvm->max_halt_poll_ns)
3457 grow_halt_poll_ns(vcpu);
3458 } else {
3459 vcpu->halt_poll_ns = 0;
3460 }
3461 }
3462
3463 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3464 }
3465 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3466
kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)3467 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3468 {
3469 if (__kvm_vcpu_wake_up(vcpu)) {
3470 WRITE_ONCE(vcpu->ready, true);
3471 ++vcpu->stat.generic.halt_wakeup;
3472 return true;
3473 }
3474
3475 return false;
3476 }
3477 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3478
3479 #ifndef CONFIG_S390
3480 /*
3481 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3482 */
kvm_vcpu_kick(struct kvm_vcpu * vcpu)3483 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3484 {
3485 int me, cpu;
3486
3487 if (kvm_vcpu_wake_up(vcpu))
3488 return;
3489
3490 me = get_cpu();
3491 /*
3492 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3493 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3494 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3495 * within the vCPU thread itself.
3496 */
3497 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3498 if (vcpu->mode == IN_GUEST_MODE)
3499 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3500 goto out;
3501 }
3502
3503 /*
3504 * Note, the vCPU could get migrated to a different pCPU at any point
3505 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3506 * IPI to the previous pCPU. But, that's ok because the purpose of the
3507 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3508 * vCPU also requires it to leave IN_GUEST_MODE.
3509 */
3510 if (kvm_arch_vcpu_should_kick(vcpu)) {
3511 cpu = READ_ONCE(vcpu->cpu);
3512 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3513 smp_send_reschedule(cpu);
3514 }
3515 out:
3516 put_cpu();
3517 }
3518 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3519 #endif /* !CONFIG_S390 */
3520
kvm_vcpu_yield_to(struct kvm_vcpu * target)3521 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3522 {
3523 struct pid *pid;
3524 struct task_struct *task = NULL;
3525 int ret = 0;
3526
3527 rcu_read_lock();
3528 pid = rcu_dereference(target->pid);
3529 if (pid)
3530 task = get_pid_task(pid, PIDTYPE_PID);
3531 rcu_read_unlock();
3532 if (!task)
3533 return ret;
3534 ret = yield_to(task, 1);
3535 put_task_struct(task);
3536
3537 return ret;
3538 }
3539 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3540
3541 /*
3542 * Helper that checks whether a VCPU is eligible for directed yield.
3543 * Most eligible candidate to yield is decided by following heuristics:
3544 *
3545 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3546 * (preempted lock holder), indicated by @in_spin_loop.
3547 * Set at the beginning and cleared at the end of interception/PLE handler.
3548 *
3549 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3550 * chance last time (mostly it has become eligible now since we have probably
3551 * yielded to lockholder in last iteration. This is done by toggling
3552 * @dy_eligible each time a VCPU checked for eligibility.)
3553 *
3554 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3555 * to preempted lock-holder could result in wrong VCPU selection and CPU
3556 * burning. Giving priority for a potential lock-holder increases lock
3557 * progress.
3558 *
3559 * Since algorithm is based on heuristics, accessing another VCPU data without
3560 * locking does not harm. It may result in trying to yield to same VCPU, fail
3561 * and continue with next VCPU and so on.
3562 */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)3563 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3564 {
3565 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3566 bool eligible;
3567
3568 eligible = !vcpu->spin_loop.in_spin_loop ||
3569 vcpu->spin_loop.dy_eligible;
3570
3571 if (vcpu->spin_loop.in_spin_loop)
3572 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3573
3574 return eligible;
3575 #else
3576 return true;
3577 #endif
3578 }
3579
3580 /*
3581 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3582 * a vcpu_load/vcpu_put pair. However, for most architectures
3583 * kvm_arch_vcpu_runnable does not require vcpu_load.
3584 */
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)3585 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3586 {
3587 return kvm_arch_vcpu_runnable(vcpu);
3588 }
3589
vcpu_dy_runnable(struct kvm_vcpu * vcpu)3590 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3591 {
3592 if (kvm_arch_dy_runnable(vcpu))
3593 return true;
3594
3595 #ifdef CONFIG_KVM_ASYNC_PF
3596 if (!list_empty_careful(&vcpu->async_pf.done))
3597 return true;
3598 #endif
3599
3600 return false;
3601 }
3602
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)3603 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3604 {
3605 return false;
3606 }
3607
kvm_vcpu_on_spin(struct kvm_vcpu * me,bool yield_to_kernel_mode)3608 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3609 {
3610 struct kvm *kvm = me->kvm;
3611 struct kvm_vcpu *vcpu;
3612 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3613 unsigned long i;
3614 int yielded = 0;
3615 int try = 3;
3616 int pass;
3617
3618 kvm_vcpu_set_in_spin_loop(me, true);
3619 /*
3620 * We boost the priority of a VCPU that is runnable but not
3621 * currently running, because it got preempted by something
3622 * else and called schedule in __vcpu_run. Hopefully that
3623 * VCPU is holding the lock that we need and will release it.
3624 * We approximate round-robin by starting at the last boosted VCPU.
3625 */
3626 for (pass = 0; pass < 2 && !yielded && try; pass++) {
3627 kvm_for_each_vcpu(i, vcpu, kvm) {
3628 if (!pass && i <= last_boosted_vcpu) {
3629 i = last_boosted_vcpu;
3630 continue;
3631 } else if (pass && i > last_boosted_vcpu)
3632 break;
3633 if (!READ_ONCE(vcpu->ready))
3634 continue;
3635 if (vcpu == me)
3636 continue;
3637 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3638 continue;
3639 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3640 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3641 !kvm_arch_vcpu_in_kernel(vcpu))
3642 continue;
3643 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3644 continue;
3645
3646 yielded = kvm_vcpu_yield_to(vcpu);
3647 if (yielded > 0) {
3648 kvm->last_boosted_vcpu = i;
3649 break;
3650 } else if (yielded < 0) {
3651 try--;
3652 if (!try)
3653 break;
3654 }
3655 }
3656 }
3657 kvm_vcpu_set_in_spin_loop(me, false);
3658
3659 /* Ensure vcpu is not eligible during next spinloop */
3660 kvm_vcpu_set_dy_eligible(me, false);
3661 }
3662 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3663
kvm_page_in_dirty_ring(struct kvm * kvm,unsigned long pgoff)3664 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3665 {
3666 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3667 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3668 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3669 kvm->dirty_ring_size / PAGE_SIZE);
3670 #else
3671 return false;
3672 #endif
3673 }
3674
kvm_vcpu_fault(struct vm_fault * vmf)3675 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3676 {
3677 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3678 struct page *page;
3679
3680 if (vmf->pgoff == 0)
3681 page = virt_to_page(vcpu->run);
3682 #ifdef CONFIG_X86
3683 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3684 page = virt_to_page(vcpu->arch.pio_data);
3685 #endif
3686 #ifdef CONFIG_KVM_MMIO
3687 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3688 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3689 #endif
3690 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3691 page = kvm_dirty_ring_get_page(
3692 &vcpu->dirty_ring,
3693 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3694 else
3695 return kvm_arch_vcpu_fault(vcpu, vmf);
3696 get_page(page);
3697 vmf->page = page;
3698 return 0;
3699 }
3700
3701 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3702 .fault = kvm_vcpu_fault,
3703 };
3704
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)3705 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3706 {
3707 struct kvm_vcpu *vcpu = file->private_data;
3708 unsigned long pages = vma_pages(vma);
3709
3710 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3711 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3712 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3713 return -EINVAL;
3714
3715 vma->vm_ops = &kvm_vcpu_vm_ops;
3716 return 0;
3717 }
3718
kvm_vcpu_release(struct inode * inode,struct file * filp)3719 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3720 {
3721 struct kvm_vcpu *vcpu = filp->private_data;
3722
3723 kvm_put_kvm(vcpu->kvm);
3724 return 0;
3725 }
3726
3727 static const struct file_operations kvm_vcpu_fops = {
3728 .release = kvm_vcpu_release,
3729 .unlocked_ioctl = kvm_vcpu_ioctl,
3730 .mmap = kvm_vcpu_mmap,
3731 .llseek = noop_llseek,
3732 KVM_COMPAT(kvm_vcpu_compat_ioctl),
3733 };
3734
3735 /*
3736 * Allocates an inode for the vcpu.
3737 */
create_vcpu_fd(struct kvm_vcpu * vcpu)3738 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3739 {
3740 char name[8 + 1 + ITOA_MAX_LEN + 1];
3741
3742 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3743 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3744 }
3745
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)3746 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3747 {
3748 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3749 struct dentry *debugfs_dentry;
3750 char dir_name[ITOA_MAX_LEN * 2];
3751
3752 if (!debugfs_initialized())
3753 return;
3754
3755 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3756 debugfs_dentry = debugfs_create_dir(dir_name,
3757 vcpu->kvm->debugfs_dentry);
3758
3759 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3760 #endif
3761 }
3762
3763 /*
3764 * Creates some virtual cpus. Good luck creating more than one.
3765 */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,u32 id)3766 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3767 {
3768 int r;
3769 struct kvm_vcpu *vcpu;
3770 struct page *page;
3771
3772 if (id >= KVM_MAX_VCPU_IDS)
3773 return -EINVAL;
3774
3775 mutex_lock(&kvm->lock);
3776 if (kvm->created_vcpus >= kvm->max_vcpus) {
3777 mutex_unlock(&kvm->lock);
3778 return -EINVAL;
3779 }
3780
3781 kvm->created_vcpus++;
3782 mutex_unlock(&kvm->lock);
3783
3784 r = kvm_arch_vcpu_precreate(kvm, id);
3785 if (r)
3786 goto vcpu_decrement;
3787
3788 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3789 if (!vcpu) {
3790 r = -ENOMEM;
3791 goto vcpu_decrement;
3792 }
3793
3794 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3795 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3796 if (!page) {
3797 r = -ENOMEM;
3798 goto vcpu_free;
3799 }
3800 vcpu->run = page_address(page);
3801
3802 kvm_vcpu_init(vcpu, kvm, id);
3803
3804 r = kvm_arch_vcpu_create(vcpu);
3805 if (r)
3806 goto vcpu_free_run_page;
3807
3808 if (kvm->dirty_ring_size) {
3809 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3810 id, kvm->dirty_ring_size);
3811 if (r)
3812 goto arch_vcpu_destroy;
3813 }
3814
3815 mutex_lock(&kvm->lock);
3816 if (kvm_get_vcpu_by_id(kvm, id)) {
3817 r = -EEXIST;
3818 goto unlock_vcpu_destroy;
3819 }
3820
3821 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3822 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3823 BUG_ON(r == -EBUSY);
3824 if (r)
3825 goto unlock_vcpu_destroy;
3826
3827 /* Fill the stats id string for the vcpu */
3828 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3829 task_pid_nr(current), id);
3830
3831 /* Now it's all set up, let userspace reach it */
3832 kvm_get_kvm(kvm);
3833 r = create_vcpu_fd(vcpu);
3834 if (r < 0) {
3835 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3836 kvm_put_kvm_no_destroy(kvm);
3837 goto unlock_vcpu_destroy;
3838 }
3839
3840 /*
3841 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
3842 * pointer before kvm->online_vcpu's incremented value.
3843 */
3844 smp_wmb();
3845 atomic_inc(&kvm->online_vcpus);
3846
3847 mutex_unlock(&kvm->lock);
3848 kvm_arch_vcpu_postcreate(vcpu);
3849 kvm_create_vcpu_debugfs(vcpu);
3850 return r;
3851
3852 unlock_vcpu_destroy:
3853 mutex_unlock(&kvm->lock);
3854 kvm_dirty_ring_free(&vcpu->dirty_ring);
3855 arch_vcpu_destroy:
3856 kvm_arch_vcpu_destroy(vcpu);
3857 vcpu_free_run_page:
3858 free_page((unsigned long)vcpu->run);
3859 vcpu_free:
3860 kmem_cache_free(kvm_vcpu_cache, vcpu);
3861 vcpu_decrement:
3862 mutex_lock(&kvm->lock);
3863 kvm->created_vcpus--;
3864 mutex_unlock(&kvm->lock);
3865 return r;
3866 }
3867
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)3868 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3869 {
3870 if (sigset) {
3871 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3872 vcpu->sigset_active = 1;
3873 vcpu->sigset = *sigset;
3874 } else
3875 vcpu->sigset_active = 0;
3876 return 0;
3877 }
3878
kvm_vcpu_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)3879 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3880 size_t size, loff_t *offset)
3881 {
3882 struct kvm_vcpu *vcpu = file->private_data;
3883
3884 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3885 &kvm_vcpu_stats_desc[0], &vcpu->stat,
3886 sizeof(vcpu->stat), user_buffer, size, offset);
3887 }
3888
3889 static const struct file_operations kvm_vcpu_stats_fops = {
3890 .read = kvm_vcpu_stats_read,
3891 .llseek = noop_llseek,
3892 };
3893
kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu * vcpu)3894 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3895 {
3896 int fd;
3897 struct file *file;
3898 char name[15 + ITOA_MAX_LEN + 1];
3899
3900 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3901
3902 fd = get_unused_fd_flags(O_CLOEXEC);
3903 if (fd < 0)
3904 return fd;
3905
3906 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3907 if (IS_ERR(file)) {
3908 put_unused_fd(fd);
3909 return PTR_ERR(file);
3910 }
3911 file->f_mode |= FMODE_PREAD;
3912 fd_install(fd, file);
3913
3914 return fd;
3915 }
3916
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3917 static long kvm_vcpu_ioctl(struct file *filp,
3918 unsigned int ioctl, unsigned long arg)
3919 {
3920 struct kvm_vcpu *vcpu = filp->private_data;
3921 void __user *argp = (void __user *)arg;
3922 int r;
3923 struct kvm_fpu *fpu = NULL;
3924 struct kvm_sregs *kvm_sregs = NULL;
3925
3926 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
3927 return -EIO;
3928
3929 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3930 return -EINVAL;
3931
3932 /*
3933 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3934 * execution; mutex_lock() would break them.
3935 */
3936 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3937 if (r != -ENOIOCTLCMD)
3938 return r;
3939
3940 if (mutex_lock_killable(&vcpu->mutex))
3941 return -EINTR;
3942 switch (ioctl) {
3943 case KVM_RUN: {
3944 struct pid *oldpid;
3945 r = -EINVAL;
3946 if (arg)
3947 goto out;
3948 oldpid = rcu_access_pointer(vcpu->pid);
3949 if (unlikely(oldpid != task_pid(current))) {
3950 /* The thread running this VCPU changed. */
3951 struct pid *newpid;
3952
3953 r = kvm_arch_vcpu_run_pid_change(vcpu);
3954 if (r)
3955 break;
3956
3957 newpid = get_task_pid(current, PIDTYPE_PID);
3958 rcu_assign_pointer(vcpu->pid, newpid);
3959 if (oldpid)
3960 synchronize_rcu();
3961 put_pid(oldpid);
3962 }
3963 r = kvm_arch_vcpu_ioctl_run(vcpu);
3964 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3965 break;
3966 }
3967 case KVM_GET_REGS: {
3968 struct kvm_regs *kvm_regs;
3969
3970 r = -ENOMEM;
3971 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3972 if (!kvm_regs)
3973 goto out;
3974 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3975 if (r)
3976 goto out_free1;
3977 r = -EFAULT;
3978 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3979 goto out_free1;
3980 r = 0;
3981 out_free1:
3982 kfree(kvm_regs);
3983 break;
3984 }
3985 case KVM_SET_REGS: {
3986 struct kvm_regs *kvm_regs;
3987
3988 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3989 if (IS_ERR(kvm_regs)) {
3990 r = PTR_ERR(kvm_regs);
3991 goto out;
3992 }
3993 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3994 kfree(kvm_regs);
3995 break;
3996 }
3997 case KVM_GET_SREGS: {
3998 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3999 GFP_KERNEL_ACCOUNT);
4000 r = -ENOMEM;
4001 if (!kvm_sregs)
4002 goto out;
4003 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4004 if (r)
4005 goto out;
4006 r = -EFAULT;
4007 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4008 goto out;
4009 r = 0;
4010 break;
4011 }
4012 case KVM_SET_SREGS: {
4013 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4014 if (IS_ERR(kvm_sregs)) {
4015 r = PTR_ERR(kvm_sregs);
4016 kvm_sregs = NULL;
4017 goto out;
4018 }
4019 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4020 break;
4021 }
4022 case KVM_GET_MP_STATE: {
4023 struct kvm_mp_state mp_state;
4024
4025 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4026 if (r)
4027 goto out;
4028 r = -EFAULT;
4029 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4030 goto out;
4031 r = 0;
4032 break;
4033 }
4034 case KVM_SET_MP_STATE: {
4035 struct kvm_mp_state mp_state;
4036
4037 r = -EFAULT;
4038 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4039 goto out;
4040 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4041 break;
4042 }
4043 case KVM_TRANSLATE: {
4044 struct kvm_translation tr;
4045
4046 r = -EFAULT;
4047 if (copy_from_user(&tr, argp, sizeof(tr)))
4048 goto out;
4049 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4050 if (r)
4051 goto out;
4052 r = -EFAULT;
4053 if (copy_to_user(argp, &tr, sizeof(tr)))
4054 goto out;
4055 r = 0;
4056 break;
4057 }
4058 case KVM_SET_GUEST_DEBUG: {
4059 struct kvm_guest_debug dbg;
4060
4061 r = -EFAULT;
4062 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4063 goto out;
4064 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4065 break;
4066 }
4067 case KVM_SET_SIGNAL_MASK: {
4068 struct kvm_signal_mask __user *sigmask_arg = argp;
4069 struct kvm_signal_mask kvm_sigmask;
4070 sigset_t sigset, *p;
4071
4072 p = NULL;
4073 if (argp) {
4074 r = -EFAULT;
4075 if (copy_from_user(&kvm_sigmask, argp,
4076 sizeof(kvm_sigmask)))
4077 goto out;
4078 r = -EINVAL;
4079 if (kvm_sigmask.len != sizeof(sigset))
4080 goto out;
4081 r = -EFAULT;
4082 if (copy_from_user(&sigset, sigmask_arg->sigset,
4083 sizeof(sigset)))
4084 goto out;
4085 p = &sigset;
4086 }
4087 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4088 break;
4089 }
4090 case KVM_GET_FPU: {
4091 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4092 r = -ENOMEM;
4093 if (!fpu)
4094 goto out;
4095 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4096 if (r)
4097 goto out;
4098 r = -EFAULT;
4099 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4100 goto out;
4101 r = 0;
4102 break;
4103 }
4104 case KVM_SET_FPU: {
4105 fpu = memdup_user(argp, sizeof(*fpu));
4106 if (IS_ERR(fpu)) {
4107 r = PTR_ERR(fpu);
4108 fpu = NULL;
4109 goto out;
4110 }
4111 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4112 break;
4113 }
4114 case KVM_GET_STATS_FD: {
4115 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4116 break;
4117 }
4118 default:
4119 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4120 }
4121 out:
4122 mutex_unlock(&vcpu->mutex);
4123 kfree(fpu);
4124 kfree(kvm_sregs);
4125 return r;
4126 }
4127
4128 #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4129 static long kvm_vcpu_compat_ioctl(struct file *filp,
4130 unsigned int ioctl, unsigned long arg)
4131 {
4132 struct kvm_vcpu *vcpu = filp->private_data;
4133 void __user *argp = compat_ptr(arg);
4134 int r;
4135
4136 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4137 return -EIO;
4138
4139 switch (ioctl) {
4140 case KVM_SET_SIGNAL_MASK: {
4141 struct kvm_signal_mask __user *sigmask_arg = argp;
4142 struct kvm_signal_mask kvm_sigmask;
4143 sigset_t sigset;
4144
4145 if (argp) {
4146 r = -EFAULT;
4147 if (copy_from_user(&kvm_sigmask, argp,
4148 sizeof(kvm_sigmask)))
4149 goto out;
4150 r = -EINVAL;
4151 if (kvm_sigmask.len != sizeof(compat_sigset_t))
4152 goto out;
4153 r = -EFAULT;
4154 if (get_compat_sigset(&sigset,
4155 (compat_sigset_t __user *)sigmask_arg->sigset))
4156 goto out;
4157 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4158 } else
4159 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4160 break;
4161 }
4162 default:
4163 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4164 }
4165
4166 out:
4167 return r;
4168 }
4169 #endif
4170
kvm_device_mmap(struct file * filp,struct vm_area_struct * vma)4171 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4172 {
4173 struct kvm_device *dev = filp->private_data;
4174
4175 if (dev->ops->mmap)
4176 return dev->ops->mmap(dev, vma);
4177
4178 return -ENODEV;
4179 }
4180
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)4181 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4182 int (*accessor)(struct kvm_device *dev,
4183 struct kvm_device_attr *attr),
4184 unsigned long arg)
4185 {
4186 struct kvm_device_attr attr;
4187
4188 if (!accessor)
4189 return -EPERM;
4190
4191 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4192 return -EFAULT;
4193
4194 return accessor(dev, &attr);
4195 }
4196
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4197 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4198 unsigned long arg)
4199 {
4200 struct kvm_device *dev = filp->private_data;
4201
4202 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4203 return -EIO;
4204
4205 switch (ioctl) {
4206 case KVM_SET_DEVICE_ATTR:
4207 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4208 case KVM_GET_DEVICE_ATTR:
4209 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4210 case KVM_HAS_DEVICE_ATTR:
4211 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4212 default:
4213 if (dev->ops->ioctl)
4214 return dev->ops->ioctl(dev, ioctl, arg);
4215
4216 return -ENOTTY;
4217 }
4218 }
4219
kvm_device_release(struct inode * inode,struct file * filp)4220 static int kvm_device_release(struct inode *inode, struct file *filp)
4221 {
4222 struct kvm_device *dev = filp->private_data;
4223 struct kvm *kvm = dev->kvm;
4224
4225 if (dev->ops->release) {
4226 mutex_lock(&kvm->lock);
4227 list_del(&dev->vm_node);
4228 dev->ops->release(dev);
4229 mutex_unlock(&kvm->lock);
4230 }
4231
4232 kvm_put_kvm(kvm);
4233 return 0;
4234 }
4235
4236 static const struct file_operations kvm_device_fops = {
4237 .unlocked_ioctl = kvm_device_ioctl,
4238 .release = kvm_device_release,
4239 KVM_COMPAT(kvm_device_ioctl),
4240 .mmap = kvm_device_mmap,
4241 };
4242
kvm_device_from_filp(struct file * filp)4243 struct kvm_device *kvm_device_from_filp(struct file *filp)
4244 {
4245 if (filp->f_op != &kvm_device_fops)
4246 return NULL;
4247
4248 return filp->private_data;
4249 }
4250
4251 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4252 #ifdef CONFIG_KVM_MPIC
4253 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4254 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4255 #endif
4256 };
4257
kvm_register_device_ops(const struct kvm_device_ops * ops,u32 type)4258 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4259 {
4260 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4261 return -ENOSPC;
4262
4263 if (kvm_device_ops_table[type] != NULL)
4264 return -EEXIST;
4265
4266 kvm_device_ops_table[type] = ops;
4267 return 0;
4268 }
4269
kvm_unregister_device_ops(u32 type)4270 void kvm_unregister_device_ops(u32 type)
4271 {
4272 if (kvm_device_ops_table[type] != NULL)
4273 kvm_device_ops_table[type] = NULL;
4274 }
4275
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)4276 static int kvm_ioctl_create_device(struct kvm *kvm,
4277 struct kvm_create_device *cd)
4278 {
4279 const struct kvm_device_ops *ops = NULL;
4280 struct kvm_device *dev;
4281 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4282 int type;
4283 int ret;
4284
4285 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4286 return -ENODEV;
4287
4288 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4289 ops = kvm_device_ops_table[type];
4290 if (ops == NULL)
4291 return -ENODEV;
4292
4293 if (test)
4294 return 0;
4295
4296 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4297 if (!dev)
4298 return -ENOMEM;
4299
4300 dev->ops = ops;
4301 dev->kvm = kvm;
4302
4303 mutex_lock(&kvm->lock);
4304 ret = ops->create(dev, type);
4305 if (ret < 0) {
4306 mutex_unlock(&kvm->lock);
4307 kfree(dev);
4308 return ret;
4309 }
4310 list_add(&dev->vm_node, &kvm->devices);
4311 mutex_unlock(&kvm->lock);
4312
4313 if (ops->init)
4314 ops->init(dev);
4315
4316 kvm_get_kvm(kvm);
4317 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4318 if (ret < 0) {
4319 kvm_put_kvm_no_destroy(kvm);
4320 mutex_lock(&kvm->lock);
4321 list_del(&dev->vm_node);
4322 if (ops->release)
4323 ops->release(dev);
4324 mutex_unlock(&kvm->lock);
4325 if (ops->destroy)
4326 ops->destroy(dev);
4327 return ret;
4328 }
4329
4330 cd->fd = ret;
4331 return 0;
4332 }
4333
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)4334 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4335 {
4336 switch (arg) {
4337 case KVM_CAP_USER_MEMORY:
4338 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4339 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4340 case KVM_CAP_INTERNAL_ERROR_DATA:
4341 #ifdef CONFIG_HAVE_KVM_MSI
4342 case KVM_CAP_SIGNAL_MSI:
4343 #endif
4344 #ifdef CONFIG_HAVE_KVM_IRQFD
4345 case KVM_CAP_IRQFD:
4346 case KVM_CAP_IRQFD_RESAMPLE:
4347 #endif
4348 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4349 case KVM_CAP_CHECK_EXTENSION_VM:
4350 case KVM_CAP_ENABLE_CAP_VM:
4351 case KVM_CAP_HALT_POLL:
4352 return 1;
4353 #ifdef CONFIG_KVM_MMIO
4354 case KVM_CAP_COALESCED_MMIO:
4355 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4356 case KVM_CAP_COALESCED_PIO:
4357 return 1;
4358 #endif
4359 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4360 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4361 return KVM_DIRTY_LOG_MANUAL_CAPS;
4362 #endif
4363 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4364 case KVM_CAP_IRQ_ROUTING:
4365 return KVM_MAX_IRQ_ROUTES;
4366 #endif
4367 #if KVM_ADDRESS_SPACE_NUM > 1
4368 case KVM_CAP_MULTI_ADDRESS_SPACE:
4369 return KVM_ADDRESS_SPACE_NUM;
4370 #endif
4371 case KVM_CAP_NR_MEMSLOTS:
4372 return KVM_USER_MEM_SLOTS;
4373 case KVM_CAP_DIRTY_LOG_RING:
4374 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4375 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4376 #else
4377 return 0;
4378 #endif
4379 case KVM_CAP_BINARY_STATS_FD:
4380 case KVM_CAP_SYSTEM_EVENT_DATA:
4381 return 1;
4382 default:
4383 break;
4384 }
4385 return kvm_vm_ioctl_check_extension(kvm, arg);
4386 }
4387
kvm_vm_ioctl_enable_dirty_log_ring(struct kvm * kvm,u32 size)4388 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4389 {
4390 int r;
4391
4392 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4393 return -EINVAL;
4394
4395 /* the size should be power of 2 */
4396 if (!size || (size & (size - 1)))
4397 return -EINVAL;
4398
4399 /* Should be bigger to keep the reserved entries, or a page */
4400 if (size < kvm_dirty_ring_get_rsvd_entries() *
4401 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4402 return -EINVAL;
4403
4404 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4405 sizeof(struct kvm_dirty_gfn))
4406 return -E2BIG;
4407
4408 /* We only allow it to set once */
4409 if (kvm->dirty_ring_size)
4410 return -EINVAL;
4411
4412 mutex_lock(&kvm->lock);
4413
4414 if (kvm->created_vcpus) {
4415 /* We don't allow to change this value after vcpu created */
4416 r = -EINVAL;
4417 } else {
4418 kvm->dirty_ring_size = size;
4419 r = 0;
4420 }
4421
4422 mutex_unlock(&kvm->lock);
4423 return r;
4424 }
4425
kvm_vm_ioctl_reset_dirty_pages(struct kvm * kvm)4426 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4427 {
4428 unsigned long i;
4429 struct kvm_vcpu *vcpu;
4430 int cleared = 0;
4431
4432 if (!kvm->dirty_ring_size)
4433 return -EINVAL;
4434
4435 mutex_lock(&kvm->slots_lock);
4436
4437 kvm_for_each_vcpu(i, vcpu, kvm)
4438 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4439
4440 mutex_unlock(&kvm->slots_lock);
4441
4442 if (cleared)
4443 kvm_flush_remote_tlbs(kvm);
4444
4445 return cleared;
4446 }
4447
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)4448 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4449 struct kvm_enable_cap *cap)
4450 {
4451 return -EINVAL;
4452 }
4453
kvm_vm_ioctl_enable_cap_generic(struct kvm * kvm,struct kvm_enable_cap * cap)4454 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4455 struct kvm_enable_cap *cap)
4456 {
4457 switch (cap->cap) {
4458 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4459 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4460 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4461
4462 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4463 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4464
4465 if (cap->flags || (cap->args[0] & ~allowed_options))
4466 return -EINVAL;
4467 kvm->manual_dirty_log_protect = cap->args[0];
4468 return 0;
4469 }
4470 #endif
4471 case KVM_CAP_HALT_POLL: {
4472 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4473 return -EINVAL;
4474
4475 kvm->max_halt_poll_ns = cap->args[0];
4476 return 0;
4477 }
4478 case KVM_CAP_DIRTY_LOG_RING:
4479 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4480 default:
4481 return kvm_vm_ioctl_enable_cap(kvm, cap);
4482 }
4483 }
4484
kvm_vm_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)4485 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4486 size_t size, loff_t *offset)
4487 {
4488 struct kvm *kvm = file->private_data;
4489
4490 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4491 &kvm_vm_stats_desc[0], &kvm->stat,
4492 sizeof(kvm->stat), user_buffer, size, offset);
4493 }
4494
4495 static const struct file_operations kvm_vm_stats_fops = {
4496 .read = kvm_vm_stats_read,
4497 .llseek = noop_llseek,
4498 };
4499
kvm_vm_ioctl_get_stats_fd(struct kvm * kvm)4500 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4501 {
4502 int fd;
4503 struct file *file;
4504
4505 fd = get_unused_fd_flags(O_CLOEXEC);
4506 if (fd < 0)
4507 return fd;
4508
4509 file = anon_inode_getfile("kvm-vm-stats",
4510 &kvm_vm_stats_fops, kvm, O_RDONLY);
4511 if (IS_ERR(file)) {
4512 put_unused_fd(fd);
4513 return PTR_ERR(file);
4514 }
4515 file->f_mode |= FMODE_PREAD;
4516 fd_install(fd, file);
4517
4518 return fd;
4519 }
4520
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4521 static long kvm_vm_ioctl(struct file *filp,
4522 unsigned int ioctl, unsigned long arg)
4523 {
4524 struct kvm *kvm = filp->private_data;
4525 void __user *argp = (void __user *)arg;
4526 int r;
4527
4528 if (kvm->mm != current->mm || kvm->vm_dead)
4529 return -EIO;
4530 switch (ioctl) {
4531 case KVM_CREATE_VCPU:
4532 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4533 break;
4534 case KVM_ENABLE_CAP: {
4535 struct kvm_enable_cap cap;
4536
4537 r = -EFAULT;
4538 if (copy_from_user(&cap, argp, sizeof(cap)))
4539 goto out;
4540 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4541 break;
4542 }
4543 case KVM_SET_USER_MEMORY_REGION: {
4544 struct kvm_userspace_memory_region kvm_userspace_mem;
4545
4546 r = -EFAULT;
4547 if (copy_from_user(&kvm_userspace_mem, argp,
4548 sizeof(kvm_userspace_mem)))
4549 goto out;
4550
4551 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4552 break;
4553 }
4554 case KVM_GET_DIRTY_LOG: {
4555 struct kvm_dirty_log log;
4556
4557 r = -EFAULT;
4558 if (copy_from_user(&log, argp, sizeof(log)))
4559 goto out;
4560 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4561 break;
4562 }
4563 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4564 case KVM_CLEAR_DIRTY_LOG: {
4565 struct kvm_clear_dirty_log log;
4566
4567 r = -EFAULT;
4568 if (copy_from_user(&log, argp, sizeof(log)))
4569 goto out;
4570 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4571 break;
4572 }
4573 #endif
4574 #ifdef CONFIG_KVM_MMIO
4575 case KVM_REGISTER_COALESCED_MMIO: {
4576 struct kvm_coalesced_mmio_zone zone;
4577
4578 r = -EFAULT;
4579 if (copy_from_user(&zone, argp, sizeof(zone)))
4580 goto out;
4581 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4582 break;
4583 }
4584 case KVM_UNREGISTER_COALESCED_MMIO: {
4585 struct kvm_coalesced_mmio_zone zone;
4586
4587 r = -EFAULT;
4588 if (copy_from_user(&zone, argp, sizeof(zone)))
4589 goto out;
4590 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4591 break;
4592 }
4593 #endif
4594 case KVM_IRQFD: {
4595 struct kvm_irqfd data;
4596
4597 r = -EFAULT;
4598 if (copy_from_user(&data, argp, sizeof(data)))
4599 goto out;
4600 r = kvm_irqfd(kvm, &data);
4601 break;
4602 }
4603 case KVM_IOEVENTFD: {
4604 struct kvm_ioeventfd data;
4605
4606 r = -EFAULT;
4607 if (copy_from_user(&data, argp, sizeof(data)))
4608 goto out;
4609 r = kvm_ioeventfd(kvm, &data);
4610 break;
4611 }
4612 #ifdef CONFIG_HAVE_KVM_MSI
4613 case KVM_SIGNAL_MSI: {
4614 struct kvm_msi msi;
4615
4616 r = -EFAULT;
4617 if (copy_from_user(&msi, argp, sizeof(msi)))
4618 goto out;
4619 r = kvm_send_userspace_msi(kvm, &msi);
4620 break;
4621 }
4622 #endif
4623 #ifdef __KVM_HAVE_IRQ_LINE
4624 case KVM_IRQ_LINE_STATUS:
4625 case KVM_IRQ_LINE: {
4626 struct kvm_irq_level irq_event;
4627
4628 r = -EFAULT;
4629 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4630 goto out;
4631
4632 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4633 ioctl == KVM_IRQ_LINE_STATUS);
4634 if (r)
4635 goto out;
4636
4637 r = -EFAULT;
4638 if (ioctl == KVM_IRQ_LINE_STATUS) {
4639 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4640 goto out;
4641 }
4642
4643 r = 0;
4644 break;
4645 }
4646 #endif
4647 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4648 case KVM_SET_GSI_ROUTING: {
4649 struct kvm_irq_routing routing;
4650 struct kvm_irq_routing __user *urouting;
4651 struct kvm_irq_routing_entry *entries = NULL;
4652
4653 r = -EFAULT;
4654 if (copy_from_user(&routing, argp, sizeof(routing)))
4655 goto out;
4656 r = -EINVAL;
4657 if (!kvm_arch_can_set_irq_routing(kvm))
4658 goto out;
4659 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4660 goto out;
4661 if (routing.flags)
4662 goto out;
4663 if (routing.nr) {
4664 urouting = argp;
4665 entries = vmemdup_user(urouting->entries,
4666 array_size(sizeof(*entries),
4667 routing.nr));
4668 if (IS_ERR(entries)) {
4669 r = PTR_ERR(entries);
4670 goto out;
4671 }
4672 }
4673 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4674 routing.flags);
4675 kvfree(entries);
4676 break;
4677 }
4678 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4679 case KVM_CREATE_DEVICE: {
4680 struct kvm_create_device cd;
4681
4682 r = -EFAULT;
4683 if (copy_from_user(&cd, argp, sizeof(cd)))
4684 goto out;
4685
4686 r = kvm_ioctl_create_device(kvm, &cd);
4687 if (r)
4688 goto out;
4689
4690 r = -EFAULT;
4691 if (copy_to_user(argp, &cd, sizeof(cd)))
4692 goto out;
4693
4694 r = 0;
4695 break;
4696 }
4697 case KVM_CHECK_EXTENSION:
4698 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4699 break;
4700 case KVM_RESET_DIRTY_RINGS:
4701 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4702 break;
4703 case KVM_GET_STATS_FD:
4704 r = kvm_vm_ioctl_get_stats_fd(kvm);
4705 break;
4706 default:
4707 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4708 }
4709 out:
4710 return r;
4711 }
4712
4713 #ifdef CONFIG_KVM_COMPAT
4714 struct compat_kvm_dirty_log {
4715 __u32 slot;
4716 __u32 padding1;
4717 union {
4718 compat_uptr_t dirty_bitmap; /* one bit per page */
4719 __u64 padding2;
4720 };
4721 };
4722
4723 struct compat_kvm_clear_dirty_log {
4724 __u32 slot;
4725 __u32 num_pages;
4726 __u64 first_page;
4727 union {
4728 compat_uptr_t dirty_bitmap; /* one bit per page */
4729 __u64 padding2;
4730 };
4731 };
4732
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4733 static long kvm_vm_compat_ioctl(struct file *filp,
4734 unsigned int ioctl, unsigned long arg)
4735 {
4736 struct kvm *kvm = filp->private_data;
4737 int r;
4738
4739 if (kvm->mm != current->mm || kvm->vm_dead)
4740 return -EIO;
4741 switch (ioctl) {
4742 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4743 case KVM_CLEAR_DIRTY_LOG: {
4744 struct compat_kvm_clear_dirty_log compat_log;
4745 struct kvm_clear_dirty_log log;
4746
4747 if (copy_from_user(&compat_log, (void __user *)arg,
4748 sizeof(compat_log)))
4749 return -EFAULT;
4750 log.slot = compat_log.slot;
4751 log.num_pages = compat_log.num_pages;
4752 log.first_page = compat_log.first_page;
4753 log.padding2 = compat_log.padding2;
4754 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4755
4756 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4757 break;
4758 }
4759 #endif
4760 case KVM_GET_DIRTY_LOG: {
4761 struct compat_kvm_dirty_log compat_log;
4762 struct kvm_dirty_log log;
4763
4764 if (copy_from_user(&compat_log, (void __user *)arg,
4765 sizeof(compat_log)))
4766 return -EFAULT;
4767 log.slot = compat_log.slot;
4768 log.padding1 = compat_log.padding1;
4769 log.padding2 = compat_log.padding2;
4770 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4771
4772 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4773 break;
4774 }
4775 default:
4776 r = kvm_vm_ioctl(filp, ioctl, arg);
4777 }
4778 return r;
4779 }
4780 #endif
4781
4782 static const struct file_operations kvm_vm_fops = {
4783 .release = kvm_vm_release,
4784 .unlocked_ioctl = kvm_vm_ioctl,
4785 .llseek = noop_llseek,
4786 KVM_COMPAT(kvm_vm_compat_ioctl),
4787 };
4788
file_is_kvm(struct file * file)4789 bool file_is_kvm(struct file *file)
4790 {
4791 return file && file->f_op == &kvm_vm_fops;
4792 }
4793 EXPORT_SYMBOL_GPL(file_is_kvm);
4794
kvm_dev_ioctl_create_vm(unsigned long type)4795 static int kvm_dev_ioctl_create_vm(unsigned long type)
4796 {
4797 int r;
4798 struct kvm *kvm;
4799 struct file *file;
4800
4801 kvm = kvm_create_vm(type);
4802 if (IS_ERR(kvm))
4803 return PTR_ERR(kvm);
4804 #ifdef CONFIG_KVM_MMIO
4805 r = kvm_coalesced_mmio_init(kvm);
4806 if (r < 0)
4807 goto put_kvm;
4808 #endif
4809 r = get_unused_fd_flags(O_CLOEXEC);
4810 if (r < 0)
4811 goto put_kvm;
4812
4813 snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4814 "kvm-%d", task_pid_nr(current));
4815
4816 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4817 if (IS_ERR(file)) {
4818 put_unused_fd(r);
4819 r = PTR_ERR(file);
4820 goto put_kvm;
4821 }
4822
4823 /*
4824 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4825 * already set, with ->release() being kvm_vm_release(). In error
4826 * cases it will be called by the final fput(file) and will take
4827 * care of doing kvm_put_kvm(kvm).
4828 */
4829 if (kvm_create_vm_debugfs(kvm, r) < 0) {
4830 put_unused_fd(r);
4831 fput(file);
4832 return -ENOMEM;
4833 }
4834 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4835
4836 fd_install(r, file);
4837 return r;
4838
4839 put_kvm:
4840 kvm_put_kvm(kvm);
4841 return r;
4842 }
4843
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4844 static long kvm_dev_ioctl(struct file *filp,
4845 unsigned int ioctl, unsigned long arg)
4846 {
4847 long r = -EINVAL;
4848
4849 switch (ioctl) {
4850 case KVM_GET_API_VERSION:
4851 if (arg)
4852 goto out;
4853 r = KVM_API_VERSION;
4854 break;
4855 case KVM_CREATE_VM:
4856 r = kvm_dev_ioctl_create_vm(arg);
4857 break;
4858 case KVM_CHECK_EXTENSION:
4859 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4860 break;
4861 case KVM_GET_VCPU_MMAP_SIZE:
4862 if (arg)
4863 goto out;
4864 r = PAGE_SIZE; /* struct kvm_run */
4865 #ifdef CONFIG_X86
4866 r += PAGE_SIZE; /* pio data page */
4867 #endif
4868 #ifdef CONFIG_KVM_MMIO
4869 r += PAGE_SIZE; /* coalesced mmio ring page */
4870 #endif
4871 break;
4872 case KVM_TRACE_ENABLE:
4873 case KVM_TRACE_PAUSE:
4874 case KVM_TRACE_DISABLE:
4875 r = -EOPNOTSUPP;
4876 break;
4877 default:
4878 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4879 }
4880 out:
4881 return r;
4882 }
4883
4884 static struct file_operations kvm_chardev_ops = {
4885 .unlocked_ioctl = kvm_dev_ioctl,
4886 .llseek = noop_llseek,
4887 KVM_COMPAT(kvm_dev_ioctl),
4888 };
4889
4890 static struct miscdevice kvm_dev = {
4891 KVM_MINOR,
4892 "kvm",
4893 &kvm_chardev_ops,
4894 };
4895
hardware_enable_nolock(void * junk)4896 static void hardware_enable_nolock(void *junk)
4897 {
4898 int cpu = raw_smp_processor_id();
4899 int r;
4900
4901 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4902 return;
4903
4904 cpumask_set_cpu(cpu, cpus_hardware_enabled);
4905
4906 r = kvm_arch_hardware_enable();
4907
4908 if (r) {
4909 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4910 atomic_inc(&hardware_enable_failed);
4911 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4912 }
4913 }
4914
kvm_starting_cpu(unsigned int cpu)4915 static int kvm_starting_cpu(unsigned int cpu)
4916 {
4917 raw_spin_lock(&kvm_count_lock);
4918 if (kvm_usage_count)
4919 hardware_enable_nolock(NULL);
4920 raw_spin_unlock(&kvm_count_lock);
4921 return 0;
4922 }
4923
hardware_disable_nolock(void * junk)4924 static void hardware_disable_nolock(void *junk)
4925 {
4926 int cpu = raw_smp_processor_id();
4927
4928 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4929 return;
4930 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4931 kvm_arch_hardware_disable();
4932 }
4933
kvm_dying_cpu(unsigned int cpu)4934 static int kvm_dying_cpu(unsigned int cpu)
4935 {
4936 raw_spin_lock(&kvm_count_lock);
4937 if (kvm_usage_count)
4938 hardware_disable_nolock(NULL);
4939 raw_spin_unlock(&kvm_count_lock);
4940 return 0;
4941 }
4942
hardware_disable_all_nolock(void)4943 static void hardware_disable_all_nolock(void)
4944 {
4945 BUG_ON(!kvm_usage_count);
4946
4947 kvm_usage_count--;
4948 if (!kvm_usage_count)
4949 on_each_cpu(hardware_disable_nolock, NULL, 1);
4950 }
4951
hardware_disable_all(void)4952 static void hardware_disable_all(void)
4953 {
4954 raw_spin_lock(&kvm_count_lock);
4955 hardware_disable_all_nolock();
4956 raw_spin_unlock(&kvm_count_lock);
4957 }
4958
hardware_enable_all(void)4959 static int hardware_enable_all(void)
4960 {
4961 int r = 0;
4962
4963 raw_spin_lock(&kvm_count_lock);
4964
4965 kvm_usage_count++;
4966 if (kvm_usage_count == 1) {
4967 atomic_set(&hardware_enable_failed, 0);
4968 on_each_cpu(hardware_enable_nolock, NULL, 1);
4969
4970 if (atomic_read(&hardware_enable_failed)) {
4971 hardware_disable_all_nolock();
4972 r = -EBUSY;
4973 }
4974 }
4975
4976 raw_spin_unlock(&kvm_count_lock);
4977
4978 return r;
4979 }
4980
kvm_reboot(struct notifier_block * notifier,unsigned long val,void * v)4981 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4982 void *v)
4983 {
4984 /*
4985 * Some (well, at least mine) BIOSes hang on reboot if
4986 * in vmx root mode.
4987 *
4988 * And Intel TXT required VMX off for all cpu when system shutdown.
4989 */
4990 pr_info("kvm: exiting hardware virtualization\n");
4991 kvm_rebooting = true;
4992 on_each_cpu(hardware_disable_nolock, NULL, 1);
4993 return NOTIFY_OK;
4994 }
4995
4996 static struct notifier_block kvm_reboot_notifier = {
4997 .notifier_call = kvm_reboot,
4998 .priority = 0,
4999 };
5000
kvm_io_bus_destroy(struct kvm_io_bus * bus)5001 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5002 {
5003 int i;
5004
5005 for (i = 0; i < bus->dev_count; i++) {
5006 struct kvm_io_device *pos = bus->range[i].dev;
5007
5008 kvm_iodevice_destructor(pos);
5009 }
5010 kfree(bus);
5011 }
5012
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)5013 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5014 const struct kvm_io_range *r2)
5015 {
5016 gpa_t addr1 = r1->addr;
5017 gpa_t addr2 = r2->addr;
5018
5019 if (addr1 < addr2)
5020 return -1;
5021
5022 /* If r2->len == 0, match the exact address. If r2->len != 0,
5023 * accept any overlapping write. Any order is acceptable for
5024 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5025 * we process all of them.
5026 */
5027 if (r2->len) {
5028 addr1 += r1->len;
5029 addr2 += r2->len;
5030 }
5031
5032 if (addr1 > addr2)
5033 return 1;
5034
5035 return 0;
5036 }
5037
kvm_io_bus_sort_cmp(const void * p1,const void * p2)5038 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5039 {
5040 return kvm_io_bus_cmp(p1, p2);
5041 }
5042
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)5043 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5044 gpa_t addr, int len)
5045 {
5046 struct kvm_io_range *range, key;
5047 int off;
5048
5049 key = (struct kvm_io_range) {
5050 .addr = addr,
5051 .len = len,
5052 };
5053
5054 range = bsearch(&key, bus->range, bus->dev_count,
5055 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5056 if (range == NULL)
5057 return -ENOENT;
5058
5059 off = range - bus->range;
5060
5061 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5062 off--;
5063
5064 return off;
5065 }
5066
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)5067 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5068 struct kvm_io_range *range, const void *val)
5069 {
5070 int idx;
5071
5072 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5073 if (idx < 0)
5074 return -EOPNOTSUPP;
5075
5076 while (idx < bus->dev_count &&
5077 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5078 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5079 range->len, val))
5080 return idx;
5081 idx++;
5082 }
5083
5084 return -EOPNOTSUPP;
5085 }
5086
5087 /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)5088 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5089 int len, const void *val)
5090 {
5091 struct kvm_io_bus *bus;
5092 struct kvm_io_range range;
5093 int r;
5094
5095 range = (struct kvm_io_range) {
5096 .addr = addr,
5097 .len = len,
5098 };
5099
5100 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5101 if (!bus)
5102 return -ENOMEM;
5103 r = __kvm_io_bus_write(vcpu, bus, &range, val);
5104 return r < 0 ? r : 0;
5105 }
5106 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5107
5108 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)5109 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5110 gpa_t addr, int len, const void *val, long cookie)
5111 {
5112 struct kvm_io_bus *bus;
5113 struct kvm_io_range range;
5114
5115 range = (struct kvm_io_range) {
5116 .addr = addr,
5117 .len = len,
5118 };
5119
5120 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5121 if (!bus)
5122 return -ENOMEM;
5123
5124 /* First try the device referenced by cookie. */
5125 if ((cookie >= 0) && (cookie < bus->dev_count) &&
5126 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5127 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5128 val))
5129 return cookie;
5130
5131 /*
5132 * cookie contained garbage; fall back to search and return the
5133 * correct cookie value.
5134 */
5135 return __kvm_io_bus_write(vcpu, bus, &range, val);
5136 }
5137
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)5138 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5139 struct kvm_io_range *range, void *val)
5140 {
5141 int idx;
5142
5143 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5144 if (idx < 0)
5145 return -EOPNOTSUPP;
5146
5147 while (idx < bus->dev_count &&
5148 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5149 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5150 range->len, val))
5151 return idx;
5152 idx++;
5153 }
5154
5155 return -EOPNOTSUPP;
5156 }
5157
5158 /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)5159 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5160 int len, void *val)
5161 {
5162 struct kvm_io_bus *bus;
5163 struct kvm_io_range range;
5164 int r;
5165
5166 range = (struct kvm_io_range) {
5167 .addr = addr,
5168 .len = len,
5169 };
5170
5171 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5172 if (!bus)
5173 return -ENOMEM;
5174 r = __kvm_io_bus_read(vcpu, bus, &range, val);
5175 return r < 0 ? r : 0;
5176 }
5177
5178 /* Caller must hold slots_lock. */
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)5179 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5180 int len, struct kvm_io_device *dev)
5181 {
5182 int i;
5183 struct kvm_io_bus *new_bus, *bus;
5184 struct kvm_io_range range;
5185
5186 bus = kvm_get_bus(kvm, bus_idx);
5187 if (!bus)
5188 return -ENOMEM;
5189
5190 /* exclude ioeventfd which is limited by maximum fd */
5191 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5192 return -ENOSPC;
5193
5194 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5195 GFP_KERNEL_ACCOUNT);
5196 if (!new_bus)
5197 return -ENOMEM;
5198
5199 range = (struct kvm_io_range) {
5200 .addr = addr,
5201 .len = len,
5202 .dev = dev,
5203 };
5204
5205 for (i = 0; i < bus->dev_count; i++)
5206 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5207 break;
5208
5209 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5210 new_bus->dev_count++;
5211 new_bus->range[i] = range;
5212 memcpy(new_bus->range + i + 1, bus->range + i,
5213 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5214 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5215 synchronize_srcu_expedited(&kvm->srcu);
5216 kfree(bus);
5217
5218 return 0;
5219 }
5220
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)5221 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5222 struct kvm_io_device *dev)
5223 {
5224 int i, j;
5225 struct kvm_io_bus *new_bus, *bus;
5226
5227 lockdep_assert_held(&kvm->slots_lock);
5228
5229 bus = kvm_get_bus(kvm, bus_idx);
5230 if (!bus)
5231 return 0;
5232
5233 for (i = 0; i < bus->dev_count; i++) {
5234 if (bus->range[i].dev == dev) {
5235 break;
5236 }
5237 }
5238
5239 if (i == bus->dev_count)
5240 return 0;
5241
5242 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5243 GFP_KERNEL_ACCOUNT);
5244 if (new_bus) {
5245 memcpy(new_bus, bus, struct_size(bus, range, i));
5246 new_bus->dev_count--;
5247 memcpy(new_bus->range + i, bus->range + i + 1,
5248 flex_array_size(new_bus, range, new_bus->dev_count - i));
5249 }
5250
5251 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5252 synchronize_srcu_expedited(&kvm->srcu);
5253
5254 /* Destroy the old bus _after_ installing the (null) bus. */
5255 if (!new_bus) {
5256 pr_err("kvm: failed to shrink bus, removing it completely\n");
5257 for (j = 0; j < bus->dev_count; j++) {
5258 if (j == i)
5259 continue;
5260 kvm_iodevice_destructor(bus->range[j].dev);
5261 }
5262 }
5263
5264 kfree(bus);
5265 return new_bus ? 0 : -ENOMEM;
5266 }
5267
kvm_io_bus_get_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr)5268 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5269 gpa_t addr)
5270 {
5271 struct kvm_io_bus *bus;
5272 int dev_idx, srcu_idx;
5273 struct kvm_io_device *iodev = NULL;
5274
5275 srcu_idx = srcu_read_lock(&kvm->srcu);
5276
5277 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5278 if (!bus)
5279 goto out_unlock;
5280
5281 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5282 if (dev_idx < 0)
5283 goto out_unlock;
5284
5285 iodev = bus->range[dev_idx].dev;
5286
5287 out_unlock:
5288 srcu_read_unlock(&kvm->srcu, srcu_idx);
5289
5290 return iodev;
5291 }
5292 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5293
kvm_debugfs_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)5294 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5295 int (*get)(void *, u64 *), int (*set)(void *, u64),
5296 const char *fmt)
5297 {
5298 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5299 inode->i_private;
5300
5301 /*
5302 * The debugfs files are a reference to the kvm struct which
5303 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
5304 * avoids the race between open and the removal of the debugfs directory.
5305 */
5306 if (!kvm_get_kvm_safe(stat_data->kvm))
5307 return -ENOENT;
5308
5309 if (simple_attr_open(inode, file, get,
5310 kvm_stats_debugfs_mode(stat_data->desc) & 0222
5311 ? set : NULL,
5312 fmt)) {
5313 kvm_put_kvm(stat_data->kvm);
5314 return -ENOMEM;
5315 }
5316
5317 return 0;
5318 }
5319
kvm_debugfs_release(struct inode * inode,struct file * file)5320 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5321 {
5322 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5323 inode->i_private;
5324
5325 simple_attr_release(inode, file);
5326 kvm_put_kvm(stat_data->kvm);
5327
5328 return 0;
5329 }
5330
kvm_get_stat_per_vm(struct kvm * kvm,size_t offset,u64 * val)5331 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5332 {
5333 *val = *(u64 *)((void *)(&kvm->stat) + offset);
5334
5335 return 0;
5336 }
5337
kvm_clear_stat_per_vm(struct kvm * kvm,size_t offset)5338 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5339 {
5340 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5341
5342 return 0;
5343 }
5344
kvm_get_stat_per_vcpu(struct kvm * kvm,size_t offset,u64 * val)5345 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5346 {
5347 unsigned long i;
5348 struct kvm_vcpu *vcpu;
5349
5350 *val = 0;
5351
5352 kvm_for_each_vcpu(i, vcpu, kvm)
5353 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5354
5355 return 0;
5356 }
5357
kvm_clear_stat_per_vcpu(struct kvm * kvm,size_t offset)5358 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5359 {
5360 unsigned long i;
5361 struct kvm_vcpu *vcpu;
5362
5363 kvm_for_each_vcpu(i, vcpu, kvm)
5364 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5365
5366 return 0;
5367 }
5368
kvm_stat_data_get(void * data,u64 * val)5369 static int kvm_stat_data_get(void *data, u64 *val)
5370 {
5371 int r = -EFAULT;
5372 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5373
5374 switch (stat_data->kind) {
5375 case KVM_STAT_VM:
5376 r = kvm_get_stat_per_vm(stat_data->kvm,
5377 stat_data->desc->desc.offset, val);
5378 break;
5379 case KVM_STAT_VCPU:
5380 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5381 stat_data->desc->desc.offset, val);
5382 break;
5383 }
5384
5385 return r;
5386 }
5387
kvm_stat_data_clear(void * data,u64 val)5388 static int kvm_stat_data_clear(void *data, u64 val)
5389 {
5390 int r = -EFAULT;
5391 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5392
5393 if (val)
5394 return -EINVAL;
5395
5396 switch (stat_data->kind) {
5397 case KVM_STAT_VM:
5398 r = kvm_clear_stat_per_vm(stat_data->kvm,
5399 stat_data->desc->desc.offset);
5400 break;
5401 case KVM_STAT_VCPU:
5402 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5403 stat_data->desc->desc.offset);
5404 break;
5405 }
5406
5407 return r;
5408 }
5409
kvm_stat_data_open(struct inode * inode,struct file * file)5410 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5411 {
5412 __simple_attr_check_format("%llu\n", 0ull);
5413 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5414 kvm_stat_data_clear, "%llu\n");
5415 }
5416
5417 static const struct file_operations stat_fops_per_vm = {
5418 .owner = THIS_MODULE,
5419 .open = kvm_stat_data_open,
5420 .release = kvm_debugfs_release,
5421 .read = simple_attr_read,
5422 .write = simple_attr_write,
5423 .llseek = no_llseek,
5424 };
5425
vm_stat_get(void * _offset,u64 * val)5426 static int vm_stat_get(void *_offset, u64 *val)
5427 {
5428 unsigned offset = (long)_offset;
5429 struct kvm *kvm;
5430 u64 tmp_val;
5431
5432 *val = 0;
5433 mutex_lock(&kvm_lock);
5434 list_for_each_entry(kvm, &vm_list, vm_list) {
5435 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5436 *val += tmp_val;
5437 }
5438 mutex_unlock(&kvm_lock);
5439 return 0;
5440 }
5441
vm_stat_clear(void * _offset,u64 val)5442 static int vm_stat_clear(void *_offset, u64 val)
5443 {
5444 unsigned offset = (long)_offset;
5445 struct kvm *kvm;
5446
5447 if (val)
5448 return -EINVAL;
5449
5450 mutex_lock(&kvm_lock);
5451 list_for_each_entry(kvm, &vm_list, vm_list) {
5452 kvm_clear_stat_per_vm(kvm, offset);
5453 }
5454 mutex_unlock(&kvm_lock);
5455
5456 return 0;
5457 }
5458
5459 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5460 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5461
vcpu_stat_get(void * _offset,u64 * val)5462 static int vcpu_stat_get(void *_offset, u64 *val)
5463 {
5464 unsigned offset = (long)_offset;
5465 struct kvm *kvm;
5466 u64 tmp_val;
5467
5468 *val = 0;
5469 mutex_lock(&kvm_lock);
5470 list_for_each_entry(kvm, &vm_list, vm_list) {
5471 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5472 *val += tmp_val;
5473 }
5474 mutex_unlock(&kvm_lock);
5475 return 0;
5476 }
5477
vcpu_stat_clear(void * _offset,u64 val)5478 static int vcpu_stat_clear(void *_offset, u64 val)
5479 {
5480 unsigned offset = (long)_offset;
5481 struct kvm *kvm;
5482
5483 if (val)
5484 return -EINVAL;
5485
5486 mutex_lock(&kvm_lock);
5487 list_for_each_entry(kvm, &vm_list, vm_list) {
5488 kvm_clear_stat_per_vcpu(kvm, offset);
5489 }
5490 mutex_unlock(&kvm_lock);
5491
5492 return 0;
5493 }
5494
5495 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5496 "%llu\n");
5497 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5498
kvm_uevent_notify_change(unsigned int type,struct kvm * kvm)5499 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5500 {
5501 struct kobj_uevent_env *env;
5502 unsigned long long created, active;
5503
5504 if (!kvm_dev.this_device || !kvm)
5505 return;
5506
5507 mutex_lock(&kvm_lock);
5508 if (type == KVM_EVENT_CREATE_VM) {
5509 kvm_createvm_count++;
5510 kvm_active_vms++;
5511 } else if (type == KVM_EVENT_DESTROY_VM) {
5512 kvm_active_vms--;
5513 }
5514 created = kvm_createvm_count;
5515 active = kvm_active_vms;
5516 mutex_unlock(&kvm_lock);
5517
5518 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5519 if (!env)
5520 return;
5521
5522 add_uevent_var(env, "CREATED=%llu", created);
5523 add_uevent_var(env, "COUNT=%llu", active);
5524
5525 if (type == KVM_EVENT_CREATE_VM) {
5526 add_uevent_var(env, "EVENT=create");
5527 kvm->userspace_pid = task_pid_nr(current);
5528 } else if (type == KVM_EVENT_DESTROY_VM) {
5529 add_uevent_var(env, "EVENT=destroy");
5530 }
5531 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5532
5533 if (!IS_ERR(kvm->debugfs_dentry)) {
5534 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5535
5536 if (p) {
5537 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5538 if (!IS_ERR(tmp))
5539 add_uevent_var(env, "STATS_PATH=%s", tmp);
5540 kfree(p);
5541 }
5542 }
5543 /* no need for checks, since we are adding at most only 5 keys */
5544 env->envp[env->envp_idx++] = NULL;
5545 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5546 kfree(env);
5547 }
5548
kvm_init_debug(void)5549 static void kvm_init_debug(void)
5550 {
5551 const struct file_operations *fops;
5552 const struct _kvm_stats_desc *pdesc;
5553 int i;
5554
5555 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5556
5557 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5558 pdesc = &kvm_vm_stats_desc[i];
5559 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5560 fops = &vm_stat_fops;
5561 else
5562 fops = &vm_stat_readonly_fops;
5563 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5564 kvm_debugfs_dir,
5565 (void *)(long)pdesc->desc.offset, fops);
5566 }
5567
5568 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5569 pdesc = &kvm_vcpu_stats_desc[i];
5570 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5571 fops = &vcpu_stat_fops;
5572 else
5573 fops = &vcpu_stat_readonly_fops;
5574 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5575 kvm_debugfs_dir,
5576 (void *)(long)pdesc->desc.offset, fops);
5577 }
5578 }
5579
kvm_suspend(void)5580 static int kvm_suspend(void)
5581 {
5582 if (kvm_usage_count)
5583 hardware_disable_nolock(NULL);
5584 return 0;
5585 }
5586
kvm_resume(void)5587 static void kvm_resume(void)
5588 {
5589 if (kvm_usage_count) {
5590 lockdep_assert_not_held(&kvm_count_lock);
5591 hardware_enable_nolock(NULL);
5592 }
5593 }
5594
5595 static struct syscore_ops kvm_syscore_ops = {
5596 .suspend = kvm_suspend,
5597 .resume = kvm_resume,
5598 };
5599
5600 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)5601 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5602 {
5603 return container_of(pn, struct kvm_vcpu, preempt_notifier);
5604 }
5605
kvm_sched_in(struct preempt_notifier * pn,int cpu)5606 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5607 {
5608 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5609
5610 WRITE_ONCE(vcpu->preempted, false);
5611 WRITE_ONCE(vcpu->ready, false);
5612
5613 __this_cpu_write(kvm_running_vcpu, vcpu);
5614 kvm_arch_sched_in(vcpu, cpu);
5615 kvm_arch_vcpu_load(vcpu, cpu);
5616 }
5617
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)5618 static void kvm_sched_out(struct preempt_notifier *pn,
5619 struct task_struct *next)
5620 {
5621 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5622
5623 if (current->on_rq) {
5624 WRITE_ONCE(vcpu->preempted, true);
5625 WRITE_ONCE(vcpu->ready, true);
5626 }
5627 kvm_arch_vcpu_put(vcpu);
5628 __this_cpu_write(kvm_running_vcpu, NULL);
5629 }
5630
5631 /**
5632 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5633 *
5634 * We can disable preemption locally around accessing the per-CPU variable,
5635 * and use the resolved vcpu pointer after enabling preemption again,
5636 * because even if the current thread is migrated to another CPU, reading
5637 * the per-CPU value later will give us the same value as we update the
5638 * per-CPU variable in the preempt notifier handlers.
5639 */
kvm_get_running_vcpu(void)5640 struct kvm_vcpu *kvm_get_running_vcpu(void)
5641 {
5642 struct kvm_vcpu *vcpu;
5643
5644 preempt_disable();
5645 vcpu = __this_cpu_read(kvm_running_vcpu);
5646 preempt_enable();
5647
5648 return vcpu;
5649 }
5650 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5651
5652 /**
5653 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5654 */
kvm_get_running_vcpus(void)5655 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5656 {
5657 return &kvm_running_vcpu;
5658 }
5659
5660 #ifdef CONFIG_GUEST_PERF_EVENTS
kvm_guest_state(void)5661 static unsigned int kvm_guest_state(void)
5662 {
5663 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5664 unsigned int state;
5665
5666 if (!kvm_arch_pmi_in_guest(vcpu))
5667 return 0;
5668
5669 state = PERF_GUEST_ACTIVE;
5670 if (!kvm_arch_vcpu_in_kernel(vcpu))
5671 state |= PERF_GUEST_USER;
5672
5673 return state;
5674 }
5675
kvm_guest_get_ip(void)5676 static unsigned long kvm_guest_get_ip(void)
5677 {
5678 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5679
5680 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5681 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5682 return 0;
5683
5684 return kvm_arch_vcpu_get_ip(vcpu);
5685 }
5686
5687 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5688 .state = kvm_guest_state,
5689 .get_ip = kvm_guest_get_ip,
5690 .handle_intel_pt_intr = NULL,
5691 };
5692
kvm_register_perf_callbacks(unsigned int (* pt_intr_handler)(void))5693 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5694 {
5695 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5696 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5697 }
kvm_unregister_perf_callbacks(void)5698 void kvm_unregister_perf_callbacks(void)
5699 {
5700 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5701 }
5702 #endif
5703
5704 struct kvm_cpu_compat_check {
5705 void *opaque;
5706 int *ret;
5707 };
5708
check_processor_compat(void * data)5709 static void check_processor_compat(void *data)
5710 {
5711 struct kvm_cpu_compat_check *c = data;
5712
5713 *c->ret = kvm_arch_check_processor_compat(c->opaque);
5714 }
5715
kvm_init(void * opaque,unsigned vcpu_size,unsigned vcpu_align,struct module * module)5716 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5717 struct module *module)
5718 {
5719 struct kvm_cpu_compat_check c;
5720 int r;
5721 int cpu;
5722
5723 r = kvm_arch_init(opaque);
5724 if (r)
5725 goto out_fail;
5726
5727 /*
5728 * kvm_arch_init makes sure there's at most one caller
5729 * for architectures that support multiple implementations,
5730 * like intel and amd on x86.
5731 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5732 * conflicts in case kvm is already setup for another implementation.
5733 */
5734 r = kvm_irqfd_init();
5735 if (r)
5736 goto out_irqfd;
5737
5738 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5739 r = -ENOMEM;
5740 goto out_free_0;
5741 }
5742
5743 r = kvm_arch_hardware_setup(opaque);
5744 if (r < 0)
5745 goto out_free_1;
5746
5747 c.ret = &r;
5748 c.opaque = opaque;
5749 for_each_online_cpu(cpu) {
5750 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5751 if (r < 0)
5752 goto out_free_2;
5753 }
5754
5755 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5756 kvm_starting_cpu, kvm_dying_cpu);
5757 if (r)
5758 goto out_free_2;
5759 register_reboot_notifier(&kvm_reboot_notifier);
5760
5761 /* A kmem cache lets us meet the alignment requirements of fx_save. */
5762 if (!vcpu_align)
5763 vcpu_align = __alignof__(struct kvm_vcpu);
5764 kvm_vcpu_cache =
5765 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5766 SLAB_ACCOUNT,
5767 offsetof(struct kvm_vcpu, arch),
5768 offsetofend(struct kvm_vcpu, stats_id)
5769 - offsetof(struct kvm_vcpu, arch),
5770 NULL);
5771 if (!kvm_vcpu_cache) {
5772 r = -ENOMEM;
5773 goto out_free_3;
5774 }
5775
5776 for_each_possible_cpu(cpu) {
5777 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5778 GFP_KERNEL, cpu_to_node(cpu))) {
5779 r = -ENOMEM;
5780 goto out_free_4;
5781 }
5782 }
5783
5784 r = kvm_async_pf_init();
5785 if (r)
5786 goto out_free_5;
5787
5788 kvm_chardev_ops.owner = module;
5789
5790 r = misc_register(&kvm_dev);
5791 if (r) {
5792 pr_err("kvm: misc device register failed\n");
5793 goto out_unreg;
5794 }
5795
5796 register_syscore_ops(&kvm_syscore_ops);
5797
5798 kvm_preempt_ops.sched_in = kvm_sched_in;
5799 kvm_preempt_ops.sched_out = kvm_sched_out;
5800
5801 kvm_init_debug();
5802
5803 r = kvm_vfio_ops_init();
5804 WARN_ON(r);
5805
5806 return 0;
5807
5808 out_unreg:
5809 kvm_async_pf_deinit();
5810 out_free_5:
5811 for_each_possible_cpu(cpu)
5812 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5813 out_free_4:
5814 kmem_cache_destroy(kvm_vcpu_cache);
5815 out_free_3:
5816 unregister_reboot_notifier(&kvm_reboot_notifier);
5817 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5818 out_free_2:
5819 kvm_arch_hardware_unsetup();
5820 out_free_1:
5821 free_cpumask_var(cpus_hardware_enabled);
5822 out_free_0:
5823 kvm_irqfd_exit();
5824 out_irqfd:
5825 kvm_arch_exit();
5826 out_fail:
5827 return r;
5828 }
5829 EXPORT_SYMBOL_GPL(kvm_init);
5830
kvm_exit(void)5831 void kvm_exit(void)
5832 {
5833 int cpu;
5834
5835 debugfs_remove_recursive(kvm_debugfs_dir);
5836 misc_deregister(&kvm_dev);
5837 for_each_possible_cpu(cpu)
5838 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5839 kmem_cache_destroy(kvm_vcpu_cache);
5840 kvm_async_pf_deinit();
5841 unregister_syscore_ops(&kvm_syscore_ops);
5842 unregister_reboot_notifier(&kvm_reboot_notifier);
5843 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5844 on_each_cpu(hardware_disable_nolock, NULL, 1);
5845 kvm_arch_hardware_unsetup();
5846 kvm_arch_exit();
5847 kvm_irqfd_exit();
5848 free_cpumask_var(cpus_hardware_enabled);
5849 kvm_vfio_ops_exit();
5850 }
5851 EXPORT_SYMBOL_GPL(kvm_exit);
5852
5853 struct kvm_vm_worker_thread_context {
5854 struct kvm *kvm;
5855 struct task_struct *parent;
5856 struct completion init_done;
5857 kvm_vm_thread_fn_t thread_fn;
5858 uintptr_t data;
5859 int err;
5860 };
5861
kvm_vm_worker_thread(void * context)5862 static int kvm_vm_worker_thread(void *context)
5863 {
5864 /*
5865 * The init_context is allocated on the stack of the parent thread, so
5866 * we have to locally copy anything that is needed beyond initialization
5867 */
5868 struct kvm_vm_worker_thread_context *init_context = context;
5869 struct task_struct *parent;
5870 struct kvm *kvm = init_context->kvm;
5871 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5872 uintptr_t data = init_context->data;
5873 int err;
5874
5875 err = kthread_park(current);
5876 /* kthread_park(current) is never supposed to return an error */
5877 WARN_ON(err != 0);
5878 if (err)
5879 goto init_complete;
5880
5881 err = cgroup_attach_task_all(init_context->parent, current);
5882 if (err) {
5883 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5884 __func__, err);
5885 goto init_complete;
5886 }
5887
5888 set_user_nice(current, task_nice(init_context->parent));
5889
5890 init_complete:
5891 init_context->err = err;
5892 complete(&init_context->init_done);
5893 init_context = NULL;
5894
5895 if (err)
5896 goto out;
5897
5898 /* Wait to be woken up by the spawner before proceeding. */
5899 kthread_parkme();
5900
5901 if (!kthread_should_stop())
5902 err = thread_fn(kvm, data);
5903
5904 out:
5905 /*
5906 * Move kthread back to its original cgroup to prevent it lingering in
5907 * the cgroup of the VM process, after the latter finishes its
5908 * execution.
5909 *
5910 * kthread_stop() waits on the 'exited' completion condition which is
5911 * set in exit_mm(), via mm_release(), in do_exit(). However, the
5912 * kthread is removed from the cgroup in the cgroup_exit() which is
5913 * called after the exit_mm(). This causes the kthread_stop() to return
5914 * before the kthread actually quits the cgroup.
5915 */
5916 rcu_read_lock();
5917 parent = rcu_dereference(current->real_parent);
5918 get_task_struct(parent);
5919 rcu_read_unlock();
5920 cgroup_attach_task_all(parent, current);
5921 put_task_struct(parent);
5922
5923 return err;
5924 }
5925
kvm_vm_create_worker_thread(struct kvm * kvm,kvm_vm_thread_fn_t thread_fn,uintptr_t data,const char * name,struct task_struct ** thread_ptr)5926 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5927 uintptr_t data, const char *name,
5928 struct task_struct **thread_ptr)
5929 {
5930 struct kvm_vm_worker_thread_context init_context = {};
5931 struct task_struct *thread;
5932
5933 *thread_ptr = NULL;
5934 init_context.kvm = kvm;
5935 init_context.parent = current;
5936 init_context.thread_fn = thread_fn;
5937 init_context.data = data;
5938 init_completion(&init_context.init_done);
5939
5940 thread = kthread_run(kvm_vm_worker_thread, &init_context,
5941 "%s-%d", name, task_pid_nr(current));
5942 if (IS_ERR(thread))
5943 return PTR_ERR(thread);
5944
5945 /* kthread_run is never supposed to return NULL */
5946 WARN_ON(thread == NULL);
5947
5948 wait_for_completion(&init_context.init_done);
5949
5950 if (!init_context.err)
5951 *thread_ptr = thread;
5952
5953 return init_context.err;
5954 }
5955